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Abstract

Investigation of the global freshwater system has a vital role in critical issues e.g. sus-
tainable development of water resources, acceleration of the hydrological cycle, vari-
ability of global sea level. Measurement of river streamflow is vital for such investi-
gations as it gives a reliable estimate of freshwater fluxes over the continents. Despite
such importance, the number of river discharge gauging station has been decreasing.
At the same time, information on the global freshwater system has been increasing
because of various types of ground observations, water-use information and space-
borne geodetic observations. Nevertheless, we cannot answer properly crucial ques-
tions about the amount of freshwater available on a certain river basin, or the spatial
and temporal dynamics of freshwater variations and discharge, or the distribution of
world’s freshwater resources in the future. The lack of comprehensive measurements
of surface water storage and river discharge is a major impediment for a realistic un-
derstanding of the hydrological water cycle, which is a must for answering the afore-
mentioned questions. This thesis aims to improve the methods for monitoring the
surface extent of inland water bodies using satellite images.

Satellite imaging systems capture the Earth surface in a wide variety of spectral and
spatial resolution repeatedly. Therefore satellite imagery provides the opportunity to
monitor the spatial change in shorelines, which can serve as a way to determine the
water extent.

Each band of a multispectral image reveals a unique characteristic of the Earth surface
features like surface water extent. However selecting the spectral bands which provide
the relevant information is a challenging task. In this thesis, we analyse the potential of
multispectral transformations like Principal Component Analysis (PCA) and Canonical
Correlation Analysis (CCA) to tackle this issue by condensing the information available
in all spectral bands in just a few uncorrelated variables. Moreover, we investigate
how the change between multispectral images at different epochs can be highlighted
by using the transformations.

This study proposes an automatic algorithm for extracting the lake water extent from
MODIS images and generating dynamics lake masks. For improving the accuracy of the
lake masks and computational efficiency of the algorithm, two masks are defined for
limiting the search area. The restricting masks are developed according to DEM of the
surrounding area together with a map of the long-term variation of pixel values. Sub-
sequently, an unsupervised pixel-based classification algorithm is applied for defining
the lake coastline. The algorithm particularly deals with the challenges of generating
long time series of lake masks. We apply the algorithm on five lakes in Africa and Asia,
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each of which demonstrates a challenge for lake area monitoring. However in the vali-
dation section, we demonstrate that the algorithm can generate accurate dynamic lake
masks.

Rivers show diverse behaviour along their path due to the contribution of different
parameters like gradient of the elevation, river slope, tributaries and river bed mor-
phology. Therefore for generating accurate river reach mask, we need to consider ad-
ditional sources of information apart from pixel intensity. The region-based classifica-
tion algorithm that we propose in this study takes advantages of all types of available
information including pixel intensity and spatial and temporal interactions. Markov
Random Fields provide a flexible frame for interaction between different sources of
data and constraint. To find the most probable configuration of the field, the Maximum
A Posteriori solution for the MRF must be found. To this end, the problem is reshaped
as an energy minimization. The energy function is minimized applying graph cuts as
a powerful optimization technique. The uncertainty in the graph cuts solution is also
measured by calculating the minimum marginal energies. The proposed method is ap-
plied to four rivers reaches with different hydrological characteristics. We validate the
obtained river area time series by comparing with in situ river discharge and satellite
altimetric water level time series.

Moreover, in this study, we present river discharge estimation models using the gen-
erated river reach masks. Our aim is to find an empirical relationship between the
average river reach width and river discharge. The statistics in the validation periods
support the idea of using river width-discharge prediction models as a complementary
technique to the other spaceborne geodetic river discharge prediction approaches.

vi



Zusammenfassung

Aufgrund der wichtigen Rolle des globalen Süßwassers für die nachhaltige Entw-
icklung der Wasserressourcen sowie die Beschleunigung des Wasserkreislaufs als
auch die Variabilität des globalen Meeresspiegels haben sich viele Studien in den
letzten Jahren auf die Untersuchung des globalen Süßwassersystems konzentriert.
Flussabflussmessungen sind für solche Studien unerlässlich, da sie eine zuverlässige
Schätzung der Süßwasserflüsse über die Kontinente ermöglichen. Trotz dieser
bedeutenden Rolle ist die Anzahl der Flussabfluss-Pegelstationen in der Vergan-
genheit zurückgegangen. Im Allgemeinen wurden aber die Informationen über das
globale Süßwassersystem durch die Zusammenstellung verschiedener Arten von
Bodenbeobachtungen, Wassernutzungsinformationen und geodätischen Beobach-
tungen im Weltraum verstärkt. Wir können jedoch nicht die entscheidenden Fragen
nach der Menge des in einem bestimmten Flussgebiet verfügbaren Süßwassers,
der räumlichen und zeitlichen Dynamik von Süßwasservariationen und -abflüssen
oder der Verteilung der zukünftigen weltweiten Süßwasserressourcen beantworten.
Diese Fragen können nicht vollständig beantwortet werden, da es an umfassenden
Messungen der Oberflächenwasserspeicherung und der Flussabflüsse mangelt. Diese
Dissertation zielt darauf ab, die Methoden zur Oberflächenwassersüberwachung von
Binnengewässern mithilfe von Satellitenbildern zu verbessern.

Satellitengestützte bildgebende Systeme erfassen die Erdoberfläche regelmäßig in
einer Vielzahl von spektralen und räumlichen Auflösungen. Daher bieten Satel-
litenbilder die Möglichkeit, die räumliche Veränderung der Wasser-Land-Grenzen
zu überwachen, die als Grundlage für die Bestimmung der Oberflächenwasseraus-
dehnung verwendet wird.

Die Erdoberfläche wird in verschiedenen Wellenlängenbereichen in jedem Spektral-
band eines multispektralen Bildes erfasst. Daher offenbart jedes Band eines multispek-
tralen Bildes eine einzigartige Eigenschaft der Erdoberflächenmerkmale wie die Ober-
flächenwasserfläche. Jedoch ist die Auswahl der Spektralbänder, die die relevanten
Informationen liefern, eine anspruchsvolle Aufgabe. In dieser Arbeit wird das Poten-
zial multispektraler Transformationen wie Principal Component Analysis (PCA) und
Canonical Correlation Analysis (CCA) analysiert, um dieses Problem anzugehen, in-
dem die in allen Spektralbändern verfügbaren Informationen in nur wenigen nicht ko-
rrelierten Variablen zusammengefasst werden. Darüber hinaus wird untersucht, wie
der zeitliche Unterschied zwischen zwei multispektralen Bildern durch die Verwen-
dung der oben genannten Transformationen unterstrichen werden kann.
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Diese Studie schlägt einen automatischen Algorithmus für die Extraktion des
Seeoberflächenwassers aus MODIS-Bildern vor und erzeugt die dynamischen Wasser-
masken. Zur Verbesserung der Genauigkeit der Wassermasken und der Effizienz des
Algorithmus sind zwei Masken definiert, um den Suchbereich zu begrenzen. Die
Einschränkungsmasken werden basierend auf ein digitales Geländemodell (DGM) der
Umgebung und die langfristigen Variatione der Pixelwerte erzeugt. Dementsprechend
wird zur Definition der Wasser-Land-Grenze ein unbeaufsichtigter, pixelbasierter
Klassifikationsalgorithmus verwendet. Der Algorithmus beschäftigt sich insbesondere
mit den Herausforderungen bei der Erzeugung langer Zeitreihen von Wassermasken.
Der Algorithmus wird auf fünf Seen in Afrika und Asien angewendet, von denen
jeder eine Herausforderung für die Überwachung des Seegebiets darstellt. Im
Abschnitt „Validation“ werden wir sehen, dass der Algorithmus genaue dynamische
Wassermasken erzeugen kann.

Flüsse zeigen aufgrund des Beitrags verschiedener Parameter wie Höhenunterschied,
Flusshang, Nebenflüsse und Flussbettmorphologie unterschiedliches Verhalten
auf ihrem Weg. Um eine genaue Wassermaske von Flussabschnitten zu erzeugen,
sollten wir daher neben der Pixelintensität auch eine zusätzliche Informationsquelle
berücksichtigen. Der regional basierte klassifikationsalgorithmus, den wir in dieser
Studie vorschlagen, nutzt alle Arten von verfügbaren Informationen, einschließlich
Pixelintensität und räumlicher und zeitlicher Interaktionen. Die Markov Random
Fields bieten einen flexiblen Rahmen für die Interaktion zwischen verschiedenen
Datenquellen und Einschränkungen. Um die wahrscheinlichste Konfiguration des
Feldes zu finden, sollte die Maximum A Posteriori Lösung für das MRF gefunden
werden. Zu diesem Zweck wird das Problem in eine Energieminimierung umgesetzt.
Zur Minimierung der Energiefunktion werden graph cuts als leistungsfähige Opti-
mierungstechnik angewendet. Die Unsicherheit in der Lösung der graph cuts wird
zudem durch die Berechnung der minimalen Marginalen Energien gemessen. Die
vorgeschlagene Methode wird auf vier Flussabschnitten mit unterschiedlichen hydrol-
ogischen Eigenschaften angewendet. Die erhaltenen Flussgebietszeitreihen werden
durch den Vergleich mit den Abflussmessungen an Pegeln und satellitengestützten
altimetrischen Wasserstandszeitreihen validiert.

Darüber hinaus stellt diese Studie Abflussschätzmodelle unter Verwendung der
generierten Wassermaske von Flussabschnitten vor. Ziel ist es, einen empirischen
Zusammenhang zwischen der durchschnittlichen Flussreichweite und dem Abfluss zu
finden. Die Statistiken in den Validierungszeiträumen unterstützen die Idee, Modelle
zur Vorhersage der Flussbreite und des Abflusses als ergänzende Technik zu den
anderen satellitengestützten geodätischen Vorhersageansätzen für Flusseinleitungen
zu verwenden.
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Chapter 1

Introduction

1.1 Development of satellite imaging: a historical
overview

The history of remote sensing began by Gaspard Felix Tournachon, known as Nadar,
in the year 1858. He captured the first aerial photograph from a balloon over Paris,
France. According to the report History of remote sensing, aerial photography written by
Baumann (2014), the earliest surveying aerial photograph was taken by James Wallace
Black and Samuel Archer King over Boston city from a balloon in 1860. Subsequently,
scientists installed cameras on kites or pigeons to take aerial photos. In 1903, Alfred
Maul, a German engineer, developed successfully his rocket system called Maul Cam-
era Rocket. In the next year, his rocket took the first areal image from about 580 m
altitude. The development of aerial imaging was notable during the World War I. At
the beginning of the war, aerial observers did reconnaissance by making the sketch
and verbally conveying conditions on the ground. But by the end of the war, both Ger-
many and England captured the entire front at least twice a day. Until the beginning
of the World War II, several significant developments occurred in the filed of remote
sensing, for examples

• publishing the first book on aerial photo interpretation,

• developing the first multi-layer color film,

• increasing the use of aerial photography in non-military fields like agriculture
and forestry,

• founding the American society of photogrammetry,

• recording the image of division between troposphere and stratosphere for the
first time and also capturing the actual curvature of the Earth.

Aerial photoreconnaissance was recognized as a key parameter of victory in the World
War II. The statement of commander of American amphibious forces in the Pacific,

"Photographic reconnaissance has been our main source of intelligence in
the Pacific. Its importance cannot be overemphasized"
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demonstrates the importance of aerial photography in military applications. After the
World War II in the 1950s, aerial photography continued to progress. Multispectral
imaging was tested for several applications in the optical domain. Side-looking air-
borne radar (SLAR) and synthetic aperture radar (SAR) were developed in the radar
technology domain. The need for the surveillance over the Soviet Union military hard-
wares, led to the development of U-2 by The United States in 1955. U-2 designed for
covert reconnaissance missions over the Soviet Union at above 21 000 m altitude. U-2
flew through the world for a wide variety of non-military applications. So, launching
U-2 symbolized as the beginning of using satellite to look at the Earth’s surface and
established the term remote sensing (Baumann, 2014).

The year 1957 is another historical year in the field of aerial photography and remote
sensing. The Soviet Union launched Sputnik I, the first artificial satellite, which was
just a polished metal sphere about the size of a beach ball. Sputnik was not equipped
with any sensor but it provided valuable information about the density of the atmo-
sphere and the ionosphere by tracking the satellite from the Earth. The US had to
react properly to the advent of Sputnik by the Soviet Union, if they wanted to compete
with them in the field of space technology. They increased the investment of money
in scientific research and education leading to the establishment of the Advanced Re-
search Projects Agency (ARPA) and The National Aeronautics and Space Administra-
tion (NASA). Finally in 1958, the United Stated launched Explorer I. This satellite car-
ried a small scientific payload that eventually discovered the magnetic radiation belts
around the Earth. The Explorer program continued as a successful ongoing series of
lightweight, scientifically useful spacecraft (NASA, 2007). After Explorer, US contin-
ued reinforcing its reconnaissance capability by developing the Corona system which
was a series of reconnaissance satellites. The Corona program was active until 1972
and mapped almost 14 million square kilometre over the Soviet Union and China in
more than 100 missions (Pelton et al., 2012).

In April 1960, the first exclusive civil satellite remote sensing system was launched. The
Television Infrared Observation Satellites (TIROS) demonstrated the tremendous po-
tential of satellite images in a variety of environmental applications including weather,
ice monitoring and ocean studies (Pelton et al., 2012). Launching Landsat 1 was the
next progress in the field of mapping the Earth from space. Landsat 1 was the first
systematic moderate resolution civil remote sensing system (Pelton et al., 2012). It car-
ried the Multispectral Scanner (MSS) which provided images from the Earth features in
four different spectral bands (green, red and two infrared IR) at 80 m resolution from
900 km altitude. The Landsat program continued in the next years and the later satel-
lites were equipped with more advanced sensors. For example in 1984, the Landsat 5
Thematic Mapper (TM) provided images in seven spectral bands (visible, short-wave
inferred (SWIR), IR) with 30 m pixel size and 16 day temporal resolution. The last mem-
ber of this family was launched in 2013; Landsat 8 has been equipped with the most
advanced optical cameras. As a result, it can provide 12-bit images in eleven spectral
bands with various spatial resolutions.
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Launching SPOT 1 (French: Satellite Pour l'Observation de la Terre, lit. "satellite for ob-
servation of the Earth") as the first commercial high-resolution optical imaging mission
in 1986 was another major improvement in the history of remote sensing. This mission
was initiated by the French space agency and provided images in four spectral bands
with 10 m (panchromatic) and 20 m (green, red, NIR) spatial resolution and variable
revisit time between one to four days depending on the latitude. SPOT 7, the last mem-
ber of this family, was launched in 2014. It provides images in five spectral bands
with 1.5 m (panchromatic) and 6 m (visible, NIR). The idea of using satellite images for
commercial purposes caught quickly (Pelton et al., 2012) and numbers of commercial
imaging satellites like GeoEye on the year 2008 and QuickBird on the year 2001 have
been launched.

Development of hyperspectral sensors is one of the most significant breakthrough in
the satellite imaging history. These sensors can measure the reflected radiation from
the Earth surface at a series of narrow and contiguous wavelength bands. For example
the light spectrum is divided in five or ten spectral bands in multispectral images.
But in hyperspectral images, it is divided in very narrow spectral slots (up to 200)
(Shippert, 2003). The immense variability of spectral bands facilitates the identification
and quantification of the Earth surface materials’ physical and chemical attributes in
hyperspectral images. Hyperspectral imaging presents very difficult issues in terms of
sending data back to Earth and analysing, interpreting and visualising the mountain
of data (Pelton et al., 2012).

In the year 1951, Carl Wiley, an American mathematician and engineer, observed a
one-to-one correspondence between the along-track coordinate of a reflecting object
and the instantaneous Doppler shift of the signal reflected to the radar by that object
(Mc Candless & Jackson, 2004). This finding was the basis of a major improvement in
remote sensing. In 1978, Seasat, the first satellite dedicated to the use of microwave
sensor for the Earth’s oceans was launched by NASA (Fu & Holt, 1982). Seasat was the
first Synthetic Aperture Radar (SAR) satellite specifically designed for oceanographic
phenomena. Its observations were used in applications like signatures of surface wave,
ocean topography, sea surface temperature etc. (Fu & Holt, 1982). Seasat is also consid-
ered as the first satellite equipped with radar altimeter to measure the distance between
a satellite and the ocean surface. This development brought numerous new opportu-
nities for scientists to study Earth related phenomena. A SAR system is independent of
solar illumination, so it properly functions during day and night. Also a SAR system
is unaffected by cloud coverage, therefore it can acquire images in rainy days. Ocean
and ice observations were the main target for developing the primary SAR satellites.
But, after a while, using SAR images has been extended to almost all Earth related ap-
plications including crop and forest management, land monitoring and management,
hydrology and disaster management (Mc Candless & Jackson, 2004).

In 1991, the European Space agency (ESA) launched the European Remote Sensing
(ERS-1) satellite and four years later, ERS-2 joined it in orbit. At that time, ERS satel-
lites provided the most sophisticated Earth observations from space independent of
weather condition. In 1995, the two satellites were linked together to develop the first
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tandem mission which lasted for nine months. During this time, the increment of
observations offered scientists a unique opportunity to observe changes over a very
short period of time, as both satellites orbited Earth only 24 hours apart (ESA, 2003).
The successor of ERS satellites was Environmental Satellite (ENVISAT) launched 2002.
It was the largest civilian Earth observation mission and carried ten different instru-
ments. ENVISAT provided SAR images in C-band with different spatial resolutions
(30 m in image mode, 150 m in wide swath mode, 1 km in global monitoring mode).
In 2014, the first Sentinel 1 satellite launched to replace ENVISAT which lost the con-
nection with the Earth in 2012. Now, plenty of SAR satellites take images at different
frequencies, C-band (Sentinel-1), L-band (ALOS-2), X-band (TerraSAR-X), with differ-
ent spatial resolutions (1 m, 3 m, 5 m and 20 m) from the Earth surface.

It is about seven decades that information provided by satellites help scientists to im-
prove their knowledge about our planet. Gail (2007) described this development inter-
estingly:

"Only decades ago, collecting Earth information meant journeying into the
field to analyse rocks, watching stream gauges to assess flow, or peering
out the window periodically to observe weather patterns. Today’s remote
sensing devices greatly expand the reach of our eyes, allowing us to gather
information over a wide range of spatial scales, across the spectrum, and
with a wide dynamic range."

At the moment, more than 1167 active satellites orbit the Earth and 33 countries have
dedicated missions to observe the Earth surface from space (Berger, 2015). Figure 1.1
presents the deployment of SAR and optical imagery missions from the beginning.

Today, remote sensing data has a critical role in most Earth related studies like forestry,
agriculture, hazard and disaster monitoring or water management. But in the near fu-
ture, the largest motivation for more accurate and frequent observations from the Earth
surface may be our growing impact on the natural world (Gail, 2007). The impact of
human activities is indeed changing the Earth’s climate (National Research Council,
2001) and we cannot ignore the civilization’s influence in increasing the load of green-
house gases, land cover change, aerosols. According to Carlowicz (2010), Earth surface
temperature analysis conducted by scientists at NASA shows that the average global
Earth temperature has increased about 0.8◦ C since 1880 and two-third of this incre-
ment has occurred since 1975 (Hansen et al., 2010). So, there is a general consensus
that global average surface air temperature increased during the 20th century and al-
though the magnitude of future growth is uncertain, the majority of assessments indi-
cate that future global warming is "very likely" (IPCC, 2001; Huntington, 2006; NAST,
2001; Arctic Climate Impact Assessment (ACIA), 2004). Theoretically, it is expected
that climate change will result in increasing evaporation and precipitation which may
intensify the water cycle (IPCC, 2001; Del Genfo et al., 1991; Loaiciga et al., 1996; Tren-
berth, 1999; Held & Soden, 2000). Acceleration of the water cycle will enhance the
potential of extreme events like tropical storms, severe floods and droughts, which af-
fect human life directly and indirectly (IPCC, 2001; Manabe et al., 2004). The first step
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Figure 1.1: Different optical and SAR imagining missions.

to answer any scientific question about understanding the global warming and its role
and affect on other relevant environmentally processes is the availability of extensive
and accurate observations of hydrological water cycle variables. The aforementioned
situation demands developing an advanced monitoring scheme over the hydrological
cycle variables.

Hydrological cycle continues with evaporation of water from oceans and inland water
bodies surface by solar energy. The atmospheric circulation carries the water vapour
over the Earth. In the next step, water vapour precipitates as snow or rain. Part of
raindrops intercepted by vegetation and trees which will transpire again. The rest of
raindrops reach the ground and infiltrate in the soil layers. The stored water then
discharges into streams and ultimately flows out into the ocean from which it will
evaporate once again (Miralles et al., 2011). Figure 1.2 illustrates schematically the
hydrological cycle.

Studying the hydrological cycle starts with quantifying its components. The water
balance equation expresses the fact that in any river basin the difference between the
amount of income and outcome water is equal to the change in the water stored in the
basin

P− ETa − R =
dS
dt

(1.1)
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Figure 1.2: Schematic illustration of the hydrological cycle

In equation (1.1), P is precipitation which provides the incoming water to the system.
ETa is actual evapotranspiration which consists of two processes: evaporation (amount
of water directly vaporizes from the surface of oceans, inland water bodies and soil)
and transpiration (the process of discharging back into the atmosphere of the absorbed
water by plant roots and leafs). R is the river discharge which, together with ETa
indicates the output of the system. The right hand side of the equation 1.1 describes
the amount of water including surface water, soil moisture and groundwater stored in
the basin.

Recently, precipitation is measured by weather satellites and radars. Therefore, global
gridded precipitation data is available from different providers likes Climatic Research
Unit (CRU), Global Precipitation Climatology Center (GPCC) etc. The main concern re-
garding the precipitation data is the quality of the data rather than the data availability
(Habib et al., 2001). The quality of the gridded precipitation fields primarily depends
on the number of active gauges and their spatial distribution (Lorenz & Kunstmann,
2012).

Actual evapotranspiration (ETa) is integral to studies of the hydrological cycle, yet its
quantification and determination are difficult (Rodell & Famiglietti, 1999). It is deter-
mined over land surface by soil humidity, plant specific maximum evapotranspiration,
atmospheric conditions and net radiation (Maidment, 1992; Chow, 1964). In order
to estimate or model the evapotranspiration, different methodologies are employed
based on water balance, water vapour stream and energy balance methods.

Measuring the change of the water mass in the Earth system (atmosphere, surface,
subsurface) was not directly possible before the year 2002. Therefore the water balance
equation was not solvable on short time scales. Only at long time scales, the assump-
tion that long-term averages of storage change are negligible would allow a closure
of the water balance (Tourian, 2013). Since 2002, the Earth gravity field measured by



7

Gravity Recovery and Climate Experiment (GRACE) helps to determine continental wa-
ter storage changes monthly. Although GRACE provides unique information for closing
the continental water balance equation, it is not considered as a reliable hydrological
sensor for most basins (Swenson et al., 2003; Velicogna et al., 2001; Han et al., 2004).
Various sources of uncertainty, coarse spatial resolution (400 km), inseparability be-
tween water storage components and inconsistency between GRACE observations and
hydrological models are the main challenges for monitoring the change in the water
storage (Tourian, 2013).

River discharge is an important parameter in any hydrological model. It has been mea-
sured at river sections for more than a century. In situ gauge measurements are the
backbone of the current understanding of global surface water dynamics. However,
one-dimensional and point-based observations provided by in situ gauges are only
appropriate where the water flows in a channel with a well-defined boundary. So,
they provide little information about spatial dynamics of surface water extent, such as
floodplain flows and the dynamics of wetlands (Alsdorf et al., 2007). In recent decades,
the number of available active in situ stations has decreased dramatically because of
financial and political restrictions. Figure 1.3 presents the situation of basins with pub-
licly available in situ discharge measurements. It shows the decline of river discharge
measurement stations overtime according to the Global Runoff Data Centre (GRDC)
dataset which is a repository for river discharge data.

Problem statement

For more than a century, ground based river discharge 
monitoring methods have been applied. 

The number of in situ stations has been reducing since 
1980

2
Figure 1.3: Spatial distribution of gauges with available runoff data in the data base of GRDC

around the world for 1970, 1985, 2000 and 2010 (Tourian et al., 2015b).

This figure indicates that not only the number of existing stations reduced but also
in situ measurements over a number of important basins in Africa and South Amer-
ica are not available anymore. At the moment, most of the active gauge stations are
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located over developed countries whereas in the nonindustrialized nations, the den-
sity of stations is much sparser (Alsdorf et al., 2007). In the near future, due to the
global warming, the extent of current water bodies will change dramatically and also
new water bodies will be created. Therefore, the current active world wide gauging
network could not provide suitable observations for hydrological modelling (Vörös-
marty et al., 2000). Also the performance of different hydrological models are highly
dependent on measurements of surface water dynamics and river discharge (Alsdorf
& Lettenmaier, 2003). Without any outlook for deploying of the global gauging station
network, spaceborne sensors can provide valuable information to improve the perfor-
mance of hydrological models.

1.2 Monitoring the inland surface water bodies by
spaceborne geodetic sensors

The term "Spaceborne geodetic sensors" refers to those satellites that measure a geode-
tic parameter of the Earth. In case of terrestrial surface water, satellite altimetry and
imaging missions are considered as spaceborne geodetic sensor. Recently, the avail-
ability of sophisticated geodetic spaceborne observations helps scientists to develop
different techniques for measuring various parameters of surface water bodies. In this
section, spaceborne techniques for measuring different properties of inland surface
water bodies will be mentioned.

Digital elevation models

Digital elevation models (DEM) is an important source of information for surface water
monitoring and hydrological modelling. Before SAR and interferometric SAR (InSAR)
technologies become widely available, producing global elevation maps with consis-
tent scale and resolution was infeasible. The cost of deploying aircraft and inaccessi-
bility to some areas were the main obstacles to producing global elevation maps (Farr
et al., 2007). In the 1990s, the emergence of InSAR introduced the only practical way
to globally generate a consistent DEM. The Shuttle Radar Topography Mission (SRTM)
successfully demonstrated the potential of the new technique (Farr et al., 2007). The
InSAR technique takes advantages of measured phase difference between two radar
images acquired with a very small baseline relative to the shuttle height. The radar
wavelength is in the range of centimeter to meter, so the satellite can receive good sig-
nal return from bare ground, ground covered with vegetation and rough water. How-
ever, the radar signal cannot penetrate into the dense vegetation significantly. So that,
the generated map does not correspond to the surface in those areas.

Due to the Earth gravity, water tends to stream towards low altitude areas and to accu-
mulate in the area with the lowest altitude. In this way, DEM map plays an important
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role in any study related to the formation and stream direction of the surface water
bodies.

Water level

Satellite altimetry has an honorable history of a few decades in measuring the ocean
surface elevation with a few centimetre accuracy. Also, it has been successfully used to
measure and monitor water height in inland water bodies like rivers, lakes and flood-
plains (Crétaux & Birkett, 2006; Papa et al., 2010; Frappart et al., 2006). Launching
TOPEX/Poseidon and ENVISAT provided the opportunity to monitor the water level
change periodically (35 days for ENVISAT and 10 days for TOPEX/Poseidon) in large
rivers and lakes. Variations in the water level are easily derived from altimetric mea-
surements since most of the altimetry missions are designed to fly in repeat orbits. An
intersection between satellite orbit and the water body is needed in order to capture
the variation of the water level. Therefore part of small water bodies remains un-
monitored, due to few kilometers ground track spacing of satellite orbits. In the past,
most of the hydrological models have been developed according to at station water
level measurements. As a result, water height measurements from altimetry missions
are well-suited for assimilating with in situ measurements and using in hydrological
models.

Apart from satellite altimetry, the water level of inland water bodies and inundation
areas can also be estimated via measuring the area covered by water in satellite im-
ages. Then water level is calculated by defining the inundated area over a DEM map
(Brakenridge et al., 2005). The height accuracy of this technique is highly dependent
on the availability of a high-resolution DEM (Alsdorf et al., 2007). Also, some studies
directly measured the water level change in time using InSAR techniques (Kim et al.,
2005; Lu et al., 2005; Alsdorf et al., 2000).

River water slope

Water level measurements collected by satellite altimetry missions can be used to de-
termine the water slope by knowing the distance between ground tracks crossing the
river. However, the time lag between height measurements could reduce the accuracy
of slope calculation. Extracting the height information from a DEM map like SRTM is
another approach to calculate the water slope. To decrease the noise in this method, an
appropriate river reach length must be used (Alsdorf et al., 2007).

Surface water velocity

Shuchman (1979) introduced the idea of using conventional rawSAR data for surface
water velocity measurements. Three decades afterward, Chapron et al. (2005) pre-
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sented the Doppler centroid anomalies technique and demonstrated that the ocean
surface velocity field can be measured by applying this method on the Advanced Syn-
thetic Aperture Radar (ASAR) instrument onboard ENVISAT. Meanwhile, Goldstein
& Zebker (1987) proposed the along-track interferometry (ATI) technique for current
measurements. In this technique, two SAR images from the same scene with a very
short time lag (some milliseconds) are used. To derive the phase shift between two
images, an InSAR image is obtained. In the next step, the surface water velocity field is
retrieved from the phase shift.

Romeiser et al. (2005, 2007) presented the first demonstration of current measurement
by ATI from a spaceborne platform with SRTM data. The launch of TerraSAR-X in the
year 2007 provided the opportunity of repeat measurements for the determination
of surface water velocity. Surface current field derived from TerraSAR-X ATI data
and TanDEM-X for the mouth of Elbe River was presented by Romeiser et al. (2010b);
Romeiser (2015). Grünler et al. (2013) presented the possibility of using along-track
InSAR technique for monitoring tidally influenced estuarine river discharge from
space.

Despite an acceptable performance of derived surface water velocity fields, these tech-
niques have some limitations. In both techniques, only the component of current field
along the line-of-sight is measurable. Regarding the limitations of ATI for measuring
the current fields of river (minimum river width, wind conditions, line- of-sight sur-
face velocity, tides, seasonal discharge variation, hydrodynamic conditions), only the
discharge of about 30% of estuarine rivers (based on GRDC) can be estimated by this
technique (Grünler et al., 2013).

Bathymetry

The inability to penetrate into the water is a serious limitation of spaceborne sensors
in hydrological applications, since depth is a necessary parameter for river discharge
estimation. Turbidity, heavy surface waves, and sunglint are the most important pa-
rameters that limit the penetration (Banic & Cunningham, 1998; Davis, 2004). In prac-
tice, maximum detectable depth is no more than 2–3 times from the Secchi depth. The
Secchi disk is a circular white disk with 30 or 20 cm diameter. The disk is mounted on
a pole equipped with a scale. To measure the Secchi depth, the disk is lowered down
in the water. The depth at which the Secchi disk is not visible any more is called Secchi
depth. It indicates water turbidity (Wozencraft & Lillycrop, 2002).

Calkoen et al. (2001) demonstrated the potential of SAR images for the mapping of un-
derwater bathymetry in coastal waters with strong tidal currents due to the fact that
bathymetric features become visible in radar images because of the tidal flow mod-
ulated by the spatially varying water depth and a corresponding surface roughness
modulated via wave-current interaction (Romeiser et al., 2010a). Romeiser et al. (2002)
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presented a bathymetric map from airbone ATI data. They developed a surface current-
water depth empirical model by availability the depth information for some reference
test area.

Recently, Tourian et al. (2017) proposed a method to estimate average river depth for a
river reach from both spaceborne (river surface elevation, width and slope) and in situ
discharge measurements. The relied on two recognized discharge estimation models
developed by Bjerklie et al. (2003) and Dingman & Sharma (1997) and considered the
average riverbed as unknown. By availability of all other measurements, the aver-
age river depth was estimated for each river section. At the end, they validated the
obtained river depth against surveyed cross-section information, which shows a gen-
erally good agreement in the range of 10% relative root mean squared error.

River discharge

River discharge is defined as the volume of water flowing through a river channel.
This parameter is measured in [m3

s ] or [km3

day ]. Despite its significant role in global water
balance and human life, our knowledge about the dynamics of the global river sys-
tems is restricted to in situ measurements. Since none of the spaceborne technique can
directly measure discharge, remote sensing of rivers is relatively immature. But for-
tunately, the various types of observations from spaceborne sensors provide consider-
able opportunities to understand the dynamics of a river system apart from traditional
ground-based methods.

Finding an empirical relationship between a river hydraulic parameter measured from
space and in situ discharge measurements is the most straight forward technique to
estimate the river discharge. In the past, it is assumed that there is a power law rela-
tionship between river discharge and stage measured at station. By measuring numer-
ous river discharge and stage simultaneously, model coefficients are defined. Since
the river discharge-stage relationship is found, river discharge is calculated by using
river stage measurements and developed model. This technique is called rating curve.
Recently, due to the advancement of geodetic spaceborne techniques, altimetric water
level (Koblinsky et al., 1993; Frappart et al., 2006; Birkinshaw et al., 2010) and river
width from satellite images (Smith et al., 1996; Brakenridge et al., 2005; Smith & Pavel-
sky, 2008; Elmi et al., 2015) are used to develop rating curves. Once the model is devel-
oped, the availability of in situ measurements is not necessary. This method is highly
dependent on the availability of simultaneous in situ and space observations. How-
ever, The developed models are only valid for the river section where the empirical
model developed. Tourian et al. (2013) suggested an alternative technique to elimi-
nate the need for simultaneous measurements. They introduced a statistical approach
to derive discharge from altimetric water level measurements through a rating curve
based on quantile functions. Unlike, the traditional rating curve method, their method
constructed the rating curve based on a scatter diagram of quantile functions of river
discharge and height measurements.
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A number of techniques developed a relationship between the river depth and the
reflectance of the water column in a multispectral optical image (Legleiter & Roberts,
2009; Legleiter et al., 2004; Marcus & Fonstad, 2008; Legleiter et al., 2009). These models
provide the opportunity to estimate the river discharge directly from the space, but
they are applicable only on shallow stream where the channel bottom is visible.

To define river depth and discharge, some studies developed a hydrodynamic model
for the river and define its parameters via river height, width and slope measured from
space using assimilation techniques (Andreadis et al., 2007; Durand et al., 2008; Bian-
camaria et al., 2011; Durand et al., 2010). Another group of studies developed purely
empirical relationships between hydraulic variables using information of a large num-
ber of river cross sections. For example, Bjerklie (2007) used US Geological SurveyUSGS
river cross sections to develop a simple regression equation to estimate bankfull mean
depth. The aim of these methods is to find stable relationships between river variables
which leads to estimation of river depth and discharge.

The Surface Water and Ocean Topography (SWOT) is the next satellite mission which
has a high potential to overcome many obstacles of river discharge measuring from
space. SWOT, a joint mission between NASA and CNES (French: Centre National D
'Etudes Spatiales, lit. "National Center for Space Studies") will launch in April 2021.
The mission will use interferometric synthetic aperture radar technology to continu-
ously map river surface elevation and extent simultaneously at high spatial resolution
(Pavelsky, 2012). The main goal of SWOT mission in inland water bodies studies is to
capture and monitor all lakes, reservoirs and wetlands larger than 250 m2 and rivers
with more than 100 m width approximately every 7 days.

Inland surface Water and inundation area monitoring

Surface water area is the most conventional hydrological parameter measured by satel-
lite imagery missions. Accurate measurements of the change in the extent of inland
surface water bodies are important to improve our understanding of the flow dynam-
ics of river systems. Inland surface water bodies cover only a small fraction of the Earth
surface but they have a great effect on sustaining life on Earth and they play a primary
role in the global water cycle and climate change (Prigent et al., 2007). Lakes and
reservoirs are highly valuable for their freshwater supply (Alsdorf et al., 2007). Lakes
constitute important habitats and food resources for a diverse array of fish, aquatic
life, and wildlife. Lake ecosystems can undergo rapid environmental changes, often
leading to significant declines in their natural functions. Exposed to external effects
from the atmosphere, their watersheds and groundwater, lakes are subject to change
through time. In urban areas their condition is highly fragile because they are vulner-
able to pollution.

Rivers are also classified as inland surface water. They have been essential not only
to humans, but to all life on Earth, ever since life began. Plants and animals grow
and congregate around rivers simply because water is so essential to all life. Cities are
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typically built and developed near rivers. For humans, rivers are diverted for flood
control, irrigation, power generation, municipal uses and even waste disposal.

Optical and SAR satellite imaging missions provide the opportunity to monitor the
spatial change in coastlines, which can serve as a way to determine the water extent
repeatedly in various time intervals over different spectral bands with variety of spatial
resolution (from few centimeters to a kilometer). In recent decades, the monitoring of
Earth related phenomena is more feasible than before because a lot of images from
different missions are available. Recent missions provide images with better spatial
and temporal resolution, so comprehensive interpretation of hydrological objects is
expected. Figure 1.3 represents that before 2000 only about 10 satellite images per
month were available at any given location. The number of observations has increased
to more than 40 per month in 2016. This number will expand dramatically by new
missions like the series of Sentinels. On the other hand, the number of active in situ
stations has reduced from more than 7000 in 1980 to less than 1000 in 2017.

Figure 1.4: Number of available satellite images improves significantly during the last three
decades. On the other hand, number of stations with available discharge measurements
have decreased. In this figure, the variety of spatial resolution in the different missions is
not considered.

Apart from monitoring the lake and river surface water area, satellite images are a
well-suited source of information to obtain a synoptic view about large-scale flood sit-
uations and their spatio-temporal evolution especially because in situ measurements
are not often possible (Solbø & Solheim, 2005; Martinis, 2010). Due to the availability
and straightforward interpretability of optical satellite images, they are widely used
to recognize flooded and inundated areas (Wang et al., 2002; Van Der Sande et al.,
2003; Ahtonen et al., 2004; Brakenridge & Anderson, 2006; Martinis et al., 2013). How-
ever the performance of optical images in flood detection and monitoring is limited
because of their inability to penetrate clouds. Since floods occur due to heavy precip-
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itation, monitoring and detecting the flood and its inundation area by satellite optical
imagery is impractical due to the persistent cloud cover. On the other, SAR satellite are
active systems that perform independent from solar radiation and weather condition.
In this way, SAR systems improve the capability of flood detection and monitoring
(Richards et al., 1987; Townsend, 2001; Martinis et al., 2009). However, SAR-based esti-
mates of surface water extent and flood monitoring are also confounded by difficulties
with wind roughening of the water surface for the wavelengths used by most existing
sensors in C band (Alsdorf et al., 2007).

For the purpose of monitoring water area variations, after collecting all the appropri-
ate satellite images from the water body during the monitoring period, a contiguous
procedure to quantitatively analyse spatial change in water-land boundary is needed.
The basic premise in using remotely sensed data for change detection is that changes
in the water body will result in changes in reflectance values that are separable from
changes caused by other factors such as differences in atmospheric conditions, illumi-
nation and viewing angles, and soil moisture (Deer, 1995). In order to improve de-
ciding about the location of water body borders at each snapshot, a variety of change
detection techniques have been developed. Based on the nature of the phenomena,
the most appropriate change detection method must be chosen. Indeed, as well as an
applicable change detection method, a successful monitoring scheme requires careful
considerations on preprocessing of multitemporal images and accuracy assessment of
developed results (Townsend & Walsh, 1998). In this way, before implementing change
detection analysis, the following conditions must be satisfied (Lu et al., 2004):

• precise registration of multitemporal images,

• precise radiometric and atmospheric calibration,

• normalization between multitemporal images,

• selection of the same spatial and spectral resolution images.

The main objective of this study is to develop algorithms for monitoring the area of
inland water bodies using optical satellite images. So, in the next section, an overview
to principles and properties of satellite optical imagery is presented.

1.3 Basic principles, properties of the optical images

Optical satellite imagery, as a passive system, consists of observing electromagnetic
(EM) energy emitted from the different features of Earth surface. The Sun is the main
source of EM energy. However, every object with a temperature higher than absolute
zero is able to emit EM energy. The total range of wavelengths of EM radiation is called
the EM spectrum. Table 1.2 presents the information about different bands of the EM
spectrum.
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Table 1.1: Description of different spectrum bands

Name Wavelength range Frequency range
[m] [Hz]

Gamma Rays 1.0× 10−11 < 1.0× 10−11 1.02× 10> 3× 1019

X-Rays 1.0× 10−11 – 1.0× 10−08 3× 1016 – 3× 1019

Ultraviolet Light 1.0× 10−08 – 3.8× 10−07 8× 1014 – 3× 1016

Visible Light 3.8× 10−07 – 7.5× 10−07 4× 1014 – 8× 1014

Infrared Light 7.5× 10−07 – 1.0× 10−03 3× 1011 – 4× 1014

Microwaves 1.0× 10−03 – 1.0× 10−01 3× 1009 – 3× 1011

Radio 1.0× 10−01 – 1.0× 10+07 3× 1001 – 3× 1009

The EM spectrum is generally divided into seven regions: radio waves, microwaves,
infrared, visible light, ultraviolet, X-rays and gamma rays. The majority of useful in-
formation for Earth related applications is sensed in the visible and infrared range.
Ultraviolet (UV) and microwaves bands also reveal information about minerals, sur-
face roughness and moisture content of soils (Tempfli et al., 2009). In the Figure 1.5, the
visible light region of the spectrum is presented. This region is called visible because
human eyes are sensitive to it and able to detect it.
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Figure 1.5: The electromagnetic spectrum

The color of different parts of the visible light spectrum is decided by its wavelength.
The violet with the shortest wavelength and dark red with the maximum wavelength
limit both ends of this region. Objects appear in different colors depending on the part
of visible light spectrum that they absorb and reflect. Before sensing by the satellite, a
number of interactions in the atmosphere happen for the Sun energy travelling from
the Sun to the Earth’s surface and then from Earth to the satellite. Only a small portion
of the EM spectrum can travel through the atmosphere and the rest of it is absorbed
by various molecules in the atmosphere like ozone, water vapour and carbon dioxide.
The useful ranges are called the atmospheric transmission windows and include the win-
dow from 0.4 to 2 µm (visible, NIR, SWIR regions) and three windows in the Thermal
InfraRed (TIR) range (Tempfli et al., 2009).
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The atmospheric scattering is another interaction between the EM spectrum and at-
mosphere. It occurs when particles or gaseous molecules, present in the atmosphere,
cause the EM radiation to be redirected from its original path (Tempfli et al., 2009).
Depending on the size and type of particles, scattering can have different effects on
the light spectrum. The most destructive interaction in optical satellite imaging is that
we see clouds as a white body which does not allow the sunlight to pass through. A
cloud consists of water droplets which scatter all wavelengths of the sunlight equally
(Tempfli et al., 2009).

After passing through the atmosphere, the remaining portion of the sunlight reaches
the Earth’s surface. The majority of it is reflected but part of it will be absorbed or
transmitted depending on the material of the target. Reflected solar energy is the most
interesting part in land and water applications since it reveals useful information about
the Earth surface characteristics (Tempfli et al., 2009). Different surfaces have different
spectral reflectance properties regarding the material, physical and chemical attributes.
For example, unlike vegetation and soil which reflect up to 50% and 30–40%, water
surface reflects at most 10% of the incident energy. This reflection is in the visible
and a little in the NIR range. The rate of reflectance in the visible range intensifies, by
increasing the amount of silt and plants in the water.

Satellites equipped with multispectral cameras observe the reflected radiance in sev-
eral intervals of the light spectrum. Sensing in several spectral bands simultaneously
allows to relate properties that show up well in the specific spectral bands. But the
raw measurement of the camera is the radiance at the Earth’s surface attenuated by
atmospheric absorption plus the radiance of scattered light and malfunctioning the
sensor (Tempfli et al., 2009). As a result, many corrections are necessary for improv-
ing the quality of optical images. These corrections remove disturbances due to the
radiometric imperfection caused by the noise of the sensor, change in the atmospheric
conditions, variations in the Sun illumination and effect of the haze.

To obtain reliable information, the geometric representation of the image must be sim-
ilar to the real world. To that end, several factors must be considered like movement of
the platform or rotation of the Earth. Finally, to link the image coordinate to the map
coordinate, a geometric transformation is applied to the image’s pixels. This process
is called referencing. Usually, the information needed for these corrections is accessible
by the space agencies providing satellite images.

After georeferencing and applying radiometric calibration, satellite images are ready
to use in land and water applications. Depending on the application, selecting the
most suitable spectral bands among the available options is one of the preliminary
steps for each study. Each spectral band highlights a particular property of the Earth
surface. Table 1.2 briefly describes the most common spectral bands available in the
satellite multispectral images. It is a modified version of the table provided by Schim-
mer (2009).

From this table one sees that, for mapping the water-land boundary, NIR bands are
the most suitable spectral bands. Water appears very dark in these bands because
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Table 1.2: Description of different spectrum bands

Name Spectral range Description
[µm]

Blue 0.45–0.52 best data for mapping depth-detail of water-covered
areas, useful for soil-vegetation discrimination, forest
mapping.

Green 0.50–0.60 corresponding to the chlorophyll absorption of
healthy vegetation, useful for mapping detail such as
depth or sediment in water bodies.

Red 0.60–0.70 absorbing chlorophyll in healthy vegetation, useful
for distinguishing plant species, soil and geologic
boundaries.

NIR 0.70–0.80 sensitive to varying vegetation biomass and empha-
sizes soil-crop and water-land boundaries.

NIR 0.80–1.10 useful for vegetation discrimination, penetrating
haze, and land-water boundaries.

SWIR 1.55–1.74 distinguishing clouds, snow, and ice, sensitive to plant
water content, which is a useful measure in studies of
vegetation health.

SWIR 2.08–2.35 useful for mapping geologic formations and soil
boundaries, responsive to plant and soil moisture con-
tent.

Mid IR 3.55–3.93 detecting both reflected sunlight and E–emitted radia-
tion and useful for snow-ice discrimination and forest
fire detection.

Thermal 10.40–12.50 dominated completely by radiation emitted by the
Earth, helping to account for the effects of atmospheric
absorption, scattering, and emission, commonly used
for water surface temperature measurements.

it absorbs most of the light spectrum in this domain. Moreover, visible bands also
provide valuable details about the characteristic of water content.

More than original spectral bands, a number of spectral indexes are investigated for
highlighting land cover features. The Normalized Difference Vegetation Index (NDVI)
is the first published band ratio which is a popular tool for biomass estimation and
vegetation monitoring (Rouse Jr et al., 1974).

NDVI =
NIR− Red
NIR + Red

(1.2)

This product is the ratio of the difference and the sum of NIR and Red bands. The
NDVI can also be applied to detect surface water since very low values are specified
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for water. Later in the year 1996, Gao (1996) developed another index, Normalized
Difference Water Index (NDWI), by using NIR and SWIR bands. to enhance detecting
the water content in leaves.

NDWIGao =
NIR− SWIR

NIR + SWIR
(1.3)

In the same year, McFeeters (1996) introduced another version of this index by using
NIR and Green bands to enhance the determination of water bodies in the remote sens-
ing images.

NDWIMcFeeters =
Green− NIR

Green + NIR
(1.4)

To highlight water in urban areas, Xu (2006) replaced NIR with SWIR in the NDWI defini-
tion and denoted it as Modification of Normalized Difference Water Index (MNDWI)

MNDWI =
Green− SWIR

Green + SWIR
(1.5)

All the mentioned water indexes devote a certain range of values to the water pixels
(negative and near zero values). In this way they are easily classified by applying a
simple threshold. The threshold may be different from image to image.

In the selection of suitable optical satellite images for hydrological applications, a
balance between spatial and temporal resolutions must be considered. For example,
Landsat images with 30 m pixel size are typically available fortnightly or less often, so
they cannot capture the dynamic of water bodies completely. Relatively lower spatial
resolution sensors, like MODIS, scan the Earth’s surface once or several times a day, but
their coarse spatial resolution hampers the accurate mapping of surface water (Huang
et al., 2016).

1.4 Introduction to change detection methods for water
area monitoring

Change detection is the process of identifying differences in the state of an object or
phenomenon by observing it at different times (Singh, 1989). Timely and accurate
change detection of Earth’s surface features help us to understand better the relation-
ship and interaction between human and natural phenomena (Lu et al., 2004). Lu et al.
(2004) categorized different change detection applications using remote sensing tech-
nologies in ten aspects

1. land-use and land-cover change
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2. forest or vegetation change

3. forest mortality, defoliation and damage assessment

4. deforestation, regeneration and selective logging

5. wetland change

6. forest fire and fire affected area detection

7. landscape change

8. urban change

9. environmental change, drought monitoring, flood monitoring, monitoring
coastal marine environments, desertification and detection of landslide areas

10. other applications such as crop monitoring, shifting cultivation monitoring, road
segments and change in glacier mass balance and facies.

Considering the importance of monitoring the change in Earth surface features in
these different aspects, many change detection methods have been developed and new
techniques are constantly developed. Lu et al. (2004) summarized change detection
methods into seven groups.

1. Algebra: Most of the techniques in this category determine the changed areas by
selecting a threshold. Finding a suitable threshold to identify the changed areas
is the difficulty of these methods. Sezgin & Sankur (2004) categorize thresholding
methods into six different groups

(i) Histogram shape-based methods, by which, the peaks, valleys and curva-
tures of the smoothed histogram are analysed.

(ii) Clustering-based methods, in which the gray-level samples are clustered in
two parts as background and foreground (object), or alternately are modeled
as a mixture of two Gaussians images.

(iii) Entropy-based methods result in algorithms that use the entropy of the fore-
ground and background regions, the cross-entropy between the original and
binarized image, etc.

(iv) Object attribute-based methods search a measure of similarity between the
gray-level and the binarized images, such as fuzzy shape similarity, edge
coincidence, etc.

(v) Spatial methods use higher-order probability distribution and/or correla-
tion between pixels

(vi) Local methods adapt the threshold value on each pixel to the local image
characteristic
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As well as thresholding, other change detection methods in algebra group are
widely used to detect the change in the water area. For example, image differenc-
ing, image regression and taking image ratio are commonly applied to determine
water bodies.

2. Transformation: These methods establish a numerical relationship between dif-
ferent bands of one image or different bands of different images to emphasize the
change in the transformed components. Principal Components Analysis (PCA),
the Tasseled Cap transformation, Multivariate Alteration Detection (MAD) trans-
formations are applied in studies by, e.g., Munyati (2004); Bustos et al. (2011);
Nielsen (2007, 2011). These methods also need thresholds to highlight the change
area and, in some cases, interpretation of transformed images is difficult.

3. Classification: The methods in this group apply different image classification
techniques in multitemporal images to monitor change. For example, in the
post-classification comparison method all images are classified separately after
which a pixel-by-pixel comparison is implemented to detect the change. Spectral-
temporal combined analysis, Expectation Maximization (EM) change detection
and Artificial Neural Networks (ANN) are examples in this category.

4. GIS: Integration of Geospatial Information Systems (GIS) and remote sensing
methods to detect the change in the image is the main advantage of this cate-
gory. Most of the GIS based change detection applications focus on urban areas
because GIS tools are very powerful to deal with multi-source data processing.

5. Advanced models: In these methods, a linear or non-linear model is applied
to the images and they are converted to physically based parameters or pixel
fractions. For example, a spectral mixture model was applied to detect the change
of land-cover in the Amazon.

6. Visual analysis: In this category, change in shape, size and pattern of the sub-
ject area in the multi-temporal images is detected by visual interpretation of a
well experienced analyst. This method was widely used in the past, when the
capability of computers to handle large amounts of data was poor.

7. Other change detection techniques: Apart from aforementioned techniques,
some methods cannot be categorised into any group. Either they applied a
combination of techniques to detect the change or their method have not yet
frequently used in practice. For example, (Lambin & Strahler, 1994) used
vegetation indices, land surface temperature and spatial structure from AVHRR
images to detect land cover change in the west Africa.

Selecting an efficient change detection technique among the large amount of different
methods is a fundamental step to reach acceptable results. This decision must be based
on the knowledge about the application and available in situ and remote sensing data.
In other words, the first step in a change detection application is studying carefully the
application and the data and to find the best method to apply to them.
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While water absorbs nearly all the sunlight in the near infrared wavelength, water bod-
ies appear very dark at this domain in an optical image. In a SAR image, water bodies
also appear dark because the smooth surface of water acts like a mirror for the incident
radar pulse and most of the energy is reflected away according to the law of specular
reflection. As a result, very little energy is scattered back to the radar sensor. Unlike the
distinguishable difference between water and land, a precise distinction between wet-
lands, rivers and lakes may not be possible in some regions or seasons. Identifying and
characterizing wetlands globally is further complicated by their distribution through-
out tropical to boreal environments encompassing a wide variety of vegetation cover,
hydrological regime, natural seasonality, and land-use impacts (Prigent et al., 2007).

Applying a threshold to the histogram of the backscatter values of the image to extract
the object from the background is the most straightforward method in change detection
and pattern recognition algorithms (Li & Lee, 1993). In remote sensing, thresholding
an image to obtain the object is prevalent because of its efficiency and easy implemen-
tation. This technique is also widely used in inland water body monitoring to develop
water masks. Apart from thresholding, other unsupervised and supervised classifica-
tion algorithms are widely used to extract water bodies from satellite images. A list of
different studies is presented in Table 1.3. These studies applied different classification
algorithms to satellite images to detect and monitor water bodies. They are arranged
based on the type of monitored water body (lake, river, or flood and inundation area),
and information about the used data set, classification and type of approach is pro-
vided.

Under ideal conditions, dynamic thresholding techniques can extract water bodies pre-
cisely. However, various error sources and a complex relationship between water and
land in coastal areas necessitate to define the threshold value in a supervised manner
using visual inspection of the image histogram or manual trial-and-error procedures
(Townsend, 2001; Brivio et al., 2002; Cao, 2013). To improve the accuracy of water body
monitoring, some studies take advantage of auxiliary data sources. For example, Klein
et al. (2014) introduced an approach to detecting water bodies over vast areas by auto-
matically defining thresholds for each image. Then, to improve the accuracy of water
masks, they took advantage of a static water mask and a DTM. McFeeters (2013) takes
advantage of a GIS-based map to improve the accuracy of water body detection. Ver-
poorter et al. (2012) developed an automatic water body extraction method (GWEM) by
using dynamic thresholding and PCA transformation. The results are then improved
by texture analysis and shadow removal.

Apart from thresholding algorithm other unsupervised classification algorithms like
k-means clustering and Iterative Self-Organizing Data Analysis Technique Algorithm
(ISODATA) are widely used to extract water bodies from satellite images. Elmi (2015)
presented various approaches to multispectral image transformation like Principal
Component Analysis (PCA) and Canonical Correlation Analysis (CCA) in the hydro-
logical applications. The interpretation of derived components are time consuming
and need visual analysis. Changes in the water extent are emphasized in the primary
components, but determining a threshold is necessary to identify the changed area.
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Table 1.3: Overview of studies using satellite images to extract the water bodies.
Study Sensor Approach Type

Flood and Inundation Area Monitoring

Sandholt et al. (2003) AVHRR Linear spectral unmixing Advanced model, unsupervised
ERS2 ISODATA

Landsat 7 Maximum likelihood Supervised
Bonn & Dixon (2005) RADARSAT-1 Parallelliped classifier Supervised
Martinis (2010) MODIS Dynamic thresholding Algebra, unsupervised

TerraSAR-X Dynamic thresholding Algebra, unsupervised
Garay & Diner (2007) MERIS Visual analysis Supervised
Munyati (2004) Landsat 5 PCA Transformation, unsupervised
Wang (2004) JERS-1 Decision tree Supervised
Feyisa et al. (2014) Landsat 5 Dynamic thresholding Algebra, unsupervised
Ryu et al. (2002) Landsat 7 Density slicing Algebra, unsupervised
Künzer et al. (2013) ENVISAT ASAR Dynamic thresholding Algebra, unsupervised
Künzer et al. (2015) MODIS Dynamic thresholding Algebra, unsupervised

Lake and Reservoir Area Monitoring

Gao et al. (2012) MODIS k-Means clustering Unsupervised classification
Tourian et al. (2015a) MODIS ISODATA Unsupervised
Klein et al. (2014) MODIS, AVHHR Dynamic thresholding Algebra, unsupervised
Klein et al. (2017) MODIS Dynamic thresholding Algebra, unsupervised
Doña et al. (2016) Landsat 7 Parallelepiped, SVM Supervised

Genetic algorithm Supervised
maximum likelihood Supervised
Minimum distance, ISODATA Supervised
artificial neural network, k-means Unsupervised

Carroll et al. (2016) Landsat 5, 7 Random forest classifier Supervised
Huang et al. (2016) Landsat 8 Otsu Thresholding Algebra, unsupervised
Zhang et al. (2014) Landsat 7 Visual analysis Supervised
McFeeters (2013) QuickBird thresholding, GIS-based GIS, supervised
Verpoorter et al. (2012) Landsat 7 GWEM algebra, transformation

unsupervised
Kallio et al. (2008) Landsat 7 Dynamic thresholding Algebra, unsupervised
Fisher & Danaher (2013) SPOT 5 Dynamic thresholding Algebra, unsupervised

River Area Monitoring

Elmi (2015) Landsat 7, MODIS PCA, CCA Transformation, unsupervised
Tourian et al. (2017) MODIS Graph cuts optimization Region-based classification
Wohlfart et al. (2016) MODIS Random forest classifier Supervised
Tourian et al. (2016) Landsat 7 Tasseled cap transformation Transformation, unsupervised
Elmi et al. (2015) MODIS ISODATA Unsupervised
Pavelsky (2014) RapidEye Dynamic thresholding Unsupervised
Elmi et al. (2016) MODIS Graph cuts optimization Region-based classification

Wang (2004) applied supervised algorithms like maximum likelihood classification to
establish a binary decision classifier on SAR and optical images. Wohlfart et al. (2016)
presented an algorithm for monitoring the change in the land surface of the Yellow
River basin in China over ten years, applying the Random Forest algorithm to MODIS
images. Random Forest algorithms construct multiple decision trees independently.
Then, the algorithm searches for a random sample of the predictors and chooses the
best split among the predictors. The final classification is based on the majority vote of
the ensemble (Wohlfart et al., 2016). Carroll et al. (2016) monitored the change in water
bodies area in the North American high Northern latitudes for 20 years (1991–2011) by
applying a decision tree classification algorithm to Landsat images. Doña et al. (2016)
applied several supervised and unsupervised classification methods on Landsat 7 im-
ages to measure the water area of thirteen shallow saline lakes in Spain. Based on
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their results, a generic programming method (a supervised classification algorithm)
outperformed the others and provided more accurate water masks. Requiring a large
amount of training sample data is a serious restriction of supervised classification. Jar-
ihani et al. (2014) presented two advanced blending algorithms to downscale MODIS to
the spatial resolution of Landsat. The accuracy of the products of algorithms were eval-
uated by comparing the vegetation and water indices like NDVI and the NDWI. Huang
et al. (2016) applied the Enhanced Spatial and Temporal Adaptive Reflectance Fusion
Model (ESTARFM) for blending the Visible Infrared Imaging Radiometer Suite onboard
Suomi National Polar-orbiting Partnership (NPP-VIIRS) data with Landsat data. Their
aim was to monitor the dynamics of surface water of Poyang Lake in China and gen-
erate water masks with 30 m pixel size.

Unsupervised classification algorithms are quick and fast to run and prior knowledge
about the area is not required. On the other hand, they only rely on the spectral and
statistical information and changes in the algorithm parameters may lead to different
results. Supervised classification algorithms like maximum likelihood and random
forest also have been applied on satellite images for extracting water bodies. To extract
the water bodies, they need training data but in general they can provide more accurate
water masks.

All of the studies mentioned in Table 1.3 applied pixel-based classification algorithms
that use only the spectral information of pixels to make a decision about their label. In
other words, they consider each pixel as a separate unit and ignore the spatial, tempo-
ral, and contextual relationship between pixels. Therefore, they are very susceptible to
noise in the image and, in most cases, the primary results need some post-processing
and cleaning steps. Moreover, when dealing with a multitude of images, post process-
ing costs considerable time and effort. On a large scale, the performance of most of the
mentioned algorithms is acceptable. However, for monitoring the water area of a small
river reach, they cannot provide accurate measurements. It is also reported by Weih Jr
& Riggan Jr (2010) that, when pixel-based methods are applied to high-resolution im-
ages, the accuracy of the final result may be reduced due to a so-called salt and pepper
effect. Weih Jr & Riggan Jr (2010) compared the performance of pixel-based and region-
based classification algorithms, and their results found that region-based algorithms
are superior to the pixel-based methods.

Since more and more satellite images with high spatial and temporal resolution be-
come available from different missions, the demand for an automatic water body ex-
traction algorithm with reasonable computational effort is rising.

1.5 Objectives

The primary objective of this study is to monitor inland surface water bodies as one
of the most important elements of the water cycle using optical satellite images. The



24

availability of surface water area long-term time series together with water level de-
rived by satellite altimetry provides the opportunity to monitor the change in the water
volume. Also by considering total water storage change from GRACE, our understand-
ing of hydrological processes is improved significantly. This study is focused on in-
vestigating the performance of different change detection techniques to monitor the
surface water body area.

To develop more efficient algorithms, separate methods for monitoring lakes and rivers
area are developed. Lakes and reservoirs as the biggest constant inland water bodies
are located at the local minimum altitude in the basin. In most cases, we deal with
a stable water body and a marginal area around it which is subject to change due to
annual and seasonal behaviour. On the other hand, river behaviour varies from section
to section because of various parameters like the gradient of elevation, river slope, the
number of small tributaries and morphology of the river bed. In tropical regions, we
face rivers that completely disappear in the dry season and overflow during the wet
season.

Regarding the aforementioned objectives, the following goals are defined to be ad-
dressed in this study

1. Investigation the potential of a number of multispectral transformation on mul-
tispectral satellite images in change detection application.

2. Generating automatic algorithm for monitoring the lake area using optical im-
ages

3. Developing automatic algorithm for monitoring the river area

4. Developing statistical models for river discharge estimation using satellite im-
ages.

1.6 Case studies and data

1.6.1 Case studies

To assess and analyse the performance of developed algorithms, different water bodies
in Asia, Africa and Europa with different characteristics are selected. Each of them
poses its own challenge in terms of measuring and monitoring the surface water area
via satellite images. Figure 1.6 presents all case studies in this thesis.
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Figure 1.6: River and lakes used as case study in this thesis. Red dots in river sections present
the location of in situ station

Niger River is the main case study in chapter two. On that chapter, different parts
of Niger River (Figure 1.6(b)) are used to present multispectral transformations. The
inland delta of the Niger River is one of the most fragile ecosystems of Sub-Saharan
Africa. Patterns of land cover and land use vary extremely due to pre-flood and post-
flood hydrological conditions of Niger River and its tributaries. The Niger River is the
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third largest river (4200 km) in Africa, and the fourteenth longest river in the world.
The river flows through Guinea, Mali, Niger, Benin, Nigeria and it discharges on the
Gulf of Guinea. The Niger basin is composed of very diverse ecoregions ranging from
the arid Sahel to the extremely wet coastal Niger delta (McGinley, 2013). The conflu-
ence of two rivers , Niger and Bani, is located in this delta and they provide approxi-
mately 1490 km3

day water for the delta. The amount of precipitation in the basin is highly
variable between dry and wet season. Therefore, river area changes with very com-
plex patterns depending on the topography of the river channels or the presence of
vegetation, and on the total amount of water filling the river. During flood periods,
the land is also subject to noticeable vegetation growth, mixed with water and dry soil.
So, reliable frequent observation of the water extent, spatial distribution and temporal
variation of the river’s floodplain is vital. Two parts of Niger River are selected for
monitoring the river section area in order to access the performance of the algorithm
introduced in chapter 4. The proposed algorithm encounters with different challenges
to monitor the variation of these river sections. Niger River section in Figure 1.6(a) will
use as the main case study in chapter 4. The algorithm will demonstrate its capabilities
by facing a river section with intense annual discharge variations (from about 0.3 km3

day

in dry season to 1.6 km3

day in the wet season) and two islands along the river section.
Niger River section in Figure 1.6(c) has also a significant annual discharge variation
from 0.05 km3

day to 0.5 km3

day . However, the length of this river section (114 km) is the main
challenge for the algorithm in this case.

Congo River is the third river section used as case study in this thesis. The selected
river section is called Malebo Pool (Figure 1.6(d)) located near Kinshasa. The Congo
River— the second largest river in terms of catchment area in the world— has an aver-
age discharge of 41 800 km3

day (O’Loughlin et al., 2013). The river is located in the equato-
rial zone, where heavy rainfall occurs throughout the year. As a result, the river area
changes rapidly. Therefore monitoring the variable extent of the River and its tribu-
taries is a challenging task.

Po River is the last case monitored in this thesis (Figure 1.6(e)). The Po River, located
in the Po valley in Italy, flows eastward through many important Italian cities. Since
the river is subject to heavy floods, over half of its length is controlled with dikes. In
this study, a reach about 400 km is selected. This river section with its narrow width
varying between 150–650 m and its complex path could highlight the strength of river
mask extraction algorithm.

Apart from river sections, five lakes in Asia and Africa are selected.

Nasser Lake as the largest man-made lake, is located along the Nile River between
Egypt and Sudan in Africa (Figure 1.6(f)). This lake is formed after construction of the
Aswan High Dam over the Nile in Egypt. As the main freshwater reservoir, Nasser
Lake has a vital importance for both countries (Mostafa & Soussa, 2006). A minor
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change in the lake water level causes an enormous change in the lake’s shoreline. Ac-
cording to Moser & Serpico (2006), only one meter increase in the lake water level can
expand the shoreline for six kilometers. The shoreline is composed of about 85 major
khors (side extensions of the main part of reservoir) expanded into the dessert for a
long distances (Mostafa & Soussa, 2006). The complex nature of Nasser Lake’s shore-
line makes it a challenging case for extracting the lake area from the satellite images.
This lake is selected as the main case study in the third chapter.

Rukwa Lake presents in Figure 1.6(g). This case study is located in Africa. The lake is
in the Rukwa Valley which is in the soutwest of Tanzania. Although the variation in the
lake water area and level is not significant, Rukwa Lake is an interesting water body
due to negative and positive trends in its water level and area over time. The northeast
shoreline of the lake is occupied by rock cliffs and rolling hills (Lake Rukwa Basin
Water Board, 2014). As a result the lake cannot enlarge from its longest shoreline.

Mosul Dam Lake in the north of Iraq is another case study in this thesis (Figure
1.6(h)). The building of Mosul Dam in the year 1986 in the Tigris River caused this
artificial lake. The main role of the Mosul Dam is to control the water flow in the
Tigris. The lake can hold 11.1 km3 water volume at its full capacity (Annunziato et al.,
2016). Due to inadequate maintenance, concerns about the safety of the dam recently
have increased. Therefore, in the year 2003, the Iraqi government decided to reduce
the maximum lake water level from 330 to 319 m (Annunziato et al., 2016). As a result,
monitoring the area of the lake is important and also challenging.

Tharthar Lake is the biggest lake in Iraq. It is located in the center of the country and
about 120 km northwest of Baghdad (Figure 1.6(i)). In 1956, the Therthar Depression
was changed to an artificial reservoir to collect the flood waters of Tigris River during
the flood seasons. Respectively, the Lake feeds Tigris and Euphrates Rivers during the
dry season (Sissakian, 2011).

Urmia Lake is located in the northwest of Iran (Figure 1.6(j)). It is the largest in-
land permanent hypersaline lake in the world. In the twentieth century, it had an area
varying from 5200 to 6000 km2 (Zarghami, 2011; Hassanzadeh et al., 2012). But in the
first decade of the new century, the Urmia basin have suffered from an environmental
disaster. It is reported by Tourian et al. (2015a) that, from the year 2000 until 2014,
on average the lake water level decreased at a rate of 34 ± 1 cm

year and water area at
220± 6 km2

year . If the Lake completely dries up, about 8 gigatonne of salt is released. This
amount of salt could lead to an ecological, agricultural and social catastrophe in Iran
and neighbouring countries (Pengra, 2012).

Hassanzadeh et al. (2012) declared that 65% of the lake desiccation is due to the reduc-
tion of inflow water because of climate change and overuse of surface water resources.
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The construction of four dams on rivers located in the upstream rivers of the lake is
responsible for 25% of the desiccation and a reduction in the annual precipitation is
responsible for the remaining 10%. The vulnerable situation of the lake indicates the
need for coherent measurements of the lake area as a prerequisite for making critical
decisions to rescue the lake. The case studies and their locations are listed in Table
1.4.

Table 1.4: Information about case studies of this thesis

Case Name Country Location

Lat (◦) Lon (◦)

a Niger River Mali 13.27◦ N 7.00◦ W
b Niger River Nigeria 7.80◦ N 6.80◦ E
c Niger River Nigeria 7.68◦ N 6.75◦ E
d Congo River Congo 4.25◦ S 15.50◦ E
e Po River Italy 44.92◦ N 10.50◦ E
f Nasser Lake Egypt 23.00◦ N 32.80◦ E
g Rukwa Lake Tanzania 8.00◦ S 32.10◦ E
h Mosul Dam Lake Iraq 36.73◦ N 42.75◦ E
i Therthar Lake Iraq 34.00◦ N 43.30◦ E
j Urmia Lake Iran 37.70◦ N 45.50◦ E

1.6.2 Data set

In this thesis, optical images from MODIS, Landsat 7 and 8 are used for surface water
area monitoring. In the following section, these products are introduced briefly.

Landsat 7, 8

The Landsat missions is the oldest space civil Earth observation program. The first
Landsat satellite acquired images from the Earth surface in 1972. Since then, the
Landsat program continuously provides worldwide images in several spectral bands.
These remote sensing images are a valuable source of information for agriculture,
geology, forestry, mapping and global change researches. Landsat satellites follow a
sun-synchronous orbit

Landsat 7 was launched in April 1999. It flew at 705 km altitude. The satellite revis-
its a certain area every 16 days in an ideal situation. Landsat 7 carries the enhanced
thematic mapper plus (ETM+), providing 8 bit images in 8 spectral bands: 6 bands in
visible and IR domains with 30 m spatial resolution, a thermal band with 60 m and a
15 m panchromatic band. Since 2003, due to the failure of the scan line corrector (SLC),
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Landsat 7 images have had strip shape gaps which ruin about 22% of each image. Re-
gardless the failure of SLC, this mission still takes images from the Earth’s surface in
2017. Table 1.5 provides information about Landsat 7 spectral bands.

Table 1.5: List of available bands in Landsat 7

Band Spectral range [µm] Description Spatial resolution [m]

1 0.45–0.52 Blue 30
2 0.52–0.61 Green 30
3 0.63–0.69 Red 30
4 0.76–0.90 NIR 30
5 1.55–1.75 SWIR 30
6 10.4–12.5 Thermal 60
7 2.08–2.35 SWIR 30
8 0.52–0.90 Panchromatic 15

Landsat 8 was launched in the year 2013 and until now it is the most advanced optical
imagery system available. Its orbit and revisit time are like Landsat 7. Landsat 8 carries
two push broom sensors: the Operational Land Imager (OLI) and the Thermal InfraRed
Sensor (TIRS), both of which provide improved signal to noise ratio and 12 bit images.
The OLI provides data in 9 different spectral bands with 30 m spatial resolution and a
panchromatic band with 15 m pixel size. TIRS captures data in two long wave thermal
bands with 100 m resolution. Table 1.6 presents the details about the different spectral
bands of Landsat 8.

Table 1.6: List of available bands in Landsat 8

Bands Spectral range [µm] Description Spatial resolution [m]

1 0.43–0.45 Coastal-aerosol 30
2 0.45–0.51 Blue 30
3 0.53–0.59 Green 30
4 0.64–0.67 Red 30
5 0.85–0.88 NIR 30
6 1.57–1.65 SWIR 1 30
7 2.11–2.29 SWIR 2 30
8 0.50–0.68 Panchromatic 15
9 1.36–1.38 Cirrus 30

10 10.6–11.2 Thermal 1 100
11 11.5–12.5 Thermal 2 100

One of the most interesting features of Landsat 8 is the narrow band 9 (1.36–1.38 µm).
This part of the spectrum is absorbed by the atmosphere, so anything visible in this
band must be above most of the atmosphere. As a result, band 9 is dedicated for the
cloud detection, especially for cirrus clouds.
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MODIS

MODIS is a scientific instrument launched by NASA. MODIS is one of the five sensors
which are mounted on Terra satellite. Terra was launched in 1999. It flies in a circu-
lar sun-synchronous polar orbit with 705 km altitude. In the year 2002, Aqua satellite
joined Terra in the same orbit. It is equipped with six operating instruments including
MODIS. Both of them have been active till now and provide images from Earth surface
globally every 1-2 days. They provide images with high radiometric sensitive (12 bit)
in 36 spectral bands from 0.405 µm to 14.338 µm. MODIS acquires data at three different
spatial resolutions (2 bands at 250 m, 5 bands at 500 m and 29 bands at 1 km). This wide
variety of spectral and spatial options and also daily data acquisitions makes MODIS
an important source for land surface boundaries and properties, atmospheric water
vapour and temperature, surface temperature, ocean color. There are many standard
MODIS data products derived from original data for different purposes. For example,
level one data (MOD01) is useful for calibration, MOD07, MOD04 and MOD06 are widely
applied in atmosphere studies and MOD16, MOD11 and MOD09 are used in land mon-
itoring applications.

In this thesis, apart from Landsat 7 and 8 images, the MODIS surface reflectance prod-
uct, MOD09A1, is used in chapter two for multispectral transformation methods. This
product is an estimate of the surface spectral reflectance for each band as it would have
been measured at ground level if there were no atmospheric scattering or absorption.
Seven different spectral bands with 500 m spatial resolution are available in this prod-
uct. Malfunctioning of one of the detectors on Terra causes sharp and repetitive noise
in the band 5 image, so this band is omitted and here we have just six different spec-
tral bands. The following table presents information about the spectral bands of this
product.

Bands spectral range [µm] Description

1 0.620–0.670 Red
2 0.841–0.876 NIR
3 0.459–0.479 Blue
4 0.545–0.565 Green
5 1.230–1.250 SWIR 1
6 1.628–1.652 SWIR 2
7 2.105–2.155 SWIR 3

Table 1.7: List of available bands in MODIS MOD09A1

In chapters 3 and 4, MODIS MOD09Q1 images are used for monitoring the spatial
change in lakes and river area. This product has two spectral bands (red and NIR)
in 250 m pixel size and 8 days temporal resolution in the Sinusoidal projection. Each
MOD09Q1 pixel contains the best possible observation during a 8 days period as se-
lected on the basis of high-observation coverage, low-view angle, the absence of clouds
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or cloud shadow, and aerosol loading. Science Data Sets provided for this product in-
clude reflectance values for Bands 1 and 2, and Quality information (Vermote et al.,
2011). Table 1.8 provides information about satellite images.

Table 1.8: Satellite images used in this thesis

Case Name Source of images Period Spatial Temporal Number of
Resolution Resolution images

[m] [day]

a Niger River MOD09Q1 2000–20016 250 8 724
b Niger River MOD09A1 - 500 16 3
b Niger River Landsat 7 - 30 16 1
b Niger River Landsat 8 - 30 16 2
c Niger River MOD09Q1 2000–20015 250 8 680
d Congo River MOD09Q1 2000–20016 250 8 724
e Po River MOD09Q1 2000–20017 250 8 720
f Nasser Lake MOD09Q1 2000–20014 250 8 620
g Rukwa Lake MOD09Q1 2002–20017 250 8 620
h Mosul Dam Lake MOD09Q1 2002–20017 250 8 620
i Tharthar Lake MOD09Q1 2002–20017 250 8 620
j Urmia Lake MOD09Q1 2000–20017 250 8 800

Additional data set

Directly validating the correctness of the derived water masks is impossible, since in
situ measurements of water bodies area are impractical. It is obvious that a mono-
tonic relationship between geometric variables of water bodies is established. It means
that there must be a great positive agreement between the behaviour of water body
variables like water level and area.

For the propose of validating the derived lake water masks, the behaviour of lake area
time series are compared in chapter 3 with in situ and altimteric water level time series.
Table 1.9 presents information about data set used for validation of derived lake water
masks.

Table 1.9: Datasets used for validation of Lake water masks

Case Name Average In Situ Altimetry

area water level Lat Lon Period Mission Source
(km2) (◦N) (◦E)

f Nasser 5250 2000–20015 23.25◦ 32.86◦ 2002–2012 ENVISAT HydroSat
f Nasser 5250 2000–20015 22.53◦ 31.88◦ 2002–2012 ENVISAT HydroSat
g Rukwa 5800 – 23.25◦ 32.86◦ 2002–2012 Jason-1,2 HydroSat
h Mosul Dam 250 – 36.71◦ 42.82◦ 2002–2011 ENVISAT, Jason-1,2, Topex DAHITI
i Therthar 2710 – 33.98◦ 43.25◦ 2002–2017 ENVISAT, Jason-1,2, Topex DAHITI
j Urmia 5200 2000–2017 37.64◦ 45.35◦ 2002–2011 ENVISAT, Jason-1,2, Topex HydroSat
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Only for Nasser and Urmia Lakes daily in situ water level measurements are available.
Since the accuracy of in situ measurements is higher than any spaceborne observation,
they provide a great opportunity to validate derived lakes area time series and analyse
the long term behaviour of surface area.

All lakes are selected in a way that different satellite altimetry sensors pass over them,
so long and dense water level time series for all the case studies are available. In this
study, lake level time series from two online data bases are used.

• HydroSat 1, as an online repository for monitoring global water cycle, provides
different hydrological parameters of water bodies all over the world. HydroSat
is developed in the Institute of Geodesy, University of Stuttgart in 2016.

• DAHITI2 , the Database for Hydrological Time Series of Inland Waters, is devel-
oped by the DGFI-TUM (German: Deutsches Geod ätisches Forschungsinstitut der
Technischen Universit ät München, lit. German Geodetic Research Institute of the
Technical University of Munich) in 2013. This online source provides water level
time series from multimission altimetry for inland water bodies like rivers, lakes
and reservoirs (Schwatke et al., 2015).

In chapter four, river masks generated by the proposed method are validated indi-
rectly by comparing the behaviour of river area time series with in situ discharge and
altimetric water level measurements. In a natural river channel, river reach area must
have a monotonic relationship with discharge and water level on that section (Leopold
& Maddock Jr, 1953). Therefore, the corresponding time series should show significant
correlation. This fact provides the opportunity to validate our water area estimations
indirectly against river discharge and water level time series. Information about in situ
and altimetric measurements is presented in Table 1.10.

Table 1.10: Information about datasets used for validation of river water masks

Case Name Reach
In Situ Discharge Altimetry

Lenght (km) Station Lat (◦) Lon (◦) Period Source Lat (◦) Lon (◦) Period Mission

c Niger 22 lokoja 7.80◦ N 6.77◦ E 2000–2006 GRDC 6.65◦ N 6.65◦ E 2003–2012 ENVISAT

a Niger 115 Koulikoro 12.87◦ N 7.55◦ W 2000–2006 GRDC 12.74◦ N 7.73◦ W 2002–2015 ENVISAT, Saral
d Congo 50 Kinshasa 4.30◦ S 15.30◦ E 2000–2010 GRDC 4.28◦ S 15.30◦ E 2002–2014 ENVISAT, Saral
e Po 400 Borgoforte 45.05◦ S 10.75◦ E 2000–2012 AIPO - - 2000–2014 ENVISAT, Jason-2

Topex, CryoSat-2

For the first three case studies, in situ discharge measurements are used from GRDC
dataset. For the Po River section in situ measurements are provided by AIPO (Italian:
Agenzia Interregionale Fiume Po, lit. "The Interregional Agency for the Po River"). For
the altimetric water level measurements, the location of virtual stations are provided.
The altimertic time series for the Po River section is generated based on the method
introduced by Tourian et al. (2016). This time series is generated by defining multiple
virtual stations over the River reach. Finally, in situ discharge measurements are also
used for developing empirical models between river width and discharge.

1http://hydrosat.gis.uni-stuttgart.de/
2http://dahiti.dgfi.tum.de/en/

http://hydrosat.gis.uni-stuttgart.de/
http://dahiti.dgfi.tum.de/en/
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1.7 Outline of the thesis

Each objective will be investigated in the following chapters. This thesis continues
with introducing the applications of multispectral transformations in change detec-
tion analysis in the second chapter. First, the mathematical aspects of multispectral
transformations are discussed. Then their potentials to be used as a tool for retrieving
important information about water content from the original image bands and high-
lighting the change between two multitemporal images will be investigated.

In the third chapter, an algorithm for monitoring lake area will be presented. Each
step of the algorithm will be introduced there in detail. Then its performance will
be evaluated by applying it to different lakes with various behaviours. Finally, the
desiccation of Urmia Lake during the last seventeen years will be investigated.

Chapter four deals with introducing a region-based change detection algorithm specif-
ically developed for river area monitoring. The chapter starts with presenting math-
ematical concepts and algorithm steps. Then, for assessing the performance and val-
idating the results of the proposed algorithm, it will be applied to a number of river
reaches. At the end, empirical models for predicting river discharge will be developed
and validated by comparing with in situ measurements.
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Chapter 2

Multispectral transformations for
change detection

2.1 Introduction

Multispectral transformations generate a new set of image components by combining
original multispectral image bands. The new components represent an alternative de-
scription of the original data since they are related to the old brightness values via a
linear operator. The transformed image bands may reveal features and properties of
the Earth’s surface which are not recognizable in the original spectral bands (Richards
& Jia, 1999). In change detection applications, a fundamental issue is to find a way
to define a change mask free of unimportant or nuisance forms of change like sensor
noise, atmospheric absorption etc. (Radke et al., 2005). Nielsen (2007) mentions that
nontrivial change includes:

• An additive shift in the mean level (offset) or a multiplicative shift in the calibra-
tion of a measuring device (gain);

• Data normalization or calibration schemes that are linear (affine) in the gray val-
ues of the original variables;

• The changes which cannot be detected by multispectral transformations, such as
Principal Component Analysis (PC) or Maximum Autocorrelation Factor (MAF).

Moreover, multispectral transformations can be applied as a tool to enhance the signal
to noise ratio level by isolating the noise of image bands in certain components. A
transformed data set may also represent a certain physical characteristic of the sensed
environment like different types of vegetation.

Multispectral transformations are widely applied in remote sensing applications.
Gong (1993) applied PCA to the difference of two multitemporal images to emphasize
the change in primary principal components. Nielsen et al. (2002) applied Empirical
Orthogonal Function (EOF) decomposition to analyse the change in the sea surface
temperature. Multivariate Alteration Detection (MAD) and MAF analysis and their
combined transformation (MAD/MAF) were introduced in Nielsen et al. (1998). As
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presented in their study, these transformations are insensitive to the variation in gain
and offset between different images. Therefore, there is no need to apply radiometric
and atmospheric corrections prior to the transformations. Canty & Nielsen (2008)
applied iteratively re-weighted MAD transformation for radiometric normalization
of multitemporal images. More sophisticated methods in this domain are listed in
Nielsen (2011).

In this chapter, a number of multispectral transformations will be presented. Our focus
is on presenting different characteristic of multispectral images and highlighting the
change between different measurements epochs visually. Our main objectives are:

• Enhancing the quality of an image by reducing the noise level and then using
the enhanced image bands to define the change more easily and precisely. PCA
is an appropriate tool for this goal. The main concern is to select the right PCs to
reconstruct the image bands.

• Highlighting the spatial change between two multitemporal images. MAD trans-
formation has a great ability to highlight the change between two data sets and
MAF transformation can emphasise where there is a high correlation with neigh-
bouring pixels.

2.2 Methodology

2.2.1 Principal Components Analysis

PCA is a mathematical technique to establish a linear relationship between a set of
observations of (possibly) correlated variables. The new set of variables are orthogonal
to each other. In the new dataset, the major part of the information concentrates in the
primitive components.

In remote sensing applications, PCA has been applied to three groups of applications:

• image compression, by considering only a number of primary principal compo-
nents;

• image enhancement, by ignoring the later components, as they are usually dom-
inated by noise;

• change detection, by highlighting the area where the significant change occurs in
the primary components.

Suppose that a multispectral image with k spectral bands, each of which has m rows
and n columns, is available. First of all, the image in each band is reshaped as a single
column vector of length (m× n = N):

XN×k = [x1, x2, ..., xk], (2.1)
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so the matrix X is the reshaped form of a multispectral image in two dimensions. The
mean pixel value in each spectral band is defined according to

x̂i =
1
N

N

∑
n=1

Xni, (2.2)

where X̂ = [x̂1, x̂2, ...x̂k] is the set of mean values of all spectral bands. To describe the
spread of pixels from the mean, the covariance matrix is defined as

ΣXij =
1

N − 1

N

∑
n=1

(Xni − X̂i)(Xnj − X̂j)
T. (2.3)

If there is any correlation between different pairs of spectral bands, the corresponding
off-diagonal element in the covariance matrix would be large. On the other hand, the
off-diagonal elements are near zero if there is no correlation among different spectral
bands. The aim of the principal components transformation is to set a new coordinate
system in the multispectral space so that the covariance matrix in the new coordinate
system is diagonal. In other words, image bands in the transformed product are or-
thogonal to each other and there is no correlation between them. Here, it is assumed
that X is transformed by an orthonormal transformation matrix, C, such that the co-
variance matrix of the resulting matrix W is diagonal

WN×k = XN×k Ck×k , (2.4)

with
Ŵ = E(W) = E(XC) = X̂C, (2.5)

we can write the covariance matrix of W as

ΣW = E((W− Ŵ)(W− Ŵ)T)

= E((XC− X̂C)(XC− X̂C)T)

= C E((X− X̂)(X− X̂)T) CT

= C ΣX CT. (2.6)

Since ΣW is assumed to be diagonal, C can be recognised as the transposed matrix
of eigenvectors of ΣX. As a result, ΣW can be identified as the diagonal matrix of
eigenvalues of ΣX:

ΣW =


λ1 0
0 λ2

.
.

.
0 λk





38

The diagonal elements of the covariance matrix are the variances of respective
transformed data. The eigenvalues are conventionally arranged in a descending order,
λ1 ≥ λ2 ≥ ... ≥ λk, so that the largest variance is in W1, the next is in W2 and so on.
To find the eigenvalues and eigenvectors of ΣW, the following equation must be solved:

det(ΣW − λI) = 0 . (2.7)

By knowing the eigenvalues and eigenvectors, principal components can be deter-
mined.

Eklundh & Singh (1993) stated that in remote sensing applications, PCs derived from
a covariance matrix do not represent characteristics of the original data well because
each band observes the sunlight in a different spectral range, so their origin and scale
are varied. To solve this problem, the correlation matrix is used for deriving PCs instead
of the covariance matrix. In this thesis, we follow their recommendation and replace
the covariance matrix with the correlation matrix to derive PCs.

Singular Value Decomposition

Singular Value Decomposition (SVD) has certain characteristics making it a suitable
technique for defining principal components:

• Generating a set of uncorrelated variables from correlated ones,

• Ordering the dataset in a way that exhibits the dominant variations in the pri-
mary components,

• Reducing the dimension of the dataset by accumulating the noise and trivial vari-
ations in the latest components (Baker, 2005).

SVD is based on a theorem from linear algebra that any matrix can be broken down into
the product of three matrices. Suppose that A is a matrix with n rows and m columns
(A is not necessary a full rank matrix). This matrix can be decomposed into a diagonal
and two orthogonal matrices like the following equation

Am×n = Um×p Σp×p VT
p×n (2.8)

where Um×p and Vp×n are two column orthogonal matrices and Σp×p is a diagonal
matrix. The singular values (σi) are diagonal elements of the matrix Σ which are non-
negative and ordered so that σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0, where p = min(n, m). Since
U and V are orthogonal matrices, their columns form a basis for their vector spaces.
SVD of matrix A has a strong relationship with eigenvalue decomposition of matrices
A AT and AT A. To derive the eigenvalues and eigenvectors of A AT, we start with
the transpose of Equation (2.8)

AT = (U Σ VT)T = (VT)T ΣT UT = V Σ UT . (2.9)
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Since the matrix Σ is diagonal, ΣT = Σ. Now we multiply matrix A by both sides of
Equation (2.9)

AT A = (V Σ UT) A (2.10)
= V Σ UT U Σ VT (2.11)
= V Σ2 VT . (2.12)

Respectively we can write
A AT = U Σ2 UT . (2.13)

From these equations, we can conclude that the diagonal elements of Σ2 are the eigen-
values and the matrices V and U are the matrices of eigenvectors of AT A and A AT.

2.2.2 Tasselled Cap transformation

The idea of defining a new coordinate system for the multispectral remote sensing
images has been applied to develop another group of methods. In each band of the
transformed product, specific information is highlighted by setting new axes. To ex-
tract physical characteristics from the spectral features, it is necessary to understand
the spectral signature of Earth surface features on different image bands. This group
of transformations is able to compress various spectral bands into a reasonable number
of bands (Crist & Cicone, 1984).

The Tasselled Cap transformation introduced by Kauth & Thomas (1976) is a means for
highlighting the most important phenomena of crop development. This transforma-
tion converts the original spectral bands into a new set of bands which defines useful
interpretations for mapping the vegetation properties. The first Tasselled Cap band
corresponds to the overall brightness of the image. The second one corresponds to the
greenness and is typically used as an index of photosynthetic activity. The third Tas-
selled Cap band is often interpreted as a wetness index of soil or surface moisture. For
hydrological applications, the third band is useful as it emphasizes on the water con-
tents in the image. Although this transformation produces the same number of bands
as input bands, not all of the Tasselled Cap output bands will be useful. In most cases,
the first three Tasselled Cap bands contain the most useful information and subsequent
bands are considered as noise and not used. This transformation is known as Tasselled
Cap because of its shape. Figure 2.1 presents the basic shape of the KT transformation.
The plant starts growing approximately orthogonal to the plane of soils. After a curv-
ing trajectory toward the region of green stuff, the reflectances fold over the region of
yellow and finally back to the soil plane.

The transformation was first introduced for Landsat MultiSpectral Scanner (MSS) by
Kauth & Thomas (1976). They define that KT is a fixed orthogonal transformation,

WN×4 = XN×4 C4×4 + rN×4 , (2.14)
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Figure 2.1: A schematic sketch of the Tasselled Cap transformation (Kauth & Thomas, 1976)

where X is the Landsat MSS image bands (four bands in different spectral range) which
are reshaped as a 2 dimensions matrix. W is the transformed product, C is the trans-
formation matrix containing the coefficients, and finally r is an offset vector introduced
to avoid negative values in the final product. The C matrix contains four unit vectors
which are orthogonal to each other. Based on Kauth & Thomas (1976), the first row
of this matrix (c1) is defined to point along the major axis of soil. This vector is called
the soil brightness unit vector. c2 is chosen in a way that is orthogonal to c1 pointing
the green stuff. c2 is generated using the Gram-Schmidt orthogonalization procedure.
c3 is defined orthogonal to both c1 and c2 in the direction of the yellow stuff using
Gram-Schmidt also. The last vector of C is defined like the previous ones and does not
contain any specific information.

Therefore KT transformation is also a linear orthogonal transformation of the original
bands. But, unlike PCA, the transformation matrix (C) is user-defined. However the
transformed product of PCA can be different from KT transformation since any linear
combination of eigenvectors creates an orthogonal transformation matrix (like C).

Following this strategy, Crist & Cicone (1984) developed a physically-based transfor-
mation for Landsat TM. The brightness, greenness and wetness are the main three com-
ponents of their TM Tasselled Cap transformation. Now this transformation is available
for other popular multispectral optical satellite systems such as MODIS, IKONOS, Land-
sat TM, ETM+ and QuickBird. They provide the opportunity to analytically compare
land cover features directly using satellite imagery.

KT transformation is widely used in land cover applications because it provides a way
to detect and compare changes in vegetation, soil, water content and man-made fea-
tures over time. Also it is helpful to compress an image with several multispectral
bands to an image with three primary components.
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2.2.3 Canonical Correlation Analysis

CCA is a way of measuring the linear relationship between two sets of multidimen-
sional variables. CCA can find two sets of basis vectors such that the correlation be-
tween projections of these basis vectors are mutually maximized. The first linear com-
bination with the largest correlation is called the first canonical variate. The second two
linear combinations have the biggest correlation such that they are orthogonal to the
first pair. This condition must be satisfied by the further pairs as well. An important
property of canonical correlation is that they are invariant to affine transformations
between variables. This is the most important difference between CCA and ordinary
correlation analysis which highly depends on the basis of variables (Borga, 1998).

CCA was developed by Hotelling (1936) and is now widely applied not only in statisti-
cal analysis but also in economics or medical sciences. Nielsen (1995) and Nielsen et al.
(1998) first applied this technique in a change detection applications. The following
procedure by Nielsen (1995), is suggested to find the nontrivial change between two
multitemporal images.

One selects two multitemporal images with k spectral bands each of which has m rows
and n columns. As before each image band is reshaped as a single column vector of
length N = m× n.

Xk×N = [x1, x2, ..., xk]
T , Yk×N = [y1, y2, ..., yk]

T. (2.15)

Now, X and Y are rewritten as a single matrix split into two groups like Z2k×N =
[X Y]T. We assume that Z follow a Gaussian distribution with the following parame-
ters:

µ2k×1 =

[
µx
µy

]
, Σ2k×2k =

[
Σxx Σxy
Σxy Σyy

]
(2.16)

Here Σxx and Σyy are the variances of X and Y, Σxy (Σyx) is the covariance between
them. It is assumed that all portions of Σ are non-singular and E(X) = E(Y) = 0.
Here, a linear transformation between X and Y is desirable like

Uk×N = aT
k×k Xk×N , Vk×N = bT

k×k Yk×N (2.17)

where
ak×k = [a1, a2, ..., ak]

T , bk×k = [b1, b2, ..., bk]
T. (2.18)

are the coefficients matrices. By knowing var(U) = aTΣxxa, var(V) = bTΣyyb and
cov(V, U) = aTΣxyb, the correlation between U and V is equal to

ρ2 = corr(U, V) =
cov(U, V)√

var(U)var(V)
=

aT Σxy b√
aT Σxx a bT Σyyb

(2.19)
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To find the coefficients which maximize the correlation, the following equation must
be maximized by introducing Lagrange multipliers λ/2 and ν/2.

F = aTΣxy b− λ

2
(aT Σxx a− 1)− ν

2
(bT Σyy b− 1) (2.20)

By setting ∂F/∂b = 0 and ∂F/∂a = 0, the cost function can be solved. Now by inserting
the results, ρ2 can be expressed as

ρ2 =
aT Σxy Σ−1

yy Σxy a

aT Σxx a
=

bT Σyx Σ−1
xx Σxy b

bT Σyy b
(2.21)

or

Σxy Σ−1
yy Σyx a = ρ2Σxxa (2.22)

Σyx Σ−1
yy Σxy b = ρ2Σyyb . (2.23)

This derivation shows that the desired projections for U = aTX are given by the eigen-
vectors a1, a2, ..., ak, corresponding to the eigenvalues ρ2

1 ≥ ρ2
2 ≥ ... ≥ ρ2

k of ΣxyΣ−1
yy Σyx

with respect to Σxx. Similarly, the desired projections of V = bTY by considering the
conjugate eigenvectors b1, b2, ..., bk of Σxy Σ−1

xx Σyy with respect to Σyy corresponding
to the same eigenvalues ρ2

i . Now we are able to determine the respective canonical
variates for each of the eigenvalues.

Multivariate Alteration Detection transformation

To highlight the area where the maximum change occurs between two images, Multi-
variate Alteration Detection (MAD) is applied. The name, MAD is chosen due its appli-
cation in change detection in remote sensing (Nielsen, 1995). MAD transforms two sets
of multivariate data (multispectral satellite images with k bands) into the k number
of linear combinations of their difference. The output of the MAD transformation is or-
dered in a way that the maximum change is highlighted in the first MAD component.

Analysing the difference between pixel values is a common way to detect changes.
Pixel differences with zero or low absolute value represent stable area and pixels with
high absolute value represent the change. Two multitemporal images are reshaped like
equation (2.18), and a simple subtraction operator is applied to them

X− Y = [x1 − y1, x2 − y2, ..., xk − yk]
T (2.24)

If the images have more than three spectral bands, it is not possible to visualize the
change in all bands. Moreover selecting just three bands among six or seven is not
a wise choice. To overcome this problem and to highlight the changes in different
spectral bands, a linear transformation that will maximize a measure of change (like
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variance) can be used. If we replace the variance matrix with the correlation matrix, it
leads us to find principal components of the simple image difference. This technique
is highly vulnerable to the variations in the gain and offset between spectral bands.

Another approach to highlight the change is described by Fung & Ledrew (1987). They
defined a certain basis for all spectral bands like

aTX = a1x1 + a2x2 + ... + akxk (2.25)
bTY = b1y1 + b2y2 + ... + bkyk (2.26)

and then apply PCA on their difference to find a and b coefficients. The other approach
is to define the coefficients simultaneously by maximizing var(aTX− bTY) subject to
the constraints that var(aTX) = var(bTY) = 1. If we write

var(aTX− bTY) = var(aTX) + var(bTY)− 2cov(aTX, bTY) , (2.27)

and consider the equation (2.19), the variance can be rewritten like

var(aTX− bTY) = 2(1− corr(aTX, bTY)) (2.28)

It is clear that there must be a positive correlation between aT and bT. To highlight the
change between two images, the coefficients providing minimum positive correlation
between aTX and bTY should be found. To define the coefficients, CCA is applied as
mentioned in the previous section. Finally MAD modes are introduced as:

MADi = aT
i X− bT

i Y i = 1, 2, ...., k (2.29)

The MAD components are ordered decreasingly in terms of highlighting the pixels with
the minimum change in two epochs. Therefore the first MAD shows the maximum
similarity and the minimum change. The second MAD has the maximum correlation
between pairs subject to the condition that they are uncorrelated with the first MAD
component. This condition is valid for other pairs as well. Since monitoring and de-
tecting the change is the main goal of this study, the order of MAD variables is reversed.
It means that the first MAD highlights pixels with the least similarity and the last MAD
represents the constant area.

Consider U = aTX and V = bTY, defined from CCA. Now the covariance of the MAD
components is given by

cov(Ui −Vi, Uj −Vj) = 2δij(1− ρj) (2.30)

where δij is Kronecker’s delta

δij =

{
1 for i = j
0 for i 6= j

. (2.31)
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Thus the components are orthogonal to each other and

var(Ui −Vi) = σ2
MADi

= 2(1− ρi) ρ2
1 ≥ ρ2

2 ≥ ... ≥ ρ2
k . (2.32)

MAD variates have approximately a Gaussian distribution because of the central limit
theorem (Rice, 2006). MAD values of a pixel would be near zero if no change occurs
between two images. Finally, MAD variates are independent from each other. So, it is
expected that the sum of the squared MAD values for each pixel after normalization
follows a χ2-distribution with k degrees of freedom

Tj =
k

∑
i=1

(
MADij

σMADi

)2

∼ χ2(k) (2.33)

This distribution can be used to generate a change / no-change map. For example high-
lighting the change areas with 99% confidence interval is the goal. The pixel is tagged
as changed if the T-value for this pixel is larger than 18.5 (the degree of freedom is 7).
An automatic radiometric normalization for satellite images is introduced by Canty
et al. (2004) and Canty & Nielsen (2008) based on this idea. As the MAD transformation
is invariant to linear transformations, pixels with a small T-value can be considered as
reference points for the radiometric normalization process. For example, if the degree
of freedom is 7 then the critical value for the stable pixels with 99 % confidence would
be 1.24.

Maximum Autocorrelation Factor transformation

To find areas with maximum change, applying the MAF postprocessing transformation
to the outputs of MAD and PCA transformation is suggested. MAF, which was devel-
oped by Switzer & Green (1984), takes advantages of the fact that there is usually a
strong spatial correlation between the pixel values of Earth surface features. Accord-
ingly, noise shows weak spatial correlation. In change detection applications, if we
assume trivial changes between two multitemporal images as noise components, then
they present a small spatial correlation. Therefore, MAF transformation can highlight
the major changes between two epochs.

Despite PCA transformation maximizing the data variance. The MAF transformation is
equivalent to a transformation of the coordinate system in which the covariance matrix
of the spatially shifted image data is the identity matrix (Nielsen, 1995).

Here, we consider each spectral band as a two-dimensional random variable Zk(x),
where x = [i, j] is the coordinate of the pixel Zk(x). If each spectral band has p rows
and q columns, then 1 6 i 6 p and 1 6 j 6 q. Therefore, the multispectral images with
K spectral bands can be stated as follows
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Z = [Z1(x), Z2(x)..., ZK(x)] (2.34)
E(Z(x)) = 0 (2.35)

var(Z(x)) = Σ . (2.36)

We define a spatial shift ∆ = (∆1, ∆2) and introduce the spatial covariance function

Γ(∆) = cov(Z(x), Z(x + ∆)) . (2.37)

This function has certain properties

Γ(0) = Σ (2.38)

Γ(∆)T = Γ(−∆) (2.39)

Now the aim is to find a vector basis (e.g. a) for Z(x) in a way that minimizes the cor-
relation between Z(x) and Z(x + ∆). So the following equation must be minimized.

corr(aTZ(x), aTZ(x + ∆)) =
cov(aTZ(x), aTZ(x + ∆))√

var(aTZ(x)) var(aTZ(x + ∆))
(2.40)

It is clear that var(aTZ(x)) = var(aTZ(x + ∆)) = aT Σ a. Considering the mathemati-
cal details provided in Nielsen (1995) yields

cov(aTZ(x), aTZ(x + ∆)) = aT(Σ− 1
2

Σ∆)a, (2.41)

where
Σ∆ = var(Z(x)− Z(x + ∆)) . (2.42)

Now we rewrite the equation (2.40)

corr(aTZ(x), aTZ(x + ∆)) =
aT(Σ− 1

2
Σ∆)a

aT Σ a
= 1− 1

2
aT Σ∆ a
aT Σ a

. (2.43)

Our aim is to minimize the correlation, therefore we need to maximize the Rayleigh
quotient

R(Σ∆, a) =
aT Σ∆ a
aT Σ a

, (2.44)

in the equation (2.43). The smallest value for the Reyleigh quotient is equal to λk (the
last eigenvalue of Σ∆) if ak is the corresponding eigenvector of Σ∆ in respect to Σ. The
largest value for equation (2.44) is equal to λ1 if a1 is equal to the first eigenvector.

By reversing the order of MAF modes, pixels with a strong spatial correlation would be
highlighted in the primary MAFs and the major part of the noise component gathers in
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the latest MAFs, if the MAF transformation is applied to MAD variables. The change in-
formation with high spatial correlation between multitemporal images is concentrated
in the first three or four bands of MAD/MAF. In this thesis, the Matlab code provided
at A. Nielsen’s website 1 is used to perform the MAF transformation.

2.3 Applications of multispectral transformations in
inland water body change detection

2.3.1 Principal Component Analysis

In this section, PCA transformation is presented as a tool for reducing the noise level
and highlighting the desired physical characteristic of multispectral images. Figure
1.6(b) shows the study area of this section.

To monitor the change in the river extent during wet and dry seasons, three MODIS
MOD09A1 images on different dates were collected. The images are available in six
spectral bands from visible to near infrared. In Table 1.7, information about this prod-
uct is provided. In Figure 2.2, three RGB images of the river reach on different epochs
are presented.24 Chapter 3 Independent data transformation analysis

(a) 2012.01.0.1 (b) 2012.04.01 (c) 2012.09.19

Figure 3.2: RGB image of Niger river derived from MODIS MOD09 at three different epochs

Now, to enhance the quality of images, PCA transformation is applied to each of them
separately. The mathematical concept of PCA is described in the previous chapter and
Figure 3.3 roughly describes the procedure applied to each image in this section.

Original image

Band 1

Band 2

Band 4

Band 6

Band 7

Band 3

Band 1  ....... Band 7

PCA

PC 1    ....... PC 6

1. Independent data transformation analysis

n

m

m × n

k

m × n

k

n

m

Figure 3.3: Procedure of PCA transformation on a single multispectral image

Based on the algorithm, each image with m columns and n rows in certain spectral
band is reshaped as a one column vector. So, a multispectral images with k bands
is changed to a two dimension matrix with k columns and n × m rows. Then, PCA
transformation is applied to the reshaped image according to previous section. To
evaluate the result of PCA transformation, each PC reshapes to a two dimension matrix
again with m columns and n rows. Unlike the original image ordered based on their
wavelength, PCs sorted according their importance. It means that the first PC contains
the majority of total variance and so on.

Figure 2.2: RGB images of the Niger River derived from MODIS MOD09A1 at three different
epochs

To enhance the quality of the images, PCA transformation is applied to each of them
separately. Figure 2.3 roughly describes the procedure which is applied to each of the
image bands.

Based on the algorithm in Figure 2.3, each image with m columns and n rows in a cer-
tain spectral band is reshaped as a vector. So, a multispectral image with k bands is
reshaped to a two-dimensional matrix with k columns and n×m rows. PCA transfor-
mation is then applied to the reshaped image bands according to the previous section.

1http://www.imm.dtu.dk/~alan/software.html

http://www.imm.dtu.dk/~alan/software.html
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Figure 2.3: The procedure of PCA transformation on a single multispectral image

To evaluate the result of PCA transformation, each PC reshapes to a matrix with m
columns and n rows. Unlike the original image bands which are ordered based on
their wavelength, PCs are sorted by importance. Therefore the first PC contains the
largest portion of total variance and the last PC contains hardly any useful informa-
tion. The routine is applied to image bands acquired on January 1, 2012 and in Table
2.1, eigenvalues derived from covariance and correlation matrix are presented.

Table 2.1: The eigenvalues and their percentage derived from both covariance and correlation
matrices.

Covariance Correlation
Mode Eigenvalue Percentage Eigenvalue Percentage

1 1.7138 99.95% 3.8098 63.5%
2 0.0006 0.07% 1.7322 28.9%
3 0.0001 0.01% 0.3783 6.3%
4 0 0% 0.0372 0.6%
5 0 0% 0.0262 0.4%
6 0 0% 0.0160 0.2%

In the second and third columns of Table 2.1, we can see more than 99% of the variance
concentrates in the first PC. So, the rest of the PCs are hardly containing any infor-
mation because less than 1% of variance is divided between them. On the other hand,
when the correlation matrix is used to derive PCs, the correlation is shared more evenly
between all PCs descendingly. Therefore it is recommended that the correlation is used
to generate PCs.

The images in the first row of Figure 2.4 present different spectral bands of the study
area. For example in the NIR image (band 2) which is the most sensitive one to the
water, the river is clearly visible. On the other hand, each image in the second and
third rows is a linear combination of all spectral bands. Since they are sorted by their
contribution in the variance and correlation, the latter modes are saturated by the noise
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Figure 2.4: Different image bands and PCs derived from covariance and correlation matrices

(the noise level in the last modes in Figure 2.4 is clear in the images with a bigger size).
Applying classification techniques on PCs directly is not possible because they are de-
fined based on a mathematical process. Therefore it is not possible to assign physical
characteristics to them. In general PCs are used in change detection applications in two
different ways:

1. Enhancing the signal to noise ratio of the image bands by reconstructing the im-
age bands from a reduced number of PCs.

2. Placing PCs in the color channels and generating an RGB image with PCs instead
of spectral bands.

To reduce the noise level in the image bands, it is assumed that there is no valuable
information in an PC if it contains less than 1% of the correlation. In Table 2.2, eigen-
values and their percentage from the correlation are presented.

Table 2.2: The eigenvalues and their percentage from the total correlation for all three measure-
ment epochs.

2012.01.01 2012.04.01 2012.09.19
Mode Eigenvalue Percentage Eigenvalue Percentage Eigenvalue Percentage

1 3.809 63.5% 3.214 53.9% 3.347 55.8%
2 1.732 28.9% 2.109 43.1% 2.109 35.2%
3 0.378 6.3% 0.128 2.1% 0.454 7.6%
4 0.037 0.6% 0.057 0.9% 0.063 1.1%
5 0.026 0.4% 0.006 0.1% 0.018 0.3%
6 0.016 0.2% 0.003 0.1% 0.005 0.1%
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Table 2.2 shows that the first three PCs are enough for reconstructing the images ac-
quired on 2012.01.01 and 2012.04.01. But in the last image, the fourth PC also contains
valuable information. Therefore the first four PCs are applied to reconstruct the image
on 2012.09.19.

2012.01.01

2012.04.01

2012.09.19

Original Image                 First three PCs            Reconstructed image      Original band 2            Reconstructed band 2                                                                                    

Figure 2.5: Improving the signal to noise ratio by reconstructing the images considering few
primary PCs. Original RGB images are in the first column. The reconstructed images by
removing the later PCs are in the second columns. The original and reconstructed band 2 of
the three epochs are presented in the third and fourth columns.

The first column of Figure 2.5 presents the RGB images of all three epochs and the re-
constructed RGB images are shown in the second column. By comparison between the
two columns we can easily find that images in the second columns are less noisy. For
example, in the first row, the vegetation around the river changed from green to yel-
low and the river border is more visible. In the second row, some parts of the river are
highlighted which makes water detection easier in the reconstructed image. In the last
row, some parts of the original image are slightly affected by clouds. The PCA transfor-
mation could partially overcome this problem in the reconstructed image. In the third
and fourth columns of Figure 2.5 only the band 2 of three epochs are compared. It is
interesting that in the third row the main river border is recognizable from the flooded
area after the transformation.

Placing PCs directly into the color channels can help to map different characteristics of
the Earth surface. For visualizing multispectral images we are limited to select only
three spectral bands. Therefore different spectral band combinations are developed to
highlight specific features of the Earth surface. However, any band combination leads
to ignoring the rest of the bands. Presenting PCs directly in the color channels is an
alternative for representing the multispectral images. Each PC contains information
from all the spectral bands, therefore by presenting them as color channels, we can
explore more details about the area. In the following figure, the first three PCs are
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presented in the different color channels for the image acquired on 2012.01.01. Since
these PCs contains almost all the valuable information in the spectral bands, we expect
that the new image presents more details than the ordinary RGB image.

PC 1 PC 4PC 3 PC 6PC 5PC 2

(a) (b) (c)

Figure 2.6: (a) ordinary RGB image. (b) combination of first three PCs as image bands. (c) is the
selected area for more investigation. Date of the image: 2012.01.01

The color combination of the new RGB image (Figure 2.6(b)) created by the first three
PCs looks strange at first glance. But after comparing with the original RGB image, we
can find out the relationship between colors and the Earth surface features. The river
shows up in light blue but those parts of the river bed which are dry in this image
appear in yellow. In Figure 2.6(c) we can see how pixels with different coverages are
presented in different colors. The dry areas are presented in different colors based on
their vegetation coverage. Areas with a dense vegetation appear in purple and the
color orange presents the area with a sparse vegetation. It must be mentioned that this
interpenetration is not valid before comparing the product with the original image. In
the next figure we compare the maps of primary PCs for all three epochs.

Since the transformation is applied to the images separately, each image has its own
color map. For example, pixels covered with dense vegetation in the first image may
be presented in purple but in the second image they may be shown in pink. In the
second row, the river is presented in green but in the last image, the main part of the
river and the flooded area appear in blue.

This approach to use only the primary PCs is just based on mathematical assumptions
and does not have any physical constraints. Ignoring the last PCs is not the best strat-
egy when dealing with Earth related phenomena as they have special signature on
different spectral image bands. Therefore the decision about selecting PCs is based on
the dispersion of pixel values from the mean value of all pixels. Moreover there is a
big difference between the value of water and land in the image bands.

Another strategy to select PCs comes about when studying the role of different spectral
bands in each PC. By looking at eigenvectors, the appropriate PCs are determined by
investigating the information highlighted in each PC. The following table contains
eigenvectors derived by PCA transformation for the image acquired on 2012.01.01.

To select the appropriate PCs for presenting into the color channels, an extensive
overview about image bands and objective of the study is necessary. The spectral



51

2012.01.01

2012.04.01

2012.09.19

Original Image            Reconstructed image  First three PCs 

Figure 2.7: Ordinary RGB images are presented in the first column. The second column shows
the reconstructed images and the maps of first three PCs are presented in the last column.

Table 2.3: Eigenvectors of all image bands (date: 2012.01.01)

Eigenvector 1 2 3 4 5 6

Band 1 0.462 0.235 0.463 0.427 0.377 0.435
Band 2 0.311 −0.579 0.300 0.387 −0.490 −0.292
Band 3 0.044 0.735 0.038 0.292 −0.257 −0.551
Band 4 0.192 0.095 −0.667 0.344 −0.409 0.471
Band 6 −0.504 0.170 0.486 −0.055 −0.531 0.441
Band 7 −0.628 −0.169 −0.101 0.678 0.317 −0.072

bands of the MODIS MOD09A1 product range from visible till near infrared (Table
1.7).

The aim is to highlight different characteristics of the river. In this way, first based
on Table 1.2, it is clear that the ability and sensitivity of different bands against water
content are different. So, the most reasonable PCs to reconstruct the image must be
selected.

With respect to Table 1.7, bands 2, 3 and 4 contain the most important information to
explore the information about the water extent and water area. Band 2 is the best for
detecting the water-land boundary which is the main concern. Also, the tiny part of
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sunlight which can slightly penetrate the water column is observed in band 3 and 4.
So, PCs in which these bands have bigger coefficients are selected and we assume that
these linear combinations retrieve more information about the river. We select PCs 2, 3
and 6 because the mentioned spectral bands are highlighted in them considering Table
2.3.

PC 1 PC 3PC 2

R: 210
G: 0
B: 255

R: 0
G: 25
B: 255

(c)(b)(c)

Figure 2.8: Comparison between RGB image and map of the selected PCs. Image date 2012.01.01

Since we concentrate on highlighting the water bodies, it is hard to provide any fur-
ther interpretation about the vegetation coverage in Figure 2.8(b). In this figure, it is
interesting that two river branches show up in different colors. The east part appears
in pink and when it joined to the other branch, its color changed to blue. For more in-
vestigation about this difference, we select two pixels located in the river with different
colors in Figure 2.8(c).

By looking at the coefficients in the color channels we find out that the major difference
is between the pixel values in the red band. In this band we placed PC3 and in Table 2.3
we see that in this PC band 4 is the most highlighted one. It is mentioned in Table 1.2
that band 4 is useful for mapping detail such as depth or sediment in water bodies.

Without any external source of information, it is not possible to define the reason for
this pattern. It is most likely that two river branches contain different types or amount
of sediments. Therefore they appear in different colors. In the next figure we follow
the same strategy to select PCs for images acquired on different dates.

In the image acquired on 2012.04.01 the right branch of the river is also pink. The north
part of the river is not visible in both RGB and PCs map because of the cloud coverage.
The last example in this figure is the most interesting one. In this case the main river
body is blue but the flooded area is separated with different color (pink). The areas
which are covered by clouds are presented in red.

Up to here, PCA transformation is mainly used as a tool for reducing the noise level
and highlighting a certain characteristic in the different spectral image bands. Now
PCA transformation will be presented as a tool to highlight the change between two
multitemporal images from the same area. For this purpose, images in Figure 2.2(a)
and (c) are selected, because a significant change in the river extent and flooded area
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2012.01.01

2012.04.01

2012.09.19

Original Images Selected PCs

Figure 2.9: Comparison of original RGB images and maps generated by three selected PC. In
the second row, each PCs map includes respectively PCs number: (2, 3, 6), (6, 2, 5), (5, 3, 2).

have occurred between two epochs. In the following figure the procedure to map the
change between two images is described.

Figure 2.10: Procedure of applying PCA on multitemporal images

Based on Figure 2.10, all spectral bands from both multitemporal images are reshaped
as a column vector and then all the vectors are concatenated together. So the final
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matrix includes pixel values from different spectral bands of the first image in the first
k columns. Pixel values of the second image are located in the second k columns. After
applying PCA, each PC must be reshaped to the original dimensions. As a result the
final product of this procedure is a 3 dimensional matrix with m columns and n rows
and 2× k bands. Now the main concern is selecting appropriate PCs to describe the
river state in each image and also the occurred change. In other words, PCA is applied
here to highlight the change between multitemporal images visually.

Choosing the primary PCs is not an appropriate selection mechanism because here
the definition of correlation matrix is completely different from previous examples.
Here, correlation matrix represents the difference from the mean pixel values among
each image bands and also between two multitemporal images. So, picking the pri-
mary PCs for interpretation is not the solution because they are ordered based on their
variance portion. Therefore, PCs must be chosen carefully by investigating the eigen-
vectors. To do this, first the quantity of interest must be defined, for example river
extent or flooded area. Then, based on Table 1.2, the most important PCs from both im-
ages are selected for presenting as color channels. Selected PCs must assign noticeable
coefficients for the spectral bands providing information about water content in both
images.

The previous experiment found that most of the important information for the goal of
this study concentrates in bands 2, 3 and 4. So, among all PCs, those in which their
coefficients for desirable bands are dominant should be selected.

In Table 2.4, the first PC highlights the flooded area in the second image. Also in PCs
number 11 and 4, the critical spectral bands in both images are eminent. These three
PCs are selected to present the characteristics of both images and also the change be-
tween them.

Figure 2.11: (left) an image composed of PCs 1, 4, 11. (right) comparison of a small part of the
product with the original images. Image dates 2012.01.01 and 2012.09.19
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Table 2.4: Eigenvectors of combination of two multispectral image bands PC1 to PC6

Eigenvector 1 2 3 4 5 6

Band 1 −0.438−0.252−0.441−0.389−0.401−0.451
Band 2 −0.103 0.050−0.100−0.157 0.055 0.032
Band 3 0.195−0.164 0.184 0.276−0.205−0.113
Band 4 −0.264 0.625−0.262−0.239 0.387 0.192
Band 6 0.091 0.668 0.097 0.260 -0.286−0.587
Band 7 0.064−0.030 0.039−0.061 0.045 0.050
Band 1 −0.057 0.002−0.197 0.075−0.120 0.195
Band 2 −0.408−0.127 0.645−0.200 0.402−0.362
Band 3 −0.425 0.195 0.430−0.066−0.589 0.475
Band 4 −0.545−0.112−0.196 0.726 0.170 0.006
Band 6 0.145 0.001 0.031−0.174 0.009−0.032
Band 7 0.085 0.023 0.033−0.094−0.078 0.034

Eigenvector 7 8 9 10 11 12

Band 1 0.010−0.067 0.054 0.022−0.101−0.119
Band 2 0.239 0.421 0.385 0.340 0.452 0.493
Band 3 0.503−0.293 0.382 0.439−0.267−0.136
Band 4 0.163−0.252 0.157 0.150−0.238−0.176
Band 6 −0.022 0.153−0.099−0.012 0.075 0.022
Band 7 −0.059 0.671 0.115 0.175−0.071−0.693
Band 1 0.483 0.122−0.758 0.270 0.045−0.003
Band 2 0.122−0.014−0.198 0.112 0.013−0.007
Band 3 −0.032 0.032 0.085−0.072−0.054 0.013
Band 4 −0.180 0.135 0.063 0.077−0.159 0.084
Band 6 −0.017 0.357−0.050−0.005−0.784 0.447
Band 7 −0.612−0.175−0.159 0.734 0.007 0.056

In Figure 2.11, the most important details about the status of the river at both epochs
are presented. In the right part of the figure, the flooded area appears green, the area
covered by water in both dates appears pink. The area which is dry on the first date,
and covered by water on the second appears orange. This kind of product is useful to
understand the behaviour of the object and also for comparison of its state on different
dates. However for interpretation, the original images are still needed and this is one
of the drawback of this method.

The other way to detect the change in two multitemporal images is to study the differ-
ence between pixel values of their spectral bands. The difference in value of the same
pixel in two images represents the change in the physical characteristic if both images
have the same radiometric basis. To detect the significant changes and also to reduce
the trivial variations, PCA is applied to the difference image. Figure 2.12 presents the
flowchart of this procedure.
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Figure 2.12: Applying PCA on an image difference of two multitemporal images.

First of all, image difference bands must be reshaped as a two dimensional matrix,
then PCA is applied to the matrix and finally the transformed matrix is reshaped to its
original form. This technique is applied on images presented in Figure 2.23(a) and (c).
To reduce the amount of the noise in the image difference product, the image will be
reconstructed using just those PCs containing a significant portion of the correlation.

We decide to keep the first three PCs for reconstructing the image because they contain
about 98.5% of valuable information of the image difference (PC1: 70.1%, PC2: 23.5%,
PC3: 4.9%). Since the rest of them contain less than 1% of the signal, we assume that
they contain noise and trivial changes. In the following figure the original image dif-
ference and the reconstructed one are presented.

Since monitoring the change in the river extent is our main goal, we place the difference
between spectral bands number 2, 3, 4 as color channels in Figure 2.13(c). First of all
due to the cloud coverage in the second image, part of this map appears white. Also
it is hard to detect the change between river extent in some parts of the map (north
and south parts) in Figure 2.13(c). For plotting Figure 2.13(d), the first three PCs are
placed as color channels. By comparing this map with the original images we find out
that the flooded areas in the second epoch are shown in light blue and white. Finally
we reconstructed the image difference again by using the first three PCs. Comparison
between Figure 2.13(c) and (e) shows that it is significantly easier to define the change
between the state of the river after reducing the noise components. However applying
PCA transformation leads to a change in color range in 2.13(e).

Tasselled Cap transformation

The idea of highlighting specific physical characteristics in satellite images leads to the
Tasselled Cap transformation described in the section 2.2.2. For hydrological purposes,
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(a) (b)

(c) (e)(d)

Figure 2.13: (a) and (b) are the original RGB images. Map in (c) is the ordinary spectral bands
difference. (d) is the map of the first three PCs as color channels and (e) is the reconstructed
map using the first three PCs.

the wetness component could be useful for extracting the water bodies easily. To eval-
uate its performance we apply this transformation to the Landsat 7 images of Po River
(Figure 1.6(e)). To map 500 km of Po River from the Adriatic Sea to near the city of
Turin in Italy, we need to create an image mosaic from 3 Landsat 7 images acquired in
May 2000, in Figure 2.14(a). Now, by using the coefficients provided in Table 2.5 the
components of the KT transformation are generated.

Table 2.5: Coefficients of Kauth-Thomas Tasseled Cap Transformation for LandSat 7 image

Index Band 1 Band 2 Band 3 Band 4 Band 5 Band 6

Brightness 0.3561 0.3972 0.3904 0.6966 0.2286 0.1596
Greenness −0.3344 −0.3544 −0.4556 0.6966 −0.0242 −0.2630
Wetness 0.2626 0.2141 0.0926 0.0656 −0.7629 −0.5388
Fourth 0.0805 −0.0498 0.1950 −0.1327 0.5752 −0.7775
Fifth −0.7252 −0.0202 0.6683 0.0631 −0.1494 −0.0274
Sixth 0.4000 −0.8172 0.3832 0.0602 −0.1095 0.0985

Figure 2.14(b) presents the final product of the KT transformation. To generate this map
we place the first 3 components in the color channels. In this product clouds are shown
in red mainly because they have a high value in the brightness band and low values in
greenness and wetness bands.
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(a)
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Figure 2.14: Result of Tasseled Cap transformation on a Landsat 7 images mosaic of Po River.
(a) is the image mosaic consisting of 3 Landsat images. In (b) brightness, greenness and
wetness components are placed in the color channels. The next three maps are brightness
(c), greenness (d) and wetness (e) components of the transformed image. The map of the
river extracted from wetness component is presented in (f).

The wetness component (Figure 2.14(e)) is the most appropriate one for mapping the
water bodies. The river and its border are clearly detectable in the wetness component
even in the case where we deal with a long and narrow river with a complex geometry.
It is a prominent sign for water extent monitoring as there is a high contrast between
water and land in this component. Clouds, as one of the main sources of error, appear
dark in the wetness component. So, unlike infrared bands, the separation between wa-
ter and cloud is possible in this component. In an ideal example, the range of pixel
values in this band should be between zero and one. The lower the pixel value, the
higher the water in the vegetations. Therefore, zero represent the pixels completely
covered by water. On the other hand, large values and one represent the urban areas.
Finally in Figure 2.14(f) the river is extracted by applying a zero threshold to the wet-
ness component of the river. Since the pixels covered by water have negative values
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in the wetness component, we can easily detect and extract the river by applying a
zero threshold on this component (Figure 2.14). This figure shows the potential of this
transformation to map the Po River with such a meandering behaviour.

2.3.2 MAD + MAF

Analysing the change in multitemporal images is not possible unless some prepro-
cessing steps are applied. Among them, geometrical rectification, image registration,
radiometric, atmospheric and topographic corrections (specially in mountainous re-
gions) are necessary. Advanced optical systems like MODIS and Landsat provide rela-
tively precise geolocation information with their products, so as long as they are com-
pared with themselves, there is no need for applying geometric and image registra-
tion. Maintaining radiometric consistency between multitemporal images is not possi-
ble due to different atmospheric conditions, variations in the solar illumination angles
and sensor calibration trends (Du et al., 2002). Most of the solutions that are suggested
are based on the assumption that the relationship between the radiance recorded at
two different times from the same region can be approximated by a linear function.
In addition to refining images before analysing the change, applying change detection
techniques which are invariant to affine transformations (including linear scaling) is
a possible solution. Both MAD and MAF transformations have this property, meaning
they are not sensitive to offset and gain between multitemporal images (Nielsen et al.,
2002). So by taking advantage of these methods, the real change due to different envi-
ronmental patterns can be extracted without any preprocessing.

In this section, two Landsat 8 images with 30 m spatial resolution of the Niger River
from different dates are used. MAD and MAF transformations are used to the original
image bands without any correction. Unlike level 2, 3 MODIS products, Landsat images
need a careful consideration before being compared together. So, applying MAD and
MAF transformations for detecting the change could be an alternative to the cumber-
some process of radiometric calibration and normalization.

As shown in Figure 2.15, a significant change in the river extent and wetland occurred
during a month. Also the pattern of vegetation changed especially in the north west
of the image. As expected, clouds covered parts of both images which may affect the
change detection process. It is assumed that change in the river extent will become
visible in the first MADs as long as they are the most dominant change over time. On
the other hand, the change in cloud cover will play a destructive role. Figure 2.16
illustrates the procedure of this transformation. In this figure, n is the number of rows
and m is the number of columns in each spectral band and k is also the number of
different spectral bands.

To detect the change between two images, a map based on equation (2.33) is gener-
ated. As discussed before, a χ2 distribution for the MAD components is assumed with
seven degrees of freedom. Figure 2.17 represents the probability of the change in the
state of each pixel. Based on this distribution, the possibility of change in pixels with a
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(a) Date : 2013-10-17 (b) Date : 2013-11-18

Figure 2.15: Part of Niger River from Landsat 8 images.

Figure 2.16: Procedure of applying MAD transformation on multitemporal images

value less than 1.96 is approximately about 2.5% and they are illustrated in dark blue.
Accordingly the possibility of change in pixels with the value bigger than 25 is about
99.9%. The change in the river boundary in the middle of the image is highlighted
in red. Unfortunately, the different cloud patterns in two images spoils the result be-
cause they are also dominant in all spectral bands. Figure 2.17(c) and (d) present two
change/no-change binary maps. These maps are generated by applying two mentioned
critical values as a threshold to the pixel values of map in Figure 2.17(a).
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Figure 2.17: (a) is the histogram of sum of squared and normalized MADs. (b) is the map of
sum of squared and normalized MADs. (c) and (d) are the binary change/no-change maps
considering two critical values: 14.067 and 20.278

Analysing the MAD variables separately to detect the change is another way to define
changes between two epochs. The first MAD highlights the area where a significant
change occurred because the maximum spread in the pixel intensities occurred in that
area. The second MAD also carries important information about the change because it
has the maximum variance subject to the condition that it is uncorrelated with the first
one. Other MADs are also arranged so they are uncorrelated with each other and the
variance between two linear combinations is descending from first to last MAD (Figure
2.18).

Given the variances of Figure 2.18, it is expected that the map of the first two or three
MADs projects the majority of change in multitemporal images. In Figure 2.19, all MADs
are presented. In MAD1, the main part of the river appears black because it remained
stable during the time. Flooded area appears white as it includes the most drastic
change from wet to dry land. Different gray levels indicate the change in the type and
density of vegetations. Interestingly, boundaries between the stable part of river and
the flooded area are clearly distinguishable. By looking at all MADs, it is concluded
that there is little valuable information about the change in the last four MADs. They
are assumed to contain the noise component and the trivial changes.
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Figure 2.18: Variance of the MAD components
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Figure 2.19: MAD components of the two multitemporal images

Based on the assumption that there is no valuable information in the last four MADs,
the first three MADs are presented as an RGB composite. This map might be helpful
to better understand and interpret the physical characteristics of the river and the sur-
rounding area at both epochs and also the change over time. Inspection of Figure 2.20



63

and comparison with Figure 2.15 gives a novel basis for interpretation of the river sta-
tus on both dates.

Figure 2.20: Color composite of the last three MADs (red: MAD2, blue: MAD1, green: MAD3 )

In Figure 2.20, the part of the river that is consistent in both acquisition dates is shown
in dark blue. Yellow indicates the area covered by water in the first and dry in the sec-
ond images. Areas with little change are presented in light blue and green. Finally, the
change in vegetation type and intensity are presented in black and red. Unfortunately,
the change in cloud coverage reduces the quality of the result as in the right branch of
the river.

The first MAD variables provide valuable information about the change, however, they
are partially saturated by noises. Specifically, the parts where there is minor change
in vegetation. In Figure 2.20, the left side of the river appears noisy because the level
of change is negligible in respect to the other parts. Physical objects observed in the
images occupy several pixels, so any change occurring to them must follow a physical
pattern. In this way, applying MAF transformation to highlight areas with a high spa-
tial correlation will effectively improve the final results. If the MAF transformation is
applied to the MAD components, the real change in the physical condition with high
spatial correlation can be determined.

In Figure 2.22, as expected, in the first and second MAFs, changed area with high cor-
relation is clearly recognized. Like MADs, here also after the third MAF, there is no
valuable information about change. Accordingly the last two MAFs mostly contain
noise. As before, the first three MAFs containing the most valuable information are
presented in different color channels of an RGB image.
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MAF 1                                                                     MAF 2                                                                    MAF 3
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MAF 7                                                                    

Figure 2.21: The result of MAF transformation on of the MAD components

Figure 2.22 is clearly improved visually compared to Figure 2.20. In this figure, dark
and light blue indicate the stable area. The area covered with water in the first image
and dry in the second one is shown by yellow and green. The change in vegetation
patterns presents in black especially in the upper part of the image. However noise
reduction is the most significant improvement in this figure, therefore it is easier to
deal with MAF components because the noise is reduced spatially in the primary com-
ponents. Even clouds are detectable in this product as they appear in pink. In the
following figure ordinary image difference is compared with results of MAD and MAF
transformations.

In the ordinary image difference map, Figure 2.23(a), finding the changed area is not
trivial because two images do not have the same origin and scale. Also selecting three
spectral bands out of seven is a hard decision since each band represents a certain
spectral range. Here we placed bands 6, 5, 4 in the color channels based on visual
interpretation. Figure 2.23(b) provides more valuable information about the change
because most of the valuable information is highlighted in the first three MADs. In
Figure 2.23(c), the spatial correlation between neighbouring pixels are maximized. So,
the comparison between Figure 2.23(a) and (c) shows the ability of MAD transformation
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Figure 2.22: The map of the first three MAFs (red: MAF2, blue: MAF1, green: MAF3 )

a                                                                      b                                      c

Figure 2.23: (a) ordinary difference of bands 6, 5 and 4 (b) color composite of MADs, (c) color
composite of MAFs

to capture the real change and also reorder the image bands based on their importance.
Also, MAF transformation keeps the coherency of the changed area and in the first
MAFs, the area with high spatial correlation are highlighted.

2.4 Summary

This chapter has described how transformations like PCA and CCA reduce noise levels
in multispectral imagery and also improve interpretation of the change in two multi-
temporal images.

To isolate the noise level in a multispectral image, PCA is applied to the image bands.
To select the appropriate PCs, two approaches are followed: First, PCs containing the
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majority of the total correlation are selected to reconstruct the image. The result (Fig-
ure 2.5) showed that if only a number of primary PCs are used to reconstruct image
bands, the final product is a clear image which helps to detect the river extent. In the
next experiment, to select appropriate PCs for presentation in color channels, physi-
cal interpretation of different spectral bands is considered. For example, the aim of
this chapter is to highlight the information about the water content. So, first it is de-
fined which spectral bands provide the most valuable information about water content
and then appropriate PCs were selected. Figures 2.8 and 2.9 indicated that if PCs are
carefully selected, the products can exhibit more information than the original spectral
bands.

Another way to take advantage of the PCA transformation for change detection is ap-
plying this transformation to the spectral bands of two multitemporal images simul-
taneously. The result is a number of PCs which is equal to the sum of the two image
bands. By selecting the PCs carefully, the final product illustrates the state of the river
in both dates and also the change that occurred in between. Interpreting the result re-
garding the input images is the biggest obstacle in these techniques. PCA is also used
as a tool to reduce noise and highlight the change in the image difference of two mul-
titemporal images. Figure 2.13 presents how PCA highlights the change between two
images.

In the final section, CCA was applied to two different Landsat 8 images to derive MAD
variations. MAD has special characteristics which make it a valuable tool in change
detection. For example, since it is invariant to gain and offset between image bands,
applying radiometric normalization between two images is unnecessary. Figure 2.20
presents the first three MADs as a RGB image. In this product, different types of change
in river boundaries, vegetations and cloud coverage pattern are highlighted and pre-
sented with different colors. In the next step, by applying the MAF transformation to
the MAD variables, areas with high spatial correlation are highlighted in the primary
MAF variables. Comparison of Figure 2.23 and 2.15 shows that the combination of these
two transformation can capture the major changes between two images.
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Chapter 3

Monitoring lake surface area from
satellite imagery

3.1 Introduction

Lakes and reservoirs are essential elements of the hydrological and biogeochemical
water cycles because of their critical abilities to store, retain, clean and provide water
(Lehner & Döll, 2004). They have also an essential role in making life feasible on the
Earth by modifying many biochemical and hydrological processes. According to the
inventory developed by Verpoorter et al. (2014), more than 117 million lakes larger
than 2000 m2 with a total surface area of 5 000 000 km2 is available. Despite the im-
portance, our knowledge about the spatial distribution and extent of the surface water
bodies is based on the global datasets and inventories. These databases provide only
static information about the location and extent of water bodies. Therefore, annual
and seasonal variations in inland water bodies extent, due to the change in the envi-
ronmental conditions and human activities, are not considered by static datasets. Due
to recent spaceborne technique breakthroughs, the number of available open access
(and commercial) satellite images with high temporal and spatial resolution has been
increased significantly. This situation provides a great opportunity not only to monitor
the long term annual and interannual behaviour of water bodies area but also detect
the extreme events like floods.

The Increased demand for long time series of lake area necessitates the development
of algorithms to extract lake extent from satellite images. In this chapter the main aim
is to develop an automatic algorithm for monitoring lake area. The algorithm consists
of the following steps

• defining a proper search area around the water-land border line,

• applying a classification algorithm,

• generating water area time series and lake extent shapefiles.
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To generate the lake area time series, NIR band of MODIS MOD09Q1 images are used.
After gathering all images in the monitoring period, an image stack in three dimen-
sions is generated in which the third dimension is sampling time. For better under-
standing, Nasser Lake images (Figure 1.6(f)) are used to describe the further steps.

3.2 Methodology

The algorithm, which has three main steps, starts with narrowing down the search
area in a way that the classification algorithm can focus on pixels located around the
water-land boundary. Defining an appropriate search area is a critical step for deriving
accurate water masks. The search area must be restricted based on physical specifica-
tions of the water body. Lakes and reservoirs, as the biggest constant inland water
bodies, are located in the lowest possible altitude of the area. Therefore, except in the
tropical regions, their seasonal behaviour is small. So, the lake consists of a big sta-
ble interior part surrounded by a marginal part. The interior part is always covered
by water and the marginal part is subjected to change due to the natural and artificial
changes.

Crétaux et al. (2016) suggested that the search area could be restricted based on lake
boundaries when the lake is in the maximum and minimum area during the moni-
toring period. Applying this suggestion is time consuming and inaccurate. To define
the lake area extrema, all images in the image stack must be classified once. In this
situation, images acquired on rainy days or during a flood would demolish the search
area.

Due to the Earth gravity water tends to gather in the area with the lowest possible al-
titude and slope. Therefore, pixels located at the high altitude or steep slope can be
removed from the search area. Klein et al. (2014) suggested using a DEM to restrict the
search area. They generated an SRTM-based slope map and then ignored pixels with
a slope steeper than 1%. This approach is pretty suitable to shrink the search area,
however handling an external source of data is its drawback. In this study before start-
ing to extract the lake extent, a DEM-based mask based on the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) data with 30 m spatial resolu-
tion and a slope map derived from ASTER DEM is generated. To modify the search
area, two criteria are defined.

1. Pixels in the search area should not have a slope steeper than 1%.

2. The maximum elevation in the search area should not be higher than 100 m above
the minimum elevation.

Figure 3.1 presents the procedure of defining the DEM-based mask. Figure 3.1(a) is the
MODIS image of Nasser Lake on 25 May, 2000. Figure 3.1(b) is the DEM map of the
Lake and surrounding area from the ASTER mission. A considerable height difference
(about 800 m) is obvious between the main part of the Lake and the neighbouring area.
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Figure 3.1: (a) NIR band of MODIS MOD09Q1 image of Lake Nasser (date: 2000.05.25), (b) ASTER

DEM map of the Lake, (c) slope map derived from the DEM map, (d) DEM-based mask de-
veloped regarding the DEM and slope maps, (e) the result of applying the defined mask on
the image (a). By applying this mask, the search area is reduced from about 58 000 km2 to
6 082 km2 (about just 10% of the initial image).

Figure 3.1(c) is the slope map of the area which varies from 0 to 5%. Figure 3.1(d) is the
generated DEM-based map considering the aforesaid conditions. This mask excludes
pixels with higher altitude or steep slope from the search area. Figure 3.1(e) presents
the result of applying the mask on the Lake image. Except for a small margin around
the main part of the Lake, the rest of the area is removed by the mask. By applying this
mask, the label of pixels inside the mask can be assigned as land before starting the
classification procedure. Applying the DEM-based mask not only reduces the compu-
tational effort but also improves the accuracy of the lake boundary extraction. Mainly
because, the possibility of assigning isolated pixels far from the lake boundary is re-
duced by restricting the search area by the DEM-based mask.

To improve the accuracy of the final product, the search area is still further modified.
The lake surface can be separated into two parts. The middle part is always stable and
covered by water during the monitoring period. The marginal part has a time-variable
area due to the annual and interannualannual behaviour of the lake. The main aim of
the algorithm is to capture the chance in the marginal part, since the middle part has a
constant status and its label as water can be assigned confidently.
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Removing the middle part of the lake from the search area also ignores a number of
deficiencies which may occur in optical imagery. If the lake surface water is calm
and smooth, a perfect reflection of the sunlight might happen along the track of the
satellite. Therefore, this part of the water surface appears bright in the image. This
phenomenon is called sunglint. Moreover, cloud coverage always threatens optical
imagery. The area covered by cloud also appears bright in the NIR band. Both of the
mentioned destructive effects would be avoidable by restricting the search area.

For defining an appropriate constant-water mask, first, the long term variations of
pixel values located at different parts of the lake must be analysed.
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Figure 3.2: Time series of three different types of pixel value behaviour during the time. Pixel
(a) is always covered by water. Pixel (b) is located outside the lake territory. Pixel (c) is
located in the borderline between the water and land.

Figure 3.2 presents three different types of pixels available in the search area. The time
series in Figure 3.2(a) represents the behaviour of a pixel which is always covered by
water during the monitoring period. It has almost a constant low value (near zero)
because water absorbs most of the sunlight energy in NIR domain. In some epochs, the
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pixel has a larger intensity value due to the atmospheric effect, sensor error, sunglint
or cloud coverage. The time series in Figure 3.2(b) is a representative of pixels located
outside the lake boundary. It is always dry and the variation in the value just indicates
the change in vegetation type and intensity during the year. As a result, only a tiny
annual behaviour is detectable. In some epochs, due to the sensor error and cloud
coverage, a number of blunders are visible. The last time series (Figure 3.2(c)) is an
example for pixels located in the coastal area of the lake. There is a huge change in
their pixel value in different seasons. They have a low value whenever covered by
water and a high value when they are dry.

Pixels categorized in the third group (Figure3.2(c)) are the main interest in lake area
monitoring, because unlike the first and second group, the third group is responsible
for the change in the lake area over time. Part of pixels in the second group are already
removed in the previous step by applying the DEM-based mask.

For removing the area in the first group, a mask regarding the behaviour of the pixel
value must be developed. Since, a pixel is located in the middle of the lake, it will
always be covered by water. Therefore its value should be relatively low and constant.
In this area, only small variations in the pixel values are expected due to changes in the
water column and atmosphere properties. So, assessing the mean and variance of the
pixel values is a way to distinguish pixels in the first group. In Figure 3.3, the process
of generating water mask is described.

Figure 3.3(a) is the map of mean values. As it is expected, the mean value of pixels
in the middle of the lake is almost zero. Closer to the lake boundary, the mean value
also increases due to the considerable difference in pixel value in wet and dry seasons.
Figure 3.3(b) is the variance map of the search area which shows a similar behaviour
as the mean map. Near-zero values appear in the middle of the lake and higher values
are toward the borders. Both maps show that pixels located in the middle of the lake
(with red color) have a constant label (as water) over time because they have low and
almost stable values.

Accordingly, a constant-water mask is defined by applying a near zero threshold on
the mean and variance maps (Figure 3.3(a,b)). The masked pixels are labelled as wa-
ter before starting the classification procedure. Therefore, this part of the lake can be
omitted from the search area. Figure 3.3(c) shows the constant-water mask generated
based on the mean and variance maps. At the end, the final search area is restricted
just to pixels which are subject to change between water and land during the time.

To extract the lake boundary, a classification algorithm must be applied to the image
stack after modifying the search area. Selecting an appropriate classification technique
is the most important part of a monitoring process because it is affected by spatial,
spectral, thematic and temporal constraints. Even after restricting the search area, the
classification algorithm deals with a relatively large number of pixels. Therefore, the
selected classification algorithm must establish a balance between the accuracy of the
result and the computational effort.
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Figure 3.3: (a) and (b) are the maps of mean and variance of the pixel values during the moni-
toring period. (c) presents the water mask generated regarding the mean and variance maps.

The performance of region-based classification algorithms to detect the lake extent are
significantly better than pixel-based algorithms because they consider spatial correla-
tion in addition to the pixel values. On the other hand, their high computational effort
restricts their application especially when dealing with a large dataset. Supervised
classification algorithms might be another option, since they have proven their capa-
bility in many applications. On the other hands, they are dependent on the training
data. The accuracy and distribution of training dataset have a critical role for the final
result quality. However, in this application specifying the training dataset is almost
impractical. Defining a unique training data sets at each epoch needs evaluate each
image separately which requires too much effort and time. On the other hand, con-
sidering the same training sample for the whole image stack reduces the accuracy of
classification significantly.

Based on this situation, applying an unsupervised classification algorithm to extract
the lake boundary is the most appropriate solution. This group of algorithms does
not need training data and can be performed automatically. They are fast and easy
to implement. Under certain conditions they provide accurate results. Most of the
unsupervised classification algorithms decide about the label of a pixel based on the
distribution of pixel intensities. So, before we select an appropriate unsupervised clas-
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sification algorithm, first histogram of pixel values for a few random epochs are anal-
ysed in Figure 3.4.
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Figure 3.4: Four examples of pixel value histogram of modified search area of Nasser Lake.

First of all, Figure 3.4 indicates the importance of restricting the search area. If the
water mask was not applied, then the accumulation of pixels with low values in the
primary part of the histogram would have reduced the performance of any classifica-
tion algorithm. This figure presents four histograms for different epochs. In general,
it is obvious that the pixel value distribution varies from image to image. In all ex-
amples, a big portion of pixels, representing the wet area, has low value and gathers
in primary columns. But the remaining pixels are distributed with different patterns.
The pixel value in the NIR band is sensitive to water depth, amount of chlorophyll and
suspended particles in the water content, vegetation type and density. Any change in
the aforementioned parameters has an impact on the image histogram shape.

Considering the Figure 3.4, it is not appropriate to apply a static threshold to all images
for extracting lake boundary. Defining and applying a dynamic threshold for each im-
age separately is the next solution. Klein et al. (2015) introduced a method for defining
a threshold for each MODIS image by using the MODIS static water mask (MOD44W).
They collected all pixels flagged as water in MOD44W water mask from the NIR band
of each image as a training set and then consider the mean value plus twice standard
deviation as the threshold value for the whole image. After a number of preprocess-
ing and filtering steps, their method provides acceptable dynamic water masks on a
global scale. But at the small scale, this solution is not applicable. Since the majority of
selected pixels locate in the middle of the lake, they have a very low pixel value and
reduce the threshold value. One can think about applying other dynamic thresholding
algorithms. The main assumption of most of these algorithms is to consider the image
histogram as a combination of two normal distributions. However, this assumption is
not always valid. For example, it is not possible to assign two normal distributions for
histograms like Figure 3.4(a, d). Therefore, some thresholding algorithms can not con-
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verge and provide an answer. As a result, applying a dynamic thresholding algorithm
is not the solution for extracting the lake boundary accurately.

In this situation, the Iterative Self-Organizing Data Analysis Technique (ISODATA), as
an unsupervised classification, is the best solution. It does not need initial values or
training samples. Unlike k-means clustering, ISODATA does not require the exact num-
ber of clusters as prior knowledge.

The ISODATA procedure is introduced by Ball & Hall (1965). It finds the appropriate
cluster for each pixel in an iterative manner. Moreover, ISODATA has the ability to
merge or split clusters, with respect to the defined criteria (Memarsadeghi et al., 2007).
To perform ISODATA, the following parameters must be defined (this overview of the
algorithm is summarized from Memarsadeghi et al. (2007)):

• initial number of clusters (INTCLUS), minimum (MINCLUS) and maximum num-
ber (MAXCLUS) of clusters,

• maximum number of iterations (MAXITR),

• minimum number of pixels that can create a cluster (MINPIX),

• maximum standard deviation among pixels value in the cluster (MAXSTD),

• minimum distance between two cluster centers (MINDIST),

• maximum number of clusters that is possible to merge in one iteration
(MAXMERG).

After adjusting initial parameters, the algorithm performs the following steps to clas-
sify pixels into different clusters.

1. defining center of initial clusters randomly after determining the INTCLUS

2. assigning each pixel to the closest cluster center and generating clusters

3. removing clusters which have fewer members than MINPIX. If any cluster is elim-
inated in this step, the number of clusters is adjusted

4. relocating the centers of remaining clusters to the mean value of all pixels associ-
ated with that cluster

5. calculating the average distance of all points in the cluster with their cluster cen-
ter and, computing the overall average distance

6. jumping to step 9 if the algorithm reaches the MAXITR or if number of clusters is
larger than MAXCLUS and lower than MINCLUS

7. computing the standard deviation for all pixels within their cluster

8. splitting each cluster with a maximum standard deviation larger than MAXSTD
into two clusters. The center and amount of pixels in each cluster are defined
based on the variance of the primitive cluster. If any cluster is split in this step,
the algorithm jumps back to step 3
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9. calculating the distance between all pairs of cluster center and merging each pair
which has a distance less than MINDIST. Number of clusters supposed to merge
must be less than MAXMERG

10. terminating the algorithm if it reaches the MAXITR, otherwise return to step 3.

Setting the initial parameters is one of the critical steps in the segmentation procedure.
In this study, initial parameters are tuned by visual comparison between the number
of extracted lake masks and the original images. For this purpose, a number of images
from different seasons and years are selected.

All images in the image stack are segmented into different clusters by applying ISO-
DATA algorithm. The number of clusters can be varied between images. Figure 3.5 is
one example of a lake mask derived by applying ISODATA.

(a) (b) (c)

Figure 3.5: (a) is the image of the modified search area which is the input for the ISODATA

algorithm. The blue part is the constant-water mask with an area of 2 602.5 km2. After
applying this water mask, the final search area is reduced to 3 479.7 km2. (b) is the result
of the ISODATA classification, the search area divided into 4 clusters. In (c), the first cluster
(yellow) is labelled as water and joined to the water mask. The other clusters are labelled as
land.

Figure 3.5(a) presents the modified search area after applying two defined mask. By
applying them, the search area is reduced from 58 408 km2 to about 3 479.7 km2. It
means that the input to the ISODATA algorithm is only about 6% of the lake and sur-
rounding area. Figure 3.5(b) presents the result of ISODATA algorithm. The search
area is divided into four clusters by ISODATA. The lake extent is defined by combin-
ing the water mask (blue) and the first cluster (yellow). In the third lake mask (Figure
3.5(c)), many isolated pixels, that do not belong to the lake are visible. These pixels
are wrongly labelled as water and they are the major source of error in lake area mea-
surements. The coarse spatial resolution of MODIS images and misclassification by the
algorithm are the main reasons for this error. To eliminate them, the biggest contin-
uous water body is considered as lake area. Figure 3.6 presents two examples of the
final result of the algorithm.
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Figure 3.6: Two examples of lake extent shapefiles. The Lake area is 6 017.5 km2 on Nov 16,
2000 and 3 671.7 km2 on July 20, 2001.

Figure 3.6 presents the lake boundary at two different epochs. Considering the dif-
ference between the two shapefiles, the lake area variation mostly takes place in the
southwest and northeast parts. Also by increasing the water volume, a number of
small branches (khors) appear all around the lake. Generating lake area time series
from the lake shapefiles is the final step of the proposed algorithm.
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Figure 3.7: Time series of Nasser Lake surface water area. Monitoring period 2002–2015

Figure 3.7 presents the time series of Nasser Lake area between the years 2000–2015.
The blue dots in the time series represent the satellite observations. The lake has a
clear annual behaviour and its area varies between 6 100–3 150 km2. The mean area
of the lake is 4 227 km2 and the standard deviation is 835 km2. Since Nasser Lake is
an artificial lake, its water volume during the years has been regulated by the Aswan
Dam. Therefore, the lake presents various different behaviour over the years. For ex-
ample, the patterns of annual behaviour have changed in different years. For a better
understanding of the lake area variations during the monitoring period, water cover-
age frequency map of Nasser Lake will be presented. The value for each pixel in water
coverage frequency map is defined by using the following equation
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P(i, j) =
1
N

N

∑
n=1

Ln(i, j) (3.1)

In this equation, Ln(i, j) is the label (zero for land and one for water) of the pixel lo-
cated in row i and column j for each image n and N is the number of images. In other
words, water coverage frequency for each pixel presents the ratio of number of epochs
in which the pixel has been labelled as water to the total number of epochs. For sim-
plicity, this value is presented as percentage. For example, if a pixel has a value equal
to 50% (green color), it means that this pixel is covered by water in the half of the
images.
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Figure 3.8: Water coverage frequency map of Nasser Lake for the period 2000–2015

Considering Figure 3.8, the main part of the lake is always covered by water. By in-
creasing the lake water level, first the southwestern part of the lake covers by water
and then small khors all around the main body fill with water. In the next section, the
time series of Nasser Lake water area together with four other examples are presented
and validated indirectly by comparing with in situ and altimetric water level measure-
ments, since a strong positive correlation must exist between the different geometrical
parameters of water bodies.

3.3 Results and validation

3.3.1 Nasser Lake

To validate the derived product, time series of lake area and level are plotted together.
Figure 3.9(a) presents the comparison between the behaviour of lake area and in situ
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water level. Figures 3.9(b, c) present the time series of water area and water level time
series derived from satellite altimetry measurements at two different virtual stations.
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Figure 3.9: Comparison between Nasser Lake water area time series with in situ water level
measurements (a) and altimetric water level measurements at two virtual stations (b, c).
Monitoring period: 2000–2015

The high correlation between the lake area and in situ water level (Figure 3.9(a)) rep-
resents the significant performance of the algorithm to extract the lake extent. Almost
all considerable variations in the lake water level are reflected in the lake area time
series. However, small variations in the lake area especially in the dry season reduce
the correlation between two time series. Time series of lake area and altimetric water
level at virtual station 1, which is located in the north part of the lake, is plotted in
Figure 3.9(b). Again, high correlation (0.9) between two time series indicates a good
agreement between the behaviour of water area and level. Low temporal resolution of
ENVISAT makes it hard to capture short-term variations in water level which are vis-
ible in the lake area. A comparison between lake area and level at the second virtual
station, located in the south west of the lake, is presented in Figure 3.9(c). Like the
first virtual station, the high correlation between two time series represents the agree-
ment between them. Although the lake has a very complex shoreline, the agreement
between variations of lake water area and level admit that the algorithm can extract
the lake extent accurately. Figure 3.10 shows the scatter plot of all three pairs of time
series in Figure 3.9.

The scatter plot shows a non-linear relationship between the lake water area and level.
The shape of the point cloud depicts the different lake bathymetry. For example, the
lake bed has a steep slope when the lake level is below 172 m. When the water level is
between 172 m and 176 m, the slope of the lake bed gets milder and the mildest slope
appears when the water level is above 176 m. The point cloud gets wider when the
lake area is between 4000–5000 km2, mostly because the algorithm could not define the
correct lake extent.
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Figure 3.10: Scatter plot of water area vs. level time series of Nasser Lake.

Black and brown dots in Figure 3.10 reflect the relationship between lake area and
altimetric water level in both virtual stations. Like in situ water level, altimetric water
level measurements also indicate the non-linear behaviour between lake area and level.
Due to less simultaneous observations, it is hard to interpret the lake geometry via
altimetric water level measurements.

To evaluate the performance of the algorithm, a quantile matching model between
lake area and in situ water level measurements is developed. As it is presented in
the previous figures, a monotonic dependency exists between lake area and level. So,
any empirical function establishing a connection between lake water area and level
is a nondecreasing function. On the other hand, the quantile function is also a non-
decreasing function. Also a nondecreasing function (here relationship between water
area and level) of a nondecreasing function (quantile function) must itself be a non-
decreasing function. Therefore, a look-up table between lake water area and level by
means of their quantile functions (instead of the simultaneous measurements ) can be
established. This technique is applied by Tourian et al. (2013) for river discharge esti-
mation using water level from satellite altimetry. Quantile look-up table is preferred to
conventional empirical rating curve, due to the following reasons:

• Synchronous measurements in both datasets are not necessary for developing a
quantile look-up table.

• Quantile function inherently reduces the effect of uncertainty in the dataset.
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• If measurements spread over the whole data distribution, a look-up table can
estimate the unknown variable accurately.

• The mismodeling error is eliminated by avoiding fitting a line to the scatter plot.

The quantile function, Q(.), provides a way of describing the statistical distribution
of dataset (Gilchrist, 2000). The following equations describe the quantile functions of
lake area and level

QA(p) = inf{XA ∈ IR : p ≤ F(XA)} (3.2)

QL(p) = inf{XL ∈ IR : p ≤ F(XL)}, (3.3)

where XA and XL refer to the lake water area and level. F(.) represents the Cumulative
Distribution Function (CDF). For a given probability 0 ≤ p ≤ 1, the quantile function
determines the maximum value that the dataset (XA or XL) can achieve. Lake area and
water level can be linked by the monotonic function T(.)

XA = T(XL). (3.4)

Instead of mapping the data directly, we map the quantile functions.

QA = T(QL). (3.5)

Figure 3.11 shows how the quantile look-up table is determined. In this Figure, quan-
tile functions of lake water area and level are presented. Also the developed quantile
look-up table together with simultaneous observations point cloud are plotted.

Figure 3.11(a, b) present the quantile functions of lake water area and level measure-
ments. To derive the quantile functions, first both lake water area and level are sorted
ascending, then the rank of each dataset normalized through

pi =
ki

N + 1
. (3.6)

In this equation, pi is the occurrence probability of a certain value, ki is the rank of
the sorted value and N is the number of observations. Finally for each corresponding
probability, the sorted value is plotted. The quantile functions declare the probabil-
ity that a certain lake area or level occur during the monitoring period. Therefore, a
direct relationship between the two quantile functions at the corresponding probabil-
ities (Figure 3.11(c)) represents a look-up table between lake water level and area. In
Figure 3.11(d), the estimated quantile look-up table is plotted on the scatter plot of si-
multaneous observations. The line passes exactly through the point cloud. To evaluate
the performance of lake area measurements and the quantile look-up table, the lake
area time series is reconstructed by using the in situ water level measurements and the
derived quantile look-up table, Figure 3.12.

The comparison between two time series in Figure 3.12(a) presents the overall good
agreement between the measured and estimated lake area in general. In Figure 3.12(b),
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Figure 3.11: (a) and (b) are the time series of in situ water level and lake water area of Nasser
Lake. (c) and (f) are probability density functions of water level and area measurements.
(d) and (g) are cumulative distribution functions of the two dataset. (e) and (h) are quantile
functions of in situ water level and lake area measurements. (i) is the quantile look-up table
derived from both quantile functions. In (j) obtained quantile function is plotted together
with simultaneous lake height and area measurements.

the difference between two time series is plotted together with the lake water area
measurements. The average difference between two time series is about−3.3 km2 with
a standard deviation equals to 261 km2. In the scatter plots in Figure 3.12(c, d), the
measured lake area vs. the difference between measured and estimated are plotted.
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Figure 3.12: (a) Lake water area measurements and estimation via quantile look-up table. The
time series in (b) is the difference between estimated and measured lake area. In this time
series, two epochs with the largest positive and negative residuals are highlighted for more
investigation. (c,d) The scatter plot of the measured lake area and its difference with esti-
mated ones.

In the scatter plots, over- and underestimated values by the model are separated by
different colors.

Misclassification and mismodeling of the one-to-one relationship between lake area
and level are the main sources of differences between the two time series in Figure
3.12(a). Therefore, the residual between two time series (Figure 3.12(b)) can be consid-
ered as the uncertainty of lake masks. Considering the scatter plot in Figure 3.12(d),
the behaviour of the lake area and uncertainty is uncorrelated. It means that the lake is
always big enough to extract from MODIS images with a relatively coarse spatial reso-
lution. About 89% of lake area measurements have the uncertainty less than 10% of the
lake area and just five measurements have the uncertainty higher than 20%. The mean
relative uncertainty is approximately 4.5% with a standard deviation equal to 4.1%.
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To address the question about the performance of the algorithm, MODIS images and de-
rived lake masks are compared for epochs with the largest under- and overestimation
are presented in the Figure 3.13.

(a) (b)

(g) (h)

(e) (f)

(d)(c)

2000.06.27 2006.11.17

Figure 3.13: Comparison between Nasser Lake derived shapefile and MODIS image on 27 June,
2000 (a) and 17 November, 2006 (b). The shapefiles are compared in three different parts in
(c–h).

Figure 3.13(a) is the MODIS image and derived mask on 2000.06.27. In this epoch, the
algorithm measured the lake area 800 km2 larger than the estimation by the model.
The comparison shows that the algorithm detects all small branches along the lake.
Since these branches are very small, misclassification of pixels around them is the main
suspect for increasing the uncertainty in the lake area estimation.

Figure 3.13(b) is the satellite image and the derived lake mask on 2006.11.17 which has
the largest uncertainty. In this epoch, there is more than 1000 km2 difference between
the measured and the estimated lake area. The reason for this large amount of error
is obvious after comparing the image and the mask. The algorithm can not detect a
number of small khors along the lake especially in the middle part, due to their small
size. In the north of the lake, the algorithm ignored three small branches connected
to the lake. The algorithm omitted them during the cleaning step because it detected
them as separate water bodies since the connection between these branches and main
lake body is smaller than one pixel.

3.3.2 Rukwa Lake

Rukwa Lake (Figure 1.6(g)) in Africa is the next lake monitored in this study. Moni-
toring is a challenging task because of its short time variations in lake level and area,
despite the fact that shorelines are stable.

To extract the lake area, the procedure described in the previous section is applied to
each MODIS image. Figure 3.14 provides two epochs of derived lake shapefiles, when
it has its maximum and minimum water area.
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Figure 3.14: (a) is the MODIS image of the Rukwa Lake on April 15, 2002. (b) is the MODIS images
of the lake on October 21, 2007. (c,d) are the Lake shapefiles extracted by the algorithm. (e)
is the comparison between extracted Rukwa lake shapefiles on two different dates

The algorithm is able to detect the lake shoreline accurately in both dry and wet sea-
sons. The lake in the Figure 3.14(b) is partially covered by clouds, nevertheless, the
algorithm can capture the water-land boundaries.

Figure 3.14(e) shows the difference between the two epochs, which is about 821 km2.
The north and south coasts are subject to change between two epochs. Rukwa Lake
is restricted to extend from the east side due to the higher elevation of this side of the
shoreline and basin. Figure 3.15 presents the lake area time series .
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Figure 3.15: Rukwa Lake area time series. The monitoring period is 2002–2015

Figure 3.15 is the time series of lake area during the years 2002–2015. In the first year,
lake was larger than 5 900 km2, but its behaviour started to change from the year 2004.
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The lake lost its area with a negative trend until 2006 and experienced stronger annual
variations during this time frame. Therefore, the difference in lake area between wet
and dry seasons increased. After 2006, the negative trend was stopped and the lake
started to gain area slightly in the following years. So, a small positive trend is obvious
between years 2007–2010. But in the last five years (2000–2015), a small negative trend
is visible again. Water coverage frequency map for Rukwa Lake is presented in the
Figure 3.16.
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Figure 3.16: Water coverage frequency map of Rukwa Lake for the period 2002–2015

Figure 3.16 indicates that lake area has not changed considerably during the moni-
toring time frame and the majority of lake boundaries have always remained stable.
Due to the topography of the region, the northeast and east side of shoreline has been
constant. Therefore, the annual variations of the lake caused change in the south and
northwest part of the shoreline. To assess the performance of the proposed algorithm,
in the next figure, the lake area is compared with altimetric water level time series
obtained from HydroSat data repository.
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Figure 3.17: Comparison between Rukwa Lake water area (blue) time series with altimetric
water level(black).

The comparison between Rukwa lake water level and area in Figure 3.17 shows a con-
sistent agreement between their behaviour. The correlation between the two time se-
ries is 0.75 which is acceptable considering the dynamic behaviour of the lake. Like
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the lake area, the negative trend in water level between the years 2002–2006 is obvious.
The lake water level decreased about 4 m during this period. Subsequently, the water
level increased until the end of year 2010 and again by starting the year 2011, a tiny
negative trend is visible. Therefore, water level variations also followed the lake area
in terms of trends. A phase shift between the two time series is obvious in Figure 3.17,
especially in the dry season. As a result, the point cloud got wider in the scatter plot. To
find the reason for the phase shift, lake water area and level time series are compared
with monthly precipitation of Rukwa basin from the GPCP dataset. It is assumed that
the amount of precipitation in the basin is the main reason for lake water area and level
variations. As a result, both time series must follow the behaviour of the precipitation
variations.
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Figure 3.18: Rukwa basin monthly precipitation is plotted together with altimetric water level
in (a) and lake surface area (b)

In Figure 3.18(a), the agreement between precipitation and water level variations is
clear. As long as there is no precipitation over the basin, lake level decreases. Then,
in the rainy months, the water level starts rising. But by comparing lake water area
and precipitation time series, it is clear that lake area measurements are not so accurate
especially in the rainy months. Regarding this Figure, by increasing the precipitation,
lake area decreases in some epochs. This pattern is against the lake natural behaviour.
Cloud coverage in the MODIS images is the first suspect for this destructive pattern.
For a deeper investigation of this problem, images acquired at the end of the year 2007
and starting the year 2008 are shown in Figure 3.19

To understand the reason why water level starts rising but lake area still decreases at
the end of each year, MODIS images related to end of the year 2007 and beginning of
2008 are investigated. Rukwa is a closed basin, therefore the amount of precipitation
during the wet season should accumulate in the lake. Accordingly, lake area must
increase from Figure 3.19(a) to Figure 3.19(b), but the algorithm estimated a smaller
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(b) 2007.12.18(a) 2007.12.11
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Figure 3.19: Five MODIS images of Rukwa Lake from different epochs

value for the lake area in the second epoch. By looking at the lake image in the Figure
3.19(b), the reason is obvious. Due to the cloud coverage in the upper part of the
lake shoreline, the algorithm can not define the proper shoreline and underestimates
the lake area. In the next epoch, Figure 3.19(c), the cloud covered a bigger portion of
the lake boundary, therefore, the algorithm made a bigger mistake in area estimation
from the previous epoch. For Figure 3.19(d) the situation is similar and part of the
shoreline is covered by cloud. Finally in the last image, the algorithm can extract the
lake shoreline accurately. Since the variation of the lake area is negligible, the effect of
cloud coverage is obvious. As a result, it could be concluded that cloud coverage is
responsible for the occurred phase shift between water area and level.

3.3.3 Mosul Dam Lake

Mosul Dam Lake (Figure 1.6(h)) is the next case study. This artificial lake was gener-
ated by building the Mosul Dam across the Tigris River in the year 1986. Because of
the poor maintenance of the dam, the government decided to reduce water level from
330 to 319 m (Annunziato et al., 2016). The following figure presents the two MODIS
image and derived shapefiles of the lake at its maximum and minimum state.

The proposed algorithm can extract complex shoreline of the lake in both cases. This
lake has variable shorelines, so by increasing the lake water volume, lake extent in-
creases from all directions. By reducing the water level in the year 2006, the north
western part of the lake had disappeared. Apart from the north western part, the lake
area decreased right behind the dam in the south east part. The comparison between
two shapefiles in Figure 3.20(e) presents the evolution of the lake over the time.
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Figure 3.20: (a) is the MODIS image of the Mosul Dam Lake on June 1, 2002. (b) is the MODIS

images of the lake on November 26, 2011. (c,d) are the lake shapefiles extracted by the
algorithm. (e) is the comparison between Mosul Lake shapefiles on two different dates
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Figure 3.21: Mosul Dam Lake area time series. The monitoring period is 2002–2017

Figure 3.21 shows a significant annual behaviour. The difference between lake area in
dry and wet season is more than 100 km2, which is about 40% of the average lake area.
But, after the year 2012, the annual amplitude of the lake decreased. The average lake
area is 262 km2 with a variation equal to 49 km2.

Figure 3.22 presents the frequency map of water coverage. Regarding the water area
time series, the red area represents the lake boundary before reducing the water level
and the green area indicates the annual behaviour of the lake. The southeastern and
middle part of the lake are always covered by water so they are presented in blue. The
northwestern part with light blue color indicates that this part was dry in some epochs.
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Figure 3.22: Water coverage frequency map of Mosul Dam Lake for the period 2002–2017

Regarding the lake area time series, these epochs belong to the dry seasons of the years
between 2010–2012.
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Figure 3.23: Comparison between Mosul Dam Lake water area time series with altimetric water
level together with its scatter plot

Figure 3.23 presents the comparison between derived lake area and altimetric water
level time series. The altimetric time series is available from the year 2002 until 2011
from DAHITI dataset. The high correlation (0.96) between two time series admits that
their behaviours have a good agreement together. Annunziato et al. (2016) mentioned
that the Iraqi government decided to reduce the lake water level from 330 to 319 m
in the year 2003. But both water area and level time series show reduction after the
year 2006. By comparing the lake area after and before 2006, it is understood that the
Mosul Lake shrank about 100 km2 due to 10 m reduction in water level. The scatter
plot in Figure 3.23 shows the linear relationship between lake water level and area.
The accumulation of simultaneous observations is in the middle part of the scatter plot
since the water level varied between 310 and 320 m. Since this range belongs to the
water level in the dry season in 2002–2006 and wet season in 2007–2017.
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3.3.4 Tharthar Lake

Tharthar Lake (Figure 1.6(i)) is another lake located in the Middle East. The main
function of this artificial reservoir is to collect the overflow of the Tigris River during
the flood season. On the other hand, Tharthar Lake feeds Tigris and Euphrates Rivers
respectively in the dry season. In the next figure, two examples of MODIS images and
their extracted lake extent shapefiles are presented.
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Figure 3.24: (a) and (b) are images of Tharthar Lake on May 24, 2004 and March 14, 2009 and
(c) and (d) are their extracted shapefiles. (e) is the comparison between Tharthar Lake on
two different dates

It must be mentioned that the small water body in the north part of Figure 3.24(a) is
not considered as being within the search area, because it is separated from the main
body of the lake. The lake image in the Figure 3.24(a) and its corresponding shapefile
present the state of the lake at its maximum area (2 030 km2) and Figure 3.24(d) presents
the lake extent when the Lake has its minimum area (1 483 km2).

The comparison between lake images and shapefiles shows that the algorithm can ex-
tract the lake extent accurately. By looking carefully at Figure 3.24(a) and (c), it is clear
that the algorithm could not detect the small variations in the lake extent especially
in the west coast. The lake has a more complex boundary in Figure 3.24(b), however
the algorithm detected this complex pattern. Finally, the comparison between the two
shapefiles are presented in Figure 3.24(e)

Like previous cases, dark and light blue colors represent the maximum and minimum
lake area between the years 2002–2017. This comparison shows that the lake shrinks
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almost from all directions during the dry season. Figure 3.25 presents the Tharthar
Lake water area time series.
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Figure 3.25: Tharthar Lake water area time series between the years 2002–2017.

Starting 2002, the lake area increased significantly. Then, in the year 2008, it was shrink-
ing to its previous area. Starting 2009, the lake area was almost equal to the measure-
ment on the first epoch in the year 2002. Unlike the previous examples, this lake has
not a clear annual variation.
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Figure 3.26: Water coverage frequency map for Tharthar Lake for the period 2002–2017

The water coverage frequency map of Tharthar Lake is presented in Figure 3.26. The
major part of the lake is blue which means that this area is always covered by water.
The lake gained and lost area from the north side during the positive and negative
shift, therefore this area is presented in light blue, green and yellow. The green and
yellow pixels are subjected to the annual behaviour.

Figure 3.27 compares water area and lake level. In general, the two time series have
high correlation of 0.9. Like the lake area, the positive and negative shifts in the water
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Figure 3.27: Comparison between Tharthar water area and altimetric water level

level are also visible in the years 2003 and 2008. However, the annual behaviour is
more obvious in water level variation. In the period 2002–2009, the behaviour of the
two time series is very similar, but after 2010 there is a slight disagreement between
them, due to a complex of the lake boundary when the water level is below 45 m. In
this period, variations of lake area are too small and it is hard for the algorithm to
extract the proper lake boundary from MODIS images with 250 m spatial resolution.

3.4 Monitoring the desiccation of Lake Urmia in Iran

Urmia Lake is the last example in this chapter. To monitor the Urmia Lake water area,
MODIS MOD09Q1 images with 8 days temporal resolution and 250 m spatial resolution
are gathered and make them ready to apply the proposed algorithm to extract the lake
boundary. Figure 3.28 presents five images from different years, each in February.

2000.02.26          2006.02.26           2010.02.26           2014.02.26           2017.02.02     

(a) (b) (c) (d) (e)

Figure 3.28: Examples of MODIS MOD09Q1 images of Urmia Lake from different years (Febru-
ary)

Comparison between them shows the catastrophic desiccation of the lake. The reduc-
tion in area is visible from the year 2006 until 2010 and after 2010, Urmia Lake started
to dry almost from all directions. Figure 3.28 demonstrates that the situation of the lake
is an environmental disaster. To analyse more carefully the situation of the lake during
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2000–2017, the proposed algorithm is applied on lake images. Like previous examples,
the search area is restricted by DEM-based mask. But due to the drastic change in the
lake boundary during the monitoring period, the constant-water mask does not apply
in this case. In the Figure 3.29, the derived lake mask on February 2000 is compared
with lake masks of the same month in the following even years.

Figure 3.29: Shapes of the Urmia Lake over the years 2000–2016.

The lake mask on February 26, 2000 is considered as the reference mask for the com-
parison with the following years. In the snapshot acquired in 2002, the lake started to
shrink from the north east, east and especially south east. From 2002 to 2006, the lake
area decreased at a steady pace from the same directions. After 2006, a clear desicca-
tion is visible especially in the south part. In 2010, the south western part of the lake
started to become dry. After 2010, the situation of the lake became irreversible, and ev-
ery year, the Urmia Lake lost a huge portion of its area. In the year 2014, it endured the
worst situation during the monitoring period. In this year, the Lake has lost the ma-
jority part of its area especially in the southern part. To rescue the lake from complete
disappearing, Iran government restricted farmers to use groundwater for farming and
pays them to stop farming in the basin. As a result, lake surface water increased in the
year 2016. Time series of lake area measurements together with their nonlinear trend
is presented in the Figure 3.30 for the years 2000–2017.

In the early years of monitoring, the lake had a slight annual behaviour with a small
negative trend. After the year 2007, the negative trend and also the annual behaviour
are more obvious. The lake reached its smallest area in the summer of 2014 and 2015.
However, fortunately, the desiccation stopped in the following year and the lake re-
turned to its state of January 2012.

Due to complex behaviour of the time series, assigning a linear trend to the lake area
variations is not practical. So singular spectrum analysis (SSA), a nonparametric es-
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Figure 3.30: time series of Urmia Lake surface water area together with its nonlinear trend.

timation method, is applied to the time series of lake area to separate the nonlinear
trend and time-variable seasonal signals. In this way, the annual signals do not affect
the trend estimation procedure (Blewitt & Lavallée, 2002). This technique is a data-
driven approach to extract information from short and noisy time series without prior
knowledge of dynamics affecting the time series (Broomhead & King, 1986). The ob-
tained trends by SSA are not necessarily linear, so oscillations can be modulated in both
amplitude and phase (Ghil et al., 2002). In this study, the window size for SSA was three
years and the Matlab code developed by Chen et al. (2013) was used.

At the beginning of monitoring period, the Urmia Lake had an area about 5 000 km2. In
addition to annual behaviour, the lake had a small negative trend due to the overuse
of the water resources in the basin. Regarding the nonlinear trend, Urmia Lake lost
about 74 km2 every year from 2000–2006. From the year 2006, the rate of desiccation
became faster. This fact is clear in both time series and trend. The lake approximately
lost about 283 km2 per year between the years 2006–2010. After 2010 the rate of decline
increased dramatically. In July 2014, the lake had an area about 890 km2 which is less
than one-fifth of its area at the beginning of the monitoring.

Due to the change in the different geometry of lake seabed, the annual variations are
more obvious after 2008. In the period of 2010–2015, Urmia Lake lost almost 330 km2

per year which is the highest negative rate. The reduction rate nearly stopped after
2015, the lake experienced positive trend for the first time. In this way, between the
years 2015–2017, Urmia Lake has gained nearly 300 km2.

Figure 3.31(a) presents a map of water coverage frequency for the whole monitoring
period (2000–2017); Figures 3.31(b, c, d) are maps for three sub-period. The middle
part of the north part of Urmia Lake is always covered by water. The rest of the middle
part is covered by water in between 60–90% of epochs. A big portion of the lake area
covers by green representing pixels covered by water in 30–60% of the images. Finally,
marginal pixels, that belonged to the lake in the early years (2000–2006), are presented
in yellow and red colors. Figure 3.31(b) shows that the lake was shrinking from the
south part in the first six years and the rest of the shoreline was just subjected to the
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Figure 3.31: Water coverage frequency maps for Urmia Lake. (a) is for the period 2000–2017,
(b) is for the first six years 2000–2006, (c) for the period 2006–2012 and (d) for the last 5 years
2012–2017.

annual variation. After the year 2006, the desiccation of the lake was accelerated at
the southern side. Also in this period, the north part of the lake started to decline. In
2012–2017, only a small portion of the lake on the north side always covered by water.
The lake experiences a considerable annual change in this period. A large number of
pixels with light blue and green colors indicate that the major part of the lake is subject
to the annual cycle in this period.
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Figure 3.32: Comparison between Urmia Lake surface water area and in situ water level time
series.
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In order to validate lake area estimations, Figure 3.32, water area time series compared
with in situ water level measurements. The high correlation between two time series
(0.96) reflects a high consistency. Like surface area, water level measurements also
shows a negative trend in the first fifteen years of monitoring. After 2015 a tiny positive
trend in water level is visible. This validation shows that the proposed algorithm is
able to extract the lake extent accurately from the satellite images. However, it was
applied to MODIS images with relatively rough spatial resolution.
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Figure 3.33: Scatter plot of surface water area versus in situ water level of Urmia Lake. The
scatter plot is divided into four different time periods regarding the state of the Lake: 2001–
2006, 2006–2010, 2010–2015, 2015–2017.

Figure 3.33 presents the scatter plot of simultaneous surface water area and in situ wa-
ter level measurements. The high correlation between the two time series in Figure
3.32 assures a clear one-on-one relationship in the scatter plot. The point cloud de-
picts four different phase of the lake status regarding the trend. The first three colors
(green, yellow, red) reflect three different patterns between lake water area and level.
These patterns represent the different lake bed characteristic over different parts of the
lake. If the lake bed has an intense slope by occurring a small change in water level,
leads to a relatively big change in the lake area. In this way, yellow dots represent the
deepest slope in the lake bed and green dots indicate the mildest slope. The change
in the lake desiccation trend is also obvious in the scatter plot. Green, yellow and red
dots represent a negative trend in the lake surface water area and level. The simultane-
ous measurements (orange dots) after the year 2015 indicate the positive trend in this
period.

The successful monitoring of the complex evolution of Urmia Lake proves the ability of
the proposed algorithm to extract the lake masks from the satellite images and generate
long time series of the lake area.
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3.5 Summary

In this chapter, an algorithm for lake area monitoring using spaceborne optical images
is introduced and applied to five lakes with different situations and behaviours. The
algorithm has three main steps to generate accurate and reliable surface lake masks:

1. defining a proper search area,

2. applying classification algorithm,

3. cleaning derived water masks and generating lake area time series.

Regarding the behaviour of the lake over time, the lake surface and surrounding area
can be divided into three different regions

1. The area inside the lake which is always covered by water,

2. The area which is always dry because it is located at higher altitude than the
surrounding area,

3. The area located near the shoreline on both sides which could be covered by
water and subject to the annual variations.

Among these three regions, pixel labels in the first two groups are known. Therefore,
the classification algorithm must define the label for pixels in the third group.

To define and ignore pixels which are always dry during the monitoring period, a mask
regarding the DEM and slope maps is developed. For generating the DEM-based map,
two criteria are considered:

• Pixels in this mask must have an elevation higher than the minimum elevation in
the map plus 100 m,

• Pixels in the mask must have a slope higher than 1%.

The aim of the second mask is to remove the middle part of the lake from the search
area. To define this mask, long term variations of each pixel value is analyzed sepa-
rately. Any pixel which is always covered by water has almost constant and low value
in the NIR image band. So the water mask is described by assigning a threshold on
mean and variance of all pixels. By applying this mask, the middle of the lake is la-
belled as water. As a result, the final search area just includes pixels which are subject
to change during the time.

To extract the lake boundary the unsupervised classification algorithm, ISODATA, is ap-
plied to the search area. At the end, the pixels allocated into the first cluster by ISODATA
are added to the water mask. Isolated pixels are removed from lake masks to improve
the quality of the final results and the time series of the lake area is generated.

The proposed algorithm has been employed over five lakes in Africa and Asia. Each
of the selected case studies demonstrated a challenging situation for lake area moni-
toring:
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• Nasser Lake: complex shoreline and small branches.

• Rukwa Lake: partially constant shoreline and small area variation.

• Mosul Dam Lake: artificial water volume reduction.

• Tharthar Lake: the negative and positive trends in the area.

• Urmia Lake: the drastic desiccation.

Since ground-based measurements of lake areas are not available, derived lake masks
are indirectly validated by comparing lake water area and level during the monitoring
period. For Nasser and Urmia Lakes, daily in situ water level measurements are avail-
able. In both cases, a high correlation between water area and level (0.92 for Nasser
Lake and 0.96 for Urmia Lake) demonstrates that the algorithm can extract water area
accurately. In other cases, water area time series is validated by comparing with satel-
lite altimetric water level measurements. Except for Rukwa Lake, the correlation coef-
ficients are about 0.9. Although the proposed algorithm has acceptable performance in
general, it has a number of limitations. The cloud coverage in optical images is always
a threat to the performance of the proposed method. For example in Rukwa Lake, the
lake basin has a seasonal precipitation, so the cloud coverage imposes a systematic er-
ror in the lake area monitoring. As a result, the correlation coefficient is reduced to
0.75. Due to the coarse pixel size of the MODIS images, the algorithm cannot extract the
small details of shoreline variations and tiny branches which was clear in the case of
Nasser Lake.
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Chapter 4

Monitoring river reach area from
satellite imagery

4.1 Introduction

Measuring and monitoring river reach area is important for river discharge estimation,
hydrological model calibration, water management, or hazard monitoring. But our
knowledge about the spatio-temporal variations of river hydraulic parameters (wa-
ter level, river width and slope) is surprisingly poor. In situ gauge stations are lim-
ited in spatial and temporal coverage, and the number of available stations has been
decreasing during the past decades. On the other hand, remote sensing techniques
have proven their ability to measure different geometrical aspects of rivers. Satellite
imagery, for instance, can provide river reach area variations with a fine spatial and
temporal resolution.

Unlike lakes and reservoirs, rivers show various behaviour along their path due to the
contribution of different parameters like the gradient of elevation, river slope, tribu-
taries and morphology of the river bed. In the sub-tropical regions, some rivers com-
pletely disappear in the dry session and overflow during the wet season. The pixel
value of the water surface in a satellite image depends on the quality of water, the
roughness of its surface, its chemical properties, load and type of sediments and the
depth of the water column. Also, in river borders, we usually deal with shallow water
covered by vegetation and complicated combinations of wet and dry areas within a
pixel. Therefore, selecting an appropriate change detection algorithm which can con-
front these complexities, needs careful investigation.

Evaluation of different classification algorithms for river reach area
monitoring

To begin, we will evaluate the performance of four common dynamic thresholding al-
gorithms for extracting a reach of the Niger River near Lokoja station (Figure 1.6(c))
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from MODIS images (Table 1.8). In the following, the thresholding algorithms are
briefly introduced:

• Convex hull thresholding is based on the shape of the image histogram. After cal-
culating the convex hull of the image histogram, the biggest difference between the
pixel value frequencies and the convex hull is defined as the threshold (Rosenfeld
& De La Torre, 1983).

• Otsu thresholding is a clustering-based method that the image histogram is a bi-
modal (object and background pixels). Then the optimum threshold is defined so
that the variance within the classes is minimized (Otsu, 1979).

• Maximum entropy thresholding considers the image as two different sources of
data (object and background). When the sum of the two class entropies reaches its
maximum, the image is optimally segmented into two classes (Glasbey, 1993).

• Moment preserving thresholding considers the input images as a blurred version
of an ideal binary image. The threshold value is defined by matching the first three
moments of the input image and the binary map (Tsai, 1985).

Apart from these, the classification algorithm proposed in the previous chapter is also
applied to derive river mask time series.

Figure 4.1 presents the water area time series generated by applying the aforemen-
tioned methods. Additionally two post-classification steps, a blunder removal step
regarding the variance of the measurements and a moving average with a window
size of three, are applied to time series to improve the final results.

The correlation coefficients indicate that none of the algorithms can generate reliable
river masks. Among them, ISODATA and convex hull can partially capture the annual
variations of the river area. Unlike convex hull, ISODATA cannot extract the river area
correctly during the wet season.

In general, the maximum entropy and Otsu algorithms perform well when the pixel
values of the object and background in an image create a combination of two normal
distributions in the histogram. This situation is not valid in our case study because the
river occupies only a small portion of the whole image. Moreover, different parameters
like water depth, soil and vegetation moisture have a contribution in defining the pixel
value of water.

The moment preserving thresholding algorithm cannot provide accurate water masks
because it is incapable of segmenting an image properly if there is a huge difference
between histogram peaks and valleys.

As a result, we can conclude that these techniques have their limitations to estimate
the water mask properly as they are not able to find a correct threshold because of

1. a huge difference between the number of pixels in each class,

2. the complex relationship between wet and dry areas in the river border.
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Figure 4.1: Comparison between different river mask time series of Niger River reach derived
by mentioned thresholding algorithms. Monitoring period: 02.2000–09.2014.

All of the implemented methods try to segment the image based on the pixel inten-
sities. But beyond pixel intensity, spatial correlation between neighboring pixels is
another source of information that can be used to segment an image. Like all natural
phenomena, water bodies have a high spatial correlation in satellite images. There-
fore, including contextual information as an additional constraint in the procedure of
the river area monitoring should significantly improve the quality of final river masks.
Moreover, the coverage of each pixel has a particular temporal behavior, mainly driven
by annual and seasonal climatology, so in addition to spatial correlation, a strong tem-
poral correlation is typically available.

Region-based classification approach

Markov Random Fields (MRF) has the potential to model the interaction between dif-
ferent constraints and auxiliary sources of information in an image. Developing an effi-
cient MRF model and finding the maximum a posteriori (MAP) solution in the model is
a common region-based classification approach in image processing and remote sens-
ing.



102

MRF provides a convenient frame for modeling spatial and temporal interactions be-
tween pixels (Veksler, 1999). The method was first introduced into image analysis ap-
plications by Geman & Geman (1984), and subsequently in several studies (Ishikawa
& Geiger, 1998; Couprie et al., 2011; Boykov et al., 1998, 2001). In the remote sensing
community MRF is quite popular because of its ability to integrate information related
to pixel intensity and spatial correlation. MRF, as an advanced technique, is applied
to extract the change in satellite images (Bruzzone & Prieto, 2002). Also integration of
temporal (Mota et al., 2007) and spatio-temporal (Solberg et al., 1996) information to
the Markov model are proposed. A hybrid multi-contextual MRF for flood detection in
SAR images is presented by Martinis & Twele (2010). Generally, the object is recognized
from the background of the image finding the MAP solution in an MRF. The problem of
finding the MAP estimate is usually solved by describing an energy function specified
towards the problem. Then, the aim is to search for a pixel label structure minimizing
the energy function.

A number of search methods are commonly applied to solve energy minimization
problems. Simulated annealing (SA), as an efficient global optimization technique,
is widely used for this purpose (Geman & Geman, 1984). SA is able to find the op-
timal solution by defining a random and flexible sampling step, but in practice, SA is
time-consuming and does not guarantee that the final result is the global minimum
(Veksler, 1999). Graduated non-convexity is used as an alternative to SA. This is a
deterministic annealing technique with much less cost than the ordinary SA. Iterated
conditional modes (ICM) (Besag, 1986) is a local energy minimization, approach to find
the best labels for the segments (Martinis & Twele, 2010). However both of them are
very sensitive to initial values due to the local minima (Szeliski et al., 2006).

Greig et al. (1989) presented for the first time how to find the global minimum of
a certain energy function by applying the so-called graph cuts technique for a two-
dimensional energy function. They proved that finding the minimum cost cut is equiv-
alent to the maximum flow in a two-terminal graph. The Greig approach is the back-
bone of a number of efficient maximum flow algorithms recently developed like those
presented by Boykov et al. (2001); Boykov & Kolmogorov (2004); Goldberg et al. (2011).
In the literature, graph-based minimization problems are widespread in different vi-
sion applications like image segmentation (Ishikawa & Geiger, 1998; Veksler, 2000),
camera stereo correspondence (Boykov et al., 1998; Kolmogorov & Zabin, 2004), shape
reconstruction and object recognition.

4.2 Methodology

In this section, it will be justified that maximizing the posteriori probability in an MRF
and minimizing the defined energy function are equivalent. Then, to minimize the en-
ergy function, the graph cuts technique will be introduced. Additionally, some basic
notations and definitions of graph theory are provided. Subsequently, the most com-
mon search algorithms to solve the maximum flow (minimum cut) in the graph are



103

described. At the end, the Kohli and Torr method will be described which introduces
a measure for the uncertainty in labels (Kohli & Torr, 2006). Definitions and notations
presented in this chapter follow the contributions by Veksler (1999); Boykov & Jolly
(2001) and their followings papers.

4.2.1 An overview of the mathematical concept

An MRF has been defined in several ways in different disciplines. In the image process-
ing community, MRF properties are usually defined as follows:

P = {1, 2, ..., m}: a set of sites p (pixels).

N = {Np | p ∈ P}: a neighbourhood system where Np is a subset of the pixels in
P located adjacent to the pixel p (Figure 4.2 is an example of a
four-neighbour structure for pixel p). For a smoother result,
one can think about a bigger system with 8 or 24 pixels.

L = {l1, l2, ..., lk}: the set of possible labels that can be assigned to a pixel. In this
case, they are either water or land.

F = {Fp | p ∈ P}: a field of the random variable which takes a value fp depending
on the possible label l.

Markov random field theory is a branch of probability theory for analyzing the spatial 
or contextual dependencies of physical phenomena

MRF provides a convenient prior for modeling spatial interactions between pixels

�:	a set of sites
ℒ: a set of labels
Ν: a neighbourhood system on �

p

Figure 4.2: A four-neighbourhood system structure for the pixel p

A particular realization of the field is given by f = { fp | p ∈ P}. It is called a configu-
ration of the field F. In order to be an MRF, all f ∈ F must satisfy

P( f ) > 0 (4.1)

P( fp | fP−{p}) = P( fp | fNp), (4.2)

where P − {p} denotes the set difference, fNp denotes all labels of subset Np. This
condition indicates that a pixel label is only directly dependent on its neighbours. An
MRF is usually specified by a joint distribution. The Hammersley-Clifford theorem
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provides a convenient way to define an MRF (Besag, 1974) by proving that MRF and
Gibbs random fields are equivalent. This theorem also states that the probability of a
particular configuration is defined as:

P( f ) = Z−1exp

(
− ∑

c∈C
Vc( f )

)
, (4.3)

where Z is the normalizing constant and C is the set of all cliques. A set of sites (pixels)
is called a clique if every two separate pixels are adjacent. Here we just consider cliques
of size two in a neighbouring system. Vc( f ) is called the clique potential function

Vc( f ) = V{p,q}( fp, fq), (4.4)

where V{p,q}( fp, fq), the neighbour interaction function, measures the similarity of two
neighbour pixels p and q in terms of their values. Now we are rewriting equation (4.3)
which is an MRF with the joint distribution

P( f ) = Z−1exp

− ∑
{p,q}∈N

V{p,q}( fp, fq)

 . (4.5)

The field F is not directly observable, but we can find a relationship between any real-
ized configuration of the field f and an observation, for example d, via the likelihood
function P(d | f ). In most studies, this problem is solved using Bayes 's theorem. The
posterior probability can be written as

P( f | d) =
P(d | f )P( f )

P(d)
. (4.6)

The MAP solution estimates f ∗ (one of the possible realizations of the field) which max-
imizes the likelihood function

f ∗ = arg max
f∈F

P(d | f )P( f ). (4.7)

To find the solution we need a model for P(d | f ). If dp is the pixel value for the pixel
p then we assume that

P(dp | f ) = ∏
p∈P

P(dp | fp) . (4.8)

When the noise is independent at each pixel then

P(dp | l) = Cp exp(−Dp(l)) , l ∈ L. (4.9)
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In this equation Cp is a normalizing constant and Dp(l) is a non-negative function
which reveals how much the assigned label l agrees with the pixel value p. So the
likelihood function is equal to

P(d | f ) ∝ exp

(
− ∑

p∈P
Dp( fp)

)
(4.10)

now, by deriving P(d) and P(d | f ) with the above assumption, we can rewrite the
equation (4.7)

f ∗ = arg max
f∈F

exp

−
∑

p∈P
Dp( fp)) + ∑

{p,q}∈N
V{p,q}( fp, fq)

 . (4.11)

To find f ∗, we must maximize the equation (4.11) which is equivalent to minimizing
the following equation

E( f ) = ∑
p∈P

Dp( fp) + ∑
{p,q}∈N

V{p,q}( fp, fq) = Edata( f ) + Esmooth( f ). (4.12)

This equation is the general energy function in the energy based optimization method
in image processing. The first term of the equation, Dp( fp), is a function that just deals
with the pixel value and its possible label. The second term, V{p,q}( fp, fq), is a function
that measures the agreement between two adjacent pixels in terms of their value. For
convenience we introduce a balancing term into equation (4.12)

E( f ) = (1− λ)Edata( f ) + λEsmooth( f ) (4.13)

where

Edata( f ) = ∑
p∈P

Dp( fp) , Esmooth( f ) = ∑
{p,q}∈N

V{p,q}( fp, fq)

The balancing term λ ∈ [0, 1] allows us to control the contribution of each term in
the total energy function. If λ is small, the role of the neighbour interaction between
pixels is not considered, so the final result just relies on the pixel intensities. On the
other hand, if λ tends to 1, we ignore the contribution of pixel values in the process of
segmentation and just rely on the structure of the pixels.

Now the aim is to find a labeling structure for the image which leads to minimizing
the energy function E( f ). The method of graph cuts as a powerful optimization al-
gorithm has been commonly used to solve this problem. The graph cuts technique
is able to include piecewise smoothness since it considers sharp discontinuities in the
image (Boykov & Veksler, 2006). In the next part, some concepts of a graph and then
an overview of the graph cuts technique are briefly introduced.
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4.2.2 Basics of graphs, graph cuts techniques and max-flow
algorithms

Let G = 〈V , E〉 be an undirected weighted graph where V is the set of vertices. In image
processing applications, all pixels are vertices. Also we define two additional vertices
called terminals: source and sink. The line that connects two adjacent vertices is called
an edge (E ). Edges that connect a vertex to one of the terminals are called terminal link
(t-link) and edges that connect two adjacent vertices are named neighbour link (n-link)
(Figure 4.3).
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Figure 4.3: A graph with two pixels in one dimension. Here we have four vertices (two pixels;
p and q, two terminals; s and t) and five edges (four t-links ts,p, ts,q, tt,p, tt,q and one n-link
ep,q)

We introduced the functions D and V in the previous section to assign weights for the
edges. For example, the t-link ts,p connects the pixel p and the terminal s, so its value
must indicate how much the pixel value agrees with this label. The function Dp(s)
exactly measures this agreement. On the other hand the n-link ep,q must describe the
likeness of p and q pixel values, expressed by the function Vp,q(lp, lq).

Now to find the optimal configuration of the graph which minimizes the total energy
function, the concept of cut is introduced. The properties of a cut are discussed by
Boykov et al. (2001). A cut, C, is a set of edges in the graph, which separates the graph
into two discrete graphs so that every vertex connects to just one terminal in the new
configuration of the graph. The cost of each cut is equal to the sum of the weights of
all edges that are part of the cut. The goal of the min-cut solution is to find the cut with
the lowest cost. For example in Figure 4.4, to define the label of pixels, the total cost of
all possible cuts is assessed. Then the cut with the minimum cost will be selected and
the labels for the pixels will be defined.

Most techniques to find the min-cut solution take advantage of the dual property in
combinatorial optimization that the min-cut problem can be solved by finding the max-
imum flow from source to sink (Boykov & Kolmogorov, 2004). In this technique, edges
in the graph are considered as water pipes with a capacity equal to the edge weights.
By letting the maximum amount of water flow that can be sent from one terminal to
the other, a set of edges are saturated. As a result, the primary graph will be divided
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Figure 4.4: Four different cuts can be applied to a graph with 2 pixels. The cost of each cut is
equal to the sum of the weight of the respective dashed lines. The scenario with the smallest
weight will be selected and, regarding remaining edges in the graph, new labels for the
pixels will be assigned.

into two separate graphs if the saturated edges are eliminated. In fact, the maximum
flow value is equal to the cost of the minimum cut (Boykov & Kolmogorov, 2004).

Most of the algorithms for solving the min-cut or max-flow problem with two termi-
nals are based on two general methods: Ford-Fulkerson style augmenting paths (Ford &
Fulkerson, 1962) or Goldberg-Tarjan style push-relabel (Goldberg & Tarjan, 1988). Aug-
menting paths algorithms repeat the following steps until at least one of the edges in all
possible paths between source and sink is saturated. First, in the initial phase, a resid-
ual graph identical to the original graph is defined. Also, before starting the iteration,
the flow from source to sink is equal to zero. The iteration runs as follows:

• Find a valid route between source and sink.

• Push a water flow equal to the capacity of the path into the defined s-t path. This
flow saturates at least one edge in the graph.

• Decrease the capacity of the path edges in the residual graph and increase the max-
imum flow regarding the previous step.

The iteration will be terminated if the algorithm cannot find an unsaturated path any
more from source to sink in the residual graph. At this stage the flow is equal to the
maximum capacity of the graph. Figure 4.5 is an example of a graph with nine vertices
in the last iteration. After saturating the last s-t path, the final labels for the vertices are
defined.

Push-relabel algorithms find the maximum flow using a completely different ap-
proach. Instead of pushing a feasible flow through the graph, the algorithm pushes
the maximum possible flow from source to sink, called preflow. On its way, the preflow
satisfies the capacity of passing edges and saturates them. This means that every
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Figure 4.5: A simple scheme of an augmenting path procedure. (a) is a residual graph after
a number of iterations. Here for each edge the capacity and the current flow is presented
(capacity/current flow) and all the saturated edges are removed. In (b) another path from
source to sink is found, in (c) a flow equal to the maximum capacity is pushed through the
path and the residual graph is updated by eliminating the saturated edge. (d) is the final
configuration of the residual graph because there is no connection between source and sink
anymore. So, now based on the residual graph, the final labels structure for the pixels is
defined

vertex has more incoming flow than outgoing flow. At the end the excess flow in all
vertices is zero. At this point, the preflow turns to feasible flow.

In this study we apply Dinic’s algorithm to find the maximum flow solution in the
graphs. The Dinic algorithm is a powerful technique for computing the maximum
flow in a network (graph) introduced by Dinits (1970). This algorithm is considered as
an augmenting path technique. So the flow in the graph has been iteratively increasing
until all the s-t paths are saturated. In this algorithm, the graph is organized into
different layers in a way that the first layer contains all vertices which connect to one
of the terminals. The remaining vertices are divided into subsequent layers according
to their vicinity to the vertices which are located in the prior layers. Then all the paths
with the shortest length are saturated by applying the breadth-first search (BFS). Given
the vertex p in the graph G, BFS partitions the vertices in the graph into different layers
based on their distance from the pixel p. Therefore, only its direct neighbour pixels are
located in the first layer and then all vertices at distance 2 are available in the second
layer. The Dinic algorithm repeats the following steps until saturating all available s-t
paths:

1. Find all paths from source to sink with length k in the residual graph applying BFS.

2. Augment the detected paths, update the residual graph, increasing the total flow.

3. Replace k with k+1

At the first step the total flow is equal to zero, and the assumed length of s-t shortest
path (k) is also zero. Every iteration starts with a new BFS with increased length re-
garding the previous step. After augmenting all the possible paths between terminals,
we define the label for each pixel by applying a depth-first search (DFS) in the final
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residual graph. Finally, based on the assigned labels for the pixels, the modified water
masks will be generated. DFS, which is a searching algorithm, helps us to define the
path between a pixel and a terminal.

To generate a reliable water mask time series, apart from finding the most likely config-
uration of labels, providing additional information like marginal probability for each
pixel assigning a certain label is essential. Measuring the uncertainty of the assigned
labels plays a critical role in generating an accurate water mask, since the exact river
area is not available in most cases.

4.2.3 Measuring uncertainty in the graph cuts solution

Unlike some inference algorithms like Loopy Belief Propagation, Generalized Belief
Propagation, and Tree Re-weighted message passing, graph cuts technique suffers
from a disadvantage. It does not provide any uncertainty measure associated with
the determined labels for the pixels (Kohli & Torr, 2008). However, graph cuts is pre-
ferred over other algorithms and it has been extensively used for various computer
vision problems that deal with computing the MAP solution (Kohli & Torr, 2006). The
main reason is its ability to find a global solution in polynomial time. Even in prob-
lems where the availability of a global optimum solution is not guaranteed, graph cuts
can find the most appropriate local minimum in the graph (Kohli & Torr, 2006; Boykov
et al., 1998).

To overcome this deficiency, Kohli & Torr (2008) introduced a method to measure
uncertainty in the graph cuts solution. Here we just provide a brief review of their
method. Details and mathematical concepts are described in the contributions by Kohli
& Torr (2008) and Tarlow & Adams (2012). The min-marginal energy function is de-
fined as

ψp(l) = min
f∈F , lp=l

E( f | l) (4.14)

which is the result of a constrained minimization problem. To solve this problem, the
pixel p is labelled as l and then the energy function E is minimized by tuning all other
variable labels. In other words, a realization of the field, f , must be found in a way that
minimizes the total energy function, E, considering the constraint that the pixel p has
the label l. So ψp(l) is the min-marginal energy of pixel p when its label is l.

To estimate the confidence measure for the MAP solution of the MRF, the max-marginal
probability for each variable of the field must be calculated. For this purpose, the max-
marginal probability function, µp;l, is introduced as:

µp; l = max
f∈F ; lp=l

P( f | P). (4.15)
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The max-marginal probability µp; l measures the maximum probability over all possi-
ble realizations of the field in which the label of the pixel p is considered as a constraint,
lp = l. Now we use the max-marginal probabilities to obtain a confidence measure for
any labelled variable (pixel) (Kohli & Torr, 2008):

σp; l =
max f∈F ; lp=l P( f | P)

∑k∈Lmax f∈F , lp=k P( f | P) =
µp; l

∑k∈L µp; k
. (4.16)

Since we are dealing with a binary segmentation problem, just two different labels are
available i.e. water (W) and land (L). Therefore the confidence measures for these two
labels are defined as:

σp; W =
µp; W

µp; W + µp; L
, σp; L =

µp; L

µp; W + µp; L
. (4.17)

The relationship between max-marginal probability and min-marginal energy for any
pixel p is described in Kohli & Torr (2006)

µp; l =
1
Z

exp(−ψp(l)), (4.18)

in which Z is the partition function. Thus we are able to reshape equation (4.17) using
min-marginal energies

σp; W =
exp(−ψp(W))

exp(−ψp(W)) + exp(−ψp(L))
(4.19)

σp; L =
exp(−ψp(L))

exp(−ψp(W)) + exp(−ψp(L))
(4.20)

Since the partition function (Z) is cancelled in the mentioned equations, the confidence
measures can be obtained by calculating only the min-marginal energies.

In the max-flow problem, min-marginal energy for any pixel is equal to the sum of the
maximum flow and the pixel flow potential in the final residual graph (G( f ∗)) (Kohli
& Torr, 2008).

The maximum flow is the sum of the total flow passed from source to sink leading to
saturating some edges, and disconnecting all available paths between two terminals.
The flow potential is defined separately for each node in the final residual graph. Let
us assume that label W (water) is assigned to the pixel p by the graph cuts solution.
This means that in the residual graph, p connects to the terminal water directly with
an t-link or via its adjacent pixels through an n-link. On the other hand, there is no
connection between the pixel p and the other terminal land.

Since f ∗ represents the MAP solution for the graph, the flow potential for the pixel p
related to the land terminal is zero (CL,p = 0). Now, to define the flow potential for
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p related to its defined label (W), we add an t-link between p and land terminal with
infinite weight (tL,p = ∞). By adding this imaginary edge, the connection between
source and sink is established again. After augmenting all possible s-t paths because
of the new t-link, the flow-potential for the pixel p is equal to the sum of the flow
capacity of all new paths. This procedure is described visually in Figure 4.6.
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Figure 4.6: (a) representation of the final residual graph of Figure 4.5. (b) to measure the flow
potential for the pixel 1, we assume that an t-link with an infinite capacity is available be-
tween pixel 1 and the land terminal. Now the connection between two terminals is estab-
lished and the process of finding and augmenting new s-t paths starts again. (c) after aug-
menting all the new paths, the flow potential for the pixel 1 assigned the label water (CW,1) is
equal to the sum of the capacity of new paths (CW,1=25). On the other hand, CL,1=0 because
pixel 1 does not connect to the other terminal in the residual graph.

By measuring the min-marginal energy and max-marginal probability for all pixels —
apart from a binary water-land mask— a probabilistic water mask can be generated as
a grayscale image to illustrate the confidence measure for the assigned label.

4.2.4 Implementation of energy functions

Carefully defining the components of equation (4.13) as well as selecting an appropri-
ate optimization algorithm for finding the max-flow solution is critical. This equation
includes two weight functions (pixel value and neighboring interaction) and one con-
stant λ. If the weight functions are specified properly, all s-t paths will be found and
saturated in a few iterations, because only a small amount of pixels located around the
river shoreline are involved in the process.

In general, there is no restriction for defining the Dp function (Veksler, 1999). But Kol-
mogorov & Zabin (2004) state that in a binary labelling problem, satisfying the follow-
ing condition

Vp,q(0, 0) + Vp,q(1, 1) ≥ Vp,q(1, 0) + Vp,q(0, 1) (4.21)

is necessary and sufficient for defining the function Vp,q( fp, fq). This property is called
regularity and plays a critical role in defining the graph. This condition states that in
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a graph, the cost of cutting an n-link between two vertices must be larger when two
vertices have the same label compared with the situation when they have different
labels.

In the max-flow problem, we consider edges as a network of pipes. The assigned
weight for an edge is equivalent to the capacity of the pipe. As described before, Dp( fp)
measures the agreement between the value of pixel p and label f . The function D(.)
must assign a large weight to the corresponding t-link if the pixel value indicates the
characteristics of the label. For example in our study if a pixel (like a) has a very small
value in the infrared band, then the weight of tW,a (the t-link that connects a to the label
water) must be significantly larger than tL,a (the t-link connects a to the label land).
Since we deal with a long time series of images, every pixel has a long-term behaviour
in terms of pixel value variation. Therefore considering the temporal statistic of each
pixel by generating a water coverage frequency map can improve the accuracy of the
final river masks significantly. At the beginning of the procedure, the water coverage
frequency map is generated using initial river masks generated by applying a k-means
clustering to the images. Now we define the Dp( fp) for a standard binary labelling
problem:

Dp( fp) =

{
Dp(L) ∝ P

(
L
∣∣Ip
)
× P(L)

Dp(W) ∝ P
(
W
∣∣Ip
)
× P(W)

(4.22)

The t-link is calculated by multiplying the probability of assigning a label within the
pixel value (Ip) to the probability of assigning the label considering the long-term be-
haviour of the pixel. First we introduce two models for the conditional probabilities in
equation (4.22).
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Figure 4.7: Models for defining the conditional probabilities in equation 4.22. T is the threshold
value for separating water and land in the initial water mask.

Within these models we measure the possibility of assigning a label to a pixel depend-
ing on its pixel value. The middle parts of both models have a milder slope than at each
end. Therefore pixels located in the critical regions near the river border can participate
in the augmenting path process more efficiently.
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P(L) and P(W) measure the probability of assigning the labels depending on their
temporal behaviour. To do this, we define separate models for each label.
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Figure 4.8: Two functions introduced for assessing the temporal behaviour of the pixels

According to the model developed for the water label in Figure 4.8, if a pixel is covered
by water in most epochs, then the probability of covering by water for that pixel is high.
Here the models also have a milder slope in the middle part.

The second part of equation (4.13) measures the interaction between neighboring pix-
els. Here we introduce Vp,q( fp, fq), which measures the cost of assigning the same
label to two adjacent pixels. In general, Vp,q( fp, fq) devotes a small weight to an edge
connecting two pixels with a big difference in their pixel values. On the other hand,
the weight assigned to the connecting edge between two pixels with a similar value is
large. For defining this function first we need to investigate about the spatial patterns
available in the image. Apart from small pixel value variations in the middle of the
river reach and also in the dry part of the image, a clear discontinuity in the pixel val-
ues is available in the water-land boundary (Figure 4.9). The goal of the algorithm is to
detect the border between water and land, so it is assumed that the pixel values follow
the piecewise smooth prior model. Figure 4.9 is an example of this type of pattern.
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Figure 4.9: Example of pixel values near the water-land boundary. This pattern is considered
as a piecewise smooth prior

Since the problem categorizes as a piecewise smooth prior, n-links must be defined so
they can handle the discontinuities in the image by setting appropriate weights for the
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boundaries. To this end, wpq is introduced as a function of pixel values connecting via
an n-link

wpq =
(Ip − Iq)2

2σ2 , (4.23)

in which Ip and Iq are the pixel values and σ2 is the variance of pixel values over the
whole image. Next, we define the cost of the neighboring interaction between two
adjacent pixels:

Vp,q( fp, fq) ∝ exp(−wpq)× P(Q) (4.24)

For modifying the function we consider the temporal behaviour of a pair of pixels
connected via an n-link. Therefore we introduce an event like Q, in which two pixels
have the same label. To measure the probability of this event, P(Q), we use the models
introduced in Figure 4.8.

We notice that the Vp,q( fp, fq) function assigns a large weight for an n-link connected
two pixels with almost the same pixel value and temporal behavior. However, it as-
signs a small weight to adjacent pixels with a significant difference in their pixel inten-
sities. The function also defines in a way that the weight never vanishes even if the
difference between two pixel values is huge.

4.2.5 Review of proposed method

The procedure of generating water area time series is presented in Figure 4.10. The
algorithm starts with expelling images which are covered with clouds. They not
only impose wrong river reach area estimations but also spoil the area estimation
in other epochs since the temporal behaviour contributes to the weight functions.
Apart from visual interpretation, an automatic algorithm to detect clouds precisely in
optical images–especially in a single spectral band–is difficult to achieve. We apply
two filters for detecting cloud-free images. First, we assume that consecutive images
nearly look alike because the time interval between them is relatively short (8 days).
So the cloud cover is the likeliest reason for significantly reduced correlation between
two consecutive images. For the second filter, we take advantage of the fact that the
observed value for clouds in the near infrared band is almost constant. So the variance
of the pixel values in an image would be small if clouds cover the majority part of it.
The sensitivity of these two filters is adjustable based on the situation. For example,
by reducing the sensitivity, images with a partial cloud coverage could be accepted.

To construct the graph, we should assign weights to the graph edges using the intro-
duced weight functions. The primary input for calculating the n-links is pixel values
of the cloud-free images. But for calculating t-links, we also need initial water masks.
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Figure 4.10: Flowchart of the proposed method

The third requirement for developing the graph edges is the initial water coverage fre-
quency map. At the beginning this map is generated using the initial water masks, but
it will be updated after every iteration.

After calculating all edges in the graph, now we search for the optimal pixel label
structure by finding the max-flow solution in the graph. To generate more accurate
water masks, we repeat the river reach area extraction process. In the second round,
however, the initial water masks are replaced with the river masks generated in the
first iteration. The frequency map is also updated with the modified water masks.

The final product in every measurement epoch is a binary water-land map, so any fur-
ther information about the uncertainty in the assigned labels is not provided. There-
fore, apart from visual comparison with the original images, an evaluation of the water
masks quality is not possible. For further assessment, we generate the confidence mea-
sure map for each water mask by calculating the max-marginal probabilities applying
the Kohli method to the residual graphs. To do this, the maximum flow for each graph
is measured during the max-flow procedure. Then, the min-marginal energy is calcu-
lated for each pixel based on the final residual graph. By knowing these two variables,
we are now able to measure the labels'uncertainty. The final products of the proposed
method include the binary and probabilistic water masks and river area time series.
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4.3 Results and validation

In this section, we describe the procedure for the first case study (Niger River, Lokoja
station) in detail in order to provide insight into the proposed method.

4.3.1 Niger River, Lokoja station

Figure 4.11 shows five images of the Niger River at different months in the year 2000.
The epochs are indicated on the time series of in situ river discharge (Figure 4.11 top).
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Figure 4.11: (a-e) the cloud detection filters accept images (a, c, e), and remove images (b, d).
Images

This figure shows that cloud coverage occurs more often in the wet season. Hence,
eliminating cloud-covered images may lead to undersampling of the wet seasons.

Graph edges are defined according to the weight functions defined in section 4.2.4, for
which we need an initial water mask. In order to define an initial water mask, we apply
k-means clustering. We consider the long-term behaviour of the water bodies in weight
functions by defining two probabilities (P(W), P(L)) according to the water coverage
frequency map. The temporal behaviour for each pixel is estimated by dividing the
sum of all binary water masks by the total number of samples.

In Figure 4.12 dark brown pixels represent the area which is always dry, and blue ones
indicate the area always covered by water. The critical region can be defined between
30% and 70%, which is predominantly located along the river shorelines. By looking
at the time series of initial water masks over these regions, we recognize an annual
behaviour switching between the water and land label. This means that the k-means
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Figure 4.12: Water coverage frequency map for the Niger River reach near Lokoja station.

clustering classifies them as part of the river during the wet season, and as land for the
dry season.

After assigning weights to the graph edges, the max-flow solution in the graph can
be sought. This step starts with repeatedly augmenting the shortest s-t paths until
two terminals become completely disconnected from each other. Then regarding the
residual graph, the modified water mask is defined. To discuss the performance of the
method, we compare four final water masks with the initial ones for the selected river
reach (Figure 4.13).

Figure 4.13(a1) relates to the dry season, in which no cloud appears in the image, and
the surrounding area is dry. As a result, the river borders are clearly distinctive. By
comparing the graph cuts solution (Figure 4.13(c1)) with the initial water mask (Figure
4.13(b1)) and the original image, we find that our proposed method can accurately
determine the river extent, although the improvement is small. In Figure 4.13(a2), the
river area increases due to the increment of the water stream, and we see that adjacent
areas are also wet. As a consequence, the initial water mask (Figure 4.13(b2)) is not
accurate, as some land pixels are labelled as water. However, the graph cuts method
is able to overcome this situation to a large extent and improve the final water mask
(Figure 4.13(c2)). Our algorithm is even able to remove most of the isolated pixels
which are wrongly labelled as water in the initial water mask.

In Figure 4.13(a3), the land around the river border in the bottom of the river is wet and
the upper part of the river is also covered by cloud. The graph cuts method extracts
the river extent from the surrounding wet area, and it can recover the cloudy part
of the river (Figure 4.13(c3)). The last example reveals the ability of the method to
ignore clouds and determine the water mask as accurately as possible (Figure 4.13(c4)).



118

(a) O
rigin

al im
ages

(b
) In

itial  w
ater m

asks
(c) Fin

al w
ater m

asks

(1)                       (2)                      (3)                       (4)

Figure 4.13: Four examples of generated water masks in different situations. (a) original im-
ages; (b) initial water masks; (c) final water masks; (1, 2) relate to the dry and wet seasons.
(3, 4) images suffer from cloud contamination.

These results indicate that the weight functions for defining graph edges are properly
defined.

Next, we measure the marginal probability for each pixel in the water mask applying
the Kohli method to the residual graph. To do this, after measuring the maximum
flow passed through the graph, min-marginal energies are calculated for each pixel.
By knowing these two variables now we are able to measure the label’s uncertainty.

Figure 4.14 presents an example of probabilistic water and land masks, in which
marginal probabilities of land and water are provided. In the probabilistic water
masks (Figure 4.14(c, e)), pixels which are located in the middle part of the river
reach have a water label with high accuracy since their probabilities are higher than
80%. The level of confidence decreases gradually when the pixels are located closer
to the river shoreline. For example in most of the pixels around shorelines, the label
correctness probabilities are less than 20%. The probabilistic land masks (Figure
4.14(d, f)) represent the same pattern. It can be seen that pixels located far from the
river have land labels with a high probability. However, this confidence measure
decreases closer to the river border.
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Figure 4.14: (a) original image (date: 21.09.2000), (b) modified water mask from proposed
method; (c, d) are water and land marginal probability maps in the first iteration; (e, f)
after the second iteration.

Comparing the probabilistic water and land masks of the first and second iterations,
we observe that the number of pixels with a high marginal probability value have
improved. Replacing the water coverage frequency map with a more accurate one in
the second iteration is the main reason for this improvement. Figure 4.15 presents the
histogram of the image and also the probabilistic water and land masks.

Figure 4.15 presents statistics of the maps in Figure 4.14. The histogram of pixel val-
ues is presented in Figure 4.15(a). The columns are coded by blue and brown colors.
The separation of labels is defined by k-means clustering in the initial water mask.
The shape of the histogram describes why pixel-based classification algorithms cannot
perform efficiently in the river extent extraction problem:

• a large difference between the amount of pixels in each class,

• no clear distinction between each class distribution.

Figure 4.15(b) shows the confidence measure for water and land masks derived in the
first iteration. Columns in blue on the left side present the confidence level of the pixels
in the water mask, those in brown on the right side are part of the land mask. Although
the water coverage frequency map is not so accurate in the first iteration, a significant
amount of pixels in both masks accumulate at both ends. In the second iteration (Figure
4.15(c)) most of the pixels gather in the last columns because they have high marginal
probabilities.
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Figure 4.15: Pixel value histogram of the image in Figure 4.14 is presented in (a), water and
land separated by different color. Histogram of the water and land probabilistic masks in
the first iteration (b) and the second iteration (c).

Figure 4.16 shows the time series of label probabilities for the water masks of both
iterations, in which the improvement after the second iteration is clearly visible. In
fact, by replacing the initial water masks with the modified ones in the second iteration,
only a small number of pixels have a low marginal probability in the final product.

In order to generate a reliable water area time series, we estimate river reach area to-
gether with its uncertainty. We accept the assigned labels for pixels with marginal
probabilities higher than 10% in both water and land masks. This leaves a third region
which contains pixels with marginal probabilities less than 10% in both masks. This
is the uncertain region (the gray area in both Figure 4.16(b, c)), for which we cannot
define a proper label based on the available information. It is clear that the area of this
region correlates with the image pixel size. In other words if we used Landsat image
with a pixel size of 30 m × 30 m, the area of this region would be much smaller.

Figure 4.17 represents the time series of the three different regions. Pixels labelled as
water with a higher than 10% confidence level are presented in blue. Pixels in the land
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Figure 4.16: Time series of water masks marginal probabilities for the first and second itera-
tions. Monitoring period: 02.2000–09.2014
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Figure 4.17: Water and land pixels present in blue and dark brown, respectively. The number of
pixels with less than 10% marginal probability are shown in white. The black line represents
the MAP solution in the graph. Monitoring period: 02.2000–09.2014

masks with a confidence measure higher than 10% appear in brown. Pixels with less
than 10% marginal probability in either mask are in white.

We calculate the area of the river reach by multiplying the number of pixels in the
water mask by the area of a pixel (625 m2). We consider the area of the uncertain region
as the uncertainty of the water area measurement. Figure 4.18(a) shows the result of
our method for Niger River reach near Lokoja station. The river reach has an obvious
annual behaviour, associated with annual variability of precipitation. The blue dots in
the time series represent the satellite observations. During the wet season, a number of
images were removed due to cloud contamination. Therefore, the sampling is denser
during the dry season.
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Figure 4.18: (a) Water area with its uncertainty. (d) Scatter plot of water area vs. percentage of
uncertainty. (b, c) Water area is plotted with in situ discharge and altimetric water level. (e,
f) Scatter plots of simultaneous water area measurements against discharge and water level.
Period of monitoring: 02.2000–09.2014

We analyse the uncertainty of river reach area estimations to understand the error be-
haviour. Figure 4.18(d) is a scatter plot of water area measurements vs. uncertainties.
It shows that the uncertainty varies between 9% and 22%, with an average uncertainty
being around 15% of the area. Figure 4.18(d) shows that our algorithm estimates the
water area more accurately during the wet season (when the river reach area is larger)
than during the dry season. In the dry season, when the river becomes narrower, the
middle part of the river just includes a few pixels. So the remaining pixels in the river
mask are adjacent to the dry area and have a small marginal probability. However,
sometimes even during the dry season, we obtain relatively low uncertainty due to the
shape of the river reach.

The Kohli technique provides just an internal criterion for validating the pixel labels.
In order to assess the correctness of our river area estimation, results are compared
with in situ river discharge and with altimetric water level measurements.

The high correlation (0.94) between the two time series in Figure 4.18(b) indicates a
high consistency between the behaviour of river reach area and river discharge. The
discharge-area scatter plot (Figure 4.18(c)) shows a non-linear relationship, although
partially in the low-discharge regime. As expected, the area estimates during the wet
season are more accurate than the dry season. In the bottom-left side of the plot, we
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see an irregular behaviour, due to the weak performance of the algorithm or poor dis-
charge measurements during the dry season.

Further, we validate river reach area measurements against altimetric water level, since
there is a 9 year (2002–2011) overlap in river reach water level and area measurements
(Figure 4.18(c)). Similar to the validation against discharge, water level and water area
measurements are highly correlated (0.90). The scatter plot represents such a high
correlation between river reach water area and height (Figure 4.18(f)). Like previous
plots, in the wet season, the scatter of points is narrow, which indicates that both water
level and area are measured accurately.

4.3.2 Niger River, Koulikoro station

We have employed our algorithm over another part of the Niger River with a different
morphological character near Koulikoro station. In this case, we selected a long river
reach of about 115 km, which has a calmer stream flow than the first example. Figure
4.19 shows two examples of river masks. In the dry season (Figure 4.19(1)), the aver-
age river width is less than 0.5 km, which is a challenge for our method because of the
250 m MODIS pixel size. Despite this limitation, the algorithm successfully retrieves the
river extent, as it takes advantage of all possible sources of information. Figure 4.19(2)
is taken during the wet season, when the river width is wide enough to be precisely de-
termined by the algorithm. Here, also due to a clear distinction between river borders
and the surrounding area, the river reach mask is extracted more accurately.

1 2

3 4

Dry season Wet season

Figure 4.19: Subfigures (1, 2) are two examples of the river reach (Niger River, Koulikoro Sta-
tion) in dry and wet seasons. Subfigures (3, 4) are the river reach masks derived by the
proposed algorithm
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In the time series of river reach area, we see a clear annual behaviour during the moni-
toring period (Figure 4.20(a)). The magnitude of the uncertain region in the dry season
is much larger than in the wet season. The scatter plot of water area and percentage of
uncertainty (Figure 4.20(d)) shows a clear non-linear relation between them. In the wet
season the relative uncertainty is less than 10%. With decreasing water area the number
of pixels with a high marginal probability also decreases. As a result, the uncertainty
ratio increases up to 25% in the dry season
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Figure 4.20: (a) Water area vs. uncertainty. (d) Scatter plot of water area vs. percentage of
uncertainty. (b, c) Water area vs in situ discharge and altimetric water level. (e, f) Scatter
plots of simultaneous water area measurements against discharge and water level. Period
of monitoring: 02.2000–02.2016

Like the previous example, we compare daily in situ discharge with river reach area
measurements during the years 2000–2006, which are correlated with a correlation co-
efficient of 0.95 (Figure 4.20(b)). As we expect, water area estimation is less accurate in
the dry season because in spite of a constant river discharge, river reach area measure-
ments show small variations. On the other hand, in the wet season, the algorithm can
extract the river extent more accurately due to larger water area. Figure 4.20(e) shows
the scatter plot of simultaneous discharge and river reach area measurements. The
non-linear relationship between them is evident in this plot. The wide scatter where
the river discharge is less than 0.1 km3

day indicates the limitation of the method to estimate
the correct water area in the dry season. The coarse pixel size of the MODIS images is
the main reason for this problem.

Finally, we compare the river area with the altimetric water level time series (Figure
4.20(c)). We see that due to the orbit configurations of both ENVISAT and Saral/AltiKa
missions, they are not able to measure water level as frequently as water area measured
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by MODIS. On average, for water area time series we have 48 values in a year, but at
best only 11 water level observations are available. This highlights an advantage of
imagery for monitoring the dynamic of river reaches.

In the end, a scatter plot of simultaneous altimetric water level and area measurements
is presented in Figure 4.20(e). The correlation of 0.86 is not as high as the previous
case because satellite altimetry fails to properly estimate the water level during the dry
season. The vast cloud of points in the water area-level scatter plot demonstrates the
fact that both time series do not accurately represent river reach water level and area,
when the river flows in a narrow channel (Figure 4.20(f)).

4.3.3 Congo River, Malebo Pool

A part of the Congo River near Kinshasa is selected as the third case study. This case
has an entirely different hydrologic character and morphology from the previous ex-
amples. Upon leaving the Maloukou, the Congo River divides into two branches that
forms a vast lacustrine area about 24 by 27 km, geographically known as Malebo Pool.
After flowing about 24 km they join and pass through Brazzaville city. The amount of
water flowing in this river reach is several times higher than the previous examples.
The middle part of the river contains a complex braided system including a number
of islands and narrow branches. Due to the complexity of the river system, the area
monitoring is a challenging task. Figure 4.21 shows two examples from wet and dry
seasons.

1 2

3 4

Dry season Wet season

Figure 4.21: (1, 2) are two examples of the river section (Congo River, Malebo Pool) in dry and
wet seasons. (3, 4) are the water masks determined by the proposed method.
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The river section is clearly visible in most epochs during the dry season (Figure 4.21(1)).
But in the wet season, the majority of images are partially covered by clouds e.g. (Fig-
ure 4.21(2)). However, the algorithm overcomes this obstacle to a large extent by con-
sidering the temporal behaviour of pixels. Therefore the cloud covered pixels in the
upper part of Figure 4.21(2) have not been labelled as water in the river mask (Figure
4.21(4)). Figure 4.21(3) is the water mask generated out of image in Figure 4.21(1). The
middle part of the Malebo Pool indeed provides a challenge for the graph cuts proce-
dure to find the true labels for the pixels. By comparing the original image and the
water mask, we find that some of the tributaries in the braided system are not well
classified by the algorithm. The reasons are: (1) complexity of the braided system and
(2) the spatial resolution of MODIS images. During the wet season the surface water
area of side arms of Malebo Pool does not increase significantly (Figure 4.21(4)) and
only the middle braided streams of the river become wider.
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Figure 4.22: (a) Water area monitoring together with the uncertainty. (d) Scatter plot of water
area vs. percentage of uncertainty. (b, c) Water area is plotted with in situ discharge and
altimetric water level. (e, f) Scatter plots of simultaneous water area measurements against
discharge and water level. Period of monitoring: 02.2000–02.2016

Unlike the previous cases, the river area does not change drastically here (Figure
4.22(a)). The variations of the river reach area and the uncertainty percentage is
presented in the scatter plot (Figure 4.22(d)). The behaviour of these two parameters
is uncorrelated, since the river reach area of the braided river system is much larger
than the MODIS pixel size.

Water area and in situ discharge are compared in Figure 4.22(b). In this case, daily
river discharge is available for ten years (2000–2010). This part of the river passes
through urban areas and the river shoreline is restricted in Brazzaville city. Therefore
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the river does not behave naturally in this reach. As a result the correlation (0.78) is not
as high as previous cases. The scatter plot of simultaneous river discharge and each
area measurements is plotted in Figure 4.22(e). However, it is hard to recognize such a
linear relationship because the scatter plot is too noisy. In the wet season the scatter is
wider because of a phase shift in the area and discharge measurements.

Finally, we validate the water area measurements against densified altimetric water
level time series (Figure 4.22(c)). The densification algorithm for satellite altimetry
measurements is developed by Tourian et al. (2016). The correlation of the two time
series (0.66) is low in comparison to the previous examples, mainly because of a phase
shift between the two time series. The phase shift occurs due to the less dynamic
behaviour of Malebo Pool, and having the altimetric virtual station downstream. Such
a behaviour can be explained by the vast area of Malebo lacustrine. This large and flat
area leads to small water level variations due to the upstream inflow. The phase shift
also results in a wide scatter, which highlights another aspect of the complexity of the
river system (Figure 4.22(f)).

4.3.4 Po River, Italy

The last river reach monitored in this chapter is the Po River in Italy. The Po River
flows for 652 km eastward in the Po valley and passes through many important cities
in Italy like Turin, Piacenza and Ferrara. The complex dynamic behaviour of the river
and its relatively narrow width (150–650 m) make it a challenging case for the proposed
algorithm to extract the river masks. Figure 4.23 presents an example of the Po River
and the extracted river mask.

Figure 4.23: An example of the Po River image acquired in 2000.07.28 is in the top panel and in
the bottom panel is the extracted river mask by applying the proposed method.

The comparison between the MODIS image and the obtained river mask shows that
the algorithm is able to capture the continuity of the narrow and meandering river
path. The algorithm is successful at capturing this narrow river mainly because of
considering spatial and temporal correlations.
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Figure 4.24: (a) Time series of river reach area measurements together with their uncertainties.
(d) Scatter plot of river reach area vs. percentage of uncertainty. (b, c) River area is plotted
with in situ discharge and altimetric water level. (e, f) Scatter plots of simultaneous water
area against river discharge and water level measurements. Period of monitoring: 02.2000–
07.2016

Figure 4.24(a) presents the time series of water area of the Po River during the mon-
itoring period. Since the river is very narrow compared to the MODIS pixel size, the
magnitude of uncertainty in the measurements is relatively large (40%–70%). In the
scatter plot of river reach area measurements and uncertainties (Figure 4.24(d)), we
see that the behaviour of their variations is uncorrelated because: (1) the river is nar-
row even in the wet season, (2) the river reach area variations are too small during the
wet and dry seasons. The Po River flows through urban areas and it is also subjected to
heavy floods. Therefore, more than half of its length is controlled with dikes and dams.
This management leads to a decline in the natural behaviour of the river. As a result,
it is very hard to detect any annual behaviour in the river reach area variations.

Figure 4.24(b) presents the comparison between river reach area and in situ river dis-
charge measurements. In this case, daily discharge measurements are available from
the year 2000 until about the end of the year 2011. For better visualization, only si-
multaneous measurements in both datasets are collected. The in situ discharge time
series shows the complex behaviour of the river. Due to the construction of dikes and
dams, the natural behaviour of the river is reduced. A number of high peaks are visible
which could be a sign of extreme events like heavy rains and floods. The correlation
between the two time series (0.61) is not as significant as previous examples mainly be-
cause of the constructions over the river. The scatter plot in Figure 4.24(e) also shows
a relatively linear behaviour between the two variables. Due to the aforementioned
issues it is also noisy, especially in the wet seasons. Figure 4.24(c) is the comparison
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between river area and mean altimetric water over the whole river using the densified
water level time series (Tourian et al., 2016). The correlation between the two time
series (0.62) is not significantly high because the river reach is too narrow for both
spaceborne techniques to measure river water height and area accurately. The linear
relationship in their scatter plot (Figure 4.24(f)) is partially obvious but it is very noisy,
as expected.

4.4 River discharge estimation using river width

The importance of river discharge monitoring is obvious in various critical applica-
tions like water supply management, hazard monitoring and urban development. For
more than a century, river discharge has been measured directly near river sections.
Despite various attempts, some major rivers are still unmonitored. Also, decreases in
the number of worldwide gauging stations since the 1970s (Figure 1.3, 1.4) makes river
discharge monitoring even harder (Fekete & Vörösmarty, 2007). Even in the case of the
existence of a good monitoring network along the river, hydrologic variables between
stations must be interpolated or modelled (Adams et al., 1995).

This situation increases the interest in applying remote sensing for estimating and
monitoring river discharge. The conventional way to estimate river discharge using
remotely sensed measurements is to develop an empirical function between simulta-
neous spaceborne measurements and in situ discharge observations. Such a function
allows estimating river discharge without any ground-based observation.

In the previous section, we showed that a highly monotonic dependency is available
between river reach geometrical parameters like river discharge, river water level and
area in natural channels. Therefore, river discharge can be defined as a product of any
other variable. Leopold & Maddock Jr (1953) explained that in a natural river channel,
a power law relationship between different river hydraulic parameters and discharge
can be described. For example we can state that

Q = aWb, (4.25)

where Q is river discharge, W is the river section width, a and b are the model pa-
rameters. Dynamic river masks, obtained in the previous section, can be converted to
effective river width (We). Effective river width (We) is firstly introduced by Smith et al.
(1996) and measured by dividing the river reach water area by the length of the reach.
This value is considered as the average river width for the whole river reach. Therefore
the estimated discharge is only valid for the river reach which the effective river width
is obtained from. For simplicity, from now on, we use the term river width instead of
effective river width.

In this study our aim is to develop river width-discharge empirical models (W-Q mod-
els) for estimating river discharge in the river reaches mentioned in Figure 4.25.
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Figure 4.25: River reaches selected for developing river width-discharge models. (a) Niger
River near Lokoja station. (b) Congo River near Brazzaville station. (c) Niger River near
Koulikoro station. (d) Po River near Borgoforte station. The red dots are the in situ stations.
Additional information about the in situ stations is provided in Table 1.10

We derive river width measurements for the first and second case studies using dy-
namic river masks obtained in the previous section. For the last two case studies, we
only consider a few kilometres around the in situ stations for calculating effective river
widths, therefore we need to generate new dynamic river masks. In the following ta-
ble, complementary information about selected river reaches and datasets are used for
models developing is provided.

Table 4.1: Information about training and validation datasets used for developing river width-
discharge models

Case River Station Lenght (km) Training period Validation period

a Niger Lokoja 20 2000–2004 2004–2006
b Congo Kinshasa 50 2000–2008 2008–2011
c Niger Koulikoro 40 2000–2004 2004–2006
d Po Borgoforte 30 2000–2009 2009–2012

Because we want to validate our estimated models against discharge measurements
which are not used in the development of the models, we separate the last few years
of our dataset as the validation period.
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4.4.1 Simultaneous observations approach

In this part we will develop discharge estimation models using simultaneous measure-
ments for all four case studies. Then we will introduce the quantile matching technique
for estimating the river discharge. We will present the result derived by this method
for Congo and Po River reaches.
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Figure 4.26: River discharge and width measurements used to develop W-Q models for all four
case studies. Time series in (a-d) are time series of river width and discharge measurements
and the scatter plots of simultaneous measurements are in (e-h).

Figure 4.26(a, c) are the training observations for the two river reaches selected over
the Niger River. Both their time series and scatter plots (Figure 4.26(e, g)) present a
great correlation between the river width and discharge measurements. In both cases,
the monotonic behaviour is obvious. As a result, it is expected that the developed W-Q
models can estimate the discharge accurately. In the Congo River example, the vari-
ations of the river width cannot project the behaviour of the river discharge properly.
The wide scatter plot of Congo River reach measurements indicates that it is hard to
develop an efficient W-Q model. The time series and scatter plot of the Po River reach
measurements (Figure 4.26(d, h)) reveal that due to the following reasons width mea-
surements do not project properly the numerous fluctuations in the river discharge: (1)
limited number of observations especially in the wet seasons, (2) narrow river sections
along the river reach.

Our proposed algorithm for extracting river masks is able to estimate the river reach
area together with its uncertainty, therefore we can estimate the average river width
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with its uncertainty. In contrast the uncertainty for the discharge measurements is not
available. In hydrological applications, it is usually assumed that in situ discharge
measurements have a multiplicative uncertainty around 10% of the measurements.
Since both sides of the equation (4.25) are corrupted by error, we can then rewrite the
equation as

Q = a(W − eW)b + eQ , (4.26)

where a and b are the model parameters and eQ and eW are unknown inconsistencies.
Since our aim is to estimate the model parameters and the inconsistencies at the same
time, we reformulate equation (4.27) as a non-linear Gauss-Helmert model with un-
knowns like

f (a, b, eQ, eW) = Q− eQ − a(W − eW)b = 0 , (4.27)

and, after linearization, apply the least squares estimation to derive unknown model
coefficients, together with the variance covariance matrix of unknown parameters.
The Gauss-Helmert model (mixed model) is a combination of Gauss-Markov model
in which every observation is a linear or non-linear function of all unknown quantities
and the adjustment with condition equations model in which a linear or non-linear
equation between observations is available (Niemeier, 2008). The mathematical con-
cept and implementation of the Gauss-Helmert model is provided in Appendix A. In
Figure 4.27, we present the scatter plots of training periods and also developed models
for all four cases.
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Figure 4.27: Scatter plots in (a-d) are the simultaneous observations used for developing mod-
els. Red and green bars are the measurement uncertainties. The W-Q rating curve models
are presented in (e-h).

We plot the estimated rating curve for the Niger River reach near Lokoja station in
Figure 4.27(e). The model passes through the observations properly, although we see
there is a mismatch between the model and the points in the lower part of the scatter
plot. This part of the scatter plot is related to the dry season when the river width is
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between 2.5–3 km and discharge is less than 0.2 km3

day . We also plot the error ellipse for
each observation in the training period by using the variance and covariance matrix
of adjusted observations. In this example, the error ellipses for the observations in
the dry season are smaller because of the availability of more observations in this part
of the scatter plot. The developed model for the other case study along the Niger
River (Figure 4.27(g)) looks like a fit to the measurements. However in the lower part
of the scatter plot we can detect some measurements far from the model. In general,
these plots show that two developed models along the Niger River can model the river
width-discharge relationship.

The training observations and developed model for the Congo River are presented in
Figure 4.27(b, f). The point cloud in this case is wide and most of the measurements
have a relatively large uncertainty in both directions. The point cloud gets wider with
increasing river width in the wet season. Therefore, the magnitude of the uncertainty
is quite large because of the wide point cloud. However the rating curve successfully
passes through the observations.

In Figure 4.27(d) we see that, on average, the river width of the Po River reach is nar-
rower than 0.8 km and that it has a lot of fluctuations during the training period. Unlike
discharge measurements, the uncertainty in river width measurements is significant at
almost all epochs. The accumulation of measurements in the middle part of the scatter
plot reduces the accuracy of the rating curve. The W-Q model (Figure 4.27(h)) can not
perform well especially in the wet season since there is a significant distance between
the measurements and the rating curve model in the upper part of the scatter plot.
Because of the limited number of observations, we cannot conclude that the isolated
measurements are blunders in the upper part of the scatter plot.

By comparing the uncertainties in the observations (Figure 4.27(a–d)) and error ellipses
of adjusted observations Figure 4.27(e–h), we can conclude that

• The covariance between adjusted measurements in each epoch is negligible ac-
cording to the orientation of the error ellipses.

• In most epochs σ̂Ŵ is smaller than σW. It means that we can reduce the area of the
uncertain region by considering a lower threshold for the marginal probability of
pixels.

In the next step, we will predict the river discharge by using the developed W-Q mod-
els for the validation periods and then we compare the estimated and measured river
discharge for validating the models and assessing their correctness. Since the variance-
covariance matrices of model coefficients are provided by the Gauss-Helmert model,
we are able to calculate the uncertainty in the predicted discharge by using error prop-
agation (4.28):

σ2
Q = W2bσ2

a + a ln(W) W2bσab + (a ln(W))2 W2bσ2
b + (abWb−1)2σ2

W , (4.28)
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Figure 4.28: Comparison between measured and predicted river discharge via developed W-Q
models. The red bars are the difference between measured and predicted values. (a) Niger
(Lokoja station), (b) Congo River (Kinshasa station), (c) Niger River (Koulikoro station), (d)
Po River (Borgoforte station).

Measured and predicted river discharge for the Niger River reach near Lokoja station
are compared in Figure 4.28(a). Due to the high correlation between river width and
discharge measurements, the derived model is able to predict discharge accurately. The
residual values (Figure 4.28(b)) in most epochs are less than±0.1 km3

day . As we expect the
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model cannot estimate discharge accurately in the wet season. So we see in Figure
4.28(b) that the residuals are in the range of ±0.4 km3

day .

Figure 4.28(c) is the comparison between predicted and measured discharge of the
Congo River reach. Relatively large uncertainty in the model coefficients leads to large
uncertainties in the estimated discharges. Therefore, the error envelope for the esti-
mated values is large in all epochs. Due to the phase shift between river width and
discharge measurements in the training period, the model predicts discharge with a
phase shift in the wet seasons too. This leads to a large difference between estimated
and measured river discharge in wet seasons (Figure 4.28(d)). Nevertheless, in the dry
season, the residuals are smaller than 1 km3

day .

The Niger River at Koulikoro station (Figure 4.28(e)) shows a drastic annual behaviour.
The river discharge is very small (less than 0.02 km3

day ) in the dry season. Then due to
heavy precipitation in the wet season, river discharge increases up to 0.4 km3

day . However,
the developed model can predict the river discharge in both seasons accurately. The
model can predict not only small water flow variations in the dry seasons but also
the extreme events in the wet seasons. The average residual between measured and
predicted values is less than 0.03 km3

day , however the residual is relatively large in a few
epochs.

The Po River reach is the most challenging in terms of developing a W-Q model. At
first glance, the performance of the derived W-Q model (Figure 4.28(g)) is acceptable
considering the narrow river reach. However, the model predicts the river discharge
with a large residual in the wet season. The main reasons for the poor performance of
the model in wet season are the lack of observations in the upper part and aggregation
of observations in the lower part of scatter plot (Figure 4.27(h)). The model overesti-
mates the discharge when the river is wider than 0.2 km. Therefore in some epochs, the
model estimates discharge with an error larger than 0.5 km3

day which is two times larger
than the actual value.

For assessing quantitatively the performance of derived models, statistics are pre-
sented in the Table 4.2.

Table 4.2: Statistics for evaluating the performance of the derived W-Q models.

Case River Station Period Corr. RMSE NSE PBIAS
Training [ ] [%] [ ] [%]Validation

1 Niger Lokoja 0.97 7.6 0.92 −6.0
0.95 9.28 0.89 0.29

2 Congo Kinshasa 0.76 16.73 0.41 −2.38
0.64 22.98 0.17 −2.37

3 Niger Koulikoro 0.91 5.51 0.79 −6.65
0.96 8.82 0.90 −14.22

4 Po Borgoforte 0.51 59.20 −23.43 −29.49
0.46 52.14 −8.90 −32.44
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As we expect statistical indicators also show that the W-Q models for the Niger River
reaches near Lokoja and Koulikoro stations estimate river discharge accurately. In both
cases, a high correlation coefficient between estimated and measured discharge shows
a significant agreement between variations of both time series in terms of direction and
magnitude. The normalized RMSE in both cases is less than 10% which is acceptable in
hydrological studies. Both models have NSE values near one, which means that they
are capable of predicting the river discharge accurately. The first model does not show
any tendency to overestimate or underestimate the discharge (PBIAS = 0.29%). But the
W-Q model for the Koulikoro river reach predicts discharge higher than the real value
on average, since its PBIAS is negative. Inability of the model to estimate the correct
discharge value in the dry season is the main reason for this negative PBIAS.

The W-Q model for Congo River is unable to predict river discharge accurately based
on its statistics. The correlation coefficient is just 0.64 and the normalized RMSE is rel-
atively large (26.1%). The main reason for this weak performance is the phase shift
between two time series. Considering the very low NSE value (0.17), there is no sig-
nificant difference if we replace the estimated discharge with the mean measured dis-
charge of the training period. The negative PBIAS shows that the model has a tendency
to overestimate the discharge.

The last case study, Po River reach near Borgoforte station, is the most challenging one
in terms of discharge modelling because of its narrow width and unusual fluctuations.
The statistics in Table 4.2 show the poor performance of the model. The correlation
coefficient is 0.44 because the model cannot predict tiny fluctuations in the river dis-
charge due to the large uncertainty in width measurements. The normalized RMSE is
too large (52.14%) because in a number of epochs, the model predicts the discharge
much larger than the real value. The NSE is sensitive to blunders in the discharge pre-
diction. Since some blunders exist in this example, the NSE value is negative (−8.9).
The negative NSE means that the performance of the W-Q model is not acceptable.
Moreover, blunders also distort the PBIAS. The large negative value of PBIAS (about
−32%) shows that the model predicts larger than the real value in general. By looking
again at Figure 4.27(h), we see that the model ignores observations in the upper part
of the scatter plot. Therefore, the model predicts the discharge with a residual higher
than 1 km3

day in the wet season.

We see that two of developed W-Q models along the Congo and Po river reaches suffer
from mismodelling error. For developing models we assumed that there is an exponen-
tial relationship between river discharge and width. However our experiment shows
that these two river reaches do not follow this assumption. Therefore in the next step,
we try to develop non-parametric models for estimating the river discharge.

4.4.2 Quantile look-up table approach

The previous experiment showed that sometimes it is not feasible to model the rela-
tionship between river width and discharge with a limited number of model parame-
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ters. To reduce the mismodeling error of fitting an exponential function to the scatter
plot of simultaneous measurements, we develop a non parametric look-up table for
estimating the river discharge based on the quantile functions of river width and dis-
charge measurements in the training period. The look-up table presents a one-to-one
relationship between river width and discharge. The potential of using quantile func-
tions instead of the measurements in river discharge estimation is demonstrated by
Tourian et al. (2013). They stated that to eliminate the need for availability of simul-
taneous observations, the discharge estimation model can be established by using the
quantile functions of observations. In this section we estimate river discharge using
this technique for two problematic river reaches (Congo and Po Rivers). Figure 4.29
presents the procedure of defining the quantile look-up table.
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Figure 4.29: (a) and (b) are the quantile functions of river width measurements for Congo and
Po River reaches. (c) and (f) are the quantile functions of in situ discharge measurements.
(b) and (e) are the developed quantile look-up tables for Congo and Po River reaches.

Quantile function of a time series expresses the probability that a certain value is ex-
ceeded over the period. For example, Figure 4.29(a,c) are quantile functions of river
width and discharge time series presented in Figure 4.26(b) for the Congo River reach.
Since these two functions have a same x-axis (cumulative probability), it is possible to
connect their y-axes directly. Figure 4.29(b) presents the scatter plot of river discharge
versus river width. This scatter plot is generated from the corresponding probabilities
of both quantile functions. Since only one corresponding value is available for each
probability in the quantile functions, the scatter plot can be used as a look-up table. It
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means that by measuring river width, the river discharge can be estimated by finding
the corresponding value in the y-axis of the look-up table.

Figure 4.29(e) is the quantile look-up table for the Po River reach. We can see that the
majority of points concentrate in the middle of the plot where river width is between
0.5 and 0.8 km. In this figure we see how the relationship of river discharge and width
is changed when the river is wider than 0.8 km. Therefore defining an exponential
function to estimate the discharge causes a large residual in the wet season. We expect
that the developed quantile look-up table can estimate the discharge more accurately,
since there is no need for defining a parametric model.
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Figure 4.30: Comparison between estimated river discharge via quantile look-up table and
measured discharge for Congo River (a) and Po River (c) reaches. The difference between
measured and estimated values are plotted as red bars.

Figure 4.30(a) is the comparison between measured and estimated discharge using the
quantile look-up table for the Congo River reach. Comparison this figure with Figure
4.28(c), we see that the look-up table can predict river discharge more efficiently. The
second technique estimates discharge more accurately and the residuals are also re-
duced especially in the wet season . In Table 4.3 we see that the RMSE is reduced from
22.98% to 20.96%. The problem of phase shift is still visible because the origin of this
error is the complex relationship between river width and discharge in this case study.
However the NSE coefficient is interestingly improved from 0.17 to 0.31. Although 0.31
is not a high value for the NSE, but it is minimally acceptable in respect to the quality
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of width measurements. Finally, according to the near zero PBIAS, the model does not
have any tendency toward overestimating or underestimating the discharge.

Table 4.3: Statistics for evaluating the performance of quantile look-up tables.

Case River Station Period Corr. RMSE NSE PBIAS
Training [ ] [%] [ ] [%]Validation

2 Congo Kinshasa 0.76 16.11 0.52 −0.02
0.65 20.96 0.31 −0.07

4 Po Borgoforte 0.49 16.51 0 0.09
0.51 17.19 0.07 1.98

The Comparison between estimated discharges via the parametric W-Q model (Fig-
ure 4.28(g)) and the quantile look-up table (Figure 4.30(c)) indicates a considerable
improvement using the latter technique. The quantile look-up table can estimate dis-
charge in extreme events, so the magnitude of residuals is reduced significantly. The
RMSE is reduced from 52.14% to 17.19% and the NSE value is increased from −21.96
to 0.07. The huge tendency of the previous W-Q model to overestimate the discharge
(PBIAS = −32.44) is also improved to a slight underestimating by the latter technique
(PBIAS= 1.98).

The comparison between the results from the previous section and this section shows
us that mismodelling is a major source of error especially if the river bed presents
different patterns and the measurements do not spread uniformly over the data distri-
bution.

4.5 Summary

In this chapter, we introduced an automatic river reach area monitoring algorithm and
applied it to four different river reaches using MODIS images. In this method, an MRF
model was developed to consider all types of available information, including pixel
intensity, and spatial and temporal interactions between pixels. Then a MAP solution
for the Bayesian framework was found to determine the most probable water mask.
Since the high computational effort of finding a global solution was a serious concern,
we reshaped the problem as an energy minimization one. To minimize the energy
function, we developed an undirected two-terminal graph and defined the max-flow
solution for the graph by augmenting all the possible paths between two terminals.
The final residual graph offered the binary water mask representing the MAP solution.
The second aim of this chapter was the uncertainty assessment of derived river masks.
Therefore, we computed the confidence level for pixels in both land and water masks
by measuring the marginal probability of all nodes in the final residual graph.

The time series of water area together with their uncertainty were generated by ap-
plying the proposed method to all images of the given river reaches. The input of
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the process was a time series of images. The algorithm automatically generated bi-
nary and probabilistic water masks together with water area time series, including the
uncertainty range. Since cloud-covered images were detected and removed, and we
considered the temporal behaviour of the river reach, the products were robust against
blunders. The algorithm coped with the effect of sunglint and cloud shadow in the
satellite images by considering the temporal correlation in the images. Therefore, extra
post processing steps for the final time series were not necessary.

We employed our method over four river reaches with different channel behaviours
and morphologies. Two of them were part of the Niger River (near Lokoja and
Koulikoro stations), and the third one was a river reach containing Malebo Pool along
the Congo River near Kinshasa station. The final one was part of the Po River near
Borgoforte station in Italy. Based on the presented results, the method was able to
cover the seasonal change in the river extent and also capture extreme events. The
algorithm successfully extracted complex braided river systems and islands in the
middle of a river. The algorithm proved its ability to extract the long (400 km) and
narrow (average width about 600 m) Po River reach. Without considering spatial and
temporal correlations, it was not possible to extract the river reach accurately.

In our examples, it only failed to extract the river branches narrower than a MODIS
pixel size (250 m). As a result, the coarse pixel size of MODIS images was the main
source of uncertainty in the derived water masks. We saw that, due to the orbit con-
figuration of both ENVISAT and SARAL/AltiKa, they were not able to measure water
level as frequently as water area measured by MODIS. On average, for water area time
series, we had 48 values in a year, while at best only 11 water level observations were
available. This highlighted the advantages of imagery for the characterization of river
behaviour in comparison to satellite altimetry.

For the uncertainty estimation, we considered pixels with less than 10% confidence
level as the uncertain region in both water and land masks. Although the method as-
signed a label for these pixels, we did not reach a firm decision about them. Most of the
pixels with small marginal probabilities were located on shorelines In the probabilistic
water and land masks. Considering the coarse MODIS pixel size, most of the pixels
located in the river extent were partially covered by water. Therefore, the algorithm
could not assign a label for pixels in this region confidently. In our examples, the mag-
nitude of the uncertain area varied between 8%–23% of the river area for the first three
case studies, and for the Po River, it varied between 40%–70%.

Since ground-truth was not available, we validated our results indirectly by comparing
the obtained water area time series with the in situ river discharge and altimetric water
level measurements. In the Niger examples, the high correlation between water area
time series and in situ discharge (> 0.9) and altimetric water area (> 0.8) indicated
that we captured the natural behaviour of river reaches, and the obtained water area
estimations were accurate. In the Congo example, the correlation was lower because
the in situ station was located in the urban area, and also the river included a complex
braided river system. Finally in the Po River reach, correlation coefficients were lower
than the previous examples (0.61 with in situ discharge and 0.62 with altimetric water
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level). Complex dynamic behaviour of the river during the monitoring period and its
narrow width were the main reasons for the low correlation coefficients. In addition,
the natural behaviour of the river had been decreased since the river flows through a
number of cities and urban areas.

Finally, we developed river discharge estimation models using the generated river
masks. By dividing the river reach area by the length of the reach, effective river width
was derived. Since a monotonic behaviour is available between different hydraulic pa-
rameters of a river reach, river discharge can be predicted as a product of river width.
So we estimated river discharge by measuring river width if the relationship between
them was already modelled. For generating a W-Q model, a training dataset including
simultaneous river width and discharge measurements was developed. In this study
we applied the Gauss-Helmert adjustment model since we considered inconsistencies
on both sides of the observation equations. The outputs of the adjustment procedure
were the model parameters and the variance-covariance matrix of the unknowns.

We validated the predicted discharges by comparing the predicted and measured dis-
charges for the validation period. We also evaluated the performance of the developed
models by computing different statistics. Two developed river discharge estimation
models along the Niger River performed well. All the statistics for them were in the
acceptable range. Because of a phase shift between observations in the Congo River
reach, the performance of developed model was not acceptable. Near zero NSE val-
ues for Congo River reach and also Po River reach indicated that the performance of
developed discharge prediction models were not acceptable. In the Po River example
apart from the negative NSE value, the normalized RMSE was about 50%, because the
exponential model could not express the actual relationship between river width and
discharge.

In the end we developed non-parametric models for the Congo and Po River exam-
ples to reduce the mismodelling error. To do this, we matched the quantile function of
river discharge to those of width measurements. Since both quantile functions shared
a x-axis (cumulative probability), we developed a quantile look-up table by matching
their y-axis. In both river reaches, the quantile look-up tables had relatively accept-
able performance. In the Congo River example, the quantile look-up table partially
overcame the problem of wide points cloud. So the NSE value increased to 0.3 which
is at least in the acceptable range. The quantile look-up table for the Po River per-
formed significantly better than the parametric W-Q model. Therefore the normalized
RMSE was reduced from 52% to 17%. In this case, the quantile look-up table was able
to model various behaviour of the river reach and estimated discharge even during
extreme events.
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Chapter 5

Concluding Remarks and Outlook

Advanced methods for detecting and monitoring inland water bodies must be further
developed because of emerging new satellite imagery missions with great capabilities
to capture the earth surface in different spectral bands, fine spatial resolution, global
coverage and high revisit frequency. In this thesis we have introduced a number of
different algorithms for detecting change in multitemporal images and generating long
time series of inland water body area.

In the second chapter we investigated the potential of multispectral transformations
like PCA and CCA with the following objectives:

1. Enhancing signal to noise ratio in the multispectral images by ignoring some of
the principal components.

2. Highlighting the change between two multitemporal images.

To achieve these objectives we did extensive analysis in this chapter. In the following,
we mention the concluding remarks:

(i) Multispectral images provide a vast amount of information about the water body,
since each spectral band observes a certain part of the light spectrum and can
reveal a unique characteristic of the water body. However selecting the suitable
spectral bands for mapping and extracting the surface water extent remains a
challenging task.

(ii) The main challenge of the first objective is to select the proper principal compo-
nents to reconstruct the multispectral bands or present in the color channels.

(iii) PCs are arranged according to their contribution in the covariance matrix. There-
fore selecting the primary PCs is not the best strategy for dealing with the earth
surface features as they have a unique signature in different spectral bands.

(iv) An alternative strategy to arrange the PCs is based on analysing the contribution
of each spectral band in the corresponding eigenvector. Applying this approach
needs a careful investigation of the coefficient of each spectral band in the eigen-
vectors.
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(v) Reducing the noise by ignoring a number of PCs also leads to an unwanted loss
of information. As a result the spectral signatures of the earth features in the
spectral bands are manipulated in the transformed product. Although the trans-
formed bands contain less noise, for any further interpretation, a visual compar-
ison with the original image bands or the RGB image is needed.

(vi) Generating the image difference of two multitemporal images is a common way
to detect the change between them. However mapping the change by using the
ordinary image difference bands is impractical because: 1) We can select only
three bands to place in the color channels. 2) Significant changes would be influ-
enced by trivial variations between two images, e.g. change in vegetation, solar
illumination and atmospheric condition.

(vii) Applying the PCA transformation on the image difference bands is a solution
since the dominant change is highlighted in the primary PCs. Therefore, the RGB
map of the first three PCs may explore the major differences between two epochs.

(viii) Applying the MAD transformation for change detection between two multitem-
poral images is preferred because it is invariant to gain and offset between two
image bands. Thus there is no need for radiometric normalization before apply-
ing MAD transformation.

(ix) The idea of isolating the noise and trivial changes in the image difference bands
can be sought also by highlighting the area with a high spatial correlation. To
this end, applying the MAF transformation to the PCs and MAD components is
recommended.

(x) A changing pattern of cloud cover between two multitemporal images is a seri-
ous threat even for an advanced transformation like MAD+MAF.

(xi) Figure 2.23 presents a serious drawback of analysing the change using multispec-
tral transformations. Each MAD and MAD+MAF component is a linear combina-
tion of all spectral bands, so their color composite is not a representative of the
earth surface natural color. Therefore for any interpretation we need to compare
them visually with the true color composite images of both epochs.

(xii) For creating the change/no-change map at least a threshold for pixel values of
transformed bands must be defined. Since the pixel values in the transformed
bands don’t represent any physical characteristic, the threshold can be defined
either by visual comparison or by a χ2 test.

addressing the following challenges and questions leads to further development of
using the multispectral transformation approach in change detection applications:

• Since PCA is separately applied to the images, it creates a different basis for each
image. As a result each image has its own pixel value range. Then how can we
quantitatively compare the transformed image bands?
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• If PCA transformation is applied to a time series of images, the primary PCs high-
light the dominant pattern in time as well. Can we extract any annual or semi-
annual behaviour of the water body by analysing the first or first few PCs?

• In this thesis we have applied MAD and MAF transformations on two multitem-
poral images. However these algorithms have the potential to be applied to im-
ages with different number of spectral bands and more than two multitemporal
images.

In the third chapter we have introduced an algorithm for monitoring lake area from
MODIS imagery. Considering the presented results, the algorithm can successfully
monitor the change of the lake extent and generate long time series of lake area. In
the following we continue with the concluding remarks of that chapter:

(xiii) Restricting the search area is the main advantage of the algorithm. Applying the
DEM-based mask and the constant-water mask not only reduces the computa-
tional effort significantly but also improves the accuracy of final water masks.

(xiv) After applying the masks and modifying the search area, the input of the classi-
fication algorithm only includes the pixels around the lake shoreline. As a result,
the possibility of misclassification is significantly decreased.

(xv) As extensively discussed in the validation part of chapter 3, the coarse spatial
resolution of MODIS images and the cloud cover are the main sources of the error
in the derived water masks.

(xvi) Terra and Aqua MODIS are regularly and constantly providing images from the
year 2000 until now. MODIS images are preferred to other satellite images like
Landsat images because we can generate long and dense time series which can
also represent the short-term variations of water area. Although spatial reso-
lution is the main source of error in surface water area monitoring, the MODIS
MOD09Q1 product with 250 m pixel size and 8 day revisit time holds an optimal
balance between computational efficiency and image acquisition time.

(xvii) The algorithm detects and ignores images in which a major part is covered by
cloud. But in the Rukwa Lake example we see that even a minor cloud coverage
can spoil the final results. For improving the performance of the algorithm one
can think of using auxiliary datasets, like MODIS Cloud Mask product. Ignoring
the cloud-covered pixels from the image does not solve the problem because the
number of pixels in the search area must be constant in all epochs.

Further development of the proposed algorithm may be pursued by replacing the ISO-
DATA algorithm with a region-based classification. In the beginning of chapter 4 we
have already discussed the performance of pixel and region-based classification algo-
rithms. Therefore there is no doubt that the region-based algorithms generate more
accurate water masks. The region-based algorithm, introduced in chapter 4, is specif-
ically developed for determining river reach area. We sacrifice the computational effi-
ciency of the algorithm due to the complexity of the river reach monitoring. Therefore
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the current setup of the algorithm may not be applicable for a much larger search area.
The following questions must be addressed in order to develop a graph cuts-based
algorithm for monitoring lake area:

• How can the energy functions be modified in order to establish a balance between
the run-time of the algorithm and the accuracy of the outputs?

• How can we take advantage of additional sources of information like a DEM or a
bathymetric map?

In chapter 4, a graph cuts-based classification algorithm is introduced for monitoring
river reach area. In the following the concluding remarks of chapter 4 are provided:

(xix) The MRF provides a convenient frame for modeling different constraints. There-
fore we take advantage of all types of available information in images, including
pixel intensity, spatial and temporal interactions between pixels.

(xx) The structure of the algorithm has also the potential of handling external sources
of information like elevation maps or water level information.

(xxi) The algorithm is robust against cloud coverage. It can assign a correct label for
a pixel partially covered by cloud based on spatial and temporal correlations.
However two filters for detecting and removing cloud-covered images are avail-
able.

(xxii) The balancing parameter (λ) is determined by visual comparison of derived wa-
ter masks and original images in some epochs. In future studies, a careful analy-
sis is needed to investigate about the contribution of λ in the accuracy of derived
water masks.

(xxiii) Since the graph cut algorithm cannot provide an uncertainty measure for the
defined labels, the Kohli and Torr method is applied to define the probabilistic
water mask. For every pixel in the probabilistic water mask, the confidence level
to the label is provided. This value tells us how much we can trust on the defined
label by the algorithm.

Based on the results in the validation part of chapter 4 we can say that the algorithm
makes significant inroads into the issue of extracting the river mask from satellite im-
ages. Nevertheless there is room for improvement to make the algorithm computa-
tional efficient:

Using DEM map as an external source of data: Water tends to flow downstream.
Therefore the elevation profile of the river reach and surrounding area can be used as
a useful source of information. To summarize, the lower the altitude regionally, the
higher the possibility to be covered by water.
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Using global dynamic water masks as initial solution for the algorithm: The algo-
rithm can be applied as a post-classification step to available dynamic water masks in
order to improve their accuracy.

Using time-variable water coverage frequency map: The current version of the al-
gorithm uses the same water coverage frequency map for all epochs. Due to the strong
annual behaviour, one can think of developing different frequency maps for each sea-
son. Considering time-variable frequency maps provides a reasonable understanding
about the temporal behaviour of the river reach.

Using a more efficient max-flow algorithm: Ordinary augmenting path algorithms,
like the Dinic algorithm, always look for the shortest path between terminals. Search-
ing for the shortest paths in each iteration increases the run-time complexity of the al-
gorithm. For reducing the computational effort, applying a more advance max-flow al-
gorithm is suggested. For example the algorithm introduced by Boykov & Kolmogorov
(2004) can be an alternative. This algorithm works 2–5 times faster than the other algo-
rithms because (Boykov & Kolmogorov, 2004):

• It builds two searching trees from each terminal towards the other one.

• It does not build searching trees from scratch in every iteration and reuses the
same searching trees.

As a final remark, this contribution tried to provide insight into the challenges of mon-
itoring the change in the water body area. Although a variety of advanced change
detection algorithms are being introduced and new satellite imagery missions are pro-
viding high quality images, the main difficulty is to select an appropriate change de-
tection procedure according to the specific research question. As well as selecting the
change detection technique, the following factors crucially contribute to the quality of
derived water area time series:

• Selecting suitable satellite images in terms of image acquisition dates, pixel size
and spectral coverage.

• Maintaining precise geometrical registration and radiometric calibration between
multitemporal images.

• Identifying the physical characteristic and spectral signature of the object in dif-
ferent spectral bands.

• Investigating the use of additional data sources like elevation models or historical
maps.

• Assessing the accuracy and validating the result by comparing with in situ mea-
surements.
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Appendix A

Performance metrics

In this appendix, we introduce four statistical performance metrics used in this thesis
for assessing the performance of developed results:

Correlation coefficient measures how the change in one variable can be predicted by
the change in the other one:

rp,q =

n
∑

i=1
(pi − p)(qi − q)√

n
∑

i=1
(pi − p)2

n
∑

i=1
(qi − q)2

, (A.1)

where p and q could be either different types of observation (like river reach area and
height) or measured and estimated values of a parameter (for example, the measured
and estimated river discharge). n is the number of available sample. p and q are the
mean of the corresponding vector. This coefficient varies between -1 and 1. There is no
discernible relationship between two dataset fluctuations if the correlation coefficient
equals to zero. A prefect positive correlation (r = 1) means that both variables always
change in a same direction with a same magnitude. Therefore, a close to 1 value for
correlation is representative of a strong linear relationship between them. On the other
hand, a negative correlation shows that both variables move in opposite directions.

Root Mean Square Error (RMSE) measures the average difference between observed
and estimated values.

RMSE =

√√√√√ n
∑

i=1
(pesti − pobsi)

2

n
(A.2)

In this equation pest is the vector of estimated values by the model, pobs is the vector
of observed values. This indicator is always positive and in ideal situation, it is near



182

zero. So the smaller the RMSE value, the better the model. The RMSE derived from
equation (A.2) has a unit and it does not have any upper limit. So for simplifying the
interpretation, it is usually normalized by the mean of the observed data and then the
result is reported in percentage.

Nash-Sutcliffe Efficiency (NSE) is introduced by Nash & Sutcliffe (1970):

NSE = 1−

n
∑

i=1
(pesti − pobsi)

2

n
∑

i=1
(pesti − pobs)

2
(A.3)

It measures the performance of the model by relating the magnitude of residuals to the
variance of observed values (Gupta et al., 1999). This metric is unitless and its range
is between (− 8, 1]. When the NSE equals to 1 for a model, there is a perfect match
between the observed and estimated values in terms of their phase and amplitude.
The model predictions are as accurate as the average of measured data, if the NSE is
zero. When the NSE value is negative, it is better to replace the predicted values with
the mean of observed values.

Percent bias (PBIAS) calculates the average tendency of the model to predict larger
or smaller than the real value (Gupta et al., 1999).

PBIAS =

n
∑

i=1
(pobsi − pesti)

n
∑

t=1
pobsi

(A.4)

This value is usually reported in percentage. The optimal value for the PBIAS is zero.
It means than there is no systematic tendency in the predicted values to be larger or
smaller than the actual values. The positive value shows that the model has an in-
clination to underestimate and respectively a negative PBIAS indicates that the model
estimations are in average larger than the real values.
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Appendix B

Gauss-Helmert adjustment model

It is assumed that a power law relationship is established between river discharge and
width in a natural river section:

Q = aWb , (B.1)

where Q is in situ discharge measurement, W is the average width of the river reach
and a and b are the unknown model parameters. Once the model parameters are de-
fined, we are able to predict river discharge by using the river width measurements
and estimated model parameters.

The observations (river discharge and width) in both sides of equation (B.1) are cor-
rupted by noise. Therefore to estimate the model parameters (a and b), the squared
sum of inconsistencies must be minimized. One approach is to reformulate the above
equation as a non-linear conditional equation with unknowns. This model is called the
general model of adjustment or Gauss-Helmert model.

f (a, b, eQ, eW) = Q− eQ − a(W − eW)b = 0 . (B.2)

Solving equation (B.2) by least squares adjustment leads to the determination of the
model parameters and observation inconsistencies simultaneously.

The algorithm starts with linearizing the functional equation using a Taylor series. For
the Taylor point we assume that the observation inconsistency vectors (eQ and eW) are
equal to zero. Therefore, equation (B.1) is reshaped by applying the logarithm operator
to both sides.

log (Q) = log (a) + b log (W). (B.3)

The matrix notation of the aforementioned equation is

log (Q1)
...

log (Qn)


︸ ︷︷ ︸

y

=

1 log (W1)
...

...
1 log (Wn)


︸ ︷︷ ︸

A

[
log (a)

b

]
︸ ︷︷ ︸

x0

, (B.4)
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in this equation n is the number of simultaneous river discharge and width measure-
ments. The initial values for unknown model parameters will be estimated by using
the least squares adjustment.

x̂0 = (AT A)−1ATy (B.5)

so, a0 and b0 are the first and second elements of x̂0. Now, we can write the Taylor
series expansion:

fi(a, b, Qi, Wi) = fi(a0, b0, Q0
i , W0

i ) +
∂ fi

∂Qi

∣∣∣∣
0
(Qi −Q0

i + eQi) +
∂ fi

∂Wi

∣∣∣∣
0
(Wi −W0

i + eWi)

+
∂ fi

∂a

∣∣∣∣
0
(a− a0) +

∂ fi

∂b

∣∣∣∣
0
(b− b0).−−−−−−−−−.−−−−..−−

fi(a, b, Qi, Wi) = fi(a0, b0, Q0
i , W0

i ) +
[

∂ fi
∂Qi

∣∣
0

∂ fi
∂Wi

∣∣
0

][δQi
δWi

]
︸ ︷︷ ︸

ω

+
[

∂ fi
∂Qi

∣∣
0

∂ fi
∂Wi

∣∣
0

]
︸ ︷︷ ︸

BT

[
eQi
eWi

]
+......

+
[

∂ fi
∂a

∣∣
0

∂ fi
∂b

∣∣
0

]
︸ ︷︷ ︸

A

[
δa
δb

]
.−−−−−−−−−.−−−−−−− ..−−−

(B.6)

In the end we can write the equation like

ω
n×1

+ BT
n×2n

e
2n×1

+ A
n×2

δξ
2×1

= 0, (B.7)

where the vector of misclosures (ω) is

ωn×1 =


f1(a0, b0, Q0

1, W0
1 ) +

[
∂ f1
∂Q1

∣∣
0

∂ f1
∂W1

∣∣
0

][δQ1
δW1

]
...

fn(a0, b0, Q0
n, W0

n) +
[

∂ fn
∂Qn

∣∣
0

∂ fn
∂Wn

∣∣
0

][δQn
δWn

]
 (B.8)

and the matrix BT is

BT
n×2n =


∂ f1
∂Q1

∣∣
0 0 · · · 0 ∂ f1

∂W1

∣∣
0 0 · · · 0

0 ∂ f2
∂Q2

∣∣
0 · · · 0 0 ∂ f2

∂W2

∣∣
0 · · · 0

...
... . . . ...

...
... . . . ...

0 0 · · · ∂ fn
∂Qn

∣∣
0 0 0 · · · ∂ fn

∂Wn

∣∣
0

, (B.9)
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The vector of observation inconsistencies is

e2n×1 =
[
eQ1 · · · eQn eW1 · · · eWn

]T , (B.10)

in the first iteration we consider all elements of e vector equal to zero, but in the later
iterations we will update them. Finally, the Jacobian matrix A

An×2 =


∂ f1
∂a

∣∣
0

∂ f1
∂b

∣∣
0

...
...

∂ fn
∂a

∣∣
0

∂ fn
∂b

∣∣
0

 . (B.11)

Now our aim is to determine the optimal values for the vectors e and δξ by minimizing
our target function eTPe, where P is the weight matrix

P2n×2n =



1
σ2

Q1

· · · · · · 0 · · · · · · · · · 0

0 1
σ2

Q2

· · · 0 · · · · · · · · · ...

...
... . . . ... · · · · · · · · · ...

0 0 · · · 1
σ2

Qn
· · · · · · · · · ...

... · · · · · · · · · 1
σ2

W1

0 · · · 0

... · · · · · · · · · 0 1
σ2

W2

· · · 0

... · · · · · · · · · ...
... . . . ...

0 · · · · · · · · · 0 0 · · · 1
σ2

Wn



(B.12)

So, we introduce the Lagrange multipliers to minimize the target function

L(e, δξ, λ) = eTPe + λT(ω + BT e + A δξ) , (B.13)

setting the gradients to zero yields the first order optimality conditions

∂L
∂e

(ê, δ̂ξ, λ̂) = 0 ⇒ −.....̂e + P−1Bλ̂ = 0 (B.14)

∂L
∂δξ

(ê, δ̂ξ, λ̂) = 0 ⇒ −−−−−ATλ̂ = 0 (B.15)

∂L
∂λ

(ê, δ̂ξ, λ̂) = 0 ⇒ BT ê + Aδ̂ξ + ω = 0 (B.16)
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By replacing the equivalent of the vector ê from the equation (B.14) into the equation
(B.16), we write the matrix form of the equationsBTP−1B

n×n
−A
n×2

−AT
2×n

0
2×2

 λ̂
n×1

δ̂ξ
2×1

 =

 ω
n×1
0

2×1

 (B.17)

The solution of this linear system will be[
λ̂

δ̂ξ

]
=

[
BTP−1B −A
−AT 0

]−1[
ω
0

]
(B.18)

By estimating λ̂ and δ̂ξ, now we can update the value for the ê vector using the equa-
tion (B.14). After each iteration the value of the initial model parameters will be up-
dated: [

a0
new

b0
new

]
=

[
a0

old + δ̂ξ(1)
b0

old + δ̂ξ(2)

]
(B.19)

The iteration with the updated initial model parameters and vector of inconsistencies
will be continued until one of the following conditions will be satisfied

‖δ̂ξ‖< ε , ‖ênew − êold‖< ε (B.20)

Apart from the model parameters, we can estimate the variance covariance matrix of
the unknown parameters

Σ̂x = (AT(BTPB)−1A)−1, (B.21)

and by estimating the posterior variance of unit weight (σ̂)

σ̂ =

√
êT P ê
n− 2

, (B.22)

where, n is the number of observations, P is the weight matrix and ê contains the
final estimated inconsistencies of the observations. Therefore, the variance-covariance
matrix of adjusted unknown parameters will be defined as

Σ̂x̂ = σ̂Σ̂x (B.23)
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