BAYERISCHE AKADEMIE DER WISSENSCHAFTEN MATHEMATISCH-NATURWISSENSCHAFTLICHE KLASSE

SITZUNGSBERICHTE

JAHRGANG 1970

MÜNCHEN 1971

Über die Darstellbarkeit gewisser Überlagerungen eines Faserbündels als Faserbündel

Von Konrad Königsberger in München

E=E~(X,~Y,~p,~G) sei ein Faserbündel über X mit Faser Y, Projektion p und Strukturgruppe G.~X und Y seien zusammenhängend, lokal zusammenhängend und lokal einfach zusammenhängend. Dann hat auch E diese Zusammenhangs-Eigenschaften und zu jeder Untergruppe Π in $\pi_1~(E)$ gibt es eine Überlagerung E^{II} von E, deren Fundamentalgruppe zu Π isomorph ist. Wir beweisen, daß unter gewissen Voraussetzungen E^{II} in natürlicher Weise als Faserbündel mit Strukturgruppe auf einer geeigneten Überlagerung von X aufgefaßt werden kann. Einfache Beispiele zeigen, daß diese Aussage nicht uneingeschränkt richtig ist. Für die universelle Überlagerung \hat{E} von E ergibt sich die Darstellbarkeit als Faserbündel mit zusammenhängender Strukturgruppe über der universellen Überlagerung \hat{X} von X.

Das Problem ist im wesentlichen das folgende: Soll in E die Faser Y durch eine Überlagerung \widetilde{Y} ersetzt werden, so ist auch die auf Y operierende Strukturgruppe G durch eine Überlagerungsgruppe \widetilde{G} zu ersetzen und entsprechend ein definierender Cozyklus mit Werten in G durch einen Cozyklus mit Werten in G. Im allgemeinen tritt dabei ein Hindernis in der Cohomologie der Dimension 2 auf (bei C^* -Bündeln ist es die Chernsche Klasse). Das Lemma in Abschnitt 1 bringt eine hinreichende Bedingung für das Verschwinden dieses Hindernisses.

Die folgenden Betrachtungen haben sinngemäß auch im differenzierbaren und komplex-analytischen Fall Gültigkeit.

1. In diesem Abschnitt werden nur Faserbündel mit zusammenhängender Strukturgruppe G und einfach zusammenhängender Basis X betrachtet.

Gegeben sei eine Untergruppe Π in $\pi_1(Y)$, die den Kern des Homomorphismus $\pi_1(Y) \to \pi_1(E)$ umfaßt. Mit Y^{Π} bezeichnen wir

eine Überlagerung von Y, deren Fundamentalgruppe von dem induzierten Homomorphismus $\pi_1(Y^H) \to \pi_1(Y)$ auf H abgebildet wird. Wir bestimmen zunächst die "kleinste" Überlagerungsgruppe von G, die auf der Überlagerung Y^H operiert.

Es sei $\gamma:G\to Y$ diejenige Abbildung, die für g in G durch $g\to g\cdot y_0$ definiert ist; dabei sei y_0 der Basispunkt für die Homotopiegruppen von Y. $\gamma_{\#}\colon \pi_1(G)\to \pi_1(Y)$ sei der induzierte Homomorphismus der Fundamentalgruppen. Wir setzen $\varGamma=\gamma_{\#}^{-1}(\varPi)$ und bezeichnen mit G^{\varGamma} die Überlagerungsgruppe von G, deren Fundamentalgruppe die Untergruppe \varGamma in $\pi_1(G)$ ist. \varGamma hat genau die Eigenschaft, die notwendig und hinreichend dafür ist, daß das Diagramm

$$G^{\Gamma} - \longrightarrow Y^{\Pi}$$

$$\downarrow \qquad \qquad \downarrow$$

$$G \longrightarrow Y$$

durch eine Abbildung $\tilde{\gamma}:G^{\Gamma}\to Y^{\Pi}$ zu einem kommutativen Quadrat vervollständigt werden kann ("lifting theorem"; siehe [3]). Ferner kann man leicht zeigen (wieder mit Hilfe des lifting-Theorems), daß G^{Γ} in natürlicher Weise auf Y^{Π} operiert.

Es sei nun $c=(c_{ij})$ ein Cozyklus, der das Faserbündel E bzgl. einer Überdeckung (U_i) von X beschreibt; die c_{ij} sind dabei Funktionen mit Werten in G. Wir zeigen, daß ein geeignet gewählter Cozyklus c zu einem Cozyklus mit Werten in G^Γ geliftet werden kann. Ist q die Projektion $G^\Gamma \to G$ und q^* die induzierte Abbildung $H^1(X, G^\Gamma) \to H^1(X, G)$ der Cohomologiemengen¹, so gilt für die Cohomologieklasse [c] von c (unter der eingangs genannten Voraussetzung bzgl. H):

Lemma: [c] liegt im Bild von q^* .

Beweis. Wir betrachten die von der exakten Sequenz

$$1 \longrightarrow \pi_1(G)/\Gamma \longrightarrow G^\Gamma \xrightarrow{q} G \longrightarrow 1$$

induzierte Sequenz der Cohomologiemengen

¹ Ist G eine topologische Gruppe, so bezeichnen wir mit G die Garbe der Keime stetiger Funktionen mit Werten in G. $H^1(X, G)$ ist dann die Menge der Isomorphieklassen von G-Prinzipalbündeln auf X.

$$(1) \hspace{1cm} H^{1}(X,\mathcal{G}^{\Gamma}) \xrightarrow{-q^{*}} H^{1}(X,\mathcal{G}) \xrightarrow{\delta} H^{2}(X,\pi_{1}(G)/\Gamma).$$

 $(H^2(X, \pi_1(G)/\Gamma)$ und δ sind definiert, weil $\pi_1(G)/\Gamma$ eine zentrale Untergruppe von G^Γ ist!) Wegen der "Exaktheit" von (1) genügt es zu zeigen, daß δ [ϵ] = 0.

Nach dem universellen Koeffizienten-Theorem definiert das Element $\delta \left[\epsilon \right] \in H^2(X, \ \pi_1(G)/\varGamma)$ in eindeutiger Weise einen Homomorphismus von $H_2(X)$ in $\pi_1(G)/\varGamma$; wir bezeichnen diesen Homomorphismus mit $\varkappa = \varkappa_E$. Entsprechend kann mit Hilfe der exakten Sequenz

$$1 \to \pi_1(G) \to \hat{G} \to G \to 1$$

ein Homomorphismus $\hat{z}: H_2(X) \to \pi_1(G)$ definiert werden. Bezeichnet r die Reduktion $\pi_1(G) \to \pi_1(G)/\Gamma$, so gilt

Für den Homomorphismus \hat{z} geben wir noch eine andere Darstellung an. Zu dem Zweck betrachten wir das zu E assoziierte Prinzipal-Faserbündel P=P(X,G). Es sei

$$\chi: \pi_2(X) \to \pi_1(G)$$

der verbindende Homomorphismus der Homotopiesequenz des Faserbündels P. Mit h bezeichnen wir den natürlichen Homomorphismus von $\pi_2(X)$ in $H_2(X)$. Wir behaupten nun, daß

$$\chi = \hat{\varkappa} \circ h.$$

Die Gleichheit dieser beiden Homomorphismen ist bekannt für den Fall, daß X eine 2-Sphäre ist (Feldbau [2]; siehe auch [4] § 18). Für einen beliebigen einfach-zusammenhängenden Raum X ergibt sie sich durch das folgende funktorielle Argument.

Es sei $[\varphi]$ eine vorgegebene Homotopieklasse in $\pi_2(X)$, repräsentiert durch eine stetige Abbildung φ der S_2 in X. Das über X definierte Prinzipal-Bündel P induziert vermittels φ ein Prinzipalbündel P_{φ} über S_2 . Das P_{φ} beschreibende Cohomologieelement $[e_{\varphi}]$ in $H^1(S_2, \mathcal{G})$ ist das Bild von [e] unter der induzierten Abbildung $H^1(X, \mathcal{G}) \to H^1(S_2, \mathcal{G})$. Die Cohomologieklasse

 $[c_{\varphi}]$ definiert einen $\hat{\varkappa}$ entsprechenden Homomorphismus \varkappa_{φ} von $H_2(S_2)$ in $\pi_1(G)$. Wir haben ferner das folgende kommutative Diagramm

Ist χ_S der Homomorphismus (3) für $X = S_2$, so gilt nach dem oben zitierten Satz von Feldbau für die Komposition der Homomorphismen der oberen Zeile des Diagramms

$$\chi_{\mathcal{S}} = \varkappa_{\varphi} \cdot h_{\mathcal{S}}.$$

Die mit φ gegebene Bündel-Abbildung des Bündels $P_{\varphi} \to S_2$ in das Bündel $P \to X$ induziert das folgende kommutative Diagramm

$$\pi_{2}(S_{2}) \xrightarrow{\chi_{S}} \pi_{1}(G)$$

$$\varphi_{\#} \downarrow \qquad \qquad \downarrow \qquad \text{id}$$

$$\pi_{2}(X) \xrightarrow{\chi} \pi_{1}(G)$$

Mit Hilfe dieses und des obigen kommutativen Diagramms folgt unter Verwendung von (5) für ein erzeugendes Element ε in $\pi_2(S_2)$

$$\chi \circ \varphi_{\#} \left(\varepsilon \right) = \hat{\varkappa} \circ h \circ \varphi_{\#} \left(\varepsilon \right).$$

Daraus folgt $\chi = \hat{\varkappa} \cdot h$, da jedes Element in $\pi_2(X)$ die Gestalt $\varphi_{\#}(\varepsilon)$ hat. – Damit ist (4) bewiesen.

Wir zeigen nun, daß

$$(6) r \circ \chi = 0.$$

Zu diesem Zweck betrachten wir die durch $\gamma:G\to Y$ gegebene Bündelabbildung $P(X,G)\to E(X,Y)$. Diese Bündelabbildung induziert das folgende kommutative Diagramm

$$\begin{array}{ccc} \pi_2(X) & \xrightarrow{\chi} & \pi_1(G) \\ \mathrm{id} & & & & \gamma_{\#} \\ \pi_2(X) & \xrightarrow{\Delta} & \pi_1(Y) & \xrightarrow{} & \pi_1(E) \end{array}$$

Es folgt nun: $\gamma_{\#}$ (im χ) ist enthalten in im (Δ), dem Kern des Homomorphismus $\pi_1(Y) \to \pi_1(E)$; insbesondere ist nach Wahl von Π $\gamma_{\#}$ (im χ) enthalten in Π ; und da Γ das $\gamma_{\#}$ -Urbild von Π ist, folgt insgesamt im $\chi \subset \Gamma$. Andrerseits ist aber Γ der Kern von r. – Damit ist (6) bewiesen.

Aus (2), (4) und (6) folgt nun

$$z \cdot h = r \cdot \hat{z} \cdot h = r \cdot \chi = 0.$$

Da für einen einfach zusammenhängenden Raum X der Homomorphismus $h:\pi_2(X)\to H_2(X)$ surjektiv ist (nach einem Satz von Hurewicz; siehe auch [3]) folgt schließlich $\varkappa=$ 0. Der Homomorphismus \varkappa ist definiert als der Hom-Anteil des Cohomologieelementes δ [ε]; und da wegen des einfachen Zusammenhangs von X die Ext-Untergruppe von $H^2(X,\pi_1(G)/\varGamma)$ Null ist, folgt δ [ε] = 0. – Das Lemma ist damit bewiesen.

Sei nun (\tilde{c}_{ij}) ein q^* -Urbild des Cozyklus (c_{ij}) . Mit (\tilde{c}_{ij}) als Struktur-Cozyklus konstruieren wir einen Faserraum $\tilde{E}(X, Y^H, G^I)$ über X mit Y^H als typischer Faser und G^I als Strukturgruppe. Es ist klar, daß dann die lokalen Überlagerungsabbildungen $U_i \times Y^H \to U_i \times Y$ eine mit der Faserung verträgliche Abbildung $\alpha : \tilde{E} \to E$ über X definieren.

Satz 1: X sei einfach zusammenhängend und G sei zusammenhängend. Dann ist der Faserraum $\tilde{E}(X, Y^{II}, G^{I})$ vermittels α eine Überlagerung von E(X, Y, G) mit

(7)
$$\pi_1(\tilde{E}) \cong \Pi/Kern (\pi_1(Y) \to \pi_1(E)).$$

Zu zeigen ist nur noch die Isomorphie (7). Wir betrachten zu diesem Zweck folgenden Abschnitt der Homotopieleiter, die zur Faserraum-Abbildung $\tilde{E} \to E$ gehört:

Wegen der Exaktheit der oberen Sequenz ist $\pi_1(\tilde{E}) \cong \pi_1(Y^I) / \text{Kern } (\tilde{\sigma})$. Ferner ist $\pi_1(Y^I) \cong II$; und da die "senkrechten" Homomorphismen injektiv sind, ist weiter Kern $(\tilde{\sigma}) = \text{Kern } (\sigma)$. Insgesamt folgt damit (7).

Korollar: Ist $\Pi = Kern(\pi_1(Y) \to \pi_1(E))$, so ist $\tilde{E}(X, Y^H, G^P)$ die universelle Überlagerung von E(X, Y, G).

2. Es seien nun X und G beliebig. Ist \hat{X} die universelle Überlagerung von X, so induziert $u:\hat{X}\to X$ eine lokal triviale Faserung $E^*=u^{-1}(E)$ über \hat{X} ; wir haben also das kommutative Diagramm

$$\begin{array}{ccc}
E^* & \xrightarrow{u^*} & E \\
p^* & \downarrow & \downarrow & p \\
\hat{X} & \xrightarrow{u} & X
\end{array}$$

u* ist wie u eine Überlagerungsabbildung. Die Strukturgruppe des Bündels $E^* \to \hat{X}$ ist wieder G. Sie kann aber auf die Zusammenhangskomponente G_ϵ der Eins reduziert werden. Zum Beweis betrachten wir den aus einem Struktur-Cozyklus (c_{ij}) durch den Homomorphismus $G \to G/G_\epsilon$ entstehenden Cozyklus (\bar{c}_{ij}) mit Werten in G/G_ϵ . Da G/G_ϵ die diskrete Topologie trägt und \hat{X} einfach zusammenhängend ist, stellt (\bar{c}_{ij}) einen o-cohomologen Cozyklus dar². Es gibt also Konstanten $c_i \in G$ derart, daß alle

$$c_{ii}^*(x) = c_i \cdot c_{ii}(x) \cdot c_i^{-1}$$

in G_{ϵ} liegen.

Wir denken uns im folgenden die Reduktion der Strukturgruppe auf G_{ϵ} bereits durchgeführt.

Auf den Faserraum $E^*(\hat{X}, Y, G_e)$ ist dann Satz 1 anwendbar. Sei dazu wieder $\Pi \subset \pi_1(Y)$ eine Untergruppe, die den Kern von $\pi_1(Y) \to \pi_1(E)$ umfaßt. Da $\pi_1(E^*) \to \pi_1(E)$ injektiv ist,

² Es gilt (siehe [4] § 13): Die Menge der Isomorphieklassen lokal trivialer Faserräume über X mit diskreter Strukturgruppe G steht in 1-1-deutiger Beziehung zu den Elementen einer gewissen Faktorgruppe von $\text{Hom}(\pi_1(X), G)$.

Über die Darstellbarkeit gewisser Überlagerungen eines Faserbündels

stimmen der Kern von $\pi_1(Y) \to \pi_1(E^*)$ und der Kern von $\pi_1(Y) \to \pi_1(E)$ überein, so daß

$$\Pi/\mathrm{Kern}(\pi_1(Y) \to \pi_1(E)) = \Pi/\mathrm{Kern}(\pi_1(Y) \to \pi_1(E^*)).$$

Aus Satz 1 folgt damit durch Komposition von $\alpha: \tilde{E} \to E^*$ und $u^*: E^* \to E$:

Satz 2: Der Faserraum $\tilde{E}(\hat{X}, Y^{\Pi}, G_{\epsilon}^{\Gamma})$ ist vermittels $u^* \circ \alpha$ eine Überlagerung des Faserraums E(X, Y, G) mit $\pi_1(\tilde{E}) \cong \Pi | Kern (\pi_1(Y) \to \pi_1(E)).$

 $u^* \circ \alpha$ ist ferner eine Faserraum-Abbildung über $\hat{X} \to X$.

Literatur

- [1] ECKMANN, B.: Der Kohomologiering einer beliebigen Gruppe. Comment. Math. Helv. 18, 232-282 (1945).
- [2] FELDBAU, J.: Sur la classification des espaces fibrés. C. R. Acad. Sci. Paris, 208, 1621–1623 (1939).
- [3] Hu, S. T.: Homotopy Theory. Academic Press (1959).
- [4] STEENROD, N.: The Topology of Fibre Bundles. Princeton University Press (1951).