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Abstract

Active research on the development of autonomous vehicles has been carried out for several years now. However,
some signi�cant challenges still need to be solved in this context. Particularly relevant is the constant guarantee
and assurance of the integrity of such autonomous systems. In order to ensure safe manoeuvring in the direct
environment of humans, an accurate, precise, reliable and continuous determination of the vehicle's position and
orientation is mandatory. In geodesy, this process is also referred to as georeferencing with respect to a superor-
dinate earth-�xed coordinate system. Especially for complex inner-city areas, there are no fully reliable methods
available so far. The otherwise suitable and therefore common Global Navigation Satellite System (GNSS) ob-
servations can fail in urban canyons. However, this fact does not only apply exclusively to autonomous vehicles
but can generally also be transferred to any kinematic Multi-Sensor System (MSS) operating within challenging
environments.

Especially in geodesy, there are many MSSs, which require accurate and reliable georeferencing regardless of the
environment. This is indispensable for derived subsequent products, such as highly accurate three-dimensional
point clouds for 3D city models or Building Information Modelling (BIM) applications. The demand for new
georeferencing methods under aspects of integrity also involves the applicability of big data. Modern sensors
for capturing the environment, e.g. laser scanners or cameras, are becoming increasingly cheaper and also offer
higher information density and accuracy. For many kinematic MSSs, this change leads to a steady increase in
the amount of acquired observation data. Many of the currently methods used are not suitable for processing
such amounts of data, and instead, they only use a random subset. Besides, big data also in�uences potential
requirements with regard to possible real-time applications.

If there is no excessive computing power available to take into account the vast amounts of observation data,
recursive methods are usually recommended. In this case, an iterative estimation of the requested quantities is
performed, whereby the comprehensive total data set is divided into several individual epochs. If the most recent
observations are successively available for each epoch, a �ltering algorithm can be applied. Thus, an ef�cient
estimation is carried out and, with respect to a comprehensive overall adjustment, generally larger observation
sets can be considered. However, such �ltering algorithms exist so far almost exclusively for explicit relations
between the available observations and the requested estimation quantities. If this mathematical relationship
is implicit, which is certainly the case for several practical issues, only a few methods exist or, in the case of
recursive parameter estimation, none at all. This circumstance is accompanied by the fact that the combination
of implicit relationships with constraints regarding the parameters to be estimated has not yet been investigated
at all.

In this thesis, a versatile �lter algorithm is presented, which is valid for explicit and for implicit mathematical
relations as well. For the �rst time, methods for the consideration of constraints are given, especially for implicit
relations. The developed methodology will be comprehensively validated and evaluated by simulations and real-
world application examples of practical relevance. The usage of real data is directly related to kinematic MSSs
and the related tasks of calibration and georeferencing. The latter especially with regard to complex inner-city
environments. In such challenging environments, the requirements for georeferencing under integrity aspects are
of special importance. Therefore, the simultaneous use of independent and complementary information sources
is applied in this thesis. This enables a reliable georeferencing solution to be achieved and a prompt noti�cation
to be issued in case of integrity violations.

Keywords: Recursive State-Space Filtering, State Constraints, Implicit Functions, Georeferencing, Integrity





Kurzfassung

Bereits seit einigen Jahren wird aktiv an der Entwicklung von autonomen Fahrzeugen geforscht. Allerdings gilt
es in diesem Zusammenhang noch einige signi�kante Herausforderungen zu lösen. Besonders relevant ist dabei
die ständige Gewährleistung und Sicherstellung der Integrität solcher autonomen Systeme. Um ein sicheres
Manövrieren in der direkten Umgebung von Menschen gewährleisten zu können, ist eine genaue, präzise, zu-
verlässige und kontinuierliche Positions- und Orientierungsbestimmung des Fahrzeuges zwingend erforderlich.
Im Bezug zu einem übergeordneten erdfesten Koordinatensystem wird dieser Vorgang in der Geodäsie auch als
Georeferenzierung bezeichnet. Besonders für komplexe innerstädtische Gebiete existieren jedoch noch keine
vollumfänglich zuverlässigen Lösungsmethoden. Die ansonsten geeigneten und daher auch gebräuchlichen
Beobachtungen eines Global Navigation Satellite Systems (GNSS) können in dieser Hinsicht in engen Häuser-
schluchten versagen. Diese Tatsache gilt jedoch nicht nur ausschließlich für autonome Fahrzeuge, sondern lässt
sich im Allgemeinen auf jedes kinematische Multisensorsystem (MSS) übertragen.

Gerade auch in der Geodäsie existieren eine Vielzahl solcher MSS, welche eine stets genaue und zuverlässige
Georeferenzierung unabhängig von der jeweiligen Umgebung erfordern. Für daraus abgeleitete Folgeprodukte,
wie z.B. hochgenaue dreidimensionale Punktwolken für Anwendungen im Rahmen von 3D Stadtmodellen oder
Building Information Modelling (BIM), ist dies unverzichtbar. Mit dem Bedarf an neuen Methoden für eine
Georeferenzierung unter Aspekten der Integrität, geht zeitgleich auch die Anwendbarkeit von Massendaten
einher. Moderne Sensoren zur Erfassung der Umgebung, wie z.B. Laserscanner oder Kameras, werden im-
mer preiswerter und weisen zudem in Relation dazu eine immer höhere Informationsdichte und Genauigkeit
auf. Dies führt bei zahlreichen kinematischen MSS zu einem stetigen Anstieg der erfassten Beobachtungsdaten.
Viele derzeitige Methoden sind dafür nicht ausgelegt beziehungsweise verwenden stattdessen nur eine zufällige
Untermenge der eigentlich verfügbaren Informationen. Zusätzlich beein�usst dies auch potentielle Ansprüche
hinsichtlich möglicher Echtzeitanwendungen.

Steht keine überdurchschnittliche Rechenleistung zur Berücksichtigung der großen Datenmengen zur Verfü-
gung, bieten sich in der Regel rekursive Verfahren an. Dabei wird eine iterative Schätzung der gesuchten Größen
durchgeführt, wobei die umfassende Gesamtmenge an Beobachtungsdaten in mehrere einzelne Epochen aufge-
teilt wird. Liegen aktuellste Beobachtungen sukzessive pro Epoche vor, kann ein Filteralgorithmus angewendet
werden. So wird ebenfalls eine ef�ziente Schätzung durchgeführt und es können in Relation zu einer um-
fassenden Gesamtauswertung im Allgemeinen größere Beobachtungsmengen berücksichtigt werden. Solche
Filterverfahren existieren bislang jedoch fast ausschließlich für explizite Beziehungen zwischen den verfügbaren
Beobachtungen und den gesuchten Schätzgrößen. Ist dieser mathematische Zusammenhang implizit, was durch-
aus bei vielen praktischen Fragestellungen der Fall ist, existieren nur sehr wenige Methoden beziehungsweise im
Falle der rekursiven Parameterschätzung gar keine. Dieser Umstand geht mit der Gegebenheit einher, dass das
Zusammenwirken von impliziten Zusammenhängen mit Restriktionen hinsichtlich der zu schätzenden Parameter
bislang noch überhaupt nicht untersucht wurde.

Im Rahmen dieser Arbeit wird daher ein vielseitig einsetzbarer Filteralgorithmus präsentiert, welcher sowohl für
explizite als auch für implizite mathematische Zusammenhänge gilt. Zusätzlich werden erstmalig Möglichkeiten
zur Berücksichtigung von Restriktionen auch und insbesondere für implizite Beziehungen gegeben. Die entwi-
ckelte Methodik wird anschließend umfassend anhand von Simulationen und praxisrelevanten realen Anwen-
dungsbeispielen validiert und kritisch beurteilt. Die Verwendung von Echtdaten steht dabei in direktem Zusam-
menhang zu kinematischen MSS und den damit verbundenen Aufgaben der Kalibrierung und Georeferenzierung.
Letztere insbesondere im Bezug auf komplexe innerstädtische Umgebungen. In einem derart anspruchsvollen
Umfeld sind die Anforderungen an die Georeferenzierung unter Integritätsaspekten von besonderer Bedeutung.
Dies wird in dieser Arbeit durch die gleichzeitige Nutzung unabhängiger und komplementärer Informationsquel-
len realisiert. Dadurch kann eine zuverlässige Georeferenzierung erreicht werden und eine zeitnahe Benachrich-
tigung bei Integritätsverletzungen erfolgen.

Schlagwörter: Rekursive Zustandsschätzung, Restriktionen, Implizite Funktionen, Georeferenzierung, Integrität
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1 Introduction

1.1 Motivation

The use of domestic robots (e.g. robotic vacuum cleaners) has increased steadily in recent years. As a
result, it has become a widespread routine that such mainly autonomously acting systems are moving in
the immediate environment of humans (Bogue, 2017). The risk potential for these small robots to in-
jure humans is, in this context, quite low. However, the situation will be completely different, if in the
upcoming years more and more fully autonomous cars will be involved in public road traf�c. Already
today, local public transport buses and taxis operate autonomously in de�ned areas, with a growing trend
(Fagnant and Kockelman, 2015; Mallozzi et al., 2019; Boudette, 2019). At present, the presence of a
trained operator is still mandatory to ensure safety. Unexpected collisions can have serious consequences
in this context, which must be prevented. For this reason, vehicles are already equipped with a variety
of different sensors. In addition to vehicle-speci�c sensors, these are mainly those that are used for posi-
tioning and orientation of the vehicle to its environment (e.g. Global Navigation Satellite System (GNSS)
antennas or Inertial Measurement Units (IMUs)). Furthermore, there exist sensors that are increasingly
used for environmental perception, such as laser scanners and cameras. In combination, they ensure the
integrity1 of the vehicle. The accurate, precise, reliable and complete pose2 estimation of such a system is
of great importance. Its exact determination must be known continuously at all points in time. This must
be ensured independently of the environment.

However, these requirements are of great importance not only for autonomous vehicles. In general, these
demands can also be applied to anykinematic Multi-Sensor System (MSS). After all, a modern vehicle with
all its sensors is nothing else than such a kinematic MSS. Therefore, accurate information about the current
position and orientation is not only necessary to ensure the integrity of a vehicle, but it is also essential
for other purposes. In this context, it can generally also refer to thegeoreferencingof an MSS with
respect to a superordinate coordinate system. For example, accurate and precise pose estimation is also
indispensable when using Mobile Mapping Systems (MMSs) on the ground and in the air. These MMSs
are mobile platforms containing several of the above-mentioned sensors in order to acquire spatial data
of the environment (Wang et al., 2019). Such systems usually do not operate autonomously, but even in
case of, i.e. an Unmanned Aerial Vehicle (UAV), their pose to a �xed coordinate system must be precisely
known at all times (Colomina and Molina, 2014). Only under these conditions, it is possible to derive
highly accurate maps and three-dimensional models of the reality from the acquired data (Glennie, 2007).
This, in turn, is the basis for obtaining, for example, an up-to-date Building Information Modeling (BIM)
system (Borrmann et al., 2018) or 3D city models (Vosselman and Dijkman, 2001).

Although numerous approaches and methods already exist, independence with respect to the environment
is still a major challenge. Urban areas, in particular, cause dif�culties. So-called urban canyons lead to
the fact that the otherwise frequently used pose information based on GNSS and IMU observations is

1Integrity, in this context, means that the complete, safe and accurate operability of the vehicle within certain prede�ned thresh-
olds can be guaranteed at all times, and that information is provided in a timely manner if these thresholds are exceeded
(Hegarty et al., 2017).

2combination of position and orientation in the relevant dimension
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often too inaccurate (Zhu et al., 2018). Shadowing as well as multipath and drift effects are the reasons
for this. Such unreliable georeferencing is risky, especially in highly frequented urban environments. This
circumstance has led to the fact that other sensors for georeferencing, such as laser scanners and cam-
eras, as well as additional map information, are already being considered more intensively in the systems
mentioned. Thus, the acquired data cannot only be used to map the environment but also to actively
contribute to the improvement of georeferencing. However, this leads simultaneously to new challenges.
Especially the increased use of laser scanners in such kinematic MSSs leads to an enormous increase in
the amount of data collected. Besides, automotive laser scanners (such as solid-state scanners), for ex-
ample, have recently become less expensive, which makes them even more suitable for more frequent
use in cars for the future (Randall, 2019). There are already multiple automotive laser scanners available
that have a small and lightweight design and a remarkable level of accuracy (Velodyne LiDAR, 2018b;
Ibeo Automotive Systems, 2020; Robosense, 2020). At the same time, the resolution, range and density
of these three-dimensional sensors are increasing. The availability of at least500 000points per second
is already common. Slightly larger sensors than such automotive laser scanners already capture about
2:2 million points per second (Velodyne LiDAR, 2018a). For this reason, the terminology ofbig datais
quite appropriate in this context. Big data requires the need for ef�cient algorithms to realise potentially
real-time capable systems. To process these vast amounts of point cloud data at all, usually, only a random
subset of the total collected data is currently used (Elseberg et al., 2013b). Although there are approaches
that perform spatial or temporal subsampling, there is no speci�c assessment of the individual observed
quantities with regard to their contribution to an improved estimation. Thus, a more structured reduction of
the entire data set is achieved, but important observations might be lost. Since this identi�cation of relevant
observations is quite challenging, depending on the application, it is advisable to use as much information
as possible. Batch processing, where the data is used within an overall adjustment, is often applied for
this purpose, but reaches its limitations with such increasing amounts of 3D points. Although such batch
methods provide excellent results, they usually have to be performed in post-processing on powerful com-
puters. Otherwise, enormous mobile computing power is required or, for example, the use of Graphics
Processing Units (GPUs). However, this is in contradiction to the demands for online approaches, such as
those needed for autonomous driving. Current applications of this kind require recursive approaches.

Especially suitable for such tasks is the use ofrecursive state-space �ltering. This methodology covers
decades of development and deals with the estimation of arbitrary and not directly measurable states, by
the fusion of arbitrary observation data via a suitable mathematical model (Kalman, 1960). Applications
of such �lters are extensive. However, these are primarily based on explicit3 mathematical relationships
between the observations and the parameters to be estimated. This mathematical limitation is in contrast
to a multitude of issues in various �elds of expertise (Heuel, 2001; Perwass et al., 2005), and especially
in geodesy (Steffen and Beder, 2007; Dang, 2007; Ning et al., 2017). Often, when dealing with geometri-
cal issues, mathematically implicit4 relationships occur. Although there are approaches but they are rare.
This becomes evident, for example, from the fact that the use of constraints regarding the state param-
eters in connection with implicit relationships has not yet been investigated. However, the presence of
appropriate additional information when using constraints is always recommended and generally has a
bene�cial impact on the estimation results (Simon, 2010). For example, the integration of various (geo-
metric) constraints regarding the previously mentioned challenging urban setting for autonomous driving
might be useful. In addition, there is still a need to develop and assess these methods with regard to
compliance with integrity aspects (Wörner et al., 2016; Reid et al., 2019). Therefore, possible solutions
should consider the inclusion of new independent and complementary sources of information. This will
further improve redundancy, and any loss of integrity can be identi�ed and reported in a timely manner.

In summary, due to the availability of inexpensive modern sensor technologies, the amount of data for
various current topics is constantly increasing. Consequently, there is a demand to develop new recursive
methods for the reliable georeferencing of kinematic MSSs in challenging urban environments. This
allows ensuring the integrity of, e.g. autonomous vehicles or to accurately map environments when using
MMSs. Solutions are based on applications from the �eld of recursive state-space �ltering in combination
with appropriate constraints and additional information from object space.

3The observations result directly from the parameters under consideration of a functional relationship
4The observations and parameters cannot be separated from each other to either side of the equation.
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1.2 Objective and Outline

The main focus of this thesis is on the development of a versatile Kalman �lter. This �lter should consider
non-linear explicit and implicit mathematical relationships between available observations and requested
state parameters. In addition, existing methods for the consideration of arbitrary non-linear state con-
straints have to be applied and validated for the implicit relationships. The main focus here lies on the
distinction between hard and soft constraints, and their application to prior information which is affected
by a speci�c degree of uncertainty. It is also necessary to analyse the impact of wrong prior information
with regard to the different methods for taking constraints into account. The application of the methodol-
ogy in this thesis is directly related to kinematic MSSs and associated tasks, like their ef�cient calibration
and georeferencing. In particular, this addresses current challenges in complex urban environments, as
well as the development of methods for georeferencing with integrity aspects even under such dif�cult
conditions. For this purpose, independent and complementary sources of information should be used,
providing at least long-term support. However, basic applicability to any other issues should also be pos-
sible. For this reason, it is also necessary to investigate the extent to which the newly developed methods
within this thesis perform with vast amounts of data compared to the existing approaches. This is directly
related to current and future big data applications. According to these objectives, this thesis is structured
as follows.

Chapter 2 gives an overview of the methods and models applied in this thesis. Firstly, this includes
the fundamentals of parameter estimation and associated models. Secondly, the idea of recursive state-
space �ltering is presented. The corresponding methodology is provided for both explicit and implicit
relationships. Thirdly, a comprehensive overview of different possibilities for the consideration of linear
and non-linear state constraints is given.

The own methodological contributions of this thesis are presented in chapter 3. This includes the intro-
duction of the versatile recursive state-space �lter and mainly the possibilities to consider different state
constraints in the context of implicit measurement equations. Furthermore, a realisation of a recursive
Gauss-Helmert Model (GHM) is presented from these studies. Also, a geometric application example is
presented, which serves as the validation base for the described methods.

Chapter 4 contains a detailed application of the proposed methods concerning the calibration of a kine-
matic MSS. A general de�nition of such a system is given at the beginning, and the primary tasks involved
are described. This is followed by the motivation and description of the speci�c calibration task. The re-
sults based on the new methods are presented and discussed concerning existing standard approaches.

A second application related to the georeferencing of kinematic MSSs is described in chapter 5. In ad-
dition to a motivation and a description of the experimental setup used, current methods of solving the
problem are discussed together with their weaknesses. Subsequently, the newly developed approach and
the respective results are presented and evaluated.

The thesis concludes with a summary of the most relevant results and �ndings in chapter 6. At last, an
outlook is given in which remaining questions are formulated, and ideas for further research are presented.

The new methods developed in this thesis, the measurement data acquired and the �ndings obtained are
directly related to the Research Training Group (RTG)i.c.sens 2159, funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation). Furthermore, parts of the computations were per-
formed by the compute cluster, which is funded by the Leibniz Universität Hannover, the Lower Saxony
Ministry of Science and Culture (MWK) and DFG.





2 Fundamentals of Recursive State-space Filtering

This chapter is dedicated to the basic principles of recursive state-space �ltering. As part of the parameter
estimation in section 2.1, two well-known adjustment models for overdetermined equation systems are
generally introduced. These models are then extended by the consideration of constraints. Based on this,
the differences to the recursive state-space �ltering in section 2.2 are presented. These �lters are generally
applied to non-linear relationships, which must be exclusively explicit in a �rst method and implicit in
a further method. Subsequently, section 2.3 gives a detailed overview of the various possibilities for
considering state constraints in Kalman �ltering.

2.1 Parameter Estimation

Adjustment theory provides a fundamental structure for solving overdetermined systems of equations.
Such problems are omnipresent in many scienti�c communities. During a measurement process, arbitrary
types of observationsl i are carried out to determine the unknown parametersxj . Corresponding parameters
and observations can be arbitrarily suitable physical or mathematical quantities (e.g., coordinates, angles,
distances). The relationship between these observations and parameters can be formulated by any suitable
mathematical real-valued functions1 h (�), depending on the respective application. This becomes reason-
able if the unknown parameters are not directly observable (e.g., coordinates of a new point by observed
distances and angles from known points). Furthermore, a set of overdetermined equation systems can
increase reliability (e.g., detection of outliers) and improve quality measures (e.g., accuracy, precision).
By contrast, overdetermined equation systems can have multiple solutions. For this reason, the optimal
solution of such an equation system must be found by parameter estimation.

Different adjustment models can realise such an estimation. The correct choice of the model depends on
the independent functional relationships between the observations available and the parameters requested.
A careful derivation of such functions by physical or mathematical laws is essential. However, strictly
speaking, functional relations are only valid for the true observations~l i and parameters~xj . To overcome
inconsistencies, unknown expected valuesE (�) are included when using the real values. Furthermore,
residuals are introduced to use the real observations and parameters to the respective model (Niemeier,
2008, pp. 120 ff.). This procedure will lead to the best estimates of the values requested.

A stochastic model is used to account for the random behaviour of the observations. In a simpli�ed
approach, independent and identically distributed random variables are usually applied. It is assumed that
the observed values result from additive deviations — which are random — from the true values. The
uncertain observations are therefore modelled by any distribution, e.g. by the Gaussian distribution. An
expected value and a Variance-Covariance Matrix (VCM) can give the distribution. This stochastic model
will in�uence the estimation of the unknown parameters as well as their quality measures.

Furthermore, the respective adjustment model is applied with an arbitrary estimator. The most common
estimator is Least-Squares (LS). Underlying concept of the optimisation criterion is to minimise the sum

1Also referred to asfunctional model
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of the squared residuals between real observationsl i and their related expected valuesE (l i) = hi (x) by
the unknown parametersx (Koch, 1999, pp. 152). If the functional modelh (�) is linear, the estimation
is referred to as Best Linear Unbiased Estimate (BLUE) in the context of the optimality properties. The
strict solution of the LS estimator is independent from the underlying distribution of the observations
(Förstner and Wrobel, 2016, pp. 80 ff.). Also other (robust) estimators (e.g. Huber, Hampel) can be
applied, which are based on maximum likelihood methods. Nevertheless, only the LS estimator is used in
the following.

The general case of adjustment, also known as GHM, forms the basis for such adjustment models. The
special case, also known as Gauss-Markov Model (GMM) and the transformation of a GHM into an
equivalent GMM are presented subsequently. Such standard methods are commonly used in the geodetic
community and are described in detail by (Koch, 1999; Lenzmann and Lenzmann, 2004; Jäger et al., 2005;
Wichmann, 2007; Niemeier, 2008). Furthermore, consideration of additional constraints to the requested
parameters is given at least for the GMM by the authors mentioned. However, constraints in the sense
of a GHM are rather an exception and are mentioned by only a few authors, such as (Rietdorf, 2005;
Lösler and Nitschke, 2010; Steffen, 2013; Heiker, 2013; Roese-Koerner, 2015).

There are two basic possibilities for realisation of LS adjustment. The particular preference depends
on the existing application. Measurements can be carried out as a whole, which will result in a post-
processing approach for all available observations acquired. This will be referred to asoverall adjustment
or batch approach. In contrast to such a batch approach, new observations can be considered epochwise
as soon as they are acquired. This will result in a recursive parameter estimation2 approach. This means
the parameters requested are updated step-by-step by latest observations available. However, recursive
parameter estimation for a GHM does not exist at all.

In general, it is assumed to receive only a well-posed normal equation system to obtain a unique inverse
of a regular matrix. Singular entities, e.g., due to datum defects or linear dependencies, are not considered
and would require additional special attention.

It should be noted that the different adjustment models partly use the same denominations for the non-
linear functions as well as individual vectors and matrices. This multiple use is intended to ensure clarity.
However, — if not mentioned otherwise — new variables can be assumed when a new adjustment model
is introduced.

2.1.1 Gauss-Markov Model

Unconstrained Gauss-Markov Model

The GMM, also referred to asadjustment of observations, represent anexplicit relation between stochastic
observations and unknown deterministic parameters. In general, the non-linear GMM is de�ned by the
n � 1 observation vectorl and theu � 1 parameter vectorx as

E (l) = h (x) ; (2.1)

or without expected values of the observations and more detailed

l i + vi = hi (x1; x2; : : : ; xu) : (2.2)

The residuals within the vectorv are assumed to be Gaussian with expected valueE (v) = 0

v � N (0; � ll ) with � ll = � 2
0 � Qll = � 2

0 � P� 1; (2.3)

where� ll is the known positive-de�nite VCM of the observations,Qll the related cofactor matrix,� 2
0 the a

priori variance factor andP the weight matrix. Altogether they describe the weighting of the observations
among each other and are referred to as stochastic model. A linear functional modelh (�) is required for

2Also referred to assequential parameter estimation(Niemeier, 2008, pp. 314 ff.)
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the adjustment. Linearisation of Equation (2.2) can be performed for non-linear models by Taylor series
expansion up to the linear segment, which leads to the matrix form

l + v = h (x0)
| {z }

l0

+ A � (x � x0)
| {z }

� x

with A = r x h (x)
�
�
�
�
x= x0

(2.4a)

= l0 + A � � x with � l = l � l0: (2.4b)

The design matrixA is assumed to be of full rank and the partial derivatives are evaluated at the initial
parametersx0. It should be noted that in the following process only the parameter vectorx is used instead
of the reduced parameter vector� x. Therefore, the necessary updating must still be taken into account.
The same applies to the reduced observation vector� l and the initial observationsl0. In addition, the
estimated values of the individual quantities are only given from the level of the normal equations. Up to
this stage, the unknown true values are given. Regardless of this, the linearisation should also apply to the
estimated values. To obtain an optimal estimation of the parameters, the residuals of the objective function
LGMM (x) are minimised according to LS estimation (cf. section 2.1). The Gauss-Newton method is used
for this purpose, hence

LGMM (x) = vT � P � v (2.5a)

= ( A � x � l)T � P � (A � x � l) (2.5b)

= xT � AT � P � A � x � 2 � xT � AT � P � l + lT � P � l ! min: (2.5c)

This is done by setting the partial derivative of the objective function with respect to the optimisation
variablex equal to zero (Wichmann, 2007, pp. 106)

r x LGMM (x) = 2 � AT � P � A � x � 2 � AT � P � l != 0: (2.6)

This leads to the optimal estimation of the parameters by using LS adjustment (Koch, 1999, pp. 158)

x̂ =
�
AT � P � A

�

| {z }
NGMM

� 1
� AT � P � l; (2.7)

whereNGMM is the normal equation matrix. The estimated residualsv̂ can be obtained by

v̂ = A � x̂ � l (2.8)

to receive the adjusted observationsl̂

l̂ = l + v̂: (2.9)

The cofactor matrixQx̂x̂ with the co-/variances of the estimated parametersx̂ can be obtained by the
inverse of the regular normal equation matrixNGMM

Qx̂x̂ = N� 1
GMM =

�
AT � P � A

� � 1
: (2.10)

Taking into account the a posteriori variance factor

�̂ 2
0 =

v̂T � P � v̂
n � u

; (2.11)

the estimated VCM̂� x̂x̂ for the estimated parameters results in

�̂ x̂x̂ = �̂ 2
0 � Qx̂x̂: (2.12)
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In addition, the following also applies

� x̂x̂ = � 2
0 � Qx̂x̂; (2.13)

where the VCM� x̂x̂ refers to the a priori variance factor. This VCM is of interest if the Degrees of
Freedom (DoF) of the adjustment task are low or if the estimation cannot be trusted for other reasons.
Strict recommendations on when to prefer which VCM do not exist. This depends on the speci�c task and
the present (measurement) con�guration. In the context of this thesis appropriate conditions are assumed.
For this reason,� x̂x̂ will not be given in the following.

Constrained Gauss-Markov Model

The parametersx might be restricted bys independent non-linear equality constraints

g(x) = b; (2.14)

with independent real-valued non-linear functional relationsg(�) and the related constants � 1 vectorb.
Similar to the non-linear functional model in Equation (2.2), the non-linear constraint functiong(�) needs
to be linearised by Taylor expansion. A truncation of the Taylor expansion after the linear term leads to
the following substitution

C � x = d with C = r x g(x)
�
�
�
�
x= x0

; (2.15a)

d = b � g(x0) + C � x0; (2.15b)

whereC is theu � s matrix of equality constraints andd is the related constants � 1 vector. Such an
extension by constraints can be reasonable in case of suitable prior information regarding mathematical
relationships between speci�c parameters. A common example of using equality constraints is to ensure
a normalised normal vector of a plane. To apply such additional information, the objective function in
Equation (2.5c) must be extended

LC-GMM (x; � ) = LGMM (x) + 2 � � T (C � x � d) ! min (2.16a)

= xT � AT � P � A � x � 2 � xT � AT � P � l + lT � P � l

+ 2 � � T (C � x � d) ! min;
(2.16b)

with thes� 1 vector� of Lagrangian multipliers. The solution is again achieved through the related partial
derivatives of the Lagrangian according to the Gauss-Newton method. These derivatives are set equal to
zero with respect tox and� (Koch, 1999, pp. 170 ff.)

r x LC-GMM (x; � ) = 2 � AT � P � A � x � 2 � AT � P � l + 2 � CT � � != 0; (2.17)

r � LC-GMM (x; � ) = 2 � (C � x � d) != 0: (2.18)

On this basis, Equation (2.7) need to be extended into a block structure

�
AT � P � A CT

C 0

�

| {z }
NC-GMM

"
x̂
�̂

#

=
�
AT � P � l

d

�
; (2.19)

whereNC-GMM is the extended normal equation matrix. As Roese-Koerner (2015, pp. 16) mentioned,
Lagrange multipliers do not have a physical unit and often a multiple is used to ensure convenient equa-
tions. The linear system of Equation (2.19) has an unique solution if the bordered normal equation matrix
NC-GMM is regular (NC-GMM need to be of full rank) (Wichmann, 2007, pp. 113). The cofactor matrixQx̂x̂
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with the co-/variances of the estimated parametersx̂ can be obtained by the inverse of the normal equation
matrixNC-GMM.

The extension with regard to the VCM̂� x̂x̂ results from Equation (2.12), whereby�̂ 2
0 results under con-

sideration of thesconstraints as follows

�̂ 2
0 =

v̂T � P � v̂
s+ n � u

: (2.20)

Finally, it should be noted that within this Constrained Gauss-Markov Model (C-GMM) only equality and
no inequality constraints can be taken into account.

2.1.2 Gauss-Helmert Model

Unconstrained Gauss-Helmert Model

The general case of adjustment becomes applicable, as soon asn � 1 stochastic observations andu � 1
unknown deterministic parameters are strictly interconnected by an arbitrary real-valued functionh (�).
Such a non-linearimplicit relation can be formulated by equality constraints

h (E (l) ; x) != 0; (2.21)

or by using residuals instead of the expected values of the observations

hi (l1 + v1; l2 + v2; : : : ; ln + vn; x1; x2; : : : ; xu) != 0 ; (2.22)

To obtain a linear functional model approximate valuesl0 andx0 to both observations and parameters
need to be selected carefully for Taylor series expansion (Lenzmann and Lenzmann, 2004). The following
applies

h (l + v; x) = h (l0 + � l + v; x0 + � x) with � l = l � l0 (2.23a)

� h (l; x)
�
�
l;x| {z }

w0

+ r l h (l; x)
�
�
l;x| {z }

B

� (� l + v) + r x h (l; x)
�
�
l;x| {z }

A

�� x (2.23b)

= w0 + B � (� l + v) + A � � x (2.23c)

= w0 + B � � l
| {z }

w

+ B � v + A � � x (2.23d)

= B � v + A � � x + w != 0; (2.23e)

whereB is the q � n condition matrix with partial derivatives of theq condition equations with re-
spect to the observation vectorl, and w refers to theq � 1 vector of contradictions. According to
Lenzmann and Lenzmann (2004), note that the partial derivatives are evaluated at the location3 of

l = l0 + v; (2.24)

x = x0 + � x; (2.25)

where the residualsv and the reduced parameter vector� x will continuously change during the estimation.
To obtain an estimate forl; v; x and� l minimising of the objective functionLGHM (v; � x; � ) with respect
to LS estimation (cf. section 2.1) can be performed by Lagrangian multipliers

LGHM (v; � x; � ) = vT � P � v � 2 � � T (B � v + A � � x + w) ! min: (2.26)

3Also referred to asdevelopment point



10 2 Fundamentals of Recursive State-space Filtering

Setting the related partial derivatives with respect tov; � x and� equal to zero

r v LGHM (v; � x; � ) = 2 � P � v � 2 � BT � � != 0 , v = P� 1BT � � ; (2.27)

r � x LGHM (v; � x; � ) = � 2 � AT � � != 0 , AT � � = 0; (2.28)

r � LGHM (v; � x; � ) = � 2 � (B � v + A � � x + w) != 0 , B � v + A � � x + w = 0; (2.29)

leads to the solution of the restricted minimisation problem by the linear normal equation system in block
structure

"
B � P� 1 � BT A

AT 0

#

| {z }
NGHM

"
�̂

� x̂

#

=
�
� w
0

�
: (2.30)

Depending on the selection of reasonable approximate values forl0 andx0, several iterations for repeated
linearisation are required to obtain accurate estimates for the unknown parameters. Assuming that the
inverse ofNGHM exist, the estimates for each iteration are

Qbb = B � P� 1 � BT ; (2.31)

k̂ = Q� 1
bb

�
I � A �

�
AT � Q� 1

bb � A
� � 1

� AT � Q� 1
bb

�
� (� w) ; (2.32)

v̂ = Qll � BT � k̂; (2.33)

l̂ = l0 + v̂; (2.34)

as well as

� x̂ =
�
AT � Q� 1

bb � A
� � 1

� AT � Q� 1
bb � (� w) ; (2.35a)

x̂ = x0 + � x̂: (2.35b)

The cofactor matrixQx̂x̂ with the co-/variances of the estimated parametersx̂ can be derived either by
inverting the entire regular normal equation matrixNGHM

N� 1
GHM =

"
Qk̂k̂ Qk̂x̂
QT

k̂x̂
� Qx̂x̂

#

; (2.36)

or by applying the law of error propagation4 to the estimated parameters in Equation (2.35a), which leads
to

Qx̂x̂ =
�
AT � Q� 1

bb � A
� � 1

: (2.37)

Also here the extension results to the a posteriori VCM�̂ x̂x̂ according to Equations (2.11) and (2.12).
Again, the a priori VCM� x̂x̂ can be obtained according to Equation (2.13), whereby the same applies
with regard to its use as for GMM.

Constrained Gauss-Helmert Model

Similar to the C-GMM, the parametersx of the GHM might be also restricted bys independent non-linear
equality constraints

g(x) = b; (2.38)

4Also referred to aspropagation of uncertainty
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which can be transformed according to Equation (2.15) into linear constraints

C � x = d: (2.39)

According to (Roese-Koerner, 2015, pp. 19 ff.) the parameter vectorx needs to be divided into the
approximation valuex0 and the reduced parameter vector� x, which leads to

C(x0 + � x) = d� (2.40a)

C � � x = d� � C � x0 =: d: (2.40b)

The consideration of suitable prior information for a Constrained Gauss-Helmert Model (C-GHM) makes
it necessary to extend the objective function in Equation (2.26) to

LC-GHM (v; � x; � 1; � 2) = LGHM (v; � x; � ) � 2 � � T
2 (C � � x � d) ! min (2.41a)

= vT � P � v � 2 � � T
1 (B � v + A � � x + w)

� 2 � � T
2 (C � � x � d) ! min:

(2.41b)

As in the unconstrained GHM, the related partial derivatives with respect tov; � x; � 1 and � 2 of the
Lagrangian are set equal to zero

r v LC-GHM (v; � x; � 1; � 2) = 2 � P � v � 2 � BT � � 1
!= 0

, v = P� 1BT � � 1;
(2.42)

r � x LC-GHM (v; � x; � 1; � 2) = � 2 � AT � � 1 � 2 � CT � � 2
!= 0

, AT � � 1 + CT � � 2 = 0;
(2.43)

r � 1 LC-GHM (v; � x; � 1; � 2) = � 2 � (B � v + A � � x + w) != 0

, B � v + A � � x + w = 0;
(2.44)

r � 2 LC-GHM (v; � x; � 1; � 2) = � (C � � x � d) != 0

, C � � x = d;
(2.45)

leads to the solution of the constrained minimisation problem by the linear normal equation system in
block structure

2

6
4

B � P� 1 � BT A 0
AT 0 CT

0 C 0

3

7
5

| {z }
NC-GHM

2

6
4

�̂ 1
� x̂
�̂ 2

3

7
5 =

2

4
� w
0
d

3

5 : (2.46)

Again, several iterations for repeated linearisation are required and the cofactor matrixQx̂x̂ can be derived
by inverting the regular normal equation matrixNC-GHM

N� 1
C-GHM =

2

6
4

Qk̂1 k̂1
Qk̂1 x̂ Qk̂1 k̂2

QT
k̂1 x̂

� Qx̂x̂ Qx̂k̂2

QT
k̂1 k̂2

QT
x̂k̂2

� Qk̂2 k̂2

3

7
5 : (2.47)

By substitution and transformation of Equations (2.42) and (2.43) the corresponding residuals read

v̂ = � P� 1 � BT
�
B � P� 1 � BT

� � 1
� (A � � x̂ + w) ; (2.48)

with which the estimated VCM̂� x̂x̂ for the estimated parametersx̂ can be obtained according to Equations
(2.12) and (2.20).
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Again, as for the C-GMM, only equality constraints and not inequalities can be considered. Arbitrary
inequality constraints would lead to a more complex optimisation problem. A solution to this problem
was introduced in Roese-Koerner (2015, pp. 77 ff.). Since inequalities are very helpful and occur in
several applications, this is a useful, albeit more complex, possibility to consider them.

Transformation of a Gauss-Helmert Model into a Gauss-Markov Model

Note that the estimation of the parameters requested of a GHM in Equation (2.35) has a similar structure
to the GMM in Equation (2.7) (Jäger et al., 2005, pp. 163 ff.; Dang, 2007, pp. 69). This can be utilized
to transform a non-linear GHM into an equivalent GMM. This transformation is required if recursive
parameter estimation is to be applied and leads to

~l + ~v = ~A � ~x with ~v � N
�
0; � ~l~l

�
; (2.49)

taking into consideration the substitutions

~l := � w0 � B � � l = � w; (2.50)
~v := � B � v; (2.51)
~A := r x h (l; x)

�
�
l= l0+ v;x= x0+� x; (2.52)

~x := � x; (2.53)

� ~l~l := B � � ll � BT : (2.54)

Note that the tilde symbol indicates the transformed quantities. Furthermore, this transformation is also
used for the Kalman �lter approach with implicit measurement equations (cf. section 2.2.2).

2.1.3 Recursive Parameter Estimation

In case of vast quantities of observations and self-contained epochs, a batch algorithm might be compu-
tationally expensive. For this reason, recursive estimation on an epochwise basis can be a suitable option
and has already been studied by Plackett (1950); Kalman and Bucy (1961). Therefore, the parameters re-
quested are updated continuously when a new measurement epoch is available. This offers the advantage
to just consider new observations for the parameter update, instead of re-adjustment of the whole data set.

Consideration of the additional observation vectorle with ne new observations requires an extension of
the initial GMM given by Equations (2.3) and (2.4b) (Niemeier, 2008, pp. 314 ff.)

� ll ;e = � 2
0 � Qll ;e = � 2

0 �
�
Qll 0
0 Qee

�
= � 2

0 �

"
P� 1 0

0 P� 1
ee

#

; (2.55)

�
l
le

�
+

�
v
ve

�
=

�
A
Ae

�
� xe: (2.56)

As a result the normal equation matrixNe and the related parameter vectorx̂e are given recursively by

Ne = AT � P � A| {z }
NGMM

+ AT
e � Pee � Ae; (2.57)

x̂e = N� 1
e �

�
AT � P � l + AT

e � Pee � le
�

: (2.58)

Again, the cofactor matrixQx̂x̂;e can be obtained by the inverse of the regular normal equation matrixNe.

However, this recursive parameter estimation is usually only used if the parameters requested have already
been estimated by a pre-existing dataset of observations (e.g., cyclic measurements for a geodetic moni-
toring network). Consideration of multiple new epochs is usually not within the scope of this approach.
Moreover, such a recursive procedure does not exist for a GHM.
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2.2 Recursive State-space Filtering

Parameter estimation is a useful method to receive an optimal estimate for freely de�nable parameters
which have a unique relationship to arbitrary observations. In general, the parameters requested are ob-
tained by a batch approach as a whole or by recursive estimation as soon as epochs of new observations
are available (cf. section 2.1). However, those approaches are suitable as long as the true parameters are
temporally constant during data acquisition. Changes (e.g., the position parameters of a moving vehicle)
are not intended and would cause several problems.

In contrast, recursive state-space �lters are meant for such changeable applications. The difference to
parameter estimation consists in the fact that besides already used measuring information, additional sys-
tem information is considered. Furthermore, the parameter vector is no longer deterministic but becomes
probabilistic. This enables the possibility to take into account suitable physical models which describe
the temporal and spatial dynamics of the state parameters requested mathematically. Thus, both measure-
ments and physical properties are considered within a recursive estimation approach. The linear Kalman
Filter (KF) provides the optimal estimation for this problem and was proposed by Kalman (1960). In
this context, an optimal estimate implies that it is unbiased and has a minimal variance (Simon, 2006,
pp. 84 ff.). However, these optimality properties only apply as long as Gaussian noise — for both the
measurements and for the physical system — and linear relationships exist.

The time-discrete KF is a recursive two-step procedure. For a theoretically unlimited number ofk = 1 : : : K
epochs the state parameters are predicted by a suitable process modelf (�) and updated by an appropriate
measurement modelh(�) subsequently. Both are arbitrary real-valued functions. To be also applicable for
non-linear relationships (for both system model and measurement model), Taylor series expansion within
the so-called Extended Kalman Filter (EKF) is possible. Since non-linearities comprise the majority of
applications, only this more complex case is referred to. However, the linearisation causes the KF to lose
its optimality. Instead, an approximation is carried out. These KFs are also of importance in geodesy and
are used, for example, to estimate the position and orientation of various multi-sensor systems (Sternberg,
2000; Vennegeerts, 2011; Paffenholz, 2012; Schlichting, 2018; Zwiener, 2019).

During the prediction step, selected physical relationships (e.g., motion models) are applied to the previous
state parametersxk� 1 from the last past epoch. Further in�uencing factors like zero-mean process noisewk
with VCM � ww;k and controlsuk are also taken into account at this stage. During the subsequent update
step, the forecasted state parameters are corrected by the latest set of sensor observationslk. Known zero-
mean measurement noisevk with VCM � ll ;k must also be taken into account here. Thus, this non-linear
discrete model can be assumed according to Simon (2006, pp. 407) as follows

xk = f (xk� 1; uk� 1; wk� 1) ; (2.59)

lk + vk = h (xk) ; (2.60)

wk � N (0; � ww,k) ; (2.61)

vk � N (0; � ll ,k) : (2.62)

To distinguish between the predicted and updated state parameters,x�
k denotes the a priori estimate and

x+
k the a posteriori estimate of the state vector. The same applies to related VCMs for the predicted states

� �
xx,k and for the updated states� +

xx,k, respectively.

In general, the process noise is Gaussian and describe the uncertainty and imperfections of the physical
model. The same applies to the measurement noise concerning the related measurement model. Further-
more, there are also possibilities to consider noise with non-Gaussian distributions (e.g., by a probabilis-
tic Particle Filter (PF)). Beyond that, there is a multitude of several linear and non-linear �lters (e.g.,
Unscented Kalman Filter (UKF), Ensemble Kalman Filter (EnKF)). For a detailed compilation with full
derivations the reader is referred to, e.g., Kalman (1960); Jazwinski (1970); Gelb (1974); Bar-Shalom et al.
(2001); Thrun et al. (2005); Simon (2006).

In principle, all these different realisations of �lters can be described with Bayesian sequential estimation.
It is assumed that, taking into account all available observationsLk = f l1; : : : ; lkg up to epochk, the
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a posteriori Probability Density Function (PDF)p(xkjLk) of the system statexk can be approximated.
According to Thrun et al. (2005, pp. 31 ff.) and Simon (2006, pp. 462 ff.), this conditional density can be
determined by using the Bayes' theorem. This generally represents the update step introduced above and
the following applies:

p(xkjLk) =
p(lkjxk) p(xkjLk-1)

p(lkjLk-1)
; (2.63)

where the a posteriori PDFp(xkjLk) is obtained by convolution of the likelihood PDFp(lkjxk) and the a
priori PDFp(xkjLk-1). Furthermore, the evidence PDFp(lkjLk-1) is used for normalisation, but is usually
neglected. The a priori density corresponds to the classical prediction step and can be obtained by the
solution of the Chapman-Kolmogorov integral

p(xkjLk-1) =
Z

p(xkjxk-1) p(xk-1jLk-1) dxk-1: (2.64)

Here,p(xk-1jLk-1) describes the a posteriori PDF from the last past epochk-1. For the �rst prediction step,
an assumption for this PDF is made byp(x0) as part of the initialisation. Furthermore, the transition PDF
p(xkjxk-1) results from the non-linear system model (cf. Equation (2.59)) and the PDF of the corresponding
process noisewk (cf. Equation (2.61)). It thus describes the system model and indicates the transition
probability from the last known state to the current state. This is also how the likelihood PDFp(lkjxk) from
Equation (2.63) is de�ned. The non-linear measurement model (cf. Equation (2.60)) and the associated
measurement noise (cf. Equation (2.62)) are used for this purpose. In this way the current observationslk
are considered in the update step (cf. Equation (2.63)) and the a priori PDFp(xkjLk-1) is corrected. Based
on the knowledge of the a posteriori PDF, an estimate of the state vector can be done. Different estimators
can be selected for this (Candy, 2016, pp. 38 ff.). The mean value of the a posteriori PDF is typically
determined by an estimate of the Minimum Mean Square Error (MMSE) according to

x̂MMSE
k = E (xkjLk) =

Z
xk � p(xkjLk) dxk: (2.65)

Another estimate can be obtained by the Maximum a Posteriori Probability (MAP) approach, where

x̂MAP
k = arg max

xk

p(xkjLk) : (2.66)

For other estimates, see Koch (2000). Similarly, the variance over the second central moment can also be
determined. In general, this recursive estimate, which is also referred to as a Bayesian �lter, represents
an optimal solution. However, the Chapman-Kolmogorov integral in Equation (2.64) can only be solved
numerically if linear models with Gaussian noise are available5. In addition, the consideration of all
previous observations leads to numerical problems (Candy, 2016, pp. 39 ff.). The latter challenge can be
countered by applying a �rst-order Markov chain. As a result, not all available observationsLk are taken
into account, instead only the observations of the last past epoch6 Lk = f lk� 1; lkg. To address non-linear
models with non-Gaussian noise, approximative �lter techniques must be applied (Simon, 2006, pp. 465
ff.). If at least Gaussian noise is present, the already mentioned EKF can be applied.

However, the literature has so far dealt almost exclusively with explicit relationships between measure-
ments and states (cf. Equation (2.60)) in the context of the �lters mentioned. Such a model can be
referred to as a GMM from section 2.1.1. Implicit relations (related to a GHM from section 2.1.2) are
only mentioned by a few researchers (Soatto et al., 1994; Steffen and Beder, 2007; Dang, 2007, 2008;
Petersen and Koch, 2010; Ettlinger et al., 2018; Vogel et al., 2018, 2019; Garcia-Fernandez et al., 2019).
This situation is in contrast to a multitude of applications that are based on implicit relationships. These
are mainly geometric entities (Heuel, 2001; Perwass et al., 2005). While, for example, an UKF can also
deal with non-linear equations by approximating the PDF, only in Ning et al. (2017) an approach is shown
which considers implicit measurement equations. So far, this is based exclusively on simulated data. The

5This special case describes the time-discrete linear KF.
6Also referred to as Markov assumption
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presented general Bayesian �lter is not analytically solvable if implicit measurement equations are to be
considered and therefore does not yet exist in this form. For this reason, the framework of explicit and
implicit models is introduced in detail by an Iterated Extended Kalman Filter (IEKF) subsequently.

2.2.1 Iterated Extended Kalman Filter for Gauss-Markov Models

The IEKF is an additional advancement of the EKF for non-linear equations and was initially proposed by
Denham and Pines (1966). The only difference between the two approaches is a repeated linearisation dur-
ing the update step. Here, the IEKF execute several additional iterations to correct the development point
of the �rst-order linearisation within each iteration. This is less computationally complex than perform-
ing Taylor series expansion of higher orders Simon (2006, pp. 417 ff.). Highly non-linear equations are
therefore controllable. In the IEKF algorithm described below, the equations are not derived. A detailed
derivation can be found in Simon (2006, pp. 407 ff.).

Initialisation

As with all �lters in general, the IEKF requires initialisation. Therefore the initialisedu � 1 state vector
estimatêx+

k=0 and correspondingu � u VCM � +
x̂x̂;k=0 is given by

x̂+
k=0 = x0; (2.67)

� +
x̂x̂;k=0 = � xx;0: (2.68)

Prediction Step

By �rst-order Taylor series expansion of the system model (cf. Equation (2.59)), the Jacobian matrices for
the state transition� k� 1 and the noise matrixGk� 1 can be obtained

� k� 1 = r x f (x)
�
�
�
�
x̂+

k� 1 ;uk� 1 ;wk� 1

; (2.69)

Gk� 1 = r w f (x)
�
�
�
�
x̂+

k� 1 ;uk� 1 ;wk� 1

: (2.70)

Quite often, however, the noise matrixGk� 1 can be omitted. In general, the following applies for the
predicted state vector estimatex̂�

k with associated VCM matrix� �
x̂x̂;k

x̂�
k = f

�
x̂+

k� 1; uk� 1; 0
�

; (2.71)

� �
x̂x̂;k = � k� 1 � � +

x̂x̂;k� 1 � � T
k� 1 + Gk� 1 � � ww,k� 1 � GT

k� 1: (2.72)

Update Step

The explicit relationship between observations and states is given by the measurement model (cf. Equation
(2.60)), wherelk is then � 1 observation vector. Since non-linearities can usually occur here as well, the
linearisation should also be carried out here by a �rst-order Taylor series expansion. As already mentioned,
it is the special characteristic of the IEKF to perform additional iterations during the update step. For this
reason, in addition to the epoch-indexk, an additional indexm is introduced with regard to the current
iteration run.
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After initialisation for the iterative parameters and observations by

x̂+
k;m=0 = x̂�

k ; (2.73)

lk;m=0 = lk; (2.74)

vk;m=0 = vk (2.75)

it follows for m = 0 ; : : : ; M � 1 with the maximum number of iterationsM

Ak,m = r x h
�
x̂+

k,m

� �
�
�
�
x̂+

k,m;lk,m;vk,m

; (2.76)

M k,m = r v h
�
x̂+

k,m

� �
�
�
�
x̂+

k,m;lk,m;vk,m

; (2.77)

K k,m = � �
x̂x̂;k � AT

k,m �
�
Ak,m � � �

x̂x̂;k � AT
k,m + M k,m � � ll ,k � MT

k,m

� � 1
; (2.78)

x̂+
k,m+1 = x̂�

k + K k,m �
�

lk � h
�
x̂+

k,m

�
� Ak,m �

�
x̂�

k � x̂+
k,m

� �
; (2.79)

� +
x̂x̂;k,m+1 = ( I � K k,m � Ak,m) � � �

x̂x̂;k: (2.80)

Here, x̂+
k,m is the stepwise updated state vector and� +

x̂x̂;k,m the associated VCM. The estimation of the
updated states is in�uenced by the so-called Kalman matrixK k,m. This matrix provides for the weighting
between predicted statesx̂�

k and current observationslk at each epoch. Again, quite often, the Jacobian
matrix Mk,m related to the residualsvk,m is usually not taken into account. The �nal a-posteriori state
estimate and associated VCM are than

x̂+
k = x̂+

k,M; (2.81)

� +
x̂x̂;k = � +

x̂x̂;k;M: (2.82)

The general process of the individual �lter steps is shown in Figure 2.1 with its relevant estimates. Note
that forM = 0 the IEKF reduces to the standard EKF without additional iterations. There is theoretically
no limit to the maximum number of iterationsM within the IEKF. In practice, a maximum number
of iterations is usually speci�ed. Alternatively, this can also be provided with an abort criterion. A
possible threshold value, which must be reached below, can be for example the absolute change between
two consecutive epochs. Studies show, however, that in practice, often already one or two additional
iterations are suf�cient (Krebs, 1980, pp. 194). Further iterations, therefore, do not necessarily lead to
further improvements. Regardless of this, a larger number of iterations would also be inef�cient from a
computational point of view.

In principle, it is also possible to perform an improved linearisation during the prediction step7 (cf. Equa-
tion (2.71)). In practice, however, this is rarely used and only required for highly non-linear system (Krebs,
1980, pp. 188). In addition, the focus will be on the measurement model in the further chapters, which is
why more details can be found directly in Jazwinski (1970, pp. 279 ff.).

Figure 2.1: Flowchart of the IEKF for explicit measurement equations with predicted (solid box) and updated states (dotted box)

7In Jazwinski (1970, pp. 280) this is called theIterated Linear Filter-Smoother
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2.2.2 Iterated Extended Kalman Filter for Gauss-Helmert Models

The basic principle of the IEKF was already introduced in the previous section 2.2.1. However, it is
limited exclusively to explicit relationships between state parameters and observations within the mea-
surement modelh(�) (cf. Equation (2.60)). In this section, therefore, a possibility is presented that allows
implicit relationships to be taken into account. Thus greater �exibility can be guaranteed regarding dif-
ferent applications. The main idea of the transfer towards implicit measurement models is based on Dang
(2007, 2008). His approach is again based on the transformation of a linear GHM into a linear GMM
according to transformation rule from Equations (2.50) – (2.54).

Compared to the IEKF for GMM, the basic procedure regarding prediction step and update step remains
the same. Therefore, only the update step is affected by the introduction of an implicit model. The
measurement model from Equation (2.60) therefore results in

h (lk + vk; xk) = 0; (2.83)

where the states and observations are inseparable. However, the other assumptions of Equations (2.59),
(2.61) and (2.62) remain. At this point, note that in addition to the �ltered statesx+

k , �ltered observations
l+k are now also estimated. Here, Equation (2.83) is an auxiliary condition of the LS problem de�nition

 
l+k � lk

x+
k � x�

k

! T "
� ll ,k 0

0 � �
xx;k

#� 1  
l+k � lk

x+
k � x�

k

!

! min: (2.84)

To perform linearisation of Equation (2.83) the Taylor series expansion according to Equation (2.23) leads
to

h (lk + vk; xk) � �r x h (�)
�
�
�l;�x| {z }

Ak

�
x+

k � �xk

�
+ r l h (�)

�
�
�l;�x| {z }

Bk

�
l+k � �lk

�
+ h

�
�lk; �xk

�
(2.85a)

= Ak � x+
k + Bk � l+k + h

�
�lk; �xk

�
� Ak � �xk � Bk � �lk

| {z }
wk

(2.85b)

= Ak � x+
k + Bk � l+k + wk

!= 0; (2.85c)

where�xk and�lk are corresponding development points of the �rst-order linearisation. Similar to Equation
(2.26), an objective function can also be set up here by using Lagrangian multipliers. This must be
minimised. The objective functionLIEKF can be set up by LS (cf. Equation (2.84)) and the auxiliary
condition in Equation (2.85) which leads to

LIEKF =

 
l+k � lk

x+
k � x�

k

! T "
� ll ,k 0

0 � �
xx;k

#� 1  
l+k � lk

x+
k � x�

k

!

� 2 � � T
k �

�
Ak � x+

k + Bk � l+k + wk

�
! min;

(2.86)

where� is the Lagrangian multiplier. Setting the related partial derivatives with respect tox+
k ; l+k and� k

of the Lagrangian equal to zero

r x+
k

LIEKF = 2 �
�
x+

k � x�
k

� T
�
�
� �

xx;k

� � 1
� 2 � � T

k � Ak
!= 0

, x+
k = x�

k + � �
xx;k � AT

k � � k;
(2.87)

r l+k
LIEKF = 2 �

�
l+k � lk

� T
� (� ll ,k)

� 1 � 2 � � T
k � Bk

!= 0

, l+k = lk + � ll ,k � BT
k � � k;

(2.88)

r � LIEKF = Ak � x+
k + Bk � l+k + wk

!= 0; (2.89)
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leads to the linear normal equation systemNIEKF in block structure
2

6
4

� I 0 � �
x̂x̂;k � AT

k

0 � I � ll ,k � BT
k

Ak Bk 0

3

7
5

| {z }
NIEKF

2

6
4

x̂+
k

l̂
+
k

�̂ k

3

7
5 =

2

4
� x̂�

k
� lk
� wk

3

5 : (2.90)

Comparable with the solution of GHM in batch processing (cf. Equation (2.30)), the �ltered statesx̂+
k and

observationŝl
+
k can be obtained by the inverse of the normal equation systemNIEKF. For the �rst iteration

runm = 0 of the update step, the development points�xk,m=0 and�lk,m=0 should be selected by the predicted
state estimateŝx�

k and currently available observationslk

�xk,m=0 = x̂�
k ; (2.91)

�lk,m=0 = lk: (2.92)

After initialisation of the �rst update step the development points change continuously. For the subsequent
iterationsm = 0 ; : : : ; M � 1, the development points are replaced by the current �ltered state estimatex̂+

k,m

and �ltered observationŝl
+
k,m. This corresponds to a similar linearisation procedure as for the GHM (cf.

section 2.1.2). As with the IEKF for GMM (cf. section 2.2.1), the iterations of the update step terminate
after a speci�c number of runs, unless an abort criterion has already been reached. The related VCM of
the �ltered states� +

x̂x̂;k is determined once at the end of the update step form = M � 1 and reads

� +
x̂x̂;k = ( I � Kk � Ak) � � �

x̂x̂;k � (I � Kk � Ak)
T + Kk �

�
Bk � � ll ,k � BT

k

�
� KT

k ; (2.93)

whereKk is the Kalman gain

Kk = � �
x̂x̂;k � AT

k �
� �

Ak � � �
x̂x̂;k � AT

k

�
+

�
Bk � � ll ,k � BT

k

� � � 1

: (2.94)

Afterwards the state vector and related VCM are predicted again for the next epochk + 1 (cf. Equations
(2.71) and (2.72)). The general process of the individual �lter steps is shown in Figure 2.2 with its relevant
estimates. Note that the Kalman gain in Equation (2.94) results from the application of the transformation
rule from Equations (2.50) – (2.54) in combination with the solutions of the IEKF for GMM (cf. section
2.2.1). This also results in the detailed �lter equation for the iteratively updated state vector belowx̂+

k,m+1

x̂+
k,m+1 = x̂�

k � Kk,m �
�

h
�
�lk,m; �xk,m

�
+ Bk,m �

�
lk � �lk,m

�
+ Ak,m �

�
x̂�

k � �xk,m

� �
: (2.95)

In addition, the iteratively updated observation vectorl̂
+
k,m+1 result as follows

l̂
+
k,m+1 = lk �

 

� ll ,k � BT
k,m �

� �
Ak,m � � �

x̂x̂;k � AT
k,m

�
+

�
Bk,m � � ll ,k � BT

k,m

� � � 1
!

�
�

h
�
�lk,m; �xk,m

�
+ Bk,m �

�
lk � �lk,m

�
+ Ak,m �

�
x̂�

k � �xk,m

� �
:

(2.96)

As mentioned before, only a few other researchers besides Dang (2007, 2008) have so far dealt with
implicit measurement equations within a KF. In Ettlinger et al. (2018), the approach is to realise a decom-
posed system equation by two sets of equations. The �rst set consists of the predicted state parameters and
the second set consists of condition equations according to the GHM. The fusion of both sets of equations
leads to a system model of a KF. The solution then results from the usual formulas of the GHM. However,
no iterations according to an IEKF or state constraints according to section 2.3 can yet be realised. Fur-
thermore, the approaches from Petersen and Koch (2010); Steffen and Beder (2007) are based on a similar
approach to that of Dang (2007, 2008), but only Steffen and Beder (2007) uses an IEKF.
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Figure 2.2: Flowchart of the IEKF for implicit measurement equations with predicted states (solid box) and updated states &
observations (dotted box)

2.3 State Constraints

The IEKF, and in general also the KF, provide a suitable framework for estimating precise state parame-
ters, taking into account suitable physical or mathematical system models and measurement models (cf.
section 2.2). In addition to the models, additional prior information regarding the states to be estimated
is often also known. These can be mathematical de�nitions, physical laws, geometric restrictions or other
practical or logical speci�cations. Possible speci�c examples could be the attention to orthonormal rows
of a rotation matrix, maximum upper limits of a motion velocity or a given intersection angle. Simpli�ed,
this additional information is generally referred to as constraints or restrictions. Although such constraints
would theoretically exist for many applications, they are not always applied (Simon and Chia, 2002).
However, the consideration of suitable, reliable and applicable constraints can theoretically only lead to
an improvement of the estimation results. Especially for non-linear systems, in which the IEKF does not
provide optimal estimation results in the sense of minimum variance, the integration of constraints to the
states provides a signi�cant gain in accuracy (Chiang et al., 2002; Simon, 2010). For this reason, many
different methods have been developed for constrained KFs. A comprehensive overview can be found in
Simon (2006, pp. 212 ff.); Gupta and Hauser (2007); Simon (2010).

State constraints can be de�ned by a linear or non-linear functional context. However, any non-linear state
constraint can be transformed into a linear state constraint by Taylor series expansion. This linearisation
is regarded as a suf�ciently accurate approximation, as long as the uncertainties are small compared to
the quantities that occur. Further details on linearisation and related inaccuracies are given in section
2.3.3. Thus, all existing approaches for linear state constraints are also applicable for non-linear state
constraints. Therefore, the methods are described below in terms of linear relationships. Furthermore, a
distinction between hard constraints8 and Soft Constraints (SCs)9 is done. Hard constraints are used if
the exact permissible value is known. They are non-negotiable and must be ful�lled exactly. This ensures
strict compliance with the state constraints. In contrast, SCs only have to be ful�lled approximately. A
certain tolerance is allowed, and the exact value is not required. This type is mainly used if a certain
uncertainty in the functional context of the state constraint is already known. If several constraints are
applied simultaneously, linear independence between them is assumed. This will avoid any numerical
instabilities due to rank de�ciency (Wichmann, 2007, pp. 113).

All methods have in common that �nally an improved estimation of the state vectorxc
k with associated

VCM � c
xx;k based on the applied constraints is available. As long as truthful state constraints are con-

sidered, this leads to a solution that is generally closer to the true value compared to the �ltered statex+
k

without considering constraints. At least a deterioration is not possible under these assumptions (Simon,
2010). The state constraints described here only apply to the update step. However, there are also a
few methods that can be taken into account in the prediction step. Nevertheless, this affects the required
computational effort and does not represent a relevant gain in accuracy (Gupta and Hauser, 2007).

Due to the diversity of existing state of the art methods, only the most widely used methods required for
this thesis are discussed here. In addition, note that those methods described below for considering state
constraints refer exclusively to the use of KFs with explicit measurement equations (cf. section 2.2.1).

8Also referred to asstrongconstraints
9Also referred to asweakconstraints
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The application of state constraints to KFs with implicit measurement equations (cf. section 2.2.2) has
several special requirements and does not yet exist. Methods for this are described in detail in chapter 3.

2.3.1 Hard Constraints

Hard constraints can be subdivided into equality state constraints

D � xk = d; (2.97)

and inequality state constraints

D � xk � d; (2.98)

whereD is a knowns� u constraint matrix andd is a knowns� 1 constraint vector. The variables refers
to the number of attached constraints and is less than or equal to the number of statesu. In general,D and
d are time-variable and can vary for different epochsk. Subscription ofD andd is not done to simplify
notation. In principle, both quantities are also time-dependent and can be different in their dimensions
and values per epochk. The mathematical consideration of such constraints within a KF depends on the
respective method.

Equality Constraints

ThePerfect Measurements (PMs)method converts state constraints of Equation type (2.97) into �ctitious
observations10 and treats them as additional observations (Porrill, 1988). In contrast to conventional ob-
servations, these �ctitious observations are not subject to any uncertainties. For this reason we can extend
Equation (2.97) by adding zero measurement noisevd,k from which follows

d = D � xk + vd,k; vd,k � N (0; � ldld;k) ; (2.99)

where the related VCM� ldld;k is the zero matrix. By adding such a PM equation for each constraint
requested, the total number of measurement equations increases ton + s. The implementation is done via
extension of the observation vectorlk and related VCM� ll ,k in Equation (2.60). The basic process of the
IEKF with its relevant estimates is shown in Figure 2.3. Note that this modi�cation leads to a singular
VCM of the measurement noise� ll ,k. However, this is not necessarily a problem but can lead to numerical
instabilities (de Geeter et al., 1997). Furthermore, an extension of the measurement functions obviously
leads to generally higher dimensions of related matrices, which can result in a higher computational effort
(Simon and Chia, 2002).

Figure 2.3: Flowchart of the IEKF for explicit measurement equations with predicted (solid box) and constrained states (dashed
box) under consideration of additional PMs (red)

10Also referred to aspseudoobservations
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In contrast to the PMs method, theProjection (PRO)method is based on the unconstrained �ltered state
estimatêx+

k . So the regular update step of the general KF remains identical. According to Simon and Chia
(2002), the �ltered state estimatêx+

k is projected onto the constraint surface by minimising

x̂c
k = arg min

xk

� �
xk � x̂+

k

� T
� W �

�
xk � x̂+

k

� �
�
� D � xk = d

�
; (2.100)

where theu� u weight matrixW can be selected asW = I . This will result in a constrained solution closer

to the true state than an unconstrained estimation. Alternatively, it can also be selected asW =
�
� +

x̂x̂;k

� � 1

which will end in a minimum variance �lter (Simon and Chia, 2002). However, this only applies to linear
systems (Simon and Chia, 2002). The effect of selectingW is well illustrated by Figure 2.4.

The solution of Equation (2.100) results in the constrained state estimatex̂c
k and corresponding VCM� c

x̂x̂;k

x̂c
k = x̂+

k � W� 1 � DT
�
D � W� 1 � DT

� � 1 �
D � x̂+

k � d
�

; (2.101a)

� c
x̂x̂;k = � +

x̂x̂;k � � +
x̂x̂;k � DT

�
D � � +

x̂x̂;k � DT
� � 1

D � � +
x̂x̂;k: (2.101b)

For the implementation, the constraints after the update step are applied, and its results are used for the
prediction step in the subsequent epochk + 1 . The basic process of the IEKF with its relevant estimates
is shown in Figure 2.5. In addition, there are also other methods to consider equality state constraints
in Kalman �ltering. For example, the so-calledmodel reductionmethod reduces the complexity on the
level of the system model parametrization, but generally, the physical interpretability of the states is lost
(Simon, 2006, pp. 212 ff.). Furthermore, an extension of the model reduction method to inequalities is
not possible. However, this is possible with the other methods described below.

Inequality Constraints

In contrast to equality, inequality constraints can be used to exclude entire impermissible or infeasible
value ranges of the states. A common method to consider such state constraints of Equation type (2.98)
for Kalman �ltering is given byPDF truncation method. Within this framework, the PDF of the un-
constrained �ltered state estimatex̂+

k (which is assumed to be Gaussian) is truncated by using thes state
constraints requested. The constrained state estimatex̂c

k then results from the mean of the truncated PDF
(Shimada et al., 1998). This truncation is performed for every single constrainti = 1 ; : : : ; s successively.
Therefores truncations are necessary in total. If the constraints are not decoupled from each other, the or-
der in which they are considered affects the result (Simon and Simon, 2010). There are several individual

Figure 2.4: Impact of selecting the weight matrix in the context of the consideration of state constraints by the PRO method.
Modi�ed according to Simon (2006, pp. 218).
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Figure 2.5: Flowchart of the IEKF for explicit measurement equations with predicted (solid box), updated (dotted box) and
constrained states (dashed box) when using the PRO method (red)

steps needed to perform this method. A detailed overview is given in Simon (2006); Simon and Simon
(2010); Vogel et al. (2019). In general, this PDF truncation method can also be used for two-sided in-
equality state constraints of the form

dlower � D � xk � dupper; (2.102)

wheredlower relates to the lower anddupper to the upper boundary of the constraint (cf. Figure 2.6). For
this reason, inequality constraints can be considered as the general case in terms of state constraints. If the
lower and upper boundaries are identical, a two-sided inequality conforms to an equality state constraint.
To handle one-sided inequality constraints,dlower = �1 or dupper= + 1 could be used. In addition, this
PDF truncation method can also be applied for equality constraints. Also, combinations of equality and in-
equalities state constraints are possible, making this method very versatile. The basic process of the IEKF
with its relevant estimates using the PDF truncation method is shown in Figure 2.7. Simon and Simon
(2010) further recommend an independent execution of the unconstrained Kalman �ltering and PDF trun-
cation process. Instead of using the constrained state for prediction for the subsequent epochk + 1 , the
unconstrained state should be used. This is to prevent that the multiple use of the information in the con-
straint results in a supposed normal distribution. Otherwise, this can lead to a monotonously increasing
mean value or monotonously decreasing variance.

The already introduced PRO method can also be extended with regard to inequality state constraints.
However, only with respect to one-sided formulation according to Equation (2.98). The minimisation
problem in Equation (2.100) need to be modi�ed and leads to

x̂c
k = arg min

xk

� �
xk � x̂+

k

� T
� W �

�
xk � x̂+

k

� �
�
� D � xk � d

�
: (2.103)

However, this results in a quadratic programming problem (Simon, 2006, pp. 216 ff.). A so-calledactive-
set methodis a suitable approach to solve this problem (Fletcher, 2008). A subset (active set) of the
inequality constraints are treated as equality constraints and the optimisation problem is solved. This
subset comprises all constraints which are active at the solution of the problem. If the solution satisfy

-4 -2 0 2 4

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
D

F
(x

)

(a)

-4 -2 0 2 4

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
D

F
(x

)

(b)

Figure 2.6: Basic principle of the PDF truncation method (unconstrained PDF (a) and constrained PDF (b)) according to
Simon and Simon (2010). The lower and upper boundaries are marked with red lines. The unconstrained state is
highlighted by a black circle and the constrained state by a red circle. The constrained state refers to the centroid of
the truncated PDF and can be obtained, for example, from the MMSE estimator (cf. Equation(2.65)).
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Figure 2.7: Flowchart of the IEKF for explicit measurement equations with predicted (solid box), updated (dotted box) and
constrained states (dashed box) when using the PDF truncation method (red)

the initial inequality constraints subsequently, the problem is solved. Otherwise an iterative process is
necessary. However, it is unfavourable, since the necessary computational effort of the active-set method
increases exponentially with the number of constraints (Simon, 2010).

2.3.2 Soft Constraints

As already shown, a feasible range of values can be speci�ed with two-sided inequality constraints (cf.
Equation (2.98)). A similar possibility exists through the use of SCs according to

D � xk � d; (2.104)

where the constraints are only required to be approximately ful�lled. Realisation is identical to the PMs
method for equality state constraints (cf. Equation (2.99)) (Simon, 2010). The additional pseudo observa-
tions are considered by a small nonzero measurement noisevd,k. Thus, the VCM� ldld;k is also a nonzero
matrix. The basic process of the IEKF with its relevant estimates is shown in Figure 2.8. In contrast to
the other methods, it is dif�cult to de�ne an explicit feasible range of values with this method. One-sided
constraints cannot be realised with this either. In addition, there are other methods to apply SCs. For
example, in Simon and Simon (2006) an additional regularisation term was used in the general KF.

2.3.3 Non-linear Constraints

So far, only linear state constraints have been considered. In general, state constraints can be formulated
by non-linear functions

g(xk) = b; (2.105)

whereg(�) is an arbitrary non-linear function andb is a knowns � 1 constraint vector. Note that this
can also be transferred one-to-one to inequality constraints of Equation type (2.98). The simplest possi-
bility is to lineariseg(xk) so that the methods from sections 2.3.1 and 2.3.2 can be applied. However,
de Geeter et al. (1997) mentions that applying the PM method (cf. Equation (2.99)) to non-linear state
constraints can lead to convergence problems. Regardless of this, the linearisation is basically identical to
Equation (2.15) and is based on�rst-order Taylor expansion(Porrill, 1988; Simon and Chia, 2002)

D = r x g
�
x̂�

k

� �
�
�
�
x= x̂�

k

; (2.106a)

d = b � g
�
x̂�

k

�
+ D � x̂�

k : (2.106b)

Here, it should be noted that the derivations and evaluations of the non-linear functiong(�) must be
carried out on the basis of the state prediction estimatex̂�

k . At least this procedure is indicated by default
in the literature above. In addition, it is also possible to select other suitable development points for
linearisation. For IEKF, for example, the current estimated value within the iterative update step can be
used. Whenever non-linear constraints occur in this thesis, they are approximated by linear constraints
based on this method. In addition, one should be aware that linearisation can also lead to linearisation
errors, as shown in Figure 2.9.
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Figure 2.8: Flowchart of the IEKF for explicit measurement equations with predicted (solid box) and constrained states (dashed
box) under consideration of SCs (red)

Figure 2.9: Linearisation errors in case of non-linear state constraints. Modi�ed according to Yang and Blasch (2009).

Nevertheless, there are further possibilities to consider such non-linear state constraints directly. The ter-
mination of Taylor linearisation after the �rst order represents a weak point depending on the strength
of the non-linearity. A possible alternative is therefore to include thesecond-order-expansionderivation
(Yang and Blasch, 2009; Simon, 2010). However, the resulting optimisation problem can only be solved
numerically. Sircoulomb et al. (2008) proposes an iterative process to successively improve the develop-
ment point for linearisation of the non-linear constraints. Furthermore, non-linear equality state constraints
can be integrated directly within aSmoothly Constrained Kalman Filter (SCKF). This approach is also
based on the linearisation of the constraints and then considers them as an additional PM. This is done
iteratively, and the uncertainty of the constraints is increased in each repetition (de Geeter et al., 1997).
However, both methods have so far not been applied for implicit measurement equations according to
section 2.2.2. The same applies to the consideration of non-linear state constraints in the context of UKFs
(Teixeira et al., 2008) and PFs (Prakash et al., 2008). In Ebinger et al. (2015), for example, an arbitrary
state constraint is applied to the conditional mean estimate of a posterior density. In addition,Moving
Horizon Estimation (MHE) should be mentioned, which is a general approach for solving non-linear
equality and inequality constraints (Robertson et al., 1996). This also leads to a non-linear optimisation
problem that has not been investigated for implicit relationships between states and observations. Simul-
taneously, the required run time is considerably higher than that of the other methods described above
(Ungarala et al., 2007; Simon, 2010). In general, methods for the consideration of non-linear constraints
can also be applied to linear constraints.

In conclusion, it can be summarised that there is an extensive range of different methods for considering
state constraints. They depend on the type of constraints and have different advantages and disadvantages.
In the case of non-linear systems and constraints, in general, all approaches lead to slightly different re-
sults (Simon, 2010). Moreover, the application of non-linear inequalities represents the most signi�cant
challenge (Sircoulomb et al., 2008). Not all techniques are suitable for the direct adaptation of the de-
scribed methods regarding implicit relationships. In the context of this work, therefore, only the methods
described in detail will be considered. An overview of these methods depending on the type of constraint
is given in Figure 2.10.
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Figure 2.10:Overview of different methods (bold font) for considering state constraints regarding explicit relations, depending
on the type of constraint (boxes). The selection is based on the appropriate techniques used in this thesis.





3 Methodological Contributions

This chapter presents new methods for the consideration of arbitrary state constraints in the context of
implicit measurement equations for IEKFs. In section 3.1 the basic idea of a versatile recursive state-
space �lter approach is introduced. The new possibilities to consider different types of state constraints
are presented in section 3.2. The main differences compared to usual �lter methods with explicit mea-
surement equations are discussed, and different possible solutions are shown. Subsequently in section
3.3, an adaptation of the IEKF to enable a recursive GHM with the possibility of including constraints is
presented. Finally, the own methodological contributions are applied and validated within the framework
of a Monte-Carlo (MC) simulation in section 3.4. With its theoretical aspects, this chapter thus comprises
the main part of the own methodological contributions of this thesis.

3.1 Versatile Recursive State-space Filter

The IEKF, initially introduced in Dang (2007), is a practical method to use implicit measurement equations
for recursive state estimation. This method was already adopted in Vogel et al. (2018) and signi�cantly
extended with regard to two aspects. This contains previously unstated uncertainty information about the
updated observation estimatesl̂

+
k in the form of VCM � +

l̂̂l;k
by propagation of uncertainty. In addition,

more fundamentally the consideration of equality state constraints in combination with implicit relations
was described in this contribution. This consideration of state constraints within the IEKF with implicit
measurement equations is described in detail in the following section 3.2. The derivation of uncertainty
information about the estimated observation estimatesl̂

+
k is directly stated below. This VCM� +

l̂̂l;k
is es-

sential to make quantitative statements about the uncertainty of the estimated observations. In addition,
this information might also be necessary for subsequent calculations, such as further propagation of un-
certainty. The VCM� +

l̂̂l;k
is based on the equation for calculating the updated observation estimatesl̂

+
k

(cf. Equation (2.96)) which has to be transformed and substituted. Based on

l̂
+
k = lk � � ll ,k � BT

k �
�
Ak � � �

x̂x̂;k � AT
k + Bk � � ll ,k � BT

k| {z }
� �

ll ,k

� � 1

�
�

h
�
�lk; �xk

�
+ Bk �

�
lk � �lk

�
+ Ak �

�
x̂�

k � �xk

� �
(3.1a)

= lk � � ll ,k � BT
k �

�
Ak � � �

x̂x̂;k � AT
k + � �

ll ,k

� � 1

| {z }
Fk

�
�

h
�
�lk; �xk

�
� Bk � �lk � Ak � �xk

| {z }
wk

+ Bk � lk + Ak � x̂�
k

�
;

(3.1b)
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the following results

l̂
+
k = lk + Fk �

�
wk � Bk � lk| {z }

l �k

� Ak � x̂�
k

�
(3.2a)

= lk + Fk � l �k � Fk � Ak| {z }
Hk

� x̂�
k : (3.2b)

Subsequently, the law for propagation of uncertainty can be applied to Equation (3.2b), from which follows

� +
l̂̂l;k

= I � � ll ,k � I T
| {z }

� ll ,k

+ Fk � � �
ll ,k � FT

k � Hk � � �
x̂x̂;k � HT

k : (3.3)

Equation (3.3) must be determined for each epochk. The estimation is performed concurrently with the
VCM � +

x̂x̂;k of the updated state estimatex̂+
k at the end of the respective update step.

In Vogel et al. (2019), the approach of Dang (2007) is adopted again. In addition to the consideration of
inequality state constraints, the possibilities of the IEKF for versatility are also discussed. This is mainly
based on the possibility to consider explicit measurement equations within the IEKF for implicit relations.
This fact is decisive when it comes to a versatile method that can handle as many different mathematical
functions as possible. So far, there is no reference to the possibility that the IEKF for implicit relations can
be used completely independent of the type of measurement equation (i.e. whether implicit or explicit).
Because every explicit equation (cf. Equation (2.60)) can be transformed into an implicit equation (cf.
Equation (2.83)) according to

lk + vk � h (xk) = 0: (3.4)

This transformation is possible in principle, since the explicit model (GMM) can generally be regarded as
a special case of the implicit model (GHM). According to this, the following applies after linearisation of
Equation (3.4)

Ak � xk + I|{z}
Bk

� lk + vk � h (�xk) � Ak � �xk| {z }
wk

= 0 (3.5)

From this the de�nition as in Equation (2.85) can then be represented again

Ak � xk + Bk � lk + wk = 0: (3.6)

Taking all these aspects together regarding the type of measurement equation and the use of different
additional prior information as state constraints, a concept of a versatile recursive state estimator can be
established. For this reason, the IEKF for implicit relations represents a broadly based foundation which
can �exibly consider different measurement equations and constraints. This overall concept is illustrated
in Figure 3.1. Here the focus is on the connection of the different steps of the IEKF to the state parameters
requested, the available observations, as well as appropriate prior information. The coloured arrows show
different possibilities of how the �lter can be applied optimally depending on the application. The extent
to which the different types of constraints can be taken into account in this context is described in the
following section 3.2. Moreover, this �exibility and versatility of the approach is also highlighted in
Bureick et al. (2019b) and adapted for a speci�c application. The full algorithm is given in Appendix A.1.

3.2 Kalman Filtering with State Constraints for Gauss-Helmert Models

As already mentioned in section 2.3, the consideration of suitable constraints can lead to an additional
improvement of the estimation results within the framework of Kalman �ltering. Although this is already
used by default in combination with explicit measurement equations (cf. section 2.2.1), there is currently
no experience with this (apart from own work) for the implicit case (cf. section 2.2.2). A direct transfer of
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Figure 3.1: Schematic overview and �ow diagram of the versatile recursive state-space �lter based on an IEKF according to
Vogel et al. (2019). It shows the individual steps of the �lter (grey) and the associated state parameters (yellow),
observations (green) and additional prior information (blue).

the methods presented in section 2.3 is generally not possible without additional adjustments and consider-
ations. The reason for this is the direct dependence of the measurement equations on the observations (cf.
Equation (2.83)). This in turn leads to an extended LS problem (cf. Equation (2.86)) in which �ltered ob-
servations are estimated in addition to the state parameters. First approaches have already been described
in Vogel et al. (2018, 2019); Bureick et al. (2019b); Moftizadeh (2019). However, not all different types
of state constraints (cf. section 2.3) can be considered with the methods described there. Furthermore,
there were some inconsistencies, which are referred to and remedied below.

As the term itself implies, state constraints apply exclusively to corresponding elements of the state vector.
The observations are therefore not affected by the restrictions. This is applicable for explicit contexts. If
implicit relations exist, this usually leads to a con�ict. The application of state constraints leads to a change
of the state parameters (fromx+

k towardsxc
k) in the sense that the speci�ed constraints are ful�lled. At the

same time, however, it must also be ensured that the measurement equations are ful�lled as an auxiliary
condition (cf. Equation (2.83)), i.e. that the contradictions are close to zero. However, this is generally not
guaranteed in implicit relationships (Vogel et al., 2019). This can be clearly compared in Table 3.1, for
example, by applying the PRO method (the same also applies to the PDF truncation method) according to
section 2.3.

The consideration of constraints within the framework of the perfect measurement method, where the
constraints are included directly in the update step, is also not directly applicable. For this reason, three
different approaches are shown in the following, with which the methods presented in section 2.3 can
also be applied for implicit relationships under consideration of modi�cations. First, an extension toim-
plicit pseudo observationsis introduced in section 3.2.1. With this, equality constraints, as well as SCs
for implicit relations, can be considered. The second approach in section 3.2.2 describes aConstrained
Objective Function (COF)and is based in its principles on the use of constraints in the GHM according
to section 2.1.2. This enables the direct consideration of equality constraints within the update step. In a
third approach, a procedure is presented which allows using the PRO and PDF truncation method in com-
bination with implicit equations. This procedure (referred to asimprovement of implicit contradictions)
is capable of resolving the problems listed in Table 3.1 and is described in detail in section 3.2.3. This can
then be used to solve equality and inequality constraints.


