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Abstract

The Earth’s gravity field and its temporal variation reveal important information for many
disciplines, especially for geosciences. Satellite gravity missions like GOCE, GRACE and
GRACE-FO successfully recovered global gravity field models. But the temporal and spa-
tial resolution of the gravity field solutions have to be improved in order to meet the user
requirements. New concepts for future satellite missions to recover the global gravity field
are investigated by means of comprehensive simulations. In terms of sensor behavior, ac-
celerometers are one major limiting factor. Thus, this dissertation focuses on them. Cold
Atom Interferometry (CAI) accelerometers are promising candidates for future missions due
to their long-term stability.
Non-gravitational accelerations are simulated for orbit altitudes between 250 km and 470 km
and evaluated, as the magnitude of these accelerations is crucial for the impact of the scale
factor on electrostatic measurements. The accelerometer measurements are degraded by the
insufficient scale factor knowledge. The precise knowledge of the CAI accelerometer scale
factor solves this issue. The absolute scale factor is not important for gradiometry missions,
but the differential one. The measured gravity gradient is degraded by the non-zero com-
mon mode rejection, which is caused by the non-perfect determination of the differential
scale factor. Also in this case, its determination is a critical component. Drag compensation
is required in order to reduce this error influence on the gravity gradient. Despite the bene-
ficial long-term stability and the well-known scale factor of CAI, the measurement concept
also introduces challenges. A longer measurement cycle time of 12 s in CAI accelerometry
yields, on the one hand, a high sensitivity, but on the other hand, an aliasing effect. One
option to reduce this effect is drag compensation.
Closed-loop simulations are performed for concepts of low-low Satellite-to-Satellite Tracking
(ll-SST) and satellite gradiometry in order to quantify the impact of different components
on the gravity field recovery. The combination of an electrostatic accelerometer with a CAI
accelerometer (hybrid accelerometer) improves the ll-SST gravity field solution by reducing
the striping effects in north-south direction. Beyond that, the cumulative geoid error for a
resolution of 200 km can be reduced by 90 % when a laser ranging instrument noise is used
and background modeling errors are neglected. Furthermore, the addition of a cross-track
gradiometer to a ll-SST mission is simulated. A CAI cross-track gradiometer with a white
noise level of 1 mE would largely improve the gravity field solutions in the short wavelengths
and secure a more isotropic error pattern. Consequently, the cumulative geoid error for a
spatial resolution of 100 km is reduced by around 70 % compared to the ll-SST only solution
with GRACE-like instruments.

Keywords: Next Generation Gravity Mission, Closed-loop simulation, Satellite Gradiome-
try, ll-SST, Cold Atom Interferometry, Accelerometer, Drag-free System





Kurzfassung

Das Erdschwerefeld und seine zeitliche Variation liefern wichtige Informationen für verschie-
dene Disziplinen, vor allem für die Geowissenschaften. Durch Satellitenmissionen, wie GOCE,
GRACE und GRACE-FO, können globale Schwerefeldmodelle bestimmt werden. Allerdings
sind die räumliche und zeitliche Auflösung dieser Modelle zu verbessern, um die Nutzeran-
forderungen zu erfüllen. Deshalb werden neue Konzepte für zukünftige Schwerefeldmissionen
umfassend simuliert. Diese Dissertation konzentriert sich auf die Beschleunigungsmesser, da
sie eine limitierende Komponente, bezogen auf die Sensoren der bisherigen Missionen, sind.
Beschleunigungsmesser, basierend auf dem Prinzip der Kaltatominterferometrie (CAI), sind
erfolgversprechende Kandidaten für zukünftige Schwerfeldmissionen, insbesondere aufgrund
ihrer Langzeitstabilität.
Nicht-gravitative Beschleunigungen werden für Orbithöhen zwischen 250 km und 470 km un-
tersucht, da deren Größe für den Einfluss des Skalierungsfaktors auf die elektrostatischen
Messungen entscheidend ist. Die Beschleunigungsmessungen in aktuellen Missionen werden
durch eine unzureichende Bestimmung ihres Skalierungsfaktors beeinträchtigt. Der Skalie-
rungsfaktor der CAI-Messungen ist dagegen sehr genau bekannt, wodurch diese Problematik
gelöst wird. Für die Gradiometrie ist der differentielle Skalierungsfaktor entscheidend, da die-
ser eine nicht perfekte Common-Mode Rejection hervorrufen kann. Auch in diesem Fall ist
seine Bestimmung eine kritische Komponente. Ein Drag-free System ist erforderlich, um die-
sen Fehlereinfluss zu reduzieren. Trotz der vorteilhaften Langzeitstabilität und der guten
Kenntnis des Skalierungsfaktors der CAI-Messungen birgt dieses Konzept Herausforderun-
gen. Die CAI-Zykluslänge von 12 s ermöglicht zwar eine hohe Sensitivität, ruft jedoch einen
Aliasing-Effekt hervor. Dieser kann ebenfalls durch Drag-Kompensation reduziert werden.
Closed-loop-Simulationen werden für die Konzepte low-low Satellite-to-Satellite Tracking
(ll-SST) und Satellitengradiometrie durchgeführt, um die Auswirkung unterschiedlicher Kom-
ponenten auf die Schwerefeldbestimmung zu quantifizieren. Hybride Beschleunigungsmes-
ser (elektrostatisch und CAI) bewirken eine Reduktion der Streifeneffekte in Nord-Süd-
Richtung in der ll-SST Schwerefeldlösung. Außerdem wird der kumulative Geoidfehler für
eine Auflösung von 200 km um 90 % reduziert, wenn ein Laser-Ranging-Instrument genutzt
wird und die Hintergrundmodellfehler vernachlässigt werden. Weiterhin wird das Hinzufügen
eines Cross-Track-Gradiometers zu einer ll-SST Mission simuliert. Ein CAI-Gradiometer in
Cross-Track-Richtung mit weißem Rauschen von 1 mE verbessert die Schwerefeldlösung in
den kurzen Wellenlängen signifikant und sorgt für ein isotroperes Fehlermuster. Der kumu-
lative Geoidfehler für eine Auflösung von 100 km wird darüber hinaus um ca. 70 % reduziert
im Vergleich zu der ll-SST Einzellösung mit GRACE-ähnlichen Instrumenten.

Schlagwörter: Zukünftige Schwerefeldmissionen, Closed-Loop-Simulation, Satellitengradio-
metrie, ll-SST, Kaltatominterferometrie, Beschleunigungsmesser, Drag-free System
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1 Introduction

The Earth’s gravity field has obtained a great relevance in various ways. The knowledge
about the time-variable part of the Earth’s gravity field gets more important for several
disciplines. The signals are of high significance for many fields such as hydrology, glaciology,
oceanography, solid Earth physics and geodesy (Pail et al., 2015). Moreover, climate change
is currently a major challenge for humanity. According to this aspect, gravity field data
helps to understand the dynamics of the Earth (Tapley et al., 2019). Satellite missions are
powerful methods for observing the global gravity field model with homogeneous accuracy.
The satellite gravity missions Gravity Recovery and Climate Experiment (GRACE) and
Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) successfully mapped
the Earth’s gravity field (Tapley et al., 2004; Drinkwater et al., 2007). This is currently
being continued by GRACE Follow-On (GRACE-FO) (Landerer et al., 2020). GOCE mea-
surements provide a precise, spatial highly resolved static gravity field which is crucial for
understanding the Earth’s interior and ocean circulation. With the missions GRACE and
GRACE-FO it is possible to process monthly gravity fields and thereby learn about temporal
changes. Well known highlights are changes in ice sheets and glaciers, underground water
storage and sea level rise.
Now, the preparation of the so called Next Generation Gravity Mission (NGGM) is funda-
mental. Requirements for the mission are fixed in the first preparation step. In Murböck
(2015) the key questions for NGGM are classified into science requirements, mission objec-
tives, instrument accuracies and orbit constellations. The main objective is the improvement
of the spatial as well as temporal resolution. Both are limited by the number of satellites in
orbit being used. In Reubelt et al. (2014) the goal of a future satellite mission for the spatial
resolution is given as below 100 km and a weekly temporal resolution. A high temporal
resolution is important in order to suppress temporal aliasing.
It is necessary to discuss what is achievable by increasing the accuracy of certain instru-
ments with respect to the science requirements. The main instrument error is caused by the
accelerometer. In a GRACE-like mission the accelerometers at the center of mass of each
satellite are needed for measuring the non-gravitational accelerations. Consequently, it is
obvious to refine the state of this sensor. However, the improvement in sensor technology
does not result directly in a better recovered gravity field. Accordingly, the whole concept
has to be evaluated, including the interdependence of individual components. One major
challenge is temporal de-aliasing which gives information about variations over time, e.g. in
atmosphere and ocean. This aspect cannot be solved by the improvement of instruments.
Temporal aliasing is caused by undersampling the signal of interest (Daras & Pail, 2017).

In this thesis new concepts for satellite gravity missions are analyzed with main focus on
accelerometers. There are several activities in the developments of accelerometers, e.g. using
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the principle of Cold Atom Interferometry (CAI). The analysis is based on simulations of
different scenarios for low-low Satellite-to-Satellite Tracking (ll-SST) and Satellite Gravity
Gradiometry (SGG) missions. Closed-loop simulations are performed and evaluated on the
basis of the recovered gravity field itself with respect to the reference gravity field model.
The main objectives of this work are:

• quantification of CAI accelerometer benefits for future satellite gravity missions,

• analysis of acceleration variation in one CAI cycle,

• drag compensation system analysis in relation to the accelerometer performance,

• evaluation of an additional cross-track gradiometer on a ll-SST mission.

In chapter 2, fundamentals of gravity field recovery with satellites are briefly addressed. In
order to give a state-of-the-art overview, previous satellite gravity field missions are pre-
sented. Their measurement concepts, sensors and control systems as well as the mission
achievements are specified. In the next section, required improvements for the future are
given. In this context, possible new sensor technologies and measurement concepts are in-
troduced. Evaluations and analyses are performed with simulation studies. Therefore, a
description of the simulation environment is necessary, which is provided in chapter 3. This
includes the simulation of satellite dynamics, models of the sensor behavior and models of
the control system behavior. Besides, models for degradation due to temporal aliasing are
considered. The parameters of interest, which are Spherical Harmonic (SH) coefficients of
the gravity field model, are estimated within a least-squares adjustment. The procedure
is explained for two different groups of observations: range accelerations and gradiometry
measurements. Chapter 4 shows the results of various simulation studies. It is investigated
how a drag compensation system can reduce errors due to accelerometer imperfections, i.e.
the scale factors. Beyond that, accelerometer saturation and propellant consumption are
examined, which depend on the drag compensation. Another separate study relates to CAI
accelerometry. It is investigated how critical an acceleration change within an interferome-
ter cycle impacts the CAI measurement. Further sections of chapter 4 present the resulting
gravity field solutions for different scenarios. Different accelerometer and ranging measure-
ment performance models as well as orbit altitudes are tested for a ll-SST mission. Aside
from that, several sensitivities for a cross-track gradiometer are analyzed. Based on these
solutions, combinations of ll-SST and cross-track gradiometry are then evaluated. Finally,
chapter 5 presents the summary of the results and discussion of this thesis as well as outlooks
for future work.
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2 Satellite Gravity Missions

This chapter introduces fundamentals on gravity field recovery using satellite methods. First,
the satellite orbital motion and forces acting on the satellite body are described. The rep-
resentation of the Earth’s gravity field is specified. Additionally, basic principles of past
satellite gravity missions are explained. State-of-the-art measurement concepts, sensors and
control systems are addressed including their characteristics and drawbacks. Thus, studies of
possible improvements on the level of sensor technology and orbit constellation are presented.

2.1 Fundamentals of Gravity Field Recovery with Satel-
lites

2.1.1 Motion of a Satellite in Space
The dynamics of a satellite in space depend on the forces acting on it. Gravitational forces,
also called conservative forces, influence the motion because of mutual mass attraction. The
orbital satellite motion is described by the equation of motion in a simplified scenario for a
point mass as

r̈ = −GM⊕

r3 r, (2.1)

where G is the constant of gravitation, M⊕ is the mass of the Earth and r is the geocentric
position of the satellite, while r̈ is its acceleration (Torge & Müller, 2012). The equation of
motion is based on several assumptions: the Earth and the satellite are homogeneous point
masses, only gravitational forces are present and the mass of the satellite is neglected. The
equation describes the two-body problem which only considers the Earth and the satellite
(Seeber, 2003).
The description of the satellite motion requires six independent parameters, e.g. initial
position and initial velocity of the satellite. According to Kepler’s three laws of planetary
motion, the satellite orbit can be described by the Keplerian elements. These six Keplerian
elements are the semi-major axis a, the eccentricity e, the inclination i, the right ascension
of the ascending node Ω, the argument of the perigee ω and mean anomaly M . Instead of
M also the true anomaly µ or eccentric anomaly E can be used (Montenbruck & Gill, 2000).
The assumptions for the equation of motion (2.1) deviate from reality. The satellite motion
is perturbed by several forces. Instead of a point mass the Earth is an inhomogeneous
body, hence the non-spherical parts of the Earth’s gravitation need to be considered. In
addition, the gravitation of other bodies such as Moon and Sun influences the satellite

3



motion. Furthermore, there are tidal deformations of the Earth caused by other bodies
and variations due to terrestrial mass displacements, e.g. the redistribution of ocean water
masses. Besides gravitational forces, non-gravitational forces act on the satellite. They are
also known as surface forces and are primarily caused by atmospheric drag, solar radiation
pressure and Earth albedo. Equation (2.1) can be extended by these further terms:

r̈ = −GM⊕

r3 r + r̈h + r̈dis,grav + r̈dis,non−grav, (2.2)

where r̈h is the inhomogeneous part of the gravity field, r̈dis,grav is the part of other grav-
itational disturbing forces and r̈dis,non−grav is the part due to non-gravitational disturbing
forces. The difference between the undisturbed orbit and the actual orbit is caused by the
disturbing forces and the inhomogeneous part of the gravity field. Thus, disturbing forces
have to be modeled or measured in order to obtain the inhomogeneity of the Earth’s gravity
field.

2.1.2 Representation of the Earth’s Gravity Field
The determination of the Earth’s gravity field is a fundamental task of geodesy because the
physical figure of the Earth is primarily shaped by the Earth’s gravity and most geodetic
observations refer to it (Torge & Müller, 2012). The Earth’s gravity potential W is composed
of the gravitational potential V and the centrifugal potential Φ:

W = Φ + V. (2.3)

The centrifugal force is caused by the rotation of the Earth about its axis. The centrifugal
acceleration is known with high accuracy from astronomy. Accordingly, the centrifugal
potential is obtained through

Φ(x, y, z) = ω2
⊕
2 (x2 + y2), (2.4)

where x and y are the coordinates of a point in the Earth-fixed system and ω⊕ is the angular
velocity of the Earth’s rotation about its axis (Torge & Müller, 2012).
The Earth’s gravitational field can be expressed in terms of spherical harmonic functions
(Hofmann-Wellenhof & Moritz, 2006):

V (r, Θ, λ) = GM⊕

R

N∑
n=0

(
R

r

)n+1 n∑
m=0

[C̄nm cos mλ + S̄nm sin mλ] P̄nm(cos Θ), (2.5)

where V is the gravitational potential, the radius r, the co-latitude Θ and the longitude λ
are the spherical coordinates of the calculation point, GM⊕ is the gravitational constant of
the Earth, R is the radius of the Earth, n, m are SH degree and order, respectively. N
denotes the maximum degree, P̄nm are fully normalized associated Legendre functions, C̄nm

and S̄nm are the normalized SH coefficients, respectively.
The SH coefficients are subdivided into zonal, sectorial and tesseral harmonics for the geo-
metrical interpretation. The zonal harmonics for m = 0 are independent of the longitude λ
and oscillate in latitudinal direction only. The sectorial harmonics for m = n oscillate only
in longitudinal direction. The harmonics are tesseral for m ̸= 0, which means they oscillate
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in latitudinal and longitudinal direction.
Low degree SH coefficients give insight about simple physical properties of the body. The
coefficient C00 represents the total mass of the Earth. The coordinates of the center of mass
are defined by C10, C11 and S11. The coefficient C20 characterizes the polar flattening of the
Earth. The asymmetry of the equatorial mass distribution is given by C22. The torsion of
the principal axes of inertia are given by C21, S21 and S22 (Torge & Müller, 2012).

Error representation

The recovered gravity field needs to be validated and evaluated. The variance-covariance
matrix gives information about the formal errors of the estimated SH coefficients. In the
spectral domain, there are two categories of error representation:

• the two-dimensional error: The square-root of the diagonal elements of the variance-
covariance matrix of the unknowns Qx̂x̂ are displayed in a triangle which shows the
error for each coefficient,

• the one-dimensional error: The sum of the squares of the error or signal of the coeffi-
cients at the same degree.

The error degree variance (one-dimensional error) is obtained by

σ2
n =

n∑
m=0

(σ2
Cnm

+ σ2
Snm

), (2.6)

where σCnm and σSnm are the formal errors of the estimated coefficients. The error represen-
tation can also be calculated by the coefficient differences between reference gravity field and
estimated gravity field ∆C̄nm and ∆S̄nm. The degree Root Mean Square (RMS) is obtained
by dividing the degree variance σ2

n by the number of coefficients and taking the square root:

RMSn =
√

σ2
n

2n + 1 . (2.7)

The cumulative or commission error is the sum of errors up to a certain degree:

CUMN =

√√√√ N∑
n=0

σ2
n. (2.8)

In order to derive the cumulative geoid error, the eigenvalue λ of the gravitational function
is required:

CUMN(geoid height) =

√√√√ N∑
n=0

σ2
nλ2

n, (2.9)

where λ is the radius of the Earth with the geoid height as the gravitational functional.
The evaluation in space domain is also often substantial, e.g. patterns due to sampling in
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space and the orbit configuration can be identified.
The disturbing potential T is calculated with the coefficient differences ∆C̄nm and ∆S̄nm:

T = GM⊕

R

N∑
n=0

(
R

r

)n+1 n∑
m=0

[∆C̄nm cos mλ + ∆S̄nm sin mλ] P̄nm(cos Θ), (2.10)

with the variables according to equation (2.5). The error can also be expressed in terms
of geoid height, gravity anomaly, gravity gradient component or Equivalent Water Height
(EWH):

• geoid height

N = R
N∑

n=0

(
R

r

)n+1 n∑
m=0

[∆C̄nm cos mλ + ∆S̄nm sin mλ] P̄nm(cos Θ), (2.11)

• gravity anomaly

∆g = GM⊕

Rr

N∑
n=0

(
R

r

)n+1
(n+1)

n∑
m=0

[∆C̄nm cos mλ+∆S̄nm sin mλ] P̄nm(cos Θ), (2.12)

• radial gravity gradient component

Γrr = GM⊕

R2r

N∑
n=0

(
R

r

)n+1
(n+1)(n+2)

n∑
m=0

[∆C̄nm cos mλ+∆S̄nm sin mλ] P̄nm(cos Θ).

(2.13)

The EWH is calculated using the following equation (Schrama et al., 2007; Wahr et al.,
1998):

∆EWH = R ρe

3ρw

N∑
n=0

2n + 1
1 + kn

n∑
m=0

(∆C̄nm cos(mλ) + ∆S̄nm sin(mλ))P̄nm(cos(Θ)), (2.14)

where ρe is the average density of the Earth, ρw the density of water and kn is the Love
number of degree n.

2.1.3 Orbit Design of Satellite Gravity Missions
The orbit parameters of the satellite mission strongly affect the recovered gravity field so-
lution. They determine the coverage of the Earth, the repetition cycle and signal strength
of the gravitational signal. In this thesis, satellite dynamics are simulated for different orbit
scenarios which are explained in chapter 3.
There are two complimentary arguments for the choice of orbit altitude. On the one hand,
satellites with high altitudes are only sensitive to long-wavelength parts of the gravity field.
The main reason is the attenuation factor (ae/r)n in the spherical harmonic expansion of
the gravitational potential (Torge & Müller, 2012). On the other hand, the altitude is a
determining factor for the mission duration as the atmospheric drag forces decrease with

6



increasing altitude. A compromise must be found between these oppositional arguments. In
general, altitudes between 200 km and 500 km are suitable for satellite gravity missions.
The inclination specifies the coverage of the Earth. In order to cover the whole Earth, the
inclination has to be 90◦ which is also called polar orbit. An deviation from 90◦ leads to
an observation gap which occurs in the polar regions. The more the inclination deviates
from 90◦, the bigger is the polar gap. The inclination might differ from the 90◦ to obtain a
sun-synchronous orbit. Thereby, small temperature variation and a rather continuous energy
supply using solar panels is guaranteed. The orbit eccentricity should be close to zero. This
leads to a virtually constant distance to the Earth over a whole orbit revolution.
In Table 2.1 orbit parameters of the missions GRACE and GOCE are summarized. GOCE
was in a sun-synchronous orbit with low altitude which required a drag-free control system.
Consequently, the orbit altitude is maintained by the control system. In comparison, the
altitude of GRACE steadily decreased during the mission lifetime.
A repeat cycle assures a global coverage after a specific time span. It means, after one repeat
cycle the satellite covers the same Earth-fixed position again. The repeat cycle is defined
by the ratio β/α, where β is the integer number of orbital revolutions and α is the integer
number of nodal days. One nodal day is the period between the recurrence of the ascending
node of the satellite orbit over the same Earth-fixed meridian. According to Colombo (1984)
the maximum resolvable degree for a particular orbit configuration is given by n < β

2 . If the
gravitational field should be estimated up to a certain degree n at the equator, the satellite
has to perform 2n revolutions per day or a longer observation time is required (Torge &
Müller, 2012). An odd parity of β − α results in a denser spatial coverage (Weigelt et al.,
2013). In Murböck et al. (2013) optimal orbit altitudes for temporal gravity field recovery
are designed.
In general, the product of the spatial resolution and the temporal resolution is constant. An
improvement of both can only be achieved by increasing the number of satellites.

Table 2.1: Orbit parameters of previous satellite gravity missions

altitude inclination repeat cycle
GRACE 485 km - 300 km (decay) 89.0◦ 30 days (non-repeat ground track)
GOCE 260 km 96.7◦ 61 days (979 revolutions)
GRACE-FO 491 km (initial altitude) 89.0◦ 30 days (non-repeat ground track)

2.2 Previous Satellite Gravity Missions

2.2.1 Missions and Measurement Concepts
There are two major measurement concepts for satellite gravity missions: Satellite-to-Satellite
Tracking (SST) and satellite gravity gradiometry (SGG). The Challenging Minisatellite
Payload (CHAMP) mission realized the SST in high-low mode with Global Positioning
System (GPS) satellites. The mission GRACE applied additionally to high-low Satellite-
to-Satellite Tracking (hl-SST) the principle of ll-SST with two low-orbiting satellites. The
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(a) ll-SST (b) SGG

Figure 2.1: Scheme of the different measurement concepts: ll-SST, hl-SST and SGG

concept of SGG was first realized by the GOCE mission. The three concepts are illustrated
in Figure 2.1. The techniques differ not only in their measured quantities but also in their
sensitivity to certain wavelengths of the gravitational potential.

CHAMP has demonstrated a new era of global gravity field recovery (Reigber et al.,
2005). The mission was active from 2000 to 2010 with the goal to improve observations
of the Earth’s gravity field, magnetic field, atmosphere and ionosphere. The gravitational
orbit perturbations are used for the global gravity field model computation. According to
equation (2.2), the difference between the true and the unperturbed orbit gives information
about the Earth’s gravity field. In order to obtain only perturbations caused by the Earth’s
gravity field, other disturbances like atmospheric drag have to be measured or modeled and
subtracted from the full signal. The true orbit of the satellite is derived from positions using
GPS resulting in the hl-SST approach since the GPS satellites are in a much higher orbit (of
about 20.000 km, Medium Earth Orbit (MEO)) than the CHAMP satellite (450 km). The
achieved geoid accuracy with CHAMP is 10 mm for a spatial resolution of 350 km and 1 mm
for 1000 km.

The objective of the GRACE mission was to obtain models of the time-variable part of
the Earth’s gravity field with a much better resolution (Case et al., 2010). The mission op-
erated from 2002 to 2017 and consisted of two almost identical satellites orbiting in an in-line
formation with a distance of about 220 km between them. The satellites revolve around the
Earth in near circular orbits with inclination of 89◦ at an altitude of approximately 500 km
at mission start. The inter-satellite distance is tracked by the K- and Ka-band microwave
ranging system (Tapley et al., 2004). Thanks to the ll-SST constellation the monthly so-
lutions achieve mm-geoid accuracy with a spatial resolution of 350 km (Dahle et al., 2014).
Since 2018 the GRACE concept is pursued by the GRACE-FO mission. Additionally to
the K-band microwave ranging system, an Laser Ranging Interferometer (LRI) is on board
in order to improve the ll-SST measurements (Kornfeld et al., 2019).
The distance change in Line-of-Sight (LOS) between the two satellites gives information
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about the Earth’s gravitational field. It reads at acceleration level:

∆ag = ρ̈ − ∆ang, (2.15)

where ∆ag is the differential gravitational acceleration which depends on the time, the po-
sitions of the two satellites and the Earth’s gravity field. The second derivative of the range
ρ̈ is measured by the ranging instrument. The non-gravitational accelerations ∆ang can be
seen as disturbances and are measured by the accelerometers located in the center of the
mass of the satellites. The positioning of the GRACE satellites as well as the time synchro-
nization is done by the hl-SST approach using GPS.

GOCE was the first gravitational gradiometry mission which was launched in 2009 in con-
text of the Living Planet program of the European Space Agency (ESA) (Drinkwater et al.,
2007). The mission objective was to determine the static part of the Earth’s gravity field
with high spatial resolution and accuracy. The low altitude of 246 km necessitates drag
compensation due to the high atmospheric density at this altitude. The drag-free system
compensated the non-gravitational acceleration in along-track direction. Consequently, the
fuel budget for the ion propulsion system defined the mission lifetime which ended in 2013.
The high spatial resolution is achieved by measuring the second derivative of the gravitational
potential. The principle of gradiometry is based on differential acceleration measurements
(Rummel et al., 2011). The observed gravity gradient - e.g. for the x-direction - Γxx is
computed from the acceleration difference ∆agx divided by the length of the baseline Lx

between the accelerometers:

Γxx = ∆agx

Lx

. (2.16)

For a spatial scale of 100 km an accuracy of 1.7 cm is obtained (Gruber et al., 2019).

2.2.2 State-of-the-art Sensors
Sensors of a satellite mission are a crucial factor for the quality of the end products. The
most relevant sensors and their principles of operation are addressed in this section. This
includes their characteristics, measurement accuracies and limitations. The sensor noise
models which are included in the simulation are not explained in this section, but in chap-
ter 3.

Accelerometer

The missions CHAMP, GOCE, GRACE and GRACE-FO have accelerometers developed
by Office National d’Etudes et de Recherches Aérospatiales (ONERA) on board. However,
they are used to measure different signals: gravitational or non-gravitational accelerations.
In GOCE, six accelerometers in a so-called diamond configuration around the center of
mass form a gradiometer. The measured differential accelerations give a direct link to the
gravity potential. In contrast, the other missions need accelerometers to determine the
non-gravitational accelerations which are considered as perturbations. Therefore, their ac-
celerometers are located in the center of mass of the satellite, where the gravitational force

9



and the centrifugal force are in balance. Consequently, only the non-gravitational forces are
measured by these accelerometers.
All missions so far have operated with electrostatic accelerometers. The acceleration mea-
surements are based on the electrostatic force which is necessary to maintain the proof mass
at the center of the cage. The position of the proof mass is servo-controlled in terms of
translation and rotation. The movement of the proof mass leads to capacitance difference
between C1 and C2 (cf. Figure 2.2) which is measured by the capacitive sensor and ampli-
fied. The corrector determines the drive voltage to be applied to the electrodes in order to
reduce the capacitance difference to zero (Johannessen & Aguirre-Martinez, 1999; Touboul
et al., 1999). The control voltages are transformed to accelerations by a transfer function
(Stummer, 2012).

Figure 2.2: Servo-control channel of an electrostatic accelerometer for one axis, Figure mod-
ified from (Johannessen & Aguirre-Martinez, 1999; Touboul et al., 1999)

The accelerometers of all satellite gravity missions worked with the same principle, but still
differ in their performance due to further developments and different on-board environments.
It has to be noted that the verification of the accelerometer performance in space is a
challenging task. The main contributions to the noise of an Electrostatic Accelerometer (EA)
are (Touboul et al., 2016):

• detector noise,

• wire damping,

• measurement readout and digitalization noise,

• thermal sensitivity of the bias,

• parasitic acceleration inside the accelerometer core.

The detector noise from the electronic noise of the capacitive position sensor increases with
frequency. Hence, the detector noise is dominant in high frequencies. The parasitic acceler-
ation inside the accelerometer core are residual acceleration disturbances directly acting on
the test mass. This is a limiting factor in the low frequencies. Temperature variations lead
to a variation of the electronic bias in low frequencies which is a critical contributor as well.
The noise due to the read-out analogue-digital-converter is the dominant factor between the
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frequencies of 0.005 Hz and 0.1 Hz. The best trade-off between the required measurement
range and noise has to be found. According to Touboul et al. (2016) and Zhu et al. (2013)
the wire damping is not a critical factor.
The EAs of CHAMP, GRACE and GOCE provide three linear accelerations along the axes
of the instrument frame (x, y and z axis in the following). They have two ultra-sensitive axes
and one less sensitive axis due to ground tests under 1g conditions (Touboul et al., 2012;
Frommknecht, 2007; Johannessen & Aguirre-Martinez, 1999). Their performance parame-
ters are summarized in Table 2.2. EAs include systematic errors and need to be calibrated,
which is described in section 2.2.4.
The STAR accelerometer used in CHAMP has a measurement range of ±10−4 m/s2. The
accelerometer noise is at the level of 3 × 10−9 m/s2/

√
Hz for the y and z axes and 3 × 10−8

m/s2/
√

Hz for the x axis within the measurement bandwidth from 10−4 Hz to 10−1 Hz
(Touboul et al., 2012).
The two Super-STAR accelerometer of GRACE have a reduced full scale range and a better
accuracy at the level of 1 × 10−10 m/s2/

√
Hz for the high-sensitive axes x and z and 1 × 10−9

m/s2/
√

Hz for the y axis. The saturation limit for the x and z axes is ±5 × 10−5 m/s2

and ±5 × 10−4 m/s2 for the y axis (Hudson, 2003). The proof mass is a 4 mm × 4 mm ×
1 mm large titan cube with a mass of 70 g (Frommknecht, 2007). The performance of the
GRACE-FO accelerometer is similar to the one of GRACE (Christophe et al., 2015).
The accelerometers of GOCE have an even lower noise level of 2 × 10−12 m/s2/

√
Hz in the

Measurement Bandwidth (MBW) from 5 × 10−3 Hz to 0.1 Hz (Touboul et al., 2012). An
accelerometer performance of 3 × 10−12 m/s2/

√
Hz was verified in orbit (Christophe et al.,

2010). The quiet environment is enabled by the drag-free system and the fine active thermal
control of the instrument case which is needed for achieving this high performance (Touboul
et al., 2012). The GOCE accelerometer test mass has also a size of 4 mm × 4 mm × 1 mm
(Johannessen & Aguirre-Martinez, 1999). The measurement range is ±6.5×10−6 m/s2 (Mar-
que et al., 2008).

Table 2.2: Accelerometer performances

accuracy ultra-sensitive axes measurement bandwidth saturation limit

CHAMP 3 × 10−9 m/s2/
√

Hz 10−4 Hz to 10−1 Hz ±1 × 10−4 m/s2

GRACE 1 × 10−10 m/s2/
√

Hz 10−4 Hz to 10−1 Hz ±5 × 10−5 m/s2

GOCE 2 × 10−12 m/s2/
√

Hz 5 × 10−3 Hz to 10−1 Hz ±6.5×10−6 m/s2

Inter-satellite Ranging Instrument

The range measurement between the two satellites is fundamental for the missions GRACE
and GRACE-FO. The K-band Ranging System (KBR) measures the change of the inter-
satellite distance. The microwave ranging system operated with two frequencies, 24 GHz and
32 GHz, to remove variable ionospheric delays. The KBR noise is estimated with 2 µm/

√
Hz

(Frommknecht, 2007).
With GRACE-FO, an LRI System is demonstrated (Sheard et al., 2012) to measure the
change in distance between the two satellites additionally to the KBR. The LRI has a lower
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noise compared to KBR of about 1 nm/
√

Hz for frequencies above 100 mHz (Abich et al.,
2019).

Star Camera

The determination of the satellite attitude is needed for in-orbit-maneuvers to keep the spec-
ified spacecraft orientation and for post-processing and gravity field recovery. Star cameras
provide the attitude of the satellite with respect to the inertial frame. The star camera
measurements are characterized by their anisotropic accuracies: rotations around the x-axis
and y-axis are measured more accurately with an accuracy of 30 µrad. The accuracy of the
measured rotations around the z-axis is 240 µrad (Bandikova & Flury, 2014).

GNSS Receiver

The Global Navigation Satellite System (GNSS) receiver is required for the estimation of
Low Earth Orbit (LEO) satellite positions. The orbit perturbations give information about
the long wavelengths of the gravity field signal following the hl-SST approach. Moreover,
the timing of all sensor data captured on board is realized using the GNSS signals.

The reader is referred to Frommknecht et al. (2011), Stummer et al. (2012), Case et al.
(2010) and Wen et al. (2019) for further information about inter-satellite ranging instru-
ments, star camera and GNSS receiver.

2.2.3 State-of-the-art Control Systems
Control systems of a satellite mission can be categorized in attitude control systems and
drag-free control systems. All control systems consist of sensors and actuators.

Attitude Control System

The attitude control system has to be adapted to the requirements of the mission. The
GRACE mission required a precise attitude control to enable the inter-satellite ranging.
For GRACE-FO the requirement for the inter-satellite pointing is even higher due to the
much smaller area illuminated by the laser beam compared to the cone formed by the K-
band signal. However, the stringent pointing requirement of a few mrad for LRI is achieved
by a fast steering mirror instead of the attitude control system (Wegener, 2022). Sensors,
which contribute to determine the actual attitude and the required attitude, are the Coarse
Earth and Sun Sensors for Earth-vector and Sun-vector determination, magnetometer for
the magnetic field measurement, Inertial Measurement Unit (IMU) for the angular velocities,
star cameras for the spacecraft attitude w.r.t. inertial reference frame and GNSS receiver
for orbit determination and timing (Herman et al., 2004). The actuators of the GRACE and
GRACE-FO attitude control systems are magnetic torque rods and cold gas thrusters. The
magnetic torque rods use the Lorentz force which is generated by a current of the Earth’s
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magnetic field. The produced mechanical torque rm results from the combination of the
magnetic dipole moment of the rod m and the Earth’s magnetic field B:

rm = m × B. (2.17)

According to the parameters of GRACE-FO, maximum magnetic control torques of 1.5 mN m
for roll, 1.7 mN m for pitch, 0.9 mN m for yaw are possible. The magnetic torques rodes are
used primarily for attitude control. However, if the magnetic field lines are parallel to the
required torque, the cold gas thrusters are needed. The control force acts in the opposite
direction of the outstreaming gas. The corresponding torque rthr is given by the thrust force
vector F and the position vector r:

rthr = r × F. (2.18)

The thruster torque is in the order of 10 mN m (Wegener, 2022).
The pointing requirement in GOCE is less stringent, but nevertheless a very quiet environ-
ment is needed. The star cameras, described in 2.2.2, provide the precise attitude infor-
mation. In GOCE, only magnetic torquers are used as actuators for the 3-axis stabilized
attitude control. Reaction wheels or reaction control thrusters are not appropriate because
they would not ensure a quite environment (Romanazzo et al., 2011).

Drag-free Control System

GOCE was the first satellite mission with a drag-free control system which compensates
disturbances in flight direction caused by non-gravitational forces. The non-gravitational
accelerations are measured by the gradiometer. There, the common mode accelerations
represent the non-gravitational disturbances. The Ion Propulsion Assembly continuously
counteracts these perturbations and consists of two fully redundant assemblies with one
storage tank of 41 kg of Xenon propellant. The thrust range is from 0.6 mN to 20 mN (Ro-
manazzo et al., 2011).

2.2.4 State-of-the-art Accelerometer Calibration
Accelerometers perform highly sensitive measurements, but there are still systematic effects
which degrade these measurements. Therefore, a calibration is needed in order to reduce
these effects. Reasons for these effects are, e.g., that the accelerometer is not at the exact
nominal position or the accelerometer axes are not completely orthogonal to each other.
The misalignment angles represent the rotational deviation from the nominal orientation
and the coupling parameters typify the deviation from orthogonality. The accelerations have
quadratic factors, scale factors and biases due to inaccurate knowledge about the transfer
function converting the control voltages to accelerations and about the electrostatic gain.
The true acceleration ai differs from the measured acceleration ãi as follows (Siemes, 2012):

ai =

 si,x αi + ζi βi − ϵi

αi − ζi si,y γi + δi

βi + ϵi γi − δi si,z

 ãi + bi + ni, (2.19)
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where si,x, si,y, si,z are the scale factors, αi, βi, γi are the shear parameters due to coupling,
δi, ϵi, ζi are the rotation parameters due to misalignment, b are the biases, n is the noise
vector and i is the index of the accelerometer.
There are different calibration methods for the measurement concepts implemented by
GRACE and GOCE. GOCE has six accelerometers on board whereby the calibration can be
performed in terms of differential mode and common accelerations. In contrast, one GRACE
satellite has only one accelerometer on board. Thus, external information is required.

The calibration method for gradiometer measurements is presented in Siemes (2012) and
Siemes et al. (2012). It is based on twelve conditions for accelerometer measurements and
star camera measurements. Scale factors, shear parameters and rotation parameters are
estimated with this method. The parameters are estimated via least-squares adjustment
including a stochastic model for misclosures of the conditions.
For a single satellite the gradiometer calibration procedure is not applicable. In Vielberg
et al. (2018) three calibration methods are compared: multi-step numerical estimation ap-
proach based on the numerical differentiation of the kinematic orbits of LEO satellites, a
calibration within the dynamic precise orbit determination and a comparison of the mea-
sured and the modeled non-gravitational forces.
In Klinger and Mayer-Gürr (2016) a two-step calibration using models of non-gravitational
accelerations is proposed. The obtained calibration parameters using these models are used
as a priori values for the estimation within the gravity field recovery. Scale factors and biases
are estimated daily. It has been found that there is a temperature-dependent behavior of the
calibration parameters (Klinger & Mayer-Gürr, 2016). In Wöske et al. (2018) a calibration
method completely based on precise non-gravitational force modeling is presented.

2.3 Concepts for Future Satellite Gravity Missions
This section presents theoretical concepts for NGGM. First, an overview of the challenges
of gravity field determination with satellites is given. The concepts are categorized in im-
provements in sensor technology and improvements in orbit design.

2.3.1 Challenges of Satellite Gravity Missions and Requirements
for Future Satellite Missions

The gravity field recovery using satellites has several advantages. The satellite observations
enable global, homogeneous coverage which is an advantage compared to the regional cov-
erage of terrestrial techniques. However, the spatial and temporal resolution achieved by
current satellite missions is limited. This has to be improved by future missions. With an
increased number of satellites a better temporal resolution could be achieved. However, this
also increases the overall costs of a satellite mission. Concerning this, the mission duration
is significant as well. In literature a minimum duration of 10 years is recommended (Gruber
et al., 2014a; Reubelt et al., 2014).
The choice of the orbit parameter has a large effect on the quality of the recovered gravity
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field. LEO satellites are chosen for gravity missions. The orbits should be circular and
nearly polar in order to cover the whole Earth with constant accuracy. Aspects of satellite
orbit design are described in section 2.1.3 in detail. The satellite orbit has to be tracked
continuously using GNSS sensors. An important criteria is the isolation of the gravitational
signal. For this reason non-gravitational signals have to be measured by the accelerometers
on board of the satellite. Accelerometers are one of the limiting factors when the instrument
accuracy is considered.
The major challenge in global gravity field recovery is the time-variable background mod-
eling. With GRACE and GRACE-FO it is possible to detect monthly mass changes with
a spatial resolution of 350 km. In Mayer-Gürr et al. (2018) solutions with higher spatial
resolution, up to SH degree 120, are estimated, which corresponds to a spatial resolution of
approximately 170 km. Signals of processes shorter than this time period, i.e. one month,
can not be detected which leads to temporal aliasing. Furthermore, small-scale features can
not be measured which results in spatial leakage (Dobslaw et al., 2017).

The main achievement of GOCE is the high spatial resolution of the geoid. The static
part of the Earth’s gravity field has been determined with a precision of below 2 cm in terms
of geoid heights for a resolution of 100 km (Brockmann et al., 2021). In combination with
satellite altimetry, which gives information about the sea surface height, dynamic ocean to-
pography can be determined with a resolution of 80 km to 100 km. Beyond that, GOCE
contributes to the realization of a global unification of height systems and understanding the
Earth’s interior (Pail et al., 2015).

GRACE observations enabled the quantification of mass transport processes in the Earth
system. Mass transport processes and redistribution of masses are visible in terrestrial water
storage, continental aquifers, glaciers and ice sheets (Tapley et al., 2019). The monitoring of
changes over time in the Earth’s gravity field gives valuable insights, also in the context of
the global climate change (Rodell et al., 2018). Application examples are the observations
of mass changes of glaciers and ice caps, water storage variations (seasonal, inter-annual
and long-term) or the detection of anthropogenic groundwater depletion. The mass loss in
Greenland and Antarctica is quantified to 279 Gt/yr and 128 Gt/yr, respectively (Rodell et
al., 2018). In addition, GRACE gives relevant insight about the global mean sea level rise.
The global sea level rise has two components: the thermal expansion and the mass change.
The latter can be measured by GRACE observations. In Eicker et al. (2020) even daily
GRACE gravity field solutions up to degree 40 are analyzed to investigate high-frequency
hydro-meteorological fluxes over the continents. However, the lower spatial resolution of
500 km causes spatial leakage effects.

In spite of the great achievements by the missions GOCE, GRACE and GRACE-FO im-
provements are needed for the observation of smaller mass transport processes. In Pail et al.
(2015) science and user needs for future satellite gravity mission observations are derived.
Joint requirements are set as a compromise of various fields like hydrology, cryosphere, oceans
and solid Earth in order to cover a wide range of applications. The required target perfor-
mance in terms of EWH is stated as 5 cm for monthly solutions and 0.5 cm/yr for long-term
trends at a spatial resolution of 150 km. This corresponds to a monthly geoid height error
of 0.1 mm for 150 km resolution. In Gruber et al. (2014a) the required monthly geoid height
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error is stated with 1 mm for 150 km resolution. In several studies, it is proposed to design
the missions with subcycles within one repeat orbit. Thereby, gravity field solutions with
higher temporal resolution of one week or even one day can be determined with reduced
spatial resolution. Many applications with social benefit would need products with temporal
resolution from one to a few days. It is of great interest to extend the available time series
of global gravity measurement and increase both spatial and temporal resolution.

2.3.2 Developments in the Sensor Technology
Available and emerging sensor technologies are an important component in the mapping of
the Earth’s gravity field. In this section, further developments of space accelerometers are
summarized. Instruments in space are faced with some challenges. The robustness to the
radiation environment, launch vibrations and thermal vacuum are important. The reliability
and traceability of the production, maintenance and tests must be demonstrated (Touboul
et al., 2016). The classical EAs have already demonstrated their robustness and performance
on board of satellites. Beneficial for inertial sensors are the microgravity environment and
shielding of the satellite or thermal control (Touboul et al., 2016).

Further Development of Electrostatic Accelerometers

One challenge is the characterization of the space accelerometer performance. The perfor-
mance is estimated with a combination of the mathematical formulation of the impact of
each contributor, tests for assessing the level of this contributor and flight data. The noise
of the electronics is precisely measured on ground and converted into acceleration (Touboul
et al., 2016). But still these sensors cannot be tested effectually under 1 g conditions. Ac-
cording to Touboul et al. (2016) possible solutions are:

• electrostatic levitation of the test mass in order to enable sensor tests in the horizontal
plane,

• mechanical levitation of the test mass with a wire,

• free-fall tests.

The ONERA accelerometers so far used in gravity missions have two high-sensitive axes and
one less-sensitive axis due to the calibration on ground (Frommknecht, 2007; Christophe
et al., 2018). For the calibration, the proof-mass is levitated under 1 g conditions to verify
the accelerometer performance on an anti-seismic pendulum (Christophe et al., 2018). With
new catapult drop tower and experiences in the accelerometer design, it is now possible to
perform on ground verifications without levitation under 1g conditions. This procedure was
demonstrated successfully with the Microscope mission (Christophe et al., 2018; Touboul
et al., 2017).
The MicroSTAR accelerometer is an enhanced electrostatic accelerometer. It has a cubic
test mass which implicates three high-sensitive axes. Moreover, the sensor provides angular
accelerations. The test mass is controlled with three pairs of electrode plates, each having
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two degrees of freedom. The expected accuracy is 6.6 × 10−12 m/s2 within the measurement
bandwidth from 0.2 mHz to 0.1 Hz. The proof mass has the sizes 30 × 30 × 30 mm and
a weight of 218 g. The distance between the test mass and the electrode plates is 400 µm
which provides a measurement range of ±6.4×10−6 m/s2. In high frequencies, the main noise
contributor is the capacitive detector noise. In low frequencies, it is the contact potential
noise and the bias thermal fluctuation (Christophe et al., 2018). The accuracy of angular
acceleration measurements is ±2.2 × 10−10 rad s−2 inside the measurement bandwidth from
0.2 mHz to 0.1 Hz. In December 2016, first drop tower experiments have been performed at
Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen,
Germany, with the prototype for testing the control loop.

Electrostatic Accelerometer with Optical Sensing

The development in laser interferometry metrology enables the concept of an EA with opti-
cal sensing. The experiences of the Laser Interferometer Space Antenna (LISA) Pathfinder
mission are beneficial for the development of this concept. The principle of such an optical
accelerometer is very similar to the one of an electrostatic accelerometer. The difference
is the detection of the test mass position. Instead of a capacitive detection, the test mass
position is measured by laser interferometry. Additionally, the interferometer readout is used
for the correction of the electrode voltage output signal (cf. Figure 2.3).
In Alvarez et al. (2022), a new inertial sensor based on the LISA Pathfinder technology is
designed and analyzed. The test mass charge is controlled by an UV LED-based charge
management system instead of using a grounding wire. This replacement allows an increase
of the mass from 100 g to 500 g and an increase of the gap between the electrode housing
and the test mass from 100 µm to 1 mm. The estimated acceleration noise model for a
mission with drag compensation at 350 km is 5 × 10−13 m/s2 in the MBW from 0.1 mHz to
3 mHz. The performance is limited by the capacitive sensing noise in the frequencies above
3 mHz. The noise level is at a level of 5 × 10−12 m/s2 in the frequencies below 8 mHz for a
GRACE-FO-like mission at 500 km.

Figure 2.3: Servo-control channel of an electrostatic accelerometer for one axis with addition
of a laser interferometer
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Cold Atom Interferometry Accelerometer

A new instrument concept which relies on the manipulation of matter waves through atom
interferometry offers advantages against the classical EA type. The principle of CAI has
already applied to ground sensors like cold atom gravimeters or gravity gradiometers (Tino,
2021).

One measurement cycle of the atom interferometer is divided in three segments: prepa-
ration of the atoms, free fall and interferometer sequence and detection of the atomic states.
The atom cloud consisting for example of 106 − 108 Rubidium 87Rb atoms is prepared by
laser cooling and trapping techniques (Carraz et al., 2014).
The principle of atom interferometers is predicated on the interference of matter waves and
the superposition principle of atoms (cf. Figure 2.4) . The atoms can be in ground state
|g⟩ or in excited state |e⟩ depending on the atomic energy level. The interaction between
an atom and a photon causes a change of the atomic energy level. The atomic state change
leads to a momentum transfer which results in a spatial separation of the atoms in different
states. The atom moves in the direction of the laser beam if the photon is absorbed. If it is
emitted, the atom moves in the opposite direction. The momentum transfer ∆p depends on
the reduced Planck constant ℏ and wave vector of the laser light k: ∆p = ℏk. A two-photon
Raman transition using two counter-propagation beams leads to an effective wave vector
keff which is the difference of the two wave vectors. The stimulation of an atom in the
ground state |g⟩, p⟩ puts the atom in the excited state |e, p+ℏkeff⟩ (Kasevich & Chu, 1991;
Schilling, 2019).
Several approaches exist to implement an atom interferometer. One is the Mach-Zehnder in-
terferometer which consists of three interactions between photons and atoms. The sequence
of such an interferometer is: beam splitter - reflector - beam splitter (which is here realized
by quantum-optical methods instead of optical component parts). The beam splitter trans-
fers an atom in a different state with a probability of 50 % by a so called π/2 pulse. After
a time interval T the reflector changes the atomic state with a probability of 100 % by a
π pulse. After another time interval T a second π/2 pulse interacts with the atoms. The
type of interaction is controlled by the pulse duration of the laser light. The interferometer
sequence is illustrated in Figure 2.4.
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Figure 2.4: Mach-Zehnder atom interferometer, modified from (Schilling, 2019)
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The phase shift ∆Φ is given by the phase differences Φi between the two Raman lasers at
the time of the i-th laser pulse (Lautier et al., 2014):

∆Φ = Φ1 − 2Φ2 + Φ3. (2.20)

The observable of the interferometer is the population of atoms per state. The transition
probability P is derived form the measured population Ni in the two output ports of the
interferometer:

P = N1

N1 + N2
= C

2 cos(∆Φ), (2.21)

where C is the interferometer contrast. The presence of an acceleration a is reflected in the
phase shift ∆Φ as follows

∆Φ = keffaT 2, (2.22)

with keff = |keff | as effective wave number of the Raman pulse and T as time interval
between the pulses.

Terrestrial cold atom gravimeters have already been developed for example by LNE-SYRTE
(Cold Atom Gravimeter, CAG (Gillot et al., 2016)), Humboldt University of Berlin (Gravi-
metric Atom Interferometer, GAIN (Freier et al., 2016)) and by iXBlue, formerly Muquans
(Absolute Quantum Gravimeter, AQG (Ménoret et al., 2018)) which is a commercial prod-
uct. No sensors are developed for space applications yet, but experiments for space have been
performed. Within the framework of the rocket experiment MAIUS-1, rocket interference
experiments of Bose-Einstein condensates in free-fall have been performed (Lachmann et al.,
2021). The Cold Atom Laboratory (CAL) has been installed on the International Space Sta-
tion in May 2018. This experiment uses laser-cooled atoms in a microgravity environment.
Bose-Einstein Condensate and Cold Atom Laboratory (BECCAL) is a future experiment
for the International Space Station (Frye et al., 2021). In addition, there are initiatives to
demonstrate a CAI accelerometer on board of a satellite. The development of a quantum
pathfinder mission is planned within the study Cold Atom Rubidium Interferometer in Orbit
for Quantum Accelerometry (CARIOQA) (Lévèque et al., 2022).

A better performance is expected for CAI sensors on board of a satellite compared to the one
of terrestrial sensors. A longer free fall time due to the microgravity environment induces a
higher sensitivity as it scales quadratically with the interrogation time. An advantage of an
CAI accelerometer is the flat noise Power Spectral Density (PSD) for low frequencies with
very good repeatability, no hard moving parts and intrinsically accurate measurement thanks
to the stability of the atom transitions (Carraz et al., 2014). One of the difficulties is the
low frequency sampling. Simulation studies on this concept are documented in Carraz et al.
(2014), Douch et al. (2018b), Trimeche et al. (2019), Abrykosov et al. (2019) and Müller
and Wu (2020). In Carraz et al. (2014) a sensitivity of 3.5 mE/

√
Hz is estimated for CAI

gradiometer (1 E = 1 × 10−9 s−2, named after Roland von Eötvös). The sensitivity depends
on several factors and its estimation for this study is described in section 3.3.2.
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Combination of Electrostatic Accelerometer and Cold Atom Interferometry Ac-
celerometer

High performance is expected for a combination of an EA with a CAI accelerometer, since
the weaknesses of one sensor can be compensated by the strengths of the other. CAI has a
high long-term stability and calibration is not needed as the scale factor is very well known
owing to its absolute nature of measurements. Nevertheless, the low sampling rate is the
main drawback. In contrast, the EA has a continuous output and has a high sensitivity in
higher frequencies. Inaccuracies occur due to the bias drift and the imperfect determination
of the calibration parameters.
For a hybridization, the two accelerometers should be ideally at the same point of the satellite
body. This point would be the satellite center of mass for a GRACE-like mission. One option
to realize a hybrid system is to place a mirror for Raman transitions on the proof mass of
the EA (Carraz et al., 2014). The ground prototype, reported by Christophe et al. (2018),
has a rigidly fixed mirror at the accelerometer housing. The control of the proof mass of the
EA could facilitate to deal with satellite rotation during the free fall time of the atom cloud.
A combination of an atom gravimeter with a mechanical accelerometer is also presented in
Lautier et al. (2014).
Aside from that, the measurements of the two sensors need to be combined with an algorithm.
For the real time processing a Kalman filter is convenient. In Christophe et al. (2018) a
Kalman filter is used to estimate the bias of the classical accelerometer in each cycle:

bi = bi−1 + Gb(aEA,i − bi−1 − aCAI,i), (2.23)

where bi is the bias of EA in the i-th cycle, aEA,i is measurement of the EA and aCAI,i is the
measurement of the CAI accelerometer, Gb is the gain of the correction. The output of the
EA can contrarily be used to determine the CAI fringe index (Christophe et al., 2018). In
HosseiniArani et al. (2022) an extended Kalman filter is studied to combine electrostatic and
CAI measurements. The electrostatic acceleration measurements are used for the prediction
of the phase shift in order to solve the fringe ambiguity of the CAI measurements. The CAI
measurements are then used as actual observation for the EA bias estimation.
Another filter option is to first apply a high-pass filter to the electrostatic measurements and
a low-pass filter to the CAI measurements and combine the filtered measurements afterwards
(Knabe et al., 2022).

2.3.3 Concepts for Orbit Design
When investigating new sensor technology concepts, it is important to quantify their impact
for NGGM orbit constellations. The two GRACE satellites are nearly in the same polar
orbit with a inter-satellite distance of about 200 km. The drawback of this configuration is
a poor sensitivity in east-west direction which leads to striping effects in the north-south di-
rection. There are several concepts to improve the sampling and to reduce temporal aliasing.
These configuration concepts can be divided in single pair and double pair constellations.
A more isotropic error pattern is expected if observations also contain cross-track or radial
information on the gravity field.
Concepts for single pair constellations are for example pendulum, Cartwheel or Helix forma-
tions (Elsaka et al., 2014). In the pendulum mission the longitude of the ascending node Ω
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and the mean anomaly differs for the two satellites. This leads to measurements in along-
track direction and in cross-track direction. The baseline of the two satellites is oriented at
the equator in cross-track direction and at the pole in along-track direction (Elsaka, 2010).
For this formation, the orbit and attitude control is very challenging due to the relative mo-
tion. In the Cartwheel constellation, the two satellites fly in individual orbits and perform a
2:1 elliptical motion about their center of mass. In each orbit, measurements in along track
direction and in radial direction are performed (Elsaka, 2010). Using the Helix, along-track,
cross-track and radial information can be obtained. Cartwheel and Helix constellations have
even higher challenges for formation control.
Furthermore, several studies investigated two pair constellations leading to the best results
in the recovered gravity field (Elsaka et al., 2014; Purkhauser et al., 2020). However, the
economic point of two satellite pairs being in orbit has to be considered. A promising two
pair concept is the Bender design (Bender et al., 2008). This constellation exists of one
inline pair in a polar orbit and another inline pair in an orbit with a lower inclination, e.g.
63◦. The results of the Bender formation have a better temporal resolution and reduce the
aliasing errors, but it is economically much more challenging. From the technological point
of view it is feasible (Massotti et al., 2021).
MOBILE is another concept which is based on hl-SST (Pail et al., 2019). The observation
of the radial component leads to a more isotropic error pattern compared to the ll-SST
in along-track direction. The constellation consists of two MEO satellites with an altitude
of 10 000 km and one LEO satellite with an altitude between 350 km and 400 km. The
laser-based ranging instrument is on board of the LEO satellite and the MEO satellites are
equipped with passive reflectors or transponders.

In Massotti et al. (2021) a joint concept called Mass change And Geosciences International
Constellation (MAGIC) of ESA and National Aeronautics and Space Administration (NASA)
for NGGM is evaluated. The recommended constellation for MAGIC is a Bender configu-
ration. At the ESA Council in November 2022, the government ministers approved the
NGGM initiative MAGIC with the objective to contribute to the observation of water vol-
ume in oceans, ice sheets and glaciers for a better understanding of sea level changes and
the improvement of water management. In addition, NASA aims to realize a GRACE-FO
successor (Flechtner et al., 2022). It can be concluded that the realization of a Bender
configuration is realistic in the future with the GRACE-FO successor as polar pair and the
inclined pair MAGIC.
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3 Evaluation of Simulation Environment

This chapter introduces the simulation environment. The closed-loop simulation consists
of the generation of observations, the estimation of the gravity field parameters and the
comparison of the estimated parameters with the true parameters (cf. section 3.1). First,
satellite dynamics are simulated which is briefly described in sections 3.1 and 3.2. Obser-
vations are generated based on these satellite dynamics and the reference gravity field. In
the next step, noise time series of sensor performances, control system behavior and time-
variable background models are added. Models for these noise sources are explained in the
sections 3.3, 3.4 and 3.5. The estimation procedure of the gravity field model parameters is
given in section 3.6.

3.1 Overview of the Simulation Environment
A closed-loop simulation is performed in order to evaluate the gravity field solutions achieved
with different measurement concepts, sensors, actuators and orbit configurations. First,
satellite dynamics are simulated with the software eXtended High Performance Satellite Dy-
namics Simulator (XHPS), which is developed by ZARM and Deutsches Zentrum für Luft-
und Raumfahrt (DLR) (Wöske et al., 2016). The software runs in MATLAB/Simulink with
double precision. The system of differential equations is solved by transforming it into a
system of ordinary differential equations. In these simulations, the Runge-Kutta method is
used for the numerical integration. The dynamics are calculated with the integrator based
on the gravity field and further external as well as internal forces and torques. In the simu-
lations, an Earth gravity field model, an ocean tide model, a solid Earth tide model, a pole
tide model and models for the effects from Sun and Moon are considered. Aside from that,
an attitude control system and non-gravitational accelerations are included.
The models for non-gravitational perturbations are explained in more detail in section 3.2,
because the modeling is important for the analysis of novel accelerometer concepts. Beyond
that, the control systems play a major role for the calculation of the satellite dynamics
and further analysis. In section 3.4.1 the modeling of a drag-free control system and in
section 3.4.2 the modeling of an attitude control system are explained. While models for
attitude control are available in the XHPS library, a model was created for the drag-free
system by the author of this thesis.
Noise time series for sensors and actuators are modeled using LISA Technology Package
Data Analysis (LTPDA) which is a MATLAB toolbox for accountable and reproducible
data analysis (Hewitson et al., 2009). It was developed for the data analysis of the LISA
Pathfinder mission.
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As different mission concepts are studied, the procedures for the recovery of the gravity field
differ. In section 3.6.2, the recovery based on range accelerations and, in section 3.6.3, the
recovery based on gravity gradients are addressed. The simulation procedures for these two
cases are illustrated in Figure 3.1 and Figure 3.2, respectively. Noise-free observations are
calculated from the satellite position and velocity data, attitude data as well as the reference
gravity field model. The latter is the high-resolution model Eigen-6c4 which is inferred from
combining Laser Geodynamics Satellite (LAGEOS), GRACE, GOCE and terrestrial data
(Förste et al., 2014). In the next step, noise time series of different sources are added. SH
coefficients are estimated and evaluated with respect to the SH coefficients of the reference
gravity field. The recovery parts are carried out on the computer cluster system of the Leib-
niz University of Hannover, Germany.

•

•

•

•

Figure 3.1: Simulation procedure for range accelerations

•

•

•

Figure 3.2: Simulation procedure for gradiometry
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3.2 Modeling of Non-gravitational Forces
The modeling of non-gravitational forces acting on the satellite is an important component.
The magnitude depends on the satellite orbit, especially on its altitude, as well as the shape
and mass of the satellite body and the environmental conditions. The accelerometer has
to be designed for the magnitude of the non-gravitational accelerations, i.e. the saturation
limit of the sensor must not be exceeded. The modeling of non-gravitational forces is funda-
mental for the drag compensation analysis in section 4.2 and the CAI accelerometer analysis
in section 4.3.
The non-gravitational forces are mainly caused by the atmospheric drag, the solar radiation
pressure, the Earth albedo, infrared radiation of the Earth and thermal radiation pressure
from the satellite itself. In the XHPS toolbox, models are available for these dissipative
forces. The magnitude of non-gravitational forces depends on the surface area and mass of
the satellite. Hence, it is necessary to model the satellite geometry. This is implemented by
a detailed finite element model of the satellite. A detailed description of the used models
is given in Wöske et al. (2018) and Wöske (2021). The atmospheric drag is the biggest
perturbation effect for LEO satellites. The density model of the atmosphere is relevant for
the atmospheric drag calculation which strongly depends on the solar activity. The density
is calculated using the JB2008 atmosphere model. In addition, the thermospheric winds are
computed based on the Horizontal Wind Model 1993 which are required for the calculation
of the relative velocity. The drag coefficient is considered as constant. The second largest
effect is the solar radiation pressure for LEO satellites and is the result of the absorption or
reflection of photons from the Sun. It depends on the distance to the Sun, the Sun direction,
the geometry and optical properties of the satellite surface. The Earth albedo is the radia-
tion reflected by the Earth. Furthermore, there is thermal radiation of the Earth’s surface
and atmosphere. The thermal radiation pressure is a secondary effect which is caused by
the thermal heating of the satellite surface due to the radiation. In Figure 3.3 the non-
gravitational forces acting on the satellite for two different altitudes of 303 km and 462 km
are illustrated over the time period of one day. The mass of the satellite is 600.98 kg. A
surface model of a GRACE satellite body is used.
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Figure 3.3: Non-gravitational forces of the different effects acting on a GRACE-like shaped
satellite body; note the different scaling of the plots
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The solar radiation pressure is more dominant for higher orbit altitudes and in the same
order of magnitude as the atmospheric drag. The latter one increases strongly from 3 ×
10−5 N at 467 km to 1 × 10−3 N at the lower orbit altitude of 303 km. The non-gravitational
perturbations acting on the satellite can be reduced by decreasing cross-sectional satellite
surface or by increasing the mass of the satellite. In fact, there is the possibility to use a
drag-free system which compensates the perturbations.

3.3 Modeling of the Sensor Behavior
This section describes models for the behavior and noise of the main sensors. Some of the
performance models are already validated by in orbit operation. However, CAI accelerome-
ters have not been on board of satellite yet. Thus, their behavior models have to be estimated
for space applications.
Noise time series are generated using the LTPDA toolbox (Hewitson et al., 2009). The col-
ored noise is generated by the construction of a coloring filter through a fitting procedure to
the input model and applying it to white noise. The input model is a one-sided PSD model.
The Amplitude Spectral Density (ASD) is the square root of the PSD and is used in the
following as it simplifies the interpretation of the graphs.

3.3.1 Classical Electrostatic Accelerometer
The determination of the sensor accuracy in space is not trivial as the several disturbing
effects affect the measurements (Gruber et al., 2014a). The GOCE mission was a special case,
where the performances could be verified thanks to the existence of several accelerometers
on board of the satellite. EAs suffer from their drift in the low frequencies which is shown in
the ASD model by the increasing slope with decreasing frequency. The assumption of a 1/f 2

behavior in low frequencies may be more realistic than a 1/f behavior. A big advantage
of the EA behavior is the continuous measurement readout. The noise of the GRACE and
GRACE-FO accelerometer is simulated using the model according to Darbeheshti et al.
(2017) and Kim (2000) :

nACC,GRACE−F O(f) = 10−10
√

1 + 0.005 Hz
f

m/s2/
√

Hz. (3.1)

The noise of the GOCE accelerometer is modeled using (Touboul et al., 2016; Marque et al.,
2010)

nACC,GOCE(f) = 2 10−12

√√√√(0.001 Hz
f

)2

+ 1 +
(

f

0.1 Hz

)4

m/s2/
√

Hz. (3.2)

These models are illustrated in Figure 3.4. Additionally, the Logarithmic frequency resolu-
tion axis Amplitude Spectral Density (LASD) of the generated noise time series is plotted.
The LASD is a modified version of Welch’s method. The LASD method includes an es-
timation of the optimal frequency resolution for each Fourier frequency on a logarithmic
frequency axis (Tröbs & Heinzel, 2006).
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Figure 3.4: Noise performance models of the GOCE and the GRACE-FO accelerometer

3.3.2 Cold Atom Interferometry Accelerometer
In an atom interferometer, cold atoms are in free fall and operate as test mass. Laser pulses
in a time interval T are used to split and recombine the atomic wave functions into different
momentum states according to the superposition principle (Pereira dos Santos & Landragin,
2007; Schilling et al., 2012). The output phase Φ can be obtained by measuring the relative
atomic populations in the output states after recombination. The acceleration ak during
cycle k is obtained from the measured phase Φk with the evolution time T as

ak = Φk

keffT 2 , (3.3)

where keff = |keff | is the norm of the effective wave vector of the laser light used to
transfer momentum to the atoms (Kasevich & Chu, 1991). In this study, the duration of
one interferometer measurement cycle Tc is assumed with 12 s. It consists of the preparation
time Tp, the interferometer duration 2T and the detection time Td:

Tc = Tp + 2T + Td. (3.4)

As the sensitivity of the accelerometer to the acceleration varies during one measurement
cycle, the transfer function must be taken into account. The phase of the interferometer Φk

at the k-th cycle is given by (Knabe et al., 2022)

Φk = keff

∫ (k+1)Tc

kTc

ga,k(t)a(t)dt. (3.5)

The response function ga,k (cf. Figure 3.5) is given by

ga,k(t) = 0 for kTc < t < kTc + Tp, (3.6)
ga,k(t) = t − (kTc + Tp) for kTc + Tp < t < kTc + Tp + T, (3.7)
ga,k(t) = kTc + Tp + 2T − t for kTc + Tp + T < t < kTc + Tp + 2T, (3.8)
ga,k(t) = 0 for kTc + Tp + 2T < t < (k + 1)Tc. (3.9)
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Figure 3.5: Response in the time domain of the transfer function for the phase shift to
acceleration conversion

Parameters based on state-of-the-art accelerometers on ground are used to estimate the
performance. The assumed number of interfering atoms is N = 106 and the contrast is C =
0.8. The momentum transfer, depending on laser wavelength λ, is keff = 4πλ ≈ 1.6×107 m−1

for a two photon Raman transition using rubidium atoms. Microgravity in space is expected
to allow for a dramatic increase of the free fall interferometer interrogation time T , which
would greatly improve the performances of a CAI. A measurement time of T = 5 s and a
preparation time of 2 s are introduced for the following calculations. The detection time is
neglected as it is only a few tens of ms.
The quantum projection limited phase noise is given by (Knabe et al., 2022)

σΦ =
√

Tc

C2N
= 4.2 mrad/

√
Hz. (3.10)

The sensitivity function of a 3 pulse atom interferometer is

H(f) = 16(2keff )2

(2πf)4 sin4 (2πfT/2). (3.11)

In order to take into account fluctuations of systematic effects, a 1/f flicker floor noise of
σf = 0.1 mrad is imposed. The acceleration PSD can then be expressed as (cf. Figure 3.6)

S2
a(f) = (2σ2

Φ + 2 ln(2)σ2
f/f)/H(f). (3.12)

This model is used in the following to estimate the performances of a CAI accelerometer in
a satellite.
The sensitivity function H(f) shows an increasing slope in the frequencies higher than
0.083 Hz, as the interferometer cycle time is 12 s. The function H(f) becomes zero for
certain values. Therefore, the noise ASD is additionally estimated with another method
for higher frequencies. Noise time series are filtered in the time domain using the response
function of an atom interferometer. The result is given in Figure 3.7.
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Figure 3.6: Anticipated ASD of a space CAI accelerometer noise
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Figure 3.7: Anticipated ASD of a space CAI accelerometer noise filtered with the response
function in the time domain

Combination of measurements of an electrostatic accelerometer and an atom
interferometer

Measurements of the two sensors, the EA and the CAI accelerometer, need to be com-
bined. This hybridization has to consider the quality of the different measurements. CAI
measurements are more accurate in lower frequency bands. In contrast, the electrostatic
measurements are performing better in higher frequencies. A benefiting combination can be
achieved by low-pass and high-pass filtering. The combination is illustrated in Figure 3.8.
Another approach for the combination is a Kalman filter (HosseiniArani et al., 2022).
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Figure 3.8: Model of a hybrid accelerometer

3.3.3 Ranging Measurement Instruments
Range measurements between two satellites in the low-low satellite-to-satellite mode are
simulated for two different instruments: KBR and LRI. The KBR instrument is on board
of GRACE and GRACE-FO. Its noise is modeled using (Frommknecht et al., 2006)

nKBR,GRACE = 2 µm/
√

Hz. (3.13)

The LRI instrument is currently demonstrated on GRACE-FO. The first approximation of
the instrument performance by Abich et al. (2019) is used as noise model:

nLRI,GRACE−F O(f) = 2 × 10−9f−0.003
(

3 × 10−7

f

)3

m/
√

Hz. (3.14)

The noise models of the two instruments with the ASD and the LASD of the generated
noise time series are presented in Figure 3.9. Figure 3.9 (a) shows the noise of the ranging
measurements and Figure 3.9 (b) the noise in terms of accelerations which is obtained by
the multiplication by the factor (2πf)2 and used in the simulation process.
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In Figure 3.10 a new model for the LRI performance in GRACE-FO with the state of
knowledge from 2022 and expected improvements for NGGM in 2030 and after 2033 are
given (V. Müller, personal communication, October 2022). The corresponding ASD models
are denoted in the equations (3.15), (3.16) and (3.17), respectively. The noise models depend
on the inter-satellite distance L which is assumed with 200 km in Figure 3.10.

nLRI,GRACE−F O = L × 1 × 10−15
√

f
+ 1 × 10−12

f 2 m/
√

Hz (3.15)

nLRI,NGGM2030 = L × 1 × 10−15
√

f
+ 1 × 10−13

f 2 m/
√

Hz (3.16)

nLRI,NGGM2033 = L × 5 × 10−16
√

f
+ 5 × 10−14

f 2 m/
√

Hz (3.17)
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(b) Ranging measurement noise converted to acceler-
ations

Figure 3.10: Different noise performance models of the LRI instrument and expectations for
the future

3.4 Modeling of Control System Behavior

3.4.1 Drag-free Control
Drag compensation prevents orbit decay and saturation of accelerometers. Drag compensa-
tion is also called drag-free control in this thesis. The mission GOCE was the first gravity
satellite mission with a drag-free control system, which was based on disturbance rejection.
These disturbances are non-gravitational accelerations acting on the satellite. In this sec-
tion, the GOCE drag-free control system and its model in the simulation environment is
described. Furthermore, NGGM drag-free control is addressed.
The components of a control system are sensors and actuators. The actuator of the GOCE
drag-free system is an ion propulsion assembly (Romanazzo et al., 2011). The drag control
systems needs to be optimized for the specific satellite mission. One crucial factor is the
orbit altitude. The magnitude of the non-gravitational accelerations in along-track direction
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changes significantly with the orbit altitude. The atmospheric density depends on the solar
activity. The control system has to cope with different solar activities and thus with different
atmospheric drag magnitudes.
Hence, the simulated system performance strongly depends on sensor and actuator models.
The sensor is in this case the accelerometer model, described in section 3.3.1. The flowchart
(Figure 3.11) gives an overview of the modeled drag-free control system.

𝑭𝑛𝑔 = 0

𝛥𝑭

Figure 3.11: Flowchart of the drag-free control system

In Canuto et al. (2018) the thruster behavior is described by a transfer function. The control
force, which is actuated by the thruster, is given by

Fthr(f) = e−fδt

f 2 + 2ζtωtf + ω2
t

(Fref (f) + nthr(f)), (3.18)

where the parameters of the transfer function are the natural frequency ωt, the damping
ratio ζt and the delay δt. Additionally, the control force depends on the thruster noise nthr

and the reference force Fref . The parameters of the GOCE mission are specified in Canuto
et al. (2018) and given in Table 3.1.
The thruster noise depends on the force which the thruster executes. The GOCE thruster
noise is between 1 µN/

√
Hz and 10 µN/

√
Hz (Allasio et al., 2010). The thruster noise is

simulated using a model for the PSD (Canuto et al., 2010):

n2
thr =

(0.005
f

)2

+ 1
 (10−6)2 N2 Hz−1 (3.19)

and is illustrated in Figure 3.12. Besides, the maximum and minimum thrust and the
possible rate of change have to be considered. The thruster of the GOCE mission had a
maximum thrust level of 21 mN, a minimum thrust level of 0.6 mN and a possible change
rate of 2.5 mN s−1 (Romanazzo et al., 2011). These instrument restrictions are included as
constraints of the model.
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Table 3.1: Transfer function parameters of the thrusters of the GOCE mission

delay δt natural frequency ωt damping ratio ζt
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Figure 3.12: ASD of thruster noise

In literature, there are two widely-used approaches for a drag-free control system: the H∞
methodology and simple Proportional-Integral-Derivative (PID) strategies (Canuto & An-
dreis, 2003). A PID controller, which is included in the model of this thesis, consists of
an proportional, an integral and a derivative part. This type of controller is robust in the
performance. The combination of the three different time behaviors produces the controller
output c(t):

c(t) = Kpe(t) + Ki

∫
e(t)dt + Kd

de

dt
, (3.20)

where Kp is the proportional gain, Ki is the integral gain, Kd is the derivative gain, e is
the difference between the desired and the actual output. The error signal is defined as the
difference between the reference and the actual signal and acts as the input of the controller,
which computes the derivative and the integral of the error signal with respect to time.

In Massotti et al. (2020) alternative drag compensation concepts are discussed. One promis-
ing technology is the use of two different thruster types: Drag Control Thruster and Fine
Control Thruster. Ion thrusters of these types already approved their flight heritage in the
GOCE mission, but the GOCE thrusters are designed for an altitude of 250 km. Lower
thruster ranges are required as for future satellite missions higher altitudes are intended.
Candidates for the Fine Control Thruster already exist. Miniaturized Gridded Ion Engines
of Radio-Frequency type (mini-RIT) have been tested and demonstrated thrust capabilities
in the range between 50 µN to 500 µN and 10 µN to 100 µN (Massotti et al., 2013). In Reiss-
ner et al. (2014) the performance of Field Emission Electric Propulsion (FEEP) thruster
technology is characterized. Haagmans et al. (2020) define the required thruster range for
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future satellite missions from 50 µN to 2 mN. This wide thrust range is needed because of
the variability of the thermosphere neutral density within one solar cycle by a factor of ten.
One option to ensure the energy supply are deployable solar arrays (Haagmans et al., 2020).

Table 3.2: Characterization of the two thruster types

Thruster type Thrust range MBW Utilization
Drag Control Thruster 50 µN to 6 mN

(10 mN for orbit
operations)

1 mHz to 100 mHz drag compensation
and orbit maintenance

Fine Control Thruster 50 µN to 1 mN 1 mHz to 100 mHz cross-track and radial
drag compensation
and 3-axis torques for
angular drag control

3.4.2 Attitude Control
The attitude determination and control must be taken into account in the study of future
satellite mission. The experience of previous satellite mission is an appropriate assumption
for simulation studies. The requirements depend on the mission design. In case of a ll-SST
mission, like GRACE and GRACE-FO, the pointing between the two satellites is important
due to the range measurements. The requirements for the attitude control are less stringent
for missions with only one satellite like GOCE.

The attitude control system of GOCE worked uniquely with magnetic torquers. This is
reflected in the attitude errors as they show the periodicity imposed by the magnetic field
and the orbit period (Steiger et al., 2014). The aerodynamic forces constitute an important
element for attitude control. The controllability is limited because the magnetic torquers
can not produce a torque along the direction of the Earth’s magnetic field. Therefore, only
the pitch axis can be controlled permanently. A controllability with a time horizon of half
an orbit is guaranteed for the roll and yaw axes (Romanazzo et al., 2011). The attitude error
in pitch direction is below 10 mrad. The two other directions show an error up to 100 mrad
(Sechi et al., 2011). Furthermore, attitude control is required to minimize the command
force of the drag-free system. This is done by keeping the small front of the satellite perpen-
dicular to the flight direction. This minimizes the effective area and consequently the fuel
consumption.
Additionally to the magnetic torquers, cold gas thruster are used as actuators in GRACE
and GRACE-FO. The GRACE-FO mission has an attitude error of a few mrad which is
sufficient for the microwave ranging system due to its wide beam and receive field of view.
Laser interferometry requires 100 µrad pointing accuracy which is achieved by internal point-
ing control using a movable mirror in the instrument.

Different attitude control systems are implemented in the XHPS software. One possibil-
ity is the quaternion feedback control law. The controller aims driving ω to zero and δq to
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the identity quaternion (Markley & Crassidis, 2014). The control torque L is given by

L = −kpδq − kdω, (3.21)

where kp and kd are the positive control gains. The difference between the target and actual
quaternion is δq. The target quaternion can be defined, as an example, in such a way that
the satellite points in the direction of the velocity vector. This leads to a minimum effective
area for the atmospheric drag which minimizes the non-gravitational accelerations due to
atmospheric drag. Using this method results in a short computation time but the behavior
of the actuators and sensor is not considered.
A reference attitude has to be given to the attitude control system (cf. appendix A.2). In
the case of GOCE, the x-axis should point in flight direction, which is the direction of the
velocity vector, the z-axis in nadir direction and the y-axis is perpendicular to these.
The reference attitude for GRACE and GRACE-FO reads as follows: the x-axis has to point
in the direction of the other satellite and the z-axis has to point in the nadir direction (cf.
appendix A.2). The detailed attitude simulation of GRACE is composed of two steps. The
first step is a precomputation with ideal attitude control. In the second step, one satellite is
controlled with respect to the precomputed position of the other one considering an attitude
control system model.
The attitude control model for GRACE-FO is implemented in XHPS using a Kalman filter.
The star camera noise model of Kim (2000) is used which is 9×10−6 rad for the roll direction
and 5×10−5 rad for the pitch and the yaw directions. The controller limits for the activation
of the thrusters are 2.5 mrad for the roll axis and 0.25 mrad for pitch and yaw axis as the
latter ones have to be controlled more accurately.

3.5 Time-variable Background Modeling Errors
The time-variable background modeling is out of the scope of this work. However, the error
due to time-variable background modeling is one limiting factor in the gravity field recovery.
Variations of water masses in the soil and sub-surface aquifers and continental ice-sheets
are quantified with the monthly gravity field solutions. In contrast, mass redistribution in
atmosphere and ocean are characterized by much higher frequencies (Dobslaw et al., 2016).
Consequently, these time-variable atmosphere and ocean modeling errors need to be con-
sidered. Models for Atmosphere and Ocean De-aliasing (AOD) and ocean-tide errors are
included. The differences between various products or some percentage of a product are
considered as model errors.
The product Atmosphere and Ocean De-Aliasing Level-1B (AOD1B) provides a priori infor-
mation about temporal variations in the Earth’s gravity field caused by global mass variabil-
ity in atmosphere and ocean (Dobslaw et al., 2017). In the simulation, the time-averaged
AOD1B product (GAC) is used which is the monthly average of the coefficients representing
the combined mass anomalies of atmosphere and ocean. Releases 5 (RL5) and 6 (RL6) are
considered. In Figure 3.13, the difference between the AOD models RL5 and RL6 as well as
10 % of RL6 are represented in the space domain as an example of the month April 2006.
The Figure shows that the considered AOD modeling errors range up to 3 cm in terms of
EWH. The difference between the models results in a larger error than 10 % of RL6.

35



In Dobslaw et al. (2016) another approximation of errors at large spatial scales represent-
ing global numerical atmosphere and ocean models is discussed. The AOD model errors are
mainly caused by the underlying geophysical models (Dobslaw et al., 2016). The atmosphere
and ocean error model (AOerr) is based on the analysis of pressure anomaly data from four
atmospheric and oceanic models. The AOerr product is represented in SH coefficients up
degree and order 180 with a sampling interval of 6 hours. The AOerr variability is stated
with 5 hPa, which is equivalent to a change of 5 cm in water height.
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Figure 3.13: Models for AOD error for April 2006
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Figure 3.14: Models for ocean-tide error for April 2006

The ocean tide models are based on the analysis of satellite altimetry data and hydrody-
namic models. The products EOT11a (Savcenko & Bosch, 2012) and FES2014b (Carrère
et al., 2016; Lyard et al., 2021) are used in this study. Data sets and routines from Mayer-
Gürr et al. (2012) and Mayer-Gürr et al. (2021) are used for representation of the ocean tide
models in spherical harmonic coefficients. The scaling of monthly averages or the differences
of monthly averages between EOT11a and FES2014b are considered. The spatial plot of the
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difference between the two products and 10 % scaling of FES2014b is given in Figure 3.14
for April 2006. The ocean-tide modeling errors are in the same order of magnitude as the
AOD modeling errors.
The corresponding range acceleration noise time series are calculated based on the SH coef-
ficients representing AOD and ocean-tide errors and the satellite orbit data. In Figure 3.15,
the ASD of the different error assumptions for AOD and ocean tides in terms of range ac-
celerations are plotted. Hence, it can be recognized that the modeling errors in frequencies
important for the gravity field recovery are of significant order of magnitude.
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Figure 3.15: ASD of different assumptions for AOD error and ocean-tide error

3.6 Gravity Field Recovery
Global gravity field models are recovered from the synthesized noisy observations. The cen-
tral unknown parameters are the spherical harmonic coefficients of the gravity field model.
The coefficient differences between reference and estimated gravity field give valuable in-
sights. This chapter includes, on the one hand, the recovery of the gravity field solution
from range accelerations (section 3.6.2) and, on the other hand, the gravity field recovery
from gradiometry measurements (section 3.6.3). Both are calculated with a least-squares
adjustment according to the Gauss-Markov model. Therefore, a rough overview of the pro-
cedure is given in section 3.6.1. In section 3.6.4, the method to estimate a combined solution
from range accelerations and gradients is presented.

3.6.1 Least-squares Adjustment
The spherical harmonic coefficients Snm and Cnm are estimated with a least-squares ad-
justment. The reference gravity field model is Eigen-6c4 (Förste et al., 2014). The basic
formulation of the Gauss-Markov model is:

l + v = Ax, (3.22)
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where l is the observation vector with the dimension of s × 1 and v is the observation error
vector with dimension s × 1, x is vector of unknown parameters with dimension u × 1 and
A is the design matrix with dimension s × u. The estimated parameters x̂ are derived by

x̂ = (AT P A)−1AT P l. (3.23)

The term AT P A is the normal equation matrix N . The right-hand side vector w is AT P l.
The matrix P is the weighting matrix which is obtained from the stochastic model:

Σll = σ2
0Qll = σ2

0P −1. (3.24)

The least-squares adjustment is initially based on the assumption of white noise. However,
the observations contain colored noise and so an adequate error model is needed. Therefore,
the variance-covariance matrix Σll is used to down-weight and de-correlate the observa-
tions. It is assembled from the post-fit residuals of the whole observation period. The
auto-covariance vector r of the observations is calculated from the post-fit residuals. The
biased estimation of the auto-covariance ri using the post-fit residuals vn is given by

ri = 1
N

N−1−|i|∑
n=0

vnvn+1 (3.25)

which is recommended by Koch et al. (2010). The variance-covariance matrix is built using
the auto-covariance vector:

Σll =



r0 r1 r2 · · · rN−1
r1 r0 r1 · · · rN−2
r2 r1 r0 · · · rN−3
... ... ... . . . ...

rN−1 rN−2 rN−3 · · · r0

 (3.26)

which results in the symmetric, positive definite Toeplitz matrix. The Toeplitz matrix can
be decomposed by Cholesky approach. The obtained triangular matrix is finally used for
de-correlating the design matrix and the observation vector. The triangular matrix is called
de-correlation filter (Wu, 2016).

The adjusted residuals v̂ can be calculated after the parameter estimation:

v̂ = Ax̂ − l, (3.27)

The empirical variance of the unit weight follows with:

σ̂2
0 = v̂T P v̂

s − u
. (3.28)

In practice, the empirical variance of the unit weight σ̂2
0 is actually estimated according to

Koch (1999) using

σ̂2
0 = lT P l − wT x̂

s − u
. (3.29)
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in order to avoid recomputation of the design matrix A after the adjustment. The variance-
covariance matrix of the estimated coefficients

Σx̂x̂ = σ̂2
0N−1 (3.30)

includes information about the formal errors.

The practical recovery consists of the following steps:

• assembly of the normal matrix N with weighting matrix P as unit matrix,

• inversion of the normal matrix to derive the SH coefficients,

• computation of the residuals v̂,

• computation of the variance-covariance matrix Σll using the residuals,

• assembly of the normal matrix N using the variance-covariance matrix Σll

• inversion of the normal matrix to derive the final SH coefficients and formal errors.

For large data sets, parallel computing is applied for the assembly of the normal matrix in
order to reduce the calculation time. This is applied for gravity field recovery with maxi-
mum degree and order of 200. The observations are divided into segments and the design
matrix A is partitioned in blocks. As a result, the normal matrix N and the matrix w are
separately assembled for each segment and afterwards summed up to obtain the complete
matrices. The Math Kernel Library is used and the computations are carried out on the
cluster system at the Leibniz University of Hanover, Germany.

In the following sections, the assembly of the functional models for range accelerations and
gradiometry is described.

3.6.2 Range Accelerations
Several approaches exist for the recovery of the gravity field model from ll-SST observations
such as the classical variational approach (Reigber, 1989), the energy balance approach
(Jekeli, 1999) or the acceleration approach (Liu, 2008). The acceleration approach links the
range accelerations to the gradient of the gravity potential (Weigelt, 2017) and is applied
here. It was first tested by Reubelt (2009) for hl-SST.

The range accelerations in LOS direction ρ̈ are:

ρ̈ = r̈AB eAB + ṙAB ėAB, (3.31)

where r̈AB = r̈B − r̈A is the difference of the gradient of the Earth’s gravitational potential
at the positions of the two satellites A and B. Thus, it provides the link to the gravity field:
r̈AB = ∇VB − ∇VA. The variable eAB is the unit vector of the LOS and ėAB is its time
derivative. The term ṙAB = ṙB − ṙA is the velocity difference between satellites A and B.
The second term ṙAB ėAB is neglected in this study, because no acceleration measurements
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are needed for its estimation and the focus is set on the benefit of novel accelerometers.
However, the precision of the relative velocity vector limits the solution as it is only mea-
sured by GNSS with 0.1 mm/s accuracy (Weigelt, 2017).

The functional model is written as

ρ̈ = (∇VB − ∇VA)eAB

= (gB,x − gA,x)ex + (gB,y − gA,y)ey + (gB,z − gA,z)ez

=
N∑

n=2

N∑
m=0

Ax̂nmx̂nm,

(3.32)

with the parameter vector elements

x̂nm = {C̄nm, S̄nm} (3.33)

and the design matrix elements

Ax̂nm =
(

∂gB,x

∂x̂nm

− ∂gA,x

∂x̂nm

)
ex +

(
∂gB,y

∂x̂nm

− ∂gA,y

∂x̂nm

)
ey +

(
∂gB,z

∂x̂nm

− ∂gA,z

∂x̂nm

)
ez. (3.34)

In order to validate the de-correlation filter, the results without and with variance-covariance
matrix are represented in Figure 3.17 and Figure 3.16. The formal errors and the true errors,
which are the coefficients differences between reference and recovered gravity field, are dis-
played. The iterative results of degree RMS of the geoid height are given in Figure 3.16. The
solution converges after two iterations and cumulative geoid error decreases by 0.08 mm. The
solutions of iteration 1 (orange line) and iteration 2 (green line) do not differ significantly.
Hence, all following simulations in this thesis will be performed with one iteration only. In
addition to that, this saves valuable computation time on the cluster system.

0 10 20 30 40 50 60 70 80 90
Degree

10
9

10
7

10
5

10
3

10
1

10
1

10
3

D
eg

re
e 

R
M

S 
of

 th
e 

ge
oi

d 
he

ig
ht

 [m
] Eigen-6c4

true, it. 0
formal, it. 0
true, it. 1

formal, it. 1
true, it. 2
formal, it. 2

Figure 3.16: Degree RMS of the coefficient differences between recovered gravity and refer-
ence gravity and formal errors for iteration results; parameters: altitude of 246 km, hybrid
accelerometer, KBR noise
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Figure 3.17 shows the results for each coefficient as pyramid representation on a logarithm
scale. The reduction of the true errors and the striping effects is illustrated. After applying
the de-correlation filter, the formal errors are consistent with the true errors.
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Figure 3.17: Evaluation of the de-correlation filter by coefficient differences between recov-
ered and reference gravity field as pyramid representation (logarithm scale); parameters:
altitude of 246 km, EA noise at the level of 1 × 10−10 m/s2, LRI noise

3.6.3 Gradiometry
The principle of gradiometry is the measurement of the second derivative of the gravitational
potential. The main instrument is the gradiometer which consists of several accelerometers
in a specific configuration. The measurements are acceleration differences along a short
baseline. The GOCE gradiometer is composed of six accelerometers which are arranged
pairwise with a baseline length of 0.5 m. One pair forms one gradiometer arm. All three
gradiometer arms are orthogonal to each other. The observed gradient tensor Γ contains the
gravity gradient tensor V , the centrifugal part ΩΩ and the Euler part Ω̇ (Rummel, 1986):

Γ = V + ΩΩ + Ω̇, (3.35)
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with

V =

Vxx Vxy Vxz

Vxy Vyy Vyz

Vxz Vyz Vzz

 , Ω =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 , Ω̇ =

 0 −ω̇z ω̇y

ω̇z 0 −ω̇x

−ω̇y ω̇x 0

 . (3.36)

Differential mode (adm,ij) and common mode (acm,ij) accelerations are calculated from the
acceleration measurements:

adm,ij = 1
2(ai − aj), acm,ij = 1

2(ai + aj), (3.37)

where i and j are the accelerometer indices of one pair. The diagonal gravity gradient
components are obtained by the measured accelerations differences and angular velocities:

Vxx = −2adm,14,x

Lx

− ω2
y − ω2

z (3.38)

Vyy = −2adm,25,y

Ly

− ω2
x − ω2

z , (3.39)

Vzz = −2adm,36,z

Lz

− ω2
x − ω2

y . (3.40)

For the recovery of the gravity field coefficients a direct, time-wise approach is applied. The
coefficients are estimated in an adjustment including a stochastic model which is described
in section 3.6.1. The required observations for the recovery are the gravity gradients, the
attitude quaternions and the satellite positions. The gravity gradients are the second-order
derivatives of the gravitational potential along the axes k, l ∈ {x, y, z} in the Gradiometer
Reference Frame (GRF):

Vkl = ∂2V

∂k∂l
. (3.41)

The functional model is given by

Vkl = V 0
kl +

N∑
n=2

N∑
m=0

Ax̂nmx̂nm, (3.42)

with the initial gradients V 0
kl computed from the normal gravity field model, the parameter

vector elements

x̂nm = {C̄nm, S̄nm} (3.43)

and the design matrix elements

Ax̂nm = RGRF
LNORF

∂V LNORF
kl

∂x̂nm

(RGRF
LNORF )T . (3.44)

The gradients are measured in GRF. Consequently, the base functions are transformed
from Local North-Oriented Reference Frame (LNORF) to GRF using the rotation matrix

42



RGRF
LNORF . For the partial derivatives and further details the reader is referred to Wu (2016).

The definition of the reference frames is given in appendix A.1.

The stochastic model is validated for the gradiometry case. The two-dimensional, formal
errors and the coefficient differences are shown in Figure 3.18 before and after applying the
de-correlation filter. The formal errors and the true errors are consistent. The true errors are
reduced when applying the de-correlation filter. The one-dimensional errors are illustrated
in Figure 3.19 as degree RMS of the geoid height. Figure 3.19 shows the improvement after
the first iteration. This is also reflected in the cumulative geoid error which is reduced by
2.93 cm.
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Figure 3.18: Evaluation of the de-correlation filter by coefficient differences between recov-
ered and reference gravity field as pyramid representation (logarithm scale); parameters:
gradiometry component Vyy, altitude of 246 km, EA noise at a level of 2 × 10−12 m/s2,
Ly = 0.5 m
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Figure 3.19: Degree RMS of the coefficient differences between recovered gravity and refer-
ence gravity and formal errors for iteration results; parameters: gradiometry component Vyy,
altitude of 246 km, electrostatic accelerometer noise at a level 2 × 10−12 m/s2, Ly = 0.5 m

3.6.4 Combination of Range Accelerations and Gravity Gradients
The observation groups are combined by the summation of the normal equation system. The
corresponding elements of the left-hand side and the right-hand side of the normal equations
systems are added and weighting factors are applied. The variance component estimation for
combining different groups of observations is described in Koch and Kusche (2001). In this
study the posterior variances of the individual adjustments are used. Cross-track gravity
gradients Vyy and range acceleration from ll-SST are combined as follows:

x̂ =
(

1
σ2

ll−SST

N ll−SST + 1
σ2

V yy

NV yy

)−1 ( 1
σ2

ll−SST

wll−SST + 1
σ2

V yy

wV yy

)
, (3.45)

where σ2
ll−SST and σ2

V yy are the variance components. The posterior variances of the indi-
vidual analysis are used as initial values. The variance components are estimated iteratively
according to Koch and Kusche (2001). In Figure 3.20 the degree RMS of the coefficient dif-
ferences of iterative computations are given for two examples. It is shown that the posterior
variances of the individual solutions are already good estimates of the variance components
(cf. combination, iteration 0 in Figure 3.20). The initial variance components are 0.8063 for
the cross-track gradient solution and 0.7145 for the ll-SST solution. The variance compo-
nent estimation results are 0.9718 and 0.7777 in the first iteration. The estimation converges
after two iterations with the variance components of 0.9767 and 0.7684. However, the re-
covered gravity field coefficients are only affected slightly by the iteration process. Thus,
in Figure 3.20 the difference between iteration 0 and iteration 1 is marginally noticeable.
However, the cumulative error is reduced from an error of 1.83 cm with the initial variance
components to 1.80 cm. The cumulative geoid error of the single ll-SST solution is 3.68 cm
and 8.05 cm of the cross-track gradiometry solution.
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Figure 3.20: Degree RMS of the coefficient differences between recovered and reference
gravity field for the iterative variance component estimation

3.7 Summary
Chapter 3 includes the description of different simulation environment elements:

• simulation of satellite dynamics,

• modeling of sensor behavior,

• modeling of control system behavior,

• modeling of further noise sources,

• gravity field recovery from synthesized measurements.

Non-gravitational accelerations are modeled using the XHPS toolbox. Models for atmo-
spheric drag, solar radiation pressure, Earth albedo, infrared and thermal radiation pressure
as well as the surface model and mass of the satellite are considered. Attitude control sys-
tem behavior models from XHPS are used to ensure that the effective area is realistic. In
addition to the models available in XHPS, the author of this thesis modeled a the drag
compensation system behavior. The drag compensation system is an important component
for the accelerometer performance analysis.
The accelerometer noise is modeled based on PSD models, i.e. derived from in-orbit perfor-
mances of GOCE, GRACE and GRACE-FO accelerometers. The PSD of CAI accelerometer
is estimated based on ground experiments and performance expectations for the micrograv-
ity environment in space. Furthermore, the transfer function of an atomic interferometer is
implemented. The combination of electrostatic and CAI measurement is carried out by low-
pass and high-pass filtering. State-of-the-art ranging measurement instruments behaviors
are modeled for ll-SST scenarios. Time-variable background modeling is the major challenge
concerning gravity field recovery. Hence, error assumptions due to temporal variation in
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atmosphere and ocean and ocean tides are included.
SH coefficients are estimated within a least-squares adjustment. The adjustment procedure
is explained for two cases: using ll-SST observation and using gradiometry measurements.
Moreover, the parameter estimation for the combination these two measurement concepts is
given.
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4 Impact of New Measurement Con-
cepts on Gravity Field Recovery

The modeled sensor behaviors, control system behaviors and mission concepts presented in
chapter 3 have to be evaluated in terms of their relevance for the measurement of the Earth’s
gravitational field. The impact of different accelerometer types on the gravity field solution
is studied for ll-SST missions (section 4.4) and gradiometry missions (section 4.5). These
studies are performed under the assumption that satellites are equipped with a drag com-
pensation system. The advantages, disadvantages and other aspects of a drag compensation
system are examined separately in section 4.2. Section 4.3 provides an analysis concerning
the CAI accelerometer. It considers the variation of the signal within an interferometer cycle,
which is an important component. In section 4.6, a new mission concept is studied which
addresses the addition of a cross-track gradiometer to a ll-SST mission.

4.1 Selection of Simulation Scenarios
In previous sections, individual components have been investigated. In this section, the
interaction between these components is analyzed. A meaningful analysis is only achieved
when instruments and satellite orbits are considered together. Therefore, several parameters
of sensors, actuators and orbits are varied. In Figure 4.1, the interaction between some
central components is illustrated. Considered components are the attitude control system,
the drag-free control system, the accelerometer and orbit parameters. Sensors and actuators
of an attitude control system are described in the sections 2.2.2 and 3.4.2. In this work,
state-of-the-art attitude control system models are used. On the one hand, the attitude
control system is required for the measurements of the KBR system and the LRI system.
On the other hand, the attitude control system can help to reduce the effective area of the
spacecraft on which the atmospheric drag acts. The smaller the front area in flight direction
of the satellite, the more reduced is the force due the atmospheric drag. Moreover, the
rotation of the satellite also affects the performance of the CAI accelerometer. The rotation
leads to an additional phase shift and can also cause a contrast loss of the interferometer (cf.
section 4.5). The parameters of the drag-free control system strongly depend on the satellite
orbit and the accelerometer.
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Figure 4.1: Interaction between components of a satellite gravity mission

Low orbits lead to higher non-gravitational forces acting on the satellite. The thruster pa-
rameters have to be adapted to the needed control force. Aside from that, a lower altitude
leads to a higher propellant consumption which is a key factor for the mission lifetime. The
interaction between the drag-free system and the accelerometer has several aspects. The
drag-free system can avoid saturation of the accelerometer. The magnitude of the non-
gravitational accelerations is also critical for the accelerometer performance, for example the
error due to the scale factor and the variation within one CAI cycle.

From the described relations, it can be concluded that the orbit altitude has a large in-
fluence on the accelerometer, the drag-free system and also on the gravity field solution.
Therefore, several orbit altitudes of approximately 462 km, 363 km, 303 km and 246 km are
tested. Obtaining a repeat orbit is taken into account in the orbit design, which results in
the given orbit altitudes. In order to recover monthly gravity field solutions, all selected
orbits have a repeat period of 29 days. An inclination of 89.9◦ is chosen which leads to a
small polar gap. The selected orbit scenarios are given in Table 4.1.
The orbit data is simulated using the XHPS software, which is briefly introduced in sec-
tion 3.1. Initial positions and velocities for the orbit integration are calculated from the
Keplerian elements given in Table 4.1. The eccentricity is set to 0.001, the right ascension of
the ascending node Ω and the argument of the perigee ω are set to zero. The mean anomaly
M is chosen for the two satellites such that the distance between them is approximately
200 km. The satellites have to point to each other which is defined by the initial attitude
information (cf. appendix A.2). A stepsize of 5 s is used for the synthesis of the observations
and the recovery of the gravity field solutions.
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Table 4.1: Orbit parameters of selected scenarios

Altitude Inclination Repeat period Number of orbital rev-
olutions to repeat

Orbit 1 462.015 km 89.9◦ 29 days 443
Orbit 2 362.751 km 89.9◦ 29 days 453
Orbit 3 303.662 km 89.9◦ 29 days 459
Orbit 4 246.041 km 89.9◦ 29 days 465

4.2 Drag Compensation Analysis
On the one hand, drag-free systems enable orbit maintenance, on the other hand, accelerom-
eter saturation is prevented. Whether drag compensation is needed to avoid accelerometer
saturation, it is discussed in section 4.2.3 for several orbit altitudes. Another aspect is the
possible reduction of the error contribution due to accelerometer imperfections by a drag-free
system. This aspect is evaluated for ll-SST and gradiometry missions. The propellant con-
sumption of the drag compensation limits the mission lifetime which is also briefly addressed.

4.2.1 Drag Compensation Requirements due to Accelerometer Im-
perfections for ll-SST Missions

The requirement for drag compensation depends on the knowledge of the scale factor and
the noise level of the accelerometer. In a simplified scenario the measured acceleration ameas

consists of the true acceleration atrue, the scale factor strue and the noise of the accelerometer
nacc according to:

ameas = strue atrue + nacc. (4.1)

The scale factor is estimated with a calibration method and the measurement is corrected
with the estimated scale factor sest:

aest = strue atrue + nacc

sest

. (4.2)

The residual error due to imperfect calibration is given by

vest−true = aest − atrue, (4.3)

vest−true = strue atrue + nacc

sest

− atrue, (4.4)

vest−true = strue − sest

sest

atrue + nacc

sest

. (4.5)

The objective is to achieve that the error influence due to the imperfect determination of
the scale factor is lower than the accelerometer noise:

strue − sest

sest

atrue <
nacc

sest

. (4.6)
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Consequently, a requirement on the maximum acceleration signal is defined by

atrue <
nacc

strue − sest

. (4.7)

Adding a tolerance factor of 1/2 gives the final definition of the maximum allowed accelera-
tion signal

atrue <
1
2

nacc

strue − sest

, (4.8)

where strue −sest is the difference between the estimated and the true scale factor and defined
as the scale factor knowledge sknow. The ASD of the required drag compensation is estimated
according to Gruber et al. (2014a) with

ASD(f) <
1
2

ASDnacc,x(f)
sknow

, (4.9)

where 1
2 is a tolerance factor, sknow is the scale factor knowledge and ASDnacc,x is accelerom-

eter noise in terms of ASD for the x-axis. The scale factor is estimated to 1 % accuracy
for the previous missions. This knowledge is assumed to be significantly more accurate for
future gravity missions. In Gruber et al. (2014a) sknow is assumed with 0.2 %. In Abrykosov
et al. (2019) an accuracy of the scale factor of 10−5 is assumed for a hybrid accelerometer,
where the classical accelerometer is calibrated by the CAI measurements. The scale factor
of the CAI is very well known with an uncertainty of 1 × 10−9 or even better. In fact, it is
expected that a calibration of the EA using the measurements of a CAI can also achieve an
accuracy of 1 × 10−9 for the estimation of the scale factor of the electrostatic one.
The requirement depends on the accelerometer noise, as the degradation by the scale factor
uncertainty has to be lower than the noise. An example can be found in Figure 4.2.
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Figure 4.2: ASD of the non-gravitational acceleration signal in along-track direction for the
altitude of 246 km (blue lines) and the requirement is based on scale factor knowledge of
0.2 % (dotted line)
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The ASD is estimated with two different methods: the Welch’s method and the modified
one. The results of the Welch’s method is abbreviated with ASD and the results of the mod-
ified logarithmic Welch’s method with LASD. The blue curves are ASD and LASD of the
acceleration signal due to non-gravitational forces. The dotted line represents the assump-
tion for the maximum allowed acceleration signal which is calculated with equation (4.9).
Consequently, the requirement is not achieved because the blue curve lies above the dotted
line.
In the Figures of this section, the sensitive axes of the GRACE accelerometer are chosen for
the requirement calculation. Figures 4.3 and 4.4 show the ASD of the non-gravitational ac-
celeration signal in along-track direction for altitudes of 246 km, 303 km, 363 km and 462 km.
In the Figures 4.5 and 4.6, it is presented for the cross-track component and in the Figures 4.7
and 4.8 for the radial component. The results of two different time epochs are considered
in order to represent the maximum and minimum of the solar cycle and consequently the
maximum and minimum of the non-gravitational acceleration signal.
The ASD or LASD of non-gravitational acceleration signal (colored lines) must be below
the requirement (dotted lines). In along-track direction, the acceleration has the largest
magnitude due to the atmospheric drag. Both assumptions for scale factor knowledge of
an EA are not achieved. This applies to all orbit scenarios of different altitudes and over
the full relevant frequency range. Consequently, the scale factor is not estimated accurately
enough when only having one EA for along-track measurements. The EA measurements
are degraded by the inaccurately determined scale factor to such an extent that this error
accounts for a larger contribution than the accelerometer noise. Either the scale factor esti-
mations have to be improved or the magnitudes of the non-gravitational signal have to be
reduced in order to prevent the degradation.
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Figure 4.3: ASD of the non-gravitational acceleration signal in along-track direction for
different altitudes (colored lines) and the requirement with different assumptions for the
scale factor knowledge (dotted lines), July 2000 representing solar cycle maximum
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Figure 4.4: ASD of the non-gravitational acceleration signal in along-track direction for
different altitudes (colored lines) and the requirement with different assumptions for the
scale factor knowledge (dotted lines), January 2006 representing solar cycle minimum

The cross-track component holds the same conclusion as the along-track component. Al-
though the magnitude is lower overall for all altitude scenarios, a scale factor knowledge of
1 % and 0.2 % is not sufficient.
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Figure 4.5: ASD of the non-gravitational acceleration signal in cross-track direction for
different altitudes (colored lines) and the requirement with different assumptions for the
scale factor knowledge (dotted lines), July 2000 representing solar cycle maximum
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Figure 4.6: ASD of the non-gravitational acceleration signal in cross-track direction for
different altitudes (colored lines) and the requirement with different assumptions for the
scale factor knowledge (dotted lines), January 2006 representing solar cycle minimum

The radial component shows an even lower ASD of non-gravitational accelerations. Further-
more, the ASD curves of the four altitudes are more similar than those of the other two
directions. The atmospheric drag, which decreases with increasing altitude, acts mainly in
the along-track and the cross-track direction. Nevertheless, the scale factor estimation for
an EA is not accurate enough. The stated conclusions are valid for both periods of different
solar activities, for the period July 2000 as well as for January 2006.
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Figure 4.7: ASD of the non-gravitational acceleration signal in radial direction for different
altitudes (colored lines) and the requirement with different assumptions for the scale factor
knowledge (dotted lines), July 2000 representing solar cycle maximum
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Figure 4.8: ASD of the non-gravitational acceleration signal in radial direction for different
altitudes (colored lines) and the requirement with different assumptions for the scale factor
knowledge (dotted lines), January 2006 representing solar cycle minimum

The requirement is easily fulfilled for all altitudes and directions when a scale factor knowl-
edge of 1 × 10−9 is assumed, which is feasible for a CAI accelerometer. In along-track di-
rection, the requirement curve is almost three orders of magnitude above the highest peaks
of the acceleration signal. In cross-track direction, it is four orders of magnitude and in
radial direction even five. This shows that a degradation due to the scale factor in CAI
measurements does not occur.
With an assumption of 1 × 10−5, there are still some peaks above the requirement curve in
along-track direction for the two lower altitudes. The requirement is achievable with alti-
tudes of 303 km, 363 km and 462 km for the cross-track component. However, a scale factor
knowledge of 1×10−5 would be sufficient in radial direction even for a low altitude of 246 km.

4.2.2 Drag Compensation Requirements for Gradiometry due to
Accelerometer Imperfections

The measured gradient tensor V̂ is degraded by several noise sources. As an example, the
measured component V̂xx includes the following errors (linear approximation) in addition to
the gravitational gradient Vxx (Douch et al., 2018a; Douch et al., 2018b):

V̂xx = Vxx+nxx−2ωynωy−2ωznωz−2dΘzVxy+2dΘyVxz+∇Vxxdr+errde−aliasing+β
ai,x + aj,x

L
,

(4.10)

where nxx is the gradiometer noise, −2ωynωy − 2ωznωz is the error due to the correction of
the centrifugal terms, 2dΘzVxy + 2dΘyVxz error due to the attitude determination, ∇Vxxdr
the error due to the satellite position, errde−aliasing is the de-aliasing error, β ai,x+aj,x

L
is the

error due to the non-zero common-mode rejection.
The contribution of the common mode is caused by accelerometer imperfections, e.g. if the
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scale factors of pairs of accelerometers are not exactly equalized. Stummer et al. (2012) and
Stummer (2012) show that the measured gravity gradient Vyy of GOCE is degraded by the
non-perfect common mode rejection as the y-component is affected by strong cross-winds.
In this section, the focus is on this noise contribution only. The true gradient Γtrue,xx is given
by acceleration differences of the gradiometer pair ij divided by the baseline length L

Γtrue,xx = atrue,i,x − atrue,j,x

L
. (4.11)

In a simplified scenario, which only considers the scale factors, the estimated gradient Γest,xx

is written as

Γest,xx =
strue,i,xatrue,i,x

sest,i,x
− strue,j,xatrue,j,x

sest,j,x

L
, (4.12)

Γest,xx =
strue,i,x

sest,i,x
+ strue,j,x

sest,j,x

2

(
atrue,i,x − atrue,j,x

L

)
+

strue,i,x

sest,i,x
− strue,j,x

sest,j,x

2

(
atrue,i,x + atrue,j,x

L

)
(4.13)

= α
(

atrue,i,x − atrue,j,x

L

)
+ β

(
atrue,i,x + atrue,j,x

L

)
, (4.14)

with the true measurements atrue,i,x and atrue,j,x of two accelerometers having the indices i
and j, the common mode gain β, the differential mode gain α, the baseline length L, the
true scale factor strue and the estimated scale factor sest. The Common Mode Rejection
Ratio (CMRR) is the ratio of the common mode gain β to the differential mode gain α:

CMRR = log10

(
α

β

)
. (4.15)

It indicates how much the gradient is degraded by the common mode signal. In an ideal
case, α is 1 and β is nearly zero. The aim is to keep the term β

(
ai+aj

L

)
as small as possible.

Thus, the objective is that this item is lower than the gradiometer noise ngradio:
strue,i,x

sest,i,x
− strue,j,x

sest,j,x

2
atrue,i,x + atrue,j,x

L
< ngradio. (4.16)

The accelerometers are arranged around the origin of the GRF which is located in the center
of mass of the satellite. Consequently, the common mode acceleration reflects the sum of
the non-gravitational forces acting on the satellite. It follows from the above and with the
assumption that the gradiometer baseline length is 1 m:

strue,i,x

sest,i,x

− strue,j,x

sest,j,x

ang,x < nacc. (4.17)

The final definition of the maximum allowed non-gravitational acceleration signal is

ang,x <
nacc

strue,i,x

sest,i,x
− strue,j,x

sest,j,x

. (4.18)

The ASD of required drag compensation is formulated as

ASD(f) <
ASDnacc,x(f)

strue,i,x

sest,i,x
− strue,j,x

sest,j,x

. (4.19)
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In order to get a realistic assumption for strue,i,x

sest,i,x
− strue,j,x

sest,j,x
, the scale factors are estimated

by the calibration method of Siemes (2012), which is briefly described in section 2.2.4. The
term strue,i,x

sest,i,x
− strue,j,x

sest,j,x
varies between 3 × 10−7 and 2 × 10−5. The calibration procedure is

tested with simulated data.
The ASD of non-gravitational acceleration signal is given for along-track in Figure 4.9 and
4.10, for cross-track direction in Figure 4.11 and 4.12 and for radial direction in Figure 4.13
and 4.14. The requirements based on a scale factor difference knowledge of 3 × 10−7 and
2 × 10−5 are additionally illustrated. The accelerometer noise is modeled using the ASD
model of the GOCE accelerometers.
The two scenarios with higher orbit altitudes of 462 km and 363 km show compliance with
the requirement using a scale factor difference knowledge of 3 × 10−7 in along-track direc-
tion. Some peaks in the frequencies between 1 × 10−4 Hz and 1 × 10−3 Hz do not meet the
requirements for the two low-altitude scenarios. This is much more evident for the results of
the month which represents the solar cycle maximum. In this case, the requirement is not
fully met for an altitude of 363 km. The requirement is not achieved for all orbit altitudes
with a scale factor difference knowledge of 2 × 10−5.
The magnitude of the non-gravitational acceleration ASD is again smaller for the cross-track
component. To this end, a differential scale factor knowledge of 3 × 10−7 fulfills the require-
ment, whereat a knowledge of 2 × 10−5 does not. This holds true for all scenarios.
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Figure 4.9: ASD of the non-gravitational acceleration signal in along-track direction for dif-
ferent altitudes (colored lines) and the requirement with different assumptions for differential
scale factor knowledge (dotted lines), July 2000 representing solar cycle maximum
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Figure 4.10: ASD of the non-gravitational acceleration signal in along-track direction for
different altitudes (colored lines) and the requirement with different assumptions for differ-
ential scale factor knowledge (dotted lines), January 2006 representing solar cycle minimum
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Figure 4.11: ASD of the non-gravitational acceleration signal in cross-track direction for
different altitudes (colored lines) and the requirement with different assumptions for differ-
ential scale factor knowledge (dotted lines), July 2000 representing solar cycle maximum
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Figure 4.12: ASD of the non-gravitational acceleration signal in cross-track direction for
different altitudes (colored lines) and the requirement with different assumptions for differ-
ential scale factor knowledge (dotted lines), January 2006 representing solar cycle minimum

In scenarios of the radial direction, the requirement using a scale factor difference knowledge
of 3 × 10−7 is explicitly met. For a scale factor difference knowledge of 2 × 10−5, there is
only a small violation of the limit.
In conclusion, scale factors of an EA are not estimated accurately enough for the along-track
direction. In cross-track direction, it depends on the altitude and whether the scale factor
difference knowledge can be approximated with 2 × 10−5 or 3 × 10−7. No large degradation
due to an uncertain estimation of the scale factor is expected in radial direction.
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Figure 4.13: ASD of the non-gravitational acceleration signal in radial direction for different
altitudes (colored lines) and the requirement with different assumptions for differential scale
factor knowledge (dotted lines), July 2000 representing solar cycle maximum
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Figure 4.14: ASD of the non-gravitational acceleration signal in radial direction for different
altitudes (colored lines) and the requirement with different assumptions for differential scale
factor knowledge (dotted lines), January 2006 representing solar cycle minimum

In Figure 4.15, the residual non-gravitational accelerations after applying drag compensation
are displayed. Two different cases for the drag-free control system are considered: one is a
model of the GOCE control system and the other one is a system using fine control thrusters.
The requirement with the scale factor difference knowledge of 2×10−5 is kept using the GOCE
control parameters while the more stringent requirement is not achieved. The fine control
parameters enable very small residual acceleration and both requirements are achieved. This
fine controlling might be too optimistic, but it is also two orders of magnitude below the
dotted curve of the scale factor difference knowledge of 3 × 10−7. Thus, even some relaxed
fine controlling would work.
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Figure 4.15: ASD of the residual non-gravitational acceleration using drag compensation
(colored lines) and the requirement with different assumptions for the scale factor knowledge
(dotted lines)
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4.2.3 Saturation of the Accelerometer
The requirement for the drag compensation system also depends on the saturation limit,
which is ±6.5 × 10−6 m/s2 for GOCE accelerometers. The limit is even less stringent with
±5 × 10−5 m/s2 for GRACE accelerometers. The saturation limit can be assumed with
±1 × 10−6 m/s2 for future satellite gravity missions (Gruber et al., 2014a). The magnitude
of the non-gravitational accelerations strongly depend on the altitude of the satellite and
the solar activity. Thus, it is calculated for different orbit altitudes and for various months
within a solar cycle. The satellite body model and the mass of the GRACE-FO are used
for these calculations. The month July 2000 is representative for the maximum of a solar
cycle and January 2006 for the minimum. The non-gravitational accelerations as well as the
saturation limit are illustrated in Figure 4.16 for the two months. The enormous influence
of the solar cycle on the strength of the non-gravitational accelerations is demonstrated.

(a) July 2000 representing solar cycle maximum (b) January 2006 representing solar cycle minimum

Figure 4.16: Non-gravitational accelerations in along-track direction for different orbit alti-
tudes and saturation limit

(a) Along-track direction (b) Cross-track direction

Figure 4.17: Non-gravitational accelerations in along- and cross-track direction for different
orbit altitudes and saturation limit
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Table 4.2: Maximum absolute value of the non-gravitational acceleration signals for different
altitudes and measurement directions

altitude along-track direction cross-track direction radial direction
246 km 23.36 × 10−6 m/s2 13.56 × 10−7 m/s2 4.37 × 10−8 m/s2

303 km 9.21 × 10−6 m/s2 5.21 × 10−7 m/s2 2.69 × 10−8 m/s2

363 km 3.60 × 10−6 m/s2 2.50 × 10−7 m/s2 2.53 × 10−8 m/s2

462 km 1.00 × 10−6 m/s2 0.73 × 10−7 m/s2 4.47 × 10−8 m/s2

Figure 4.17 shows the limit and the non-gravitational accelerations in time domain for several
days between July 2000 and December 2006. The maximum or minimum magnitude of the
non-gravitational accelerations signal of all tested time epochs are given in Table 4.2 for
all directions of the orbital frame. Figure 4.17 indicates that it can only be guaranteed
for an altitude of 462 km to not exceed the saturation limit of ±1 × 10−6 m/s2 in along-
track direction. Given an altitude of 363 km, this can only be assured when solar activity is
low. Increasing the limit to ±4×10−6 m/s2 is an option for such an altitude. The saturation
limit is not that critical for cross-track direction. Accelerometer saturation does not occur for
radial component cases as the magnitude is in the order of 10−8 m/s2. The saturation limit is
exceeded for the altitudes of 303 km and 246 km in along-track direction which demonstrates
the necessity of drag compensation for these altitudes. In order to avoid the accelerometer
saturation also for lower altitudes, a constant thrust is applied (cf. Figure 4.18 (a)).
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Figure 4.18: Control system using constant thrust levels, calculation for January 1st, 2006

The saturation is not exceeded for an altitude of 303 km with the addition of a constant
thruster force. On the contrary, further compensation would be needed for an altitude of
246 km. Thus, as shown in Figure 4.18 (b), additional thrusts are applied per orbit revolu-
tion. In a first scenario, the control system works with two different thrust levels per orbital
revolution (2.2 mN, 3.1 mN). In a second scenario the control system works with three dif-
ferent thrust levels per revolution (1.6 mN, 2.2 mN, 3.1 mN). In the latter one, the limit is
almost achieved, but not completely due the long-term variation of the non-gravitational
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force acting on the satellite. A constant thrust or three different thrust levels per orbit rev-
olution would minimize the performance and construction requirements for the drag control
system.
It has to be noted, ±1×10−6 m/s2 is a severe saturation limit. Already a limit of ±6.5×10−6

m/s2 is not exceeded without compensation for the altitudes of 303 km, 363 km and 462 km
and with a constant thrust for the altitude of 246 km. However, the maximum measurement
range of an accelerometer is highly related to the accelerometer sensitivity. The smaller the
measurement range is, the higher is the sensitivity. This fact reinforces the need of drag
compensation for low orbit altitudes of 246 km and 303 km.

4.2.4 Propellant Consumption
The mission lifetime is mainly limited through the propellant consumption. The propellant
consumption per second of the drag-free system can be roughly estimated by

dm/ds = F

Isp g0
, (4.20)

where F is the non-gravitational forces acting on the satellite, Isp is the specific impulse
and g0 is the standard acceleration due to gravity (Gruber et al., 2014a). The actuator of
the drag-free system is an ion propulsion system, where the specific impulse is 2000 s. The
specific impulse of cold gas thrusters, needed for orbit maneuvers, can be assumed with 60 s.
The propellant consumption is estimated for the ion propulsion system for one month and
then extrapolated for a mission duration of 10 years. An extra margin of 20 % is added
according to Gruber et al. (2014a). The GOCE mission carried 40 kg Xenon on board,
sufficient for 56 months. However, it was a longer mission lifetime than planned by reason of
the large margin in the propellant budget for the ion propulsion system which was enabled by
low solar activity. The atmospheric density is a critical parameter and is strongly influenced
by the solar activity and the orbit altitude. Thus, the calculations are performed for several
time spans: July 2000, March 2003, June 2005, January 2006 and December 2006. This
covers the minimum and maximum of a solar cycle as well as other examples in between.
The propellant consumption is plotted as a function of altitude in Figure 4.19. The red
crosses represent the calculated consumption values. The dashed lines are the fitted curves
for the calculations of the same time span. The solid blue line is the fitted curve using all
data points.
The average consumption for a mission with 10 years of lifetime and an orbit altitude of
246 km is estimated with 80 kg. The results coincide with the consumption of the GOCE
mission of 40 kg for approximately 5 years. However, the estimation is possibly on the
optimistic side as GOCE started at the minimum of a solar cycle. Reasons for this might
be further consumption needed for calibration procedures and due to the lower orbit phase
at the mission end. Figure 4.19 shows that the consumption increases exponentially with
decreasing altitude. If the orbit is maintained by a constant thrust, the required propellant
is reduced only very slightly, as the highest disturbance is at zero frequency, i.e. a constant.
An increase of the orbit altitude from 246 km to 303 km reduces the average propellant
consumption significantly from 8.2 kg/yr to 2.5 kg/yr.

62



250 300 350 400 450 500

orbit altitude [km]

0

20

40

60

80

100

120

140

p
ro

p
e
lla

n
t 
c
o
n
s
u
m

p
ti
o
n
 [
k
g
]

Figure 4.19: Propellant consumption of the ion thrusters for a mission duration of 10 years

4.3 Cold Atom Interferometry Accelerometer Analysis
The simulated non-gravitational accelerations are analyzed concerning their variation in an
interferometer cycle in this section. In this study part, only accelerations in along-track
direction are included, because non-gravitational accelerations have the largest impact on
LEO satellites in this direction and consequently the maximum effect is expected. In this
section, only a single satellite is investigated since the findings apply for any satellite. An
attitude control system with a nadir pointing mode is included in the calculation of non-
gravitational accelerations. Misalignment errors and errors due to the non-orthogonality of
the accelerometer frame axes are not considered. Degradation induced by the cross-track
and nadir axes would appear when the true alignment differs from the target alignment.
Simulations with satellite altitudes of 462 km and 303 km are performed. The mass of the
satellite is assumed to be equal to 600.98 kg which is the mass of GRACE-FO at the start of
the mission. A detailed surface model of a GRACE-FO satellite body is used. The mass and
shape of the satellite and the altitude of 462 km are the parameters of the GRACE-FO mis-
sion, allowing a realistic comparison to the results of the mission. Moreover, a lower altitude
of 303 km is chosen, which would lead to a higher sensitivity to the gravity field signal at
the cost of higher non-gravitational accelerations and thus, it is interesting for future gravity
missions. In order to get a continuous signal for the computation of ϕk in equation (3.5),
the acceleration time series is approximated with an interpolation polynomial. The Newton
polynomial interpolation is applied for each cycle separately. The best agreement is achieved
with a quadratic polynomial.
The variation between the minimum acceleration and the maximum acceleration within one
cycle is calculated for the orbit scenarios with different altitudes. The variation for January
1st, 2006 is given in Figure 4.20. The variation in 12 s is in the order of 10−9 m/s2 for an alti-
tude of 462 km and 10−8 m/s2 for an altitude of 303 km. The transfer function of an atomic
interferometer is used to investigate the effect of this variation in one cycle. The output of
the atom interferometer is compared to the true acceleration value at t = 7 s of each cycle,
i.e. the middle time of the interferometer. In Figure 4.21 the ASD of this difference and
the ASD of the variation in one cycle are shown. The estimated error of the acceleration
measurements is at the level of 3 × 10−11 m/s2 for an altitude of 462 km and 2 × 10−10 m/s2

for an altitude of 303 km.
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Figure 4.20: Variation of non-gravitational accelerations within one interferometer cycle for
two different altitudes: 462 km (red) and 303 km (blue) for January 1st, 2006
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Figure 4.21: ASD of the variation of non-gravitational accelerations within one interferometer
cycle (acc. var. - solid lines) and corresponding error contribution to the CAI measurements
(error - dotted lines) for two different altitudes: 462 km and 303 km for January 1st, 2006

The results given in Figure 4.21 are only exemplary for one day (January 1st, 2006). There-
fore, various calculations for different time epochs are shown in Figure 4.22. The maximum
variation of non-gravitational accelerations is in the order of 1.7 × 10−7 m/s2 for the altitude
of 303 km (cf. Figure 4.22 (a)). The variation remains below 5 × 10−8 m/s2 in most cases.
The corresponding error contribution is given in Figure 4.22 (b) and shows a similar result
for the various cases. The ASD of the error contribution varies between 1×10−10 m/s2/

√
Hz

and 1 × 10−9 m/s2/
√

Hz. The error contributions of the scenarios with an altitude of 462 km
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are at a lower level between 1 × 10−11 m/s2/
√

Hz and 2 × 10−10 m/s2/
√

Hz. The reason for
this less impact is the lower variation of the non-gravitational accelerations, which is below
2 × 10−8 m/s2 and, in most cases, even at the level of 1 × 10−9 m/s2.
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Figure 4.22: Acceleration variation and its error estimation for various time epochs

In conclusion, the error due to the acceleration variation in one interferometer cycle varies
between 1 × 10−11 m/s2/

√
Hz and 1 × 10−9 m/s2/

√
Hz, depending on the altitude and solar

cycle. This error contribution is significant, compared to the acceleration noise (cf. sec-
tion 3.3.2). Therefore, temporal filtering of the non-gravitational accelerations, due to the
interferometer response function, has to be taken into account.

Beyond that, the impact of using a drag compensation system is studied. The thruster
model of GOCE is used. As it is impossible to find a good fitting polynomial for the time
series including thruster noise, a filter is applied first. Here, a second order Butterworth filter
with cutoff frequencies of 1 × 10−6 Hz and 5 × 10−3 Hz is used. The variation of accelerations
within one interferometer cycle is shown in Figure 4.23 (a) and its ASD in Figure 4.23 (b).
The estimated error contribution due to the residual variation of non-gravitational accelera-
tions is now below the noise of an atomic interferometer and hence acceptable (Figure 4.23
(b)).

Another option is a cycle time reduction. However, a decrease of the cycle length would
reduce the sensitivity of the atom interferometer in addition to a smaller variation of the
accelerations in one cycle. Thus, several cycle lengths are tested in order to find the best
compromise of these two complementary arguments. The sensitivity of the atom interfer-
ometer is calculated according to the equations (3.10), (3.11) and (3.12). The considered
parameter values are given in section 3.3.2. The estimated error contributions and the es-
timated sensitivities of the atom interferometer are plotted in Figure 4.24 for cycle lengths
of 6 s, 8 s, 10 s and 12 s. Figure 4.24 (a) shows the results for an altitude of 303 km. For a
cycle time of 12 s, the error due to the acceleration variation is dominating in all frequencies.
The best scenario is achieved for a cycle time of 8 s. The error estimations for an altitude of

65



462 km are given in Figure 4.24 (b). In this case, the error due to the acceleration variations
is lower and consequently the best compromise is achieved with a longer cycle time. A CAI
measurement cycle time of 10 s or 12 s is the best solution.
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Figure 4.23: Acceleration variation and its error estimation under drag compensation; orbit
altitude of 303 km
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Figure 4.24: Error contribution due to acceleration variation and sensitivity of the atom
interferometer

In summary, the acceleration variation in one interferometer cycle has to be taken into ac-
count because it can have a critical impact on the performance of the CAI accelerometer. A
balance between the cycle time length and sensitivity has to be found. Drag compensation
is a good option to reduce the impact of this acceleration variation.
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4.4 Gravity Field Solutions using Different Accelerom-
eter Types for ll-SST Missions

In this section, recovered gravity field solutions of ll-SST missions are presented using sev-
eral sensor behavior models and orbit scenarios. The ASD of considered noise sources are
shown in Figure 4.25. The errors due to AOD and ocean tides are the dominating ones
in the frequencies between 3 × 10−4 Hz and 5 × 10−3 Hz. In Figure 4.25, the considered
noise for AOD is 10 % of the AOD1B product RL 6 and for the ocean tides it is 10 % of
the FES2014b product. On the instrument side in the low frequencies, the EA noise is the
limiting factor. How strong the accelerometer noise and in which frequency range it is domi-
nant, depends on the type of accelerometer and also on the ranging measurement instrument.
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Figure 4.25: ASD of considered noise sources

In the following, results using different EA models and the hybrid accelerometer model of
Figure 3.8 are discussed. Furthermore, the solutions are calculated with KBR noise and
LRI noise. For the derivation and a detailed description of these noise models, the reader is
referred to section 3.3. As discussed in sections 4.1, 4.2 and 4.3, the magnitude of the non-
gravitational acceleration signal is important for the accelerometer performance. A higher
orbit altitude leads to small non-gravitational accelerations which is beneficial. In contrast,
the gravitational signal attenuates with the distance to the Earth. Thus, several orbit alti-
tude are tested: 462 km, 363 km, 303 km and 246 km (cf. Table 4.1). All scenarios in this
section are simulated with the assumption that the satellite is equipped with a drag-free sys-
tem. Consequently, no additional errors due to the scale factor knowledge or the variation
of acceleration within one interferometer cycle are considered.

Differences between the reference gravity field model and the recovered gravity field model
are calculated in order to evaluate the simulation results applying different types of ac-
celerometers. These coefficient differences are shown, as they represent the true errors. The
formal errors are not shown, but the agreement with the true errors is shown in section 3.6.
The evaluation is carried out in the spectral and the space domain. The calculations of these
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error representations are given in the equations (2.6) to (2.14). Figure 4.26 gives an overview
of the gravity field solutions using different input parameters. The results are represented
in terms of degree RMS of the geoid height. It has to be noted that the observations are
synthesized using the gravity field coefficients up to degree and order 90 only. This results
in a decrease of the degree RMS at higher degrees in some scenarios. Applying the same
maximum degree in synthesis and recovery allows a fair comparison of the various scenar-
ios, because the omission error and the aliasing from high-frequency signal to low-frequency
signal is not included in the results.
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Figure 4.26: Degree RMS of the coefficient differences for different accelerometer noise mod-
els, ranging noise models for the altitudes of (a) 246 km, (b) 303 km, (c) 363 km and (d)
462 km including AOD and ocean-tide error

It is evident from Figure 4.26 that up to degree 10, there is no significant difference between
the solutions of all scenarios. This is caused by the dominance of the AOD and ocean-tide
errors in these low order coefficients. At degrees higher than 10, the solution using an EA
with a noise level of 1 × 10−10 m/s2 in the frequencies from 2 × 10−3 Hz to 1 × 10−1 Hz (cf.
blue and red curves) is considerably worse than the ones with a noise level of 1 × 10−12 m/s2

in the mentioned frequencies. Hence, it can be concluded that the accelerometer with noise
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level of 1 × 10−10 m/s2 is the limiting instrument. This is confirmed by the fact that the
noise for the distance measurement has hardly any influence on the results. The results with
LRI noise (red curve) and KBR noise (blue curve) are very similar for this accelerometer
performance for all orbit scenarios.
The improvement is large, when using an EA with a noise level of 1 × 10−12 m/s2 in the
frequencies from 2 × 10−3 Hz to 1 × 10−1 Hz instead. The results for the EA with a noise
level at 1×10−12 m/s2 and for the hybrid accelerometer (combination EA with 1×10−12 m/s2

noise in MBW and CAI with 1×10−11 m/s2 noise in all frequencies) are the same up to degree
30 for the altitudes of 363 km and 462 km and up to degree 40 for the altitude of 246 km
and 303 km. The reason for this is the degradation due to the AOD and ocean-tide errors in
these frequencies. In higher degrees, the solutions with LRI noise perform better compared
to KBR noise. This impact is stronger for the two higher altitudes. It can be noticed that
gravity field solutions with a hybrid accelerometer are smoother than the solutions with the
electrostatic one, but they are at the same error level when introducing KBR noise. This
behavior also holds true with LRI noise for the altitudes of 246 km and 303 km. For scenarios
with higher altitudes, the ranging measurement noise has a higher influence in the degrees
from 50 to 90.
Time-variable background model errors are introduced by a scaling of the models, 10 % of
AOD1B product RL 6 and 10 % of the FES2014b product, in the simulations shown in
Figure 4.26. Another option is to take the difference between different models into account.
In Figure 4.27 the gravity solutions with these two options for the background modeling
errors are compared.
When using the EA with a noise level of 1 × 10−10 m/s2, the choice of error assumption for
background modeling does not matter. The cases with better performing accelerometers
show that the error with RL5-RL6 for AOD and EOT11a-FES2014b is higher than 10 % of
the products. Consequently, the degradation by AOD and ocean tides is slightly larger.
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Figure 4.27: Degree RMS of the coefficient differences for different accelerometer noise models
with an LRI noise model for the altitude of 462 km including different error assumptions for
AOD and ocean-tide error

In order to evaluate the differences between the simulation scenarios more accurately, the
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pyramid representation of the coefficient differences and the results in the space domain are
given. As the selection of the very low altitude of 246 km is critical due to the short mission
lifetime, only results for the altitudes of 303 km (Figures 4.28 and 4.29) and for 462 km (Fig-
ures 4.30 and 4.31) are shown in this section. The latter ones are representative for the orbits
of GRACE and GRACE-FO. The results for further scenarios of Figure 4.26 are given in
the Appendix A.3: Figures A.5 and A.6 for the orbit altitude of 246 km and Figures A.7 and
A.8 for 363 km. Figure 4.28 shows that the gravity field solution is largely degraded by the
accelerometer with noise level of 1×10−10 m/s2. The solution is covered with striping effects
up to 1 m in north-south direction in space and at specific orders in the pyramid represen-
tation (the color bar of the plots is limited to ±0.1 m for a better comparison of different
scenarios). These effects are largely reduced in the simulation scenario with an EA with a
higher sensitivity of 1 × 10−12 m/s2, but stripes are still visible with a magnitude of maxi-
mum 0.1 m. The solution is only marginally improved when using a hybrid accelerometer.
Introducing LRI noise instead of KBR noise improves the two latter solutions significantly
(cf. Figure 4.29). While there are still artifacts in the electrostatic solution, they vanish by
the addition of a CAI accelerometer. The coefficient differences are mainly caused by AOD
and ocean-tide errors.
The simulation results with an altitude of 462 km are generally worse, this is valid for all
instrument scenarios. The striping effects increase especially for the scenario with KBR noise
and EA noise at a level of 1 × 10−10 m/s2 (Figure 4.30). The sectorial coefficients and coef-
ficients in higher degrees and orders are less accurate and striping effects at specific orders
are stronger. The use of an accelerometer with a higher sensitivity helps a lot to improve
the solution. The addition of CAI gives a small enhancement. In terms of EWH, the error
is up to 0.8 m. The addition of a CAI accelerometer to an EA gives more obvious improve-
ments when using LRI noise (cf. Figure 4.31). The striping effects in north-south direction
of 0.15 m and the degradation at specific orders of the coefficients are largely reduced. It
can be stated, that the instrument performance has a higher influence on the quality of the
gravity field solution when the orbit altitude is higher.

In space domain, north-south striping effects are characteristic for GRACE solutions due
to the the sampling and flight direction of the polar in-line pair. Therefore, they are typ-
ically filtered out in order to reduce noise and systematic errors. A common method is a
spatial averaging filter, where the neighboring points over a particular region are averaged
and weighted (Jekeli, 1981; Wahr et al., 1998). Localized noise can be attenuated by aver-
aging. However, in the filtering process not only noise but also gravity signal information is
suppressed. The systematic errors increase strongly with SH degree (Klees et al., 2008).
The result with the EA shows large striping effects at orders m = 16 × k, k ∈ N. These
specific orders correspond to the orbit frequency and multiples of it. This reveals, that the
CAI accelerometer counteracts the problem with orbit resonances and striping effects owing
to its low noise in low frequencies. It can be concluded that the bias drift of the EA in low
frequencies causes degradation in the orbital resonance order 16 and its integer multiples.
However, this problem can also be solved by filtering, because frequencies below 1.8×10−4 Hz
imply no gravity field signal. In McGirr et al. (2022), an improvement of GRACE gravity
solutions is achieved by applying a high-pass filter to the accelerometer data and removing
the low-frequency components below 4.5 × 10−5 Hz.
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(d) EA with 1 × 10−12 m/s2 noise in MBW

180°

180°

120°W

120°W

60°W

60°W

0°

0°

60°E

60°E

120°E

120°E

180°

180°

60°S 60°S

30°S 30°S

0° 0°

30°N 30°N

60°N 60°N

0.10 0.05 0.00 0.05 0.10
EWH [m]

(e) Hybrid accelerometer (EA with 1 × 10−12 m/s2
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(f) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)

Figure 4.28: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale); parameters:
h=303 km, KBR measurement noise and different accelerometer noise models
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(d) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)

Figure 4.29: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale); parameters:
h=303 km, LRI measurement noise and different accelerometer noise models

The evaluation of the true errors in the spatial domain confirms a great improvement of the
recovered gravity field for the simulation with a hybrid accelerometer. The errors expressed
as EWH are two orders of magnitude lower when using the hybrid sensor. The dominant
factors are AOD and ocean-tide errors. This can be observed by comparing the coefficient
differences to the input noise representing AOD and ocean tide de-aliasing (cf. Figure 3.13
and Figure 3.14).
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(f) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)

Figure 4.30: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale); parameters:
h=462 km, KBR measurement noise and different accelerometer noise models
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(d) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)

Figure 4.31: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale); parameters:
h=462 km, LRI measurement noise and different accelerometer noise models

As limiting factors are clearly AOD and ocean-tide errors, closed-loop simulations are per-
formed additionally without these error sources. Accordingly, the following test scenarios
include only influences of the instruments. This is performed to demonstrate more clearly the
potential for improvements by enhancing the accelerometers. The degree RMS of the geoid
height for several simulation scenarios are given in Figure 4.32. First, it can be seen that the
influence of the instrument performance on the gravity field solution is now stronger. The
lower the orbit altitude, the smaller is the degree RMS. For simulation scenarios with an EA
at 1×10−10 m/s2 in MBW, the ranging instrument noise has no significant impact at altitudes
of 246 km, 303 km and 363 km. In contrast, for the highest altitude of 462 km, the solution
is improved by using LRI noise. The solution with only an EA (noise level 1 × 10−12 m/s2

in MBW) and one with the combination with CAI (noise level of 1 × 10−11 m/s2 in all
frequencies, cf. Figure 3.8) are almost at the same level with KBR noise for the ranging
measurements. The combination with CAI eliminates the zigzag behavior and the error
curve is slightly lower up to degree 80. When using LRI noise, the difference between elec-
trostatic and hybrid accelerometers becomes much more apparent.
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Figure 4.32: Degree RMS of the coefficient differences for different accelerometer noise models
and ranging noise models for altitudes of (a) 246 km, (b) 303 km, (c) 363 km and (d) 462 km
for the instrument-only scenarios

The detailed results are discussed for the altitudes of 303 km (cf. Figure 4.33 and 4.34)
and 462 km (cf. Figure 4.35 and 4.36) only. It should be noted that the pyramid plots for
instrument-only cases have a different scaling than the plots before. The two-dimensional
error and the error in the spatial domain for all scenarios are shown in the appendix (Figures
A.1, A.2, A.3 and A.4). The improvement by the utilization of the hybrid accelerometer is
significantly visible. The striping effects at specific orders are almost eliminated by adding
a CAI accelerometer for the orbit altitude of 303 km with KBR noise. The EWH calculated
from the coefficient differences have a magnitude of 1 m for the case with KBR noise and
EA noise at 1 × 10−10 m/s2. The result with an EA at 1 × 10−12 m/s2 is more accurate and
the EWH is ±0.1 m. Striping effects at some orders are still visible for the two-dimensional
error representation, but they are almost eliminated by using a hybrid accelerometer instead.
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(f) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)

Figure 4.33: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale); parameters:
h=303 km, only instrument noise, KBR measurement noise and different accelerometer noise
models
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noise in MBW and CAI with 1 × 10−11 m/s2 noise)

Figure 4.34: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale); parameters:
h=303 km, only instrument noise, LRI measurement noise and different accelerometer noise
models

When using LRI instead of KBR noise, a similar behavior is visible. In this case, the error in
EWH is reduced to ±0.8 mm when using a hybrid accelerometer. The EWH varies between
±10 mm with only an EA (with a noise level of 1 × 10−12 m/s2).
For an altitude of 462 km, similar improvements are achieved caused by the chosen accelerom-
eter. In total, the outcome is worse due to the attenuation of the gravity signal with higher
altitude. The scenario with LRI and hybrid accelerometer noise induces an EWH error of
±5 mm. With the performance of an EA, the error in the space domain is ±125 mm. Thus,
the addition of CAI enables an improvement by the factor of 25 in terms of EWH.
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(d) EA with 1 × 10−12 m/s2 noise in MBW
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(e) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)
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(f) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)

Figure 4.35: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale); parameters:
h=462 km, only instrument noise, KBR measurement noise and different accelerometer noise
models
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(b) EA with 1 × 10−12 m/s2 noise in MBW
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(c) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)
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(d) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)

Figure 4.36: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale); parameters:
h=462 km, only instrument noise, LRI measurement noise and variation of accelerometer
noise

Cumulative geoid errors up to degree and order 90 are given in Table 4.3 for instrument-only
scenarios. Structures of coefficients with maximum degree of 90 correspond approximately to
a spatial resolution of 220 km. Cumulative geoid errors increase significantly with increasing
orbit altitude. An improvement by including LRI noise instead of KBR is not verified in all
scenarios, but a benefit is obtained for instrument-only scenarios with a hybrid accelerome-
ter. In these cases, the geoid error is reduced by a factor of 100. However, the included LRI
noise model is at the state of knowledge of Abich et al. (2019). The model is slightly too
optimistic according to the state of knowledge in 2022. The different LRI noise models (cf.
section 3.3.3) and the resulting degree RMS of the coefficient differences are illustrated in
Figure 4.37. These results correspond to an orbit altitude of 462 km. The difference between
solutions using the LRI model 2019 and the NGGM models is not significant when a hybrid
accelerometer or an electrostatic one with noise level of 1 × 10−12 m/s2 is used. The simu-
lations including the LRI noise model of 2022 result in higher coefficient differences. The
biggest effect is noticed for the instrument-only scenario with a hybrid accelerometer. The
scenarios including background modeling errors show that the gravity field solutions with
KBR noise and LRI noise (model 2022) do not differ significantly.
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Table 4.3: Cumulative geoid error up to degree and order 90; observations of one month
with sampling frequency of 0.2 Hz; instrument-only scenarios

Cumulative geoid error [mm]
at altitude of

Ranging Accelerometer 246 km 303 km 363 km 462 km

KBR
EA, 1 × 10−10 m/s2 3.04 1.47 3.81 14.03
EA, 1 × 10−12 m/s2 0.04 0.06 0.14 0.48
Hybrid 0.03 0.06 0.13 0.44

LRI
EA, 1 × 10−10 m/s2 2.69 1.71 5.99 135.45
EA, 1 × 10−12 m/s2 0.01 0.01 0.03 0.12
Hybrid ≪0.01 ≪0.01 ≪0.01 ≪0.01
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0 10 20 30 40 50 60 70 80 90
Degree

10
9

10
7

10
5

10
3

10
1

10
1

10
3

D
eg

re
e 

R
M

S 
of

 th
e 

ge
oi

d 
he

ig
ht

 [m
] Eigen-6c4

KBR
LRI GRACE-FO 2019

LRI GRACE-FO 2022
LRI NGGM 2030
LRI NGGM 2033

(c) Hybrid accelerometer
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(d) Hybrid accelerometer including AOD and
ocean-tide errors

Figure 4.37: Degree RMS of the coefficient differences between recovered and reference
gravity field solutions with various LRI noise models for an orbit altitude of 462 km
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The cumulative geoid errors of the scenarios including AOD and ocean-tide errors are given
in Table 4.4. The cumulative error of the best solution is 0.42 mm. A significant degradation
due to the orbit altitude is only found when the EA noise is at a level of 1×10−10 m/s2. The
solutions with an EA noise level of 1 × 10−12 m/s2 show approximately the same cumulative
geoid error for all altitudes due to the dominance of the background modeling errors. This
illustrates the need to improve the models of AOD and ocean tides. The improvement by the
addition of a CAI accelerometer to an EA is not significant, here. The largest improvement
of 0.03 mm is achieved for the scenarios with an altitude of 462 km.

Table 4.4: Cumulative geoid error up to degree and order 90; observations of one month
with sampling frequency of 0.2 Hz; scenarios including AOD and ocean-tide error

Cumulative geoid error [mm]
at altitude of

Ranging Accelerometer 246 km 303 km 363 km 462 km

KBR
EA, 1 × 10−10 m/s2 3.10 1.53 3.85 14.04
EA, 1 × 10−12 m/s2 0.42 0.42 0.44 0.64
Hybrid 0.42 0.42 0.44 0.61

LRI
EA, 1 × 10−10 m/s2 2.76 1.77 6.01 22.02
EA, 1 × 10−12 m/s2 0.42 0.42 0.42 0.44
Hybrid 0.42 0.42 0.42 0.42

4.5 Gravity Field Solutions using Different Accelerom-
eter Types for Gradiometry Missions

In addition to the studied ll-SST scenarios, gravity field solutions of gradiometry missions
are analyzed. The focus is on the impact of the accelerometer performances on the gravity
field solution. When only additive noise for the accelerometers is considered, the measured
gravity gradient Vŷŷ is given by (Douch et al., 2018b)

Vŷŷ = (a1,y + n1,y) − (a2,y + n2,y)
Ly

, (4.21)

where a1,y is the true acceleration of the accelerometer with index 1 and n1,y is its noise. The
notation is analog for the second accelerometer with index 2. Ly is the distance between the
two accelerometers. The gradiometer noise is then calculated from the two accelerometer
noises and the baseline length:

nVyy = n1,y − n2,y

Ly

, (4.22)

where n1,y and n2,y are uncorrelated.
In this study, only a gradiometer in cross-track direction is considered. The reason for this
is the critical rotation rate in along-track or nadir direction when using CAI accelerometers.
According to Douch et al. (2018b), the maximum rotation rate in cross-track direction is
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approximately 1 µrad/s. In contrast, in along-track and nadir direction the rotation rate
would be 1 mrad/s. The two trajectories of the two atom clouds would not converge after
the third laser pulse and consequently the contrast is reduced (Douch et al., 2018b). A
second aspect is the rotation induced phase shift Φrot:

Φrot = 2(keff × v)ΩT 2, (4.23)

with the norm of the effective wave vector keff , the norm of the forward drift velocity v,
the interferometer time T and the rotation rate Ω. In Meister et al. (2022) the rotation in
along-track direction of the CAI reference mirror is evaluated as a significant degradation.
One option to reduce this effect is the integration of a counter rotation of the mirror. Rota-
tion compensation is also considered in the studies of Trimeche et al. (2019) and Migliaccio
et al. (2019). The requirement for the maximum rotation rate is approximately 1 µrad/s for
both aspects which is achieved for the cross-track axis in nadir pointing mode.

In Figure 4.38 the coefficient differences between recovered and reference gravity field are
depicted for altitudes of 246 km, 303 km and 363 km in terms of degree RMS of the geoid
height. Gradiometry develops its full strength in high degree coefficients, for which a low
orbital altitude is necessary. Hence, the orbit altitude of 467 km is not investigated in this
section. A GOCE-like scenario is tested with the accelerometer model given in equation (3.2)
and a baseline length of 0.5 m which corresponds to a gradiometer noise at the level of 6.5 mE.
Furthermore, an Electrostatic Gradiometer (EG) with lower noise level of 1 mE in the MBW,
but the same increasing slope behavior in low and high frequencies, is evaluated. Beyond
that, several CAI gradiometer noise models, which are characterized by white noise, are
investigated: 6.5 mE, 1 mE, 0.1 mE and 0.01 mE.
The CAI gradiometer sensitivity strongly depends on the interrogation time of the interfer-
ometer. In order to achieve such high sensitivities of 1 mE or below it, interrogation times
of several seconds are required. However, a low sampling rate would degrade the gravity
field solution. An option to prevent this would be to have several atom clouds interrogating
simultaneously as given in Trimeche et al. (2019). An interrogation time of tens of seconds
would ensure a sensitivity of 1 × 10−12 m/s2 (Abend et al., 2023). Thus, a gradiometer sen-
sitivity of 1 mE is possible with a measurement cycle time of 30 s.

Figure 4.38 clearly shows the result of the attenuation of the gravitational signal with in-
creasing altitude. All coefficient differences in the scenarios with altitude of 246 km are
below the static gravity field signal up to degree 200. The intersection of static gravity field
signal and coefficient differences is at degree 130 for the altitude of 363 km using an EG
noise level of 6.5 mE. When comparing the simulations including white noise of the CAI and
the colored noise of the EG, the improvement by the flat noise curve is larger in low degree
coefficients. However, an improvement is achieved in all coefficients up to degree 200. It can
be concluded that CAI gradiometer characterized by white noise significantly improve the
gravity field solution compared to EG with the same noise level in the MBW.
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(b) h=303 km
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(c) h=363 km

Figure 4.38: Degree RMS of the coefficient differences between recovered and reference
gravity field solutions of the cross-track component for different gradiometer noise models

4.6 Combined Gravity Field Solutions from ll-SST and
Cross-track Gradiometry

The addition of a cross-track gradiometer to one of the satellites of a ll-SST mission seems
promising as this provides supplemental observations in east-west direction. Solutions of
ll-SST are characterized by their striping effects in north-south direction. Implementing the
gradiometer in cross-track direction instead of along-track or radial direction has further
advantages concerning the rotation rates as addressed in section 4.5.
In this section, different instrument sensitivities and behaviors are studied for the mission
concept. Combinations of gravity field solutions of section 4.4 and section 4.5 are investigated
with maximum degree and order of 200. The solutions are combined at normal equation
level, the theory is described in section 3.6.4. The reciprocal values of the posterior variances
of the individual solutions are used as initial weighting factors. The posterior variances of
all scenarios vary between 0.70 and 1.17. The variance components are estimated iteratively
as given in section 3.6.4 and Koch and Kusche (2001). The concept is investigated for
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the orbit altitudes of 246 km, 303 km and 363 km, and only instrument noise models for
ranging measurement instruments, accelerometers and gradiometers have been considered.
The spatial representation plots are given in terms of EWH as in section 4.4. The EWH in
this section are also calculated from the coefficient differences up to degree and order 90 to
allow a better comparison to the ones of section 4.4.
First, results using the orbit data with an altitude of 246 km are investigated. Further
results for orbit altitudes of 303 km and 363 km are given in the appendix A.4. Different
sensor behavior models are introduced for the ranging measurement instrument, for the
accelerometer in the center of mass for each satellite used for the ll-SST solution and for
the two accelerometers forming the cross-track gradiometer. Figures 4.39 and 4.40 show
combinations of a gradiometer with a GRACE-like scenario. However, the addition of an
electrostatic cross-track gradiometer with a noise level of 6.5 mE in the MBW does not
improve the solution of a classical GRACE scenario (cf. Figure 4.39 (a) and Figure A.10
in the appendix). It can be noted that at some degrees the combination solution performs
worse than the ll-SST solution. The stochastic modeling of the individual solutions has
to be improved in order to achieve a better combination solution. In contrast, there is an
improvement using a CAI cross-track gradiometer with a white noise level of 6.5 mE (cf.
Figure 4.39 (b) and Figure A.11). The enhancement is significant in coefficient degrees and
orders higher than 50.
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(b) cross-track component Vyy: CAI gradiometer
noise at a level of 6.5 mE in all frequencies

Figure 4.39: Degree RMS of the coefficient differences between recovered and reference
gravity field using KBR noise and EA noise at a level of 1 × 10−10 m/s2 for ll-SST and
different gradiometer noise levels for the cross-track gradiometer, altitude of 246 km

An electrostatic cross-track gradiometer with a noise of 1 mE in the MBW improves the
gravity field solution. Especially the SH coefficients of degrees higher than 75 are improved
(Figure 4.40 (a)). The two-dimensional error plots in Figure 4.43 reveal the improvement
in more detail. The striping effects at orders m = 16 × k, k ∈ N in the ll-SST-only solu-
tion are largely reduced. Additionally, the strong degradation in the sectorial coefficients in
the ll-SST solution is decreased. The plots in the spatial domain show a reduction of the
known striping effect in north-south direction. Adding a cross-track gradiometer with a noise
level of 6.5 mE or 1 mE at all frequencies improves the gravity field solution of a classical
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GRACE-like scenario in a similar way. These scenarios show that a better EG performance
of at least 1 mE in the MBW is needed in order to benefit from it. In contrast, there is
already a benefit with a noise of 6.5 mE for the CAI gradiometer, which is characterized
by white noise. Representations of the two-dimensional errors and the errors in the spatial
domain are given in the appendix A.4 for further scenarios.
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Figure 4.40: Degree RMS of the coefficient differences between recovered and reference
gravity field using KBR noise and EA noise at a level of 1 × 10−10 m/s2 for ll-SST and
different gradiometer noise levels for the cross-track gradiometer, altitude of 246 km
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noise at a level of 0.1 mE in all frequencies

Figure 4.41: Degree RMS of the coefficient differences between recovered and reference
gravity field using LRI noise and EA noise at a level of 1 × 10−10 m/s2 for ll-SST and
different gradiometer noise levels for the cross-track gradiometer, altitude of 246 km

An even higher sensitivity of a cross-track gradiometer is needed for combinations with a
GRACE-FO-like mission, which is simulated with LRI noise and an EA with a noise level of
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1 × 10−10 m/s2. The combinations with gradiometers with noise levels of 1 mE and 0.1 mE
show great improvements in high degree and order coefficients and concerning striping effects
(cf. Figure 4.41 (a), Figure 4.41 (b) and Figure 4.44).
As next scenarios, combinations of a ll-SST mission using an EA noise level of 1×10−12 m/s2

and a cross-track gradiometer with sensitivities of 1 mE, 0.1 mE and 0.01 mE are shown in
Figure 4.42. The sensitivities of 1 mE and 0.1 mE are suitable when KBR noise is used. The
error curve of the ll-SST solution with KBR noise and the curve of gradiometry solution
with 0.1 mE intersect approximately at degree 40. Consequently, a combination of the two
individual solutions is meaningful. The coefficients in the degrees below 40 benefit from the
ll-SST solution and the coefficients above 40 from the gradiometry solution (cf. Figure 4.42
(b)). The combinations with 1 mE and 0.1 mE are illustrated with the pyramid representation
and in the space domain, cf. Figure 4.45, Figure 4.46 and Figure 4.47.
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(b) ll-SST: KBR noise and EA noise at a level of
1 × 10−12 m/s2, cross-track component Vyy: CAI
gradiometer noise at a level of 0.1 mE
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(c) ll-SST: LRI noise and EA noise at a level of
1 × 10−12 m/s2, cross-track component Vyy: CAI
gradiometer noise at a level of 0.1 mE
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(d) ll-SST: LRI noise and EA noise at a level of
1 × 10−12 m/s2, cross-track component Vyy: CAI
gradiometer noise at a level of 0.01 mE

Figure 4.42: Degree RMS of the coefficient differences between recovered and reference grav-
ity field using and EA noise at a level of 1 × 10−12 m/s2 for ll-SST and different gradiometer
noise levels for the cross-track gradiometer, altitude of 246 km
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(b) ll-SST: KBR noise and EA at a noise level of
1 × 10−10 m/s2 in MBW
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(c) Cross-track component Vyy: EG at a noise level
of 1 mE in MBW
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(d) Cross-track component Vyy: EG at a noise level
of 1 mE in MBW
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(f) Combination of ll-SST and cross-track
gradiometry

Figure 4.43: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=246 km, ll-SST: KBR noise and EA at a noise level of 1 × 10−10 m/s2,
cross-track component Vyy: EG at a noise level of 1 mE
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(a) ll-SST: LRI noise and EA at a noise level of
1 × 10−10 m/s2 in MBW
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(b) ll-SST: LRI noise and EA at a noise level of
1 × 10−10 m/s2 in MBW
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(c) Cross-track component Vyy: CAI gradiometer
at a noise level of 1 mE
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 1 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure 4.44: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=246 km, ll-SST: LRI noise and EA at a noise level of 1 × 10−10 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 1 mE
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(a) ll-SST: KBR noise and EA at a noise level of
1 × 10−12 m/s2 in MBW
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(b) ll-SST: KBR noise and EA at a noise level of
1 × 10−12 m/s2 in MBW
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(c) Cross-track component Vyy: CAI gradiometer
at a noise level of 1 mE
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 1 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure 4.45: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=246 km, ll-SST: KBR noise and EA at a noise level of 1 × 10−12 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 1 mE
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(a) ll-SST: KBR noise and EA at a noise level of
1 × 10−12 m/s2 in MBW
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(b) ll-SST: KBR noise and EA at a noise level of
1 × 10−12 m/s2 in MBW

180°

180°

120°W

120°W

60°W

60°W

0°

0°

60°E

60°E

120°E

120°E

180°

180°

60°S 60°S

30°S 30°S

0° 0°

30°N 30°N

60°N 60°N

0.10 0.05 0.00 0.05 0.10
EWH [m]

(c) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.1 mE
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.1 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure 4.46: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=246 km, ll-SST: KBR noise and EA at a noise level of 1 × 10−12 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 0.1 mE
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(a) ll-SST: LRI noise and EA at a noise level of
1 × 10−12 m/s2 in MBW
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(b) ll-SST: LRI noise and EA at a noise level of
1 × 10−12 m/s2 in MBW
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(c) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.1 mE
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.1 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure 4.47: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=246 km, ll-SST: LRI noise and EA at a noise level of 1 × 10−12 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 0.1 mE

The presented results emphasize the gravity field solution enhancement by the combination
of the two measurement concepts. However, long interrogation times are required in order
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to achieve these high sensitivities of the gradiometer. It is expected, that this aspect affects
the high-frequency part of the recovered gravity field model. This effect is not considered
in the closed-loop simulation. A combination of an electrostatic and a CAI accelerometer
would solve this problem, since the high-frequency parts are measured by the electrostatic
one. A deconvolution filter is one option to achieve an optimal estimate of the signal in case
of a CAI-only sensor (Migliaccio et al., 2019).
The cumulative geoid errors up to degree and order 200 are given in Table 4.5 for selected
scenarios. They are calculated using the true coefficient differences between reference and
recovered gravity field. The maximum coefficient degree and order of 200 correspond ap-
proximately to a spatial resolution of 100 km. The required performance for science and
user needs is stated with a monthly geoid error of 0.1 mm in Pail et al. (2015) and 1 mm in
Gruber et al. (2014a) for a spatial resolution of 150 km.

Table 4.5: Cumulative geoid error up to degree and order 200; observations of one month
with sampling frequency of 0.2 Hz; instrument-only scenarios

Cumulative geoid error [cm]
ll-SST Vyy at altitude of

Ranging EA noise [m/s2] ACC Noise [mE] 246 km 303 km 363 km
EA 6.5 16.71 85.12 435.74
EA 1 2.79 10.74 44.46
CAI 6.5 8.05 47.16 254.85
CAI 1 1.24 7.41 38.77
CAI 0.1 0.12 0.72 3.93

KBR 1 × 10−10 3.68 17.39 65.69
1 × 10−12 1.18 5.64 21.52

LRI 1 × 10−10 1.13 8.20 27.41
1 × 10−12 0.04 0.13 0.68

KBR

1 × 10−10 EA 6.5 3.31 14.47 73.40
1 × 10−10 CAI 6.5 1.83 10.05 51.34
1 × 10−10 EA 1 1.16 5.25 22.68
1 × 10−10 CAI 1 0.73 3.70 19.54
1 × 10−12 CAI 1 0.65 3.23 17.13
1 × 10−12 CAI 0.1 0.11 0.66 3.63

LRI
1 × 10−10 EA 1 0.78 3.82 13.19
1 × 10−10 CAI 1 0.38 1.92 10.07
1 × 10−12 CAI 0.1 0.02 0.10 0.61

A degradation by an increasing orbit altitude is confirmed for all scenarios and mission
concepts. A geoid error below 1 cm for 100 km can only be guaranteed for cross-track gra-
diometry with a CAI gradiometer at a noise level of 0.1 mE and a low altitude of 246 km or
303 km. An accelerometer noise level of 1 × 10−12 m/s2 and LRI noise for ll-SST is required
in order to achieve an error lower than 1 cm. The addition of a cross-track gradiometer
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reduces the cumulative geoid error in all given scenarios, except the addition of an EG with
6.5 mE in the MBW for an altitude of 363 km. Geoid errors smaller than 1 cm can also be
achieved with low altitude and low accelerometer noise levels. The combination of ll-SST
and cross-track gradiometry is additionally simulated including AOD and ocean-tide errors.
The degree RMS for several instrument noise scenarios are given for the altitudes 246 km and
363 km in Figure 4.48, it is given in the appendix in Figure A.9 for an altitude of 303 km.
There, the instrument-only scenarios as well as the ones including background modeling
errors are given. In all scenarios, 10 % of the AOD product RL6 and 10 % of the ocean
tide product FES2014b are assumed as modeling errors. The individual solutions as well as
the combined ones are given in the Figures 4.49 and 4.50 in the spatial and the pyramid
representation for two examples.
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(b) Including AOD and ocean-tide errors, altitude of
246 km
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(c) Instrument-only, altitude of 363 km
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(d) Including AOD and ocean-tide errors, altitude of
363 km

Figure 4.48: Degree RMS of the coefficient differences between recovered and reference
gravity field for combinations of ll-SST and cross-track gradiometry, instrument-only and and
scenarios including AOD and ocean-tide errors for different sensor combinations, altitudes
of 246 km and 363 km

The degradation by the background modeling errors is visible in the low degree coefficients.
The improvement by the addition of a cross-track gradiometer is similar to the instrument-

93



only scenarios. The lower the sensor noise, the more the gravity field solution is affected by
AOD and ocean-tide errors. The cumulative geoid errors of selected combination scenarios
are provided in Table 4.6.

Table 4.6: Cumulative geoid error up to degree and order 200; observations of one month
with sampling frequency of 0.2 Hz; scenarios including AOD and ocean-tide errors

Cumulative geoid error [cm]
ll-SST Vyy at altitude of

Ranging EA noise [m/s2] ACC Noise [mE] 246 km 303 km 363 km

KBR

1 × 10−10 EA 1 2.91 5.16 28.63
1 × 10−10 CAI 1 2.35 3.89 19.75
1 × 10−12 CAI 1 0.81 3.31 17.32
1 × 10−12 CAI 0.1 0.14 0.68 3.68

LRI 1 × 10−10 CAI 1 0.56 2.15 9.90
1 × 10−12 CAI 0.1 0.05 0.12 0.48

The cumulative geoid errors up to degree and order 200 and a corresponding spatial resolution
of 100 km are in the worst case scenario 2.9 cm with an altitude of 246 km (cf. Table 4.6).
An error at mm level is achieved for low-noise scenarios, like a cross-track gradiometer with
noise of 1 mE and an accelerometer with noise of 1 × 10−12 m/s2 in the center of mass. The
cumulative geoid errors of the scenarios with an altitude of 363 km are at the cm level and
dm level. In order to get a mm error, a cross-track gradiometer with white noise of 0.1 mE
is required.
Furthermore, the geoid error is computed for a spatial resolution of 150 km (cf. Table 4.7).
Consequently, the cumulative errors decrease to a maximum of 0.67 cm for an altitude of
246 km and 2.48 cm for 363 km. The required target performance of 0.1 mm for 150 km
resolution according to Pail et al. (2015) is not achieved, but the requirement of 1 mm
according to Gruber et al. (2014a) is met.

Table 4.7: Cumulative geoid error up to degree and order 133; observations of one month
with sampling frequency of 0.2 Hz; scenarios including AOD and ocean-tide errors

Cumulative geoid error [cm]
ll-SST Vyy at altitude of

Ranging EA noise [m/s2] ACC Noise [mE] 246 km 303 km 363 km

KBR

1 × 10−10 EA 1 0.67 0.73 2.48
1 × 10−10 CAI 1 0.39 0.26 0.70
1 × 10−12 CAI 1 0.08 0.11 0.37
1 × 10−12 CAI 0.1 0.04 0.06 0.15

LRI 1 × 10−10 CAI 1 0.12 0.24 0.65
1 × 10−12 CAI 0.1 0.04 0.04 0.06
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(a) ll-SST: KBR noise and EA at a noise level of
1 × 10−10 m/s2 in MBW
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(b) ll-SST: KBR noise and EA at a noise level of
1 × 10−10 m/s2 in MBW
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(c) Cross-track component Vyy: EG at a noise level
of 1 mE in MBW
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(d) Cross-track component Vyy: EG at a noise level
of 1 mE in MBW
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure 4.49: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), scenario
including AOD and ocean-tide errors: h=246 km, ll-SST: KBR noise and EA at a noise level
of 1 × 10−10 m/s2, cross-track component Vyy: EG at a noise level of 1 mE

95



180°

180°

120°W

120°W

60°W

60°W

0°

0°

60°E

60°E

120°E

120°E

180°

180°

60°S 60°S

30°S 30°S

0° 0°

30°N 30°N

60°N 60°N

0.10 0.05 0.00 0.05 0.10
EWH [m]

(a) ll-SST: KBR noise and EA at a noise level of
1 × 10−12 m/s2 in MBW
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(b) ll-SST: KBR noise and EA at a noise level of
1 × 10−12 m/s2 in MBW
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(c) Cross-track component Vyy: CAI gradiometer
at a noise level of 1 mE
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 1 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure 4.50: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), scenario
including AOD and ocean-tide errors: h=246 km, ll-SST: KBR noise and EA at a noise level
of 1 × 10−12 m/s2, cross-track component Vyy: CAI gradiometer at a noise level of 1 mE
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4.7 Summary
The closed-loop simulation allows to quantify the impact of the sensor performance on the re-
covered gravity field. This research focuses on the analysis of the accelerometer performance.
The benefit of a CAI accelerometer and its combination with classical EA are investigated.
In addition, the combination of ll-SST and cross-track gradiometry is studied as new mission
concept.

Relations between these different components of a satellite gravity mission are outlined in
section 4.1. The interactions between accelerometer, drag-free control system and satellite
orbit altitude are investigated. The accelerometer performance and need of a drag compensa-
tion system as well as the strength of the Earth’s gravity field signal depend on the altitude.
Consequently, four different orbit altitudes between 246 km and 462 km are investigated, as
they are suitable for satellite gravity missions.

In section 4.2, requirements for a drag-free system are derived based on the error due to
the accelerometer scale factor. Time series of non-gravitational accelerations are simulated
in order to evaluate the requirements. The defined requirement is studied for a single ac-
celerometer in the center of mass and for gradiometer measurements. The absolute scale
factor is needed for ll-SST missions. The requirement using the scale factor knowledge of an
EA is not achieved in all considered orbit scenarios. In contrast, with a CAI accelerometer,
there is no degradation by the scale factor knowledge. The reason for this is its expected,
very accurate knowledge of 1 × 10−9. For gradiometry missions, the relative scale factor
knowledge of an accelerometer pair is relevant. The non-zero common mode rejection is an-
alyzed. The values for the differential scale factor knowledge are calculated using the GOCE
calibration method with simulated data. The requirement is kept with the optimistic knowl-
edge assumption of 3×10−7 and an altitude higher than 363 km. On the contrary, this is not
the fact when assuming a pessimistic relative scale factor knowledge of 2×10−5. A drag-free
system with fine control thrusters, on the other hand, can fulfill the requirement.
Beyond that, it is shown that the saturation of the accelerometer is reached for low orbit
altitudes of 246 km and 303 km in along-track direction. A constant thrust would already
counteract the saturation for an orbit with 303 km altitude. However, the saturation strongly
depend on the solar cycle. In spite of the advantages of a drag-free system for the accelerom-
eter performance, the propellant consumption limits the mission duration. The propellant
consumption increases with decreasing orbit altitude exponentially.

Moreover, the magnitude of the non-gravitational acceleration plays a major role for the
CAI accelerometer. In order to achieve a high sensitivity, a longer measurement cycle time
of a few seconds is used. However, there is an aliasing effect due to the variation of the
accelerations within an interferometer cycle (cf. section 4.3). The variation of the non-
gravitational accelerations in 12 s is in the order of 1 × 10−9 m/s2 for an altitude of 462 km
and 5 × 10−8 m/s2 for an altitude of 303 km. The corresponding error in the accelerometer
output is calculated using the transfer function of an atom interferometer. The estimated
error is significant, as its maximum magnitude is, e.g., 1×10−9 m/s2 for the scenario with an
altitude of 303 km and 1 × 10−10 m/s2 for 462 km. A reduction of this effect can be accom-
plished by either reducing the magnitude of non-gravitational accelerations or by reducing
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the cycle time. The former could be achieved by drag compensation which is a suitable
method. The decrease of the cycle time admittedly also decreases the sensitivity of the atom
interferometer. Thus, the optimum between the two complementary arguments has to be
found.

In section 4.4, results of the closed-loop simulation of ll-SST mission scenarios are evalu-
ated. The coefficient differences between reference gravity field and recovered gravity field
are used to assess the results with several sensor behavior models and orbit parameters. The
scenarios including AOD and ocean-tide error show that the coefficient differences in low
degrees are mainly caused by these two background modeling errors. Aside from that, an
EA with a noise level of 1 × 10−10 m/s2 is the limiting instrument as the performance of
the ranging measurement instruments do not affect the quality of the gravity field solution.
When introducing a lower EA noise of 1 × 10−12 m/s2, solutions with LRI are better than
the ones with KBR. The addition of a CAI accelerometer to an electrostatic one reduces
the striping effects in north-south direction when LRI is used for ranging measurements.
Besides, striping effects at orders m = 16 × k, k ∈ N are reduced. This improvement is
stronger for the scenarios with higher altitude. As the limiting factor is the modeling of
AOD and ocean tides, instrument-only closed-loop simulations are performed as well. The
benefit of the hybridization of CAI and EAs is evident in these simulations.

Outcomes on the closed-loop simulations of a gradiometry mission are also briefly presented
(cf. section 4.5). The focus is on a cross-track gradiometer, since additional measurements in
east-west direction are obtained and the rotation rate in cross-track direction is significantly
smaller than in the other two directions.
The two mission concepts of ll-SST and cross-track gradiometry are combined in order to
benefit from their complementary sensitivities in the wavelengths of the gravity field signal,
which results are given in section 4.6. An electrostatic cross-track gradiometer with noise of
1 mE improves the gravity field solution of a ll-SST mission with EA noise of 1 × 10−10 m/s2

and KBR noise. The striping effects are reduced and coefficients of high degrees and orders
are better recovered. Additionally, the combination with a CAI cross-track gradiometer, for
which white noise is assumed, is studied. A gradiometer noise level of 6.5 mE is sufficient
when white noise is assumed. All tested orbital altitudes of 246 km, 303 km and 363 km
support this conclusion. A cross-track gradiometer with higher sensitivity is required for a
ll-SST mission with an EA noise of 1 × 10−12 m/s2 in the MBW. A sensitivity of 1 mE or
even 0.1 mE is demanded in order to benefit from the additional gradiometer. A monthly
geoid error of 1 mm for a spatial resolution of 150 km can be achieved by the combination,
e.g., a CAI cross-track gradiometer with white noise of 1 mE and an EA in the center of
mass with a noise level of 1 × 10−12 m/s2 in the MBW.
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5 Summary and Outlook

Satellite gravity missions are a powerful tool to measure the Earth’s gravity field and its
temporal variations. However, an increase of temporal and spatial resolution is demanded
by the user and science community. Thus in this thesis, new concepts for future satellite
missions are evaluated based on simulations.
The first part of the thesis describes the basics for determining the Earth’s gravitational
field with satellites including the motion of a satellite in space and the representation of the
Earth’s gravity field by a spherical harmonic expansion. The choice of the orbit parameters
has an enormous effect on the quality of the recovered gravity field solution. Therefore,
an overview of the orbit design is given. Moreover, mission concepts, sensors and control
systems of state-of-the-art satellite gravity missions are introduced. Available and emerg-
ing accelerometer technologies are summarized. This includes further developments of EAs,
e.g., modifications such as using a cubic test mass, free-fall tests for the calibration or optical
sensing. Beyond that, the new measurement concept of cold atom interferometry, which has
not been demonstrated in space yet, is described. The CAI measurements show some bene-
ficial characteristics, e.g., long-term stability and a very well known scale factor. However,
the application on board of a satellite also introduce challenges due to a lower sampling rate
and the rotation of the satellite.

Simulations are performed to quantify the potential of new concepts of sensors, control
systems and orbit configurations. The satellite dynamics are simulated using the XHPS
software. In this work, only the modeling of non-gravitational accelerations is discussed in
detail, since these accelerations are particularly important for further analyses. The modeling
of the sensor behavior plays a major role and is implemented in the simulation environment
using PSD models. State-of-the-art instrument behaviors, e.g., of EAs, KBR and LRI, are
modeled from their known in-orbit performances. The CAI accelerometer performance is
estimated based on ground experiments and expectations for space applications, which leads
to an increase of the free-fall time due to the microgravity environment. Additionally, the
transfer function of an atom interferometer is taken into account. A hybrid sensor consisting
of an electrostatic and a CAI accelerometer combines the strengths of the two measurement
principles. The combination is implemented by low-pass and high-pass filtering.
The control systems have also been included in the forward simulation to achieve a realistic
simulation of the satellite dynamics. The drag-free system is important for the accelerom-
eter performance and the orbit maintenance and is modeled according to the principle of
the GOCE drag-free system. Available state-of-the-art control system models for attitude
control from XHPS are used.
A closed-loop simulation is performed in order to quantify the effect on the resulting gravity
field model using different sensor behavior models. One of the major drawbacks is still the
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modeling of AOD and ocean tides. Their modeling is not in the scope of this study, but er-
rors caused by these effects are considered. The SH coefficients of the gravity field model are
estimated by a least-squares adjustment. The basic methodology is explained using range
accelerations and gradiometry and the combination on the level of normal equations of the
two observation groups is described.

Considering only the sensors, the performance of the accelerometers needs to be improved
for future satellite gravity missions. The accelerometer performance is closely related to
the magnitude of non-gravitational accelerations. Therefore, benefits of using a drag-free
system are investigated. A detailed analysis is performed concerning the accelerometer scale
factor knowledge and the connection to drag compensation. Drag compensation is required
when using the scale factor knowledge of an electrostatic accelerometer, which is assumed
with 0.2 % or 1 %. This outcome is valid for all studied orbit altitudes between 246 km and
462 km and for all directions in the satellite orbit frame, as the electrostatic measurements
would be significantly degraded by the scale factor assuming no compensation. In contrast,
the requirement is easily fulfilled without drag compensation when using the scale factor
knowledge 1 × 10−7 % of a CAI accelerometer.
For gradiometry, the magnitude of the non-gravitational accelerations is important due to
the non-perfect common-mode rejection. Accordingly, the differential scale factor knowledge
needs to be considered. When using the more optimistic differential scale factor knowledge,
the requirement is achieved for altitudes of 363 km and 462 km. A drag compensation with
fine control thruster would be needed to fulfill the requirements with a more pessimistic
differential scale factor knowledge.
The accelerometer saturation and the propellant consumption of a drag-free system for differ-
ent altitudes are studied. The saturation limit of ±1×10−6 m/s2 is exceeded for low altitudes
of 246 km and 303 km. A constant thrust already avoids the saturation for a 303 km altitude
test scenario. Whether the saturation limit is reached also depends on the solar cycle, where
two extremes are studied.
Besides this, the magnitude of non-gravitational accelerations compromises the performance
of the CAI accelerometer. The degradation by an aliasing effect due to the signal variation
within an interferometer cycle of 12 s is studied. The error is estimated using the transfer
function of an atom interferometer. It is significant, e.g., at the level of 2 × 10−10 m/s2 for
an altitude of 303 km. The effect can be reduced to a non-significant magnitude by either
decreasing the cycle time or by drag compensation. However, a decrease of the cycle time
also decreases the sensitivity of the atom interferometer.
The performance of the improved sensors is evaluated for various ll-SST and gradiometry
mission scenarios by closed-loop simulations. The SH coefficient differences between the
reference gravity field model and the estimated model quantify the effect of the sensor be-
haviors and orbit parameters on the gravity field recovery. Monthly gravity field models are
estimated. On the one hand, the ll-SST missions are evaluated with assumptions for the
error effect of the background models for ocean tides and AOD. The error due to AOD
and ocean-tide modeling is dominant in the low order coefficients. This demonstrates the
importance of improving these models. On the other hand, instrument-only scenarios are
investigated. This allows the quantification of the enhancement by instruments when the
time-variable background modeling improves in the future. Scenarios including an EA with
a noise level of 1 × 10−10 m/s2 are degraded in the SH coefficient orders higher than 12.
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Thus, the solution with KBR and LRI noise are similar. An accelerometer with lower noise
level of 1 × 10−12 m/s2 strongly improves the gravity field solution. The results with LRI
noise are more accurate than the ones with KBR noise. The striping effects in north-south
direction and at specific orders of the coefficients are reduced even more by adding a CAI
accelerometer. The instrument noise has a larger effect on the gravity solution when the
errors due to AOD and ocean tides are ignored.
The addition of a cross-track gradiometer to a ll-SST mission is investigated as a new mea-
surement concept for gravity field missions. This concept combines the already implemented
methodologies of GOCE and GRACE or GRACE-FO and exploits their strengths regarding
the sensitivity with respect to the gravity field signal. The selection of the cross-track compo-
nent for the gradiometer is twofold. The rotation rate in cross-track direction is significantly
smaller than in the other two directions. Rotation rates in along-track and nadir direction
are critical for the CAI accelerometer, because this would induce contrast loss and an addi-
tional phase shift, which cannot be de-coupled from the signal of interest. Another reason
is supplemental observations in east-west direction in addition to the range measurements
in north-south direction assuming a polar orbit. An electrostatic cross-track gradiometer
with a noise level of 1 mE in the MBW improves the ll-SST solution with GRACE-like noise
assumptions. The enhancement is most evident in coefficients with degrees higher than 75.
Moreover, the striping effects are reduced. A CAI gradiometer with white noise at 6.5 mE
causes a similar improvement. If the ll-SST mission is equipped with an accelerometer with
a lower noise level of 1 × 10−12 m/s2, a lower level for the cross-track gradiometer is required
in order to achieve an improvement. A CAI gradiometer with white noise of 1 mE enhances
the gravity field model in the higher orders and degrees of the spherical harmonic expansion.
Beyond that, the error pattern is more isotropic which is especially visible in the spatial
domain. This allows to achieve a monthly cumulative geoid error of 1 mm for a spatial res-
olution of 150 km in the best case.

Despite the improvements gained from accelerometers, CAI, drag compensation and combi-
nation of ll-SST and gradiometry, further parts have to be investigated for future satellite
gravity missions. Some aspects concerning accelerometers and drag compensation were in-
vestigated independently but might be coupled. All components have to be integrated into
the closed-loop simulation for future work. Besides, the closed-loop simulation can be im-
proved by introducing other approaches for the AOD modeling errors. The simulation results
strengthen the necessity to tackle a modeling improvement of ocean tides and short-term
non-tidal atmospheric and oceanic mass variation, which is the major challenge in gravity
field recovery. According to Dobslaw et al. (2017), the AOD products are two times more ac-
curate over the continents than over the oceans. Alternative ocean model configurations and
modifications on parametrizations could reduce the AOD errors. Consequently, the benefit
from better sensors would be significantly greater. Aside from that, the temporal aliasing
effect in the gravity field solutions can be reduced by alternative satellite constellations, such
as the Bender constellation. The improved sampling allows to co-estimate the short-term
atmospheric and oceanic signals. This can be performed using a gravity field parametriza-
tion technique which additionally estimates low-resolution solutions for short time intervals
(Daras & Pail, 2017).
The sensor behavior of a CAI accelerometer needs to be studied and modeled in more detail.
One example is the effect of rotations on the measurements, which has to be considered in
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the simulation of CAI measurements by modeling the rotational effect, such as contrast loss
and corresponding phase shift. In principle, a 3-axis CAI accelerometer can be implemented
by reproducing the setup in three orientations or by switching the light between the different
axes. But the realization is challenging due to the complexity of the instrument. Further-
more, the determination of the angular velocity is critical when only the cross-track gradient
is measured. Therefore, high-precision gyroscopes are required. In conclusion, CAI has a
promising potential for future satellite gravity missions, which has to be investigated further.
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A Appendix

A.1 Reference Frames
The following reference frames are required in the calculations of this thesis. The reader is
referred to Petit and Luzum (2010) for a detailed description of the Inertial Reference Frame
(IRF) and Earth-fixed Reference Frame (ERF) and transformations between them (IRF
corresponds to International Celestial Reference Frame and ERF to International Terrestrial
Reference System, respectively). Further details to GRF and LNORF are given in Gruber
et al. (2014b).

• Inertial Reference Frame
The IRF is fixed with respect to the distant matter of the universe. The IRF is an
orthogonal, right-handed system. Its origin is at the Earth’s center of mass (geocenter),
the orientation is equatorial, where the z-axis is the direction of the celestial pole. The
x-axis is fixed in the equatorial plane in direction to the vernal equinox.

• Earth-fixed Reference Frame
The ERF is a spatial reference system co-rotating with the Earth in its diurnal motion
in space. The ERF is an orthogonal, right-handed system. Its origin is at the geocenter,
the orientation is equatorial (z-axis is the direction of the pole). The x-axis is fixed
in the equatorial plane in direction to the Greenwich meridian. The angle between
the x-axis of the inertial reference frame and the Greenwich meridian is the Greenwich
Apparent Sideral Time (GAST).

• Gradiometer Reference Frame
The GRF is the coordinate system in which the gravity gradients are expressed. It
represents the position and orientation of the gradiometer. The origins of all one-axis
gradiometer reference frames are in the same point. The reference frame axes of the
accelerometers are parallel and point in the same directions.

• Local North-Oriented Reference Frame
The LNORF is a right-handed north-west-up frame with the x-axis pointing north, the
y-axis pointing west and the z-axis Up. The origin is located in the satellite center of
mass. The z-axis is defined by the vector from the geocenter to the satellite center of
mass and is pointing radially outward. The y-axis is parallel to the normal vector to
the plane of the geocentric meridian and is pointing westward. The x-axis is parallel
to the normal vector of the plane defined by y and z.

• Orbit Reference Frame
The Orbit Reference Frame (ORF) is often used in the analysis of the results. The
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along-track direction points approximately in the flight direction of the satellite. The
radial direction points roughly towards the center of the Earth and the cross-track axis
completes the orthogonal reference system.

A.2 Satellite Reference Attitudes for Attitude Control
The reference attitude, which depends on the formation of the satellite, is required as input
for the attitude control system in addition to the measured attitude. Nadir pointing is
considered for mission scenarios with only one satellite, which coincides with the ORF. The
reference attitude is calculated from the position vector rsat and the velocity vector vsat of
the satellite in the IRF:

e1 = vsat

|vsat|
, e3 = −rsat − e1(e1 · rsat)

|rsat| − e1(e1 · rsat)
, e2 = e3 × e1, (A.1)

where e1, e2, e3 are the three unit vectors.

For ll-SST the satellites have to point towards each other. The reference attitude for the
first satellite is given by:

eA1 = rsatB − rsatA

|rsatB − rsatA|
, (A.2)

eA3 = vsatB − vsatA − eA1((vsatB − vsatA) · eA1)
|rsatB − rsatA|

, (A.3)

eA2 = eA3 × eA1, (A.4)

with rsatA as position vector of satellite A in IRF and vsatA as velocity vector of satellite
A in IRF. The notation for satellite B is equivalent. The reference attitude of the second
satellite is calculated with the same procedure. The reader is referred to Wöske (2021) for a
detailed description of the attitude feedback control loop which is implemented in the XHPS
software.
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A.3 Simulation results - Gravity Field Solutions for ll-
SST Missions

A.3.1 Instrument-only scenarios
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(b) EA with 1 × 10−10 m/s2 noise in MBW
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(d) EA with 1 × 10−12 m/s2 noise in MBW
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(e) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)
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(f) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)

Figure A.1: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale); parameters:
h=246 km, only instrument noise, KBR measurement noise and different accelerometer noise
models
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(b) EA with 1 × 10−10 m/s2 noise in MBW
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(d) EA with 1 × 10−12 m/s2 noise in MBW
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(e) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)
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(f) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)

Figure A.2: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale); parameters:
h=246 km, only instrument noise, LRI measurement noise and different accelerometer noise
models
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(b) EA with 1 × 10−10 m/s2 noise in MBW
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(d) EA with 1 × 10−12 m/s2 noise in MBW
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(e) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)
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(f) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)

Figure A.3: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale); parameters:
h=363 km, only instrument noise, KBR measurement noise and different accelerometer noise
models
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(b) EA with 1 × 10−10 m/s2 noise in MBW
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(d) EA with 1 × 10−12 m/s2 noise in MBW
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(f) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)

Figure A.4: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale); parameters:
h=363 km, only instrument noise, LRI measurement noise and variation of accelerometer
noise

108



A.3.2 Scenarios including AOD and Ocean-tide Error
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(b) EA with 1 × 10−10 m/s2 noise in MBW
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(d) EA with 1 × 10−12 m/s2 noise in MBW
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(e) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)
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(f) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)

Figure A.5: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale); parameters:
h=246 km, KBR measurement noise and different accelerometer noise models
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(b) EA with 1 × 10−10 m/s2 noise in MBW
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(d) EA with 1 × 10−12 m/s2 noise in MBW
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(e) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)
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(f) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)

Figure A.6: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale); parameters:
h=246 km, LRI measurement noise and different accelerometer noise models
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(b) EA with 1 × 10−10 m/s2 noise in MBW
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(d) EA with 1 × 10−12 m/s2 noise in MBW
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(e) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)
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(f) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)

Figure A.7: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale); parameters:
h=363 km, KBR measurement noise and different accelerometer noise models
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(b) EA with 1 × 10−10 m/s2 noise in MBW

180°

180°

120°W

120°W

60°W

60°W

0°

0°

60°E

60°E

120°E

120°E

180°

180°

60°S 60°S

30°S 30°S

0° 0°

30°N 30°N

60°N 60°N

0.10 0.05 0.00 0.05 0.10
EWH [m]
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(d) EA with 1 × 10−12 m/s2 noise in MBW
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(e) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)
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(f) Hybrid accelerometer (EA with 1 × 10−12 m/s2

noise in MBW and CAI with 1 × 10−11 m/s2 noise)

Figure A.8: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale); parameters:
h=363 km, LRI measurement noise and different accelerometer noise models
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A.4 Simulation results - Combined Gravity Field So-
lutions from ll-SST and Cross-track Gradiometry
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(a) Instrument-only, altitude of 303 km
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Figure A.9: Degree RMS of the coefficient differences between recovered and reference gravity
field for different sensor combinations for an orbit altitude of 303 km
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(a) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(b) ll-SST: EA at a noise level of 1 × 10−10 m/s2

180°

180°

120°W

120°W

60°W

60°W

0°

0°

60°E

60°E

120°E

120°E

180°

180°

60°S 60°S

30°S 30°S

0° 0°

30°N 30°N

60°N 60°N

1.0 0.5 0.0 0.5 1.0
EWH [m]

(c) Cross-track component Vyy: EG at a noise level
of 6.5 mE
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(d) Cross-track component Vyy: EG at a noise level
of 6.5 mE

180°

180°

120°W

120°W

60°W

60°W

0°

0°

60°E

60°E

120°E

120°E

180°

180°

60°S 60°S

30°S 30°S

0° 0°

30°N 30°N

60°N 60°N

1.0 0.5 0.0 0.5 1.0
EWH [m]

(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.10: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=246 km, ll-SST: KBR noise and EA at a noise level of 1 × 10−10 m/s2,
cross-track component Vyy: EG at a noise level of 6.5 mE
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(a) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(b) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(c) Cross-track component Vyy: CAI gradiometer
at a noise level of 6.5 mE
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 6.5 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.11: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=246 km, ll-SST: KBR noise and EA at a noise level of 1 × 10−10 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 6.5 mE
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(a) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(b) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(c) Cross-track component Vyy: CAI gradiometer
at a noise level of 1 mE
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 1 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.12: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=246 km, ll-SST: KBR noise and EA at a noise level of 1 × 10−10 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 1 mE
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(a) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(b) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(c) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.1 mE
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.1 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.13: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=246 km, ll-SST: KBR noise and EA at a noise level of 1 × 10−10 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 0.1 mE
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(a) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(b) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(c) Cross-track component Vyy: EG at a noise level
of 1 mE
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(d) Cross-track component Vyy: EG at a noise level
of 1 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.14: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=246 km, ll-SST: LRI noise and EA at a noise level of 1 × 10−10 m/s2,
cross-track component Vyy: EG at a noise level of 1 mE
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(a) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(b) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(c) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.1 mE
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.1 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.15: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=246 km, ll-SST: LRI noise and EA at a noise level of 1 × 10−10 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 0.1 mE
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(a) ll-SST: EA at a noise level of 1 × 10−12 m/s2
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(b) ll-SST: EA at a noise level of 1 × 10−12 m/s2
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(c) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.01 mE
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.01 mE
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(e) Combination of ll-SST and cross-track
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.16: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=246 km, ll-SST: LRI noise and EA at a noise level of 1 × 10−12 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 0.01 mE
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(a) ll-SST: EA at a noise level of 1 × 10−10 m/s2

200 150 100 50 0 50 100 150 200
Order

2

50

100

150

200

D
eg

re
e

14 13 12 11 10

(b) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(c) Cross-track component Vyy: EG at a noise level
of 1 mE
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(d) Cross-track component Vyy: EG at a noise level
of 1 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.17: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=303 km, ll-SST: KBR noise and EA at a noise level of 1 × 10−10 m/s2,
cross-track component Vyy: EG at a noise level of 1 mE
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(a) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(b) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(c) Cross-track component Vyy: CAI gradiometer
at a noise level of 1 mE

200 150 100 50 0 50 100 150 200
Order

2

50

100

150

200

D
eg

re
e

14 13 12 11 10

(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 1 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.18: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=303 km, ll-SST: KBR noise and EA at a noise level of 1 × 10−10 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 1 mE
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(a) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(b) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(c) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.1 mE
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.1 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.19: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=303 km, ll-SST: LRI noise and EA at a noise level of 1 × 10−10 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 0.1 mE
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(a) ll-SST: EA at a noise level of 1 × 10−12 m/s2
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(b) ll-SST: EA at a noise level of 1 × 10−12 m/s2
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(c) Cross-track component Vyy: CAI gradiometer
at a noise level of 1 mE
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 1 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.20: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=303 km, ll-SST: KBR noise and EA at a noise level of 1 × 10−12 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 1 mE
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(a) ll-SST: EA at a noise level of 1 × 10−12 m/s2
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(b) ll-SST: EA at a noise level of 1 × 10−12 m/s2
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(c) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.1 mE
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.1 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.21: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=303 km, ll-SST: KBR noise and EA at a noise level of 1 × 10−12 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 0.1 mE
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(a) ll-SST: EA at a noise level of 1 × 10−12 m/s2
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(b) ll-SST: EA at a noise level of 1 × 10−12 m/s2
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(c) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.1 mE
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.1 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.22: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=303 km, ll-SST: LRI noise and EA at a noise level of 1 × 10−12 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 0.1 mE
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(a) ll-SST: EA at a noise level of 1 × 10−12 m/s2

200 150 100 50 0 50 100 150 200
Order

2

50

100

150

200

D
eg

re
e

14 13 12 11 10

(b) ll-SST: EA at a noise level of 1 × 10−12 m/s2
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(c) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.01 mE
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.01 mE
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(e) Combination of ll-SST and cross-track
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.23: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=303 km, ll-SST: LRI noise and EA at a noise level of 1 × 10−12 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 0.01 mE
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(a) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(b) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(c) Cross-track component Vyy: EG at a noise level
of 1 mE
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(d) Cross-track component Vyy: EG at a noise level
of 1 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.24: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=363 km, ll-SST: KBR noise and EA at a noise level of 1 × 10−10 m/s2,
cross-track component Vyy: EG at a noise level of 1 mE
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(a) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(b) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(c) Cross-track component Vyy: CAI gradiometer
at a noise level of 1 mE
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 1 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.25: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=363 km, ll-SST: KBR noise and EA at a noise level of 1 × 10−10 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 1 mE
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(a) ll-SST: EA at a noise level of 1 × 10−10 m/s2

200 150 100 50 0 50 100 150 200
Order

2

50

100

150

200

D
eg

re
e

14 13 12 11 10

(b) ll-SST: EA at a noise level of 1 × 10−10 m/s2
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(c) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.1 mE
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.1 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.26: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=363 km, ll-SST: LRI noise and EA at a noise level of 1 × 10−10 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 0.1 mE
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(b) ll-SST: EA at a noise level of 1 × 10−12 m/s2

180°

180°

120°W

120°W

60°W

60°W

0°

0°

60°E

60°E

120°E

120°E

180°

180°

60°S 60°S

30°S 30°S

0° 0°

30°N 30°N

60°N 60°N

0.10 0.05 0.00 0.05 0.10
EWH [m]

(c) Cross-track component Vyy: CAI gradiometer
at a noise level of 1 mE
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 1 mE
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(e) Combination of ll-SST and cross-track
gradiometry
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.27: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=363 km, ll-SST: KBR noise and EA at a noise level of 1 × 10−12 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 1 mE
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(b) ll-SST: EA at a noise level of 1 × 10−12 m/s2
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.1 mE
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.28: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=363 km, ll-SST: KBR noise and EA at a noise level of 1 × 10−12 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 0.1 mE
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(b) ll-SST: EA at a noise level of 1 × 10−12 m/s2
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.1 mE
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Figure A.29: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=363 km, ll-SST: LRI noise and EA at a noise level of 1 × 10−12 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 0.1 mE
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(b) ll-SST: EA at a noise level of 1 × 10−12 m/s2
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at a noise level of 0.01 mE
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(d) Cross-track component Vyy: CAI gradiometer
at a noise level of 0.01 mE
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(f) Combination of ll-SST and cross-track
gradiometry

Figure A.30: Coefficient differences between recovered and reference gravity field: spatial
representation in terms of EWH and pyramid representation (logarithm scale), instrument-
only scenario: h=363 km, ll-SST: LRI noise and EA at a noise level of 1 × 10−12 m/s2,
cross-track component Vyy: CAI gradiometer at a noise level of 0.01 mE
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Tröbs, M. and Heinzel, G. (2006). “Improved spectrum estimation from digitized time series
on a logarithmic frequency axis”. In: Measurement 39.2, pp. 120–129. issn: 0263-2241.
doi: 10.1016/j.measurement.2005.10.010.
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