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Abstract

Active research on the development of autonomous vehicles has been carried out for several years now. Howeve
some signi cant challenges still need to be solved in this context. Particularly relevant is the constant guarantee
and assurance of the integrity of such autonomous systems. In order to ensure safe manoeuvring in the dire
environment of humans, an accurate, precise, reliable and continuous determination of the vehicle's position anc
orientation is mandatory. In geodesy, this process is also referred to as georeferencing with respect to a supero
dinate earth- xed coordinate system. Especially for complex inner-city areas, there are no fully reliable methods
available so far. The otherwise suitable and therefore common Global Navigation Satellite System (GNSS) ob-
servations can fail in urban canyons. However, this fact does not only apply exclusively to autonomous vehicles
but can generally also be transferred to any kinematic Multi-Sensor System (MSS) operating within challenging
environments.

Especially in geodesy, there are many MSSs, which require accurate and reliable georeferencing regardless of tt
environment. This is indispensable for derived subsequent products, such as highly accurate three-dimension:
point clouds for 3D city models or Building Information Modelling (BIM) applications. The demand for new
georeferencing methods under aspects of integrity also involves the applicability of big data. Modern sensors
for capturing the environment, e.g. laser scanners or cameras, are becoming increasingly cheaper and also off
higher information density and accuracy. For many kinematic MSSs, this change leads to a steady increase i
the amount of acquired observation data. Many of the currently methods used are not suitable for processing
such amounts of data, and instead, they only use a random subset. Besides, big data also in uences potenti
requirements with regard to possible real-time applications.

If there is no excessive computing power available to take into account the vast amounts of observation data
recursive methods are usually recommended. In this case, an iterative estimation of the requested quantities

performed, whereby the comprehensive total data set is divided into several individual epochs. If the most recen
observations are successively available for each epoch, a ltering algorithm can be applied. Thus, an ef cient
estimation is carried out and, with respect to a comprehensive overall adjustment, generally larger observatior
sets can be considered. However, such Itering algorithms exist so far almost exclusively for explicit relations

between the available observations and the requested estimation quantities. If this mathematical relationshi
is implicit, which is certainly the case for several practical issues, only a few methods exist or, in the case of
recursive parameter estimation, none at all. This circumstance is accompanied by the fact that the combinatiol
of implicit relationships with constraints regarding the parameters to be estimated has not yet been investigatet
at all.

In this thesis, a versatile lter algorithm is presented, which is valid for explicit and for implicit mathematical
relations as well. For the rst time, methods for the consideration of constraints are given, especially for implicit
relations. The developed methodology will be comprehensively validated and evaluated by simulations and real:
world application examples of practical relevance. The usage of real data is directly related to kinematic MSSs
and the related tasks of calibration and georeferencing. The latter especially with regard to complex inner-city
environments. In such challenging environments, the requirements for georeferencing under integrity aspects ar
of special importance. Therefore, the simultaneous use of independent and complementary information source
is applied in this thesis. This enables a reliable georeferencing solution to be achieved and a prompt noti cation
to be issued in case of integrity violations.

Keywords: Recursive State-Space Filtering, State Constraints, Implicit Functions, Georeferencing, Integrity






Kurzfassung

Bereits seit einigen Jahren wird aktiv an der Entwicklung von autonomen Fahrzeugen geforscht. Allerdings gilt
es in diesem Zusammenhang noch einige signi kante Herausforderungen zu I6sen. Besonders relevant ist dab:
die stdndige Gewahrleistung und Sicherstellung der Integritat solcher autonomen Systeme. Um ein sichere
Mandovrieren in der direkten Umgebung von Menschen gewdahrleisten zu kénnen, ist eine genaue, prazise, zu
verlassige und kontinuierliche Positions- und Orientierungsbestimmung des Fahrzeuges zwingend erforderlich
Im Bezug zu einem Ubergeordneten erdfesten Koordinatensystem wird dieser Vorgang in der Geodasie auch a
Georeferenzierung bezeichnet. Besonders fur komplexe innerstadtische Gebiete existieren jedoch noch keir
vollumfanglich zuverlassigen Losungsmethoden. Die ansonsten geeigneten und daher auch gebréuchliche
Beobachtungen eines Global Navigation Satellite Systems (GNSS) kdnnen in dieser Hinsicht in engen Hauser
schluchten versagen. Diese Tatsache gilt jedoch nicht nur ausschlieRlich fir autonome Fahrzeuge, sondern las
sich im Allgemeinen auf jedes kinematische Multisensorsystem (MSS) Ubertragen.

Gerade auch in der Geodasie existieren eine Vielzahl solcher MSS, welche eine stets genaue und zuverlassi
Georeferenzierung unabhangig von der jeweiligen Umgebung erfordern. Fir daraus abgeleitete Folgeprodukte
wie z.B. hochgenaue dreidimensionale Punktwolken fir Anwendungen im Rahmen von 3D Stadtmodellen oder
Building Information Modelling (BIM), ist dies unverzichtbar. Mit dem Bedarf an neuen Methoden fir eine
Georeferenzierung unter Aspekten der Integritat, geht zeitgleich auch die Anwendbarkeit von Massendater
einher. Moderne Sensoren zur Erfassung der Umgebung, wie z.B. Laserscanner oder Kameras, werden in
mer preiswerter und weisen zudem in Relation dazu eine immer hdhere Informationsdichte und Genauigkei
auf. Dies fuhrt bei zahlreichen kinematischen MSS zu einem stetigen Anstieg der erfassten Beobachtungsdatel
Viele derzeitige Methoden sind dafir nicht ausgelegt beziehungsweise verwenden stattdessen nur eine zuféllig
Untermenge der eigentlich verfiigbaren Informationen. Zusatzlich beein usst dies auch potentielle Anspriiche
hinsichtlich mdglicher Echtzeitanwendungen.

Steht keine uUberdurchschnittliche Rechenleistung zur Berlicksichtigung der gro3en Datenmengen zur Verfi
gung, bieten sich in der Regel rekursive Verfahren an. Dabei wird eine iterative Schatzung der gesuchten Grol3e
durchgefuhrt, wobei die umfassende Gesamtmenge an Beobachtungsdaten in mehrere einzelne Epochen auf
teilt wird. Liegen aktuellste Beobachtungen sukzessive pro Epoche vor, kann ein Filteralgorithmus angewende
werden. So wird ebenfalls eine ef ziente Schatzung durchgefihrt und es kdénnen in Relation zu einer um-
fassenden Gesamtauswertung im Allgemeinen gréf3ere Beobachtungsmengen bertcksichtigt werden. Solcl
Filterverfahren existieren bislang jedoch fast ausschlief3lich fiir explizite Beziehungen zwischen den verflgbarer
Beobachtungen und den gesuchten Schatzgrélien. Ist dieser mathematische Zusammenhang implizit, was durc
aus bei vielen praktischen Fragestellungen der Fall ist, existieren nur sehr wenige Methoden beziehungsweise it
Falle der rekursiven Parameterschatzung gar keine. Dieser Umstand geht mit der Gegebenheit einher, dass ¢
Zusammenwirken von impliziten Zusammenhangen mit Restriktionen hinsichtlich der zu schatzenden Paramete
bislang noch Gberhaupt nicht untersucht wurde.

Im Rahmen dieser Arbeit wird daher ein vielseitig einsetzbarer Filteralgorithmus prasentiert, welcher sowohl fir
explizite als auch fur implizite mathematische Zusammenhange gilt. Zusatzlich werden erstmalig Mdglichkeiten
zur Bericksichtigung von Restriktionen auch und insbesondere fiir implizite Beziehungen gegeben. Die entwi-
ckelte Methodik wird anschlieRend umfassend anhand von Simulationen und praxisrelevanten realen Anwen
dungsbeispielen validiert und kritisch beurteilt. Die Verwendung von Echtdaten steht dabei in direktem Zusam-
menhang zu kinematischen MSS und den damit verbundenen Aufgaben der Kalibrierung und Georeferenzierung
Letztere insbesondere im Bezug auf komplexe innerstadtische Umgebungen. In einem derart anspruchsvolle
Umfeld sind die Anforderungen an die Georeferenzierung unter Integritatsaspekten von besonderer Bedeutung
Dies wird in dieser Arbeit durch die gleichzeitige Nutzung unabhangiger und komplementérer Informationsquel-
len realisiert. Dadurch kann eine zuverlassige Georeferenzierung erreicht werden und eine zeitnahe Benachricl
tigung bei Integritatsverletzungen erfolgen.

Schlagworter: Rekursive Zustandsschatzung, Restriktionen, Implizite Funktionen, Georeferenzierung, Integritat
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Introduction

1.1 Motivation

The use of domestic robots (e.g. robotic vacuum cleaners) has increased steadily in recent years. As a
result, it has become a widespread routine that such mainly autonomously acting systems are moving in
the immediate environment of humans (Bodue, 2017). The risk potential for these small robots to in-
jure humans is, in this context, quite low. However, the situation will be completely different, if in the
upcoming years more and more fully autonomous cars will be involved in public road traf c. Already
today, local public transport buses and taxis operate autonomously in de ned areas, with a growing trend
(Fagnant and Kockelmah, 2015; Mallozzi et al., 2019; Bou{gtte,|2019). At present, the presence of a
trained operator is still mandatory to ensure safety. Unexpected collisions can have serious consequences
in this context, which must be prevented. For this reason, vehicles are already equipped with a variety
of different sensors. In addition to vehicle-speci ¢ sensors, these are mainly those that are used for posi-
tioning and orientation of the vehicle to its environment (e.g. Global Navigation Satellite System|(GNSS)
antennas or Inertial Measurement Unjts (TNMIUs)). Furthermore, there exist sensors that are increasingly
used for environmental perception, such as laser scanners and cameras. In combination, they ensure the
integritﬂ of the vehicle. The accurate, precise, reliable and complet@peﬂ'enation of such a system is

of great importance. Its exact determination must be known continuously at all points in time. This must
be ensured independently of the environment.

However, these requirements are of great importance not only for autonomous vehicles. In general, these
demands can also be applied to &imematic Multi-Sensor System (MSSiter all, a modern vehicle with

all its sensors is nothing else than such a kinerhaficIMSS. Therefore, accurate information about the current
position and orientation is not only necessary to ensure the integrity of a vehicle, but it is also essential
for other purposes. In this context, it can generally also refer togweferencingdf an[MS$ with

respect to a superordinate coordinate system. For example, accurate and precise pose estimation is also
indispensable when using Mobile Mapping Systeins (MMSs) on the ground and in the air] These MMSs
are mobile platforms containing several of the above-mentioned sensors in order to acquire spatial data
of the environment (Wang et al., 2019). Such systems usually do not operate autonomously, but even in
case of, i.e. an Unmanned Aerial Vehidle (UAV), their pose to a xed coordinate system must be precisely
known at all times|(Colomina and Moliha, 2014). Only under these conditions, it is possible to derive
highly accurate maps and three-dimensional models of the reality from the acquired data (Glennie, 2007).
This, in turn, is the basis for obtaining, for example, an up-to-date Building Information Modeling (BIM)
system|(Borrmann et al., 2018) or 3D city modéls (Vosselman and Dijkman| 2001).

Although numerous approaches and methods already exist, independence with respect to the environment
is still a major challenge. Urban areas, in particular, cause dif culties. So-called urban canyons lead to
the fact that the otherwise frequently used pose information baséd on]|GNSS ahd IMU observations is

Yintegrity, in this context, means that the complete, safe and accurate operability of the vehicle within certain prede ned thresh-
olds can be guaranteed at all times, and that information is provided in a timely manner if these thresholds are exceeded
(Hegarty et all, 2017).

2combination of position and orientation in the relevant dimension
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often too inaccurate (Zhu etdl., 2018). Shadowing as well as multipath and drift effects are the reasons
for this. Such unreliable georeferencing is risky, especially in highly frequented urban environments. This
circumstance has led to the fact that other sensors for georeferencing, such as laser scanners and cam-
eras, as well as additional map information, are already being considered more intensively in the systems
mentioned. Thus, the acquired data cannot only be used to map the environment but also to actively
contribute to the improvement of georeferencing. However, this leads simultaneously to new challenges.
Especially the increased use of laser scanners in such kingmatig MSSs leads to an enormous increase in
the amount of data collected. Besides, automotive laser scanners (such as solid-state scanners), for ex-
ample, have recently become less expensive, which makes them even more suitable for more frequent
use in cars for the futuré (Randall, 2019). There are already multiple automotive laser scanners available
that have a small and lightweight design and a remarkable level of accluracy (Velodyne|LiDAR} 2018b;
Ibeo Automotive Systems, 2020; Robosense, 2020). At the same time, the resolution, range and density
of these three-dimensional sensors are increasing. The availability of abx300points per second

is already common. Slightly larger sensors than such automotive laser scanners already capture about
2:2 million points per second (Velodyne LIDAR, 2018a). For this reason, the terminologigafatais

quite appropriate in this context. Big data requires the need for ef cient algorithms to realise potentially
real-time capable systems. To process these vast amounts of point cloud data at all, usually, only a random
subset of the total collected data is currently used (Elseberg et al.,|2013b). Although there are approaches
that perform spatial or temporal subsampling, there is no speci ¢ assessment of the individual observed
guantities with regard to their contribution to an improved estimation. Thus, a more structured reduction of
the entire data set is achieved, but important observations might be lost. Since this identi cation of relevant
observations is quite challenging, depending on the application, it is advisable to use as much information
as possible. Batch processing, where the data is used within an overall adjustment, is often applied for
this purpose, but reaches its limitations with such increasing amounts of 3D points. Although such batch
methods provide excellent results, they usually have to be performed in post-processing on powerful com-
puters. Otherwise, enormous mobile computing power is required or, for example, the use of Graphics
Processing Unit§ (GBUs). However, this is in contradiction to the demands for online approaches, such as
those needed for autonomous driving. Current applications of this kind require recursive approaches.

Especially suitable for such tasks is the useemlursive state-space IteringThis methodology covers
decades of development and deals with the estimation of arbitrary and not directly measurable states, by
the fusion of arbitrary observation data via a suitable mathematical model (Kalman, 1960). Applications
of such lters are extensive. However, these are primarily based on e@meithematical relationships
between the observations and the parameters to be estimated. This mathematical limitation is in contrast
to a multitude of issues in various elds of expertise (Helel, 2001; Perwass$|et all, 2005), and especially
in geodesy (Steffen and Beder, 2007; Dang, 2007; Ning/et al., 2017). Often, when dealing with geometri-
cal issues, mathematically implitelationships occur. Although there are approaches but they are rare.
This becomes evident, for example, from the fact that the use of constraints regarding the state param-
eters in connection with implicit relationships has not yet been investigated. However, the presence of
appropriate additional information when using constraints is always recommended and generally has a
bene cial impact on the estimation results (Simpn, 2010). For example, the integration of various (geo-
metric) constraints regarding the previously mentioned challenging urban setting for autonomous driving
might be useful. In addition, there is still a need to develop and assess these methods with regard to
compliance with integrity aspects (Worner et al., 2016; Reid et al.,|2019). Therefore, possible solutions
should consider the inclusion of new independent and complementary sources of information. This will
further improve redundancy, and any loss of integrity can be identi ed and reported in a timely manner.

In summary, due to the availability of inexpensive modern sensor technologies, the amount of data for
various current topics is constantly increasing. Consequently, there is a demand to develop new recursive
methods for the reliable georeferencing of kinemptic MSSs in challenging urban environments. This
allows ensuring the integrity of, e.g. autonomous vehicles or to accurately map environments when using
[MMSS. Solutions are based on applications from the eld of recursive state-space Itering in combination
with appropriate constraints and additional information from object space.

3The observations result directly from the parameters under consideration of a functional relationship
“The observations and parameters cannot be separated from each other to either side of the equation.
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1.2 Objective and Outline

The main focus of this thesis is on the development of a versatile Kalman Iter. This Iter should consider
non-linear explicit and implicit mathematical relationships between available observations and requested
state parameters. In addition, existing methods for the consideration of arbitrary non-linear state con-
straints have to be applied and validated for the implicit relationships. The main focus here lies on the
distinction between hard and soft constraints, and their application to prior information which is affected
by a speci ¢ degree of uncertainty. It is also necessary to analyse the impact of wrong prior information
with regard to the different methods for taking constraints into account. The application of the methodol-
ogy in this thesis is directly related to kinemdtic MESs and associated tasks, like their ef cient calibration
and georeferencing. In particular, this addresses current challenges in complex urban environments, as
well as the development of methods for georeferencing with integrity aspects even under such dif cult
conditions. For this purpose, independent and complementary sources of information should be used,
providing at least long-term support. However, basic applicability to any other issues should also be pos-
sible. For this reason, it is also necessary to investigate the extent to which the newly developed methods
within this thesis perform with vast amounts of data compared to the existing approaches. This is directly
related to current and future big data applications. According to these objectives, this thesis is structured
as follows.

Chaptef 2 gives an overview of the methods and models applied in this thesis. Firstly, this includes
the fundamentals of parameter estimation and associated models. Secondly, the idea of recursive state-
space ltering is presented. The corresponding methodology is provided for both explicit and implicit
relationships. Thirdly, a comprehensive overview of different possibilities for the consideration of linear
and non-linear state constraints is given.

The own methodological contributions of this thesis are presented in chapter 3. This includes the intro-
duction of the versatile recursive state-space Iter and mainly the possibilities to consider different state
constraints in the context of implicit measurement equations. Furthermore, a realisation of a recursive
Gauss-Helmert Model (GHM) is presented from these studies. Also, a geometric application example is
presented, which serves as the validation base for the described methods.

Chaptef # contains a detailed application of the proposed methods concerning the calibration of a kine-
maticlMS$. A general de nition of such a system is given at the beginning, and the primary tasks involved
are described. This is followed by the motivation and description of the speci c calibration task. The re-
sults based on the new methods are presented and discussed concerning existing standard approaches.

A second application related to the georeferencing of kinerpatic MSSs is described in Ehapter 5. In ad-
dition to a motivation and a description of the experimental setup used, current methods of solving the
problem are discussed together with their weaknesses. Subsequently, the newly developed approach and
the respective results are presented and evaluated.

The thesis concludes with a summary of the most relevant results and ndings in dhjapter 6. At last, an
outlook is given in which remaining questions are formulated, and ideas for further research are presented.

The new methods developed in this thesis, the measurement data acquired and the ndings obtained are
directly related to the Research Training Grdup (RT.Gyens 215%unded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation). Furthermore, parts of the computations were per-
formed by the compute cluster, which is funded by the Leibniz Universitat Hannover, the Lower Saxony
Ministry of Science and Culture (MWK) and DFG.






Fundamentals of Recursive State-space Filtering

This chapter is dedicated to the basic principles of recursive state-space Itering. As part of the parameter
estimation in sectiop 2.1, two well-known adjustment models for overdetermined equation systems are
generally introduced. These models are then extended by the consideration of constraints. Based on this,
the differences to the recursive state-space lItering in seftign 2.2 are presented. These lters are generally
applied to non-linear relationships, which must be exclusively explicit in a rst method and implicit in

a further method. Subsequently, section 2.3 gives a detailed overview of the various possibilities for
considering state constraints in Kalman Itering.

2.1 Parameter Estimation

Adjustment theory provides a fundamental structure for solving overdetermined systems of equations.
Such problems are omnipresent in many scienti c communities. During a measurement process, arbitrary
types of observatiorisare carried out to determine the unknown paramegefSorresponding parameters

and observations can be arbitrarily suitable physical or mathematical quantities (e.g., coordinates, angles,
distances). The relationship between these observations and parameters can be formulated by any suitable
mathematical real-valued functitﬁ]is( ), depending on the respective application. This becomes reason-
able if the unknown parameters are not directly observable (e.g., coordinates of a new point by observed
distances and angles from known points). Furthermore, a set of overdetermined equation systems can
increase reliability (e.g., detection of outliers) and improve quality measures (e.g., accuracy, precision).
By contrast, overdetermined equation systems can have multiple solutions. For this reason, the optimal
solution of such an equation system must be found by parameter estimation.

Different adjustment models can realise such an estimation. The correct choice of the model depends on
the independent functional relationships between the observations available and the parameters requested.
A careful derivation of such functions by physical or mathematical laws is essential. However, strictly
speaking, functional relations are only valid for the true observatioasd parameterg. To overcome
inconsistencies, unknown expected val&ss) are included when using the real values. Furthermore,
residuals are introduced to use the real observations and parameters to the respective model|(Niemeier,
2008, pp. 120 ff.). This procedure will lead to the best estimates of the values requested.

A stochastic model is used to account for the random behaviour of the observations. In a simpli ed
approach, independent and identically distributed random variables are usually applied. It is assumed that
the observed values result from additive deviations — which are random — from the true values. The
uncertain observations are therefore modelled by any distribution, e.g. by the Gaussian distribution. An
expected value and a Variance-Covariance Mafrix (YCM) can give the distribution. This stochastic model
will in uence the estimation of the unknown parameters as well as their quality measures.

Furthermore, the respective adjustment model is applied with an arbitrary estimator. The most common
estimator is Least-Squarés (LS). Underlying concept of the optimisation criterion is to minimise the sum

LAlso referred to agunctional model
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of the squared residuals between real observaticasd their related expected valuggl;) = h; (X) by

the unknown parameters(Koch,[1999, pp. 152). If the functional model ) is linear, the estimation

is referred to as Best Linear Unbiased Estimaie (BLUE) in the context of the optimality properties. The
strict solution of the LS estimator is independent from the underlying distribution of the observations
(Forstner and Wrobgel, 2016, pp. 80 ff.). Also other (robust) estimators (e.g. Huber, Hampel) can be
applied, which are based on maximum likelihood methods. Nevertheless, ohlylthe LS estimator is used in
the following.

The general case of adjustment, also knowh as GHM, forms the basis for such adjustment models. The
special case, also known as Gauss-Markov Madel {(GMM) and the transformatioh_of @ GHM into an
equivalenf GMM are presented subsequently. Such standard methods are commonly used in the geodetic
community and are described in detail by (Kdch, 1999; Lenzmann and Lenzmann, 2004; Jager et al., 2005;
Wichmann| 2007; Niemeigr, 2008). Furthermore, consideration of additional constraints to the requested
parameters is given at least for the GMM by the authors mentioned. However, constraints in the sense
of a[GHM are rather an exception and are mentioned by only a few authors, such as (Rietdarf, 2005;
L&sler and NitschKe, 2010; Steflen, 2013; Heiker, 2013; Roese-Kdoérnet, 2015).

There are two basic possibilities for realisation[ofl LS adjustment. The particular preference depends
on the existing application. Measurements can be carried out as a whole, which will result in a post-
processing approach for all available observations acquired. This will be referredverai adjustment

or batch approach In contrast to such a batch approach, new observations can be considered epochwise
as soon as they are acquired. This will result in a recursive parameter estﬁ}rmi:omach. This means

the parameters requested are updated step-by-step by latest observations available. However, recursive
parameter estimation fofla GHM does not exist at all.

In general, it is assumed to receive only a well-posed normal equation system to obtain a unique inverse
of a regular matrix. Singular entities, e.g., due to datum defects or linear dependencies, are not considered
and would require additional special attention.

It should be noted that the different adjustment models partly use the same denominations for the non-
linear functions as well as individual vectors and matrices. This multiple use is intended to ensure clarity.
However, — if not mentioned otherwise — new variables can be assumed when a new adjustment model
is introduced.

2.1.1 Gauss-Markov Model
Unconstrained Gauss-Markov Model

The[GMM, also referred to amdjustment of observationsepresent aexplicitrelation between stochastic
observations and unknown deterministic parameters. In general, the nor-inear GMM is de ned by the
n 1observation vectdrand theu 1 parameter vectox as

E(l)= h(x); (2.1)
or without expected values of the observations and more detailed

li+ vi = hi (X% 205 %) (2.2)
The residuals within the vecterare assumed to be Gaussian with expected &l = 0

v N(; y) with = 3 Q= 3PH1h (2.3)

where  is the known positive-de nitE VCIM of the observatior@y the related cofactor matrix the a
priori variance factor an® the weight matrix. Altogether they describe the weighting of the observations
among each other and are referred to as stochastic model. A linear functionalmgddelrequired for

2Also referred to asequential parameter estimati¢Niemeie| 2008, pp. 314 ff.)
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the adjustment. Linearisation of Equati¢n (2.2) can be performed for non-linear models by Taylor series
expansion up to the linear segment, which leads to the matrix form

I+ v=h(Xg)+ A (X X with A=r ,h(X 2.4a
s A g o, @42
=g+ A X with =1 |l (2.4b)

The design matriXA is assumed to be of full rank and the partial derivatives are evaluated at the initial
parametergg. It should be noted that in the following process only the parameter vedarsed instead

of the reduced parameter vectox. Therefore, the necessary updating must still be taken into account.
The same applies to the reduced observation vectaand the initial observationly. In addition, the
estimated values of the individual quantities are only given from the level of the normal equations. Up to
this stage, the unknown true values are given. Regardless of this, the linearisation should also apply to the
estimated values. To obtain an optimal estimation of the parameters, the residuals of the objective function
Lemm (x) are minimised according f01.S estimation (cf. secfion) 2.1). The Gauss-Newton method is used
for this purpose, hence

Leum (X) = VI P v (2.5a)
=(Ax DT P (A X I (2.5b)
=x' AT PAXx 2x" AT PI1+IT P I! min (2.5¢)

This is done by setting the partial derivative of the objective function with respect to the optimisation
variablex equal to zerg (Wichmanp, 2007, pp. 106)

rvLoum()=2 AT P A x 2 AT Pl=0 (2.6)
This leads to the optimal estimation of the parameters by Usihg LS adjusiment (Koch, 1999, pp. 158)

1
£= AT P A AT P I; (2.7)
| —{z—}

Nemm

whereNgmm is the normal equation matrix. The estimated residialzn be obtained by

=A% | (2.8)
to receive the adjusted observatidns

f=1+9 (2.9)

The cofactor matriXQge With the co-/variances of the estimated parameftecan be obtained by the
inverse of the regular normal equation matxigym

_ N 1 - AT 1
Qs = Ngymw = A" P A (2.10)
Taking into account the a posteriori variance factor

O P 9
AS — — : (2.11)

the estimateE VCM' 4 for the estimated parameters results in

a="§ Qu: (2.12)

AN
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In addition, the following also applies

= & Qu (2.13)

where thd VCIN 44 refers to the a priori variance factor. This VCM is of interest if the Degrees of
Freedom[(DgF) of the adjustment task are low or if the estimation cannot be trusted for other reasons.
Strict recommendations on when to prefer which VICM do not exist. This depends on the speci ¢ task and
the present (measurement) con guration. In the context of this thesis appropriate conditions are assumed.
For this reason, 4 will not be given in the following.

Constrained Gauss-Markov Model

The parameters might be restricted bgindependent non-linear equality constraints
g(x) = b; (2.14)

with independent real-valued non-linear functional relatigti$ and the related constast 1 vectorb.

Similar to the non-linear functional model in Equatipn {2.2), the non-linear constraint furgotipneeds

to be linearised by Taylor expansion. A truncation of the Taylor expansion after the linear term leads to
the following substitution

C x=d with C=r 49X ; (2.15a)

X=Xo

d=b g(xXg)+ C Xop; (2.15b)

whereC is theu s matrix of equality constraints andlis the related constaist 1 vector. Such an
extension by constraints can be reasonable in case of suitable prior information regarding mathematical
relationships between speci ¢ parameters. A common example of using equality constraints is to ensure
a normalised normal vector of a plane. To apply such additional information, the objective function in
Equation[(2.5¢c) must be extended

Leavm (X, )= Lamm () +2  T(C x d)! min (2.16a)
x' AT PAXx 2x" AT PI1+1T P |
+2 T(C x d)! min

(2.16b)

withthes 1vector of Lagrangian multipliers. The solution is again achieved through the related partial
derivatives of the Lagrangian according to the Gauss-Newton method. These derivatives are set equal to
zero with respect ta and  (Koch,[1999, pp. 170 ff.)

r«Leoum(x; )=2 AT P A x 2 AT Pl1+2 CT =20 (2.17)
I Leowm (X )=2 (C x d)= 0 (2.18)

On this basis, Equatiofi (2.7) need to be extended into a block structure

#
AT PAC % _ AT PI .
C o "~ d :
{z }

Nc-gmm

(2.19)

whereNc.gmm is the extended normal equation matrix. [As Roese-Kogfner (2015, pp. 16) mentioned,
Lagrange multipliers do not have a physical unit and often a multiple is used to ensure convenient equa-
tions. The linear system of Equatidn (2.19) has an unique solution if the bordered normal equation matrix
Nc-emm is regular Nc.gmm need to be of full rank) (Wichmanh, 2007, pp. 113). The cofactor makgix
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with the co-/variances of the estimated paramétermn be obtained by the inverse of the normal equation
matrix Nc.gmm.-

The extension with regard to the VG Ry results from Equatiorf (2.12), whereByg results under con-
sideration of thes constraints as follows
T P
s+n u

Finally, it should be noted that within this Constrained Gauss-Markov Madel (C-GMM) only equality and
no inequality constraints can be taken into account.

nZ = (2.20)

2.1.2 Gauss-Helmert Model
Unconstrained Gauss-Helmert Model

The general case of adjustment becomes applicable, as soon asstochastic observations and 1
unknown deterministic parameters are strictly interconnected by an arbitrary real-valued fimcjion
Such a non-lineamplicit relation can be formulated by equality constraints

h(E(I):x) = 0; (2.21)
or by using residuals instead of the expected values of the observations
hi(In+ vy la+ vo; oo In+ Ve Xas X5 0015 %) = 0 (2.22)

To obtain a linear functional model approximate vallgand Xy to both observations and parameters
need to be selected carefully for Taylor series expansion (Lenzmann and Lenzmainn, 2004). The following
applies

h(l+v;x)= h(lo+ [+ vixo+ x) with =1 1o (2.23a)
h(;x) . +rih(x) . ( T+v)+r1rh({;x),., X (2.23b)
|— | —f—= | —fz—}
Wo B A
=w+B ( I+V+A X (2.23c)
= Yv0_+ zB_f +B v+ A X (2.23d)
=B V+A x+w= 0 (2.23€)

whereB is theq n condition matrix with partial derivatives of thg condition equations with re-
spect to the observation vectbrandw refers to theq 1 vector of contradictions. According to
Lenzmann and Lenzmann (2004), note that the partial derivatives are evaluated at thdﬂmxﬁation

= 1lg+ v; (2.24)
X = XO + X, (225)
where the residualsand the reduced parameter vectot will continuously change during the estimation.

To obtain an estimate fdrv; x and | minimising of the objective functiohgum (v; X; ) with respect
to[LS estimation (cf. sectidn 3.1) can be performed by Lagrangian multipliers

Leum(v; x; )=vI Pv 2 T(B v+tA x+w! min (2.26)

3Also referred to aslevelopment point
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Setting the related partial derivatives with respect;tox and equal to zero

rvlenm(v; X, )=2 Pv 2 BT =20 ., v=P BT (2.27)
roxlema(v; x )= 2 AT 20 ., AT =0 (2.28)
r Loum(v; X; )= 2 (B VFA x+w)=0 , B V+A x+w=0 (2.29)

leads to the solution of the restricted minimisation problem by the linear normal equation system in block
structure

1 T # /\#
B P B" A w

AT 6 2% o ° (2.30)
| {z }

NGHm

Depending on the selection of reasonable approximate valugsdadxy, several iterations for repeated
linearisation are required to obtain accurate estimates for the unknown parameters. Assuming that the
inverse ofNgpm exist, the estimates for each iteration are

Qp=B P ' B; (2.31)
1
k=Qg I A AT Qi A " AT Q) (w; (2.32)
¢=qQ, B" &k (2.33)
T=1g+ ¢ (2.34)
as well as
1
£ = AT Qt A AT Q) ((w; (2.35a)
X=X+ %K (2.35b)

The cofactor matriXQqg with the co-/variances of the estimated parametecan be derived either by
inverting the entire regular normal equation matigym

#
Qﬁ&

o (2.36)

N = gﬁi

or by applying the law of error propagatffto the estimated parameters in Equatfon (2.35a), which leads
to

1
Qu= AT Qy A (2.37)

Also here the extension results to the a postefior YC according to Equation§ (Z111) arid (2.12).

Again, the a priorLVCM 44 can be obtained according to Equatipn (2.13), whereby the same applies
with regard to its use as for GMM.

Constrained Gauss-Helmert Model

Similar to thd C-GMM, the parametexf thelGHM might be also restricted Isyndependent non-linear
equality constraints

g(x) = b; (2.38)

4Also referred to agropagation of uncertainty
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which can be transformed according to Equatjon (2.15) into linear constraints
C x=d: (2.39)

According to (Roese-Koerrgr, 2015, pp. 19 ff.) the parameter vectwreds to be divided into the
approximation value and the reduced parameter vectox, which leads to

C(xo+ x)=d (2.40a)

C x=d C xp= d: (2.40b)

The consideration of suitable prior information for a Constrained Gauss-Helmert Nlodel (3-GHM) makes
it necessary to extend the objective function in Equafion {2.26) to

Leoim(V; X 13 2)= Leum(v; x; ) 2 J(C x d)! min (2.41a)

=v Pv 2 (B V+A x+w)

2.41b
2 1(C x dy! min: ( )

As in the unconstrained_ GHM, the related partial derivatives with respegt t; 1 and » of the
Lagrangian are set equal to zero

rvleceum(v; x; 1; 20=2 P v 2 BT 12 0

(2.42)
., v=P 18T 1;
roxleemm(V X 15 2= 2 AT 1 2CT ,20 (2.43)
., AT 1+CT ,=0
f L Leamm(V X 1 2= 2 (B VFA  x+ w20 (2.44)
, B V+A x+w=0
r,leceam(v; X 1; 22= (C X d)=0 (2.45)

, C x=4d

leads to the solution of the constrained minimisation problem by the linear normal equation system in
block structure

2 32, 3 - 3
BPB" A 0o_ "

1 W
8 AT 0 CTL§ s#f=405:; (2.46)
| 0 , ¢ o n d
z
Nc-GHm

Again, several iterations for repeated linearisation are required and the cofactor@atcan be derived
by inverting the regular normal equation matN_gHm

2 3
Qtzjm Qrisx Qb

Nely = QQ{M Qs Qu, & (2.47)
leﬁz Qﬁﬁz QQZQZ

By substitution and transformation of Equations (2.42) and [2.43) the corresponding residuals read

1
9= P11 B" B P! B (A R+ w); (2.48)

with which the estimateld VCM 44 for the estimated parametérsan be obtained according to Equations

(2.12) and[(2.20).
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Again, as for thé_C-GMM, only equality constraints and not inequalities can be considered. Arbitrary
inequality constraints would lead to a more complex optimisation problem. A solution to this problem
was introduced in Roese-Koerheér (2015, pp. 77 ff.). Since inequalities are very helpful and occur in
several applications, this is a useful, albeit more complex, possibility to consider them.

Transformation of a Gauss-Helmert Model into a Gauss-Markov Model

Note that the estimation of the parameters requested of alGHM in Equatioh (2.35) has a similar structure
to the[GMM in Equation[(2]7) (Jager et|al., 2005, pp. 163 ff.; Dang, 2007, pp. 69). This can be utilized
to transform a non-linedr GHM into an equivalént GMM. This transformation is required if recursive
parameter estimation is to be applied and leads to

T+v=A x with v N 0 4 ; (2.49)

taking into consideration the substitutions

T= w B I= w (2.50)
vi= B v (2.51)
A=r 4h(l;)x) = I+ Ve xo+ X' (2.52)
X=X (2.53)
L=B BT: (2.54)

Note that the tilde symbol indicates the transformed quantities. Furthermore, this transformation is also
used for the Kalman Iter approach with implicit measurement equations (cf. sgctiof 2.2.2).

2.1.3 Recursive Parameter Estimation

In case of vast quantities of observations and self-contained epochs, a batch algorithm might be compu-
tationally expensive. For this reason, recursive estimation on an epochwise basis can be a suitable option
and has already been studied by Plackett (1950); Kalman and Bucy (1961). Therefore, the parameters re-
guested are updated continuously when a new measurement epoch is available. This offers the advantage
to just consider new observations for the parameter update, instead of re-adjustment of the whole data set.

Consideration of the additional observation vedtowith ne new observations requires an extension of
the initial[GMM given by Equationg (2.3) and (2]4b) (Niemeier, 2008, pp. 314 ff.)

0 Pl 0
le= 6 Que= & %” Ou = 5 o P (2.55)
e v A Xe! (2.56)

le Ve Ae

As a result the normal equation mathl and the related parameter veckgrare given recursively by

Ne= AT (P A+ A Pee A (2.57)
Nemm
%¢= Ngt' AT P I+ Al Pee le : (2.58)

Again, the cofactor matriQss.c can be obtained by the inverse of the regular normal equation niNrix

However, this recursive parameter estimation is usually only used if the parameters requested have already
been estimated by a pre-existing dataset of observations (e.g., cyclic measurements for a geodetic moni-
toring network). Consideration of multiple new epochs is usually not within the scope of this approach.
Moreover, such a recursive procedure does not exist[for a|[GHM.
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2.2 Recursive State-space Filtering

Parameter estimation is a useful method to receive an optimal estimate for freely de nable parameters
which have a unique relationship to arbitrary observations. In general, the parameters requested are ob-
tained by a batch approach as a whole or by recursive estimation as soon as epochs of new observations
are available (cf. sectign 2.1). However, those approaches are suitable as long as the true parameters are
temporally constant during data acquisition. Changes (e.g., the position parameters of a moving vehicle)
are not intended and would cause several problems.

In contrast, recursive state-space lters are meant for such changeable applications. The difference to
parameter estimation consists in the fact that besides already used measuring information, additional sys-
tem information is considered. Furthermore, the parameter vector is no longer deterministic but becomes
probabilistic. This enables the possibility to take into account suitable physical models which describe
the temporal and spatial dynamics of the state parameters requested mathematically. Thus, both measure-
ments and physical properties are considered within a recursive estimation approach. The linear Kalman
Filter (KH) provides the optimal estimation for this problem and was proposed by Kajman (1960). In
this context, an optimal estimate implies that it is unbiased and has a minimal vafiance|(Simon, 2006,
pp. 84 ff.). However, these optimality properties only apply as long as Gaussian noise — for both the
measurements and for the physical system — and linear relationships exist.

The time-discrete KIF is a recursive two-step procedure. For a theoretically unlimited nurkbefaf. : K

epochs the state parameters are predicted by a suitable procesd (modetl updated by an appropriate
measurement modal ) subsequently. Both are arbitrary real-valued functions. To be also applicable for
non-linear relationships (for both system model and measurement model), Taylor series expansion within
the so-called Extended Kalman Filtér (EKF) is possible. Since non-linearities comprise the majority of
applications, only this more complex case is referred to. However, the linearisation causes the KF to lose
its optimality. Instead, an approximation is carried out. Tteség KFs are also of importance in geodesy and
are used, for example, to estimate the position and orientation of various multi-sensor systems (Sternberg,
2000; Vennegeeits, 20171; Paffenholz, 2012; Schlichting,|2018; Zwiener, 2019).

During the prediction step, selected physical relationships (e.g., motion models) are applied to the previous
state parameterg 1 from the last past epoch. Further in uencing factors like zero-mean processmoise

with wwk and controlsuy are also taken into account at this stage. During the subsequent update
step, the forecasted state parameters are corrected by the latest set of sensor obder¥timng zero-

mean measurement noigewith VCM] .« must also be taken into account here. Thus, this non-linear
discrete model can be assumed according to Sion (2006, pp. 407) as follows

Xk=f(Xk 1;Uk 1, Wk 1); (2.59)
I+ vk = h(x); (2.60)
Wi N (0 wwi); (2.61)
Ve NGO w: (2.62)

To distinguish between the predicted and updated state paramegtetenotes the a priori estimate and
X the a posteriori estimate of the state vector. The same applies to VCMs for the predicted states
.k and for the updated states), ,, respectively.

In general, the process noise is Gaussian and describe the uncertainty and imperfections of the physical
model. The same applies to the measurement noise concerning the related measurement model. Further-
more, there are also possibilities to consider noise with non-Gaussian distributions (e.g., by a probabilis-
tic Particle Filter [PF)). Beyond that, there is a multitude of several linear and non-linear lters (e.g.,
Unscented Kalman Filtef (UKF), Ensemble Kalman Filier (EnKF)). For a detailed compilation with full
derivations the reader is referred to, €.g., Kalman (1960); Jazwinski|(1970); Gelb (1974); Bar-Shalom et al.
(2001); Thrun et al! (2005); Simbn (2006).

In principle, all these different realisations of Iters can be described with Bayesian sequential estimation.
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a posteriori Probability Density Function {PDPB{xkjLk) of the system statg, can be approximated.
According tg Thrun et al/ (2005, pp. 31 ff.) and Simbn (2006, pp. 462 ff.), this conditional density can be
determined by using the Bayes' theorem. This generally represents the update step introduced above and
the following applies:

P(ljXk) P(XkjLk-1) .
p(lLi) (263)

where the a posteriof PDB{xkjLk) is obtained by convolution of the likelihodd PI}fljxx) and the a
priori [PDH p(xkjLk-1). Furthermore, the evidenCe PIPpHjLk-1) is used for normalisation, but is usually
neglected. The a priori density corresponds to the classical prediction step and can be obtained by the
solution of the Chapman-Kolmogorov integral

Z

P(XijLlk-1) = P(XkiXk-1) P(Xk-1j Lk-1) OX-1: (2.64)

P(xijLi) =

Here,p(Xk-1jLk-1) describes the a posteriarl PDF from the last past efgetH-or the rst prediction step,
an assumption for thi[S PDF is made f{xo) as part of the initialisation. Furthermore, the transifion PDF
P(XkjXk-1) results from the non-linear system model (cf. Equafion (2.59)) aridthe PDF of the corresponding
process noisey (cf. Equation[(2.61)). It thus describes the system model and indicates the transition
probability from the last known state to the current state. This is also how the like[[hod@(®RP&) from
Equation [(2.68B) is de ned. The non-linear measurement model (cf. Equation (2.60)) and the associated
measurement noise (cf. Equatign (2.62)) are used for this purpose. In this way the current obségvations
are considered in the update step (cf. Equafion [2.63)) and the alpridp@IJEx-1) is corrected. Based
on the knowledge of the a posteribri PDF, an estimate of the state vector can be done. Different estimators
can be selected for this (Candy, 2016, pp. 38 ff.). The mean value of the a posieriori PDF is typically
determined by an estimate of the Minimum Mean Square Hrror (MMSE) according to
Z
VS = E (xili) = X pOxLi) dx (2.65)

Another estimate can be obtained by the Maximum a Posteriori Probability (MAP) approach, where

AMAP = arg max p(xijLi) : (2.66)
Xk

For other estimates, see Ko¢h (2000). Similarly, the variance over the second central moment can also be
determined. In general, this recursive estimate, which is also referred to as a Bayesian lter, represents
an optimal solution. However, the Chapman-Kolmogorov integral in Equdtion| (2.64) can only be solved
numerically if linear models with Gaussian noise are avaifible addition, the consideration of all
previous observations leads to numerical problems (CGandy] 2016, pp. 39 ff.). The latter challenge can be
countered by applying a rst-order Markov chain. As a result, not all available observaticare taken

into account, instead only the observations of the last past mch flx 1;1kg. To address non-linear
models with non-Gaussian noise, approximative Ilter techniques must be agplied ($imoh, 2006, pp. 465
ff.). If at least Gaussian noise is present, the already mentlonetl EKF can be applied.

However, the literature has so far dealt almost exclusively with explicit relationships between measure-
ments and states (cf. Equatidn (3.60)) in the context of the lters mentioned. Such a model can be
referred to as & GMM from sectign 2.]L.1. Implicit relations (related [fo_a GHM from se€ctior] 2.1.2) are
only mentioned by a few researchers (Soatto &f al., [1994; Steffen and Beder| 2007, Dang, 2007, 2008;
Petersen and Kotch, 2010; Ettlinger et al., 2018; Vogel gt al.,|2018] 2019; Garcia-Fernandéz etlal., 2019).
This situation is in contrast to a multitude of applications that are based on implicit relationships. These
are mainly geometric entities (Heuel, 2001; Perwass|et al.,| 2005). While, for example, &n UKF can also
deal with non-linear equations by approximatinglthe PDF, only in Ninglet al. {2017) an approach is shown
which considers implicit measurement equations. So far, this is based exclusively on simulated data. The

®This special case describes the time-discrete linear KF.
SAlso referred to as Markov assumption
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presented general Bayesian Iter is not analytically solvable if implicit measurement equations are to be
considered and therefore does not yet exist in this form. For this reason, the framework of explicit and
implicit models is introduced in detail by an Iterated Extended Kalman Hilter (JEKF) subsequently.

2.2.1 lterated Extended Kalman Filter for Gauss-Markov Models

ThellEKE is an additional advancement of (he EKF for non-linear equations and was initially proposed by
Denham and Pines (1966). The only difference between the two approaches is a repeated linearisation dur-
ing the update step. Here, the TEKF execute several additional iterations to correct the development point
of the rst-order linearisation within each iteration. This is less computationally complex than perform-
ing Taylor series expansion of higher orders Siimion (2006, pp. 417 ff.). Highly non-linear equations are
therefore controllable. In tHe TEKF algorithm described below, the equations are not derived. A detailed
derivation can be found in Simpn (2006, pp. 407 ff.).

Initialisation

As with all lters in general, thé TEKF requires initialisation. Therefore the initialised 1 state vector
estimatek,_, and corresponding ulVCMl ., is given by

Ko = X0 (2.67)
;&;k=0 = xx0- (2.68)

Prediction Step

By rst-order Taylor series expansion of the system model (cf. Equdtion](2.59)), the Jacobian matrices for
the state transition ¢ 1 and the noise matri§6, 1 can be obtained

k 1=1 xf(x) : (2.69)
R iUk Wk 1
Gk 1=r wf(X) : (2.70)

+ . .
R Uk 13Wk 1

Quite often, however, the noise mati¢ 1 can be omitted. In general, the following applies for the
predicted state vector estim&e with associated VCM matrix 4.

% = f % 1uc ;0 (2.71)
gk= k1 ak1 k1T Gk1  wwk1 G 1l (2.72)
Update Step

The explicit relationship between observations and states is given by the measurement model (cf. Equation
(2.60)), wherdy is then 1 observation vector. Since non-linearities can usually occur here as well, the
linearisation should also be carried out here by a rst-order Taylor series expansion. As already mentioned,
it is the special characteristic of the TEKF to perform additional iterations during the update step. For this
reason, in addition to the epoch-indiexan additional indexn is introduced with regard to the current
iteration run.
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After initialisation for the iterative parameters and observations by

kmeo = Ry (2.73)

Ik;m=0 = Iy (274)

Vicm=0 = Vk (2.75)

it follows form=0;:::;M 1 with the maximum number of iterationd

Agkm=T xh k;ym ; (2.76)
k;'m;lk,m;vk,m

Mgm=r yh k;,m : (2.77)
k;ym;lk,m;vk,m

= T T T 1.

Kikm=  aek Axm Akm  aek Akmt Mkm 1k Mygm 5 (2.78)

-Iz,mi-l =% +Kgm Ik h k;‘m Akm R ;,m ; (2.79)

sxkmer = (1 Kiem Akm) g (2.80)

Here, %y , is the stepwise updated state vector arjg, , the associated VCM. The estimation of the
updated states is in uenced by the so-called Kalman métgix. This matrix provides for the weighting
between predicted stat&s and current observatiorg at each epoch. Again, quite often, the Jacobian
matrix My m related to the residualg m is usually not taken into account. The nal a-posteriori state
estimate and associated VCM are than

R = Rewn (2.81)
ak = MM (2.82)

The general process of the individual Iter steps is shown in Figure 2.1 with its relevant estimates. Note
that forM = 0 the[lEKH reduces to the standard EKF without additional iterations. There is theoretically

no limit to the maximum number of iteratiorid within the[IEKE. In practice, a maximum number

of iterations is usually specied. Alternatively, this can also be provided with an abort criterion. A
possible threshold value, which must be reached below, can be for example the absolute change between
two consecutive epochs. Studies show, however, that in practice, often already one or two additional
iterations are suf cient|/ (Krebs, 1980, pp. 194). Further iterations, therefore, do not necessarily lead to
further improvements. Regardless of this, a larger number of iterations would also be inef cient from a
computational point of view.

In principle, itis also possible to perform an improved linearisation during the predicticﬂ(sfeﬁqua—

tion (2.71)). In practice, however, this is rarely used and only required for highly non-linear systemn (Krebs,
1980, pp. 188). In addition, the focus will be on the measurement model in the further chapters, which is
why more details can be found directly in Jazwingki (1970, pp. 279 ff.).

............

f @) %o Tz R(xi) = b + v —— By Bxa e

...........

k=k+1

Figure 2.1: Flowchart of thé TEKTF for explicit measurement equations with predicted (solid box) and updated states (dotted box)

"In\Jazwinski|[(1970, pp. 280) this is called therated Linear Filter-Smoother
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2.2.2 lterated Extended Kalman Filter for Gauss-Helmert Models

The basic principle of thEZJEKF was already introduced in the previous s€ctiory 2.2.1. However, it is
limited exclusively to explicit relationships between state parameters and observations within the mea-
surement modéi( ) (cf. Equation[(2.60)). In this section, therefore, a possibility is presented that allows
implicit relationships to be taken into account. Thus greater exibility can be guaranteed regarding dif-
ferent applications. The main idea of the transfer towards implicit measurement models is based on Dang
(2007,/2008). His approach is again based on the transformation of a[lineat GHM into dlinear GMM
according to transformation rule from Equatiohs (2.50) — (2.54).

Compared to the TEKIF fdr GMM, the basic procedure regarding prediction step and update step remains
the same. Therefore, only the update step is affected by the introduction of an implicit model. The
measurement model from Equatipn (2.60) therefore results in

h(lk+ v xk) = 0; (2.83)

where the states and observations are inseparable. However, the other assumptions of Equajions (2.59),
(2:61) and[(2.62) remain. At this point, note that in addition to the Itered stetesitered observations
I, are now also estimated. Here, Equation (P.83) is an auxiliary condition bfihe LS problem de nition
[ # !
+ T 1 +
IJ,‘ lk g‘k 0 IJ.‘ lk I min: (2.84)
X o X xx;k X Xy

To perform linearisation of Equatioh (2183) the Taylor series expansion according to Eqpation (2.23) leads
to

h(lk+ vigx) 1 xh(), Xe Xk + rih(), e Ik +h ligxe (2.85a)
—f— |_Bk_T
= Ac Xg +Br Ip +h lgxe  Ac X By Ik (2.85b)
| $v7k }
= Ac Xg + B I + Wy = O; (2.85¢)

wherexy andly are corresponding development points of the rst-order linearisation. Similar to Equation
(2.28), an objective function can also be set up here by using Lagrangian multipliers. This must be
minimised. The objective functiobjgxr can be set up bl IIS (cf. Equation (2/84)) and the auxiliary
condition in Equation[(2.85) which leads to

[ # !
K IkT 1k O llg Ik
X o X 0 XXk X X (2.86)

2 & A Xp+ B IF+we ! min;

|+
Liekr =

where is the Lagrangian multiplier. Setting the related partial derivatives with respegt 1§ and
of the Lagrangian equal to zero

My Liekr =2 X Xy xxk ; (2.87)

T 1
relee=2 I o (a0t 2 f Be=0 (2.88)
c e =kt ok BE i

r Lieke= Ac Xg + Bi I + Wi = O; (2.89)
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leads to the linear normal equation systiakr in block structure

2 32 .3
) LA KT 2 g3
gk Tk o o7k k
80 1 . BIEANE=4 15: (2.90)
Ac By 0 M Wi
I {z }
NiekrF

Comparable with the solution bFGHM in batch processing (cf. Equafion](2.30)), the Itered &fatesd

observation@l can be obtained by the inverse of the normal equation syiliegs. For the rstiteration
runm = 0 of the update step, the development pokits-o andlx m=0 Should be selected by the predicted
state estimate®, and currently available observatiols

Xk,m=0= &y (2.91)

Ik,m:O = Ik: (2.92)
After initialisation of the rst update step the development points change continuously. For the subsequent
iterationsm=0;:::;M 1, the development points are replaced by the current ltered state esﬁmﬁ[te

and ltered observatlonis,< o This corresponds to a similar linearisation procedure as fdr the IGHM (cf.
sectior{ 2.1.P). As with the TEKF for GMM (cf. sectign 2..1), the iterations of the update step terminate
after a speci ¢ number of runs, unless an abort crlterlon has already been reached. Thé related VCM of

the ltered states g, is determined once at the end of the update stepferM 1 and reads

wmk = (1 Ko A gy (I Ky A)T + Ke Bk ok Bf K[ (2.93)

whereK is the Kalman gain
K=" sk AL Ak ik AL+ Br ik Bf : (2.94)

Afterwards the state vector and related VICM are predicted again for the next kepdchicf. Equations

(2.77) and[(2.712)). The general process of the individual Iter steps is shown in FFiglire 2.2 with its relevant
estimates. Note that the Kalman gain in Equatjon (2.94) results from the application of the transformation
rule from Equationg (2.50) £ (2.p4) in combination with the solutions of the IEKETor GMM (cf. section
-) This also results in the detailed Iter equation for the iteratively updated state vectorfelow

Zems = X Kem D lkmXem + Bem Ik lkm + Akm & Xkm (2.95)

In addition, the iteratively updated observation ve('t\i%l result as follows

Temes = I ik Bem  Akm &k Afm + Bkm ik Bim
(2.96)

h lkmXkm + Bkm Ik lkm + Axm R Xkm

As mentioned before, only a few other researchers besides| Dang (2007, 2008) have so far dealt with
implicit measurement equations withiicalKF| In Ettlinger €t/al. (2018), the approach is to realise a decom-
posed system equation by two sets of equations. The rst set consists of the predicted state parameters and
the second set consists of condition equations according GHM. The fusion of both sets of equations
leads to a system model ofaKF. The solution then results from the usual formula§ of the GHM. However,
no iterations according to &nTEKF or state constraints according to séctjon 2.3 can yet be realised. Fur-
thermore, the approaches from Petersen and |Koch (2010); Steffen and/Bedéer (2007) are based on a similar
approach to that of Dang (2007, 2008), but dnly Steffen and Beder|(2007) uses dn IEKF.
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FGE_D) %o g Ml + v x,) =0 —% %3 I
T— m=m+1 —[
k=k+1

Figure 2.2: Flowchart of thd JEKF for implicit measurement equations with predicted states (solid box) and updated states &
observations (dotted box)

2.3 State Constraints

ThellEKH, and in general also the KF, provide a suitable framework for estimating precise state parame-
ters, taking into account suitable physical or mathematical system models and measurement models (cf.
sectior{ 2.R). In addition to the models, additional prior information regarding the states to be estimated
is often also known. These can be mathematical de nitions, physical laws, geometric restrictions or other
practical or logical speci cations. Possible speci ¢ examples could be the attention to orthonormal rows
of a rotation matrix, maximum upper limits of a motion velocity or a given intersection angle. Simpli ed,
this additional information is generally referred to as constraints or restrictions. Although such constraints
would theoretically exist for many applications, they are not always applied (Simon arid Chia, 2002).
However, the consideration of suitable, reliable and applicable constraints can theoretically only lead to
an improvement of the estimation results. Especially for non-linear systems, in which ihe IEKF does not
provide optimal estimation results in the sense of minimum variance, the integration of constraints to the
states provides a signi cant gain in accuracy (Chiang ét al., 2002; Simon| 2010). For this reason, many
different methods have been developed for constrdinedl KFs. A comprehensive overview can be found in
Simon (2006, pp. 212 ff.); Gupta and Hauser (2007); Sirhon (2010).

State constraints can be de ned by a linear or non-linear functional context. However, any non-linear state
constraint can be transformed into a linear state constraint by Taylor series expansion. This linearisation
is regarded as a suf ciently accurate approximation, as long as the uncertainties are small compared to
the quantities that occur. Further details on linearisation and related inaccuracies are given in section
[2.3.3. Thus, all existing approaches for linear state constraints are also applicable for non-linear state
constraints. Therefore, the methods are described below in terms of linear relationships. Furthermore, a
distinction between hard constraffjsnd Soft Constraint$ (S{b)s done. Hard constraints are used if

the exact permissible value is known. They are non-negotiable and must be ful lled exactly. This ensures
strict compliance with the state constraints. In contfast] SCs only have to be ful lled approximately. A
certain tolerance is allowed, and the exact value is not required. This type is mainly used if a certain
uncertainty in the functional context of the state constraint is already known. If several constraints are
applied simultaneously, linear independence between them is assumed. This will avoid any numerical
instabilities due to rank de ciency (Wichmalrin, 2007, pp. 113).

All methods have in common that nally an improved estimation of the state vegtaith associated
VCM  {, based on the applied constraints is available. As long as truthful state constraints are con-

sidered, this leads to a solution that is generally closer to the true value compared to the Itera( state
without considering constraints. At least a deterioration is not possible under these assurptions (Simon,
2010). The state constraints described here only apply to the update step. However, there are also a
few methods that can be taken into account in the prediction step. Nevertheless, this affects the required
computational effort and does not represent a relevant gain in accuracy (Gupta and|Hauser, 2007).

Due to the diversity of existing state of the art methods, only the most widely used methods required for
this thesis are discussed here. In addition, note that those methods described below for considering state
constraints refer exclusively to the use[of KFs with explicit measurement equations (cf. §ectibn 2.2.1).

8Also referred to astrongconstraints
%Also referred to asveakconstraints
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The application of state constraints/to KFs with implicit measurement equations (cf. gectign 2.2.2) has
several special requirements and does not yet exist. Methods for this are described in detail ifi chapter 3.

2.3.1 Hard Constraints

Hard constraints can be subdivided into equality state constraints

D xx = d; (2.97)
and inequality state constraints

D Xk d; (2.98)

whereD is a knowns u constraint matrix and is a knowns 1 constraint vector. The variabsgefers

to the number of attached constraints and is less than or equal to the number af.dtatpg=neral D and

d are time-variable and can vary for different epo&hssubscription oD andd is not done to simplify
notation. In principle, both quantities are also time-dependent and can be different in their dimensions
and values per epodh The mathematical consideration of such constraints withinla KF depends on the
respective method.

Equality Constraints

ThePerfect Measurement$ (PNishethod converts state constraints of Equation type (2.97) into ctitious
observatior@ and treats them as additional observations (Pgrrill, 1988). In contrast to conventional ob-
servations, these ctitious observations are not subject to any uncertainties. For this reason we can extend
Equation[(2.9]7) by adding zero measurement najgdrom which follows

d=D xx+ Vg Vak N (O 144K ; (2.99)

where the relateEVCM |, is the zero matrix. By adding suchfa®PM equation for each constraint
requested, the total number of measurement equations increasesstd he implementation is done via
extension of the observation vectgrand relate@ VCM | i in Equation [(2.6D). The basic process of the
[EKE with its relevant estimates is shown in Figlire]2.3. Note that this modi cation leads to a singular
VCMIof the measurement noiseg, . However, this is not necessarily a problem but can lead to numerical
instabilities |(de Geeter et@al., 1997). Furthermore, an extension of the measurement functions obviously
leads to generally higher dimensions of related matrices, which can result in a higher computational effort
(Simon and Chia, 2002).

- o h(xk)=lk+vk ‘A__q
fGs Xio Lz D x.=d Ko Lizk

m=m+1

k=k+1

Figure 2.3: Flowchart of thd TEKF for explicit measurement equations with predicted (solid box) and constrained states (dashed
box) under consideration of additio@/ls (red)

10Also referred to apseudmbservations
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In contrast to thg PMs method, tReojection [PRO)method is based on the unconstrained lItered state
estimate®, . So the regular update step of the genierd! KF remains identical. According to Simon and Chia
(2002), the ltered state estimafg is projected onto the constraint surface by minimising

c : + 7 +
k=argmin - xg % W xk % D xx=d ; (2.100)

Xk

where thas uweight matrixW can be selected & = |. This will result in a constrained solution closer

1
to the true state than an unconstrained estimation. Alternatively, it can also be selétted as g,

which will end in a minimum variance Iter (Simon and Chia, 2002). However, this only applies to linear
systems|(Simon and Chla, 2002). The effect of seleating well illustrated by Figurg 2]4.

The solution of Equatior (2.1D0) results in the constrained state estinael correspondirig VCM £,

1
%=% W'D Dw!'!D' D % d; (2.101a)

1
k= ak sk D' D gy DT D gy (2.101b)

For the implementation, the constraints after the update step are applied, and its results are used for the
prediction step in the subsequent epéchl. The basic process of the TEKF with its relevant estimates

is shown in Figuré 2]5. In addition, there are also other methods to consider equality state constraints
in Kalman ltering. For example, the so-calledodel reductionmethod reduces the complexity on the

level of the system model parametrization, but generally, the physical interpretability of the states is lost
(Simon, 2006, pp. 212 ff.). Furthermore, an extension of the model reduction method to inequalities is
not possible. However, this is possible with the other methods described below.

Inequality Constraints

In contrast to equality, inequality constraints can be used to exclude entire impermissible or infeasible
value ranges of the states. A common method to consider such state constraints of Equatfon tiype (2.98)
for Kalman ltering is given bylPDF| truncation method. Within this framework, tHe PDF of the un-
constrained ltered state estimag¢ (which is assumed to be Gaussian) is truncated by using stete
constraints requested. The constrained state est#falen results from the mean of the truncdfed PDF
(Shimada et &lf, 1998). This truncation is performed for every single constraibt : : : ; ssuccessively.
Thereforestruncations are necessary in total. If the constraints are not decoupled from each other, the or-
der in which they are considered affects the result (Simon and $imon, 2010). There are several individual

CCQA

constraint
T+ T — 1=0

Figure 2.4: Impact of selecting the weight matrix in the context of the consideration of state constraints[by the PRO method.
Modi ed according td Simar (2006, pp. 218).
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f&ioa X Ik h(xi) = L+ v — % X, 23y —— D xe =d —A 3,35, |
T— m=m+1
k=k+1

Figure 2.5: Flowchart of theIEKF for explicit measurement equations with predicted (solid box), updated (dotted box) and
constrained states (dashed box) when using thel PRO method (red)

steps needed to perform this method. A detailed overview is given in $imon|(2006); Simon and Simon
(2010); Vogel et al.[(2019). In general, this BDF truncation method can also be used for two-sided in-
equality state constraints of the form

diower D Xk dupper, (2.102)

wherediower relates to the lower andypperto the upper boundary of the constraint (cf. Fig 2.6). For

this reason, inequality constraints can be considered as the general case in terms of state constraints. If the
lower and upper boundaries are identical, a two-sided inequality conforms to an equality state constraint.
To handle one-sided inequality constraimigyer = 1  Or dypper=+ 1 could be used. In addition, this
truncation method can also be applied for equality constraints. Also, combinations of equality and in-
equalities state constraints are possible, making this method very versatile. The basic procéss of the IEKF
with its relevant estimates using the BDF truncation method is shown in Figdré 2.7. Simon and Simon
(2010) further recommend an independent execution of the unconstrained Kalman lItering and PDF trun-
cation process. Instead of using the constrained state for prediction for the subsequerkt-€fqdhe
unconstrained state should be used. This is to prevent that the multiple use of the information in the con-
straint results in a supposed normal distribution. Otherwise, this can lead to a monotonously increasing
mean value or monotonously decreasing variance.

The already introduceld PRO method can also be extended with regard to inequality state constraints.
However, only with respect to one-sided formulation according to Equdtion|(2.98). The minimisation
problem in Equatior{ (2.100) need to be modi ed and leads to

c . + 7 + .
K= argxmln Xk R W Xk R D xx d: (2.103)
k

However, this results in a quadratic programming problem (Simon,| 2006, pp. 216 ff.). A so-actilest

set methodis a suitable approach to solve this problem (Fletcher, 2008). A subset (active set) of the

inequality constraints are treated as equality constraints and the optimisation problem is solved. This
subset comprises all constraints which are active at the solution of the problem. If the solution satisfy
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Figure 2.6: Basic principle of thé_ PDF truncation method (unconstrailed PDF (a) and constrained PDF (b)) according to
Simon and Simon (20[L0). The lower and upper boundaries are marked with red lines. The unconstrained state is
highlighted by a black circle and the constrained state by a red circle. The constrained state refers to the centroid of
the truncatePDF and can be obtained, for example, frorithe MMSE estimator (cf. Eq{Z2@g).
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Figure 2.7: Flowchart of the[TEKF for explicit measurement equations with predicted (solid box), updated (dotted box) and
constrained states (dashed box) when using ThelPDF truncation method (red)

the initial inequality constraints subsequently, the problem is solved. Otherwise an iterative process is
necessary. However, it is unfavourable, since the necessary computational effort of the active-set method
increases exponentially with the number of constraints (Simon, 2010).

2.3.2 Soft Constraints

As already shown, a feasible range of values can be speci ed with two-sided inequality constraints (cf.
Equation|[(2.98)). A similar possibility exists through the usg of|SCs according to

D X d; (2.104)

where the constraints are only required to be approximately ful lled. Realisation is identical[to the PMs
method for equality state constraints (cf. Equatfon (2.99)) (Simon,|2010). The additional pseudo observa-
tions are considered by a small nonzero measurement wis&hus, thé VCM |,k is also a nonzero
matrix. The basic process of the TEKF with its relevant estimates is shown in [figlire 2.8. In contrast to
the other methods, it is dif cult to de ne an explicit feasible range of values with this method. One-sided
constraints cannot be realised with this either. In addition, there are other methods tp agply SCs. For
example, in Simon and Simpn (2006) an additional regularisation term was used in the [geheral KF.

2.3.3 Non-linear Constraints

So far, only linear state constraints have been considered. In general, state constraints can be formulated
by non-linear functions

g(xk) = b; (2.105)

whereg () is an arbitrary non-linear function aridis a knowns 1 constraint vector. Note that this

can also be transferred one-to-one to inequality constraints of Equatior type (2.98). The simplest possi-
bility is to lineariseg(x«) so that the methods from sectidns 2/3.1 pnd £.3.2 can be applied. However,
de Geeter et al[ (1997) mentions that applying[f{hd PM method (cf. Equftion (2.99)) to non-linear state
constraints can lead to convergence problems. Regardless of this, the linearisation is basically identical to
Equation[(2.1b) and is based aat-order Taylor expansion(Porrill,[1988; Simon and Chia, 2002)

D=ryx0 % ; (2.106a)

X=%

d=Db g & +D % (2.106b)

Here, it should be noted that the derivations and evaluations of the non-linear fug€tjomust be

carried out on the basis of the state prediction estirhateAt least this procedure is indicated by default

in the literature above. In addition, it is also possible to select other suitable development points for

linearisation. Fo[ IEKF, for example, the current estimated value within the iterative update step can be

used. Whenever non-linear constraints occur in this thesis, they are approximated by linear constraints
based on this method. In addition, one should be aware that linearisation can also lead to linearisation
errors, as shown in Figufe 2.9.
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Figure 2.8: Flowchart of thd TEKF for explicit measurement equations with predicted (solid box) and constrained states (dashed
box) under consideration pf SCs (red)
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Figure 2.9: Linearisation errors in case of non-linear state constraints. Modi ed according to Yang and Blasch (2009).

Nevertheless, there are further possibilities to consider such non-linear state constraints directly. The ter-
mination of Taylor linearisation after the rst order represents a weak point depending on the strength
of the non-linearity. A possible alternative is therefore to includesttmond-order-expansioderivation

(Yang and Blasdh, 2009; Siman, 2010). However, the resulting optimisation problem can only be solved
numerically. Sircoulomb et al. (2008) proposes an iterative process to successively improve the develop-
ment point for linearisation of the non-linear constraints. Furthermore, non-linear equality state constraints
can be integrated directly within@moothly Constrained Kalman Filtel (SCKF)This approach is also

based on the linearisation of the constraints and then considers them as an additional PM. This is done
iteratively, and the uncertainty of the constraints is increased in each repetition (de Geetér et al., 1997).
However, both methods have so far not been applied for implicit measurement equations according to
sectior] 2.22. The same applies to the consideration of non-linear state constraints in the cpntexj of UKFs
(Teixeira et al.| 2008) ar[d PFs (Prakash et al., 2008). In Ebingef et al.| (2015), for example, an arbitrary
state constraint is applied to the conditional mean estimate of a posterior density. In adddiong

Horizon Estimation [MHE) should be mentioned, which is a general approach for solving non-linear
equality and inequality constrain{s (Robertson et al., 1996). This also leads to a non-linear optimisation
problem that has not been investigated for implicit relationships between states and observations. Simul-
taneously, the required run time is considerably higher than that of the other methods described above
(Ungarala et all, 2007; Simpn, 2010). In general, methods for the consideration of non-linear constraints
can also be applied to linear constraints.

In conclusion, it can be summarised that there is an extensive range of different methods for considering
state constraints. They depend on the type of constraints and have different advantages and disadvantages.
In the case of non-linear systems and constraints, in general, all approaches lead to slightly different re-
sults {Simon, 2010). Moreover, the application of non-linear inequalities represents the most signi cant
challenge|(Sircoulomb et al., 2008). Not all techniques are suitable for the direct adaptation of the de-
scribed methods regarding implicit relationships. In the context of this work, therefore, only the methods
described in detail will be considered. An overview of these methods depending on the type of constraint

is given in Figurg 2.70.
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Figure 2.10: Overview of different methods (bold font) for considering state constraints regarding explicit relations, depending
on the type of constraint (boxes). The selection is based on the appropriate techniques used in this thesis.






Methodological Contributions

This chapter presents new methods for the consideration of arbitrary state constraints in the context of
implicit measurement equations for TEKFs. In secfior] 3.1 the basic idea of a versatile recursive state-
space Iter approach is introduced. The new possibilities to consider different types of state constraints
are presented in sectipn B.2. The main differences compared to usual Iter methods with explicit mea-
surement equations are discussed, and different possible solutions are shown. Subsequently in section
[3.3, an adaptation of tlie TEKF to enable a recurisive GHM with the possibility of including constraints is
presented. Finally, the own methodological contributions are applied and validated within the framework
of a Monte-Carlo[(MC) simulation in sectipn 3.4. With its theoretical aspects, this chapter thus comprises
the main part of the own methodological contributions of this thesis.

3.1 Versatile Recursive State-space Filter

ThellEKR, initially introduced in Dang (2007), is a practical method to use implicit measurement equations
for recursive state estimation. This method was already adopted in Vogellet all (2018) and signi cantly
extended with regard to two aspects. This contains previously unstated uncertainty information about the

updated observation estimaﬂ\ésin the form of(VCM {,}_k by propagation of uncertainty. In addition,

more fundamentally the consideration of equality state constraints in combination with implicit relations
was described in this contribution. This consideration of state constraints witHin thé IEKF with implicit
measurement equations is described in detail in the following s€ctipn 3.2. The derivation of uncertainty

information about the estimated observation estimﬁtds directly stated below. This VCM %_k is es-

sential to make quantitative statements about the uncertainty of the estimated observations. In addition,
this information might also be necessary for subsequent calculations, such as further propagation of un-

certainty. Thé_ VCM aﬂ,k is based on the equation for calculating the updated observation estﬁfnates
(cf. Equation[(2.96)) which has to be transformed and substituted. Based on

At
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the following results

1\; = I+ Fg k_{ZBk_I A &Ry (3.2a)
I

= |k+ Fk Ik ’:_I({Zéf kki (32b)
Hi

Subsequently, the law for propagation of uncertainty can be applied to Eqyation (3.2b), from which follows

— T T T.
%\;k_ ’_Hi(_l}'i' Fk ||,|( Fk Hk %{;k Hk' (33)

Ik

Equation [(3.B) must be determined for each eplaciihe estimation is performed concurrently with the
VCM| . of the updated state estima§g at the end of the respective update step.

In[Mogel et al. (2019), the approach|of Dang (2007) is adopted again. In addition to the consideration of
inequality state constraints, the possibilities offhe TEKF for versatility are also discussed. This is mainly
based on the possibility to consider explicit measurement equations wittun thé IEKF for implicit relations.
This fact is decisive when it comes to a versatile method that can handle as many different mathematical
functions as possible. So far, there is no reference to the possibility thaithé IEKF for implicit relations can
be used completely independent of the type of measurement equation (i.e. whether implicit or explicit).
Because every explicit equation (cf. Equatipn (2.60)) can be transformed into an implicit equation (cf.
Equation[(2.8B)) according to

Ik+ vk h(x)= 0: (3.4)

This transformation is possible in principle, since the explicit mdde[ (GMM) can generally be regarded as
a special case of the implicit model (GHM). According to this, the following applies after linearisation of

Equation[(3.4)
Ax Xkt % I+ Vk h(X Ax =0 (3.5)
i v D0 A

Wi

From this the de nition as in Equatioh (2)85) can then be represented again

Ax Xkt Bx I+ we= 0 (3.6)

Taking all these aspects together regarding the type of measurement equation and the use of different
additional prior information as state constraints, a concept of a versatile recursive state estimator can be
established. For this reason, fhe TEKF for implicit relations represents a broadly based foundation which
can exibly consider different measurement equations and constraints. This overall concept is illustrated
in Figure[3.1. Here the focus is on the connection of the different steps[of the IEKF to the state parameters
requested, the available observations, as well as appropriate prior information. The coloured arrows show
different possibilities of how the Iter can be applied optimally depending on the application. The extent

to which the different types of constraints can be taken into account in this context is described in the
following section 3.2. Moreover, this exibility and versatility of the approach is also highlighted in
Bureick et al.[(2019b) and adapted for a speci ¢ application. The full algorithm is given in Appendix A.1.

3.2 Kalman Filtering with State Constraints for Gauss-Helmert Models

As already mentioned in sectipn R.3, the consideration of suitable constraints can lead to an additional
improvement of the estimation results within the framework of Kalman Itering. Although this is already
used by default in combination with explicit measurement equations (cf. sgctioh 2.2.1), there is currently
no experience with this (apart from own work) for the implicit case (cf. seftion|2.2.2). A direct transfer of
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Figure 3.1: Schematic overview and ow diagram of the versatile recursive state-space lter based on an IEKF according to
Vogel et al. (2019). It shows the individual steps of the Iter (grey) and the associated state parameters (yellow),
observations (green) and additional prior information (blue).

the methods presented in section 2.3 is generally not possible without additional adjustments and consider-
ations. The reason for this is the direct dependence of the measurement equations on the observations (cf.
Equation[(2.8B)). This in turn leads to an extended LS problem (cf. Equation (2.86)) in which Itered ob-
servations are estimated in addition to the state parameters. First approaches have already been described
in Vogel et al. (2018, 2019); Bureick et al. (2019b); Moftizadeh (2019). However, not all different types

of state constraints (cf. section 2.3) can be considered with the methods described there. Furthermore,
there were some inconsistencies, which are referred to and remedied below.

As the term itself implies, state constraints apply exclusively to corresponding elements of the state vector.
The observations are therefore not affected by the restrictions. This is applicable for explicit contexts. If
implicit relations exist, this usually leads to a con ict. The application of state constraints leads to a change
of the state parameters (fraxi towardsxg) in the sense that the speci ed constraints are ful lled. At the
same time, however, it must also be ensured that the measurement equations are ful lled as an auxiliary
condition (cf. Equation (2.83)), i.e. that the contradictions are close to zero. However, this is generally not
guaranteed in implicit relationships (Vogel et al., 2019). This can be clearly compared in Table 3.1, for
example, by applying the PRO method (the same also applies to the PDF truncation method) according to
section 2.3.

The consideration of constraints within the framework of the perfect measurement method, where the
constraints are included directly in the update step, is also not directly applicable. For this reason, three
different approaches are shown in the following, with which the methods presented in section 2.3 can
also be applied for implicit relationships under consideration of modi cations. First, an extension to

plicit pseudo observations introduced in section 3.3.1. With this, equality constraints, as well as SCs
for implicit relations, can be considered. The second approach in séctioh 3.2.2 desibestrained
Objective Function (COF)and is based in its principles on the use of constraints in the GHM according

to section 2.1.2. This enables the direct consideration of equality constraints within the update step. In a
third approach, a procedure is presented which allows using the PRO and PDF truncation method in com-
bination with implicit equations. This procedure (referred tonagrovement of implicit contradictions

is capable of resolving the problems listed in Table 3.1 and is described in detail in $ectipn 3.2.3. This can
then be used to solve equality and inequality constraints.



