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Abstract

Nowadays, ionospheric phenomena can be monitored globally from data of various satellite missions with an
unprecedented accuracy. In many applications, like modeling the equatorial anomaly, regional processes are
of special interest. To study regional phenomena multi-dimensional mathematical tools may be applied. In
this report a regional multi-dimensional representation based on quadratic B-splines is derived and applied to
spatio-temporal data sets.

At first the theory of a multiscale analysis is introduced, i.e. the decomposition of signals into a smoother
version and a number of detail signals for the 1-dimensional case. To develop a multiscale analysis we introduce
B-splines as scaling functions. The corresponding base functions, i.e. the B-spline wavelets can be computed
via the so-called two-scale relations from the scaling functions. Series coefficients of the B-spline expansion can
be computed by evaluating inner products using the dual base functions or by applying parameter estimation
procedures. To generalize a 1-dimensional B-spline representation to the multi-dimensional case tensor product
techniques are used. A data compression algorithm is derived from the multiscale analysis, i.e. we gain a tool
to handle huge digital data sets.

In our applications we decompose ionospheric functions, e.g. the electron density or the vertical total electron
content, into a reference part and an unknown correction term. We apply our approach regionally to the
correction term, i.e. we expand it in a multi-dimensional series expansion in terms of B-splines. Since our
observations are located rather unbalanced with respect to space and time finer structures are modelable only
in regions with a sufficient number of observation sites. The multiscale analysis derived from the wavelet analysis
allows monitoring the ionospheric signals at different resolution levels.
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Zusammenfassung

Ionosphärische Phänomene können heutzutage mit Hilfe moderner Satellitenmissionen mit hoher Genauigkeit
global beobachtet werden. In vielen Anwendungen, wie zum Beispiel der Erforschung und Modellierung der
äquatorialen Anomalie, sind indes regionale Vorgänge von besonderem Interesse. Zur Untersuchung des raum-
zeitlichen Verhaltens derartiger regionaler Phänomene lassen sich verschiedene mehr-dimensionale mathema-
tische Methoden nutzen. In dieser Arbeit wird eine regionale mehr-dimensionale Darstellung basierend auf
quadratischen B-splines entwickelt und auf raum-zeitliche Datensätze angewandt.

Die Theorie der Multiskalen-Analyse, d.h. die Zerlegung eines Signals in eine geglättete Version und in eine
bestimmte Anzahl von Detailsignalen, wird zunächst für den 1-dimensionalen Fall betrachtet. Die quadratischen
B-Splines werden dabei als Skalierungsfunktionen der Multiskalen-Analyse eingeführt. Die dazugehörigen Ba-
sisfunktionen der Detailsignale, d.h. die B-spline Wavelets, können mit Hilfe der sogenannten Zwei-Skalen-
Gleichungen aus den Skalierungsfunktionen berechnet werden. Die Reihenkoeffizienten der B-Spline-Entwicklun-
gen kann man aus der Auswertung von Skalarprodukten, die die dualen Basisfunktionen enthalten, oder durch
die Anwendung von Methoden der Parameterschätzung bestimmen. Um die ein-dimensionale Modellierung zu
einer mehr-dimensionalen Modellierung zu verallgemeinern, wird in dieser Arbeit die Tensorproduktdarstellung
genutzt. Die Multiskalen-Analyse liefert zudem einen äußerst effizienten Algorithmus zur Datenkompression,
d.h. wir erhalten ein hervorragend geeignetes Verfahren zur Behandlung von sehr großen digitalen Datensätzen.

In den in dieser Arbeit vorgestellten Anwendungen werden ionosphärische Funktionen, z.B. die Elektronendichte
oder der vertikale absolute Elektroneninhalt (engl.: vertical total electron content), in einen Referenzteil und
einen unbekannten Korrekturterm zerlegt. Letzterer wird regional als mehr-dimensionale Reihe in B-Splines
entwickelt. Da die Beobachtungen i.Allg. jedoch sowohl räumlich als auch zeitlich unregelmäßig verteilt sind,
kann man feine ionosphärische Strukturen nur in Regionen mit einer genügend großen Anzahl von Beobach-
tungsstationen modellieren. Die Multiskalen-Analyse, die man aus der Wavelet-Analyse ableitet, bedeutet dabei
eine Möglichkeit ionosphärische Signale in verschiedenen Auflösungsstufen zu betrachten.
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Preface

Nowadays, satellite systems have become almost indispensable in everyday life, e.g.
for navigation and telecommunication. The ionosphere is defined as a thick shell of
electrons and ions, which envelopes the Earth from about 60 to 1200 km height. A key
point in correcting electromagnetic satellite measurements for ionospheric disturbances
is the knowledge of the electron density. Hence, ionosphere modelling constitutes a very
important task in many disciplines of geo-sciences at present and in the future.

This monograph has been developed during the beginning of my work at Deutsches
Geodätisches Forschungsinstitut (DGFI). My thanks go to all members of DGFI. I
would like to express my gratitude to PD Dr.-Ing. habil.Michael Schmidt for the setting
of the problem. Especially I am grateful to him for the patience and constant attention
to the work.

I would like to thank Prof. Dr. Walter Richert from the University of Munich (Ludwig-
Maximilians-Universität) for many useful discussions.

May 2008 Claudia Zeilhofer
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Chapter 1

Introduction

Since the beginning of the 1980s, the subject of ”wavelet analysis” has drawn much attention from both, the
mathematicians and the engineers. Particularly in geophysical problems engineers detect that the application
of the classical methods, e.g., the Fourier transform or the Gabor transform, yields not in all cases satisfying
results. Detailed introductions to the wavelet analysis can, e.g., be found in Louis et al. (1997) or Chui (1992).

If we apply the Fourier analysis, for instance, the method describes the input signal in terms of frequency com-
ponents. Fourier analysis is able to pick out the exact frequencies but it is unable to detect time-dependencies,
i.e. it does not yield satisfying results for signals with time-varying amplitudes, phases and/or frequencies.
There have been developed various methods such as the ”windowed Fourier transform” to increase the appli-
cability. Although these methods have achieved some success, they suffer from other deficiencies. Windowed
transforms can localize simultaneously in time and in frequency, but the localization property in each dimen-
sion remains fixed. Only a narrow time window is needed to examine the high-frequency content while wide
windows allow the investigation of low-frequency components. The most important advantage of the wavelet
theory over the other methods is the time-frequency localization, since the localization in time and frequency
is adapted automatically. With this property of wavelets an efficient representation and analysis of functions
with discontinuities in derivatives, sharp spikes and discontinuities of the function itself is also possible. Thus,
wavelet methods are useful in signal representation for a much broader class of functions; see Ogden (1997).

Wavelets are intrinsically connected to the principle of a multiscale analysis (MSA). Similar to a microscope, with
the MSA we can examine signals under different resolutions, i.e. levels. For lower level we can filter out coarse
structures of the signal, while for higher levels we can examine the finer structures of the signal. This is called a
”zoom-in, zoom-out” property. The MSA using wavelets is the analogon to the frequency analysis using Fourier
decomposition. Basically, with the MSA it is possible to examine the features of a signal of any size by adjust-
ing the level parameter - also called scaling parameter - in the analysis; see Ogden (1997) and Schmidt (2001).

The focus of application of the wavelet analysis in geodetic problems is the adapted time-frequency localization,
because, in general, phenomena with time- and space-dependent frequencies are investigated. Examples are
the determination of the gravity field of the Earth as an application in physical geodesy or the analysis of the
content of a digital image as an application in photogrammetry.

Nowadays, data from various satellite missions can be used to study geophysical phenomena globally, e.g. in
climatology or oceanography. However, in many applications regional processes are of special interest, such
as the ionospheric equatorial anomaly in space weather physics or sea level change in regions of post glacier
rebound. In such cases appropriate multi-dimensional regional mathematical tools have to be chosen.

Global geophysical signals are traditionally represented by spherical harmonic expansions. For regional investi-
gations, however, compactly supported base functions are more appropriate. The MSA is an appropriate tool
for the consideration of huge data sets of modern measurement systems because its basic feature is to split a
given input signal into a smoothed version of a specific resolution level and a certain number of detail signals
by successive low-pass filtering. Each detail signal represents a band-passed filtered version of the input signal,
related to a specific frequency band (resolution level). The higher the resolution level, the finer the detected
structures. Since observations are frequently located rather unbalanced, finer structures of the signal under
investigation are modelable just in regions with a sufficient number of observations.
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As there are many applications of the Global Navigation Satellite Systems (GNSS), such as the Global Position-
ing System (GPS), the study of the most important effects on radio signal propagation has become more and
more important. One of the main effects is caused by the ionosphere, i.e. the ionized layer of the atmosphere; it
causes a delay in the electromagnetic signals that journey through the layer. The ionization of several molecular
species in this layer is caused by the ultraviolet and X radiation emitted by the Sun. The maximal ionization
in general takes place in a height of 200 to 400 km. The number of electrons is considered to be approximately
equal to the ions. Hence there is the maximum of the electron density in these heights. Since the ionization
depends on the activity of the Sun, there are diurnal variations. In this report, we consider the ionosphere to
be a layer from 100 km to 1200 km height above the Earth. In the literature there can be found various height
values. For more details see, e.g., Garćıa-Fernández (2004).

In the 1-dimensional case a signal given within a finite time interval, can be modeled appropriately, for instance,
by a series expansion in terms of endpoint-interpolating quadratic B-splines; for more details see e.g. Stollnitz

et al. (1995). Furthermore, B-splines can favorable be used as scaling functions to establish a MSA. The corre-
sponding base functions, i.e. the B-spline wavelet functions are computable via the so-called two-scale relations
from the scaling functions. The series coefficients of the B-spline expansion can be computed by evaluating inner
products using the dual base functions or by applying parameter estimation procedures, e.g. the least-squares
method. That way data gaps can be handled appropriately by prior information. Data compression (reduction)
and de-noising techniques can be applied; see e.g. Schmidt et al. (2007b).

Tensor-product techniques are used to generalize the 1-dimensional B-spline representation to the multi-dimen-
sional case. The 2-dimensional approach, well-known in digital image processing can, e.g., also be applied to
model ionospheric signals given on spherical regions. Spatial density distributions, such as the ionospheric elec-
tron density are examples for a 3-dimensional representation. Temporal variations of such a density distribution
can be modeled as a 4-dimensional approach by introducing a fourth B-spline expansion for the time variable;
for more details see, e.g., Lyche and Schumaker (2001) and Schmidt et al. (2007b).

As already mentioned before GPS has become a promising tool for monitoring the electron density of the iono-
sphere in the last years. To determine the slant total electron content (STEC), i.e. the integral of the electron
density along the ray-path between the transmitting satellite and the receiver, dual-frequency GPS observations
can be used. By considering measurements from space-borne GPS receivers flying on low-Earth-orbiting (LEO)
satellites such as the COSMIC/FORMOSAT-3 (Constellation Observing System for Meteorology, Ionosphere
and Climate/Taiwan’s FORMOsa SATellite Mission #3) six satellite constellation mission, CHAMP (CHAl-
lenging Minisatellite Payload) or GRACE (Gravity Recovery And Climate Experiment) the insensitivity of
ground-based GPS observations to the radial geometry of the ionosphere can be overcome. For more details
on these satellite missions see, e.g. Rocken et al. (2000), Reigber et al. (2000) or Beyerle et al. (2005).

Various approaches can be used to establish a multi-dimensional model of the electron density. Rius et al.

(1997), for instance, combine GPS occultation data with ground-based GPS data to perform 4-dimensional
ionospheric tomography with a substantial level of vertical resolution. Cells of constant electron density with
a size adapted to the resolution of terrestrial data are used by Hernández-Pajares et al. (1999). Garćıa-

Fernández (2004) presents an overview about various techniques for modeling the electron density is given.
A model built by a combination of ground-based and space-based measurements can be found in Dettmering

(2003). In contrast to tomographic models it includes theoretical assumptions about the vertical structure of
the ionosphere.

It is always common to subtract a reference model (background model) from the input data and to work with
the residual data. In this report we use the International Reference Ionosphere (IRI) as reference model and
we model corrections to the reference model. The IRI is an international project developed and improved by
the Committee On SPAce Research (COSPAR) and the International Union of Radio Science (URSI). In the
late sixties a working group produced an empirical standard model of the ionosphere, based on all available
data sources. Several improved editions of the model have been released from 1969 to present. For given
location and time IRI describes, e.g., the electron density, electron temperature, ion temperature, and ion
composition in the altitude range from about 50 km to about 2000 km; and also the electron content (see:
http://modelweb.gsfc.nasa.gov/ionos/iri.html). For more details on the IRI see Bilitza (2001).

In this report a regional multi-dimensional representation based on quadratic B-splines is derived and applied
to spatio-temporal ionospheric data sets. The report is organized as follows: In chapter 2 the theory is intro-
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duced. In section 2.1 the definition of the 1-dimensional MSA is given. First the scaling functions and the
scaling spaces are defined, then we introduce the detail spaces and prove the existence of orthogonal wavelets
that span the detail spaces. We establish the two-scale relations wherein the two-scale coefficients play an
important role. Later we generalize the concept to semiorthogonal wavelets and derive decomposition rela-
tions and a reconstruction procedure. Via the decomposition relations we perform a decomposition of a signal
into a smoothed signal and a number of corresponding detail signals; from the smoothed signal and the cor-
responding details signals we can reconstruct the original signal via the reconstruction relation. In section 2.2
we introduce B-splines and give some properties of these functions. In section 2.3 the theory of the MSA is
applied to the B-spline functions, i.e. we use the B-splines as scaling functions and construct semiorthogonal
wavelet functions. With the two-scale coefficients we gain the decomposition and the reconstruction relations for
the B-spline model. Finally in section 2.4 we extend the 1-dimensional B-spline model to the n-dimensional case.

Chapter 3 covers several applications. Section 3.1 gives an overview of ionospheric observations. We will
consider the STEC from GPS, the electron density from occultation measurements, the vertical total electron
content (VTEC) from altimetry and terrestrial measurements. The different options of our B-spline approach
are repeated and summarized in section 3.2. In section 3.3 we study the evaluation of the observations in
detail. In section 3.3.1 a simple application is considered: we model the electron density from IRI with our
B-spline approach. Section 3.3.2 covers a more complicated application: we model the STEC for simulated
GPS observations. The last application in section 3.3.3 is similar to the first application, but here we model
the VTEC derived from COSMIC observations. The combination of different types of input data is treated in
section 3.4.
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Chapter 2

Theory

2.1 Multiscale analysis

In this first section we introduce the concept of a multiscale analysis and we gain the first two-scale relation;
all the theory can be found in Louis et al. (1997), we made some changes in the notations.

For our investigations we will use the translated and dilated versions of a function φ ∈ L2(R) as basis functions,
these functions are defined in the following definition.

Definition 2.1. The translated and dilated versions of a function φ ∈ L2(R) are defined via

φj,k(x) := 2j/2φ(2jx− k) j, k ∈ Z.

Definition 2.2. The sequence space l2(Z) is defined as

l2(Z) = {(ui)i∈Z |
∑

i∈Z

|ui|2 <∞}

wherein ui ∈ C.

2.1.1 Scaling functions and scaling spaces

Definition 2.3. A multiscale analysis (MSA) of L2(R) is an increasing sequence of closed subspaces Vj of
L2(R) fulfilling the following properties:

{0} . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ L2(R) (2.1)

⋃

j∈Z

Vj

L2(R)

= L2(R) (2.2)

⋂

j∈Z

Vj = {0} (2.3)

f(x) ∈ Vj ⇔ f(2−jx) ∈ V0, j ∈ Z. (2.4)

Definition 2.4. A function φ ∈ L2(R) is called a scaling function, if the so-called scaling spaces Vj :=

span{φj,k | k ∈ Z}L
2(R)

with φj,k(x) = 2j/2 φ(2jx− k) (i.e. Vj are the closed subspaces generated by the trans-
lated and dilated versions of φ) satisfy the conditions (2.1),(2.2) and (2.4). Moreover the translates φ(x − k),
k ∈ Z, must form a Riesz-basis of V0, i.e.

V0 = span{φ(· − k) | k ∈ Z}L
2(R)

(2.5)

and

A
∑

k∈Z

c2k ≤ ‖
∑

k∈Z

ck φ(· − k)‖2L2(R) ≤ B
∑

k∈Z

c2k (2.6)

for all {ck}k∈Z ∈ l2(Z); where A and B are positive constants.
We say the scaling function φ generates a MSA {Vj}j∈Z of L2(R).
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Remarks:

• Conditions (2.1) and (2.2) are satisfied by many families {Vj}j∈Z. Property (2.4) is the special feature of
a MSA: all the spaces Vj are scaled versions of the central space V0, which is spanned by the translations
of the scaling function φ.
For j →∞ the spaces Vj contain the smaller structures, for j → −∞ the functions in Vj are dilated, i.e.
their details are coarser. We can state this more precisely with the limits

lim
j→∞

‖Pjf − f‖L2(R) = 0 and

lim
j→−∞

‖Pjf‖L2(R) = 0

wherein Pj denotes the orthogonal projector onto Vj .

• If a scaling function φ ∈ L2(R) generates a MSA {Vj}j∈Z of L2(R), then the sequence of nested subspaces
necessarily satisfies the property (2.3); see Chui (1992), p. 121.

• The relation (2.5) implies V0 is invariant under integer translation

f ∈ V0 ⇔ f(· − k) ∈ V0 for k ∈ Z;

with (2.4) it follows that

f ∈ Vj ⇔ f(· − 2−jk) ∈ Vj for k ∈ Z.

• The functions φj,k all have the same L2-norm ‖φj,k‖L2(R) = ‖φ‖L2(R).

• If φ0,k, k ∈ Z, form a Riesz basis of V0 then it follows, that φj,k, k ∈ Z, forms a Riesz basis of Vj for a
j ∈ Z with the same Riesz bounds A and B; see Chui (1992).

Lemma 2.5. The scaling function φ satisfies a scaling equation, i.e. there is a sequence {pk}k∈Z ∈ l2(Z) with

φ(x) =
√

2
∑

k∈Z

pk φ(2x− k), x ∈ R. (2.7)

This equation is called first two-scale relation or refinement equation.

Proof: Equation (2.7) follows from φ ∈ V0 ⊂ V1 = span {21/2 φ(2x− k) | k ∈ Z}
L2(R)

; see e.g. Chui (1992).

2.1.2 Wavelet functions and detail spaces

In this section we give the definition of the detail spaces and we will introduce the second two-scale relation.
Here we restrict our investigations to orthogonal spaces, but in section 2.1.3 we will consider the more general
concepts of biorthogonal and semiorthogonal spaces for more flexibility.

Definition 2.6. For every j ∈ Z we define the orthogonal detail space Wj−1 to be the orthogonal complement
of Vj−1 in Vj , i.e.

Vj = Vj−1 ⊕Wj−1, Vj−1 ⊥Wj−1 (2.8)

and the operators Pj and Qj to be the orthogonal projectors of L2(R) on Vj and Wj, respectively,

Pj = Pj−1 +Qj−1. (2.9)

From (2.8) it follows

Vj =
⊕

i≤j−1

Wi, (2.10)

where all these subspaces are orthogonal and so

L2(R) =
⊕

i∈Z

Wi. (2.11)
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The spaces Wj inherit the scaling property of Vj (see equation (2.4))

f(x) ∈ Wj ⇔ f(2−j x) ∈ W0, j ∈ Z.

According to equations (2.11) and (2.10) a function f ∈ L2(R) can be decomposed

f =
∑

i∈Z

Qif =
∑

i≤j−1

Qif +
∑

i≥j
Qif (2.12)

= Pjf +

∞∑

i=j

Qif. (2.13)

This equality justifies the name MSA. Pjf represents f on scale j, which corresponds to an application of a low
pass filter that has an increasing bandwidth for increasing j. The remaining high-frequency part of f is split
up into its frequency bands Qif, j ≤ i ≤ ∞, so Qif only contains the details which distinguish Pi+1f from
Pif, Qi = Pi+1 − Pi, see equation (2.9). Because of the uniqueness of the orthogonal projection and equation
(2.10) we have

∑

i≤j−1Qi = Pj ; see Louis et al. (1997).

The decompositions of signals fj ∈ Vj will be of importance and will appear later.

Now we will give the definition of a wavelet.

Definition 2.7. A function ψ ∈ L2(R) which satisfies the admissibility condition

0 < cψ := 2π

∫

R

|ψ̂(ω)|2
|ω| dω <∞ (2.14)

is called a wavelet.
Let ψj,k(x) := 2j/2ψ(2jx− k), j, k ∈ Z, be the translated and dilated versions of ψ.
A wavelet ψ is called an orthogonal wavelet (in fact the wavelet is even orthonormal) if

〈ψj,k, ψi,l〉L2(R) = δj,i δk,l, j, i, k, l ∈ Z.

An immediate consequence of the admissibility condition is the following: for a wavelet ψ ∈ L1(R): if ψ ∈ L1(R)
then ψ̂ is continuous. The equation (2.14) can then only be fulfilled if ψ̂(0) = 0 and we get the property

∫

R

ψ(x)dx = 0 (2.15)

see e.g. Daubechies (1992). The name wavelet comes from equation (2.15), it means ”small wave”.

Now we want to prove the main result of this chapter:

Theorem 2.8. To every MSA there exists a wavelet ψ whose translated and dilated versions

ψj,k(x) = 2j/2ψ(2jx− k) j, k ∈ Z

generate an orthonormal basis (ONB) of the space Wj for fixed j ∈ Z. Further the wavelet can be explicitly
constructed from the scaling function.

We first state the analogon to Lemma 2.5 for the wavelets.

Lemma 2.9. A wavelet function ψ whose translated and dilated versions ψ0,k, k ∈ Z generate the detail space
W0 satisfies a scaling equation, i.e. there is a sequence {qk}k∈Z ∈ l2(Z) with

ψ(x) =
√

2
∑

k∈Z

qk φ(2x− k), x ∈ R. (2.16)

This equation is the analogon to equation (2.7) and is also called second two-scale relation or refinement
equation.

Proof: Equation (2.16) follows from ψ ∈ W0 ⊂ V1 = span {21/2 φ(2x− k) | k ∈ Z}
L2(R)

; see e.g. Chui (1992).
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We now want to prove Theorem 2.8. First we give an overview of the proof:

1. We state that for every scaling function φ there exists a function φ̃ s.t. the translates φ̃0,k generate an
ONB of V0 (Theorem 2.11).

2. We prove that under special assumptions a function φ ∈ L2(R) generates a MSA of L2(R) (Theorem 2.13).

3. We prove that to an orthogonal scaling function that generates a MSA there exists a wavelet ψ (Theorem
2.15).

4. The results of the Theorems 2.11, 2.13 and 2.15 prove Theorem 2.8.

Definition 2.10. A scaling function φ ∈ L2(R) generates an orthonormal system in V0 if {φ0,k | k ∈ Z} is an
orthonormal system, i.e.

〈φ(· − k), φ(· − n)〉L2(R) = δk,n. (2.17)

If the scaling function φ of a MSA does not generate an ONB of V0 we can orthogonalize the basis {φ0,k | k ∈ Z}
in the following sense.

Theorem 2.11. Let φ ∈ L2(R) be a scaling function and let positive constants A and B exist, where

A ≤
∑

n∈Z

|φ̂(w + 2πn)|2 ≤ B a.e. (2.18)

Then {φ̃(x− k) | k ∈ Z} is an ONB of V0 with

ˆ̃φ(w) =
1√
2π

φ̂(w)
√
∑

n∈Z
|φ̂(w + 2πn)|2

. (2.19)

Proof: See Louis et al. (1997).

Remark:

To each scaling function φ Theorem 2.11 guarantees the existence of a scaling function φ̃ such that

φ̃j,k(x) = 2j/2φ̃(2jx− k), x ∈ R, j, k ∈ Z

generates an ONB of Vj .

The spaces {Vj}j∈Z form a MSA if and only if they span the entire space L2(R), i.e. if
⋃

j∈Z
Vj
L2(R)

= L2(R)
or equivalent, if for f ∈ L2(R)

lim
j→∞

‖Pjf − f‖L2(R) = 0 (2.20)

with

Pjf =
∑

k∈Z

〈f, φ̃j,k〉L2(R)φ̃j,k

the orthogonal projection on Vj .

For the proof of theorem 2.13 we will use the following:

Theorem 2.12 (Pythagorean theorem). Let {x1, x2, . . . , xn} be an orthonormal system (ONS) in an inner
product space V . Then for all x ∈ V ,

‖x‖2 =

n∑

k=1

|(xk, x)|2 + ‖x−
n∑

k=1

(xk, x)xk‖2. (2.21)

Proof. See Reed and Simon (1980).
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Theorem 2.13. Let a function φ ∈ L2(R) ∩ L1(R) be given that satisfies equation (2.18) and has a non-zero
mean value

∫

R

φ(x)dx =
√

2πφ̂(0) > 0. (2.22)

Further let

φ̂(2πk) = 0 for all k ∈ Z\{0} (2.23)

Then the spaces

Vj = span{φj,k | k ∈ Z}L
2(R)

, j ∈ Z, (2.24)

give an MSA of L2(R).

Proof: As we proved in theorem 2.11 we can orthogonalize φ. The calculated functions φ̃ fulfill

∫

R

φ̃(x)dx =
√

2π ˆ̃φ(0)
(2.19)

=
√

2π · 1√
2π
· φ̂(0)
√
∑

n∈Z
|φ̂(2πn)|2

(2.23)
=

φ̂(0)
√

|φ̂(0)|2
= 1. (2.25)

For simplification of the notation we set φ = φ̃ in the following. We mentioned before that we have to show
⋃

j∈Z
Vj
L2(R)

= L2(R) or equivalent the convergence (2.20) on a dense subset of L2(R). As a candidate for the
dense subspace we choose the set

B = {g ∈ L1(R) | ĝ ∈ C∞(R), ĝ has compact support}

and verify (2.20) for f ∈ B (We will not show that the set B is a dense subset in L2(R), but this set is used
in Louis et al. (1997)). Let the support of f̂ be contained in [−2nπ, 2nπ].
We get the equation

‖Pjf − f‖2L2(R)

(2.21)
= ‖f‖2L2(R) −

∑

k∈Z

|〈f, φj,k〉L2(R)|2

(B.6) and (B.7)
= ‖f̂‖2L2(R) −

∑

k∈Z

|〈f̂ , φ̂j,k〉L2(R)|2.

The scalar products

〈f̂ , φ̂j,k〉L2(R) =

∫ 2nπ

−2nπ

f̂(ω)φ̂j,k(ω)dω

= 2j/2
∫ 2nπ

−2nπ

f̂(ω)φ̂(2jω − k)dω

(B.4)
= 2j/2

∫ 2nπ

−2nπ

f̂(ω)eik2
−jωφ̂(2jω)dω

= 2j/2
∫ 2nπ

−2nπ

f̂(ω)eik2
−jωφ̂(

1

2−j
ω)dω

(B.5)
= 2j/2

∫ 2nπ

−2nπ

f̂(ω)eik2
−jω2−j φ̂(2−jω)dω

= 2−j/2
∫ 2nπ

−2nπ

f̂(ω)eik2
−jωφ̂(2−jω)dω

=
√

2π

√

2−j−1

π

∫ 2nπ

−2nπ

f̂(ω)φ̂(2−jω)eik2
−jωdω
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are
√

2π-multiples of the Fourier coefficients of the product f̂(ω)φ̂(2−jω) with respect to the ONB
{
√

2−j−1/πeik2
−jω | k ∈ Z} of L2([−2jπ, 2jπ]). Since L2([−2nπ, 2nπ]) ⊂ L2([−2jπ, 2jπ]) for j ≥ n it holds

∑

k∈Z

|〈f̂ , φ̂j,k〉L2(R)|2
(A.3)

= 2π‖f̂(·)φ̂(2−j ·)‖2L2(R)

and

‖Pjf − f‖2L2(R) = ‖f̂‖2L2(R) − 2π‖f̂(·)φ̂(2−j ·)‖2L2(R).

φ ∈ L1(R), hence φ̂ is continuous. f̂ has compact support and it is φ̂(0) = 1/
√

2π (compare equation (2.25)).

Therefore 2π‖f̂(·)φ̂(2−j ·)‖2L2(R) converges to ‖f‖2L2(R) for j →∞, and it follows that

lim
j→∞

‖Pjf − f‖2L2(R) = 0.

Lemma 2.14. The coefficients of the two-scale relation (2.7) for an orthogonal scaling function satisfy the
orthogonality relation:

∑

k∈Z

pk pk−2j = δ0,j . (2.26)

Proof: See Louis et al. (1997).

Theorem 2.15. Let {Vj}j∈Z be an MSA generated by the orthogonal scaling function φ ∈ V0. The function
ψ ∈ V1, defined by the two-scale relation (2.16), i.e.

ψ(x) =
√

2
∑

k∈Z

qk φ(2x− k) =
∑

k∈Z

qk φ1,k(x), (2.27)

qk = (−1)k p1−k, (2.28)

where {pk}k∈Z are the coefficients of the scaling equation (2.7), has the following properties

(i) {ψj,k(·) = 2j/2 ψ(2j · −k) | k ∈ Z} is an ONB for Wj ,

(ii) {ψj,k(·) | j, k ∈ Z} is an ONB for L2(R),

(iii) ψ is a wavelet with cψ = 2π
∫

R
|ω|−1|ψ̂(ω)|2dω = 2 ln 2, i.e. ψ fulfills the admissibility condition (2.14).

Remark:

For the proof we will use the following: To prove that {fn | n ∈ Z} is an ONB of our scaling space Vj =
{spanφj,k | k ∈ Z}, j ∈ Z, it is sufficient to show the representability of φj,0 in this basis. Because if φj,0(x) =
φ(2j x) =

∑

n∈Z
〈φj,0(·), fn(·)〉L2(R)fn(x) holds it follows that

φj,k(x) = φ(2j x−k) = φj,0(x− k
2j ) =

∑

n∈Z
〈φj,0(·), fn(·)〉L2(R)fn(x− k

2j ), k ∈ Z and it follows that φj,k(x) ∈ Vj ,
k ∈ Z.

Proof: In the first part we show that ψ ∈ W0 ⊂ V1. From (2.27) it is obvious that ψ ∈ V1 and it follows that
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ψ0,k ∈ V1, k ∈ Z. Hence it remains to show that ψ ⊥ φ0,n, n ∈ Z:

〈ψ(·), φ(· − n)〉L2(R) = 2
∑

k∈Z

∑

l∈Z

qk pl 〈φ(2 · −k), φ(2 · −2n− l)〉L2(R)

=
∑

k∈Z

∑

l∈Z

qk pl δk,2n+l =
∑

l∈Z

q2n+l pl

(2.28)
=

∑

l∈Z

(−1)lp1−2n−l pl

=
∑

l∈Z

p1−2(n+l) p2l −
∑

l∈Z

p−2(n+l) p2l+1

=
∑

λ∈Z

p1+2λ p−2(λ+n) −
∑

l∈Z

p−2(n+l) p2l+1

= 0.

The orthogonality of the ψ0,k, for all k ∈ Z to the space V0 follows easily by 〈ψ(· − k), φ(· − n)〉L2(R) =
〈ψ(·), φ(· + k − n)〉L2(R) = 0. It follows ψ0,k ∈ W0.
The orthogonality of the family {ψ(· − k) | k ∈ Z} can be proven by a similar calculation using (2.26).
To complete the proof for (i) and (ii) it remains to show the completeness of {ψ(·−k) | k ∈ Z} in W0. We show
the completeness of the orthonormal system {φ(· − k), ψ(· − k) | k ∈ Z} in V1, as V0 ⊕W0 = V1. It is sufficient
to show the representability of φ1,0 by {φ(· − k), ψ(· − k) | k ∈ Z} (compare the previous remark): we want to
check equation (2.21) and therefore we calculate the sum of the coefficients of the orthogonal projection:

∑

k∈Z

|〈φ1,0(·), φ(· − k)〉L2(R)|2 + |〈φ1,0(·), ψ(· − k)〉L2(R)|2

2
∑

k∈Z

|〈φ(2·), φ(· − k)〉L2(R)|2 + |〈φ(2·), ψ(· − k)〉L2(R)|2 inserting equations (2.7) and (2.27)

= 4
∑

k∈Z

(

|
∑

l∈Z

pl 〈φ(2·), φ(2 · −2k − l)〉L2(R)|2 + |
∑

l∈Z

ql 〈φ(2·), φ(2 · −2k − l)〉L2(R)|2
)

(2.28) and (2.17)
=

∑

k∈Z

(

|
∑

l∈Z

pl δ0,2k+l|2 + |
∑

l∈Z

(−1)l p1−l δ0,2k+l|2
)

=
∑

k∈Z

|p−2k|2 +
∑

k∈Z

|p−2k+1|2 =
∑

k∈Z

|pk|2

=
∑

k∈Z

pk pk

(2.26)
= 1 = ‖φ1,0‖2L2(R).

Inserting the result in (2.21) it follows

‖φ1,0 −
∑

k∈Z

(〈φ1,0(·), φ0,k(·)〉φ0,k + 〈φ1,0, ψ0,k(·)〉ψ0,k) ‖L2(R) = 0.

Hence ψ0,k, k ∈ Z, form an ONB for W0.
We still have to show that ψj,k, k ∈ Z, form an ONB for Wj , j ∈ Z but this follows analogous to the case j = 0
by a simple substitution of the coordinates. We will not repeat the proof here.
Part (ii) follows with equation (2.11).
Part (iii) follows with some properties on wavelet frames we will not discuss here. For more details see Louis

et al. (1997).

Corollary 2.16. The wavelet associated with a MSA is not unique, because

qk = (−1)k p1+2l−k for an l ∈ Z (2.29)
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defines also a wavelet by (2.27), i.e. Theorem 2.15 also applies if (2.28) is replaced by (2.29).

Proof: For the proof there have to be made some changes in the proof of Theorem 2.15 and it will not be
repeated here.

Now we want to give a short overview of the results on MSAs and wavelet bases. We can us an arbitrary
function with non-zero mean value and satisfying the assumptions of Theorem 2.13 to generate a MSA. By
calculating the two-scale coefficients in equation (2.7) we gain orthogonal wavelets with the equations (2.28) or
(2.29). The crux of this method is the orthogonalization of the scaling function from Theorem 2.11. Apart from
a few exceptions we cannot determine the orthogonal scaling function φ̃.
Suppose we could determine the orthogonal scaling function, then another difficulty is the determination of the
coefficients pk from the scaling equation. If the scaling function φ̃ has not compact support, then the sum (2.7)
extends over Z and we have to calculate infinitely many coefficients. Because the orthogonal scaling function φ̃
is implicitly defined by its Fourier transform, this dilemma becomes the general rule; see Louis et al. (1997).

2.1.3 Two-scale relations

In chapter 2.1.2 we already mentioned that we will work with more general concepts than the orthogonal
wavelets. The orthogonality puts a strong limitation on the construction of wavelets and we cannot achieve
some properties that would be desirable.
Some important properties of wavelets are generally

• orthogonality

• compact support

• rational coefficients

• symmetry

• smoothness

• number of vanishing moments of the dual wavelets

• analytic expressions

• interpolation.

For more details on the advantages of these properties and for examples of wavelets fulfilling some of these
properties see Jawerth and Sweldens (1994).
Of course it is not possible to construct wavelets that have all the properties and there has to be a trade-off be-
tween them. For example the Daubechies wavelets are compactly supported and orthogonal; see e.g. Jawerth

and Sweldens (1994). Hence to gain more of the properties, e.g. symmetry and smoothness, we introduce a
more flexible concept for constructing wavelets, i.e. we here introduce biorthogonal and semiorthogonal wavelets.

For simplification we will finally restrict ourself to the semiorthogonal wavelets because for the B-splines which
we will use in section 2.3.1 as scaling functions we will construct semiorthogonal wavelets.

Definition 2.17. Given a scaling function φ and a dual scaling function φ̃ (dual in the sense of 〈φj,k, φ̃j,l〉L2(R) =
δk,l) generating two MSAs

. . . ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . .

. . . ⊂ Ṽ0 ⊂ Ṽ1 ⊂ Ṽ2 ⊂ . . .

with subspaces Vj = span{φj,k | k ∈ Z}L
2(R)

and Ṽj = span{φ̃j,k | k ∈ Z}
L2(R)

, respectively.
As in the orthogonal case, each of these sequences of scaling spaces has a sequence of successive detail spaces
{Wj}j∈Z and {W̃j}j∈Z but they are not necessarily orthogonal to Vj and Ṽj, respectively (i.e. Vj+1 = Vj+Wj but
the sum is no longer a direct sum). These detail spaces are generated by two wavelet functions ψ and ψ̃, which
are dual to one another (in the sense of 〈ψj,k, ψ̃i,l〉L2(R) = δj,iδk,l). The biorthogonality is expressed through
relationships between the dual MSAs:

Vj ⊥ W̃j , j ∈ Z (2.30)
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and

Ṽj ⊥Wj j ∈ Z. (2.31)

In terms of scaling and wavelet functions the biorthogonality (2.30) and (2.31) is expressed as

〈ψ̃j,k, φj,l〉L2(R) = 0 and 〈φ̃j,k, ψj,l〉L2(R) = 0 (2.32)

and the duality is expressed as

〈φj,l, φ̃j,k〉L2(R) = δk,l and 〈ψ̃j,k, ψi,l〉L2(R) = δj,i δk,l, i, j, k, l ∈ Z. (2.33)

A wavelet ψ is called a biorthogonal wavelet if it satisfies the conditions (2.32) and (2.33). Note, nothing is
said about the orthogonality of the functions {φj,k}, {φ̃j,k}, {ψj,k} and {ψ̃j,k} themselves (see Ogden (1997)).

The semiorthogonal concept is a restriction of the biorthogonal concept and is defined in the following:

Definition 2.18. A biorthogonal wavelet function ψ is called a semiorthogonal wavelet if it satisfies the following
concept: Associated with φ and ψ are the dual functions φ̃ and ψ̃. The functions {ψj,k | k ∈ Z} form a Riesz
basis for the detail space Wj , and just as in the orthogonal wavelet case,

Vj ⊥Wj , j ∈ Z.

Thus the Wj spaces are mutually orthogonal. In this formulation, both {φj,k | k ∈ Z} and {φ̃j,k | k ∈ Z} are
Riesz bases for the spaces Vj ; similarly, {ψj,k | k ∈ Z} and {ψ̃j,k | k ∈ Z} are Riesz bases for Wj (i.e. W̃j = Wj

and Ṽj = Vj).

Remarks:

• The dual MSA is not necessarily the same as the one generated by the original basis functions.

• The biorthogonal wavelets are more flexible than the orthogonal wavelets, hence we get less limitations
on the construction of wavelets. An orthogonal wavelet is ”self-dual” in the sense that ψ̃j,k = ψj,k for
j, k ∈ Z. Hence it fulfills of course the biorthogonal concept.

• The role of the basis (i.e. the φ and ψ) and the dual basis (i.e. the φ̃ and ψ̃) can be interchanged.

• We consider here the semiorthogonal wavelets because in our applications we apply normalized endpoint
interpolating B-splines which have semiorthogonal wavelets.

Here we will not consider the existence of dual functions φ̃ and ψ̃ generating the dual bases φ̃j,k and ψ̃j,k. But
for a proof of the existence of the dual functions see Chui (1992), p. 77. Note, in the more general concepts
there may exist dual bases ψ̃j,k that are not generated by a function ψ̃.

Due to the last item we suppose to have scaling functions φ and φ̃ and wavelet functions ψ and ψ̃ that fulfill
the concept of Definition 2.18. Note, we could also work with the more general concept of biorthogonal spaces
but for simplification we will not use this concept and can therefore work without the dual spaces Ṽj and W̃j .

The functions φj,k and φ̃j,k both span the space Vj and are orthonormal to each other (i.e. 〈φ̃j,k, φj,l〉 = δk,l).
Then for every function f ∈ Vj there exist sequences {cj,k}k∈Z and {dj,k}k∈Z of real numbers such that we can
write the series expansions

f(x) =
∑

k∈Z

cj,k φ̃j,k(x) (2.34)

=
∑

k∈Z

dj,k φj,k(x) for x ∈ R. (2.35)

To compute the coefficients cj,m we take the inner product of equation (2.34) with φj,m and obtain

〈f, φj,m〉L2(R) = 〈
∑

k∈Z

cj,k φ̃j,k, φj,m〉L2(R)

=
∑

k∈Z

cj,k δk,m

= cj,m



2.1. Multiscale analysis 23

and analogous taking the inner product with ψ̃j,m we can calculate the coefficients di,m and get

〈f, ψ̃j,m〉L2(R) = dj,m,

see e.g. Chui (1992).
Hence, we can rewrite the equations (2.34) and (2.35) as

f(x) =
∑

k∈Z

〈f, φj,k〉L2(R)φ̃j,k(x) (2.36)

=
∑

k∈Z

〈f, φ̃j,k〉L2(R)φj,k(x). (2.37)

If φ and φ̃ are semiorthogonal in the sense of Definition 2.18 we can therefore write each signal f ∈ Vj as one
of the series expansions (2.36) or (2.37).

Two-scale relations

Now we construct more general two-scale relations similar to equations (2.7) and (2.16). It follows from the
definition of a MSA that the φj,k, k ∈ Z, span the scaling space Vj . Since Vj ⊂ Vj+1 and Wj ⊂ Vj+1 the
functions φj,l ∈ Vj and ψj,l ∈ Wj can be written as series expansions analogous to (2.37), i.e.

φj,l(x) =
∑

k∈Z

〈φj,l, φ̃j+1,k〉L2(R)φj+1,k(x), (2.38)

ψj,l(x) =
∑

k∈Z

〈ψj,l, φ̃j+1,k〉L2(R)φj+1,k(x) (2.39)

or with

pj+1
k,l := 〈φj,l, φ̃j+1,k〉L2(R) and qj+1

k,l := 〈ψj,l, φ̃j+1,k〉L2(R)

we rewrite equation (2.38) and (2.39) as

φj,l(x) =
∑

k∈Z

pj+1
k,l φj+1,k(x), (2.40)

ψj,l(x) =
∑

k∈Z

qj+1
k,l φj+1,k(x). (2.41)

These equations are called two-scale relations because the functions φj,l(x) and ψj,l(x) refer to the scale j and
the functions φj+1,k(x) refer to the scale j + 1, the coefficients pj+1

k,l and qj+1
k,l are called two-scale coefficients.

We get the following equations if we set j = 0 and l = 0:

φ(x) =
∑

k∈Z

p1
k,0 φ1,k(x) = 21/2

∑

k∈Z

p1
k,0 φ(2x− k) (2.42)

ψ(x) =
∑

k∈Z

q1k,0 φ1,k(x) = 21/2
∑

k∈Z

q1k,0 φ(2x− k); (2.43)

the first equation (2.42) corresponds to the two-scale relation (2.7) the second equation corresponds to equation
(2.16).

For the two-scale equations (2.38) and (2.39) we can compute the inner products as follows:

〈φj,l, φ̃j+1,k〉L2(R) = 2j+1/2

∫ ∞

−∞
φ(2jx− l)φ̃(2j+1x− k)dx (substitution: s = 2jx− l, dx = 2−jds)

= 21/2

∫ ∞

−∞
φ(s)φ̃(2s− (k − 2l))ds

= 〈φ0,0, φ̃1,k−2l〉L2(R) =: pk−2l (2.44)
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and analogous

〈ψj,l, φ̃j+1,k〉L2(R) = 21/2

∫ ∞

−∞
ψ(s)φ̃(2s− (k − 2l))ds

= 〈ψ0,0, φ̃1,k−2l〉L2(R) =: qk−2l. (2.45)

Note, now the two-scale coefficients pk−2l and qk−2l are independent of the resolution level j. And we can
rewrite the two-scale equations (2.38) and (2.39)

φj,l(x) =
∑

k∈Z

pk−2l φj+1,k(x) (2.46)

ψj,l(x) =
∑

k∈Z

qk−2l φj+1,k(x) x ∈ R. (2.47)

Analogous to equations (2.38) and (2.39) we can write for the dual MSA

φ̃j,l(x) =
∑

k∈Z

〈φ̃j,l, φj+1,l〉L2(R)φ̃j+1,k(x),

ψ̃j,l(x) =
∑

k∈Z

〈ψ̃j,l, φj+1,k〉L2(R)φ̃j+1,k(x)

and get analogous to pk−2l and qk−2l in equations (2.44) and (2.45) the dual two-scale coefficients p̃k−2l and
q̃k−2l

〈φ̃j,l, φj+1,k〉L2(R) = 〈φ̃0,0, φ1,k−2l〉L2(R) = p̃k−2l and (2.48)

〈ψ̃j,l, φj+1,k〉L2(R) = 〈ψ̃0,0, φ1,k−2l〉L2(R) = q̃k−2l. (2.49)

The two-scale coefficients pk−2l, qk−2l, p̃k−2l and q̃k−2l will later play an important role for the decomposition of
signals fj ∈ Vj . With those coefficients we will construct a decomposition relation and a reconstruction relation
for signals fj ∈ Vj .

If we establish an additional condition on φ and with equation (2.15) for ψ we gain more information on the
coefficients p1

k,0 and q1k,0.
Assume φ(x) is normalized, i.e.

∫ ∞

−∞
φ(x)dx = 1,

then we apply equation (2.42) and get

21/2
∑

k∈Z

p1
k,0

∫ ∞

−∞
φ(2x− k)dx = 1.

And similarly with equation (2.15)
∫ ∞

−∞
ψ(x)dx = 0

we get from equation (2.43)

21/2
∑

k∈Z

q1k,0

∫ ∞

−∞
φ(2x− k)dx = 0.

After substituting and evaluation of the integral we get
∑

k∈Z

p1
k,0 = 21/2,

∑

k∈Z

q1k,0 = 0

for the two-scale coefficients p1
k,0 and q1k,0, k ∈ Z. These equations are important for the constructions of scaling

functions and wavelets. The two-scale coefficients p1
k,0 and q1k,0 have to fulfill these equations. Note, besides

these equations the two-scale coefficients have to fulfill more conditions, such that they can be determined
uniquely.



2.1. Multiscale analysis 25

2.1.4 Decomposition and reconstruction

Now we introduce a concept to decompose a function fj ∈ Vj into a coarser signal and the corresponding detail
signals. These signals will be defined via coefficients cjk,l and djk,l, j, k, l ∈ Z. Via those coefficients we will be
able to perform a decomposition of the original function fj in fj−1 ∈ Vj−1 and gj−1 ∈ Wj−1 and to reconstruct
fj from the signals fj−1 and gj−1.

Decomposition

First we repeat the decomposition of a function f (compare equations (2.12) and (2.13)).
For L2(R) =

⊕

i∈Z
Wi the function f ∈ L2(R) can be decomposed into a sum of detail signals gi ∈ Wi:

f(x) =
∑

i∈Z

gi(x), x ∈ R. (2.50)

If we separate the sum into two parts we get

f(x) =

j−1
∑

i=−∞
gi(x) +

∞∑

i=j

gi(x)

= fj(x) +
∞∑

i=j

gi(x)

with the smoothed signal fj(x) defined as

fj(x) :=

j−1
∑

i=−∞
gi(x).

Since f ∈ L2(R) =
⊕

j∈Z
Wj we can formulate the series expansion analogously to equation (2.37):

f(x) =
∑

i∈Z

∑

k∈Z

〈f, ψ̃i,k〉L2(R)ψi,k(x)

=

j−1
∑

i=−∞

∑

k∈Z

〈f, ψ̃i,k〉L2(R)ψi,k(x) +

∞∑

i=j

∑

k∈Z

〈f, ψ̃i,k〉L2(R)ψi,k(x)

= fj(x) +

∞∑

i=j

∑

k∈Z

〈f, ψ̃i,k〉L2(R)ψi,k(x)

= fj(x) +

∞∑

i=j

gi(x)

with

gi(x) =
∑

k∈Z

〈f, ψ̃i,k〉L2(R)ψi,k(x) =
∑

k∈Z

ci,k ψi,k(x), wherein ci,k = 〈f, ψ̃i,k〉L2(R), i ∈ Z and (2.51)

fj(x) =

j−1
∑

i=−∞
gi(x). (2.52)

Since the wavelet functions ψi,k, k ∈ Z, span the detail space Wi, the detail signals gi as linear combinations of
ψi,k lie in Wi. The smoothed signal fj(x) =

∑j−1
i=−∞ gi(x) lies in the direct sum

⊕

i≤jWi = Vj . Vj is spanned
by the functions φj,k. Hence fj(x) can be written in a series expansion

fj(x) =
∑

k∈Z

dj,k φj,k(x) wherein dj,k = 〈f, φ̃j,k〉L2(R), x ∈ R. (2.53)

The coefficients dj,k are called scaling coefficients because they define a signal in the scaling space (fj ∈ Vj),
the coefficients cj,k are called detail coefficients because they define a signal in the detail space (gj ∈ Wj).
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Decomposition relation

Now we construct the decomposition relation. With the decomposition relation we can perform a decomposition
of the level j coefficients dj,k, k ∈ Z, into the level j − 1 coefficients dj−1,k and cj−1,k, k ∈ Z. Therefore we can
compute the signals fj−1 and gj−1 via the formulas (2.51) and (2.53).

Since we can decompose Vj+1 into a direct sum of Vj and Wj , i.e. Vj+1 = Vj ⊕ Wj , we can formulate for
φj+1,l(x) ∈ Vj+1, l ∈ Z under consideration of (2.48) and (2.49):

φj+1,l(x) =
∑

k∈Z

〈φj+1,l, φ̃j,k〉L2(R)φj,k(x) +
∑

k∈Z

〈φj+1,l, ψ̃j,k〉L2(R)ψj,k(x)

=
∑

k∈Z

p̃l−2k φj,k(x) +
∑

k∈Z

q̃l−2k ψj,k(x). (2.54)

Recall, we get a similar equation if we interchange the roles of the basis and the dual basis.

We can write the signal fj(x) with fj ∈ Vj as follows (see equation (2.53))

fj(x) =
∑

k∈Z

dj,k φj,k(x) x ∈ R. (2.55)

Another representation of this function we gain from the relation fj(x) = fj+1(x)− gj(x) (see equation (2.52))
and insert the equation (2.54) in the following equation.

fj(x) =
∑

l∈Z

dj+1,l φj+1,l(x) −
∑

k∈Z

cj,k ψj,k(x) (2.56)

=
∑

k∈Z

∑

l∈Z

dj+1,l p̃l−2k φj,k(x) +
∑

k∈Z

(
∑

l∈Z

dj+1,l q̃l−2k − cj,k
)

ψj,k(x) (2.57)

If we compare the coefficients of equation (2.55) and equation (2.57) we get the recursion formulas

dj,k =
∑

l∈Z

p̃l−2k dj+1,l for k ∈ Z, (2.58)

cj,k =
∑

l∈Z

q̃l−2k dj+1,l for k ∈ Z. (2.59)

Note, p̃l−2k and q̃l−2k are independent of j. We define dj = (dj,k)k∈Z ∈ l2(Z) and cj = (cj,k)k∈Z ∈ l2(Z) with
(dj)l := dj,l. The main result is that from the coefficients dj we can compute the coefficients dj−1 and cj−1 via
equations (2.58) and (2.59). This means if we have given the coefficients dj corresponding to a signal fj ∈ Vj
we can compute signals fj−1 ∈ Vj−1 and gj−1 ∈ Wj−1, i.e. with fj−1 we can compute a low pass filtered ver-
sion of the signal and with gj−1 we can compute the remaining high-frequency part. This is demonstrated in the

decomposition scheme:

. . . dj+1 → dj → dj−1 → . . .

ց ց ց
cj cj−1 . . .

(2.60)

Reconstruction relation

Now we derive a reconstruction relation. I.e. from the level j−1 coefficients dj−1 and cj−1 we want to compute
the level j coefficients dj .

Since Vj+1 = Vj ⊕Wj we can write
∑

k∈Z

dj+1,k φj+1,k(x) =
∑

l∈Z

dj,l φj,l(x) +
∑

l∈Z

cj,l ψj,l(x)

inserting the two-scale equations (2.46) and (2.47) we get

∑

k∈Z

dj+1,k φj+1,k(x) =
∑

k∈Z

(
∑

l∈Z

pk−2l dj,l +
∑

l∈Z

qk−2l cj,l

)

φj+1,k(x);
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comparing the coefficients we gain

dj+1,k =
∑

l∈Z

pk−2l dj,l +
∑

l∈Z

qk−2l cj,l. (2.61)

Note, the pk−2l and qk−2l are independent of the level j. With the reconstruction relation (2.61) we can compute
the signal fj ∈ Vj from its low pass filtered version fj−1 ∈ Vj−1 and its detail signal gj−1 ∈ Wj−1. We can
perform this reconstruction via the coefficient vectors dj−1, cj−1 and dj . The procedure is demonstrated in the

reconstruction scheme:

. . . dj → dj+1 → dj+2 → . . .

ր ր ր
. . . cj cj+1 cj+2

(2.62)

In Figure 2.1 the main steps we have performed so far are summarized.

2.1.5 Multiscale analysis on a bounded interval

Since we want to work regionally we will work with a concept of a MSA on a bounded interval. We adopted
the concept of a MSA on a bounded interval from Chui and Quak (1992).

Now we want to restrict the concept of a MSA on L2(R) to the interval [0, 1], i.e. we want to work with a MSA
on L2([0, 1]). To perform a MSA on a bounded interval, for example on [0, 1], some changes in the concept have
to be made. Adapted to a bounded interval [0, 1], the sequence of nested closed subspaces Vj can no longer
be bi-infinite. In a MSA on L2(R) the functions in the spaces Vj are dilated and their details are coarser for
j → −∞, i.e. they contain the large-period structures. On the bounded interval [0, 1] we have to consider an
initial space V

[0,1]
0 that contains the functions with the coarsest structures on [0, 1] and therefore we cannot

have a bi-infinite sequence anymore. Hence there has to be an initial subspace V
[0,1]
0 and closed subspaces V

[0,1]
j

with j ∈ N, satisfying the following properties

V
[0,1]
0 ⊂ V [0,1]

1 ⊂ . . . and (2.63)

⋃

j≥0

V
[0,1]
j

L2([0,1])

= L2([0, 1]). (2.64)

Comparing with the MSA on L2(R) as defined in Definition 2.3 we see that the properties (2.3) and (2.4) are
missing. Of course property (2.3) does not make sense in the MSA on a bounded interval (compare equation
(2.63)). Although the property (2.4) gives us additional features for a MSA on L2(R) we cannot adopt it without
some effort, but anyway we will not make use of the feature and we will disregard it.

The complementary orthogonal subspaces W
[0,1]
j are defined via

V
[0,1]
j = V

[0,1]
j−1 ⊕W

[0,1]
j−1 j ∈ N0,

hence

L2[0, 1] = V
[0,1]
0 ⊕

⊕

j∈N0

W
[0,1]
j . (2.65)

The behavior at the endpoints of the interval [0, 1] must now be taken into account and special boundary func-
tions (scaling functions and wavelets) have to be introduced, as the relevant families of functions in V

[0,1]
j and

W
[0,1]
j can no longer be controlled just by dilation and translation alone. The aim is to produce Riesz bases for

the spaces V
[0,1]
j consisting of a finite set of suitable translates φj,k of the original scaling function and a finite

set of specially constructed boundary scaling functions φbj,k. We have to construct bases of the complementary

subspaces W
[0,1]
j consisting of a finite set of translates ψj,k of the wavelet function ψ and a finite set of special

boundary wavelets ψbj,k.
The theory can be applied to an arbitrary bounded interval [a, b].
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Vj = span{φj,k | k ∈ Z}

= span{φ̃j,k | k ∈ Z}

Wj = span{ψj,k | k ∈ Z}

= span{ψ̃j,k | k ∈ Z} for j ∈ Z

Step 1:
We constitute the scaling space
and the detail space.
We have 4 sets of functions:

• scaling functions,

• dual scaling functions,

• wavelets and

• dual wavelets.

f ∈ Vj ⇒







∃ dj,k ∈ C, k ∈ Z such that f(x) =
∑

k∈Z
dj,k φj,k(x)

∃ d̃j,k ∈ C, k ∈ Z such that f(x) =
∑

k∈Z
d̃j,k φ̃j,k(x)

g ∈Wj ⇒







∃ cj,k ∈ C, k ∈ Z such that f(x) =
∑

k∈Z
cj,k ψj,k(x)

∃ c̃j,k ∈ C, k ∈ Z such that f(x) =
∑

k∈Z
c̃j,k ψ̃j,k(x)

Step 2:
We develop series expansions for
functions in the scaling spaces
and analogous for functions in
the detail spaces.

φj,l(x) =
∑

k∈Z

pk−2l φj+1,k(x)

ψj,l(x) =
∑

k∈Z

qk−2l φj+1,k(x)

φ̃j,l(x) =
∑

k∈Z

p̃k−2l φ̃j+1,k(x)

ψ̃j,l(x) =
∑

k∈Z

q̃k−2l φ̃j+1,k(x)

Step 3:
We constitute the two-scale re-
lations for the scaling functions,
the wavelets, the dual scaling
functions and the dual wavelets.
The two-scale coefficients play an
important role for the decom-
position and reconstruction rela-
tions.

dj,k =
∑

l∈Z

p̃l−2k dj+1,l, for k ∈ Z

cj,k =
∑

l∈Z

q̃l−2k dj+1,l, for k ∈ Z

Step 4:
We derive the decomposition re-
lations.
The dual two-scale coefficients
are used in these relations.

dj+1,k =
∑

l∈Z

pk−2l dj,l +
∑

l∈Z

qk−2l cj,l

Step 5:
We derive the reconstruction re-
lation.
The two-scale coefficients are
used in this relation.

Figure 2.1: Main steps of the procedure for the semiorthogonal case.
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2.2 Definition of B-splines and some properties

Later we want to use B-spline functions as scaling functions. Therefore in this section we define B-spline
functions and give an overview of the main properties of these functions. We adopt the theory from Schumaker
and omit the proofs of the statements but all of them can be found in Schumaker (1981).
First we have to give some general definitions:

Definition 2.19. We introduce the standard notations

D+f(x) = lim
h↓0

f(x+ h)− f(x)

h

and

D−f(x) = lim
h↓0

f(x)− f(x− h)
h

.

When these limits exist they are called right and left derivatives of f at x, respectively. When both of them exist
at a point x and are equal, then we write

Df(x) = D−f(x) = D+f(x).

A function f is said to be differentiable on the closed interval [a, b] when Df(x) exists for all a < x < b and
D+f(a) and D−f(b) exist. Then we write

Df(x) =







D+f(x), if x = a

D−f(x), if x = b.

Definition 2.20. We define

(x− y)0+ =







1, x ≥ y
0, x < y,

and

(x− y)m−1
+ =







(x − y)m−1, x ≥ y, m > 1

0, x < y.

Definition 2.21. Let points y1, . . . , yr+1 and a function f be given. We define the rth order divided difference
of f over the points y1, . . . , yr+1 by

[y1, . . . , yr+1]f =

det









1 y1
1 . . . yr−1

1 f(y1)

1 y1
2 . . . yr−1

2 f(y2)
...

...

1 y1
r+1 . . . y

r−1
r+1 f(yr+1)









det









1 y1
1 . . . yr1

1 y1
2 . . . yr2

...
...

1 y1
r+1 . . . y

r
r+1









.

In this definition we have tacitly assumed that the y’s are in increasing order (in order for the determinants to
make sense).

With these definitions we can finally define the B-splines:

Definition 2.22. Given a sequence of real-valued knots

. . . ≤ y−1 ≤ y0 ≤ y1 ≤ y2 ≤ . . .
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and i ∈ Z and m > 0. We define

Qmi (x) =







(−1)m [yi, . . . , yi+m] (x − y)m−1
+ , if yi < yi+m

0, otherwise

for all x ∈ R. Qmi is called the mth order B-spline associated with the knots yi, . . . , yi+m.

For m = 1, i ∈ Z and x ∈ R the B-spline associated with yi < yi+1 is given by the piecewise constant function

Q1
i (x) =







1
yi+1−yi

, yi ≤ x < yi+1

0, otherwise.

The following theorem establishes a recursion formula for the mth order B-splines.

Theorem 2.23. Let m ≥ 2, i ∈ Z and suppose yi < yi+m. Then for all x ∈ R the following recursion relation
holds

Qmi (x) =
(x− yi)Qm−1

i (x) + (yi+m − x)Qm−1
i+1 (x)

(yi+m − yi)
. (2.66)

Definition 2.24. We define the normalized B-spline Nm
i , m > 0 and i ∈ Z, associated with the knots

yi, . . . , yi+m as

Nm
i (x) := (yi+m − yi)Qmi (x) for x ∈ R

For m = 1, the normalized B-spline associated with yi < yi+1 is given by the piecewise constant function

N1
i (x) =







1, yi ≤ x < yi+1

0, otherwise.

From the recursion relation (2.66) we gain another recursion relation for the normalized B-Splines: Let m ≥ 2,
i ∈ Z and suppose yi < yi+m−1 and yi+1 < yi+m then

Nm
i (x) =

(x− yi)
yi+m−1 − yi

Nm−1
i (x) +

yi+m − x
yi+m − yi+1

Nm−1
i+1 (x) for x ∈ R (2.67)

Now we state that the normalized B-splines span specific spaces of polynomial splines. Therefore we will now
give the exact definition of the spaces of polynomial splines.

Definition 2.25. The space of polynomials of order m is defined as follows:

Pm = {p(x) | p(x) =

m∑

i=1

ci x
i−1, c1, . . . , cm, x ∈ R}.

Definition 2.26. Let [a, b] be a finite closed interval, and let

∆ = {xi}ki=1 with a = x0 < x1 < x2 < . . . < xk < xk+1 = b

be a partition into k + 1 subintervals

Ii = [xi, xi+1), i = 0, 1, . . . , k − 1 and Ik = [xk, xk+1].

Let m be a positive integer, and let M = [m1, . . . ,mk]
′ be a vector of integers with 1 ≤ mi ≤ m, i = 1, 2, . . . , k.

We call the space

S(Pm; M; ∆) = {s : there exist polynomials s0, . . . , sk in Pm such that s(x) = si(x) for x ∈ Ii,

i = 0, 1, . . . , k, and Djsi−1(xi) = Djsi(xi) for j = 0, 1, . . . ,m− 1−mi, i = 1, . . . , k}

the space of polynomial splines of order m with knots x1, . . . , xk of multiplicities m1, . . . ,mk. We call M =
[m1, . . . ,mk]

′ the multiplicity vector.
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We have to interpret mi = m to mean that the two polynomial pieces si−1 and si are unrelated to each other,
i.e. there may be a jump discontinuity at xi. If mi < m the two polynomial pieces si−1 and si are tied together
smoothly, i.e. the spline s and its first m− 1−mi derivatives are all continuous across the knot.

Definition 2.27. Let m be a positive integer, ∆ = {xi}ki=1 with a < x1 < x2 < . . . < xk < b and M =
(m1, . . . ,mk)

′ with 1 ≤ mi ≤ m, i = 1, 2, . . . k be given. Let K =
∑k
i=1mi. Suppose

y1 ≤ y2 ≤ . . . ≤ y2m+K

is such that

y1 ≤ . . . ≤ ym ≤ a, b ≤ ym+K+1 ≤ . . . ≤ y2m+K (2.68)

and

(ym+1, . . . , ym+K) = (

m1
︷ ︸︸ ︷
x1, . . . , x1, . . . ,

mk
︷ ︸︸ ︷
xk, . . . , xk). (2.69)

Then we call ∆̃ = {yi}2m+K
1 an extended partition associated with S(Pm; M; ∆).

Remark:

The points {yi}m+K
i=m+1 in an extended partition ∆̃ associated with S(Pm; M; ∆) are uniquely determined (com-

pare (2.69)). The first and last m points in ∆̃ can be chosen arbitrarily, subject to (2.68).

Theorem 2.28. Let ∆̃ = {yi}2m+K
i=1 be an extended partition associated with S(Pm; M; ∆), and suppose b <

y2m+K . For i = 1, 2, . . . ,m+K, let Nm
i be the normalized B-spline

Nm
i (x) = (−1)m(yi+m − yi) [yi, . . . , yi+m] (x − y)m−1

+ , a ≤ x ≤ b.

Then {Nm
i }m+K

i=1 form a basis for S(Pm; M; ∆) with

Nm
i (x) = 0 for x 6∈ [yi, yi+m]

and

Nm
i (x) > 0 for x ∈ (yi, yi+m).

Moreover the normalized B-splines form a partition of unity, i.e.

m+K∑

i=1

Nm
i (x) = 1 for all a ≤ x ≤ b.

Remark

A corollary proves the statements of Theorem 2.28 for b = ym+K+1 = . . . = y2m+K . In our application we
will need this case but we will only refer to the theorem. For more details see Schumaker (1981), Corollary 4.10.

The theorem states that the normalized B-splines {Nm
i }m+K

i=1 associated with the knots in ∆̃ form a basis for
S(Pm; M; ∆). Furthermore the theorem shows that the normalized B-splines Nm

i , i ∈ Z and m > 0, are com-
pactly supported and positive.

Note, for m = 1 the B-splines Q1
i (x) and N1

i (x) are piecewise constant functions, for m = 2 the B-splines Q2
i (x)

and N2
i (x) are piecewise linear functions and so on. The notation here might be misleading. There are different

notations in the literature.

Now we consider B-splines with equally spaced knots: We say that the set of knots . . . yi, yi+1, . . . is uniform
with spacing h ∈ R provided

yi+1 − yi = h for all i ∈ Z.

For uniformly spaced knots it turns out that any B-spline can be obtained from one basic B-spline by translation
and scaling.
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Definition 2.29. Let

Qm(x) =
m∑

i=0

(−1)i
(
m
i

)
(x− i)m−1

+

m!
, x ∈ R

(This is the usual B-spline associated with the simple knots 0, 1, . . . ,m). Associated with Qm, we also introduce
the normalized version

Nm(x) = mQm(x) x ∈ R.

The following theorem shows that any B-spline associated with uniformly spaced knots can be obtained from
Qm or Nm by a translation (and possible scaling). With this theorem we will later see that our inner scaling
functions are generated by the function Nm.

Theorem 2.30. Let i ∈ Z, m > 0, h ∈ R and h > 0. Suppose yi, . . . , yi+m are uniformly spaced with spacing
h. Then

Qmi (x) =
1

h
Qm

(
x− yi
h

)

x ∈ R

and

Nm
i (x) = Nm

(
x− yi
h

)

x ∈ R.

2.3 1-dimensional B-spline model

We introduce a 1-dimensional model as base for the multi-dimensional models.

Since in our applications we want to work regionally, we choose basis functions on the bounded interval [0, 1].
Then we have to take into account the behavior at the endpoints of the interval [0, 1], i.e. we have to introduce
special boundary functions (compare section 2.1.5). A big advantage of the spline approach is that it readily
adapts to the case of the bounded interval [0, 1] by introducing multiple knots at the endpoints.

2.3.1 Scaling functions and detail spaces

Now we intend to apply normalized B-Splines as basis functions φj,k = Nm
k (x) (the level j ∈ N0 will specify the

knot sequence for the B-splines and we will also write Nm,j
k ), we define mj := 2j + (m − 1) (there will be mj

basis functions, hence our spaces Vj will have dimension mj).
Our scaling spaces will be Vj = S(P3; Mj ; ∆j) with ∆j = { 1

2j ,
2
2j , . . . ,

2j−1
2j } and the corresponding 2j − 1 ×

1 multiplicity vector Mj = [1, . . . , 1]′, j ∈ N0.
For a fixed j we want to define the basis functions φj,k, k = 0, . . . ,mj − 1 (Note, from now on the notation
φj,k does not mean only the translated and dilated versions of a function φ as in Definition 2.4. As introduced
in chapter 2.1.5 for a MSA on a bounded interval we need additional boundary scaling functions that in our
case cannot be derived by translation and scaling. We use this notation because for our basis functions φj,k we
intend to adopt the concepts discussed in chapter 2):

As basis functions φj,k we apply a normalized B-spline Nm,j
k (x) of order m = 3 and shift k = 0, . . . ,mj − 1

(mj = 2j + (m− 1) = 2j + 2). The index j specifies the knot sequence for the B-splines. For a fixed j ∈ N0 let
the knot sequence tj0 ≤ tj1 ≤ . . . ≤ tjmj+2 be given through

0 = tj0 = tj1 = tj2 < tj3 < tj4 < . . . < tmj−1 < tjmj
= tjmj+1 = tjmj+2 = 1 (2.70)

with tjl = (l − 2)hj, hj = 1
2j for l = 3, . . . ,mj − 1 (Note, this knot sequence forms an extended partition

associated with S(P3; Mj ; ∆j) (compare Definition 2.27), i.e. we may choose the first and last m = 3 knots
arbitrarily, compare equation (2.68)).
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We define our mj basis function φj,k(x) := N3,j
k (x), k = 0, . . . ,mj − 1 for x ∈ [0, 1], to be the 3rd order

normalized B-spline associated with the knots tjk, . . . , t
j
k+3, i.e.

N1,j
k (x) :=







1, tjk ≤ x ≤ t
j
k+1

0, otherwise

Nm,j
k (x) :=

x− tjk
tjk+m−1 − t

j
k

Nm−1,j
k (x) +

tjk+m − x
tjk+m − t

j
k+1

Nm−1,j
k+1 (x) for m ≥ 2, k = 0, . . . ,mj − 1

for x ∈ [0, 1]. Note, the fractions in these equations are taken to be 0 when their denominators are 0, this
concept we adopt from Stollnitz et al. (1995). And compare the recursion formula for normalized B-splines
(2.67).
For m = 3 we have altogether mj = 2j + 2 basis functions φj,k(x), k = 0, . . . ,mj − 1, for a fixed j ∈ N0.

For k = 2, . . . ,mj − 3 the functions φj,k(x) = N3,j
k (x) are just B-splines associated with the uniformly spaced

knots tjk, . . . , t
j
k+3 hence they are a translation and possible scaling of the cardinal B-spline N3 (see Theorem

2.30), i.e. φj,k(x) = N3,j
k (x) = N3(2jx− k) for k = 2, . . . ,mj − 3. For being the translated and dilated versions

of a single function φ only the normalization constant 2j/2 is missing (compare the Definition 2.1), but in the
construction of computational algorithms it is more convenient to drop it. This only changes the Riesz bounds
by a factor of 2−j.
For k = 0, 1 the resulting scaling functions φj,k(x) = N3,j

k (x) form the boundary scaling functions for the
endpoint 0 (the associated knots of the B-spline contain a multiple knot at 0), for k = mj − 2,mj − 1 the
resulting scaling functions φj,k(x) = N3,j

k (x) form the boundary scaling functions for the endpoint 1 (the
associated knots of the B-spline contain a multiple knot at 1). These boundary scaling functions are not associ-
ated with uniformly spaced knots and therefore cannot be derived by translation and scaling of the B-spline N3.

We use the functions φj,k, k = 0, . . . ,mj − 1, as basis functions for the scaling spaces Vj and therefore we will
also use the denotation scaling functions. But we should keep in mind that not all of the φj,k are generated
by a function φ. Figure 2.2 shows the scaling functions φj,k, k = 0, . . . ,mj − 1, for the levels j = 0, . . . , 3.
For level j = 0, 1 (first and second panel) all functions φj,k(x), k = 0, . . . ,mj − 1 are affected by the endpoint
interpolating procedure due to the chose knot sequence (2.70). In the third and fourth panel we can see, that
for the levels j = 2 and j = 3 only for k = 0, 1 and k = mj − 2,mj − 1 the functions φj,k(x) are affected
by the endpoint interpolating procedure due to the knot sequence (2.70); in contrast the inner functions for
k = 3, . . . ,mj − 3 are not affected by the endpoint interpolating procedure. The B-splines are real-valued, from
now on we will only consider real valued functions and therefore we only work with real numbers.

Definition 2.31. We denote the closed spaces spanned by the mj basis functions φj,k, k = 0, . . . ,mj − 1, as

Vj, i.e. Vj := span{φj,k | k = 0, . . . ,mj − 1}L
2([0,1])

.

As we work on the bounded interval we should use the notation V
[0,1]
j but for simplification we will just write

Vj , j ∈ N0.
According to Theorem 2.28 or Stollnitz et al. (1995) the functions φj,k form a basis of the space S(P3; Mj ; ∆j)
with ∆j = { 1

2j ,
2
2j , . . . ,

2j−1
2j } and the corresponding 2j − 1× 1 multiplicity vector Mj = [1, . . . , 1]′, i.e.

Vj = S(P3; Mj ; ∆j).

Now we check the conditions on Vj to form a MSA on the bounded interval [0, 1]:

(1) Since ∆j = { 1
2j ,

2
2j , . . . ,

2j−1
2j } ⊂ ∆j+1 = { 1

2j+1 ,
2

2j+1 , . . . ,
2j+1−1
2j+1 } it follows that S(P3; Mj ; ∆j) ⊂

S(P3; Mj+1; ∆j+1) holds for j ≥ 0 and the first condition of a MSA on a bounded interval is fulfilled, i.e.
equation (2.63)

V0 ⊂ V1 ⊂ . . . (2.71)

.

(2) We have to check
⋃

j∈N0
Vj
L2([0,1])

=
⋃

j∈N0
S(P3; Mj ; ∆j)

L2([0,1])
= L2([0, 1]).

Let χA be the characteristic function of the set A,
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χA(x) =







1 if x ∈ A,
0 if x 6∈ A.

We define the set of step functions E defined on [0,1]

E = {f(x) =
∑M

k=0 ak χAk
(x) with ak ∈ R for k = 0, . . . ,M and {Ak}Mk=0 form a partition of the interval

[0, 1], x ∈ [0, 1]}

and the sets

Ej = {f(x) =
∑2j−1

k=0 bjk χBj

k
(x) with bjk ∈ R for k = 0, . . . , 2j − 1 and Bjk = [ k2j ,

k+1
2j ) for k = 0, . . . , 2j −

2, Bjk = [ k2j ,
k+1
2j ] for k = 2j − 1, x ∈ [0, 1]}.

We can show that
⋃

j∈N0
Ej
L2([0,1])

= E , we will not perform the proof (the main argument is that

|Bjk| = hj = 1
2j −−−→

j→∞
0). The set E lies dense in L2([0, 1]), for the proof see, e.g., Alt (1999), therefore it

holds
⋃

j∈N0
Ej
L2([0,1])

= L2([0, 1]). Since Ej ⊂ S(P3; Mj ; ∆j) ⊂ L2([0, 1]) and L2([0, 1]) is complete (see,
e.g., Weidmann (1976), section 2.1) the assertion follows, i.e.

⋃

j∈N0

V
[0,1]
j

L2([0,1])

=
⋃

j∈N0

S(P3; Mj ; ∆j)
L2([0,1])

= L2([0, 1]). (2.72)

(3) Since we have only a finite set of basis functions for the scaling spaces Vj , j ∈ N0 we will only have finite

Figure 2.2: B-spline scaling functions φj,k(x), k = 0, . . . , mj − 1, for the levels j = 0, . . . , 3.
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summations. Therefore we do not have to worry about the convergence of the series and hence we will
not check if the basis functions form a Riesz basis.

All the properties are fulfilled hence the closed subspaces {Vj}j∈Z form a MSA on the bounded interval [0, 1].

2.3.2 First two-scale relation for B-splines

The main purpose of this section is to introduce the two-scale equations for B-splines and to develop decompo-
sition relations similar to equations (2.58) and (2.59) and reconstruction relations similar to equation (2.61) for
the B-spline model, i.e. we have to compute the two-scale coefficients. The derivation is similar to the one in
the general case introduced in chapter 2.1.4.

Since Vj−1 ⊂ Vj we can represent the scaling function φj−1,l ∈ Vj−1 with l = 0, ...,mj−1 − 1 as a linear
combination of the scaling functions φj,k ∈ Vj with k = 0, ...,mj − 1. I.e. we introduce the first two-scale

relation

φj−1,l(x) =

mj−1
∑

k=0

pjk,l φj,k(x), (2.73)

also known as the refinement relation (compare equation (2.40)).

We have only finitely many scaling functions φj,k, k = 0, . . . ,mj − 1, therefore we can introduce a matrix
notation of the two-scale relation (2.73). By defining the mj−1 × 1 scaling vector

Φj−1(x) = [φj−1,0(x), φj−1,1(x), ..., φj−1,l(x), ..., φj−1,mj−1−1(x)]
′

of resolution level j − 1 and the mj × 1 scaling vector

Φj(x) = [φj,0(x), φj,1(x), ..., φj,k(x), ..., φj,mj−1(x)]
′

of resolution level j we rewrite the two-scale relation (2.73) as the matrix equation

Φ′
j−1(x) = Φ′

j(x)Pj . (2.74)

The coefficient matrix Pj is a mj ×mj−1 matrix; it is dependent of the level j. We can determine the entries
pjk,l of the matrix Pj by solving equation (2.74) for certain values of x.

The entries of the mj ×mj−1 matrix Pj = (pjk,l) of the refinement process are given as

Pj =
1

4
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3 1
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3 1

1 3
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3 1

1 3
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;

see e.g. Stollnitz et al. (1995) (entries that are not shown in the matrix are equal 0). Note, the entries pjk,l
are given for k = 0, . . . ,mj − 1 and l = 0, . . . ,mj−1 − 1 hence, the element that stands in the first row and in
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the first column of the matrix is pj0,0, i.e. the indices are shifted.

The entries of this matrix pjk,l could also be calculated from equation (2.40) with pjk,l = 〈φj−1,l, φ̃j,k〉L2(R). But

we do not work with the dual functions φ̃j,k and therefore we do not calculate the coefficients pjk,l this way.

2.3.3 Wavelets and detail spaces - the second two-scale relation

The detail spaces Wj−1 are defined as the orthogonal complement of the scaling space Vj−1 in the scaling
space Vj , i.e.

Vj = Vj−1 ⊕Wj−1. (2.75)

Now we intend to construct a set of basis functions ψj−1,k(x) of the detail space Wj−1 with k = 0, . . . , nj−1 − 1
and nj−1 := mj −mj−1 (i.e. mj = mj−1 + nj−1, the dimension of Vj is the sum of the dimensions of Vj−1 and
Wj−1). As we work on a bounded interval we have inner basis functions that can be controlled by dilation and
translation of a single functions ψ and we have additional boundary basis functions that cannot be controlled
by dilation and translation of the function ψ. Hence we cannot have a function ψ that generates all the basis
functions ψj,k, j ∈ N0 and k = 0, . . . , nj − 1. Therefore we will only presume that the weaker condition (2.15)
of the admissibility condition (2.14) holds for each ψj,k, j ∈ N0 and k = 0, . . . , nj − 1, i.e.

∫ 1

0

ψj,k(x)dx = 0 j ∈ N0, k = 0, . . . ,mj − 1. (2.76)

Now we want to construct basis functions ψj,k that fulfill the condition (2.76) and we will call these functions
wavelets.

Since Wj−1 ⊂ Vj , we can represent the wavelet functions ψj−1,l ∈Wj−1 ⊂ Vj with l = 0, ..., nj−1− 1 as a linear
combination of the scaling functions φj,k ∈ Vj with k = 0, ...,mj − 1. I.e. we introduce the second two-scale

relation

ψj−1,l(x) =

mj−1
∑

k=1

qjk,l φj,k(x) (2.77)

(compare equation (2.41)). With the nj−1 × 1 vector

Ψj−1(x) = [ψj−1,0(x), ψj−1,1(x), ..., ψj−1,l(x), ..., ψj−1,nj−1−1(x)]
′

of resolution level j − 1 we rewrite the second two-scale relation (2.77) as the matrix equation

Ψ′
j−1(x) = Φ′

j(x)Qj , (2.78)

wherein Qj = (qjk,l) is an mj × nj−1 matrix with initially unknown elements qjk,l. Note, as for the matrix Pj

the indices are shifted and the entry in the first row and the first column of the matrix Qj is qj0,0.
Hence, our next objective is the determination of the matrix Qj from the given matrix Pj .

Since, as mentioned before, the wavelet functions ψj−1,k(x) are assumed to be orthogonal to the scaling functions
φj−1,l(x), their inner product vanishes, i.e.

∫ 1

0

φj−1,l(x)ψj−1,k(x)dx =: 〈φj−1,l, ψj−1,k〉L2([0,1]) = 0. (2.79)

Note wavelet functions which fulfill this condition, i.e. they are orthogonal to the scaling functions but not
orthogonal to each other fullfill the first condition of the definition of the semiorthogonal concept, i.e. Vj ⊥Wj

(Definition 2.18). As mentioned before we will not work with the dual functions and therefore we will not check
the existence of the dual functions.

Substituting the two-scale equation (2.77) into equation (2.79) yields

mj−1
∑

m=0

qjm,k
〈
φj−1,n, φj,m

〉

L2([0,1])
= 0 .
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Writing this equation as a matrix equation gives us:

Gj Qj = 0 (2.80)

wherein 0 is the mj−1 × nj−1 zero matrix, and Gj = (gjm,n) with gjm,n = 〈φj−1,m, φj,n〉L2(([0,1]), m =
0, . . . ,mj−1 − 1 and n = 0, . . . ,mj − 1. Hence again the indices are shifted, i.e. the entry in the first row
and in the first column of the matrix is gj0,0.
A matrix equation with right hand-side of zero like this one is an homogeneous system of equations. The set of
all possible solutions is called the null space of Gj . The columns of Qj must form a basis of the nullspace. Since
there are various bases of the nullspace of a matrix, there are various wavelet bases for a given detail space Wj .
We impose further constraints in addition to the orthogonality requirement given above and equation (2.76).
Finally we can determine the matrix Qj.
For our application we did not calculate the matrix Qj , j ∈ N, but we worked with the matrix calculated
in Stollnitz et al. (1995). The matrices can be found in section C. The constraint that has been introduced
to derive a unique solution is explained in the following. To get wavelets with small supports there was required
each column of Qj to have a minimal number of consecutive non-zeros. This constraint imposes a banded
structure on Qj similar to that of Pj .
From the structure of the matrix Qj we can see that only the wavelets ψj,k, k = 0, 1, nj − 2, nj − 1 are affected
by the endpoint interpolating procedure, while the inner wavelets ψj,k, for k = 3, . . . , nj − 3, are not affected
by the endpoint interpolating procedure. The wavelet functions are shown in Figure C.1. One can check that
the wavelet functions ψj,k defined via the matrix Qj in fact fulfill the condition (2.76), for the inner wavelet
functions this is an easy computation while for the boundary wavelets this is more complicated. We will not
perform these computations here.
A construction of explicit formulas of the wavelet functions ψj,k can be found in Chui and Quak (1992).

2.3.4 Construction of a decomposition relation and a reconstruction relation

In the next step we want to derive the decomposition relation, which is required for the MSA. From the equation
Vj = Vj−1 ⊕Wj−1 it follows that there exist matrices of real coefficients Pj and Qj such that

Φ′
j(x) = Φ′

j−1(x)Pj + Ψ′
j−1(x)Qj (2.81)

wherein Pj and Qj are mj−1 × mj and nj−1 × mj unknown coefficient matrices, respectively. Inserting the
two-scale equations (2.74) and (2.78) yields

Φ′
j(x) = Φ′

j(x)Pj Pj + Φ′
j(x)Qj Qj (2.82)

and therefore it follows

Pj Pj + Qj Qj =
[

Pj Qj

]
[

Pj

Qj

]

= I.

The mj ×mj matrix
[

Pj Qj

]

is of full rank it follows

[

Pj

Qj

]

=
[

Pj Qj

]−1

(2.83)

Similar to the general case we can decompose a function fJ(x) with fJ ∈ VJ into

fJ(x) = f0(x) +

J−1∑

i=0

gi(x)

= fj′(x) +

J−1∑

i=j′

gi(x) (2.84)

(compare equation (2.65)) wherein fi ∈ Vi and gi in Wi are defined as

fi(x) =

mi−1∑

k=0

di,k φi,k(x) = Φ′
i(x)di (2.85)
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and

gi(x) =

ni−1∑

k=0

ci,k ψi,k(x) = Ψ′
i(x) ci (2.86)

wherein di =
[

di,0 . . . di,mi−1

]′
and ci =

[

ci,0 . . . ci,ni−1

]′
.

Analogous to the general equations (2.51) and (2.53) we could compute the coefficients di,k and ci,k as scalar
products with the dual functions. But we will not use explicit formulas for the dual functions as already
mentioned before and will therefore not use this technique.

Our main purpose is to derive the level j−1 coefficient vectors dj−1 and cj−1 from the level j coefficient vector
dj , i.e. to derive decomposition relations similar to equation (2.58) and (2.59) and a reconstruction relation
similar to equation (2.61).
Since the signal fj(x) can be expressed as fj(x) = fj−1(x) + gj−1(x) according to equation (2.84) it follows
with equations (2.85) and (2.86)

fj(x) = Φ′
j(x)dj (2.87)

= Φ′
j−1(x)dj−1 + Ψ′

j−1(x) cj−1 . (2.88)

Substituting the decomposition equation (2.81) for Φ′
j(x) into equation (2.87) yields

fj(x) = Φ′
j−1(x)Pj dj + Ψ′

j−1(x)Qj dj . (2.89)

Comparing the equations (2.88) and (2.89) yields us to the decomposition relations

dj−1 = Pj dj and (2.90)

cj−1 = Qj dj . (2.91)

If we rewrite these relations as
[

dj−1

cj−1

]

=

[

Pj

Qj

]

dj (2.92)

we get the reconstruction relation by solving the equation for dj under consideration of equation (2.83):

dj = Pj dj−1 + Qj cj−1. (2.93)

Therefore we constructed the decomposition relations and the reconstruction relation for the B-spline model.
With those equations we can now decompose signals fj ∈ Vj into a smoothed signal fj−1 ∈ Vj−1 and the
corresponding detail signal gj−1 ∈ Wj−1. From the signals fj−1 and gj−1 we can reconstruct the signal fj .
Both the decomposition and the reconstruction is performed via the coefficient vectors.

2.3.5 Decomposition and reconstruction for the 1-dimensional B-spline model

Now we introduce the B-spline approach for signals f ∈ L2([0, 1]).
For a signal f ∈ L2([0, 1]) we want to compute an approach fJ ∈ VJ of resolution level J . According to the
equation VJ = VJ−1 ⊕WJ−1 we decompose fJ = fJ−1 + gJ−1 wherein the smoothed version fJ−1 ∈ VJ−1 and
the detail signal gJ−1 ∈ WJ−1. As introduced in (2.85) and (2.86) the functions fJ and gJ are defined via their
coefficient vectors dJ and cJ , respectively. With the decomposition relations (2.90) and (2.91) we compute the
scaling coefficients of the lower levels and the corresponding detail coefficients down to resolution level 0. I.e.
from the level J coefficient vector dJ we compute the scaling coefficient vector d0 and the detail coefficient
vectors c0, . . . , cJ−1. Then we reconstruct the approach fJ(t) from the coefficient vectors d0 and c0, . . . , cJ−1

by the reconstruction relation (2.93).

Suppose we have measurements









f1

f2
...

fn









+









e1

e2
...

en









=









f(t1)

f(t2)
...

f(tn)









+









e(t1)

e(t2)
...

e(tn)









of the signal f(t) given at discrete points

t1, t2, . . . , tn ∈ [0, 1].
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• computation of the scaling coefficients

In the first step we estimate the scaling coefficient vector dJ =
[

dJ,0, . . . , dJ,mJ−1

]′
of resolution level J .

Therefore we establish the following linear equation system








f1

f2
...

fn









+









e1

e2
...

en









=









φJ,0(t1) φJ,1(t1) . . . φJ,mJ−1(t1)

φJ,0(t2) φJ,1(t2) . . . φJ,mJ−1(t2)
...

...
...

φJ,0(tn) φJ,1(tn) . . . φJ,mJ−1(tn)

















dJ,0

dJ,1
...

dJ,mJ−1









. (2.94)

The right hand-side contains the unknown scaling coefficients dJ,0, . . . , dJ,mJ−1. Each scaling coefficient
dJ,k corresponds to the compactly supported scaling function φJ,k, k = 1, . . . ,mJ − 1. Of course a scaling
coefficient is only computable if there is given at least one measurement in the support of the corresponding
scaling function.

With the notations f =









f1

f2
...

fn









, e =









e1

e2
...

en









and ΦJ =









φJ,0(t1) φJ,1(t1) . . . φJ,mJ−1(t1)

φJ,0(t2) φJ,1(t2) . . . φJ,mJ−1(t2)
...

...
...

φJ,0(tn) φJ,1(tn) . . . φJ,mJ−1(tn)









we rewrite

equation (2.94) in a short notation as

f + e = ΦJ dJ . (2.95)

Hence we assume to have a so-called Gauss-Markov model

f + e = ΦJ dJ with D(f) = σ2
f P−1

f (2.96)

wherein D(f) is the covariance matrix given by the unknown variance factor σ2
f and the given positive

definite weight matrix Pf of dimension n× n.
The least squares method leads us to the following normal equation (for more details see e.g. Koch

(1999)):
(
Φ′
J D(f)−1 ΦJ

)
· d̂j = Φ′

J D(f)−1 y. (2.97)

Now we have to consider two cases for the n×mJ matrix ΦJ , with n ≥ mJ :

– either the n×mJ matrix ΦJ is of full column rank, i.e. the column rank amounts mJ and therefore
the matrix

(
Φ′
J D(f)−1 ΦJ

)
in the normal equation (2.97) is invertible

– or the matrix ΦJ is not of full column rank, i.e. the column rank amounts less than mJ and therefore
the matrix

(
Φ′
J D(f)−1 ΦJ

)
is not invertible.

Since the scaling functions φJ,k, k = 0, . . . ,mJ − 1 are linear independent (compare Theorem 2.28) a
column rank deficiency can only be a result of the distribution of the data. I.e. the matrix will be of full
rank if the t1, . . . , tn are evenly distributed such that at least one ti, i = 1, . . . , n, lies in the support of
each scaling function φJ,k, k = 0, . . . ,mJ − 1, for more details see section 3.3.2. The matrix will not be of
full column rank, if for at least one scaling function φJ,k, k = 0, . . . ,mJ − 1, there is no observation given
in its support, i.e. none of the ti, i = 1, . . . , n, lies in the support of the scaling function. Hence in case
of data gaps the matrix will not be of full column rank.
In the case that ΦJ is of full column rank we can invert the matrix

(
Φ′
J D(f)−1 ΦJ

)
and therefore we

estimate a unique least squares solution of the Gauss-Markov model (2.96) by

d̂J = (Φ′
J D(f)−1 ΦJ)−1 Φ′

J D(f)−1 f (2.98)

see e.g. Koch (1999).

In the other case if the matrix ΦJ is not of full column rank we cannot invert the matrix
(
Φ′
J D(f)−1 ΦJ

)

and hence a unique least squares solution of the Gauss-Markov model (2.96) does not exist. In this
case none of the t1, . . . , tn lies in the support of a function φJ,k and we cannot estimate the corresponding
detail coefficient dJ,k. We may then cancel out the corresponding addends from equation (2.94) and finally
achieve a reduced matrix ΦJ of full column rank and can proceed as in the first case. In our applications
we will also apply another method: we introduce prior information to stabilize the estimation process, i.e.
we define an additional linear model for the prior information. We do not discuss this method here but
more details will be presented in section 3.3.2.
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• decomposition of the signal

In the second step we want to compute the smoothed signal fJ ∈ VJ of the original signal f ∈ L2([0, 1]).
With the coefficient vector dJ we can define analogous to equation (2.85)

fJ(x) := Φ′
J(x)dJ ,

wherein ΦJ(x) =
[

φJ,0(x), φJ,1(x), . . . φJ,mJ−1(x)
]′

. Clearly fJ ∈ VJ and since VJ ⊂ L2([0, 1]) we call it
a level J approach of the original signal.
With the decomposition relations (2.90) and (2.91)

dj−1 = Pj dj ,

cj−1 = Qj dj

we can compute the level J−1 coefficient vectors dJ−1 and cJ−1 from the level J scaling coefficient vector
dJ . Therefore we can stepwise decompose the coefficients down to level j0, 0 ≤ j0 ≤ J − 1, i.e. we can
compute the coefficient vectors dj0 and cj0 , . . . , cJ−1 (compare the decomposition scheme (2.60)). With
these coefficients we can calculate the corresponding signals fj0 and gi, i = j0, . . . , J − 1 via equations
(2.85) and (2.86) and get the decomposition

fJ(x) = fj0(x) +

J−1∑

i=j0

gi(x).

We just have to save the scaling coefficient vector of the lowest resolution level dj0 and all the detail
coefficient vectors cj0 , . . . , cJ−1; from those we can perform a reconstruction of the signal as described in
the next step.

Note, the coefficient vector dJ saves the structures of the signal fJ ∈ VJ . With the decomposition relation
we get the coefficient vectors dJ−1 and cJ−1. In the coefficient vector dJ−1 the coarser structures of the
signal are saved while in the coefficient vector cJ−1 the fine structures that distinguish VJ from VJ−1 are
saved. Note, the number of coefficients in dJ−1 is less than the number of coefficients in dJ , i.e. to save
coarser structures clearly less coefficients are necessary than to save the fine structures. But of course the
number of the coefficients in dJ is equal to the sum of the number of coefficients in dJ−1 and the number
of coefficients in cJ−1, i.e. mJ = mJ−1 + nJ−1.

• reconstruction of the signal

From the reconstruction relation (2.93)

dJ = PJ dJ−1 + QJ cJ−1

we can calculate the level J scaling coefficient vector dJ from the level J−1 scaling and wavelet coefficient
vectors dJ−1 and cJ−1.
Hence from our scaling coefficient vector dj0 and wavelet coefficient vectors cj0 , . . . , cJ−1 we can recon-
struct stepwise the scaling coefficient vectors dj0+1, . . .dJ and therefore we can reconstruct our approach
fJ ∈ VJ (compare the reconstruction scheme (2.62)).

• data compression

The concept of a MSA leads us to an effective method for data compression. Instead of saving the
mJ coefficients in the vector dJ for the approach fJ ∈ VJ we may save the mj0 + nj0 + . . . + nJ−1 =
mJ coefficients in the vectors dj0 and cj0 , . . . , cJ−1. From this representation we can perform a data
compression. We apply the simplest thresholding algorithm:

(1) Fix a threshold ǫ > 0

(2) For i = j0, . . . , J − 1 if |ci,k| < ǫ we set ci,k = 0 for k = 0, . . . , ni − 1. Let nǫ be the amount of
coefficients set to 0.

From this algorithm we gain the new coefficient vectors c0, . . . cJ−1 where the nonsignificant structures
are neglected. With the reconstruction relation (2.93) we gain a signal fJ which is an approximation of
the signal fJ . Information about the quality of approximation we may get from the root mean square
(rms) value of the deviations and from the correlation between the signals fJ and fJ , for the definitions
of the rms value and the correlation compare definitions D.2 and D.3.
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The compression rate ρ is given with ρ = nǫ

mj
wherein nǫ is the number of coefficients that have been

neglected in cj0 , . . . , cJ−1. It holds 0 ≤ ρ ≤ 1, i.e. the more coefficients were neglected the higher becomes
the compression rate ρ.

Data compression is an important tool in digital signal processing:

– With the data compression algorithm we can reduce storage space of digital data. Of course it is
important that the influence on the quality of the data is small, i.e. no significant information should
be lost.

– In real time data processing it is an important tool because the huge amount of data often exceeds
the capacity of the transmission line.

Besides this simple algorithm for data compression there are other algorithms but we will not discuss
them here. For more details see e.g. Ogden (1997), chapter 8. In section 3.3.3 we will compare this data
compression algorithm with a more flexible algorithm and we will see that we can achieve better results
for more flexible algorithms.

2.4 n-dimensional B-spline model

For the n-dimensional model we will use tensor product techniques. For a short introduction to tensor products
of Hilbert spaces see, e.g., Weidmann (1976).

2.4.1 n-dimensional tensor product scaling and wavelet functions

We intend to perform a MSA on L2([0, 1]n), hence we have to choose a n-dimensional scaling function φj
k(x), with

levels j = (j1, ..., jn) ∈ Nn0 , shifts k = (k1, ..., kn), ki = 0, . . . ,mji−1 for i = 1, . . . , n and x = (x1, ..., xn) ∈ [0, 1]n.
Here we use a tensor product of our 1-dimensional scaling functions and define

φj
k(x) := φj1k1(x1) · φj2k2(x2) · . . . · φjnkn

(xn)

as the n-dimensional tensor product of 1-dimensional normalized endpoint-interpolating B-splines with ki =
0, . . . ,mji , i = 1, . . . n. Note, here for more clarity we use a superscript index j for the levels and a subscript
index k for the shift of the scaling functions. We will adopt this notation also for the coefficient vectors and

write dj =
[

dj1,...,jn0,...,0 . . . dj1,...,jnmj1
−1,...,mjn−1

]′
and cj =

[

cj1,...,jn0,...,0 . . . cj1,...,jnmj1
−1,...,mjn−1

]′
.

The n-dimensional scaling space Vj is then a tensor product of 1-dimensional scaling spaces Vj1 , . . . , Vjn , i.e.

Vj = Vj1 ⊗ Vj2 ⊗ . . .⊗ Vjn .

According to the 1-dimensional relation Vj = Vj−1 ⊕Wj−1 we can decompose the scaling space Vj into

Vj = (Vj1−1 ⊕Wj1−1)⊗ (Vj2−1 ⊕Wj2−1)⊗ . . .⊗ (Vjn−1 ⊕Wjn−1). (2.99)

Evaluating the products leads us to altogether 2n n-dimensional tensor product spaces:

Vj−1 = Vj1−1 ⊗ Vj2−1 ⊗ . . .⊗ Vjn−1 (2.100)

W 1
j−1 = Vj1−1 ⊗ . . .⊗ Vjn−1−1 ⊗Wjn−1 (2.101)

W 2
j−1 = Vj1−1 ⊗ . . .⊗ Vjn−2−1 ⊗Wjn−1−1 ⊗ Vjn−1 (2.102)

...

Wn
j−1 = Wj1−1 ⊗ Vj2−1 ⊗ . . .⊗ Vjn−1 (2.103)

Wn+1
j−1 = Vj1−1 ⊗ . . .⊗ Vjn−2−1 ⊗Wjn−1−1 ⊗Wjn−1 (2.104)

...

W 2n−1
j−1 = Wj1−1 ⊗ . . .⊗Wjn−1 (2.105)
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With the corresponding scaling and wavelet functions of levels j

φj
k(x) = φj1k1 (x1) · φj2k2(x2) · . . . · φjnkn

(xn)

ψj;1
k (x) = φj1k1 (x1) · . . . · φjn−1

kn−1
(xn−1) · ψjnkn

(xn)

ψj;2
k (x) = φj1k1 (x1) · . . . · φjn−2

kn−2
(xn−2) · ψjn−1

kn−1
(xn−1) · φjnkn

(xn)

...

ψj;n
k (x) = ψj1k1(x1) · φj2k2 (x2) · . . . · φjnkn

(xn)

ψj;n+1
k (x) = φj1k1 (x1) · . . . · φjn−2

kn−2
(xn−2) · ψjn−1

kn−1
(xn−1) · ψjnkn

(xn)

...

ψj;2n−1
k (x) = ψj1k1(x1) · . . . · ψjnkn

(xn)

with ki = 0, ...,mi − 1 for a 1-dimensional scaling function φjiki
on the ith position of the tensor product or

ki = 0, ..., ni−1 for a 1-dimensional wavelet function ψjiki
on the ith position of the tensor product, i = 1, . . . , n.

From equation (2.99) we get

Vj = Vj−1 ⊕W 1
j−1 ⊕ . . .⊕W 2n−1

j−1 (2.106)

by evaluating the products and inserting the notations (2.100) to (2.105) for scaling space and the detail spaces.

In the 1-dimensional model the φj,k, k = 0, . . . ,mj − 1 form a basis of the scaling space Vj , we can extend this
property to the n-dimensional tensor product model and get:

• the n-dimensional functions φj
k, ki = 0, . . . ,mji − 1 and i = 0, . . . , n form a basis for the n-dimensional

scaling space Vj.

• the n-dimensional functions ψj
k, with ki = 0, . . . ,mji − 1 or ki = 0, . . . , nji − 1 for a scaling function φjiki

or a wavelet function ψjiki
on the ith position of the tensor product, respectively, and i = 0, . . . , n, form a

basis of the n-dimensional detail spaces Wj.

Now we want to extend the properties of a MSA on the bounded interval to the n-dimensional case.
From the equation (2.71) we get for the scaling spaces Vj = Vj1,...,jn the property

Vj1,...,jn ⊆ Vj′1,...,j′n if j1 ≤ j′1, j2 ≤ j′2, . . . , jn ≤ j′n. (2.107)

Equality holds if j1 = j′1, j2 = j′2, . . ., jn = j′n. Hence we have an equation similar to equation (2.63).
The second property (2.64) we can easily extend to the n-dimensional case with equation (2.72) it follows

⋃

j1≥0

. . .
⋃

jn≥0

Vj1,...,jn
L2([0,1]n)

= L2([0, 1]n). (2.108)

2.4.2 Decomposition and reconstruction in 4 dimensions

For simplification we will explain the decomposition and reconstruction for the 4-dimensional case. The n-
dimensional case can be constructed analogously for n ∈ N.
Now we extend the B-spline approach for signals f ∈ L2([0, 1]) to a B-spline approach for signals f ∈ L2([0, 1]4).
As in the 1-dimensional model we want to compute an approach fJ ∈ VJ of highest resolution levels J =
(J1, J2, J3, J4). We define J− 1 = (J1− 1, J2− 1, J3− 1, J4− 1) and J− i0 = (J1 − i0, J2 − i0, J3 − i0, J4 − i0).
According to equation (2.106) we can decompose

fJ = fJ−1 + g1
J−1 + . . .+ g24−1

J−1
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wherein the fJ−1 ∈ VJ−1 and gνJ−1 ∈ W ν
J−1 for ν = 1, . . . , 24 − 1. As in the 1-dimensional case these signals

are defined via scaling coefficient vectors dJ−1 and cJ−1;ν; the exact definitions will be presented later. We will
extend the decomposition relations (2.90) and (2.91) and the reconstruction relation (2.93) to the 4-dimensional
case and get a similar decomposition and reconstruction algorithm for 4-dimensional signals.

• computation of the scaling coefficients

We suppose to have given measurements f(pi) + e(pi) at the discrete points p1, ...,pn ∈ [0, 1]4, with
pi = (xi, yi, zi, ti), i = 1, ..., n. To compute the mJ1

· mJ2
· mJ3

· mJ4
× 1 scaling coefficient vector

dJ =







dJ0,0,0,0
...

dJmJ1
−1,mJ2

−1,mJ3
−1,mJ4

−1







of the highest resolution levels J = (J1, J2, J3, J4) we have to solve

the linear equation system









f(p1)

f(p2)
...

f(pn)









+









e(p1)

e(p2)
...

e(pn)









= ΦJ

















p1

p2

...

pn

















dJ

with the n×mJ1
·mJ2

·mJ3
·mJ4

matrix

ΦJ

















p1

p2

...

pn

















=







φJ
0,0,0,0(p1) . . . . . . φ

J
mJ1

−1,mJ2
−1,mJ3

−1,mJ4
−1(p1)

...
...

φJ
0,0,0,0(pn) . . . . . . φJ

mJ1
−1,mJ2

−1,mJ3
−1,mJ4

−1(pn)






.

Note, each column of the matrix ΦJ refers to a scaling function φJ
k1,k2,k3,k4

the order of these columns can
be chosen arbitrarily but we have to choose the same order for the coefficients dJk1,k2,k3,k4 in the vector
dJ. From now on we assume that the order is always chosen consistently.
Analogously to the 1-dimensional case each scaling coefficient dJ1,J2,J3,J4

k1,k2,k3,k4
corresponds to a compactly sup-

ported scaling function φJ1,J2,J3,J4

k1,k2,k3,k4
, ki = 0, . . . ,mJi

− 1 and i = 0, . . . , 4. Hence it is only computable if
an observation is given in the support of the scaling function. We can establish a Gauss-Markov model
and solve it with the same strategies as in the 1-dimensional model introduced in chapter 2.3.5. We will
not repeat the strategies here.

With the level J scaling coefficient vector dJ we can define the smoothed signal fJ ∈ VJ via

fJ(p) = ΦJ(p)dJ (2.109)

wherein

ΦJ(p) :=
[

φJ
0,0,0,0(p) . . . φJ

mJ1
−1,mJ2

−1,mJ3
−1,mJ4

−1(p)
]

. (2.110)

If we assume to have measurements on a fixed grid for x = (x1, ..., xnx
), y = (y1, ..., yny

), z = (z1, ..., znz
)

and t = (t1, ..., tnt
). I.e. we have nx · ny · nz · nt measurements







(x1, y1, z1, t1)
...

(xnx
, yny

, znz
, tnz

)







on the grid. Then

we can represent the (nx · ny · nz · nt)× (mJ1
·mJ2

·mJ3
·mJ4

) matrix ΦJ













(x1, y1, z1, t1)
...

(xnx
, yny

, znz
, tnt

)













as a

Kronecker product of the four matrices ΦJ1(x),ΦJ2(y),ΦJ3(z) and ΦJ4(t), i.e.

ΦJ













(x1, y1, z1, t1)
...

(xnx
, yny

, znz
, tnt

)













= ΦJ4(t)⊗ΦJ3(z)⊗ΦJ2(y) ⊗ΦJ1(x)
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wherein ΦJ1(x) =







φJ1,0(x1) . . . φJ1,mJ1
−1(x1)

...
...

φJ1,0(xnx
) . . . φJ1,mJ1

−1(xnx
)







and ΦJ2(y), ΦJ3(z) and ΦJ4(t) are defined analo-

gously. Less evaluations of the B-spline functions are necessary if we compute the matrix

ΦJ













(x1, y1, z1, t1)
...

(xnx
, yny

, znz
, tnt

)













as the Kronecker product of the 4 single matrices.

The order of the matrices in the Kronecker product determines the order of the elements of the product
matrix. I.e. we have to adapt the order of the matrices in the product to the order of the coefficients in
the coefficient vector dJ.

• decomposition of the signal

For a decomposition of the signal fJ ∈ VJ we want to compute the level J− 1 scaling and wavelet coef-
ficient vectors dJ−1 and cJ−1;ν , ν = 1, . . . , 24 − 1 from the level J scaling coefficient vector dJ, wherein

cJ−1;1 =
[

cJ1−1,J2−1,J3−1,J4−1;1
0,0,0,0 . . . cJ1−1,J2−1,J3−1,J4−1;1

mJ1−1−1,mJ2−1−1,mJ3−1−1,nJ4−1−1

]′
corresponding to the wavelet func-

tions ψJ1−1,J2−1,J3−1,J4−1;1
k1,k2,k3,k4

, k1 = 0, . . . ,mJ1−1 − 1, k2 = 0, . . . ,mJ2−1 − 1, k3 = 0, . . . ,mJ3−1 − 1 and
k4 = 0, . . . , nJ4−1 − 1; for ν = 2, . . . , 24 − 1 the coefficient vectors are defined analogously. We can extend
the 1-dimensional decomposition equations (2.90) and (2.91), i.e.

dj−1 = Pj dj

cj−1 = Qj dj

to the following equations

dJ−1 = (PJ4
⊗PJ3

⊗PJ2
⊗PJ1

)dJ (2.111)

cJ−1;1 = (PJ4
⊗PJ3

⊗PJ2
⊗QJ1

)dJ (2.112)

cJ−1;2 = (PJ4
⊗PJ3

⊗QJ2
⊗PJ1

)dJ (2.113)

cJ−1;3 = (PJ4
⊗QJ3

⊗PJ2
⊗PJ1

)dJ (2.114)

cJ−1;4 = (QJ4
⊗PJ3

⊗PJ2
⊗PJ1

)dJ (2.115)

cJ−1;5 = (PJ4
⊗PJ3

⊗QJ2
⊗QJ1

)dJ (2.116)

cJ−1;6 = (PJ4
⊗QJ3

⊗PJ2
⊗QJ1

)dJ (2.117)

cJ−1;7 = (QJ4
⊗PJ3

⊗PJ2
⊗QJ1

)dJ (2.118)

cJ−1;8 = (PJ4
⊗QJ3

⊗QJ2
⊗PJ1

)dJ (2.119)

cJ−1;9 = (QJ4
⊗PJ3

⊗QJ2
⊗PJ1

)dJ (2.120)

cJ−1;10 = (QJ4
⊗QJ3

⊗PJ2
⊗PJ1

)dJ (2.121)

cJ−1;11 = (PJ4
⊗QJ3

⊗QJ2
⊗QJ1

)dJ (2.122)

cJ−1;12 = (QJ4
⊗PJ3

⊗QJ2
⊗QJ1

)dJ (2.123)

cJ−1;13 = (QJ4
⊗QJ3

⊗PJ2
⊗QJ1

)dJ (2.124)

cJ−1;14 = (QJ4
⊗QJ3

⊗QJ2
⊗PJ1

)dJ (2.125)

cJ−1;15 = (QJ4
⊗QJ3

⊗QJ2
⊗QJ1

)dJ (2.126)

wherein ⊗ denotes the Kronecker product of matrices.
These extensions are not very hard; one just has to extend the equations in the derivation of the decom-
position and the recursion relations to the n-dimensional case. This requires some work; one hast to write
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out all of the products and we will not discuss this here; for similar work see e.g. Schmidt (2001) section
4.4.4. or Ogden (1997) chapter 9.
Now we can decompose the signal

fJ(p) = ΦJ(p)dJ

= ΦJ−1(p)dJ−1 +

24−1∑

ν=1

ΨJ−1;ν(p) cJ−1;ν

= fJ−1(p) +
24−1∑

ν=1

gνJ−1(p) (2.127)

into the smoothed version

fJ−1(p) := ΦJ−1(p)dJ−1 (2.128)

and the 24 − 1 detail signals

gνJ−1(p) := ΨJ−1;ν(p) cJ−1;ν , ν = 1, . . . 24 − 1, (2.129)

wherein ΨJ−1;ν(p) is defined analogously to ΦJ−1(p) (compare equation (2.110)), e.g.

ΨJ−1;1(p) =
[

ψJ−1;1
0,0,0,0(p) . . . ψJ−1;1

mJ1−1−1,mJ2−1−1,mJ3−1−1,nJ4−1
(p)
]

. (2.130)

Note, the subscript indices depend on the definitions of the wavelets.
With the decomposition relations (2.111) to (2.126) we can compute the scaling coefficient vector dj0 of
levels j0 = (J1−i0, J2−i0, J3−i0, J4−i0) and the detail coefficient vectors cj0;ν , . . . cJ−1;ν , ν = 0, . . . , 24−1,
for a 1 ≤ i0 ≤ min(J1, J2, J3, J4). With these coefficient vectors we can calculate analogous to the 1-
dimensional case the corresponding signals fj0 and gνj0 , . . . , g

ν
J−1, ν = 1, . . . , 24 − 1 (the definitions are

given in equations (2.128) and (2.129)) and get the decomposition

fJ(p) = fj0(p) +

i0∑

i=1

24−1∑

ν=1

gνJ−i(p)

• reconstruction of the signal

Now we again want to compute the level J scaling coefficient vector dJ from the level J− 1 scaling
and wavelet coefficient vectors dJ−1 and cJ−1;ν for ν = 1, ..., 24 − 1. The reconstruction relation in the
1-dimensional case dJ = PJ dJ−1 + QJ cJ−1 has to be extended to

dJ =(PJ4
⊗PJ3

⊗PJ2
⊗PJ1

)dJ−1+

(PJ4
⊗PJ3

⊗PJ2
⊗QJ1

) cJ−1;1 + . . .+ (QJ4
⊗QJ3

⊗QJ2
⊗QJ1

) cJ−1;24−1. (2.131)

Note, in the reconstruction equation the Kronecker product corresponding to the coefficient vectors cJ−1;ν

is analogous to the Kronecker product in equations (2.112) to (2.126) corresponding to the coefficient
vectors cJ−1;ν only the matrices PJ and QJ are interchanged with the matrices PJ and QJ , respectively.
As for the decomposition equation the extension is not very hard and only the equations needed for the
derivation of the relation have to be extended, we will not discuss this here.

• data compression

As in the 1-dimensional case we may perform the data compression algorithm. We can adopt the concept
and will not repeat it here.

For the multi-dimensional model a new aspect arises: In the 4-dimensional model we may want to smooth
the signal of levels J = (J1, J2, J3, J4) just in one dimension, e.g. we want to derive a signal of levels J′ =
(J1 − 1, J2, J3, J4). Here we will only discuss this case, we may also smooth in two or three dimensions. The
concepts have to be adapted. In the decomposition relation we then have to exchange the matrices Pji and
Qji , i = 2, 3, 4, corresponding to the dimensions we do not want to change in the coefficient equations (i.e. the
matrices corresponding to the levels J2, J3 and J4) with unit matrices, i.e.

dJ1−1,J2,J3,J4 = (I4 ⊗ I3 ⊗ I2 ⊗PJ1
)dJ (2.132)
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wherein I4 is a mJ4
×mJ4

unit matrix and I3 and I2 are defined analogously. Analogously we have to work for
the decomposition relations for the detail coefficient vectors c(J1−1,J2,J3,J4);ν but some of the equations coincide
and we have only 1 = 21−1 resulting detail signal. This corresponds to the 1-dimensional decomposition where
we get only 1 detail signal.
Analogous we then have to work for the reconstruction but we will not go into more details.
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Application

3.1 Observations

In the following we always work in an Earth-bounded coordinate system. The origin of the coordinate system is
the center of the Earth, the xy-plane is the equatorial plane and the z-axis is perpendicular to the equator and
therefore coincides approximately with the rotation axis of the Earth. We consider a receiver R = (λR, ϕR, hR)
and a satellite position S = (λS , ϕS , hS) given in spherical coordinates λ = longitude, ϕ = latitude and h =
height over the spherical Earth with radius Re (we assume the Earth is a sphere ΩRe

with radius Re). The
corresponding geocentric position vectors are xR and xS . To be more specific, the geocentric position vector x

of a point P = (λ, ϕ, h) is defined via

x = |x| · [cosϕ cosλ, cosϕ sinλ, sinϕ]′ = |x| · r, (3.1)

wherein |x| = Re + h is the radial distance, r denotes the corresponding unit vector.

3.1.1 Electron density from GNSS

Dual-frequency GPS (Global Positioning System) receivers register P-code and carrier phase measurements on
the two frequencies f1 = 1.5 GHz and f2 = 1.2 GHz. We can formulate observation equations for both, P-
code and carrier phase measurements. P-code observations are not ambiguous but have the disadvantage that
the random noise is almost 100 times larger than for carrier phase measurements, hence we consider here the
observation equation for carrier phase measurements.
We formulate the so-called geometry free linear combination of simultaneous phase observations φ1(R,S, t) and
φ2(R,S, t) on the frequencies f1 and f2 as

φ4(R,S, t) = φ1(R,S, t)− φ2(R,S, t) =

= α · STEC(R,S, t) + βR + βS + βR,S − e(R,S, t), (3.2)

see Schmidt et al. (2007b). In this equation βR and βS mean the inter-frequency differential delays of the
receiver R and the satellite S (for more details on these terms see, e.g., Brunini et al. (2003)), βR,S is the
combination of the carrier phase ambiguities on both frequencies f1 and f2, α is a constant and e(R,S, t) is the
corresponding observation error. The slant total electron content (STEC) is defined as the integral of the
electron density along the ray-path between receiver R and satellite S:

STEC(R,S, t) =

∫ S

R

N(λ, ϕ, h, t)ds. (3.3)

N(λ, ϕ, h, t) denotes the space- and time-dependent 4-dimensional electron density. Note, the ray-path of the
signal actually is a path that starts at the satellite S and ends at the receiver R. But we will neglect the
transmission time of the signal and therefore always consider ray-paths from receiver R to satellite S.

From equation (3.2) we gain information about the STEC along the ray-path between receiver R and satellite S.
The ambiguity term βR,S is computable within a pre-processing step. The observation φ4 contains neither the
satellite-receiver geometry nor frequency-independent biases, because these terms cancel out in the subtraction
of the simultaneous measurements φ1 and φ2; see Schmidt et al. (2007b).
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3.1.2 VTEC from occultation measurements

COSMIC/FORMOSAT-3 is the Constellation Observing System for Meteorology, Ionosphere and Climate and
Taiwan’s FORMOsa SATellite Mission #3, a joint Taiwan-U.S. project. The six COSMIC satellites were
successfully launched on April 14th, 2006. Over the first year, the satellites have been gradually boosted
from their initial orbits of 400 km to their final orbits of 800 km. The COSMIC satellites are so-called low-
Earth-orbiting (LEO) satellites. Each spacecraft is equipped with three instruments, namely a GPS occultation
receiver, a tiny ionospheric photometer and a tri-band beacon; see Lin et al. (2007).
A GPS-LEO occultation geometry is shown in Figure 3.1. When a GPS satellite sets or rises behind the Earth’s
ionosphere as seen by a LEO satellite, the GPS radio signals are received by the LEO satellite. Each occultation
therefore consists of a set of limb-viewing links with tangent points P ranging from the LEO satellite orbit
altitude to the surface of the Earth. Two types of GPS observations can be used to apply the Abel inversion:
the bending angle α and the STEC. It is possible to apply the Abel inversion on the STEC data in order to
obtain the electron density expressed as function of height. These retrieval process generally assumes spherical
symmetry of the electron density at the occultation position. It is obvious that this assumption is almost
never true. An improved Abel transform has been developed by Tsai and Tsai; see Tsai and Tsai (2004)
and Garćıa-Fernández (2004).

Figure 3.1: Scheme of the occultation geometry. The LEO satellite and the GPS satellite are shown. α denotes the
bending angle; see Garćıa-Fernández (2004).

3.1.3 VTEC from altimetry

We can also derive information about the ionosphere from satellite altimetry missions with double-frequency
radar altimeter on-board, such as Topex/Poseidon and Jason-1. Topex/Poseidon was launched in August
1992 and was operational till October 2005, it observed the ocean circulation. The follow-on mission of
Topex/Poseidon is Jason-1; it was launched in December 2001 and it has inherited the main features, i.e. orbit,
instruments, measurement accuracy, etc. The orbit altitude of the two missions is 1336 km. The Topex/Poseidon
and the Jason-1 mission are joint projects between NASA (National Aeronautics and Space Administration)
and the French space agency CNES (Centre National d’Etudes Spatiales). The primary sensor of both satellites
is the Nasa Radar Altimeter operating at 14.6 GHz (Ku band) and 5.3 GHz (C band) simultaneously. The
measurements of the height of the satellite above the sea (satellite range) made at the two frequencies allow,
among other information, to obtain the ionospheric vertical total electron content (VTEC).
To assess the precision of the VTEC from GNSS and from satellite altimetry these two techniques have often
been compared. Generally, the agreement between GNSS and altimetry derived VTEC is good, but there are
still some contradictions. Several studies have shown that the VTEC derived from Topex/Poseidon and Jason-1
are greater than the values from GNSS. This is a contradiction because in opposite to GNSS, the altimetry
satellites do not sample the whole ionosphere due to their lower orbital altitude and therefore the VTEC values
from satellite altimetry are expected to be lower. On the other hand, most of the ionospheric models from
GNSS data are based on the single layer model, which does not account well for the ionospheric contribution
above the altitude of the altimetry missions. For the single layer model, the STEC values derived from GNSS
measurements have to be converted into VTEC by a mapping function, while the altimetry missions deliver
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directly the VTEC values. The mapping function used for this convertion is also a potential error source for
the GNSS VTEC estimates. Finally for comparing with altimetry VTEC, the values derived from GNSS have
to be interpolated for regions far from the observing stations - that is above the oceans, i.e such comparison are
performed in the worst scenario for GNSS; see Todorova et al. (2007).

3.1.4 Ionosonde measurements

Ionosondes are terrestrial instruments that observe the ionosphere. A ionosonde works with the radar principle.
Short pulses in the frequency range from 1 to 40 MHz are vertically transmitted and received after ionospheric
reflection. With increasing frequency, the reflection is weaker and therefore the pulses enter deeper in the iono-
sphere before they are reflected. The amplitude, runtime, doppler shift, polarization and angle of incidence can
be derived from the ionospheric echo. A ionogram is the representation of the reflected signals versus time or
frequency. From ionosondes we can derive profiles of the electron density for heights from 100 km to 250 km.
We can, e.g., use ionosonde observations for a validation of GPS derived electron density profiles. For more
details see www.iap-kborn.de, http://de.wikipedia.org, Lin et al. (2007) and Figure 4.1.

For the different observation types it is always common to subtract a reference model from the original obser-
vation, e.g. for a observation y(R,S) we write y(R,S) = yref (R,S) + ∆y(R,S) wherein yref (R,S) means the
reference model and ∆y(R,S) is the correction term.

3.2 Different options

3.2.1 2-dimensional approach

In the 2-dimensional approach we work with measurements f(λ, ϕ), wherein λ is the longitude and ϕ is the
latitude. Let us assume to have given 2-dimensional observations

f(λi, ϕi) for i = 1, . . . ,M.

Since we want to work regionally our measurements (λi, ϕi), i = 1, . . . ,M , lie in a specified region [λmin, λmax]×
[ϕmin, ϕmax]. Now we want to apply our B-spline model as introduced in section 2.4 (we will adopt all the
notations from this chapter and fix the dimension n = 2). To apply the B-spline model we have to evaluate
the B-splines at the positions (λ, ϕ). Since our B-splines are defined on the interval [0, 1], we have to transform
[λmin, λmax]× [ϕmin, ϕmax] to the unit square [0, 1]× [0, 1]. Then we can assume our measurements to be given
in the unit square [0, 1] × [0, 1] and can perform the evaluation of the B-splines. The transformation of the
coordinates (λ, ϕ) ∈ [λmin, λmax] × [ϕmin, ϕmax] into the coordinates (x, y) ∈ [0, 1] × [0, 1] is defined via the
equations

x =
λ− λmin

λmax − λmin
and (3.4)

y =
ϕ− ϕmin

ϕmax − ϕmin
. (3.5)

In order to avoid confusion we will not distinguish between these two notations. For the evaluation of the
B-splines we always mean the values in the unit square, i.e. we write φJ1,J2

k1,k2
(λ, ϕ) but we mean φJ1,J2

k1,k2
(x, y).

We assume f(λ, ϕ) ∈ L2([0, 1]2).

Since the scaling spaces VJ1,J2
lie dense in L2([0, 1]2) (see equation (2.108), i.e.

⋃

J1≥0,J2≥0 VJ1,J2

L2([0,1]2)

= L2([0, 1]2)) and equation (2.107) (i.e. Vj1,j2 ⊆ Vj′
1
,j′

2
if j1 ≤ j′1 and j2 ≤ j′2) we can approximate the signal f

arbitrarily well:

∀ǫ > 0 ∃ J1, J2 such that ∃fJ1,J2
∈ VJ1,J2

with fJ1,J2
(λ, ϕ) = (ΦJ1,J2(λ, ϕ))′ · dJ1,J2

wherein dJ1,J2 =
[

dJ1,J2

0,0 . . . dJ1,J2

mJ1
−1,mJ2

−1

]′
and ΦJ1,J2(λ, ϕ) =

[

φJ1,J2

0,0 (λ, ϕ) . . . φJ1,J2

mJ1
−1,mJ2

−1(λ, ϕ)
]′

(com-

pare equation (2.109)) such that

‖f − fJ1,J2
‖L2([0,1]2) < ǫ. (3.6)
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The functions φJ1,J2

k1,k2
, k1 = 0, . . . ,mJ1

− 1 and k2 = 0, . . . ,mJ2
− 1, denote the 2-dimensional tensor product

B-spline scaling functions with levels J1 and J2 defined on [0, 1]× [0, 1] (for the exact definition see section 2.4.1)
the vector dJ1,J2 denotes the B-spline scaling coefficient vector.

Now we will repeat here the main steps of the B-spline model.
We fix the resolution levels J1 and J2 and want to estimate a level (J1, J2) approximation fJ1,J2

of the signal
f , i.e. we have to estimate the coefficient vector dJ1,J2 . Hence with the observations f(λi, ϕi), i = 1, . . . ,M ,
we establish the linear model







f(λ1, ϕ1)
...

f(λM , ϕM )







+







e(λ1, ϕ1)
...

e(λM , ϕM )







=







φJ1,J2

0,0 (λ1, ϕ1) . . . φJ1,J2

mJ1
−1,mJ2

−1(λ1, ϕ1)
...

...

φJ1,J2

0,0 (λM , ϕM ) . . . φJ1,J2

mJ1
−1,mJ2

−1(λM , ϕM )






· dJ1,J2 (3.7)

wherein dJ1,J2 contains the initially unknown B-spline scaling coefficients and e(λi, ϕi), i = 1, . . . ,M , are the

measurement errors. With the covariance matrix D (f) = σ2
f P−1

f for f =
[

f(λ1, ϕ1) . . . f(λM , ϕM )
]′

this lin-

ear equation system corresponds to the Gauss-Markov model (2.96). σ2
f denotes the unknown variance fac-

tor and Pf is the given positive definite weight matrix of dimension M × M . Hence the solvability of the

Gauss-Markov model depends on the column rank of the M × (mJ1
· mJ2

) matrix ΦJ1,J2













λ1, ϕ1,
...

λM , ϕM













=







φJ1,J2

0,0 (λ1, ϕ1) . . . φJ1,J2

mJ1
−1,mJ2

−1(λ1, ϕ1)
...

...

φJ1,J2

0,0 (λM , ϕM ) . . . φJ1,J2

mJ1
−1,mJ2

−1(λM , ϕM )







with M ≥ (mJ1
·mJ2

). For more details on the solvability of the

Gauss- Markov model compare section 2.3.5.

With the estimated coefficient vector dJ1,J2 we model the signal fJ1,J2
(λ, ϕ) of fixed resolution levels J1 and J2

(compare equation (2.109))

fJ1,J2
(λ, ϕ) =

mJ1
−1

∑

k1=0

mJ2
−1

∑

k2=0

dJ1,J2

k1,k2
φJ1,J2

k1,k2
(λ, ϕ). (3.8)

As explained in chapter 2.4 we can now perform a decomposition of the signal fJ1,J2
into a smoothed version

fJ1−1,J2−1 and detail signals gνJ1−1,J2−1, ν = 1, . . . , 22 − 1. For the 2-dimensional model there exist altogether
22 − 1 = 3 detail signals. The signal fJ1,J2

represents f on the scale (J1, J2) while the signal fJ1−1,J2−1

represents f on the scale (J1 − 1, J2 − 1) the detail signals gνJ1−1,J2−1, ν = 1, . . . , 3, contain the structures that
distinguishes fJ1,J2

from fJ1−1,J2−1. The smaller the levels (J1, J2), the coarser is the approximation fJ1,J2
and

the less coefficients are necessary to save the approximation fJ1,J2
.

According to equations (2.128) and (2.129) in section 2.4.2 the formulas of the smoothed signal and the detail
signals are the following:

fJ1−1,J2−1(λ, ϕ) =

mJ1−1−1
∑

k1=0

mJ2−1−1
∑

k2=0

dJ1−1,J2−1
k1,k2

φJ1−1
k1

(λ)φJ2−1
k2

(ϕ), (3.9)

g1
J1−1,J2−1(λ, ϕ) =

mJ1−1−1
∑

k1=0

nJ2−1−1
∑

k2=0

cJ1−1,J2−1;1
k1,k2

φJ1−1
k1

(λ)ψJ2−1
k2

(ϕ) (3.10)

g2
J1−1,J2−1(λ, ϕ) =

nJ1−1−1
∑

k1=0

mJ2−1−1
∑

k2=0

cJ1−1,J2−1;2
k1,k2

ψJ1−1
k1

(λ)φJ2−1
k2

(ϕ) (3.11)

g3
J1−1,J2−1(λ, ϕ) =

nJ1−1−1
∑

k1=0

nJ2−1−1
∑

k2=0

cJ1−1,J2−1;3
k1,k2

ψJ1−1
k1

(λ)ψJ2−1
k2

(ϕ). (3.12)

With the concept of a MSA we have now decomposed the signal f into a smoothed version of the signal fJ1−1,J2−1

and the corresponding detail signals gνJ1−1,J2−1, ν = 1, . . . , 3 these signals are defined via the coefficient vectors
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dJ1−1,J2−1 and cJ1−1,J2−1;ν , respectively; compare section 2.4.2. Now we can apply the data compression al-
gorithm introduced in section 2.3.5. We neglect those coefficients in the vectors cJ1−1,J2−1;ν , ν = 1, 2, 3, whose
absolute value is lower than a specified threshold ǫ > 0 and gain the coefficient vectors cJ1−1,J2−1;ν , ν = 1, 2, 3.
That means we neglect the non-significant structures of the detail signals gνJ1−1,J2−1, ν = 1, . . . , 3 and get the
new detail signals gνJ1−1,J2−1, ν = 1, . . . , 3. By applying the reconstruction algorithm we also get a new signal
fJ1,J2

.

With the 2-dimensional approach we can, e.g., model the V TEC(R,S, t). Working with the 2-dimensional
model in longitude and latitude there is no consideration of the time, hence we have to perform a discretization
in time and we have to estimate time-dependent B-spline scaling coefficients. In the following we will describe
the 3-dimensional and the 4-dimensional approaches, these are analogous to the 2-dimensional approach and
not all of the details are repeated.

3.2.2 3-dimensional approach

In the 3-dimensional approach we may consider either measurements in longitude, latitude and time or mea-
surements in longitude, latitude and height. In the first case we may approximate, e.g., the V TEC(R,S, t) as
in the 2-dimensional approach but instead of a discretization in time, we have a third scaling function in the
temporal direction and therefore we can estimate time-independent B-spline scaling coefficients. In the second
case we approximate signals in the 3-dimensional space (longitude, latitude and height), e.g., the electron den-
sity N(x, t). Since there is again no consideration in time in this 3-dimensional model we have to choose a
discretization in time and have to estimate time-dependent coefficients.
Let us assume we have given 3-dimensional observations in longitude, latitude and height

f(λi, ϕi, hi) for i = 1, . . . ,M.

The observations f(λi, ϕi, hi), i = 1, . . . ,M , are given in a specified region [λmin, λmax] × [ϕmin, ϕmax] ×
[hmin, hmax]. To apply the 3-dimensional B-spline model as introduced in section 2.4.2 we have to transform
[λmin, λmax]× [ϕmin, ϕmax]× [hmin, hmax] to [0, 1]× [0, 1]× [0, 1]. The transformation equations can be found
analogously to the 2-dimensional approach (compare equations (3.4) and (3.5)). As before we will not distinguish
between these two representations and for the evaluation of the B-splines we always mean the values in [0, 1]×
[0, 1]× [0, 1].
As in the 2-dimensional approach we suppose f(λ, ϕ, h) ∈ L2([0, 1]3). Since the scaling spaces VJ1,J2,J3

lie
dense in L2([0, 1]3) and Vj1,j2,j3 ⊆ Vj′

1
,j′

2
,j′

3
if j1 ≤ j′1, j2 ≤ j′2, and j3 ≤ j′3. (compare equations (2.107) and

(2.108)) we can approximate the signal arbitrarily well by a signal fJ1,J2,J3
∈ VJ1,J2,J3

with fJ1,J2,J3
(λ, ϕ, h) =

[

φJ1,J2,J3

0,0,0 (λ, ϕ, h) . . . φJ1,J2,J3

mJ1
−1,mJ2

−1,mJ3
−1(λ, ϕ, h)

]

· dJ1,J2,J3 and the level (J1, J2, J3) scaling coefficient vector

dJ1,J2,J3 =







dJ1,J2,J3

0,0,0
...

dJ1,J2,J3

mJ1
−1,mJ2

−1,mJ3
−1







(3.13)

(we will not go into details here but compare with the 2-dimensional approach).

Now we fix the resolution levels J1, J2 and J3 and want to estimate a level (J1, J2, J3) approximation of the
signal f , i.e. we have to estimate the coefficient vector dJ1,J2,J3 . Hence with our observations f(λi, ϕi, hi),
i = 1, . . . ,M , we establish the linear model







f(λ1, ϕ1, h1)
...

f(λM , ϕM , hM )







+







e(λ1, ϕ1, h1)
...

e(λM , ϕM , hM )







= ΦJ1,J2,J3 · dJ1,J2,J3 . (3.14)

wherein

ΦJ1,J2,J3 =







φJ1,J2,J3

0,0,0 (λ1, ϕ1, h1) . . . φJ1,J2,J3

mJ1
−1,mJ2

−1,mJ3
−1(λ1, ϕ1, h1)

...
...

φJ1,J2,J3

0,0,0 (λM , ϕM , hM ) . . . φJ1,J2,J3

mJ1
−1,mJ2

−1,mJ3
−1(λM , ϕM , hM )






. (3.15)
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With the covariance matrix D(f) = σ2
f P−1

f for f =
[

f(λ1, ϕ1, h1) . . . f(λM , ϕM , hM )
]′

this model forms a

Gauss-Markov model analogous to equation (2.96). The quantities σ2
f and Pf denote the unknown variance

factor and the given positive definite weight matrix of dimension M ×M . For more details on the solvability of
the Gauss-Markov model again see section 2.3.5.
With the estimated B-spline scaling coefficient vector dJ1,J2,J3 we model the signal fJ1,J2,J3

(λ, ϕ, h) of fixed
resolution levels J1, J2 and J3 as

fJ1,J2,J3
(λ, ϕ, h) =

mJ1
−1

∑

k1=0

mJ2
−1

∑

k2=0

mJ3
−1

∑

k3=0

dJ1,J2,J3

k1,k2,k3
φJ1,J2,J3

k1,k2,k3
(λ, ϕ, h). (3.16)

As described in section 2.4.2 we can decompose the approximation fJ1,J2,J3
(λ, ϕ, h) into a smoother ver-

sion fJ1−1,J2−1,J3−1(λ, ϕ, h) of levels (J1 − 1, J2 − 1, J3 − 1) and 7 = 23 − 1 corresponding detail signals
gνJ1−1,J2−1,J3−1(λ, ϕ, h), ν = 1, . . . , 23 − 1, i.e.

fJ1,J2,J3
(λ, ϕ, h) = fJ1−1,J2−1,J3−1(λ, ϕ, h) +

23−1∑

ν=1

gνJ1−1,J2−1,J3−1(λ, ϕ, h). (3.17)

The formulas for the smoothed signal and the detail signals are constructed analogously to equations (2.128)
and (2.129), i.e. they form the 3-dimensional analogon to the equations (3.9) to (3.12). All of the signals are
defined via their corresponding coefficient vectors, i.e. dJ1−1,J2−1,J3−1 and cJ1−1,J2−1,J3−1;ν , ν = 1, . . . , 7.
Now we again may apply the data compression algorithm introduced in section 2.3.5. We will not repeat this
concept, for more details compare the 2-dimensional approach in section 3.2.1.

Note, in the approach explained before we used the height as a third coordinate but it can be interchanged with
the time. I.e. we can either use the 3-dimensional approach as an approach in longitude, latitude and height
and in this case have to choose a discretization in the time or we can use the 3-dimensional approach as an
approach in longitude, latitude and time. We have to choose the appropriate model for the given observations.

3.2.3 4-dimensional approach

The 4-dimensional approach is used for 4-dimensional signals. Observations are given in a 4-dimensional space.
In our applications we will consider spatio-temporal observations in longitude, latitude, height and time, hence,
there is no need of a discretization in time. We suppose the observations at positions (λi, ϕi, hi, ti), i = 1, . . . ,M ,
lie in the specified region [λmin, λmax]× [ϕmin, ϕmax]× [hmin, hmax]× [tmin, tmax]. Now we want to apply the
4-dimensional B-spline model and therefore we have to evaluate the B-splines. Hence we have to transform the
region [λmin, λmax]× [ϕmin, ϕmax]× [hmin, hmax]× [tmin, tmax] to [0, 1]× [0, 1]× [0, 1]× [0, 1]. The transformation
equations can be formulated analogously to the 2- and 3-dimensional model (compare equations (3.4) and (3.5)).
Note, for simplification we again do not distinguish between these two representations.
Let us assume we have given observations

f(λi, ϕi, hi, ti) for i = 1, . . . ,M

with (λi, ϕi, hi, ti) ∈ [λmin, λmax]×[ϕmin, ϕmax]×[hmin, hmax]×[tmin, tmax]. As in the 2- and 3-dimensional ap-
proaches we assume f ∈ L2([0, 1]4). Since the scaling spaces VJ1,J2,J3,J4

lie dense in L2([0, 1]4) and Vj1,j2,j3,j4 ⊆
Vj′

1
,j′

2
,j′

3
,j′

4
if j1 ≤ j′1, j2 ≤ j′2, j3 ≤ j′3 and j4 ≤ j′4 (compare equations (2.107) and (2.108)) we may approximate

the signal f arbitrarily well by a signal fJ1,J2,J3,J4
∈ VJ1,J2,J3,J4

.

To estimate the coefficient vector dJ1,J2,J3,J4 for fixed resolution levels J1, J2, J3 and J4 we establish the linear
model for the observations f(λi, ϕi, hi, ti), i = 1, . . . ,M ,







f(λ1, ϕ1, h1, t1)
...

f(λM , ϕM , hM , tM )







+







e(λ1, ϕ1, h1, t1)
...

e(λM , ϕM , hM , tM )







=







φJ1,J2,J3,J4

0,0,0,0 (λ1, ϕ1, h1, t1) . . . φJ1,J2,J3,J4

mJ1
−1,mJ2

−1,mJ3
−1,mJ4

−1(λ1, ϕ1, h1, t1)
...

...

φJ1,J2,J3,J4

0,0,0,0 (λM , ϕM , hM , tM ) . . . φJ1,J2,J3,J4

mJ1
−1,mJ2

−1,mJ3
−1,mJ4

−1(λM , ϕM , hM , tM )






· dJ1,J2,J3,J4 . (3.18)
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With the covariance matrix D(f) = σ2
f P−1

f for f =
[

f(λ1, ϕ1, h1, t1) . . . f(λM , ϕM , hM , tM )
]′

the model forms

a Gauss-Markov model analogous to (2.96) and for more details on the solvability of the system we again refer
to section 2.3.5. σ2

f denotes the unknown variance factor and Pf is the given positive definite weight matrix of
dimension M ×M .

With the estimated coefficient vector dJ1,J2,J3,J4 we may calculate the approximation fJ1,J2,J3,J4
(λ, ϕ, h, t) of

the measurements of fixed resolution levels J1, J2, J3 and J4 in space and time. The approximation fJ1,J2,J3,J4

is defined via

fJ1,J2,J3,J4
(λ, ϕ, h, t) =

mJ1
−1

∑

k1=0

mJ2
−1

∑

k2=0

mJ3
−1

∑

k3=0

mJ4
−1

∑

k4=0

dJ1,J2,J3,J4

k1,k2,k3,k4
φJ1,J2,J3,J4

k1,k2,k3,k4
(λ, ϕ, h, t). (3.19)

Starting with the approach fJ1,J2,J3,J4
(λ, ϕ, h, t) we may decompose the signal with the concept of a MSA into

a smoother signal fJ1−1,J2−1,J3−1,J4−1 and the corresponding detail signals gνJ1−1,J2−1,J3−1,J4−1, ν = 1, . . . , 15
(compare the 2-dimensional and the 3-dimensional approach).

Then we can again apply the data compression algorithm introduced in section 2.3.5. By neglecting the detail
coefficients with absolute value lower then a specific threshold ǫ > 0 we can save the data in a compressed way
by neglecting the non-significant structures.

Figure 3.2 gives an overview of the input strategies for the 2-dimensional, the 3-dimensional and the 4-
dimensional B-spline approaches. The multi-dimensional approach allows different input strategies:
e.g. VTEC(λ, ϕ), VTEC(λ, ϕ, t), N(λ, ϕ, h) and N(λ, ϕ, h, t). From these input data we will subtract the cor-
responding values of a reference model and continue to work with the residual input data. Here we will only
work regionally and apply our B-spline model. One can extend our model into a combined model with empirical
orthogonal functions (EOFs) or Chapman functions and work either globally or regionally; see e.g. Schmidt

et al. (2007b) and Feltens (1998).

Figure 3.2: Overview of the input strategies of the multi-dimensional B-spline model (Ne(λ, ϕ, h) ≡ N(λ, ϕ, h) and
Ne(λ, ϕ, h, t) ≡ N(λ, ϕ, h, t)).

3.3 Selected applications

3.3.1 Electron density B-spline model for IRI

In order to demonstrate an application of the 3-dimensional B-spline approach we model the electron density
over South America.
We consider a region over Central and South America between 250◦ and 340◦ in longitude, −60◦ and 30◦ in
latitude (compare Figure 3.3) and between 100 km and 1200 km in height. We have given values of the electron
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density N(λ, ϕ, h, t) on a grid with a 2◦ spacing in longitude and latitude and a 25 km spacing in height on a
specified day for each hour t ∈ {0, . . . , 23}. For this grid we have for a fixed t ∈ {0, . . . , 23} altogetherM = 95220
observations of the electron density N(λ, ϕ, h, t) computed from the International Reference Ionosphere (IRI)

which are saved in the observation vector N =







N(λ1, ϕ1, h1, t)
...

N(λM , ϕM , hM , t)






.

Now we apply our 3-dimensional B-spline model as explained in section 3.2.2. We want to model an approxi-
mation analogous to equation (3.16), i.e. we have to estimate a time-dependent coefficient vector dJ1,J2,J3 =






dJ1,J2,J3

0,0,0 (t)
...

dmJ1
−1,mJ2

−1,mJ3
−1(t)







compare equation (3.13) to compute the approximation NJ1,J2,J3
(λ, ϕ, h, t) (note, the

coefficient vector is dependent of the time but for our further calculations this does not make any difference).
To estimate the coefficient vector dJ1,J2,J3 we establish the Gauss-Markov model analogous to equation (3.14)

N + e = ΦJ1,J2,J3 · dJ1,J2,J3 with D(N) = σ2
N P−1

N (3.20)

wherein σ2
N is the unknown variance factor and PN is the positive definite given M ×M weight matrix of the

observations. e =







e(λ1, ϕ1, h1, t)
...

e(λM , ϕM , hM , t)







denotes the error vector and ΦJ1,J2,J3 is the matrix wherein the B-spline

values are saved as defined in equation (3.15).
Since for J1 = J2 = J3 = 5 it holds M = 95220 > m5 · m5 · m5 = 343 = 39304 and the observations are
evenly distributed the matrix Φ5,5,5 has full column rank (the scaling functions φ5,k, k = 0, ...,m5 − 1 are
linear independent; compare Theorem 2.28) and we can estimate the unique least squares solution according
to equation (2.98). We do not have to introduce prior information. I.e. we gain the coefficient vector d̂J1,J2,J3

and therefore can compute the approximation

N̂J1,J2,J3
(λ, ϕ, h, t) =

mJ1
−1

∑

k1=0

mJ2
−1

∑

k2=0

mJ3
−1

∑

k3=0

d̂J1,J2,J3

k1,k2,k3
(t)φJ1,J2,J3

k1,k2,k3
(λ, ϕ, h) (3.21)

defined analogous to equation (3.16).

Figure 3.3 shows the results of the B-spline approach. The left column shows the electron density input
data N(λi, ϕi, hi, t) computed from IRI, i = 1, . . . ,M , for the specified time t = 14 : 00 UT and selected
heights hi ∈ {225, 250, 275, 300} km, we computed the values on the grid in longitude and latitude, i.e. λi ∈
{250, 252, . . . , 340} and ϕi ∈ {−60,−58, . . . , 30}. The mid column visualizes the corresponding level (5, 5, 5)
approximations N̂5,5,5(λi, ϕi, hi, t), i = 1, . . . ,M and the right column shows the deviations N(λi, ϕi, hi, t) −
N̂5,5,5(λi, ϕi, hi, t). The root mean square (rms) values of the deviations are between 0.003×106 [electrons/cm3]
and 0.007× 106 [electrons/cm3].
Figure 3.4 a) shows a height profile of the electron density in Bogota in Colombia. The crosses are computed
from the IRI, the solid curve is the level (5, 5, 5) approximation from the B-spline approach. The rms value
of the deviations amounts 0.0013 × 106 [electrons/cm3]. The panels in b) show selected temporal profiles for
24 hours at heights h = 300 km and h = 325 km for Bogota (again: crosses = IRI model, line = level-(5,5,5)
B-spline approximation). The rms values of the deviations amount 0.0042×106 [electrons/cm3] and 0.0019×106

[electrons/cm3], respectively.

We will use the coefficient vector dJ1,J2,J3 of levels (J1, J2, J3) = (4, 4, 4), (3, 3, 3) and (2, 2, 2) at time t = 14 : 00
UT for a simulation of the input data in the next section.
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Figure 3.3: Electron density values from IRI (left panels), the corresponding B-spline approximations (mid column)
and the differences (right panels) for selected heights h = 225, 250, 275, 300 km at time t = 14 UT; data sets in [106

electrons/cm3]; see Schmidt et al. (2007b).
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Figure 3.4: a) height profile of the electron density in Bogota in Colombia; b) temporal profiles of the electron density
in Bogota for two heights h = 300 km and h = 325 km.

3.3.2 STEC model for GNSS observations

As introduced in equation (3.2) the GPS observation equation reads

φ4(R,S, t) = φ1(R,S, t)− φ2(R,S, t) =

= α · STEC(R,S, t) + βR + βS + βR,S − e(R,S, t). (3.22)

The STEC is defined as the integral of the space and time-dependent electron density N(λ, ϕ, h, t) along the
ray-path between receiver R and satellite S, i.e.

STEC(R,S, t) =

∫ S

R

N(λ, ϕ, h, t)ds. (3.23)

Our aim is to calculate a correction term for the 4-dimensional electron density, hence we decomposeN(λ, ϕ, h, t)
into a reference model Nref (λ, ϕ, h, t) (e.g. computed from the IRI) and a correction term ∆N(λ, ϕ, h, t), i.e.

N(λ, ϕ, h, t) = Nref (λ, ϕ, h, t) + ∆N(λ, ϕ, h, t). (3.24)
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Inserting equation (3.24) in equation (3.23) yields

STEC(R,S, t) = STECref(R,S, t) +

∫ S

R

∆N(λ, ϕ, h, t) ds (3.25)

wherein STECref(R,S, t) =
∫ S

R
Nref (λ, ϕ, h, t) ds is the approximate STEC value computed by means of the

given reference model Nref (λ, ϕ, h, t).

To model the correction term ∆N(λ, ϕ, h, t) we work regionally by an expansion in B-spline functions as in-
troduced in section 3.2.2. We could also work globally, e.g. by an expansion in spherical harmonics in com-
bination with empirical orthogonal functions (EOFs), but we will not discuss this here. For more details see,
e.g., Schmidt et al. (2007a) and Schmidt et al. (2007b) and the references therein.

In the following we work regionally and model the correction term with the 3-dimensional B-spline approach
∆NJ1,J2,J3

(λ, ϕ, h, t) as introduced in equation (3.16), i.e.

∆NJ1,J2,J3
(λ, ϕ, h, t) =

mJ1
−1

∑

k1=0

mJ2
−1

∑

k2=0

mJ3
−1

∑

k3=0

dJ1,J2,J3

k1,k2,k3
(t)φJ1,J2,J3

k1,k2,k3
(λ, ϕ, h) (3.26)

with unknown coefficients dJ1,J2,J3

k1,k2,k3
(t). Now we introduce the model (3.26) into equation (3.25) and obtain

STECJ1,J2,J3
(R,S, t) = STECref(R,S, t) +

1

α

mJ1
−1

∑

k1=0

mJ2
−1

∑

k2=0

mJ3
−1

∑

k3=0

dJ1,J2,J3

k1,k2,k3
(t) kJ1,J2,J3

k1,k2,k3
(R,S) (3.27)

wherein

kJ1,J2,J3

k1,k2,k3
(R,S) = α

∫ S

R

φJ1,J2,J3

k1,k2,k3
(λ, ϕ, h) ds. (3.28)

Substituting the approach (3.27) into our observation equation (3.22) leads us to

φ4(R,S, t)− βR,S − α · STECref(R,S, t) + e(R,S, t) =

=

mJ1
−1

∑

k1=0

mJ2
−1

∑

k2=0

mJ3
−1

∑

k3=0

dJ1,J2,J3

k1,k2,k3
(t) kJ1,J2,J3

k1,k2,k3
(R,S) + βR + βS . (3.29)

We set y(R,S, t) := φ4(R,S, t)− βR,S − α · STECref (R,S, t) and rewrite equation (3.29) as

y(R,S, t) + e(R,S, t) =

mJ1
−1

∑

k1=0

mJ2
−1

∑

k2=0

mJ3
−1

∑

k3=0

dJ1,J2,J3

k1,k2,k3
(t) kJ1,J2,J3

k1,k2,k3
(R,S) + βR + βS . (3.30)

For the time-dependency of the coefficients dJ1,J2,J3

k1,k2,k3
(t) we may perform a simple approach by stepwise functions.

For a given time interval [tA, tB) we define ti = tA + i ·∆T , i = 0, . . . , I, with I is the number of equally spaced
intervals of length ∆T = tB−tA

I and let

χi(t) =







1, if ti ≤ t < ti+1

0, else.
(3.31)

We approximate dJ1,J2,J3

k1,k2,k3
(t) by the step function

∑I−1
i=0 d

J1,J2,J3

k1,k2,k3;i χi(t). Now we rewrite the observation equation
(3.30) as

y(R,S, t) + e(R,S, t) =

mJ1
−1

∑

k1=0

mJ2
−1

∑

k2=0

mJ3
−1

∑

k3=0

I−1∑

i=0

dJ1,J2,J3

k1,k2,k3;i
χi(t) k

J1,J2,J3

k1,k2,k3
(R,S) + βR + βS . (3.32)

The unknown terms are written on the right-hand side of the equation, i.e. the scaling coefficients dJ1,J2,J3

k1,k2,k3;i, and
the inter-frequency delays βR and βS . For our simulation we suppose now the inter-frequency delays βR and βS
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are computable (they can be downloaded, e.g., from www.aiub-download.unibe.ch), i.e. we suppose these terms
to be known and bring them to the left hand-side of the equation. From now on we suppose y(R,S, t) to include
the inter-frequency delays and we will not consider them any more. As an alternative we can estimate these
parameters together with the B-spline scaling coefficients, but we will not perform this computation. Therefore
we can rewrite equation (3.32) as

y(R,S, t) + e(R,S, t) =

mJ1
−1

∑

k1=0

mJ2
−1

∑

k2=0

mJ3
−1

∑

k3=0

I−1∑

i=0

dJ1,J2,J3

k1,k2,k3;i
χi(t) k

J1,J2,J3

k1,k2,k3
(R,S). (3.33)

Equation (3.33) is the observation equation for estimating the unknown coefficients of the electron density B-
spline model.

Let R1, . . . , Rn be a selection of altogether n receiver positions. Figure 3.5 shows International GNSS (Global
Navigation Satellite Systems) Service (IGS) and regional GPS stations over Central and South America. And
let S1, . . . , Sm be a selection of altogether m satellite positions at a specified time t ∈ [ti, ti+1).

Our purpose is to estimate the mJ1
· mJ2

· mJ3
coefficients dJ1,J2,J3

k1,k2,k3;i, J1, J2, J3 ∈ N0, k1 = 0, . . . ,mJ1−1,
k2 = 0, . . . ,mJ2

− 1 and k3 = 0, . . . ,mJ3
− 1 for a fixed i ∈ {0, . . . , I − 1} from the observation equation (3.33).

We assume the observation vector y =







y(R1, S1, t1,1)
...

y(Rn, Sm, tn,m)







to be given for tk,l ∈ [ti, ti+1), k = 1, . . . , n and

l = 1, . . . ,m. The value y(Rk, Sl, tk,l) means the observations for the ray-path from the satellite position Sl to
the receiver position Rk at time tk,l.

Note, the receivers Ri, i = 1, . . . , n may not be able to receive appropriate signals from all the satellite positions
Sj , j = 1, . . . ,m (e.g. the zenith angle1 of the ray-path has to be less than 80◦). Therefore the observation
vector y may not include all combinations of receivers and satellites and contains less or equal than n · m
observations.

With the observation vector y we can then establish a linear equation system corresponding to equation (3.33):







y(R1, S1, t1,1)
...

y(Rn, Sm, tn,m)







+







e(R1, S1, t1,1)
...

e(Rn, Sm, tn,m)







= KJ1,J2,J3 · dJ1,J2,J3

i (3.34)

wherein e =







e(R1, S1, t1,1)
...

e(Rn, Sm, tn,m)







is the observation error vector,

KJ1,J2,J3 :=







kJ1,J2,J3

0,0,0 (R1, S1) . . . k
J1,J2,J3

mJ1
−1,mJ2

−1,mJ3
−1(R1, S1)

...
...

kJ1,J2,J3

0,0,0 (Rn, Sm) . . . kJ1,J2,J3

mJ1
−1,mJ2

−1,mJ3
−1(Rn, Sm)







(3.35)

is the matrix wherein the integral values are saved.

d
J1,J2,J3

i =
[

dJ1,J2,J3

0,0,0;i . . . dJ1,J2,J3

mJ1
−1,mJ2

−1,mJ3
−1;i

]′
is the (mJ1

·mJ2
·mJ3

)× 1 B-spline scaling coefficient vector.

Hence our aim is to estimate the unknown B-spline scaling coefficient vector d
J1,J2,J3

i .

We rewrite the linear equation system (3.34) in a short notation as

y + e = Kd (3.36)

1The zenith angle is the angle between the zenith and the ray-path, e.g. for a vertical ray-path the zenith angle amounts 0◦.
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Figure 3.5: IGS and regional GPS stations; see www.sirgas.org.



60 Chapter 3. Application

Figure 3.6: 2-dimensional problem in longitude and height. The dots indicate the centers (λk1
, hk3

) of the 2-dimensional
B-spline functions φ

j1,j3
k1,k3

. The white dots belong to those B-splines that have non-zero entries in the observation equation.

wherein K =
[

KJ1,J2,J3

]

and d =
[

d
J1,J2,J3

i

]

. This leads us to the Gauss-Markov model analogous to equation

(2.96)

y + e = Kd with covariance matrix D(y) = σ2
y P−1

y . (3.37)

The quantities σ2
y and Py are the unknown variance factor and the given positive definite weight matrix.

According to equation (2.97) the resulting normal equation system reads

(K′ Py K) d̂ = K′ Py y. (3.38)

Now the solvability of the Gauss-Markov model depends on the column rank of the matrix K (compare section
2.3.5).
Each scaling coefficient dJ1,J2,J3

k1,k2,k3;i is related to the corresponding scaling function φJ1,J2,J3

k1,k2,k3
which has compact

support and is located around a center point P = (λk1 , ϕk2 , hk3). Hence we can determine a coefficient only if
observations are given that have ray-paths penetrating the support of the corresponding scaling function (only
those coefficients have non-zero entries in the observation equation (3.34)). To be more specific, Figure 3.6
shows a 2-dimensional problem in longitude and height. The black and white dots indicate the center points
P = (λk1 , hk3) of the 2-dimensional tensor product scaling functions. We see the ray-path between satellite S
and receiver R. As mentioned before only those coefficients where the ray-path penetrates the support of the
corresponding scaling function have non-zero entries in the observation equation (in the figure these are the
B-splines related to the white dots, in contrast the B-splines related to the black dots have zero entries in the
observation equation).

Since the input data, i.e. GPS observations, are generally scattered there may not all of the coefficients be
computable and we can exclude the corresponding addends in the observation equation (3.33). If there are only
few observations to compute a scaling coefficient we may introduce prior information in order to stabilize the
estimation process, i.e. to perform a kind of regularization.
For our simulation we will introduce prior information. As already mentioned in section 2.3.5 we explain here
how to introduce an additional linear model for the prior information.

With the prior information for the expectation vector E(d) = µd =
[

µ0,0,0 . . . µmJ1
−1,mJ2

−1,mJ3
−1

]′
and the

covariance matrix D(d) = σ2
d P−1

d for the unknown B-spline scaling coefficients we can formulate the additional
linear model

µd + ed = d with D(µd) = σ2
d P−1

d (3.39)
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wherein ed is the error vector of the prior information, σ2
d is the unknown variance factor and Pd is the given

positive definite weight matrix.

The combination of the two linear models (3.37) and (3.39) yields the extended Gauss-Markov model

[

y

µd

]

+

[

e

ed

]

=

[

K

I

]

d with D

([

y

µd

])

=

[

σ2
y P−1

y 0

0 σ2
d P−1

d

]

(3.40)

wherein I is a (mJ1
·mJ2

·mJ3
) × (mJ1

·mJ2
·mJ3

) unit matrix and 0 are zero matrices with the appropriate
dimensions. Solving the combined Gauss-Markov model (3.40) with the least squares method yields us to the
extended normal equation

(
1

σ2
y

K′ Py K +
1

σ2
d

Pd

)

d̂ =
1

σ2
y

K′ Py y +
1

σ2
d

Pd µd (3.41)

or by multiplying equation (3.41) with σ2
y and introducing the so-called regularization parameter λ =

σ2
y

σ2
d

we
get the extended normal equation

(K′ Py K + λPd) d̂ = K′ Py y + λPd µd (3.42)

for the unknown parameter vector d with the unknown variance components σ2
y and σ2

d. We will not explain
the derivation of the extended normal equation for the combined model but for more details see Koch (2000).

Figure 3.7 gives an overview of the most important steps we have performed so far.

As mentioned before we can exclude the coefficients for which there are no observations in the support of the
corresponding scaling functions available. An alternative is to introduce prior information, i.e. to set the weight
of the prior information µk1,k2,k3 = 0 for those coefficients dJ1,J2,J3

k1,k2,k3;i
to infinity. However for numerical reasons

we choose a high weight ω0 for those coefficients dJ1,J2,J3

k1,k2,k3;i for which no observations are given in the support

of the corresponding scaling function φJ1,J2,J3

k1,k2,k3
, while for the other weights we may choose a value reciprocal to

the number Mk1,k2,k3 of ray-paths penetrating the support of the corresponding scaling function φJ1,J2,J3

k1,k2,k3
. E.g.

we set

Pd =







ω0,0,0

. . .

ωmJ1−1,mJ2
−1,mJ3

−1






, (3.43)

wherein ωk1,k2,k3 = c
Mk1 ,k2,k3

if Mk1,k2,k3 6= 0, and ωk1,k2,k3 = ω0 if Mk1,k2,k3 = 0, for ki = 0, . . . ,mJi
− 1 and

i = 1, 2, 3; c means an appropriate constant.

For solving the extended normal equation (3.42) we have to construct the matrix K = KJ1,J2,J3 as defined in
(3.35). Therefore we have to calculate the line integrals 1

α k
J1,J2,J3

k1,k2,k3
(R,S) =

∫ S

R
φJ1,J2,J3

k1,k2,k3
(λ, ϕ, h) ds (see equation

(3.28)). As mentioned in the introduction, we assume that the ionosphere is a thick shell of electrons between
100 km and 1200 km height above the spherical Earth with radius Re and hence we do not integrate over the
whole line from R to S, but only from P1 to P2, the points where the ray-path leaves the ionosphere at 100 km
+Re and enters the ionosphere at 1200 km +Re (the points P1 and P2 are shown in Figure 3.8). Below the
ionosphere there are in fact no electrons, hence we do not have to neglect anything. In the plasmasphere above
the ionosphere there are some variations of electron density but those we will neglect for our approach. The
location of the plasmasphere is shown in Figure 3.9. As mentioned before we will not consider the transmission
time and therefore we will perform the integration from P1 to P2.

Hence from now on we have

1

α
kJ1,J2,J3

k1,k2,k3
(R,S) =

∫ P2

P1

φJ1,J2,J3

k1,k2,k3
(λ, ϕ, h) ds. (3.44)

Note, for an evaluation of the B-splines we always have to work in longitude, latitude and height, hence
P1 = (λ1, ϕ1, h1) and P2 = (λ2, ϕ2, h2). But for a parametrization of the line it is useful to consider the positions
in cartestian coordinates, then we straightforward find the parametrization. Therefore we set xP1

= (x1, y1, z1)
and xP2

= (x2, y2, z2) to be the geocentric position vectors of the points P1 and P2, respectively, as introduced
in section 3.1.
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description and ref-
erences:

φ4(R, S, t) = α · STEC(R, S, t) + βR + βS + βR,S − e(R, S, t) observation equation
(3.22)

STEC(R, S, t) =
R S

R
N(λ, ϕ, h, t)ds

definition of the STEC

(equation (3.23))

N(λ, ϕ, h, t) = Nref (λ, ϕ, h, t) + ∆N(λ, ϕ, h, t)
decomposition of the
electron density in a
reference model and
a correction term
(equation (3.24))

STEC(R, S, t) = STECref (R, S, t) +
R S

R
∆N(λ, ϕ, h, t)ds

?

STEC in terms of the
reference model and the
correction term (equa-
tion (3.25))

φ4(R, S, t) − α · STECref (R, S, t) − βR,S
| {z }

=:y(R,S,t)

+e(R, S, t) = α ·

R S

R
∆N(λ, ϕ, h, t)ds + βR + βS

observation equation in
terms of the reference
model and the correc-
tion term (equation
(3.29))

∆NJ1,J2,J3
(λ, ϕ, h, t) =

PmJ1
−1

k1=0

PmJ2
−1

k2=0

PmJ3
−1

k3=0 d
J1,J2,J3

k1,k2,k3
(t)φJ1

k1
(λ)φJ2

k2
(ϕ)φJ3

k3
(h)

series expansion for the
correction term (equa-
tion (3.26))

k
J1,J2,J3

k1,k2,k3
(R, S, t) = α

R S

R
φ

J1

k1
(λ)φJ2

k2
(ϕ)φJ3

k3
(h)ds

?

integral over the B-
spline scaling functions
(equation (3.28))

y(R, S, t) + e(R, S, t) =
PmJ1

−1

k1=0

PmJ2
−1

k2=0

PmJ3
−1

k3=0 d
J1,J2,J3

k1,k2,k3
(t)kJ1 ,J2,J3

k1 ,k2,k3
(R, S) + βR + βS

inserting the series ex-
pansion and the inte-
gral into the observa-
tion equation (equation
(3.30))

?

y + e = Kd with D(y) = σ2
yP

−1
y µd + ed = d with D(µd) = σ2

d
P

−1
d

linear model of the ob-
servation equation and
linear model of the prior
information (two Gauss-
Markov models) (equa-
tions (3.37) and (3.39))

? ?

„

1
σ2
y
K′PyK + 1

σ2
d

Pd

«

d̂ = 1
σ2
y
K′Pyy + 1

σ2
d

Pdµd
resulting extended nor-
mal equation (equation
(3.41))

Figure 3.7: Flowchart of the main steps.
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Figure 3.8: Location of P1 and P2. The points P2 and P1 are defined as the points where the ray-path enters and leaves
the ionosphere, respectively.

The transformation of the cartesian coordinates xP = (x, y, z) into spherical coordinates P = (λ, ϕ, h) is given
with

u(xP ) = u(x, y, z) :=

(

arctan
(
y
x

)
, arctan

(

z√
|x|2+|y|2

)

,
√

|x|2 + |y|2 + |z|2
)

; (3.45)

see, e.g., Dettmering (2003).

A B-spline φJ1,J2,J3

k1,k2,k3
in our model is defined for spherical coordinates (λ, ϕ, h) but with (3.45) we can also

evaluate it for geocentric coordinates x, i.e. suppose P = (λ, ϕ, h) is a point on the ray-path and xP = (x, y, z)
is the corresponding geocentric position vector, then it holds u(xP ) = P and therefore

φJ1,J2,J3

k1,k2,k3
(P ) = (φJ1,J2,J3

k1,k2,k3
◦ u)(xP ). (3.46)

With φJ1,J2,J3

k1,k2,k3
◦ u we have now defined the B-spline functions on the geocentric coordinates and therefore we

Figure 3.9: Location of the ionosphere and the plasmasphere (www.windows.ucar.edu). The effect of the plasmasphere
on electromagnetic signals is estimated, e.g, by Garćıa-Fernández (2004).
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can evaluate the line integral in the geocentric coordinate system

1

α
kJ1,J2,J3

k1,k2,k3
(R,S) =

∫ xP2

xP1

(φJ1,J2,J3

k1,k2,k3
◦ u)(x) ds (3.47)

wherein the line coordinates are given in geocentric coordinates.

To solve this line integral we now have to find a parametrization of the line from xP1
to xP2

. This parametrization
is given with

γ(ω) =






x1

y1

z1




+ ω ·






x2 − x1

y2 − y1
z2 − z1




 , 0 ≤ ω ≤ 1 (3.48)

and

γ̇(ω) =






x2 − x1

y2 − y1
z2 − z1




 wherein γ̇ =

dγ

dω
; (3.49)

ω is the line coordinate. Then we can perform the transformation of the line integral:

∫ xP2

xP1

(φJ1,J2,J3

k1,k2,k3
◦ u)(x) ds =

∫ 1

0

φJ1,J2,J3

k1,k2,k3
(u(γ(ω))) |γ̇(ω)| dω

=

∫ 1

0

φJ1,J2,J3

k1,k2,k3
(u(γ(ω))) ·

√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 dω. (3.50)

To solve the integration we divide it into M subintegrals:

∫ 1

0

φJ1,J2,J3

k1,k2,k3
(u(γ(ω))) ·

√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 dω =

∫ 1/M

0

φJ1,J2,J3

k1,k2,k3
(u(γ(ω))) ·

√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 dω

+

∫ 2/M

1/M

φJ1,J2,J3

k1,k2,k3
(u(γ(ω))) ·

√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 dω

+ . . .

+

∫ 1

(M−1)/M

φJ1,J2,J3

k1,k2,k3
(u(γ(ω))) ·

√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 dω.

(3.51)

For our computations we approximate the integral by applying the Gauss-Legendre quadrature on each of
the subintegrals. Therefore we have to transform the intervals of integration [i/M, (i + 1)/M ] to [−1, 1],
i = 0, . . . ,M − 1.

Simulated numerical example

For our simulated numerical example we fix an area of consideration over Central and South America from
250◦ to 340◦ in longitude and from −60◦ to 30◦ in latitude, compare Figure 3.11. As mentioned before we
consider heights from 100 km to 1200 km above the Earth and for a fixed day we choose the time interval
[ti, ti+1) = [14, 15) UT.

As mentioned before for our simulation we suppose the inter-frequency delays βR and βS are computable. We
will not consider these terms for our simulation. Therefore we have to solve the linear equation system (3.36)

y + e = Kd (3.52)
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Figure 3.10: The receiver positions (left panel), the satellite orbits (mid panel) and the signal-paths for two selected
receivers R1 and R2 (right panel).

wherein y, e, K and d were defined before. Now we want to simulate an observation vector y. The observations
in the vector y have been defined as y(R,S, t) := φ4(R,S, t)− βR,S − α · STECref(R,S, t). For our simulation
we suppose βR,S to be computable in a pre-processing step and it will not be considered any more, we set the
constant α = 1 and gain

y(R,S, t) := φ4(R,S, t)− STECref (R,S, t). (3.53)

For the second term of the observation y(R,S, t), i.e. the reference model STECref(R,S, t) we introduce here
a level (J1, J2, J3) = (3, 3, 3) B-spline approximation STEC3,3,3(R,S, t) of STEC(R,S, t) computed from IRI.
To compute this approximation we use the level (3, 3, 3) coefficient vector d̂3,3,3(t) computed in section 3.3.1
(compare equation (3.21)). We define the reference model STECref = STEC3,3,3(R,S, t) =

∫ S

R N̂3,3,3(., t)ds as
the integral over the electron density approximation, i.e.

STECref(R,S, t) = STEC3,3,3(R,S, t) = K3,3,3(R,S) · d̂3,3,3(t) (3.54)

wherein K3,3,3(R,S) =
[

k3,3,3
0,0,0(R,S) . . . k3,3,3

m3−1,m3−1,m3−1(R,S)
]

and k3,3,3
k1,k2,k3

(R,S), ki = 0, . . . ,m3 − 1 for

i = 1, 2, 3, is defined analogous to equation (3.28). For the first term of the observation y(R,S, t), i.e. φ4(R,S, t)
we introduce STEC4,4,4(R,S, t) (computed analogous to equation (3.54)) and put some noise on this signal, i.e.
we add a normal distributed random value with mean value 0 and a fixed standard deviation. Then we have
simulated the observation vector y and can proceed in our simulation.

For our simulation we choose 34 receivers Rk, k = 1, . . . , 34 and 69 satellite positions Sl, l = 1, . . . , 69, hence
we get altogether 34 · 69 = 2346 signal-paths. As mentioned before the signal-paths with a zenith angle larger

than 80◦ cannot be used and have to be neglected and, thus 1676 signal-paths remain. I.e.







(R1, S1, t1,1)
...

(R34, S69, t34,69)







from now on means the 1676× 1 vector. We will adopt this notation for all vector and matrix notations. The
receiver positions, the satellite orbits and the signal-paths for two selected receivers R1 and R2 are shown in
Figure 3.10.

For all of these ray-path we calculate the simulated observation y(Rk, Sl, tk,l) and we gain the 1676× 1 obser-

vation vector y =







y(R1, S1, t1,1)
...

y(R34, S69, t34,69)







.

We insert the vector y in the Gauss-Markov model (3.37) to model a correction term ∆STECJ1,J2,J3
(R,S, t)

of levels (J1, J2, J3) = (4, 4, 4) to our reference model STECref (R,S, t) = STEC3,3,3(R,S, t), i.e. we have to
estimate the (m4 ·m4 ·m4)× 1 = 183 × 1 = 5832× 1 coefficient vector d.
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We now have to solve the extended normal equation (3.42), i.e.

(K′ Py K + λPd) d̂ = K′ Py y + λPd µd (3.55)

wherein K is a 1676 × (mJ4
×mJ4

×mJ4
) = 1676× 5832 matrix as defined in equation (3.35), Py is a given

positive definite 1676× 1676 weight matrix and Pd is a given positive definite 5832× 5832 weight matrix.

Since the elements in our observation vector y represent noisy residual values (i.e. a noisy version of the
difference between our simulated measurements STEC(R,S, t) and a reference model STECref (R,S, t)) we
assume the values in the observation vector to be located around 0. Therefore we assume for the expectation
vector of the coefficients E(d) = µd = 0 and rewrite equation (3.55) as

(K′ Py K + λPd) d̂ = K′ Py y. (3.56)

To estimate the regularization parameter λ we may apply a fast Monte-Carlo implementation of the itera-
tive maximum-likelihood Variance Component Estimation, for more details see Koch and Kusche (2001)
or Schmidt et al. (2007a). For our purpose we insert different values for λ and choose the result with the
lowest rms values of the residuals (ê = Kd̂− y, see equation (3.52)).

For this simulation, however, we assume that all observations have the same weight, hence, we fix Py = I to be
a 1676× 1676 unit matrix. For the 5832× 5832 weight matrix of the prior information Pd we apply the weight
matrix introduced in equation (3.43). Finally we have to solve the equation

(K′ K + λPd) d̂ = K′ y. (3.57)

and can estimate the least squares solution for the coefficient vector d̂ uniquely for an appropriate λ.

With the estimated coefficient vector d̂ = d̂
J1,J2,J3

i of levels (J1, J2, J3) = (4, 4, 4) we can now calculate the
correction term ∆ŜTECJ1,J2,J3

= ∆ŜTEC4,4,4 to our reference model STECref = STEC3,3,3.

The modeled correction term ∆ŜTEC4,4,4 is calculated with the estimated coefficient vector d̂ via

∆ŜTEC4,4,4(R,S, t) =
[

k4,4,4
0,0,0(R,S) . . . k4,4,4

m4−1,m4−1,m4−1(R,S)
]

· d̂ for t ∈ [ti, ti+1). (3.58)

We can compare the values of the correction term ∆STEC(R,S, t) = STEC(R,S, t) − STECref (R,S, t) =
STEC4,4,4(R,S, t) − STEC3,3,3(R,S, t) (calculated by the coefficient vectors d4,4,4(t) and d3,3,3(t), which
have been estimated in section 3.3.1, analogous to equation (3.54)) with our approximated correction term
∆ŜTEC4,4,4(R,S, t) (calculated by the estimated coefficient vector d̂). For that purpose we choose t = 14 UT.
Since we cannot visualize the values of the STEC for different positions in longitude and latitude of the receiver
R and satellite S we compute values for receiver positions Rk and satellite positions Sk with the same longitude
and latitude. The integration that is performed in the kJ1,J2,J3

k1,k2,k3
(Rk, Sk) then represents an integration along a

vertical ray-path from receiver position Rk to satellite position Sk; i.e. ∆STEC = ∆V TEC.

To visualize the results of our computations we now lie a grid in longitude and latitude over our area of
consideration, e.g. a grid from [250◦, 340◦] in longitude and [−60◦, 30◦] in latitude with a 3◦ spacing in
longitude and latitude, i.e we have 31 receiver positions and 31 satellite positions and therefore we have

altogether 961 grid points







(R1, S1)
...

(R31, S31)






. For each of these points on the grid we now calculate the val-

ues of ∆VTEC =







∆V TEC(R1, S1, t)
...

∆V TEC(R31, S31, t)







and the values of the modeled correction term ∆V̂TEC4,4,4 =







∆V̂ TEC4,4,4(R1, S1, t)
...

∆V̂ TEC4,4,4(R31, S31, t)






.

Figure 3.11 shows the results. The left column shows the simulation as described before. The top left panel
shows ∆V TEC wherein ∆V TEC(Rk, Sl, t) = V TEC(Rk, Sl, t)−V TECref (Rk, Sl, t) = V TEC4,4,4(Rk, Sl, t)−
V TEC3,3,3(Rk, Sl, t), i.e. our input data computed from IRI, the second left panel shows the estimated cor-
rection term ∆V̂ TEC4,4,4 computed for the levels (J1, J2, J3) = (4, 4, 4) and the third left panel shows the
deviations between ∆V TEC and the estimated correction term ∆V̂ TEC4,4,4; the rms value of the deviations
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Figure 3.11: The top left (top right) panel shows our simulated residual ∆V TEC(R,S, t) = V TEC4,4,4(R,S, t) −

V TEC3,3,3(R, S, t) (∆V TEC(R,S, t) = V TEC3,3,3(R, S, t) − V TEC2,2,2(R,S, t)), the second left (second right) panel
shows the estimated correction term ∆bV TEC4,4,4 (∆bV TEC3,3,3) and the third left (third right) panel shows the de-
viations; data sets in [ TECU ]. The fourth left (fourth right) panel shows the correlations of ∆V TEC(R,S, t) and
∆V̂ TEC4,4,4(R, S, t) (of ∆V TEC(R,S, t) and ∆V̂ TEC3,3,3(R, S, t)) on the subareas.
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Figure 3.12: Height profile of the electron density in Bogota in Colombia.

amounts 4.05 TECU (total electron content unit, 1 TECU = 1016 electrons/m2). In order to prove that these
deviations are mainly due to the uneven data distribution (cf. Figure 3.10) we divide the area under consid-
eration into nine subareas and calculate the correlations between ∆V TEC and the estimated correction term
∆V̂ TEC4,4,4 within these subareas. The last left panel shows the results. The correlations are higher in the
areas where more observations are available and the correlations are lower in those areas where less observations
are available.
The panels in the second column shows the same calculations for lower levels.

With the estimated coefficient vector d̂ and the reference model we can now compute a height profile of the
electron density, e.g. for Bogota in Colombia for a specified time t ∈ [ti, ti+1). With equation (3.21) we compute
the electron density of our reference model Nref (λ, ϕ, t) = N3,3,3(λ, ϕ, t). With our estimated coefficient vector
d̂ of levels (J1, J2, J3) = (4, 4, 4) we compute a correction term to the electron density ∆N̂4,4,4(λ, ϕ, h, t) by

∆N̂4,4,4(λ, ϕ, h, t) =

m4−1∑

k1=0

m4−1∑

k2=0

m4−1∑

k3=0

d̂4,4,4
k1,k2,k3;i

φJ1,J2,J3

k1,k2,k3
(λ, ϕ, h). (3.59)

wherein d̂J1,J2,J3

k1,k2,k3;i are the coefficients saved in the vector d̂. Figure 3.12 shows the electron density of our
reference model N3,3,3(λ, ϕ, h, t) (crosses) and the corrected version of the electron density N3,3,3(λ, ϕ, h, t) +
∆N̂4,4,4(λ, ϕ, h, t) (solid curve) for a fixed time t at Bogota for discrete heights h with spacing 25 km. The rms
of the deviations amounts 0.029× [106/cm3].

Extension in 4 dimensions

In the 3-dimensional approach which we used for modeling the electron density we had to perform a discretization
in time. The scaling coefficients dJ1,J2,J3

k1,k2,k3
(t) are dependent of the time t. In order not to use a temporal

discretization we may introduce the 4-dimensional B-spline approach for the electron density

∆N(λ, ϕ, h, t) =

mJ1
−1

∑

k1=0

mJ2
−1

∑

k2=0

mJ3
−1

∑

k3=0

mJ4
−1

∑

k4=0

dJ1,J2,J3,J4

k1,k2,k3,k4
φJ1

k1
(λ)φJ2

k2
(ϕ)φJ3

k3
(h)φJ4

k4
(t). (3.60)

Substituting equation (3.60) instead of equation (3.26) in the observation equation (3.22) yields us to

y(R,S, t) + e(R,S, t) =

mJ1
−1

∑

k1=0

mJ2
−1

∑

k2=0

mJ3
−1

∑

k3=0

mJ4
−1

∑

k4=0

dJ1,J2,J3,J4

k1,k2,k3,k4
kJ1,J2,J3

k1,k2,k3
(R,S)φJ4

k4
(t) + βR + βS (3.61)

wherein kJ1,J2,J3

k1,k2,k3
(R,S) = α

∫ S

R φ
J1,J2,J3

k1,k2,k3
(λ, ϕ, h)ds.

Here we chose a smooth function for modeling the time-dependency. On the other hand large linear equation
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systems have to be solved in order to estimate the mJ1
·mJ2

·mJ3
·mJ4

unknown 4-dimensional scaling coeffi-
cients dJ1,J2,J3,J4

k1,k2,k3,k4
.

3.3.3 3-dimensional COSMIC VTEC modeling

As described in section 3.1.2 we can derive VTEC observations from COSMIC occultation measurements.
In our investigation the electron density was calculated in a pre-processing step from so-called compensated
STEC values by the improved Abel transform. This work was done by the group of Prof. Tsai; for more details
see Tsai and Tsai (2004).
Consequently, we do not assume locally spherical symmetry within the ionosphere, but consider the effect of
large-scale horizontal gradients and/or inhomogeneous electron density distribution.
According to V TECCOSMIC = V TEC0 + V TEC1 a VTEC observation consists of two parts, namely

• V TEC0 the integration of the calculated electron density along the vertical from bottom to orbital height,
cf. equation (3.3).

• V TEC1 an extrapolated model value for the range between orbital height and the top of the ionosphere
(L.-C. Tsai, personal communication).

Again we divide V TEC(λ, ϕ, t) into a reference model V TECref (λ, ϕ, t), here computed from IRI, and into a
correction term ∆V TEC(λ, ϕ, t), i.e. V TEC(λ, ϕ, t) = V TECref (λ, ϕ, t) + ∆V TEC(λ, ϕ, t). We suppose to
have given COSMIC VTEC observations V TECCOSMIC(λi, ϕi, ti) for i = 1, . . . ,M in a specified region. From
those observations we estimate a correction term ∆V TEC(λ, ϕ, t) to our reference model V TECref(λ, ϕ, t).
For that purpose we establish the linear equation system






V TECCOSMIC(λ1, ϕ1, t1)
...

V TECCOSMIC(λM , ϕM , tM )




+






e(λ1, ϕ1, t1)
...

e(λM , ϕM , tM )




 =






V TECref (λ1, ϕ1, t1)
...

V TECref (λM , ϕM , tM )




+






∆V TEC(λ1, ϕ1, t1)
...

∆V TEC(λM , ϕM , tM )




 (3.62)

For the 3-dimensional correction term ∆V TEC(λ, ϕ, t) we apply our 3-dimensional B-spline model introduced
in section 3.2.2, i.e. we model ∆V TEC(λ, ϕ, t) with our B-spline approach (compare equation (3.16)), according
to

∆V TECJ1,J2,J3
(λ, ϕ, t) =

mJ1
−1

∑

k1=0

mJ2
−1

∑

k2=0

mJ3
−1

∑

k3=0

dJ1,J2,J3

k1,k2,k3
φJ1,J2,J3

k1,k2,k3
(λ, ϕ, t) (3.63)

and therefore we can form a matrix equation for ∆V TECJ1,J2,J3
(λi, ϕi, ti), i = 1, . . . ,M ,






∆V TECJ1,J2,J3
(λ1, ϕ1, t1)

...

∆V TECJ1,J2,J3
(λM , ϕM , tM )




 =







φ
J1,J2,J3

0,0,0 (λ1, ϕ1, t1) . . . φ
J1,J2,J3

mJ1
−1,mJ2

−1,mJ3
−1(λ1, ϕ1, t1)

...
...

φ
J1,J2,J3

0,0,0 (λM , ϕM , tM ) . . . φ
J1,J2,J3

mJ1
−1,mJ2

−1,mJ3
−1(λM , ϕM , tM )






· dJ1,J2,J3 (3.64)

wherein dJ1,J2,J3 is defined analogously to equation (3.13). Note, here the time is respected in the 3-dimensional
scaling function and therefore we do not have to perform a discretization of the time.
Inserting the series expansion for the correction term (3.64) into equation (3.62) yields






V TECCOSMIC(λ1, ϕ1, t1)
...

V TECCOSMIC(λM , ϕM , tM )




+







e(λ1, ϕ1, t1)
...

e(λM , ϕM , tM )







=







V TECref(λ1, ϕ1, t1)
...

V TECref(λM , ϕM , tM )







+







φJ1,J2,J3

0,0,0 (λ1, ϕ1, t1) . . . φJ1,J2,J3

mJ1
−1,mJ2

−1,mJ3
−1(λ1, ϕ1, t1)

...
...

φJ1,J2,J3

0,0,0 (λM , ϕM , tM ) . . . φJ1,J2,J3

mJ1
−1,mJ2

−1,mJ3
−1(λM , ϕM , tM )






· dJ1,J2,J3

or in a short way

VTECCOSMIC + e = VTECref + ΦJ1,J2,J3 · dJ1,J2,J3 . (3.65)
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Figure 3.13: 2-dimensional problem in longitude and latitude. The dots correspond to the centers of the 2-dimensional
B-spline scaling functions φ

J1,J2

k1,k2
. The white dots indicate the centers of those B-splines that have non-zero entries in the

observation equation.

The short notations are defined as follows:
VTECCOSMIC =

[

V TECCOSMIC(λ1, ϕ1, t1) . . . V TECCOSMIC(λM , ϕM , tM )
]′

,

VTECref =
[

V TECref(λ1, ϕ1, t1) . . . V TECref (λM , ϕM , tM )

]′
, e =

[

e(λ1, ϕ1, t1) . . . e(λM , ϕM , tM )

]′
and

ΦJ1,J2,J3 is defined analogous to equation (3.15). From equation (3.65) we get the Gauss-Markov model analo-
gous to equation (2.96)

y + e = ΦJ1,J2,J3 · dJ1,J2,J3 with D(y) = σ2
y P−1

y (3.66)

wherein y = VTECCOSMIC −VTECref , D(y) is the covariance matrix, σ2
y is the unknown variance factor

and Py is the positive definite weight matrix of dimension M×M . We solve the Gauss-Markov model analogous
to section 2.3.5 by the least squares method and get the normal equation

((
ΦJ1,J2,J3

)′
Py ΦJ1,J2,J3

)

dJ1,J2,J3 = (ΦJ1,J2,J3)′ Py y. (3.67)

The solvability of the model depends on the column rank of the matrix ΦJ1,J2,J3 , for more details see section
2.3.5.

As already explained in section 3.3.2 the 3-dimensional B-spline scaling functions φJ1,J2,J3

k1,k2,k3
(λ, ϕ, t) are related to

grid points (λk1 , ϕk2 , tk3) within the unit cube, ki = 0, . . . ,mJi
− 1, i = 1, 2, 3 for fixed J1, J2 and J3. For sim-

plification Figure 3.13 shows a 2-dimensional problem by neglecting the time-dependency. The white and black
dots indicate the centers (λk1 , ϕk2) of the 2-dimensional B-spline scaling functions φJ1,J2

k1,k2
(λ, ϕ) = φJ1

k1
(λ)φJ2

k2
(ϕ)

in the longitude-latitude plane (unit square). Due to their compact support only B-splines related to the white
dots, have non-zero entries in the observation equation shown before. Thus, a scaling coefficient dJ1,J2,J3

k1,k2,k3
is com-

putable only if observations are given close to the peak of the corresponding scaling function. Hence, in case of
data gaps many scaling coefficients may not be calculable and the corresponding addends can be excluded from
the observation equation or there has to be introduced prior information to estimate these coefficients. If just
a few observations support the computation of a coefficient, we may also introduce prior information in order
to stabilize the estimation process, i.e. to perform a regularization.
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For our numerical investigations we chose a region over the American continent between 230◦ and 350◦ in
longitude and −60◦ and 60◦ in latitude (compare Figure 3.14) and have given altogether M = 752 observations
for July 21, 2006. As reference model V TECref (λi, ϕi, ti), for i = 1, . . . ,M we choose IRI.

Since we can choose the levels for longitude, latitude and time independently we can adapt these values ap-
propriately to the data. In longitude there are for example less variations in the V TEC than in the latitude,
hence we may choose J1 lower then J2. For the resolution levels J1, J2 and J3 we choose here J1 = 3, J2 = 4
and J3 = 5 and have to solve equation (3.67) for altogether m5 · m4 · m3 = 34 · 18 · 10 = 6120 coefficients.
Since we have only M = 752 observations, the linear equation system (3.67) is singular. Hence we again have
to introduce prior information for the scaling coefficients to regularize the estimation process. I.e. we again
introduce the additional linear model (3.39) for the scaling coefficients.
As before we combine the two linear models (3.66) and (3.39) analogous to (3.40) and by solving the combined
Gauss-Markov model with the least squares method we get the extended normal equation

(
1

σ2
y

(
ΦJ1,J2,J3

)′
Py ΦJ1,J2,J3 +

1

σ2
d

Pd

)

d̂ =
1

σ2
y

(
ΦJ1,J2,J3

)′
Py y +

1

σ2
d

Pd µd. (3.68)

As our observation vector y represents noisy residual values (i.e. the noisy difference V TEC(λ, ϕ)−
V TECref(λ, ϕ)) again we suppose the values in y to be located around 0, hence we suppose the prior in-
formation for the coefficients µd = 0. Furthermore we assume the measurements have all the same weights
and therefore set Py = I wherein I is a 752 × 752 unit matrix. Note, the coefficients corresponding to scaling
functions for which no observations are available in the support (compare Figure 3.13) shall be excluded from
the estimation. As mentioned before an alternative is to set the weights ωk1,k2,k3 of the prior information
µk1,k2,k3 = 0 for these coefficients to infinity. However for numerical reasons we here again choose a high weight
ω0 > 0 for these coefficients. While we introduce a lower weight ω1 > 0 (ω0 > ω1) for those coefficients where
at least one measurement is given that lies in the support of the corresponding scaling function, i.e. we set the

(m3 · m4 · m5) × (m3 · m4 · m5) = 6120 × 6120 matrix Pd =







ω0,0,0

. . .

ωm3−1,m4−1,m5−1







, to be a diagonal

matrix, where the elements on the diagonal ωk1,k2,k3 ∈ {ω0, ω1}, ki = 1, . . . ,mJi
− 1 and i = 1, 2, 3 depending

on the existence of observations in the support of the corresponding scaling function φJ1,J2,J3

k1,k2,k3
.

Finally we solve the equation

((
ΦJ1,J2,J3

)′
ΦJ1,J2,J3 + λPd

)

d̂ =
(
ΦJ1,J2,J3

)′
y (3.69)

wherein λ =
σ2
y

σ2
d

is again the unknown regularization parameter, cf. equation (3.68). As mentioned before we
can estimate the regularization parameter with a fast Monte-Carlo implementation of the iterative maximum-
likelihood Variance Component Estimation. But for our computations we calculated the solution for various
values of λ and chose the solutions for which the rms value of the deviations of the residuals is the lowest. From
the extended normal equation (3.69) we now estimate the unique least squares solution d̂ = d3,4,5 and therefore
can compute the approximated correction term ∆V̂ TECJ1,J2,J3

(λ, ϕ, h) for the fixed levels (J1, J2, J3) = (3, 4, 5)
via equation (3.63).

The panels in Figure 3.14 show 24 selected ”snapshots” of residual VTEC estimations (i.e. ∆V̂ TEC3,4,5)
between 8:00 and 19:30 UT. The values were computed for a 2◦ grid in longitude and latitude with the formulas

∆V̂ TEC3,4,5(λ, ϕ, t) =

10−1∑

k1=0

18−1∑

k2=0

34−1∑

k3=0

d3,4,5
k1,k2,k3

φ3
k1 (λ)φ

4
k2 (ϕ)φ5

k3 (t). (3.70)

The observations used for the computation of the coefficients corresponding to the B-splines that are non-zero
at time t = {8 : 00, 8 : 30, . . . , 19 : 30} UT are shown in the panels 3.15, i.e. these coefficients have influence
on the computation of the corresponding correction terms shown in the panels of Figure 3.14. Corrections can
only be estimated in regions where observations are available.
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Figure 3.14: ”Snapshots” of residual VTEC estimations between 8:00 and 19:30 UT; data sets in [ TECU ].

Figure 3.15: Observations that have influence on the computation of the corresponding residuals in Figure 3.14.
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Figure 3.16: a) VTEC model data from IRI for July 21st, 14:00 UT; b) sum of the IRI input model (panel a)) and the
residual VTEC estimation computed from equation (3.63); data sets in [ TECU ].

Figure 3.16 compares the VTEC data from IRI (i.e. V TECref = V TECIRI) and the COSMIC estimation (i.e.
V TECIRI + ∆V̂ TECJ1,J2,J3

).

As mentioned in chapter 2.3.5 the MSA based on wavelet decomposition is an effective tool for data compres-
sion or data reduction. With the decomposition relations (2.111) to (2.126), which have to be adapted to the
3-dimensional model, we can decompose the estimated scaling coefficient vector d̂ = d3,4,5 into the scaling
coefficient vector of the lowest levels, i.e. d0,0,0 and the corresponding detail coefficient vectors cν12,3,4, cν11,2,3,
cν10,1,2, cν20,0,1 and cν30,0,0, wherein ν1 = 7 = 23 − 1 corresponds to the coefficients for which we decrease the levels
in all 3 dimensions, ν2 = 3 = 22 − 1 corresponds to the coefficients for which we decrease the levels only in
2 dimensions and ν3 = 1 = 21 − 1 corresponds to the coefficients for which we decrease the level in only 1
dimension (Note, the decomposition relations analogous to (2.111) to (2.126) apply to the steps from levels
(3, 4, 5) to levels (2, 3, 4), to levels (1, 2, 3) and to levels (0, 1, 2); for the steps (0, 1, 2) to (0, 0, 1) and to (0, 0, 0)
we have to construct decomposition relations analogous to equation (2.132). For the reconstruction relations
we will have to work analogously but will not discuss this concept.). Figure 3.17 visualizes the decomposition of
the coefficients: we start with the coefficient vector d3,4,5 and compute stepwise the coefficient vectors of lower
levels. For the reconstruction we only have to save the coefficient vectors d0,0,0, cν0,0,1, cν0,1,2, cν1,2,3 and cν2,3,4
for the corresponding values of ν.

Now we can apply the data compression algorithm as introduced in chapter 2.3.5. The coefficient vectors cν0,0,0,
c0,0,1, cν0,1,2, cν1,2,3 and cν2,3,4 are the compressed versions of the detail coefficient vectors wherein we neglect
those coefficients in the detail coefficient vectors whose absolute values are lower than a specified threshold
ǫ > 0. Therefore the compressed version of the detail coefficients do not contain the non-significant structures.
With the reconstruction relation (2.131), which has to be adapted to the 3-dimensional model, we can now
perform a reconstruction of the scaling coefficient vector d3,4,5. The reconstruction algorithm is visualized in
Figure 3.18. In the left panel we insert the coefficient vectors d0,0,0, cν0,0,0, cν0,0,1, cν0,1,2, cν1,2,3 and cν2,3,4 (com-
puted with the decomposition algorithm) into the reconstruction relation and derive the exact coefficient vector
d3,4,5 while in the right panel we insert the compressed versions of the detail coefficient vectors (d0,0,0, cν0,0,0,
cν0,0,1, cν0,1,2, cν1,2,3 and cν2,3,4) and derive a compressed version of the coefficient vector d3,4,5.

Note from now on for simplification we omit the hat in the notations of the estimated correction terms and in
the following always write ∆V TEC3,4,5 instead of ∆V̂ TEC3,4,5.
Via the coefficient vector d3,4,5 the approximated correction term ∆V TEC3,4,5 is defined and via the coefficient
vector d3,4,5 the compressed version of the approximated correction term ∆V TEC3,4,5 is defined, the two
signals ∆V TEC3,4,5 and ∆V TEC3,4,5 only differ in the non-significant structures which have been neglected
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f3,4,5 → d3,4,5

↓ ց

d2,3,4 cν2,3,4 → gν2,3,4, ν = 1, . . . , 7

↓ ց

d1,2,3 cν1,2,3 → gν1,2,3, ν = 1, . . . , 7

↓ ց

d0,1,2 cν0,1,2 → gν0,1,2, ν = 1, . . . , 7

↓ ց

d0,0,1 cν0,0,1 → gν0,0,1, ν = 1, . . . , 3

↓ ց

d0,0,0 cν0,0,0 → gν0,0,0, ν = 1

Figure 3.17: Decomposition algorithm for the coefficients.

in ∆V TEC3,4,5. We can decompose the approximations

∆V TEC3,4,5 = ∆V TEC0,0,0 +

1∑

ν=1

gν0,0,0 +

3∑

ν=1

gν0,0,1 +

7∑

ν=1

gν0,1,2 +

7∑

ν=1

gν1,2,3 +

7∑

ν=1

gν2,3,4 (3.71)

and

∆V TEC3,4,5 = ∆V TEC0,0,0 +

1∑

ν=1

gν0,0,0 +

3∑

ν=1

gν0,0,1 +

7∑

ν=1

gν0,1,2 +

7∑

ν=1

gν1,2,3 +

7∑

ν=1

gν2,3,4. (3.72)

We show the results of the data compression. Since the data compression algorithm does not affect the scaling
coefficient vector d0,0,0 we do not have to take into account the part ∆V TEC0,0,0 in (3.71) and (3.72), therefore
we consider the signals ∆V TEC3,4,5−∆V TEC0,0,0 and ∆V TEC3,4,5−∆V TEC0,0,0, i.e. the sums of the detail
signals in (3.71) and (3.72). The detail signals gν0,0,0, g

ν
0,0,1, g

ν
0,1,2, g

ν
1,2,3 and gν2,3,4 and the compressed detail

signals gν0,0,0, g
ν
0,0,1, g

ν
0,1,2, g

ν
1,2,3 and gν2,3,4 are represented by the coefficient vectors cν0,0,0, c

ν
0,0,1, c

ν
0,1,2, c

ν
1,2,3 and

cν2,3,4 and the compressed coefficient vectors cν0,0,0, cν0,0,1, cν0,1,2, cν1,2,3 and cν2,3,4, respectively. The coefficient
vectors contain altogether m5 ·m4 ·m3 −m0 ·m0 ·m0 = 6120− 27 = 6093 detail coefficients. The compressed
coefficient vectors contain altogether m5 · m4 · m3 − m0 · m0 · m0 − nǫ = 6120 − 27 − nǫ detail coefficients,
wherein nǫ is the number of coefficients that have been neglected. Therefore we here define the compression
rate ρ := nǫ

m5·m4·m3−m0·m0·m0
= nǫ

6093 . Note, as we do not take into account the smoothed signal f0,0,0, we do
not take into account the scaling coefficient vector d0,0,0.

In Figure 3.19 there are shown the signals ∆V TEC3,4,5 −∆V TEC0,0,0 and ∆V TEC3,4,5 −∆V TEC0,0,0, i.e.
Panel a) in the first row shows ∆V TEC3,4,5 −∆V TEC0,0,0 based on 6093 detail coefficients. Panel b) in the
first row visualizes the result ∆V TEC3,4,5 −∆V TEC0,0,0 after neglecting 4833 wavelet coefficients (threshold
ǫ = 0.2), i.e. the compression rate amounts ρ = 4833

6093 = 79%. Panel c) shows the differences between panel a)
and b); the rms value of the deviations amounts 0.749 TECU. The panels in the second row show the results



3.3. Selected applications 75

f0,0,0 ← d0,0,0 cν0,0,0 → gν0,0,0, ν = 1

↓ ւ

d0,0,1 cν0,0,1 → gν0,0,1, ν = 1, . . . , 3

↓ ւ

d0,1,2 cν0,1,2 → gν0,1,2, ν = 1, . . . , 7

↓ ւ

d1,2,3 cν1,2,3 → gν1,2,3, ν = 1, . . . , 7

↓ ւ

d2,3,4 cν2,3,4 → gν2,3,4, ν = 1, . . . , 7

↓ ւ

f3,4,5 ← d3,4,5

f0,0,0 ← d0,0,0 cν0,0,0 → gν0,0,0, ν = 1

↓ ւ

d0,0,1 cν0,0,1 → gν0,0,1, ν = 1, . . . , 3

↓ ւ

d0,1,2 cν0,1,2 → gν0,1,2, ν = 1, . . . , 7

↓ ւ

d1,2,3 cν1,2,3 → gν1,2,3, ν = 1, . . . , 7

↓ ւ

d2,3,4 cν2,3,4 → gν2,3,4, ν = 1, . . . , 7

↓ ւ

f3,4,5 ← d3,4,5

Figure 3.18: Reconstruction algorithm for the exact reconstruction and for a compressed reconstruction.

threshold ǫ 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

neglected coeff. 2491 3258 3715 4052 4314 4523 4690 4833

compression rate 40.9% 53.5% 61.0% 66.5% 70.8% 74.2% 77.0% 79.3%

rms 0.217 0.358 0.419 0.454 0.550 0.626 0.644 0.749

correlation 0.994 0.983 0.977 0.973 0.960 0.949 0.947 0.931

threshold ǫ 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

neglected coeff. 5087 5222 5373 5477 5565 5634 5690 5738

compression rate 83.5% 85.7% 88.2% 89.9% 91.3% 92.5% 93.4% 94.2%

rms 0.918 1.084 1.062 1.083 1.037 1.064 1.071 1.092

correlation 0.899 0.865 0.867 0.870 0.872 0.870 0.869 0.860

Table 3.1: Results of the data compression: number of neglected coefficients, compression rate, rms values of the
deviations and correlations for different thresholds ǫ > 0. The rms values and the correlation refer to the estimation
based on 6093 coefficients and the compressed estimation.

after neglecting 4052 coefficients (threshold ǫ = 0.1). The rms values of the deviations and the correlations can
be depicted from Table 3.1.

We have to make a trade-off between compression rate and rms value of the deviations and correlation. I.e if
we want to derive a high compression rate we have higher rms values of the deviations and lower correlations.
If we compute the rms value of the input data, we may choose, for instance, one third of the rms value as
threshold for the rms value of the deviation (∆V TEC3,4,5 −∆V TEC3,4,5). Table 3.1 shows the results of the
data compression for different thresholds ǫ.
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Figure 3.19: a) COSMIC estimation based on 6093 coefficients; b) estimation after applying the data compression
algorithm for thresholds ǫ = 0.2 and ǫ = 0.1; c) deviations; data sets in [ TECU ].

By applying more flexible algorithms for data compression we may gain better results for the compressed signals.
E.g. we may not use a fixed threshold ǫ for all coefficient vectors, but use different thresholds ǫ0,0,0, ǫ0,0,1, ǫ0,1,2,
ǫ1,2,3 and ǫ2,3,4 > 0 for the different levels. Here we neglect the coefficients in cν0,0,0 with absolute value lower
then ǫ0,0,0, we neglect the coefficients in cν0,0,1 with absolute value lower than ǫ0,0,1, and so on. It is reasonable to
use larger thresholds ǫJ1,J2,J3

for higher levels (J1, J2, J3), since for high (J1, J2, J3) the spaces VJ1,J2,J3
contain

small structures and therefore we can neglect more coefficients.
To compare the results with the before applied data compression algorithm, we fixed an ǫ2,3,4 > 0, and set
ǫ1,2,3 = 1

2 ǫ2,3,4, ǫ0,1,2 = 1
4 ǫ2,3,4, ǫ0,0,1 = 1

8 ǫ2,3,4 and ǫ0,0,0 = 1
16 ǫ2,3,4. We fix ǫ2,3,4 = 0.45 and neglect altogether

5344 coefficients (i.e. compression rate 87.7%) the rms value of the deviations amounts 0.714 TECU and the
correlation amounts 0.934. Now we can compare these values with the values in Table 3.1 and see that for
the columns in the table corresponding to ǫ = 0.2, 0.25 and 0.3 there were less coefficients neglected, but
the corresponding rms values of the deviations are higher and the correlation are lower. A data compression
algorithm for which we can choose various thresholds for the different levels, therefore yields a more effective
tool for data compression.

3.4 Combinations

The unknown B-spline scaling coefficients can be estimated from the combination of different observation types
including altimetry and terrestrial measurements. For each of the different observation types it is possible to
derive an observation equation for estimating the unknowns of the electron density B-spline model within a
specific region. We suppose to have altogether p observation techniques. For each of the different techniques we
have an observation vector yi, i = 1, . . . , p, e.g. y1 may contain all reduced GNSS geometry-free observations
y(R,S, t) (compare equation (3.30)) measured from ground stations within our specified region. Hence, for each
observation vector yi we can establish a Gauss-Markov model

yi + ei = Ai β with D(yi) = σ2
yi

P−1
yi

(3.73)
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wherein σ2
yi

is the unknown variance factor and Pyi
is the given positive definite weight matrix. The vector β

consists of the unknown B-spline scaling coefficients and other auxiliary parameters.
The combination of the p models yields the combined Gauss-Markov model
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(3.74)

for the unknown parameter vector β with unknown variance components σ2
yi

. According to equation (2.97) the
corresponding normal equation system reads

(
p
∑

i=1

1

σ2
yi

A′
iPyi

Ai

)

β̂ =

p
∑

i=1

1

σ2
yi

A′
iPyi

yi. (3.75)

To stabilize the estimation of the coefficient vector β we may have to introduce prior information, i.e. we
introduce an additional linear model for the prior information analogous to (3.39) in section 3.3.2. Then we
combine the models (3.74) and (3.39) and by solving the combined Gauss-Markov model with the least squares
method we get the extended normal equation

(
p
∑

i=1

1

σ2
yi

A′
iPyi

Ai +
1

σ2
β

Pβ

)

β̂ =

p
∑

i=1

1

σ2
yi

A′
iPyi

yi +
1

σ2
β

Pβµβ , (3.76)

for more details see e.g. Koch (2000).
The intention is to apply this combined model to the different observation types introduced in the sections 3.1.1,
3.1.2, 3.1.3 and 3.1.4. The different observation types have various advantages and disadvantages and with the
combination of the different types the advantages of one type can be used to balance the disadvantages of
another type. The different types may have different accuracies, therefore we consider different variance factors
σyi

and we may introduce weight matrices Pyi
with higher weights for the observations with high accuracy,

while we may introduce lower weights for the observations with low accuracy. It is reasonable to consider
combinations of different observation types, because, e.g., the GPS observations lie predominantely above the
continent while altimetry yields observations above the sea, hence, the combination yields observations, both,
above the sea and above the continent. From all different observation types some information can be used,
different weights can be introduced to handle different accuracies of the observation types.
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Chapter 4

Summary and conclusions

The first part of this report dealt with the derivation of the B-spline approach. In the section 2.1 we intro-
duced the theory of a MSA in general but for the 1-dimensional case, i.e. we defined the scaling and detail
spaces, introduced the scaling functions and the wavelets and established the two-scale relations. With the
concept of a MSA we can decompose a signal in its low-frequency part and the corresponding detail signals.
These signals are defined via coefficient vectors. The concept of a MSA leads us to a data compression technique.

In the next step we gave the definition of B-splines and some properties of these functions. Then we applied the
theory of MSA to the B-splines, i.e. for the scaling functions we used B-splines and constructed semiorthogonal
wavelet functions. With the two-scale coefficients we derived the decomposition and reconstruction relations
for the B-spline model. The data compression algorithm can be applied and we can diminish the storage space
of the signals. The 1-dimensional B-spline approach was extended via tensor product B-splines and wavelets
to the multi-dimensional case, i.e. we established multi-dimensional approaches to model multi-dimensional
signals. This way features like the equatorial anomaly and data gaps can be handled appropriately.

In section 2.4 we demonstrated how the multi-dimensional approaches, i.e. multi-dimensional series expansions
in terms of the localizing base functions can be applied to ionospheric signals. The derived multi-dimensional
B-spline approaches are based on Cartesian theory and therefore restricted to regional areas. In our first ap-
plication we modeled the electron density from IRI by a 3-dimensional B-spline approach over Central and
South America. From the electron density values we estimated a regional model of the electron density. The
estimation of the scaling coefficients was performed by the least squares method. In the second application
we simulated GPS observations to model the STEC by a 3-dimensional B-spline approach. Our intention was
to estimate corrections to a reference model (IRI) from GPS observations. Here we introduced an additional
linear model for the prior information of the coefficients and established a combined Gauss-Markov model. The
combined model was solved with the least squares method with an appropriate regularization parameter. The
third application treats 3-dimensional COSMIC VTEC observations. Again we estimated a correction term to
the reference model (IRI). For this approach we present an application of the data compression algorithm: we
performed the data compression for the correction term, i.e. we decomposed the modeled correction term into
its low-frequency part and the corresponding detail signal and neglected the non-significant structures from the
detail signals. The data compression is an important tool to handle huge amounts of observations.

We have seen that the multi-dimensional B-spline approach yields good results for regional observations; with an
appropriate number of observations in a specified region we can estimate the unknown parameters. We achieved
satisfying results for modeling signals of the electron density from IRI observations, the STEC from simulated
GPS observations and the VTEC from COSMIC observations. The approach can therefore be compared with
other techniches such as tomography. To extend our approach to global investigations we can introduce trigono-
metric B-spline functions (see Lyche and Schumaker (2001)) or spherical harmonics (see Schmidt et al.

(2007a)) and work with tensor product functions. Therefore the approach can also be applied to phenomena
that have to be investigated globally. In order to take into account the height structure of the electron density
we may introduce Chapman functions for the scaling functions with respect to the height (see, e.g., Feltens

(1998)).

Future work may focus on the combination of GNSS, COSMIC and altimetry measurements. This way we
want to use information of all these different observation types to model the correction term. With different
variance factors we can control the strength of the influence of the different observation types on the corrections.
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Figure 4.1: Lowell Digisonde network; see http://ulcar.uml.edu.

With the combined model we can improve the corrections, i.e. we take advantage of the various properties (e.g.
localization, accuracy) of the different observation types.

A validation of the estimated corrections, may be performed by using terrestrial observations from ionosondes,
i.e. we can use electron density profiles derived from ionosondes for a validation. Figure 4.1 shows exemplary
the Lowell Digisonde networks. In South America there are, e.g., 7 digisondes.
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Appendix A

L
2-theory of Fourier-series

We adopted the theory from www.mathematik.uni-muenchen.de/∼lerdos/WS06/FA.

Theorem A.1. We define en(x) = einx

√
2π

, n ∈ Z.

{en}n∈Z is an ONB in L2([0, 2π]).

Then we can define

Definition A.2. For a function f ∈ L2([0, 2π]) we define

cn = 〈en, f〉L2([0,2π]) =

∫ 2π

0

e−inx√
2π

f(x)dx for n ∈ Z (A.1)

these are the Fourier-coefficients of f .

Theorem A.3. Given a function f ∈ L2([0, 2π]). Applying general basis decomposition we get the Fourier
series of f

f =
∑

n∈Z

cnen. (A.2)

And Parsevals identity holds

‖f‖L2([0,2π]) =
∑

n∈Z

|cn|2. (A.3)
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Appendix B

Fourier transform in Rn

The theory can be found in www.mathematik.uni-muenchen.de/∼lerdos/WS06/FA.

Definition B.1. Let f ∈ L1(Rn), then its Fourier-transform is defined as

f̂(k) :=
1

2πn/2

∫

R

e−ikxf(x)dx (B.1)

In the exponent we have kx = k ·x scalar product of two n-vectors, but for simplicity we will just write it as kx.

Definition B.2. The convolution of two functions f and g on Rn is defined as

(f ⋆ g)(x) =

∫

Rn

f(y)g(x− y)dy. (B.2)

Note, it makes only sense for nice f and g (e.g. bounded, fastly decaying) then it holds f ⋆ g = g ⋆ f . In general
if f , g are in some Lp(Rn) spaces then f ⋆ g may be meaningless.

Theorem B.3. (i) Let f, g ∈ L1(Rn), then

(̂f ⋆ g) = (2π)n/2f̂ ĝ. (B.3)

(ii) [Translation]

̂f(· − h) = e−ikhf̂(k). (B.4)

(iii) [Scaling]

f̂(·/λ) = λnf̂(λk). (B.5)

Theorem B.4. Let f ∈ L1(R) ∩ L2(R). Then

• f̂ ∈ L2(R) and

‖f‖L2(R) = ‖f̂‖L2(R) (B.6)

also called Plancherel formula, similar to Parseval identity for Fourier-series.

• If f, g ∈ L2(R), then

〈f, g〉L2(R) = 〈f̂ , ĝ〉L2(R). (B.7)

I.e. the Fourier transform is an isometry on L2(R).
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Appendix C

Endpoint-interpolating quadratic B-spline

wavelets

The matrices Qj introduced in (2.3.3) are not unique. For the determination there have to be introduced
further constraints. We have not computed the matrices but we use the matrices computed in Stollnitz et

al. (1995). These are given with

Q1 =

r
5

4

2

6
6
6
6
4

− 2

3

− 3

2

3

7
7
7
7
5

Q2 =

r
3

4936

2

6
6
6
6
6
6
6
6
6
4

−144

177 21

−109 −53

53 109

−21 −177

144

3

7
7
7
7
7
7
7
7
7
5

Q3 =

r
1

713568

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

−4283.828550

5208.746077 780

−3099.909150 −1949 −11

1300.002166 3481 319

−253.384964 −3362 −1618 −8.737413

8.737413 1618 3362 253.384964

−319 −3481 −1300.002166

11 1949 3099.909150

−780 −5208.746077

4283.828550

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

Qj≥4 =

s

3 · 2j

136088

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

−381.872771

464.322574 69.531439

−276.334798 −173.739454 −1

115.885924 310.306330 29

−22.587463 −299.698329 −147 −1

0.778878 144.233164 303 29

−28.436576 −303 −147

0.980572 147 303 −1

−29 −303
. . . 29

1 147 −147 −0.980572

−29 303 28.436576

1 −303 −144.233164 −0.778878

147 299.698329 22.587463

−29 −310.306330 −115.885924

1 173.739454 276.334798

−69.531439 −464.322574

381.872771

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

The Figure C.1 shows the resulting wavelets for level j = 3.
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Figure C.1: Wavelets for level j = 3. The first and last two are affected by the endpoint interpolation. For the level
j = 3 we have altogether nj = 8 wavelets.
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Appendix D

Statistical quantities

In this section we consider two vectors x =







x1

...

xn







and y =







y1
...

yn






.

Definition D.1. The mean value x of a vector x is defined as

x =
x1 + . . .+ xn

n
. (D.1)

Definition D.2. The root mean square (rms) of a vector x is defined as

rms =

√

x2
1 + . . .+ x2

n

n
. (D.2)

Definition D.3. The correlation between the two vectors x and y, i.e. Cor(x,y) is defined via

Cor(x,y) =
1
n

∑n
i=1(xi − x)(yi − y)

√
1
n

∑n
i=1(xi − x)2 ·

√
1
n

∑n
i=1(yi − y)2

, (D.3)

wherein x and y are the mean values of x and y, respectively.
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