

 Veröffentlichungen der DGK

Ausschuss Geodäsie der Bayerischen Akademie der Wissenschaften

Reihe C Dissertationen Heft Nr. 901

Dennis Wittich

Deep Domain Adaptation for the Pixel-wise Classification

of Aerial and Satellite Images

München 2023

Bayerische Akademie der Wissenschaften

ISSN 0065-5325 ISBN 978-3-7696-5313-7

Diese Arbeit ist gleichzeitig veröffentlicht in:

Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover
ISSN 0174-1454, Nr. 386, Hannover 2023

 Veröffentlichungen der DGK

Ausschuss Geodäsie der Bayerischen Akademie der Wissenschaften

Reihe C Dissertationen Heft Nr. 901

Deep Domain Adaptation for the Pixel-wise Classification of Aerial and Satellite Images

Von der Fakultät für Bauingenieurwesen und Geodäsie

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von

Dennis Cyrill Wittich, M. Sc.

Geboren am 28.04.1990 in Konstanz

München 2023

Bayerische Akademie der Wissenschaften

ISSN 0065-5325 ISBN 978-3-7696-5313-7

Diese Arbeit ist gleichzeitig veröffentlicht in:

Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover

ISSN 0174-1454, Nr. 386, Hannover 2023

Adresse der DGK:

Ausschuss Geodäsie der Bayerischen Akademie der Wissenschaften (DGK)

Alfons-Goppel-Straße 11 ● D – 80 539 München

Telefon +49 – 331 – 288 1685 ● E-Mail post@dgk.badw.de

 http://www.dgk.badw.de

Prüfungskommission:

Vorsitzender: Prof. Dr.-Ing. habil. Christian Heipke

Referent: apl. Prof. Dr. techn. Franz Rottensteiner

Korreferenten: apl. Prof. Dr.-Ing. Claus Brenner

 Prof. Dr. Konrad Schindler

Tag der mündlichen Prüfung: 23.05.2023

© 2023 Bayerische Akademie der Wissenschaften, München

Alle Rechte vorbehalten. Ohne Genehmigung der Herausgeber ist es auch nicht gestattet,

die Veröffentlichung oder Teile daraus auf photomechanischem Wege (Photokopie, Mikrokopie) zu vervielfältigen

ISSN 0065-5325 ISBN 978-3-7696-5313-7

i

Abstract

This thesis addresses domain adaptation for the pixel-wise classification of remotely sensed data

using deep neural networks (DNN) as a strategy to reduce the requirements of DNNs with respect

to the availability of training data. The focus is set on a setting in which labelled data are only

available in a source domain DS, but not in a target domain DT, referred to as unsupervised domain

adaptation (UDA) in computer vision. The two domains are assumed to be different but related. A

new method is proposed that is based on adversarial training of an appearance adaptation network

(AAN) that modifies images from DS such that they look like images from DT. Together with the

original label maps from DS, the adapted images are used to train the DNN so that it performs

well in DT. The AAN has to change the appearance of objects of a certain class such that they

resemble objects of the same class in DT, i.e. the appearance adaptation has to be semantically

consistent. Many approaches try to achieve this goal by incorporating cycle consistency in the

adaptation process, but such approaches tend to hallucinate structures that occur more often in

DT. In contrast, in this thesis, a joint training strategy of the AAN and the classifier is proposed,

which constrains the AAN to adapt the images such that they are correctly classified. To further

improve the performance of the classifier after UDA, two extensions are proposed, both aiming to

improve the appearance adaptation with respect to the semantic consistency. Furthermore, the

problem of finding the optimal values of the trained network parameters is addressed, proposing

a new unsupervised entropy based parameter selection criterion, which compensates for the fact

that there is no validation set in DT that could be monitored during UDA. In a further variant,

the new method is combined with an existing method for UDA from the literature referred to

as adaptive batch normalisation. Different variants of the method are extensively evaluated in 20

adaptation scenarios related to the application of land cover classification based on aerial imagery,

using datasets from 5 cities, all consisting of high-resolution digital orthophotos and height data.

The method is further evaluated in 6 adaptation scenarios related to the application of bi-temporal

deforestation detection based on pairs of satellite images. The proposed method achieves a positive

transfer in most cases. On average, it can improve the performance in the target domains compared

to the performance of classifiers that were trained only inDS. For land cover classification, the initial

performance gap of 10.7% can be reduced to 7.5% in the mean F1 score, and for bi-temporal

deforestation detection the performance gap is reduced from 35.8% to 11.3% in the F1 score of

the foreground class. In a few cases the method even achieves a performance that is comparable to

the one achieved by a classifier trained in DT. In adaptation scenarios between the Vaihingen and

Potsdam datasets from the ISPRS semantic labelling benchmark the method outperforms others

from recent publications by about 5− 20% with respect to the mean F1 score.

Keywords: Domain Adaptation, Pixel-wise Classification, Deep Learning, Aerial Images, Re-

mote Sensing, Appearance Adaptation

iii

Kurzfassung

Die vorliegende Dissertation befasst sich mit der Domänenadaption für die pixelweise Klassifikation

von Fernerkundungsdaten unter Verwendung von tiefen neuronalen Netzen (DNN) als Strategie zur

Verringerung der Anforderungen von DNNs in Bezug auf die Verfügbarkeit von Trainingsdaten.

Der Schwerpunkt liegt auf dem Szenario, in dem gelabelte Daten nur in einer Quelldomäne DS,

aber nicht in einer Zieldomäne DT verfügbar sind, was in der Computer Vision als unüberwachte

Domänenanpassung (UDA) bekannt ist. Hier wird davon ausgegangen, dass die beiden Domänen

unterschiedlich, aber verwandt sind. Es wird eine neue Methode vorgeschlagen, in der ein Netzw-

erk zur Anpassung der Erscheinungsform (AAN) trainiert wird, welches Bilder aus DS so anpasst,

dass sie wie Bilder aus DT aussehen. Zusammen mit den ursprünglichen Labels aus DS werden

die adaptierten Bilder verwendet, um ein DNN an DT anzupassen. Das AAN muss das Aussehen

von Objekten einer bestimmten Klasse so verändern, dass sie Objekten der gleichen Klasse in DT

ähneln, d.h. die Anpassung muss semantisch konsistent sein. Viele Ansätze versuchen, dieses Ziel

zu erreichen, indem sie die sogenannte cycle consistency in den Anpassungsprozess einbeziehen, aber

solche Ansätze neigen dazu, Strukturen zu halluzinieren, die in der Zieldomäne häufiger vorkom-

men. Im Gegensatz dazu wird in dieser Arbeit eine gemeinsame Trainingsstrategie für das AAN

und den Klassifikator vorgeschlagen, die das AAN dazu bringt, die Bilder so anzupassen, dass

diese korrekt klassifiziert werden. Um das AAN in Bezug auf die semantische Konsistenz weiter

zu verbessern, werden zwei Erweiterungen der Methode vorgeschlagen. Außerdem wird das Prob-

lem der optimalen Wahl der Parameter der trainierten Netzwerke adressiert. Hierzu wird ein neues

unüberwachtes Kriterium zur Auswahl der Parameter basierend auf der Entropie in DT vorgeschla-

gen, das die Tatsache kompensiert, dass es in DT keinen Validierungsdatensatz gibt, der zur Pa-

rameterwahl genutzt werden könnte. In einer weiteren Variante wird die neue Methode mit einer

bestehenden Methode für UDA aus der Literatur kombiniert, die als adaptive batch normalisation

bekannt ist. Verschiedene Varianten der Methode werden in 20 Adaptionsszenarien für die Auf-

gabe der Landbedeckungsklassifikation mit Luftbildern umfassend evaluiert, wobei Datensätze aus

5 Städten verwendet werden, die alle aus hochauflösenden digitalen Orthophotos und Höhendaten

bestehen. Die Methode wird außerdem in 6 Adaptionsszenarien für die Detektion von Rodungen

auf der Grundlage von Satellitenbildpaaren bewertet. Die Methode erzielt in den meisten Fällen

eine Verbesserung der Klassifikationsgüte. Bei der Klassifizierung der Bodenbedeckung kann die

anfängliche Lücke in der Klassifikationsgüte von 10, 7% auf 7, 5% im mittleren F1-Maß und bei

der bi-temporalen Entwaldungserkennung von 35, 8% auf 11, 3% im F1-Maß der Vordergrundklasse

reduziert werden. In einigen Fällen erreicht die Methode sogar Qualitätsmaße, die vergleichbar mit

jenen sind, die ein Klassifikator erreicht, der in DT trainiert wurde. Bei der Adaption zwischen

den Datensätzen der ISPRS-Benchmark aus Vaihingen und Potsdam übertrifft die vorgeschlagene

Methode Verfahren aus neueren Veröffentlichungen um ca. 5− 20% im mittleren F1-Maß.

v

Nomenclature

Abbreviations

RS Remote sensing

MSI, nDSM Multi-spectral image, normalised digital surface model

LCC, BDD Land cover classification, bi-temporal deforestation detection

ML, DL Machine Learning, Deep Learning

TL, DA, UDA Transfer learning, domain adaptation, unsupervised domain adaptation

NN, DNN Neural network, deep neural network

CNN, FCN Convolutional neural network, fully convolutional neural network

BN Batch normalization

ABN Adaptive batch normalization

ReLU Rectified linear unit

LReLU Leaky rectified linear unit

MB-SGD Mini-batch stochastic gradient descent

MB-SGD-M Mini-batch stochastic gradient descent with momentum

ADAM Adaptive momentum

Symbols

Images and Image Classification

x,X Pixel intensity value, image

y, Y class label, label map

X ,Y image space, label map space

ŷ, Ŷ Predicted class label, predicted label map

γ,Γ One-hot encoded label, one-hot encoded label map

γ̂, Γ̂ Predicted probability vector, predicted probability map (multi-class classification)

ψ,Ψ Predicted probability, predicted probability map (binary classification)

h,w, d Height, width, depth (of an image, matrix or map)

r, c, q Indices for row, column and channel

S, nL Class structure, number of classes

nC Number of input channels in a classification setting

vi

Datasets

T, nT Labelled data set, number of samples in T

U, nU Unlabelled data set, number of samples in U

Deep Learning and CNN

A Activation map

K Kernel matrix

v Feature vector

a Activation (output of single neuron)

u Output of neuron before activation

a Activation vector

Θ Parameter set

θ Parameter

f(·) Activation function or normalisation function

L(·) Loss function

λ Learning rate

nB Batch size

p Side length of image patches

fa Activation function

W Context window

Domain Adaptation

DS , DT Source domain, target domain

T Learning task

Proposed Method for Appearance Adaptation

C Classification network

A Appearance adaptation network

G Auxiliary image generation network

D Discriminator network

General

µ, σ Mean, standard-deviation

i, j, k Indices

ω Weight (of loss or class)

vii

Contents

1 Introduction . 1

1.1 Motivation . 1

1.2 Contributions and Scientific Goals of this Thesis . 6

1.3 Thesis Outline . 8

2 Basics . 9

2.1 Machine Learning for Pixel-Wise Classification . 9

2.2 Deep Neural Networks . 10

2.2.1 Neuron and Multilayer Perceptron . 11

2.2.2 Supervised Training of Neural Networks . 13

2.2.2.1 Optimisation Strategies . 14

2.2.3 Improving Model Generalization . 17

2.2.4 Adversarial Training . 18

2.3 Convolutional Neural Networks . 19

2.3.1 Convolutional Layers . 21

2.3.2 Pooling Layer . 23

2.3.3 Batch Normalisation Layer . 24

2.3.4 Activation Functions in CNNs . 25

2.3.5 Parameter Initialisation . 26

2.3.6 CNN Architectures . 26

2.3.6.1 Residual Networks . 26

2.3.6.2 Xception Network . 27

2.4 Fully Convolutional Networks . 30

2.4.1 Upsampling Layer and Transposed Convolutional Layer 31

2.4.2 Skip Connections . 32

2.5 Appearance Adaptation . 32

2.6 Transfer Learning and Domain Adaptation . 35

2.6.1 Adaptive Batch Normalisation . 37

3 Related Work . 41

3.1 Instance Transfer . 41

3.1.1 Explicit Instance Transfer . 42

3.1.2 Implicit Instance Transfer . 43

3.1.3 Hybrid Instance Transfer . 44

3.1.4 Discussion . 45

viii Contents

3.2 Representation Transfer . 45

3.2.1 Non-adversarial Representation Transfer . 45

3.2.2 Adversarial Representation Transfer . 47

3.2.3 Discussion . 50

3.3 Appearance Adaptation . 51

3.3.1 Target-to-Source Appearance Adaptation . 51

3.3.2 Source-to-Target Appearance Adaptation . 52

3.3.3 Discussion . 53

3.4 Hybrid Approaches . 54

3.4.1 Discussion . 57

3.5 Parameter Selection in Unsupervised Domain Adaptation 57

3.6 Discussion . 58

3.6.1 Research Gap . 58

3.6.2 Comparison to Most Similar Works . 61

4 Methodology . 63

4.1 Prerequisites and Assumptions . 63

4.2 Adaptation Overview . 64

4.3 Network Architecture . 67

4.3.1 Classification Network C . 67

4.3.2 Appearance Adaptation Network . 69

4.3.3 Domain Discriminator . 70

4.4 Training . 71

4.4.1 Supervised Source Training . 72

4.4.2 Joint Training for Appearance Adaptation . 73

4.4.2.1 Joint Update of A and C . 74

4.4.2.2 Update of D . 78

4.5 Improving Semantic Consistency . 78

4.5.1 Method 1: Reduction of Variability . 81

4.5.2 Method 2: Auxiliary Generator . 82

4.5.2.1 Architecture of G . 85

4.5.2.2 Modifications of Adversarial Loss Terms 86

4.6 Entropy-based Parameter Selection . 87

4.7 Adaptive Batch Normalization . 88

4.8 Resolution Adaptation . 89

5 Experimental Setup . 91

5.1 Datasets . 91

5.1.1 Data for Land-cover Classification using Aerial Imagery 91

5.1.2 Data for Bi-temporal Deforestation Detection using Satellite Imagery 95

5.2 Evaluation and Quality Metrics . 98

5.3 Goals and Structure of Experiments . 99

5.3.1 Experiment Set E1: Source Training and Näıve Transfer 101

5.3.2 Experiment Set E2: Proposed Method for UDA 101

Contents ix

5.3.3 Experiment Set E3: Evaluation of Parameter Selection 102

5.3.4 Experiment Set E4: Comparison to other Strategies and Methods 103

5.3.4.1 Experiment Set E4.1: Comparison to other Strategies 103

5.3.4.2 Experiment set E4.2: Comparison to other Methods 104

5.3.5 Experiment set E5: Evaluation of UDA for Bi-temporal Deforestation Detection105

5.4 Training Details and Hyper-parameters . 105

5.4.1 Source Training . 105

5.4.2 Unsupervised Domain Adaptation . 107

5.4.3 Implementation Details of Baseline Strategies 108

6 Results and Discussion . 111

6.1 Results of Experiment Set E1: Source Training and Näıve Transfer 111

6.2 Results of Experiment Set E2: Proposed Method for UDA 113

6.2.1 Evaluation of Appearance Adaptation . 114

6.2.2 Evaluation of Unsupervised Domain Adaptation 119

6.2.3 Combination of Appearance Adaptation with Adaptive Batch Normalisation 124

6.2.4 Final Comparison of Variants . 126

6.2.5 Detailed Evaluation of Selected UDA Scenarios 127

6.3 Results of Experiment Set E3: Evaluation of Parameter Selection. 131

6.4 Results of Experiment Set E4: Comparison to other Strategies and Methods 133

6.4.1 Experiment set E4.1: Comparison to other Strategies. 134

6.4.2 Experiment Set E4.2: Comparison to other Methods 136

6.5 Results of Experiment Set E5: Evaluation of UDA for Deforestation Detection . . . 138

7 Conclusions and Outlook . 143

7.1 Conclusion . 143

7.2 Outlook . 146

Bibliography . 151

Appendix . 161

1

1 Introduction

1.1 Motivation

The task of pixel-wise image classification is to assign a class label to each pixel in an image

according to a pre-defined class structure (Guo et al., 2018). In remote sensing (RS) applications,

the images are usually georectified multispectral images (MSI) originally acquired from an airborne

platform or a satellite. Pixel-wise elevation information is often also available, e.g., obtained by

3D-reconstruction from overlapping aerial or satellite images. In this thesis, two applications for

pixel-wise classification in RS are addressed. The first application is land cover classification (LCC)

based on airborne imagery and elevation information. Here, the goal is to classify each pixel in the

aerial image according to a set of land cover classes, such as vegetation, building and road. This is,

for example, useful for automatically updating maps or localising changes in the land cover. The

second application is bi-temporal deforestation detection (BDD). In this application, the input to

the classifier consists of a pair of images of the same area, and the desired output is a binary map

that indicates whether deforestation has happened between the acquisition dates of the images at

each pixel location. Such an automated classifier is useful for national or international organisations

that track legal and illegal deforestation activities (Assis et al., 2019).

For several years, research on the topic of pixel-wise classification has been dominated by su-

pervised classification methods based on Deep Learning (DL), in particular Fully Convolutional

Neural Networks (FCNs) (Long et al., 2015a), e.g. (Marmanis et al., 2016; Zhang et al., 2019a).

Here, a classifier is trained using training samples, i.e. images for which the reference label maps

are available. The requirement of FCNs for the availability of a large set of training samples is

one of the main problems related to DL in RS, as the generation of training samples often requires

a labour-intensive interactive labelling process that is costly and time-consuming and should be

avoided if possible (Zhu et al., 2017b). If too few labelled images are available for training, it is very

likely that the trained classifier will perform poorly on unseen data, thus, the classifier will have a

poor generalization ability. In particular, when training on too small a dataset, the classifier can

overfit to the training data, which means that it rather memorises the training examples instead

of learning to make predictions based on patterns that are also to be expected in other scenes.

However, training on a large dataset does not necessarily lead to a high performance on unseen

data. It is also important that the training data are representative for the classification task, i.e.

that the patterns which are seen during training should also occur in the images that are to be

classified after training, in which case the classifier is transferable to other data.

In the literature, many strategies have been proposed to increase the generalization ability of a

classifier without having to manually label additional data. A common strategy to avoid overfit-

2 1 Introduction

ting is to regularise the classifier explicitly by penalising numerically large parameter values during

training. There are also methods for implicit regularisation, such as dropout regularisation (Sri-

vastava et al., 2014). Another common strategy to increase the generalization ability of a classifier

is to artificially increase the diversity of the training data, e.g. by data augmentation (Shorten and

Khoshgoftaar, 2019).

An alternative strategy to those already mentioned is Transfer Learning (TL) (Pan and Yang,

2009). Here, the data are assumed to be available in different domains. The goal of TL is to

transfer knowledge from a source domain (DS) in which training samples are abundant to a target

domain (DT) in which only a limited amount or no training data are available. TL often follows a

two-step procedure. In the first step, a classifier is trained using the data from DS. In the second

step, the classifier is adapted to the target domain, using the available data in DT. A special setting

of TL is Domain Adaptation (DA) (Tuia et al., 2016; Wang and Deng, 2018). Here, the domains

share the same feature space, but the data may follow different distributions. This is a standard

assumption in RS (Tuia et al., 2016); methods that assume the feature spaces of all domains to be

identical are called homogeneous DA methods in computer vision (Wang and Deng, 2018). In both

domains, there is a learning task to be solved that is characterized by the same class structure.

Regarding the task of land cover classification, this corresponds, for example, to a situation in which

labelled images from one area (source domain) are to be used to train a classifier which is then used

to classify images of another area (target domain) that were acquired with a sensor of the same

type, considering the same class structure. However, the objects in the target domain may have a

different appearance, for example due to a different capturing season or due to regional differences.

In such a case, performing a näıve transfer, i.e. training a classifier on source domain data only

and applying it to DT without any adaptation may lead to poor results. In particular, the results

are much worse compared to the performance of a classifier that was trained in the target domain.

This effect is referred to as performance gap while the difference between the domains causing the

performance gap is commonly called domain gap (Xu et al., 2022; Zhao et al., 2023).

A special setting of DA is known as unsupervised DA (UDA) in computer vision (Wang and Deng,

2018), while in RS it is sometimes referred to as semi-supervised DA (Tuia et al., 2016). Here, no

training labels are available in DT, thus, only the images from DT are used to adapt a classifier from

DS to DT. This setting is particularly interesting because images from DT are always available as

they are to be classified in the first place. The main goal of UDA is to use the information available

in DS to find a better solution for the task in DT, which requires the domains to be related (Pan

and Yang, 2009). In (Tuia et al., 2016) this requirement is concretised by requiring the knowledge

of the classifier trained in DS to be sufficient, although not perfect when applied to DT. Measuring

this requirement is, however, difficult, because it would require access to the reference label maps

in DT, which are not available in the UDA setting. UDA is known to be a difficult task and can

even lead to a negative transfer (Xu et al., 2022), that is, a lower performance in the target domain

after adaptation compared to training on data from the source domain only. The opposite case, in

which the adapted classifier outperforms the classifier trained on the source domain only is called

a positive transfer (Wang and Deng, 2018). UDA is of great importance in RS because, on the one

hand, there is a very limited amount of freely available data with annotations (Zhu et al., 2017b)

and, on the other hand, the appearance of both natural and man-made objects in remotely sensed

1.1 Motivation 3

images has a large variability, which makes it difficult for a classifier to generalize well when applied

to new domains. These factors can lead to a large performance gap. Although this is certainly a

major challenge, recent advances in the development of methods for UDA in related fields show

that such methods can compensate for the existing domain gap to some extent.

In the RS applications LCC and BDD, the domains may be associated with images from different

geographical regions or from different points in time, but with the same input channels. The source

domain corresponds to images for which pixel-level class labels are known, e.g. from previous

projects, while the target domain corresponds to a new set of images to be classified according to

the same class structure. In the UDA scenario, considered in this thesis, this is to be achieved

without having to generate (new) training labels in DT, even though there may be a domain gap,

i.e. even though the distributions of the data in the two domains are different (Tuia et al., 2016).

This domain gap may result in a performance gap, i.e. a classifier trained using the labelled data

from DS will perform worse in DT compared to a classifier trained using labelled data from DT. The

goal of UDA is to reduce this performance gap, i.e. to achieve a positive transfer, while at the same

time avoiding a negative transfer. Practically, such a method enables to reuse existing training

data for the automated classification of new domains that are different but related without having

to generate additional labels. Consequently, UDA has a very high potential to reduce labelling

effort and, thus, to save time and costs.

UDA is a very active field of research and many methods have been proposed. However, to the

best of the author’s knowledge there is no method in the literature which could fully compensate for

the considerable domain gap occurring in RS applications: even if a positive transfer is achieved,

the adapted classifier still performs significantly worse compared to a classifier that was trained

using labelled target domain data, e.g. (Peng et al., 2022; Soto et al., 2021; Ji et al., 2020). Of

course, training a classifier in the target domain is not possible in a real UDA scenario, but it is

frequently done in research to assess the performance of an adapted classifier, e.g. in (Peng et al.,

2022; Soto et al., 2021; Ji et al., 2020). There is also a considerable amount of research on UDA

in the field of computer vision. In this context, a commonly addressed domain adaptation scenario

is to adapt a classifier trained on synthetic images for pixel-wise street scene classification to real

images, e.g. (Hoffman et al., 2018; Zhang et al., 2018a). There are many such methods, and they

often achieve a very good classification performance after adaptation. Unfortunately, methods that

work well in this scenario are often not transferable to other applications, in which the domain

gap is of a different nature. Many of these methods make explicit or implicit assumptions about

the label distributions in the source and target domains, for example, that the label distribution

is similar in both domains (Zhang et al., 2017; Hoffman et al., 2016; Huang et al., 2018a). Such

assumptions cannot generally be made in RS, where the label distributions may be very different

between the two domains. Without proper modifications, methods that were developed in for the

application of street scene classification may result in a strong negative transfer in RS applications,

which was e.g. shown in (Soto et al., 2021). The lack of methods that reliably overcome the domain

gap in RS applications is the main motivation for this work presented in this thesis.

In general, there are different strategies for UDA (Xu et al., 2022; Tuia et al., 2016; Wang and

Deng, 2018). Methods based on instance transfer start with training a classifier using data from

4 1 Introduction

DS. This classifier is then applied to images from DT to predict pixel-wise labels, referred to as

semi-labels, and the classifier is re-trained using images from the target domain with the semi-labels

in an iterative process. Approaches based on this strategy have the disadvantage that they assume

a very good initial performance of the (source) classifier in DT, which may not be guaranteed after

training in DS. The second strategy for UDA, often used in the context of Deep Learning (Wang and

Deng, 2018), is based on representation transfer. Such methods map images from both domains

to a common and domain-invariant representation space in which a classifier trained with samples

from DS can also be used to classify data from DT, e.g. (Tzeng et al., 2017; Liu et al., 2020).

However, it has been shown that such an approach is quite difficult to train and can often lead

to negative transfer (Wittich and Rottensteiner, 2019; Gritzner and Ostermann, 2020; Tsai et al.,

2018; Zhao et al., 2019).

Consequently, the main approach presented in this thesis follows another strategy, referred to

in this work as appearance adaptation, based on methods for style transfer (Zhu et al., 2017a; Liu

et al., 2017); this task is also called image-to-image translation in computer vision, but will be

referred to as appearance adaptation in this thesis. Appearance adaptation is the task of creating a

modified version of an image from one domain such that the appearance of objects in the adapted

image is similar to the appearance of objects in images from another domain. A common approach

to perform appearance adaptation is based on adversarial training of two networks: an appearance

adaptation network that learns to adapt images from DS to look like images from DT, and a

domain discriminator that learns to predict whether an image came from DT or was generated

by the appearance adaptation network (Isola et al., 2017). Because the label information is not

changed in the appearance adaptation, the adapted source images with known labels can be used

to re-train a classifier for DT and, thus, to perform the domain adaptation. Such a strategy was

originally applied to street scene segmentation (Hoffman et al., 2018; Zhang et al., 2018a), examples

for its application in RS are (Benjdira et al., 2019; Tasar et al., 2020a,b; Li et al., 2020b; Soto et al.,

2021; Gritzner and Ostermann, 2020; Zhao et al., 2023). Alternatively, the images from the target

domain can be adapted to look like those from the source domain, which allows to present them to

a classifier that was trained in the source domain. This strategy is e.g. used in (Soto et al., 2020).

The method proposed in this thesis is based on the first strategy but uses a novel training scheme.

Unlike existing approaches, only a single appearance adaptation network that adapts images from

DS to DT is used, which is jointly trained with the classifier.

The main challenge of appearance adaptation is to produce images that are representative for

DT but are semantically consistent at the same time (Tasar et al., 2020b): it is not sufficient that

the adapted images give a similar overall impression as the images from DT, but the appearance of

objects must be adapted in such a way that after the image adaptation objects of a certain class look

similar to the objects of the same class in DT (e.g., pixels corresponding to buildings should look

like buildings in DT after the adaptation). Achieving semantic consistency is particularly difficult

when the distributions of labels are very different in DS and DT (Soto et al., 2020; Gritzner

and Ostermann, 2020). Soto et al. (2020) tried to solve this problem by training the appearance

adaptation network before training the classifier, applying the cycle consistency constraint used in

CycleGAN (Zhu et al., 2017a), in which images adapted from DS to DT and back again using a

second adaptation network must have the same grey values as the original images. This CycleGAN-

1.1 Motivation 5

based approach resulted in artefacts in the adapted images, a problem known as hallucination of

features (Cohen et al., 2018). Gritzner and Ostermann (2020) also trained a CycleGAN before

training the classifier and attempted to fit the label distributions based on label maps predicted

in DT using the classifier trained in DS, but this did not lead to significant improvements in UDA.

Approaches that attempt to constrain the label distribution in DT to be similar to the one in DS,

e.g. (Zhang et al., 2017), may even be detrimental in RS, where real differences in label distributions

are present. Consequently, achieving semantic consistency remains an unsolved problem in UDA

based on appearance adaptation, especially when there are large differences in the distributions of

labels in DS and DT. An example for semantically consistent and inconsistent image adaptations

is shown in Figure 1.1. In the semantically consistent adaptation, the buildings were adapted such

that they look like buildings in DT. In contrast, in the semantically inconsistent adaptation, most

of the buildings were adapted such that they look like trees in DT. This thesis proposes solutions

for this problem of appearance adaptation, aiming to increase the performance of UDA based on

appearance adaptation.

Image in DS
Semantically

consistent ap. ad.
Semantically

inconsistent ap. ad. Image in DT

Figure 1.1: Example of semantically consistent and inconsistent appearance adaptation (ap. ad.). The right

image serves as an example for appearance of objects in DT. In the semantically inconsistent

adaptation, after adaptation the buildings look like trees in DT. After applying the appearance

adaptation in a semantically consistent way, the buildings look like buildings in DT.

Another unsolved problem in UDA is the problem of parameter selection, i.e. the selection of the

values of the network parameters in the adaptation process to be used for classification. Parameter

selection can also be seen as the problem of selecting a termination criterion for training. This

aspect is not only relevant for methods based on appearance adaptation, but also for methods that

are based on other strategies. Gritzner and Ostermann (2020) report that the classification error in

DT shows large fluctuations in the UDA process and may even increase after reaching a minimum, a

behaviour what was also observed in (Wittich and Rottensteiner, 2019; Wittich, 2020). In classical

machine learning and in supervised deep learning approaches, a validation dataset is often used to

select an appropriate epoch to terminate the training process (Prechelt, 1998). However, in the

addressed UDA scenario, there are no labelled samples in DT and hence there is no validation

set. That is why in UDA, the number of training epochs is often set empirically without proper

reasoning, e.g. (Tasar et al., 2020b; Benjdira et al., 2019; Musto and Zinelli, 2020). This strategy is

considered to be very problematic as it is not unlikely to result in a negative transfer. In principle,

if multiple domains with labelled data are available at training time, the number of epochs could

be selected based on the performance of UDA on these domains. However, there is no guarantee

6 1 Introduction

that the optimal number of training epochs in one UDA scenario is also optimal for other pairs

of source and target domains. Consequently, the parameter selection is considered an important,

yet unsolved problem in UDA. In this thesis, an approach for parameter selection is proposed that

does not require labelled data in the target domain.

1.2 Contributions and Scientific Goals of this Thesis

The aim of this thesis is to solve the aforementioned unsolved problems and to develop an approach

for UDA that achieves a stable reduction of the performance gap for domain adaptation scenarios

in the context of RS. To that end, a new method for UDA based on appearance adaptation is

proposed. The new method for appearance adaptation applies adversarial training (Goodfellow

et al., 2014), where a discriminator network learns to distinguish adapted source images from

real target images, while the appearance adaptation network learns to deceive the discriminator

by adapting the images such that they look like images from DT (Zhu et al., 2017a). However,

unlike most existing approaches, no cycle consistency nor variants of this approach are used to

constrain the adaptation, because they have been shown to fail in challenging adaptation scenarios,

for example in the context of deforestation detection (Soto et al., 2021) or land cover classification

(Ji et al., 2020). Instead, semantic consistency is achieved by joint training of the networks for

appearance adaptation and classification. Thus, the appearance adaptation network learns to adapt

images from DS to look like images from DT, but the adapted images must also be correctly

classified, which is assumed to be an appropriate way to avoid regions belonging to a certain

class in the original images to look like regions corresponding to a different class in DT after the

adaptation. To compensate for the negative effects of different label distributions inDS andDT, two

methods are proposed to extend the adversarial training scheme. While the first method consists of

a regularisation of the discriminator output, the second one involves an auxiliary image generation

network in the training process.

The proposed method for UDA based on appearance adaptation is further combined with a

method based on representation transfer. That method, referred to as adaptive batch normalisation

(Li et al., 2018), aims to align the distributions of activation maps by adjusting the parameters

of the batch normalisation layers using the images from the target domain. Combining the two

methods is motivated by the assumption that they can complement each other and result in a even

higher performance after UDA compared to using only one of the methods. Finally, to solve the

parameter selection problem, a termination criterion is proposed that does not require reference

labels in DT, but instead takes into account the entropy of the predictions in DT. The contributions

of this work can be summarised as follows:

1. A new approach for UDA is presented that follows the strategy of appearance adaptation but

uses a novel training scheme. It is based on semantically consistent appearance adaptation

and relies on domain adversarial training of an appearance adaptation network jointly with

the classification network. This joint training procedure is crucial as it allows to consider

the predicted label maps of the adapted images while training the appearance adaptation

network. The proposed approach requires only a single adaptation network, used to adapt

1.2 Contributions and Scientific Goals of this Thesis 7

images from DS to DT. As a result, this approach is less memory demanding and easier to

tune compared to methods based on cycle consistency (Zhu et al., 2017a). Compared to

(Murez et al., 2018a), which is considered to be the most similar method to the proposed

one and which also applies joint training of the appearance adaptation and the classification

networks, the proposed one is more simple, because fewer loss terms and fewer networks are

used.

2. To further improve semantic consistency, two methods are introduced that extend adversarial

training. Both methods aim to mitigate the problems due to large differences in the label

distributions in DS and DT. While in the first method a regularization of the discriminator

output is employed to prevent the discriminator from learning trivial solutions for discrimi-

nating samples from different domains, in the second one an auxiliary generator is introduced

that relaxes the constraint posed by the adversarial training scheme. To the author’s best

knowledge, the first method has solely been investigated in his own work and the second one

has not been proposed in the literature so far.

3. As an extension, the proposed method based on appearance adaptation is combined with

adaptive batch normalisation, a method for UDA from the literature (Li et al., 2018) that

follows the strategy of representation transfer. Combining the methods is motivated by

the assumption that they can complement each other, because they are based on different

strategies. In practice, adaptive batch normalisation is optionally applied as a subsequent

adaptation step after having adapted the classifiers using the proposed method for UDA based

on appearance adaptation.

4. A new criterion for selecting the parameter values is proposed that does not require any

labelled validation data in DT and relies on an entropy-based confidence measure for the

predictions in DT. To the author’s best knowledge there is no published work proposing a

comparable criterion.

5. The method is evaluated in extensive experiments, considerably outperforming recent meth-

ods from the literature for land cover classification. It is also compared to a recent method

for UDA in the context of bi-temporal deforestation detection, where the proposed method

results in a much higher performance on average.

In this thesis, the following scientific questions are examined:

1. Do the different variants of the proposed method for UDA achieve a stable positive transfer

when adapting between different domains? By how much can the performance gap be reduced

and where are the limitations?

2. Is the joint training scheme of the classifier and the appearance adaptation network sufficient

to achieve semantically consistent adaptations? Do the proposed methods for improving

semantic consistency actually result in a higher semantic consistency and if so, does this also

lead to a higher classification performance after UDA?

8 1 Introduction

3. Can the performance of UDA be improved further by combining the proposed method for

UDA based on appearance adaptation with adaptive batch normalisation?

4. Does the proposed parameter selection method based on the entropy in the target domain

lead to better results compared to running the UDA process for a fixed number of epochs?

5. Does a variant of the proposed method outperform approaches from the literature for UDA

when evaluated on the applications of land cover classification and bi-temporal deforestation

detection?

In order to answer these questions, extensive experiments are conducted that use multiple do-

mains for two applications, namely land cover classification and bi-temporal deforestation detection.

1.3 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 gives an overview of basic concepts

that are relevant in the context of UDA for the pixel-wise classification of images using deep neural

networks. This includes the relevant fundamentals of Deep Learning as well as an introduction

to UDA. Furthermore, methodological approaches are presented on which the presented method

is based. In Chapter 3, an overview of the relevant literature is given, with a focus on works

that deal with UDA for the pixel-wise classification of images. In Chapter 4, the new approach

for UDA is presented. The focus is set on the new appearance adaptation based method and the

corresponding methodological extensions aiming at improving semantic consistency. Furthermore,

the way in which the strategies of appearance adaptation and representation transfer are combined

is described, and the proposed approach for parameter selection is presented. Chapter 5 gives an

overview of the datasets used in the experiments as well as the experimental setup and evaluation

protocols. The experimental results are presented and discussed in Chapter 6. Finally, Chapter 7

draws conclusions and provides an outlook on possible future work.

9

2 Basics

This chapter covers the basic concepts relevant to this thesis. After a formal introduction to the task

of pixel-wise classification in Section 2.1, the relevant fundamental concepts of Deep Learning are

discussed in Sections 2.2-2.4. After that, Section 2.5 addresses the task of appearance adaptation.

Finally, the tasks of transfer leaning and unsupervised domain adaptation are formally defined and

the used terminology is introduced in Section 2.6. Section 2.6 further introduces an approach for

unsupervised domain adaptation from the literature, which will be used to extend the proposed

method.

2.1 Machine Learning for Pixel-Wise Classification

Let X be an image with height h, width w and d channels and let xr,c,q be a pixel value of X

in row r ∈ {1, ..., h}, column c ∈ {1, ..., w} and channel q ∈ {1, ..., d}. Pixel-wise classification is

the task of assigning a class-label yr,c to each pixel xr,c according to a predefined class structure

S = {L1, ..., LnL} with nL classes. The set of labels {yr,c}(r,c)∈I , with I = {1, ..., h} × {1, ..., w}
being the image domain, corresponds to the label map Y . If Machine Learning (ML) is used for

the classification, a classifier C with a set of parameters ΘC is to be learned that maps an image

X ∈ X to the predicted label map Ŷ ∈ Y, thus Ŷ = C(ΘC , X). Here, X denotes the space of

possible images and Y is the space of possible label maps.

To simplify the notation in this thesis, the so called one-hot encoding is introduced. Here, each

label y is encoded as a vector γ with nL entries (γ1, ..., γi, . . . , γnL), where

γi =

1 if y = Li

0 otherwise.
(2.1)

Accordingly, one-hot encoded label maps Γ are introduced, where the element γr,c in row r and

column c in Γ denotes the one-hot encoding for the label yr,c in the label map Y .

Although the parameters ΘC could in principle be set manually, the core idea of ML is to

determine the parameters automatically based on a set T = {(Xj , Yj)}nT
j=1 of nT training samples. In

particular, the j-th training sample (Xj , Yj) consists of an imageXj and the corresponding reference

label map Yj . The set T is referred to as training set or training data. In the literature, there are a

variety of ways that can be used to implement C. Depending on the used model, two approaches can

be distinguished. In classical ML, models such as Support Vector Machines (Cortes and Vapnik,

1995), Decision Trees (Breiman et al., 1984) or Random Forests (Ho, 1995) are used to implement C
based on hand-crafted features. The alternative approach to classical ML is called Deep Learning

10 2 Basics

(DL), where one tries to learn the feature extraction and the classifier simultaneously. While

classical ML usually requires a careful selection of features that are used as input to the classifier,

in DL often the raw features are used as input. The idea of DL is that the neural networks learn

to extract relevant features jointly with learning the rules for classification, which has been shown

to outperform approaches based on classical ML in various applications. This is usually done using

a Deep Neural Network (DNN) (cf. Section2.2). For image-related tasks, specialised architectures

such as Convolutional Neural Network (CNN) or Fully Convolutional Neural Networks (FCN) are

commonly used, which are described in Sections 2.3 and 2.4, respectively.

In this work, two applications for pixel-wise classification in RS are addressed that differ with

respect to the input data and the class structure. The two applications are:

1. Land Cover Classification: The first application is land cover classification (LCC) based

on airborne imagery and, if available, elevation information. In this application, each pixel in

an orthorectified multispectral aerial image (MSI) is to be classified according to a set of land

cover classes, such as vegetation, buildings and roads. Often, information about the elevation

is available, for example generated by image based 3D reconstruction or by methods based

on LiDAR. Such information can be used to generate rasterised normalised digital surface

models (nDSM). In the nDSM, each pixel contains the height of objects above the terrain.

If the nDSM has the same geometrical resolution as the MSI, it can be treated as additional

channel in the image to be classified. Consequently, X is a composite image that contains

the MSI and the nDSM.

2. Bi-temporal Deforestation Detection: The second application is bi-temporal deforesta-

tion detection (BDD) where the input to the classifier consists of a pair of two georeferenced

satellite images that show the same area but that were acquired at different dates. The desired

output of the classifier is a binary map that indicates whether deforestation has happened

at each pixel location in between the two acquisition dates. Such an automated classifier is

useful for national agencies that track legal and illegal deforestation activities. In this appli-

cation, each image X serving as input to the classifier is a composite image that contains the

earlier image and the later image.

2.2 Deep Neural Networks

In recent years, Deep Neural Networks have become increasingly important in the field of ML.

DNN can come in many different variants that are often tailored to specific applications. However,

the basic building block of all DNN is always an artificial neuron (McCulloch and Pitts, 1943).

Furthermore, in most cases, the main training scheme is the same, regardless of the DNN variant

or application.

In this section, the main principles of DNN are explained by first introducing the so called

multilayer perceptron, which is a very simple variant of a DNN in Section 2.2.1. Afterwards,

Section 2.2.2 explains how a DNN is trained in a supervised way. Section 2.2.3 introduces some

2.2 Deep Neural Networks 11

strategies that aim to improve the generalisation capability of DNN, and in Section 2.2.4 the concept

of adversarial training is introduced.

2.2.1 Neuron and Multilayer Perceptron

The basic building block of any DNN is an artificial neuron (McCulloch and Pitts, 1943) N that

implements a parametrized mapping function a = N(ΘN ,v), which can e.g. be used as a classifier.

Here, v = (v1, ..., vnv) is an input feature vector with nv features, ΘN = (θ1, ..., θnv , θb) is a vector

of the trainable parameters and a is the scalar output of the neuron. The output is computed by

applying a non-linear activation function fa to the linear combination of the input values v. This

can be formulated as

a = fa(u), (2.2)

where u is the result of the linear combination

u =

nv∑
i=0

θi · vi + θb. (2.3)

using the first nv parameters in ΘN as weights for the features and adding the bias parameter θb

to the result.

The choice of fa is arbitrary in principle and depends on the application. For example, the

logistic sigmoid function

fsig(u) =
1

1 + e−u
(2.4)

is commonly used to map values to the range of (0, 1) in order to interpret them as probabilities.

When using this activation function, a single neuron can be considered as a binary classifier that

predicts the probability for one of the classes given a specific feature vector.

Multilayer Perceptron: In order to obtain a more complex classifier, multiple neurons are

combined, often by arranging them in a layered structure. An classifier that consists of multiple

neurons arranged in layers is the multilayer perceptron (MLP) (Rosenblatt, 1962). A MLP M

consists of an input layer, nHL hidden layers, and an output layer. Except for the input layer, each

layer of a MLP has a set of parameters and the union of the parameters of all layers corresponds

to the model parameters ΘM . Let u(j) = (u
(j)
1 , ..., u

(j)
nN,j) be the vector of all outputs of the nN,j

neurons in layer j before applying an activation functions and let a(j) = (a
(j)
1 , ..., a

(j)
nN,j) be the

vector of all outputs of the nN,j neurons in that layer after applying the activation function, thus

a
(j)
i = f (j)a (u

(j)
i) ∀ i ∈ [1, ..., nN,j] (2.5)

with

u
(j)
i =

nN,(j−1)∑
n=0

θ
(j)
M,i,n · a

(j−1)
n + θ

(j)
M,i,b ∀ i ∈ [1, ..., nN,j], (2.6)

where θ
(j)
M,i,n is the weight associated with the connection of the i-th neuron in the layer j and the

n-th neuron in the layer j − 1, nN,(j−1) is the number of neurons in the layer j − 1 and f
(j)
a is the

activation function used in layer j. The final output vector of the MLP corresponds to the vector

12 2 Basics

of activations a(O) of the output layer, where O = nHL + 1. An example for a MLP is illustrated

in Figure 2.1.

input layer

1 st
hidden layer

2 nd
hidden layer

output layer

v1 = a
(0)
1

v2 = a
(0)
2

v3 = a
(0)
3

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

a
(2)
5

a
(3)
1

a
(3)
2

a
(3)
3

a
(3)
4v

a(O)

Figure 2.1: Schematic illustration of a multi-layer perceptron M with nHL = 2 hidden layers designed to

map a feature vector with three elements to a vector with four elements. The red dots indicate

the computation of the output of each neuron according to Equation 2.5. It shall be noted that

this architecture serves as an example for a very shallow DNN. Common architectures have a

much higher number of layers and much more neurons per layer, and consequently they have a

much higher number of parameters.

In a multi-class classification scenario with nL classes there are nL neurons in the output layer.

The outputs u(O) of the output layer before applying an activation function correspond to unnor-

malised class scores that are called logits. Commonly, the logits are normalised using the softmax

function fsm to be interpreted as a probability distribution. In particular, the softmax function

normalises a vector such that that all values lie in the range of (0, 1) and the sum of all values is

one. The i-th entry a
(O)
i in the normalised output vector a(O) = fsm(u(O)) is computed according

to

a
(O)
i =

eu
(O)
i∑nL

j=1 e
u
(O)
j

∀ i ∈ [1, ..., nL], (2.7)

where u
(O)
i and u

(O)
j are the unnormalised outputs of neuron i and j, respectively, in the output

layer and nL is the number of classes. The output a(O) is interpreted as the predicted probability

distribution γ̂, in which the k-th entry γ̂k = P (y = Lk|v) is the probability that the unknown class

label y is the k-th class label Lk given the observed feature vector v. During inference, a vector v

is presented to the network and the class with the highest posterior probability (i.e., the highest

softmax score) is considered as the final class prediction ŷ.

2.2 Deep Neural Networks 13

2.2.2 Supervised Training of Neural Networks

In a supervised scenario, a neural network N is trained, i.e. its parameters ΘN are determined,

by minimising a certain loss function for all samples in the training set T = {(vi, yi)}nT
i=1, where

nT is the number of training samples, vi is the i-th data point in the training set and yi is the

corresponding reference label. The loss function basically serves as a measure of the divergence

between the network prediction and the known reference labels. Thus, if the loss function for the

training data is minimised, the network makes better predictions for the training data. In order

to minimise the loss, several optimisation strategies can be used. Those relevant for this thesis are

introduced in Section 2.2.2.1.

In the following, several loss functions that are relevant for this theses are introduced. Commonly,

different loss functions are used for multi-class classification and for binary classification. Let γi be

the one-hot encoding for the reference label yi as introduced in Section 2.1 and γ̂i,k be the predicted

probability P (yi = Lk|vi) of the network for a sample vi to belong to class Lk. In a multi-class

classification scenario, the network output a
(O)
i , normalised using the softmax function, can directly

be interpreted interpreted as the predicted label probability distribution, thus, a
(O)
i = γ̂i = N(vi).

However, in a binary classification with the class structure S = {L+, L−}, the network commonly

predicts a scalar value, normalised using the sigmoid function, which is interpreted as the probability

P (yi = L+|vi) for the sample vi to belong to L+. As the probabilities by definition sum up to

one, the probability P (yi = L−|vi) for the sample to belong to the other class can be computed to

P (yi = L−|vi) = 1− P (yi = L+|vi).

A commonly used metric to model the loss in both scenarios is the cross-entropy. This metric

is described in the following paragraphs for the scenarios of binary and multi-class classification,

respectively.

Binary Cross-Entropy: In the scenario of binary classification, the number of classes is nL = 2

and the class structure is S = {L+, L−}. The one-hot encoding of a label yi is γi = (γi,+, γi,−).

The value of γi,+ for the i-th data point is γi,+ = 1 if the reference label yi is L+, and γi,+ = 0

otherwise. The value of γi,− is 1 − γi,+. Correspondingly, the network output is the scalar γ̂i,+,

which is the predicted probability P (yi = L+|vi,ΘN) for vi to belong to class L+. To that end,

the network has one neuron in the output layer, which uses the sigmoid function as non-linearity.

Using this notation, the binary cross-entropy loss is given by

Lbce(ΘN , T) = −
1

nv

nv∑
i=1

γi,+ · log(γ̂i,+) + (1− γi,+) · log(1− γ̂i,+), (2.8)

where nv is the number of samples over which the loss is calculated. Note that this loss formulation

was already used in the context of logistic regression (Cox, 1958).

Multi-Class Cross-Entropy: In a multi-class classification scenario, the class structure is S =

{L1, ..., LnL}, where the number of classes is nL > 2. The reference label yi for the i-th data point

vi is one-hot encoded as a binary vector γi with the k-th entry being γi,k = 1 if the reference label

for vi is Lk and γi,k = 0 otherwise. Correspondingly, for a data point vi, the network predicts

14 2 Basics

the probability distribution γ̂i where the k-th entry γ̂i,k corresponds to the predicted probability

γ̂i,k = P (yi = Lk|vi,ΘN) that vi belongs to the class Lk. To that end, the network has Lk output

neurons, and the output is normalised using the softmax function. Based on this notation, the

multi-class cross-entropy loss becomes

Lce(ΘN , T) = −
1

nv

nv∑
i=1

nL∑
k=1

γi,k · log(γ̂i,k), (2.9)

with nv as in Equation 2.8. In order to minimise this loss, the classifier has to maximise the

predicted probability for the correct class for all samples over which the loss is calculated.

Weighted Cross-Entropy A disadvantage of the multi-class cross-entropy loss is that it does

not consider the frequency of the different classes in the dataset used for training. Particularly in

scenarios in which some classes are underrepresented, i.e. occur less frequently in the training data

compared to other classes, a trained classifier will tend to have a worse classification performance

for these classes. One approach to counteract this phenomenon is to assign a weight ωk to each

class Lk. By assigning a higher weight to less frequent classes, the respective samples contribute

more to the loss which can result in an improved classification performance for samples of that

class. The weights are considered by extending equation 2.9, resulting in the formulation of the

weighted cross-entropy loss

Lwce(ΘN , T) = −
1

nv

nv∑
i=1

nL∑
k=1

ωk · γi,k · log(γ̂i,k), (2.10)

with ωk being the weight of class Lk and the other symbols as in Equation 2.9. Note that the

relative weight of a class may also be increased if samples for that class are classified with a lower

accuracy compared to the other classes. Many approaches for determining the weights have been

proposed in the literature, most of which are based on the frequency of samples for each class in

the training set, e.g. (Ronneberger et al., 2015).

2.2.2.1 Optimisation Strategies

In ML, optimisation is applied to find a set of parameters Θ̂ that minimise the loss function L
for the training data T . A straight-forward approach would be to calculate the positions of local

extrema, where the gradient ∇L(Θ, T) becomes zero. However, this is practically not possible for

neural networks, because the loss function is too complex. In such a scenario, one could perform

a second order Taylor series approximation, which is a common optimisation strategy for logistic

regression. Yet again, such an approach is not applicable in the context of DL, because a second

order approximation requires to calculate the Hessian matrix ∇∇L(Θ, T) having the dimension

np · np, where np is the number of parameters. As the number of parameters of a DNN is often in

the range of several millions, computing and storing the Hessian matrix is practically not feasible.

For these reasons, DNNs are commonly trained using variants of gradient descent (Goodfellow

and Vinyals, 2015). Here, the parameters ΘN of a network N are randomly initialised, for example

by drawing from a normal distribution, which results in the initial parameter vector Θ
(0)
N . Note that

2.2 Deep Neural Networks 15

in this notation, the superscript denotes the training iteration. The parameters are then iteratively

updated by changing the parameter state according to the local gradient vector, i.e. by moving

in the direction of the steepest descent. In gradient descent, the step-width is controlled by the

hyper-parameter λ, referred to as learning rate. The update rule can be expressed as

Θ
(t+1)
N = Θ

(t)
N − λ · ∇L(Θ

(t)
N , T), (2.11)

where t is the index of the current training iteration and

∇L(Θ(t)
N , T) =

δL
δθ1

(Θ
(t)
N , T)

...
δL
δθnp

(Θ
(t)
N , T)

 (2.12)

is the gradient vector in iteration t. In order to compute the gradient, the loss function has to be

differentiable with respect to each parameter θi ∈ ΘN . In neural networks, the gradient vector can

efficiently be computed by back-propagation (Rumelhart et al., 1986).

In the basic variant of gradient descent, the loss is computed over all training samples in T . In

practice, DNNs are usually trained using mini-batch stochastic gradient descent (MB-SGD) where

instead of calculating the loss over all training samples, a subset of the training set, referred to as

a mini-batch, is used in each iteration. This variant enables much faster training and drastically

decreases the memory requirement in comparison to the basic variant of gradient descent. How-

ever, using MB-SGD introduces an additional hyper-parameter, namely the batch size nB, which

corresponds to the size of each mini-batch. The batch size can have major influence on the training

procedure. In particular, when it is too large it might not be possible to train the classifier due to

the large memory requirements. On the other hand, if it is too small, the mini-batch may no longer

represent the training dataset well. As a consequence, the resulting gradients may no longer point

into the direction of a good parameter state, which means that the procedure will converge only

slowly or not at all. Gradients that are strongly affected by the random selection of the samples

in a mini-batch are commonly referred to as noisy gradients. Similarly, the learning rate λ has a

major influence on the training. On the one hand, too small a learning rate will result in a slow

convergence of the training procedure. On the other hand, too large a learning rate can result in

a divergence or a poor classification performance after training.

When using MB-SGD, each training iteration consists of the following steps. First, a mini-batch is

constructed by randomly drawing nB training samples from the training dataset. Next, during the

forward pass, each sample in the mini-batch is presented to the network. The resulting predictions

for each sample and the corresponding reference are used to calculate the loss. Consequently, the

gradient vector is determined using back-propagation. Lastly, the parameters are updated based

on the gradient according to Equation 2.11.

There exist many variants of MB-SGD that improve the optimisation process, e.g. by reducing the

required number of training iterations. Furthermore, some variants aim at making the optimisation

less sensitive to the choice of hyper-parameters, simplifying the process of hyper-parameter tuning.

Some variants also address optimisation problems related to MB-SGD which can improve the final

performance of the DNN. In the following paragraphs, the variants used in this thesis are discussed.

16 2 Basics

Gradient Descent with Momentum: When training a DNN using MB-SGD, the optimization

process can be slowed down by noisy gradients. A frequently used countermeasure is to extend

MB-SGD by considering the estimate of the first moment Θ̇N of the parameters. The vector Θ̇N

contains np scalar variables that describe the estimate of the first moment of each parameter, where

np is the number of parameters of the network N . Θ̇N is initialised by Θ̇
(0)
N = (0, . . . , 0) and the

parameter vector ΘN is initialised as in regular MB-SGD. In each update step t, the gradient does

not affect ΘN directly, but instead is used to update the estimate of the first moment Θ̇N according

to

Θ̇
(t+1)
N = β0 · Θ̇(t)

N +∇L(Θ(t)
N , T), (2.13)

where β0 is a hyper-parameter called the friction parameter. The actual parameters are updated

using the estimated moment:

Θ
(t+1)
N = Θ

(t)
N − λ · Θ̇

(t+1)
N , (2.14)

where λ denotes the learning rate. In this work, this extended optimization strategy is referred to

as MB-SGD-M.

Adaptive Momentum: Another commonly used optimisation strategy is referred to as adaptive

momentum (ADAM) (Kingma and Ba, 2014). It extends MB-SGD-M by considering the second

moment of each parameter to increase the rate of change for slowly changing parameters. ADAM

introduces two scalar hyper-parameters β1 and β2, the vector of first moment estimates Θ̄N and

the vector of second moment estimates Θ̂N . Both vectors are initialised by zeros and the parameter

vector ΘN is again initialised as in regular MB-SGD. In each iteration t, first, the estimate of the

first moment Θ̄
(t)
N of the parameter vector is updated

Θ̄
(t+1)
N = β1 · Θ̄(t)

N + (1− β1) · ∇L(Θ(t)
N , T). (2.15)

Next, the estimate of the second moment Θ̂
(t)
N of the parameter vector is updated

Θ̂
(t+1)
N = β2 · Θ̂(t)

N + (1− β2) · ∇L(Θ(t)
N , T)2, (2.16)

with

L(Θ(t)
N , T)2 =

(
δL
δθ1

(Θ
(t)
N , T)

)2

...(
δL
δθnp

(Θ
(t)
N , T)

)2

 (2.17)

Finally, each parameter θi is updated according to

θ
(t+1)
i = θ

(t)
i − λ ·

θ̄
(t+1)
i /(1− βt1)√

θ̂
(t+1)
i /(1− βt2) + ϵ

, (2.18)

where θ̄
(t+1)
i is the i-th value in Θ̄

(t+1)
N , θ̂

(t+1)
i is the i-th value in Θ̂

(t+1)
N , λ denotes the learning rate

and ϵ is a small constant value that is added for numerical stability.

2.2 Deep Neural Networks 17

2.2.3 Improving Model Generalization

Due to their high complexity, DNNs are prone to overfit to the training data, particularly if the

training dataset is too small. The term overfitting is used to describe the situation in which the

classifier performs well on the training data set, but badly when applied to unseen data, because it

memorises the training data instead of learning to perform the classification based on patterns also

appearing in the new data. Several strategies have been proposed to counteract this behaviour by

regularising the parameters in the learning process. The strategies relevant for this thesis will be

explained in the following paragraphs.

Weight Decay: One strategy to avoid overfitting of a network N with parameters ΘN is to

restrict the magnitude of the parameters (Krogh and Hertz, 1991). This is realized by adding either

the L1 norm or the L2 norm of ΘN to the loss. In the case of the L2 norm, the regularisation loss

is

LL2(ΘN) =

np∑
i=1

(θi)
2, (2.19)

where np is the number of parameters of the network. In a classification scenario with the classifi-

cation loss Lcla the final loss L becomes

L(ΘN , T) = Lcla(ΘN , T) + τ · LL2(ΘN). (2.20)

where τ is a weighting parameter that controls the strength of the regularisation.

Data Augmentation: Another possibility to improve the generalization ability of a DNN is

to synthetically expand the training dataset without requiring any additional training samples.

The main concept of this strategy, referred to as data augmentation, is to randomly modify the

training samples during training (Shorten and Khoshgoftaar, 2019). In principle, any type of

modification can be applied as long as the modified training samples are still representative for the

task to be learned. For example, if the task is to classify images, a frequently used variant of data

augmentation is to randomly change the brightness and contrast of the images during training to

obtain a classifier that performs better on images that have different radiometric properties than

the images used for training.

Stopping Criterion and Parameter Selection: The number of training iterations is another

important factor that can strongly affect the performance of a classifier on unseen data. While

training for too few iterations can lead to underfitting, training for too many iterations may lead to

overfitting. Furthermore, the performance of a classifier on both, the training dataset and unseen

data, often shows large fluctuations during training. One approach for choosing a proper number

of iterations is to treat the number of training iterations as a hyper-parameter which, for example,

is set on the basis of previous experiments. However, the optimal number of training iterations can

vary a lot from dataset to dataset, which is why using fixed number of iterations may not result in

a good classification performance on unseen data.

18 2 Basics

For this reason, a common strategy is to determine the number of training iterations during

training based on a validation set, i.e. a subset of the available labelled data which is not used for

determining the parameters of the classifier. Commonly, the performance of the classifier on the

validation set is tracked during training. After training the model for a fixed number of iterations,

the parameter values leading to the best performance on the validation set are used as the final

ones. An alternative approach is to stop the training if the performance on the validation set

does not improve for a fixed number of iterations. This approach is referred to as early stopping

(Prechelt, 1998).

Dropout: Srivastava et al. (2014) proposed another strategy to improve the generalization capa-

bilities of DNN referred to as dropout. Dropout is usually applied to the neurons in one or multiple

layers in a DNN. During training, the activation of the neurons in the corresponding layers are

randomly set to zero with a certain probability (dropout probability). This strategy is related to

the concept of ensemble learning, where several different classifiers are trained instead of a single

one. The authors proposed to no longer set any neurons to zero during inference, but to rescale the

respective activations by multiplying them by the dropout probability. The rescaling is necessary

to obtain input values for subsequent neurons that have a range of values similar to the one during

training.

2.2.4 Adversarial Training

So far, DNN have only been introduced for classification problems. However, they are frequently

used to solve other tasks as well. One such task is the generation of synthetic data points that are

similar to samples in an unlabelled training set U = {(ri)}nU
i=1 with nU data samples. A solution

for this task was proposed by Goodfellow et al. (2014). The authors address the task of image

generation, aiming to train a so called generator network G to predict a synthetic image XG based

on a random variable z, such that P (UG) ≈ P (U), where UG = {XG
j }

nG
j=1 is a set of nG generated

images and XG
j is the j-th generated image in UG. To train the generator, they introduce the

concept of adversarial training. It has to be noted that this training scheme is agnostic to the data

type; for example, in (Engel et al., 2019), adversarial training is used to create synthetic audio

samples.

In adversarial training, two DNNs are trained simultaneously. The first network is the generator

G having a parameter vector ΘG. It takes a vector z that is drawn randomly from some distribution

as input and predicts an artificial data sample g = G(ΘG, z). The second network D is called the

discriminator and has the parameter vector ΘD. This network serves as a binary classifier, where

the classes to be differentiated are SD = {LR, LG}. LR corresponds to the case in which a sample

serving as input to D is a sample from U and LG means that a sample was generated by G. D maps

a data sample vi, which is either a real sample r or a generated sample g, to a probability score

γ̂LR
that corresponds to the probability P (yi = LR|vi) = 1−P (yi = LG|vi) of the respective input

sample to correspond to the class LR, i.e. to originate from U . While D is trained to correctly

predict the label for both, artificial and real samples, G is trained to deceive the discriminator by

maximising the probability P (yi = LR|gi) for a synthetic sample gi. Thus, G aims to generate

2.3 Convolutional Neural Networks 19

samples that are classified by D as being real samples. Consequently, the networks are optimised

with respect to different loss functions. The loss LD for the discriminator is formulated as

LD(ΘD,ΘG, U) =
−1

2 · nB

(
nB∑
i=1

log P (yi = LR|ri,ΘD) +

nB∑
i=1

log P (yi = LG|gi,ΘD,ΘG)

)
, (2.21)

where nB is the batch size and gi is the i-th synthetic sample in a batch of samples generated by

G. A näıve loss for the generator would be L(naive)G = −LD. As the first term in Equation 2.21

does not depend on ΘG, it does not affect the gradient of the loss with respect to the parameters

of G and can therefore be neglected. This leads to

L(naive)G (ΘD,ΘG) =
1

nB

nB∑
i=1

log P (yi = LG|gi,ΘD,ΘG). (2.22)

In practice, the generator is not trained to minimise the probability that the generated samples

belong to LG, but to maximise the probability that the generated samples belong to LR. According

to Goodfellow et al. (2014), this has positive effects on the optimisation, because this loss provides

much stronger gradients for the generator in the early training phase. In particular, they observed

that in the early training phase the discriminator will learn very fast to predict a low probability

P (yi = LR|gi) for synthetic samples to originate from U , which leads to small gradients for the

derivative of the loss function L(naive)G . Consequently, the standard loss for the generator becomes

LG(ΘD,ΘG) = −
1

nB

nB∑
i=1

log P (yi = LR|gi,ΘD,ΘG). (2.23)

The derivative of this loss with respect to the output of the discriminator approaches minus infinity

when P (yi = LR|gi) approaches zero, which results in larger update steps of the parameters of G
in the early training phase. It should be noted that various other loss formulations for adversarial

training have been proposed in literature, e.g. in (Mao et al., 2017), but they follow the same

conceptual approach.

As suggested in (Goodfellow et al., 2014), adversarial training is usually performed by alternating

updates of G and D. In the update step of G, a mini-batch of random vectors is presented to G,
resulting in a mini-batch of generated samples {gi}nB

i=1. The samples are presented to D and

the generator loss is calculated according to Equation 2.23. Next, the gradient ∇LG(ΘD,ΘG) is

computed and the parameters ΘG are updated using a variant of gradient descent. Note that in

this step, the parameters ΘD are not updated. In the update step of D, a mini-batch of generated

samples and a randomly drawn mini-batch {(ri)}nB
i=1 of nB samples from U are presented to D.

Based on the predicted probabilities the discriminator loss is calculated according to Equation 2.21

and the parameters ΘD are updated using a variant of gradient descent. This training scheme is

repeated, ideally leading to a stable state, called equilibrium, in which further training does no

longer lead to an improvement of the generator or the discriminator.

2.3 Convolutional Neural Networks

The term Convolutional Neural Network (CNN) (LeCun et al., 1999) generally describes a group

of DNNs that make use of so-called convolutional layers that exploit and explicitly consider the

20 2 Basics

spatial arrangement of the pixels in an image. Nowadays, such networks are used for multiple tasks

related to image data.

While in a MLP the outputs of the neurons of each layer are arranged in a one dimensional vector,

the outputs of neurons in each layer of a CNN are arranged in three dimensional tensors, i.e. they

have a structure comparable to the arrangement of grey values in a multi-channel image. Thus, the

output of each convolutional layer is a three dimensional activation map A in which the first and

second dimensions correspond to the spatial coordinates, and the third dimension is the channel

dimension. Note that in this thesis, the term pixel is not only used in the context of images, but

it is also used to refer to the vector of values in an activation map at a specific spatial position.

In a CNN, the input to the first layer is an image. Each of the following layers in the CNN

takes the output activation map of the preceding layer as input and outputs another activation

map that may have a different spatial resolution and a different number of channels. In a CNN

for image categorisation, i.e. the task of assigning a single class label to each input image, the

last layers usually correspond to a MLP in order to predict a single probability distribution per

image. Figure 2.2 shows an exemplary CNN architecture for multi-class image categorisation. In

Sections 2.3.1-2.3.3, the basic types of layers of a CNN are presented and in Section 2.3.6, specific

CNN architectures which are relevant for this thesis are described in detail.

8
×
8
×
1

8
×
8
×
2

4
×
4
×
2

4
×
4
×
4

2
×
2
×
4

2
×
2
×
8

32

64

5

Conv. Pool. Conv. Pool. Conv. Reshape F.C. F.C. + Softmax

Figure 2.2: Exemplary CNN architecture for multi-class image categorisation. The network maps a single-

channel image of size 8×8 px to a probability distribution according to a class structure with nL =

5 classes. The image is first processed by a sequence of convolutional (Conv.) and pooling (Pool.)

layers (cf. Sections 2.3.1 and 2.3.2). The activation map produced by the last convolutional layer

is reshaped, i.e. the values are rearranged in a one-dimensional array, and processed by two

fully connected (F.C.) layers that correspond to a simple MLP. The output of the second fully

connected layer is normalised by the softmax function to obtain the class probabilities. At the

top of each tensor in the figure, the respective shape is given. In particular, for three-dimensional

tensors the shape is given in the form of height×width× depth and for one-dimensional vectors

only the number of entries is given.

2.3 Convolutional Neural Networks 21

2.3.1 Convolutional Layers

A convolutional layer is based upon the mathematical concept of a convolution. The output activa-

tion map A(out), that is the result of a convolutional layer is obtained by convolving the preceding

input activation map A(in) with a set of n
(out)
c kernel matrices {K1, ...,Kn

(out)
c
}, adding a bias pa-

rameter bq per kernel Kq and applying an activation function fa(·). The activation value a
(out)
r,c,q of

the q-th channel at row r and column c in A(out) is computed as

a(out)r,c,q = fa

bq + hk∑
rk=1

wk∑
ck=1

n
(in)
c∑

qk=1

kq,rk,ck,qk · a
(in)
r+rk,c+ck,qk

 , (2.24)

where kq,rk,ck,qk refers to the parameter at row rk, column ck channel qk in the q-th kernel. The

symbols hk, wk, n
(in)
c are height, width and depth of the input activation map, or, in the case of the

first layer, of the input image, and a
(in)
r+rk,c+ck,qk

is the activation value of the qk-th channel at row

r+ rk and column c+ ck in A(in). Note that if the indices are used according to Equation 2.24, the

kernel has to be flipped horizontally and vertically before the operation in Equation 2.24 is applied,

to formally correspond to a convolution. Practically, this is not relevant in the context of DL

because the weights of each kernel are learned during training. Besides the weights of all kernels,

the learnable parameters of a convolutional layer include the corresponding bias parameters. A

convolutional layer with two kernels is illustrated in Figure 2.3.

n
(in)
c

q

r

c

qk

rk

ck

hk

wk

h(out)

w(out)

K2

K1

A(in)
A(out)

Figure 2.3: Schematic illustration of a convolutional layer with two kernels. The input activation map A(in)

has n
(in)
c = 3 channels, the output activation map A(out) has n

(out)
c = 2 channels. Each kernel

has a spatial size of hk × wk with hk = wk = 2 px.

Unlike in a fully connected layer, where each neuron in a layer is connected to each neuron in the

previous layer, in a convolutional layer the activation of a neuron only depends on a few activations

in the input activation map. For example, the green and yellow neurons in A(out) in Figure 2.3 are

only connected to the red neurons in A(in). Furthermore, the same parameter values are used at

different spatial positions. These aspects of a convolutional layer lead to a considerable reduction

of the number of parameters compared to a fully connected layer. This is beneficial for training

because less training data are required as fewer unknown parameters need to be determined. Besides

this basic variant of a convolutional layer, many variants and modifications exist. Those that are

relevant for this thesis are explained in the following paragraphs.

22 2 Basics

Padding: As the example in Figure 2.3 shows, the output of a basic convolutional layer has a

smaller spatial extent if the height hk or the width wk of the kernel is larger than one. This can

be prevented by padding the input activation map accordingly, i.e. adding additional rows and

columns at the borders of the activation map. A commonly used strategy is zero-padding, where

the values in the padded areas are set to zero. Another option is repetition-padding, where the

values at the border of the input activation map are used to fill the adjacent padded areas. In

particular, the values of each pixel in the padded area is set to the values of the spatially closest

pixel in the original activation map.

Strided Convolution: In a basic convolution the kernel is shifted over the whole input activation

map with a step size of one pixel. However, the step size can be increased to reduce the spatial

size of the output activation map. For example, if the step size is set to two pixels, every second

row and column is skipped when shifting the kernel over the input activation map. This leads to a

reduction of the height and width of the output activation map by a factor of approximately two

compared to the input. Note that the step size in the horizontal direction may be different from

the one in vertical direction. However, as in the architectures used in this thesis the two values are

always the same, the term step size will be used to refer to the step size in both directions.

Depthwise Separable Convolution: In image processing, a commonly used strategy to speed

up the convolution operation is to decompose a two-dimensional kernel K of shape hk × wk into

two one-dimensional kernels Kh and Kw of shape hk × 1 and 1 × wk, respectively (Wiejak et al.,

1985). If Kh and Kw are selected such that K = Kh ∗Kw, the result obtained by convolving an

image with K is equivalent to the result of first convolving the image with Kh before convolving

the output with Kw. However, the latter variant requires only hk + wk multiplications per pixel

instead of hk · wk. The main problem of this strategy is that not all kernels can be decomposed

(Perona, 1995).

In the context of CNN, Chollet (2017) proposes the so called depthwise separable convolutional

layer that is based on the concept of separable convolutions. Such a layer corresponds to a sequence

of two convolutional layers that address the channel dimension and the two spatial dimensions,

respectively. On the one hand, this speeds up the computations, because fewer multiplications are

required to calculate the output compared to applying a single convolution. On the other hand,

fewer parameters are to be determined during training, which can reduce the amount of training

data required to train the network.

The first layer in a depthwise separable convolutional layer is called pointwise convolution and

corresponds to a regular convolutional layer as presented in Section 2.3.1, but each kernel KP,q

considers only a single pixel. Thus, each of the n
(out)
c kernels in the pointwise convolution has a

shape of 1 × 1 × n(in)c , where n
(in)
c is the number of channels in the input A(in). In the pointwise

convolution, no bias is added and no activation function is applied. The output of the pointwise

convolution is A(P) with n
(out)
c channels. The second layer performs what is called depthwise

convolution. Here, each channel q is convolved independently with a kernel KS,q having shape of

2.3 Convolutional Neural Networks 23

hk × wk × 1. In the second layer a bias is added and an activation function is applied. Figure 2.4

illustrates a depthwise separable convolutional layer.

KP,1

KP,2

KS,1

KS,2

pointwise convolution depthwise convolution

A(in) A(P)

A(out)

Figure 2.4: Schematic illustration of a depthwise separable convolutional layer. The pointwise convolution

with two kernels produces the intermediate output A(P). Each channel in A(P) is then convolved

individually using a kernel in the depthwise convolution step. The dotted arrows in the figure

correspond to a convolution and the regular arrows are used to indicate the splitting of the

channels of A(P).

Omitting the bias terms, such a depthwise separable convolution has (n
(in)
c + hk · wk) · n

(out)
c

parameters, while the number of parameters of a comparable regular convolution would be n
(in)
c ·

hk · wk · n
(out)
c . In the example in Figure 2.4, the separable variant has 14 parameters, while the

regular convolution with two 2× 2 kernels would have 24 parameters.

Note that in many frameworks the order of the operations is flipped, i.e. the depthwise convolu-

tion is performed before the pointwise convolution. In this case, the activation function is applied

only to the output of the pointwise convolution. However, Chollet (2017) argues that this difference

is unimportant once multiple depthwise separable convolutional layers with a constant depth are

stacked in an architecture.

2.3.2 Pooling Layer

A method to reduce the spatial size of the activation maps is to use a pooling layer. Here, a context

window W is shifted over the input activation map A(in), similar to a kernel in a convolution. For

each spatial position (r, c) in the output the values of the corresponding pixel are calculated by

applying an aggregation function fagg(·) to the set of pixels in the corresponding context window

W (r, c). Frequently, the aggregation function corresponds to the channel-wise maximum max or

the channel-wise average avg. The values of each pixel a
(out)
r,c in the output activation map of a

pooling layer is computed according to

a(out)r,c = fagg(W (r, c)). (2.25)

In a pooling layer, the spatial reduction is achieved by using a step size (stride) larger than one.

For example, if the context window corresponds to a area of 2 × 2 px and the step size is set to

2 px, a spatial downsampling by a factor of two is achieved.

24 2 Basics

2.3.3 Batch Normalisation Layer

A frequently used architectural modification of DNNs is to use batch normalisation (Ioffe and

Szegedy, 2015). The core idea of batch normalisation is to normalise the output of a layer in a

DNN such that after normalisation, the mean value and the standard deviation over all samples in

a mini-batch are zero and one, respectively. On the one hand, this makes the gradients less noisy

(cf. Section 2.2.2.1), which allows DNNs to be trained using larger learning rates, leading to faster

convergence of the training procedure. On the other hand, using batch normalisation has also been

shown to result in better performing classifiers (Santurkar et al., 2018).

In MLPs, batch normalisation is often considered in the form of batch normalisation layers, which

perform the batch normalisation on a batch of nB input activation vectors a
(in)
j for the same layer

and output the normalised activations a
(out)
j , where j = (1, ..., nB) is the sample index in the mini-

batch. The basic variant of batch normalisation works as follows. The i-th value a
(out)
j,i in a

(out)
j is

computed according to

a
(out)
j,i = ζi ·

a(in)j,i − µi√
σ2i + ϵ

+ ϕi, (2.26)

where a
(in)
j,i is the i-th value in a

(in)
j , ϵ is a constant scalar that is added for numerical stability,

µi =
1

nB

∑nB
j=1 a

(in)
j,i is the empirical mean, and σ2i =

1

nB

∑nB
j=1(a

(in)
j,i − µi)2 is the the empirical

variance of a
(in)
j,i of the i-th value in a(in). ζi and ϕi denote learnable parameters.

In CNNs, a variant of batch normalisation that follows the concept of weight sharing is commonly

used. Instead of normalising each activation in an activation map independently, neurons that

correspond to the same channel are normalised jointly. In this work, this variant is referred to as

2D batch normalisation. In particular the activation a
(out)
j,r,c,d in row r, column c and channel d of a

2D batch normalisation layer for the j-th sample in a mini-batch are calculated according to

a
(out)
j,r,c,d = ζd ·

a(in)j,r,c,d − µd√
σ2d + ϵ

+ ϕd, (2.27)

where

µd =
1

nB

nB∑
j=1

h(in)∑
r=1

w(in)∑
c=1

a
(in)
j,r,c,d (2.28)

and

σ2d =
1

nB

nB∑
j=1

h(in)∑
r=1

w(in)∑
c=1

(a
(in)
j,r,c,d − µd)

2 (2.29)

are the empirical mean and the empirical variance, respectively, for the activations in the d-th

channel in the input activation map A(in). a
(in)
j,r,c,d is the activation in row r, column c and channel

d in the j-th input activation map A
(in)
j with height h(in) and width w(in). ζd and ϕd again denote

learnable parameters.

An aspect that has to be considered when using either variant of batch normalisation is how to

deal with this operation during inference. In principle, the same operations could be used, but this

2.3 Convolutional Neural Networks 25

might be problematic if the batch size is reduced during inference to a few samples or to a single

sample. In particular, the empirical mean and the empirical variance for each neuron (or channel)

may no longer be meaningful. An alternative approach, proposed by Ioffe and Szegedy (2015), is

to compute so called running averages of the empirical mean and the empirical variance for each

neuron (or channel) that serve as estimates µ̄ and σ̄2 of the empirical mean and variance for each

neuron (or channel), respectively. In particular, in training iteration t, the estimates µ̄(t) and σ̄2(t)

of each parameter are updated according to

µ̄(t) ← (1− βBN) · µ̄(t−1) + βBN · µ, (2.30)

and

σ̄2(t) ← (1− βBN) · σ̄2(t−1) + βBN · σ2, (2.31)

where βBN is a hyper-parameter that controls how fast the running averages adapt to new values

and µ, σ are mean and variance of the activation of the corresponding neuron or channel. The

running averages are commonly initialised by µ̄(0) = 0 and σ̄2(0) = 1.

During inference, the estimates of the training iteration replace the empirical mean and the

empirical variance. In particular, the regular batch-normalisation step from Equation 2.26 becomes

a
(out)
j,i = ζi ·

a(in)j,i − µ̄i√
σ̄2i + ϵ

+ ϕi, (2.32)

where µ̄i is the estimated mean and σ̄2i is the estimated variance of the i-th neuron in a(in).

Accordingly, the 2D batch-normalisation step from Equation 2.27 becomes

a
(out)
j,r,c,d = ζd ·

a(in)j,r,c,d − µ̄d√
σ̄2d + ϵ

+ ϕd, (2.33)

where µ̄d is the estimated mean and σ̄2d is the estimated variance of the activations in the d-th

channel in A(in).

2.3.4 Activation Functions in CNNs

Another aspect that is important in the context of DL is the choice of the activation functions in

the hidden layers. Although in principle any non-linear and differentiable function can be used,

only a few are frequently used in recent architectures for DL. In particular, saturating functions

like the logistic sigmoid function, whose derivative approaches zero for very large and very small

inputs, are problematic due to the so-called vanishing gradient problem. That is, if several layers

with a saturating non-linearity function are stacked, layers close to the input will have a gradient

with a very small magnitude, resulting in a slow convergence of the training procedure.

This problem was addressed by Nair and Hinton (2010), who propose to use an non-saturating

activation function referred to as rectified linear unit. This activation function is defined as

fRL(u) =

u, if u > 0

0, otherwise
. (2.34)

26 2 Basics

As the gradient remains constant for inputs u > 0, this activation function is non-saturating.

It has been shown to result in faster convergence of the training compared to using activation

functions like the logistic sigmoid function (Hara et al., 2015).

The rectified linear unit has one disadvantage, which is that the derivative is zero for inputs

u ≤ 0. This can lead to so-called dead neurons, i.e. neurons whose parameters are no longer

updated during training and which do not contribute to the forward pass because their output is

always zero. To solve this problem, Maas et al. (2013) introduced the so called leaky rectified linear

unit, which is defined as

fLRL(u) =

u, if u > 0

θL · u, otherwise
, (2.35)

where θL is a hyper-parameter that defines the slope of the function for u ≤ 0. By introducing this

slope for negative values, the neurons always contribute to the forward pass, which prevents the

problem of dying neurons.

2.3.5 Parameter Initialisation

Yet another important aspect regarding the training of DNNs is the initialisation of the learnable

weights in the network. The standard approach is to draw the initial values for the parameters

randomly from some distribution, e.g. a standard normal distribution. However, to optimise

the convergence speed of a DNN, the choice of the distribution from which the initial values are

drawn is important (He et al., 2015). He et al. (2015) take into account the effect of the rectified

linear unit and suggest the following strategy. The bias parameters are initialised by zeros and

the remaining weights are drawn from Gaussian distributions, which are centred at zero and have

different standard deviations σj . In particular, the standard deviation σj of the Gaussian used to

initialise the weights in the j-th layer is σj =
√
2/njp,in, where np,in is the number of connections

of each neuron in layer j to the neurons in the preceding layer j − 1.

2.3.6 CNN Architectures

Another important aspect of CNNs is the choice of the network architecture, i.e. the selection

and arrangement of the layers and the choice of the corresponding hyper-parameters. The network

architectures that are used in this thesis are based on recent CNN architectures for image categori-

sation from literature. Particularly important is the Xception network (cf. Section 2.3.6.2), which

is based on the ResNet architecture (cf. Section 2.3.6.1).

2.3.6.1 Residual Networks

In the early years of DL, much improvement in the classification accuracy was related to increasing

the learning capacity of CNNs, i.e. by using deeper and deeper networks with more and more

parameters. However, simply increasing the number of layers leads to optimisation problems at

some point. In particular, He et al. (2016) observed that increasing the the number of convolu-

tional layers in a CNN eventually leads to an increasing training error. This is counter-intuitive,

2.3 Convolutional Neural Networks 27

considering the fact that additional layers could theoretically be expected to learn to perform an

identity mapping. Thus, networks with more layers could, in principle, achieve the same training

error as networks with fewer layers. The authors deduced that it is difficult for a convolutional

layer to learn an identity mapping, resulting in optimisation problems in the training of very deep

networks. As a consequence, He et al. (2016) proposed a CNN architecture for image categorisation,

called ResNet, which is based on the concept of residual learning. In particular, they introduced so

called residual blocks that usually consist of two or three convolutional layers that learn a mapping

fR(·) to predict a residual activation map R = fR(A
(in)) based on an input A(in). The final output

A(out) of the residual block is the sum of R and A(in), thus, A(out) = fR(A
(in)) + A(in). Using the

residual blocks, an identity mapping can be performed by predicting a residual of zero, which is

assumed to be relatively easy to learn. He et al. (2016) propose to compute the sum of input and

residual before applying the last activation function. Figure 2.5 illustrates a residual block with

two convolutional layers and rectified linear unit as activation function.

A(out)

A(in)

R

fRL(A
(in) +R)

Conv. + ReLU

Conv.

Figure 2.5: Illustration of a residual block in a ResNet CNN architecture. Conv.: Convolutional layer. ReLU,

fRL: Rectified linear unit (cf. Section 2.3.4).

The actual ResNet architecture uses several subsequent residual blocks at decreasing spatial

scales. The activation maps at the lowest spatial resolution are processed by a MLP similar to the

example given in Figure 2.2. Note that the full architecture of the ResNet is not presented here,

because it is not relevant for this thesis.

2.3.6.2 Xception Network

The Xception network, proposed by Chollet (2017), is a CNN architecture for image categorisation

that builds upon the concept of residual learning. The main modification is the integration of

depthwise separable convolutions into the residual blocks. There are two types of such modified

blocks, called Xception blocks. Chollet (2017) argues that, when using the same amount of param-

eters, this modification leads to an increased learning capacity compared to using, for example,

residual blocks with regular convolutions. The Xception blocks are depicted in Figure 2.6.

Both types of Xception blocks take an activation map A(in) of shape h(in)×w(in)×d(in) as input.
The Xception block of type A performs a spatial downsampling by a factor of two, and the block of

type B preserves the spatial resolution. The strided convolution (layer 2 in block of type A) uses a

1×1 kernel and a step size of 2 px. To compute the downsampled residual, maximum pooling (layer

5 in block of type A) with a window size of 3×3 px and a step size of 2 px is applied. All depthwise

28 2 Basics

2 StrConv, BN

A(in) 1

3

4

5

A(out)

ReLU

SepConv, BN

ReLU

SepConv, BN

MaxPool

A(in)1

2

3

4

A(out)

ReLU

SepConv, BN

ReLU

SepConv, BN

ReLU

SepConv, BN

Figure 2.6: Illustration of the Xception blocks of type A (left) and B (right). The numbers next to the boxes

are the layer indices used in Tables 2.1 and 2.2. StrConv: Strided convolution with step size

of 2; SepConv: Depthwise separable convolution; BN: 2D batch normalisation. MaxPool: Max

pooling with a stride of 2. ReLU: Rectified linear unit.

separable convolutions use 3× 3 kernels in the depthwise convolution step (cf. Section 2.3.1). All

layers use zero-padding with a width of 1 px (cf. Section 2.3.1). Note that in contrast to the original

residual blocks described in Section 2.3.6.1, no activation function is applied to the output of the

element-wise addition in each block. Tables 2.1 and 2.2 provide details about the dimensions of

the output activation map of each layer.

Layer Layer type h w d

1 Input A(in) h(in) w(in) d(in)

2 StrConv, BN h(in)/2 w(in)/2 d(out)

3 ReLU, SepConv, BN h(in) w(in) d(out)

4 ReLU, SepConv, BN h(in) w(in) d(out)

5 MaxPool h(in)/2 w(in)/2 d(out)

Table 2.1: Layers of an Xception block of type A. Layers 2 and 3 both take A(in) as input. h, w, d: Height,

width and depth of the output of the layer. d(in), d(out): Depth of the input and output of the

block. Remaining abbreviations and symbols as in the caption of Figure 2.6.

Layer Layer type h w d

1 Input A(in) h(in) w(in) d(in)

2 ReLU, SepConv, BN h(in) w(in) d(in)

3 ReLU, SepConv, BN h(in) w(in) d(in)

4 ReLU, SepConv, BN h(in) w(in) d(in)

Table 2.2: Layers of an Xception block of type B. Abbreviations and symbols as in Table 2.1.

The full architecture of the Xception network, as suggested in (Chollet, 2017), is illustrated

in Figure 2.7. The spatial extents of the activation maps are reduced step by step, resulting in

the activation map of the last convolutional layer (layer 17). Global average pooling is applied

to this activation map, i.e. the channel-wise average is computed, resulting in a one-dimensional

representation. Lastly a fully connected layer is used and the softmax normalisation is applied to

obtain probabilistic class scores. Note that the number of output neurons depends on the class

structure.

2.3 Convolutional Neural Networks 29

Layer: 1,2,3,4,5,6,7-14,15,16,17,18,19

Figure 2.7: Illustration of the Xception architecture. The layer numbers correspond to the numbers in

Table 2.3. Blue and green layers correspond to Xception blocks of type A and B, respectively.

White layers correspond to regular convolutional layers.

The layers of the Xception network are listed in Table 2.3, where the Xception blocks described

in Tables 2.1 and 2.2 are considered as submodules. The convolutional layers 2 and 3 use 3 × 3

kernels and do not use zero-padding. Layer 2 performs a spatial downsampling with a horizontal

and vertical stride of 2 px. The depthwise separable convolutions in the layers 16 and 17 use 3× 3

kernels in the depthwise convolution step and zero-padding with a width of 1 px. Note that there

is a minor modification of the Xception block corresponding to layer 15. In this block, the number

of kernels of the first depthwise separable convolutions is 728, which corresponds to d(in) for this

channel and not to d(out) = 1024.

Layer(s) Layer type h, w d

1 Input layer 299 3
2 StrConv, BN, ReLU 149 32
3 Conv, BN, ReLU 147 64
4 Xception block A 74 128
5 Xception block A 37 256
6 Xception block A 19 728
7-14 8× Xception block B 19 728
15 Xception block A 10 1024
16 SepConv, BN, ReLU 10 1536
17 SepConv, BN, ReLU 10 2048
18 Glob. AvgPool, ReLU 1 2048
19 Fully connected, Softmax 1 nL

Table 2.3: Layers of the Xception network. Glob. AvgPool: Average pooling with a window size of 10×10 px.
nL denotes the number of classes. Remaining abbreviations and symbols as in Table 2.1.

It is noted that, although Chollet (2017) designed the architecture for a fixed image size of

299× 299 px, the architecture can easily be modified to work with a different size of input images.

In particular, the global average pooling operation, where the channel-wise average is computed is

agnostic to the size of the corresponding input activation map.

30 2 Basics

2.4 Fully Convolutional Networks

While CNNs were originally designed for the task of image categorization, there are variants de-

signed for the pixel-wise classification of images or pixel-wise regression tasks. This group of CNNs

is called fully convolutional networks (FCNs) (Long et al., 2015a). Following the formal definition

of pixel-wise classification given in Section 2.1, FCNs for classification tasks take as input an image

X with height h and width w and predict a corresponding label map Ŷ , usually with the same

spatial extent. Thus, the output A of the last layer corresponds to an activation map of shape

h × w × nL in the case of a multi-class classification with nL > 2 classes, and h × w × 1 in the

case of a binary classification. In the first case, A is normalised by applying the softmax function

to the predicted vector at each pixel position in order to obtain maps Γ̂ of pixel-wise probabilistic

class scores. Taking the indices of the classes with the highest class scores per pixel results in

the final class predictions Ŷ . In the second case, each value in A is normalised by the logistic

sigmoid function. The normalised probabilistic class scores corresponds to the probabilities of the

corresponding pixels to belong to either of the two classes. FCNs for regression problems work in a

similar way, but usually do not apply an activation function or normalisation to the output of the

last layer.

In order to make predictions at pixel-level, the predicted map of probabilistic class scores must

have the same spatial extent as the input image. To that end, many FCN architectures follow

an encoder-decoder strategy, in which the spatial extent of the activation maps is reduced in the

first layers (encoder) and increased again step-wise in the later layers (decoder) of the network,

e.g. (Ronneberger et al., 2015; Zhang et al., 2018c). Compared to the näıve approach of simply

applying a series of convolutional layers at the original scale, such networks can have a much larger

number of parameters without consuming too much memory.

In principle, FCNs are trained in the way described in Section 2.2.2. However, there is no longer

only one loss term per sample, but instead one loss term per pixel. Consequently, the overall loss

corresponds to the average value of the pixel-wise loss terms. The loss can still be computed based

on multiple images in a mini-batch, but in order to process multiple images in a mini-batch in a

computationally efficient way, they must have the same spatial size. To that end, the mini-batches

usually consist of square patches with a fixed side length p. When training on such mini-batches,

the cross-entropy loss for the pixel-wise classification becomes

Lce,fcn(·) = −
1

nB · p2
nB∑
b=1

p2∑
i=1

nL∑
k=1

γb,i,k · log(γ̂b,i,k), (2.36)

where γ̂b,i,k = P (yb,i = Lk|Xb) is the predicted probability for the i-th pixel in the b-th image in

the batch to belong to class yb,i = Lk and nB is the batch size. During training, the patches are

commonly obtained by cropping a randomly selected area from the original images and from the

respective reference label map. The patch extraction allows to apply a variety of geometric data

augmentation methods, such as random horizontal or vertical flipping of the patches or applying

random rotations. During inference, the images are usually tiled to obtain patches with the same

spatial extent as those used during training.

2.4 Fully Convolutional Networks 31

Compared to CNNs for image categorisation, FCNs require layers that perform a spatial up-

sampling of the activation maps. Such layers are introduced in Section 2.4.1. A further aspect,

particularly important for FCNs, is that the reduction of the spatial resolution may lead to impre-

cise object delineations in the predicted label maps. This aspect and a method to overcome this

problem is discussed in Section 2.4.2.

2.4.1 Upsampling Layer and Transposed Convolutional Layer

A commonly used and straight-forward strategy to increase the resolution of an activation map is to

upsample it, e.g. by linear, bi-linear or nearest neighbour interpolation. For example, this strategy

is used in (Ronneberger et al., 2015; Zhang et al., 2018c). This approach introduces no trainable

parameters, but it may lead to imprecise object outlines due to the interpolation. Another strategy,

proposed in (Long et al., 2015a), is to use transposed convolutional layers. The goal of transposed

convolutional layers is to learn the upsampling operation instead of interpolating the activation

maps, which can help to recover the spatial information, because the upsampling itself is learned.

The procedure can be interpreted as follows: An upsampled version A(us) of the input activation

map A(in) is generated and used as input to a regular convolutional layer. A(us) is obtained by

adding sh rows after each row in A(in) and sw columns after each column in A(in) that are filled with

zeros. The parameters sh and sw control the change of resolution. For example, if sh = sw = 2, an

upsampling by a factor of approximately three is achieved. Note that the exact upsampling factor

also depends on the kernel size. An example is shown in Figure 2.8. Here, the input A(in) with a

spatial extent of 3× 3 px is upsampled by a factor of three. However, as the upsampled activation

map A(up) is convolved with a 3× 3 kernel, the output of the transposed convolution has a spatial

extent of 7× 7 px. In order to obtain an integer upsampling factor, the upsampled activation map

is commonly padded with zeros to compensate for the size of the kernel.

KA(in)

A(us)

A(out)

Figure 2.8: Schematic illustration of a transposed convolutional layer. The input activation map A(in) with

two channels is upsampled by appending sh = 2 rows filled with zeros to every row and appending

sw = 2 columns filled with zeros to every column. The output activation map A(us) then serves

as input to a regular convolution, in the example using a single kernel K. Note that identical

colours in A(in) and A(up) indicate that the corresponding value is copied from A(in) to A(up).

32 2 Basics

2.4.2 Skip Connections

Due to the upsampling operations, encoder-decoder networks tend to predict the border areas of

objects with a low spatial accuracy. A common strategy to circumvent this problem is to use

skip connections between corresponding layers of the encoder and the decoder, i.e. between layers

having the same spatial resolution. Ronneberger et al. (2015) proposed to implement the skip

connections by concatenating the respective activation map of the encoder and the activation map

in the decoder. Figure 2.9 illustrates a simple FCN with skip connections. In the first convolutional

layer, the spatial resolution is not changed, but it is reduced by a factor of two in the second and

third layers. These three layers build the encoder of the network. The activation maps of the

layers C1 and C2 are concatenated to the output of the transposed convolutional layers T1 and T2,

respectively, which both perform a spatial upsampling by a factor of two. Finally, two convolutional

layers are appended, the last one of which predicts the final output of the network. The layers T1,

T2, C4 and C5 build the decoder of the network.

C1 C2 C3 T1 T2 C4 C5

Figure 2.9: Illustration of an encoder-decoder FCN with skip connections. The solid arrows indicate the

processing by convolutional layers (C1-C5) and transposed convolutional layers (T1, T2). The

skip connections are represented by dotted arrows. The activation maps with a dotted outline

are obtained by copying the respective activation maps from the encoder.

2.5 Appearance Adaptation

In the literature, CNNs and FCNs have been used for many different tasks, not only for image clas-

sification. One task that is particularly important for this thesis is the generation of an (output)

image X̂ based on an (input) image X. Early work dealt with applications such as image coloriza-

tion (Varga and Szirányi, 2016) or image stylisation (Gatys et al., 2016; Ulyanov et al., 2016), the

latter referring to the modification of an image according to the style of a reference image. Later

work addressed the more generic task of appearance adaptation, also known as image-to-image

translation in computer vision. Here, one has two unpaired image sets UA and UB that contain

images from a domain DA and a domain DB, respectively. The goal of appearance adaptation is

to train a FCN A that maps an input image XA from UA to an adapted version XAB = A(XA)

2.5 Appearance Adaptation 33

that has an appearance (style) similar to the images in UB, but still has the same semantic content

as XA according to a class structure that is usually given only implicitly by the selection of the

datasets. This learning task is particularly difficult for the following reasons. First, the definition of

appearance is arbitrary and depends on the application. Similarly, the meaning of the term content

is usually arbitrary if the underlying class structure is not explicitly given. Second, the problem is

ill-posed because even if these terms are clearly defined, there are usually multiple solutions for X̂

that satisfy the appearance and content constraints. Finally, because of the two sets are unpaired,

it is not possible to train A in a supervised way.

In order to achieve the first goal of appearance adaptation, namely the adaptation of the ap-

pearance of the images in the target set UB, most approaches in literature make use of adversarial

training (cf. Section 2.2.4). In particular, the network A is trained in an adversarial way together

with a domain discriminator D. While D is trained to correctly discriminate between images from

UB and images generated by A, the adaptation network A is trained to predict images that are

classified by D as originating from UB with a high probability. This scheme is used, for example in

(Lee et al., 2018; Zhu et al., 2017a; Tasar et al., 2020b; Huang et al., 2018b). A commonly used ar-

chitecture for the domain discriminator is the so-called PatchGAN, proposed in (Isola et al., 2017).

Here, the discriminator corresponds to a FCN that does not output a single scalar probability for

an input image, but instead outputs a map Ψ of probabilistic class scores that are averaged when

computing the adversarial loss terms. Each value ψi ∈ Ψ corresponds to a support window in the

input image and, thus, describes the probability of that window to originate from UB. The actual

size of the support window depends on the receptive field of D, i.e. the size of the area in the

input image that contributes to a single pixel in the output of D. It has to be highlighted, that the

adversarial training aims to find an equilibrium state P (UAB) ≈ P (UB), in which the distribution

of a set UAB = {XAB
j }

nA
j=1 of nA adapted images XAB

j is indistinguishable from the distribution of

the images in UB (cf. Section 2.2.4). However, as the discriminator only ever predicts the origin

for smaller patches according to the size of its receptive field, only the distribution in the local

neighbourhoods, i.e. the local feature distributions, are matched. Considering this aspect, Isola et

al. (2017) show that the size of the support window has great impact on the appearance adaptation

and suggests an architecture the has a receptive field of 70× 70 px. The concept of the PatchGAN

discriminator is illustrated in Figure 2.10. The black areas illustrate the propagation of the support

window to a single pixel in the output of D.

The second goal of appearance adaptation is to preserve the semantic content of an image during

the adaptation. Note that in literature, different formulations have been used for this requirement.

For example, Zhu et al. (2017a) require that after appearance adaptation, XA and XAB should be

paired up in a meaningful way and Soto et al. (2021) require that the adaptation must preserve

the semantic structure. Tasar et al. (2020b) introduce the term of semantic consistency to describe

pairs of images and adapted images that are semantically equivalent. In this thesis, the terminology

introduced in (Tasar et al., 2020b) is used. In particular, the term semantic consistency is used to

describe image adaptations in which the semantic contents of XA and XAB are the same according

to an underlying class structure. Formally, this means that the label maps predicted for XA by an

ideal classifier for DA should be identical to the label maps predicted for XAB by an ideal classifier

for DB.

34 2 Basics

input image

support window for ψi

probability map Ψ

ψi

Figure 2.10: Illustration of the PatchGAN discriminator (Isola et al., 2017) for adversarial appearance adap-

tation. The core idea is to predict a map of probabilistic class scores Ψ by feeding the input

image through a sequence of convolutions. Each value ψi ∈ Ψ corresponds to the probability of

the corresponding support window to come from a specific domain.

To achieve semantic consistency, many approaches for image adaptation rely on bidirectional

image adaptation, i.e. the architecture consists of two adaptation networks AAB and ABA that

adapt images from UA such that they look like images from UB and vice versa, respectively. This

allows to apply a regularisation loss based on the concept of cycle consistency, requiring images from

DA adapted to DB and back to DA to be similar to the original ones, thus ABA(AAB(XA)) ≈ XA.

The respective regularisation loss Lcyc can be expressed for example as the L1 loss:

Lcyc(·) =
1

nB · p2
nB∑
b=1

p2∑
i=1

|x̂Ab,i − xAb,i|, (2.37)

where p is the patch size, nB is the batch size, xAb,i is the i-th grey value in the b-th patch in a

batch of image patches from UA and x̂Ab,i is the i-th grey value in X̂A
b = ABA(AAB(XA

b). Usually

this constraint is applied in both directions (Zhu et al., 2017a).

An alternative strategy to perform appearance adaptation in a semantically consistent way was

proposed in (Lee et al., 2018). This approach is frequently used, e.g. in (Tasar et al., 2020b; Huang

et al., 2018b). The method by Lee et al. (2018) is based on the assumption that each image can

be decomposed into two components, content and appearance. In particular, it is assumed that

the content attribute is agnostic to the domain, while the appearance is related to the difference

between the domains. An exemplary application is to perform appearance adaptation between two

domains, the first domain consisting of images of cats and the second one consisting of images

showing dogs. In this example, the content is related to the domain agnostic scene layout, i.e.

to the pose of the animal, while the appearance describes what the animal looks like. Following

this line of thought, appearance adaptation can be interpreted as the task of exchanging only the

appearance component of an image by the appearance of an image from another domain. To that

end, Lee et al. (2018) aim to learn to disentangle the information about the content of an image

from the information about the domain specific appearance and at the same time to train a network

to predict an image with a specific content and appearance.

Practically, for each domain, two CNNs are trained to extract the information about content and

appearance, respectively. EAc and EAa are the respective encoders for content and appearance in the

2.6 Transfer Learning and Domain Adaptation 35

source domain and EBc and EBa are the corresponding encoders in the target domain. Lee et al.

(2018) propose to use a vector representation for the appearance and a matrix representation for the

content. The extracted representations are then jointly presented to domain specific generators GAj
and GBj for the two domains, respectively. In particular, for the first domain DA, this means that

the content representation extracted from an image XB from DB is combined with the appearance

representation extracted for an image XA from DA and used as input to a CNN GAj that predicts

an image XBA that is supposed to show the content of XB but with the appearance from XA.

Accordingly, GBj predicts XAB having the content of XA but the appearance of XB. This process is

repeated based on the images XAB and XBA, resulting in images X̂A and X̂B. The main strategy

is based on enforcing so called cross cycle consistency, i.e. on applying a loss term that enforces

that X̂A ≈ XA and X̂B ≈ XB. Furthermore, to achieve the goal of disentangling content from

appearance, adversarial training is employed to make the distribution of content encodings EBc (XB)

in DB indistinguishable from content encodings EAc (XA) in DT. Figure 2.11 gives an overview of

the concept of cross cycle consistency. For further details, cf. (Lee et al., 2018).

XA

XB

XBA

XAB

X̂A

X̂B

EA
a

EA
c

GA
j

EB
a

EB
c

GB
j

EA
a

EA
c

GA
j

EB
a

EB
c

GB
j

Figure 2.11: Illustration of image adaptation based on cross cycle consistency. The goal is to learn to

disentangle appearance and content for images from two domains and to predict images with

specific content and appearance. The actual image adaptation is performed by predicting an

image that has the content of an image from one domain and the appearance of an image from

the other domain, e.g. the image XBA has the content of XB but the style from XA. If this

process is performed performed twice for an image pair XA, XB , the outputs X̂A, X̂B should

be similar to the original images. Note that in the example, the appearance refers to the colour

and the content to the shape of the depicted object.

2.6 Transfer Learning and Domain Adaptation

A basic assumption in ML is that the data which are available to train a classifier in a purely

supervised manner are representative for the actual data samples to which the classifier is to be

applied in the inference. However, this assumption is often not fulfilled in a real scenario, which

can result in a poor classification performance. A generic approach to address this problem is so

called Transfer Learning (TL).

36 2 Basics

The term Transfer Learning covers methods that aim to transfer knowledge from a source domain

DS, where there are many training examples, to a target domain DT, where only a limited amount

or no training data is available. The main goal of TL is to use the information available in DS to

find a better solution for the task in DT, which requires the domains to be related (Pan and Yang,

2009). Note that there also exist variants that consider either multiple source domains, multiple

target domains, or both. However, such methods are not addressed in this thesis.

Several survey papers on TL (Pan and Yang, 2009; Wang and Deng, 2018; Csurka, 2017) use

the following notation and definitions. A domain D comprises a feature space X and the marginal

distribution P (X) of the feature space, where X = {x1, ..., xn} ∈ X . Consequently, in the common

case with two domains, the source domain is defined as DS = {X S , P (X)S} and the target domain

as DT = {X T , P (X)T }. Each domain is associated with a learning task T , which consists of a

label space Y and a predictive function f(·) which can be regarded as the conditional probability

distribution P (Y |X). Thus, the learning task is given by T S = {YS , P (Y |X)S} in DS and by

T T = {YT , P (Y |X)T } in DT.

Domain Adaptation: In the literature, there are different formal definitions of Domain Adapta-

tion (DA). Following the definitions of (Pan and Yang, 2009; Wang and Deng, 2018; Csurka, 2017),

DA refers to a setting of TL in which the learning tasks in both domains are identical. In this case,

the remaining difference is caused only by differences in the domains, DS ̸= DS . This can either

result from a distribution shift P (X)S ̸= P (X)T , from a change of the feature space X S ̸= X T ,

or both. A setting in which the domains share a common feature space is called homogenous DA,

otherwise one speaks about heterogeneous DA.

In this thesis, however, another definition of Domain Adaptation is used, following (Tuia et al.,

2016). In (Tuia et al., 2016), the domains are associated with the joint probabilities P (X,Y)S

and P (X,Y)T which are assumed to be different but related. The difference between the joint

distributions in the two domains can be interpreted as domain gap. As P (X,Y) = P (X|Y) · P (Y)

the domain gap can result either from a difference in the distribution of the labels, P (Y)S ̸= P (Y)T ,

or from a difference in the conditional probabilities P (X|Y)S ̸= P (X|Y)T of the features given the

labels, or both. In RS applications, the marginal distribution P (Y) of the labels depends on the

scenes that are depicted in the images related to a domain, and the conditional probability P (X|Y)

can be interpreted as the appearance of objects belonging to specific classes. In the addressed

applications of land cover classification and bi-temporal deforestation detection, both distributions

can in fact be different between two domains and, thus, can be relevant to describe the domain

gap.

A further categorisation of DA is made based on the availability of labelled samples in the two

domains. In the context of this thesis, two settings are particularly important: supervised DA and

unsupervised DA.

Supervised Domain Adaptation: A setting in which labelled images are available in both

domains is commonly referred to as supervised DA (Tuia et al., 2016; Wang and Deng, 2018). In

2.6 Transfer Learning and Domain Adaptation 37

particular, it is assumed that in the target domain there are not enough reference labels to train

a classifier that achieves a satisfactory performance in that domain. At the same time, plenty of

training samples are considered to be available in DS. In the context of DL, the default strategy in

such a scenario is referred to as supervised pre-training and fine-tuning or re-training (Krizhevsky

et al., 2012; Yosinski et al., 2014). Here, the classifier is first trained in DS. Starting from the

resulting parameter set, the classifier is then further trained on the available training data in DT.

This strategy has proven to result in better performing classifiers in different applications.

Unsupervised Domain Adaptation: The complementary case of supervised DA, in which

no reference labels are available in DT, is known as unsupervised DA (UDA) in Computer Vision

(Wang and Deng, 2018), while in RS it is sometimes referred to as semi-supervised DA (Tuia et al.,

2016). In this setting, only images from DT can be used to adapt a classifier from DS to DT. It is

particularly interesting because images from the target domain are available in the scenario where

a classifier is to be adapted to a new domain in order to perform a classification in that domain.

UDA is known to be very challenging and can even lead to a negative transfer, i.e. to a lower

performance in the target domain after adaptation compared to the classification performance of

a classifier that was trained only in the source domain. The opposite case in which the classifier

achieves a higher performance in DT after UDA is referred to as positive transfer.

This thesis addresses homogeneous UDA for the classification of aerial and satellite imagery.

UDA is of great importance when it comes to the classification of such data because, on the one

hand, there is often a very limited amount of freely available data with annotations (Zhu et al.,

2017b) and, on the other hand, the appearance of both natural and man-made objects has a large

variability, making it difficult for a classifier to perform well when applied to a different domain

than the one on which it was trained. In a RS application, this corresponds, for example, to a

situation where labelled images from one area (source domain) are to be used to classify images of

another area (target domain) taken with the same type of sensor and considering the same class

structure.

2.6.1 Adaptive Batch Normalisation

One method for UDA, referred to as adaptive batch normalisation (ABN) (Li et al., 2018), is

particularly relevant for this thesis, because it is used as additional adaptation step in one variant

of the proposed method.

The common procedure when using 2D batch normalisation layers in a FCN is to track running

averages of the means and standard deviations of the activations in each channel (cf. Section 2.3.3).

The set of all running averages approximates the statistics of the images from DS, i.e. the aver-

age values and standard deviations of the activation values, when computed for a whole dataset

(domain). Li et al. (2018) argue that in a domain adaptation scenario, it may not be reasonable

to use the statistics that were calculated based on the images from the source domain, because

the statistics of the target domain may be different. Based on this consideration, Li et al. (2018)

propose to compensate for the domain gap by adjusting the running averages in the 2D batch

38 2 Basics

normalisation layers of a classifier. In particular, the core idea of ABN is to recalculate the running

averages using the data points from DT such that they approximate the mean and standard devia-

tions of the activations obtained for the data from the target domain. This approach is illustrated

in Figure 2.12.

1)

2)

3)

DS DT,1 DT,2

Figure 2.12: Toy example illustrating the working principle of adaptive batch normalisation. 1) 2D data

points from the domain according to the column. 2) Data normalised using the means and

standard deviations from DS. 3) Data normalised using means and standard deviations from

DT. The broken line illustrates the decision boundary learned in DS. The colour of the dots

illustrates the true class. Red arrows point to misclassified samples.

The figure illustrates a toy example in which 2D feature vectors are to be classified into two

classes, orange and blue. In the example, the classifier applies batch-normalisation to the input

before feeding the normalised features to a linear classifier. In the source domain, there are 20

samples for each class, cf. upper-left plot in Figure 2.12. The figure underneath that one shows the

data after normalising each feature such that the average is zero and the standard deviation is one.

This plot also shows the learned decision boundary that correctly separates the two classes. The

first target domain DT,1 is assumed to follow the same global label distribution, i.e. there are again

20 samples per cluster. However, the clusters are slightly shifted compared to the data in DS (cf.

upper-middle plot in Figure 2.12). Applying the standard procedure of batch normalisation would

mean to normalise the data from DT,1 using the running averages of means and standard deviations

learned during training in DS. The result of normalising the data from DT,1 using those values is

illustrated in the central subfigure in Figure 2.12. The red arrow in this part of the figure points at

two samples which would be misclassified using this approach. The middle in the last row shows the

result of applying ABN, i.e. the data from DT,1 after recalculating the running averages using the

data from DT,1. In this case, all samples would be classified correctly. Note that in the example,

2.6 Transfer Learning and Domain Adaptation 39

the means and standard deviations of all samples from DT,1 are used for the normalisation. The

approach of ABN is, however, susceptible to the global label distribution, which is illustrated using

a second target domain DT,2. The data points in DT,2 are drawn from the same distribution as

those in DS, but this time there are 30 orange samples and 10 blue samples, cf. upper-right panel of

Figure 2.12. Applying the standard procedure of batch normalisation (cf. right panel in the second

row in Figure 2.12) would not result in a misclassification, but applying ABN does. In particular,

if the data points are normalised according using the means and standard deviations over DT,2, the

features are shifted into the direction to the upper-right corner, which causes some of the orange

samples to be misclassified.

Note that in a real FCN there are usually several batch normalisation layers, which makes the

outcome less intuitive. However, the example should illustrate the core idea of ABN as well as

possible limitations.

41

3 Related Work

In this chapter, related work relevant to this thesis is presented and discussed with a focus on

unsupervised domain adaptation (UDA) for image classification. UDA for image classification has

been studied in the context of classical machine learning for quite some time (Pan and Yang, 2009;

Tuia et al., 2016). However, in recent years, with Deep Learning (DL) having emerged as the new

state of the art in machine learning, research in UDA has mainly focussed on developing methods

that can not only be applied to DNNs, but also exploit the new capabilities of DL such as adversarial

training and image generation (Wang and Deng, 2018; Xu et al., 2022). Although many approaches

to UDA are based on concepts developed before the era of DL, the following review focusses on

recent publications that address UDA in the context of DL, in the following also referred to as deep

UDA (Wang and Deng, 2018; Xu et al., 2022; Csurka, 2020).

Sections 3.1 to 3.4 provide an overview of publications that address UDA in the context of DL,

grouped according to the main adaptation strategy. The groups essentially follow those in (Xu

et al., 2022), although different names are used here. The first group of methods is based on

instance transfer, referred to as self-training methods in (Xu et al., 2022), and will be discussed

in Section 3.1. Section 3.2 deals with methods based on representation transfer. A subset of

these methods is discussed in the context of adversarial training methods in (Xu et al., 2022).

In Section 3.3, methods based on appearance adaptation are discussed, which are referred to as

generative training methods in (Xu et al., 2022). The last group of methods, covered in Section 3.4,

consists of those that combine different adaptation concepts and therefore are referred to as hybrid

approaches. Section 3.5 discusses the aspect of parameter selection in the context of deep UDA.

Finally, Section 3.6 draws conclusions from the discussion of the state-of-the-art, identifies research

gaps to be closed by this thesis, and and discusses the most similar works.

3.1 Instance Transfer

Instance transfer aims to adapt the classifier from the source domain to the target domain by using

semi-labelled samples, i.e. target samples that get their class labels from the current state of the

classifier, e.g. (Bruzzone et al., 2006). In explicit instance transfer, the semi-labels are actually

predicted and used as reference to compute a supervised classification loss inDT, which is minimized

to adapt the classifier to DT. A successful adaptation based on explicit instance transfer requires

many of the semi-labels used for re-training the classifier to be correct. In many approaches, this is

addressed either by improving the semi-label generation scheme, for example by making redundant

class predictions for each pixel to improve the quality of the semi-labels, e.g. (Iqbal and Ali, 2020),

or by a subsequent sample selection strategy to select those semi-labels from all predictions in DT

42 3 Related Work

which have a high chance of being correct, e.g. (Subhani and Ali, 2020). A different but related

approach is implicit instance transfer. Such approaches are based on the idea of minimising the

entropy for predictions in the target domain, e.g. (Vu et al., 2019). Since entropy minimisation

is equivalent to increasing the probability of the most likely class, this approach is very similar

to minimising a supervised classification loss with semi-labelled samples, as it is done in explicit

instance transfer.

3.1.1 Explicit Instance Transfer

Explicit instance transfer is frequently used to perform DA for the pixel-wise classification. For

example, it is frequently used for the task of street scene segmentation with CNNs. In particular,

the following works address an adaptation scenario in which synthetic images are available in DS,

but real images are to be classified in DT. Zou et al. (2018) propose class-balanced self-training.

They train a network jointly on labelled source domain data and target domain samples with semi-

labels. For each class, they select the semi-labelled samples with the highest confidence scores,

i.e. measured by the predicted probabilistic class score for the respective class. Selecting the same

number of samples per class turns out to be necessary when dealing with an imbalanced class-

distribution in DT. Based on the source domain samples, they also calculate a spatial prior for

each class, which is used to regularise the classifier. Although this approach yields good results in

street scene classification, the use of a spatial prior does not seem to be applicable when classifying

aerial images or satellite images, as objects may be located anywhere in the image. Another

approach based on semi-labelled samples is presented in (Iqbal and Ali, 2020). The authors first

train a classifier in the source domain. Afterwards, the classifier is re-trained using semi-labels that

were predicted with a high confidence score. The semi-labels are acquired by making redundant

predictions for each pixel at different image resolutions and the confidence score is measured based

on the agreement of the redundant predictions. However, the sampling strategy of Iqbal and Ali

(2020) is based on the assumption that the marginal label distributions P (y) are similar in all

images and in both domains. This assumption may not hold in remote sensing applications where,

depending on the image size, some images may only show objects that correspond to a single

class. A similar argument applies when assessing the work of Lian et al. (2019) and Zhang et al.

(2021a). In (Lian et al., 2019), a pyramid curriculum approach is proposed to aggregate semi-labels

at multiple scales, and Zhang et al. (2021a) perform a soft weighting of the semi-labels instead of

a hard selection. However, both works rely on constraining the distribution of predicted labels in

DT, which may not be useful in an adaptation scenario where the label distributions in DS and DT

are very different. Subhani and Ali (2020) use multi-scale predictions to assess the reliability of

predictions in DT, and to select a pre-defined number of best semi-labels per class for re-training.

Consequently, this approach requires the initial classifier before UDA to make proper predictions

for all classes in DT, which cannot always be guaranteed, because the size of the initial performance

gap is unknown. In (Zhang et al., 2019b), the activation vectors of the penultimate layer of the

classifier for each class are clustered based on images from DS. Using these clusters, the semi-labels

are obtained by assigning the activation vectors of the penultimate layer of the classifier for pixels

from images from DT to the closest centroid. This should prevent problems due to label imbalance

in DT. However, the cluster assignment may fail if the domains are very different. In (Hoyer et

3.1 Instance Transfer 43

al., 2022), an approach to UDA based on explicit instance transfer was proposed, achieving a high

performance for the task of adapting a classifier from synthetic images to real images in the context

of street scene classification. However, the contribution of that work lies in improving the initial

performance of the model before re-training, which highlights the importance of adequate initial

performance for successful adaptation. Although the approach of Hoyer et al. (2022) outperforms

several previous methods, there remains a considerable performance gap after UDA. Sakaridis et

al. (2019) address an adaptation scenario that is also related to street scene segmentation but does

not correspond to adapting from synthetic to real images. Instead, they adapt from day-time to

night-time images and introduce an intermediate twilight domain. They show that adapting from

the source domain to the intermediate domain before adapting from the intermediate domain to

the target domain results in a better classification performance in the target domain compared to

directly adapting from the source to the target domain. However, such an approach is limited to

situations where such an intermediate domain exists.

Few works explore explicit instance transfer for RS applications in the context of deep UDA.

Tong et al. (2020) and Wang et al. (2022) propose schemes for semi-labelling and sample selec-

tion to improve the transferability of a FCN for pixel-wise classification. However, both works

address cross-sensor adaptation, where deep UDA is primarily used to adapt between different im-

age resolutions. Accordingly, their methods are based on multi-scale predictions to overcome this

domain shift. The approach presented in this thesis does not address this adaptation scenario as

it is assumed that the ground sampling distance (GSD) is commonly known in RS applications.

Therefore, in this thesis, it is proposed to compensate for different GSDs by spatial resampling of

the data from the source domain before training instead of addressing this difference using UDA.

3.1.2 Implicit Instance Transfer

An approach for implicit instance transfer was presented in (Vu et al., 2019). Here, the entropy

values of the class predictions for each pixel are minimized, which corresponds to increasing the

predicted probability for the most likely class. This is conceptually similar to the supervised train-

ing on semi-labelled samples because the semi-labels also correspond to the most likely classes per

pixels. This means that, in order to correctly predict the semi-labels, the classifier also has to in-

crease the probability for the most likely class per pixel. In addition to direct entropy minimization,

Vu et al. (2019) propose an adversarial approach in which the so-called weighted self-information

maps of source and target domain samples are aligned by adversarial training using a discriminator

network. The weighted self-information maps basically contain the information about the entropy

for each pixel as predicted by the classifier. In both cases, the classifier is further regularized

with respect to the predicted class distribution of the target domain, which is assumed to be close

to the class distribution of the source domain. Vu et al. (2019) report that the weights of the

entropy loss terms must be carefully tuned to avoid a classification result that is biased towards

some classes. Evaluated on the task of street scene segmentation, they show that the adversarial

approach slightly outperforms the direct entropy minimization, while both methods achieve results

that are comparable to those of recent methods based on representation transfer. As the adversarial

approach of entropy minimization basically aligns the local distributions of the entropy maps from

44 3 Related Work

both domains, it is required that both domains actually have a similar local distributions of the

label maps (cf. Section 4.5). This may be the case in the context of street scene segmentation, but

it may not be the case in a RS adaptation scenario. Chen et al. (2019a) modify the non-adversarial

variant of entropy minimization by replacing the average entropy loss with a novel loss, referred to

as maximum squares loss. This loss is defined as the negative square sum of the predicted prob-

abilities. They argue that this loss is advantageous because the gradient of this loss with respect

to the predicted probabilities changes linearly with the predicted probabilities and, thus, does not

focus too much on very well classified samples. They show that their variant is less affected by

class imbalance in DT and outperforms adversarial and non-adversarial entropy minimization on a

street scene classification benchmark. It remains unclear if this approach would yield satisfactory

results in a RS scenario. Huang et al. (2020) implement adversarial entropy minimization using a

gradient reversal layer. In this way, they force the classifier to reproduce patterns in the entropy

maps predicted for images from DT that are typical for DS. Although this seems reasonable in

street scene classification maps, where the scenes are quite similar with respect to the local label

map distributions of both domains, this approach might fail in a RS scenario where the domains

have different local label map distributions.

In our previous work (Wittich, 2020), an implicit approach for instance transfer was proposed

and evaluated in the context of a RS scenario, namely the pixel-wise classification of aerial images.

The approach is also based on entropy minimization, but in order to avoid a classification bias

towards over-represented classes in DT, the loss is weighted on a pixel-level using weights derived

from the semi-labels. In particular, pixels that are close to a object boundary in the predicted label

maps and pixels that are assigned to an overrepresented class will receive a lower weight and, thus,

contribute less to the overall loss. It was shown that a small positive transfer could be achieved,

but it was also found that in most cases entropy minimization results in a negative transfer if the

minimization is performed for too many iterations. This is problematic, because tuning the number

of iterations is difficult, as the ideal number of iterations is different from scenario to scenario.

3.1.3 Hybrid Instance Transfer

Michieli et al. (2020) use a variant of adversarial entropy minimization. They do not only match

the distributions of the entropy maps, but they also use the entropy as a measure for the confidence

of the predictions in DT for each pixel. The resulting confidence maps are then used to select semi-

labels to be used for re-training. Li et al. (2020a) combine implicit instance transfer by entropy

minimization with an explicit re-training approach. For the sample selection, they use an approach

similar to (Zhang et al., 2019b) to assess the structural similarity of the local neighbourhood in

image patches from both domains. Pan et al. (2020) propose a two-step procedure for UDA. In

the first step, adversarial entropy minimization is used to roughly align the domains. Based on the

average entropy for images from DT, the images are split into two sets corresponding to easy and

hard samples. In the second stage, adversarial entropy minimization is used for the hard samples,

while simultaneously a variant of explicit instance transfer based on the easy samples is applied.

It remains questionable if these approaches based on hybrid instance transfer can be transferred to

RS applications, as they rely explicitly or implicitly on a similarity in the local distributions of the

3.2 Representation Transfer 45

label maps in both domains, which may not be the case in RS. Besides, directly minimising the

entropy in DT only works well if the initial predictions in the target domain are largely correct,

which is difficult to guarantee.

3.1.4 Discussion

Methods for UDA based on instance transfer have been shown to work quite well some applications

of pixel-wise classification. However, these methods heavily depend on a good initial performance of

the classifier in DT after training in DS. This can be problematic if the domains are very different,

especially because commonly used DNNs tend to make wrong predictions with a low entropy

for samples that are far away from the training data in the feature space (Hein et al., 2019).

Furthermore, Arazo et al. (2020) point out that näıve instance transfer is likely to fail as the

classifier tends to overfit to the semi-labels. This can be solved by restricting the label distribution

in DT, e.g. requiring it to be similar to the label distributions in DS. However, such an approach

may fail if the respective label distributions are different. Methods that rely on adversarial entropy

minimization basically align the distributions of patterns in the entropy maps of images from both

domains. This is reasonable if the underlying label maps are similar with respect to these patterns.

However, if this is not the case, such an approach is likely to lead to a negative transfer, as the

classifier is forced to generate patterns that do not match the image data in DT.

Based to these arguments, the approach presented in this thesis is not based on instance transfer.

However, the strategy of entropy minimization proposed in Vu et al. (2019) is used as a baseline to

which the method proposed in this thesis is compared in the experiments.

3.2 Representation Transfer

The second approach for UDA is referred to as representation transfer. The main idea is to map

images from both domains to a shared representation space in which a shared classifier can be

applied. This is either achieved by a shared mapping function that extracts domain-agnostic

features, or by using two separate mapping functions for DS and DT, respectively. In the context

of DL, the single mapping function or the domain specific mapping functions are implemented

as DNNs, in this section referred to as representation encoders. The output of the representation

encoders are referred to as representations. Representation transfer can be grouped according to the

way in which the representations from both domains are aligned. In non-adversarial representation

transfer the representations are aligned by minimizing a predefined similarity metric, while in

adversarial representation transfer, the alignment is achieved by adversarial training.

3.2.1 Non-adversarial Representation Transfer

Non-adversarial representation transfer is often done by finding representations that minimizes a

statistical distance between the domains, e.g. the maximum mean discrepancy (MMD) (Matasci et

al., 2015) or variants of it (Liu and Qin, 2020). This approach was transferred to CNNs in (Long

et al., 2015b) for the task of assigning a single class label to an image (images categorization). A

46 3 Related Work

similar approach was proposed by Sun et al. (2016), who maximise the correlation of representations

by minimising an according loss function. In (Sun and Saenko, 2016) it was extended for end-to-end

training. Several follow-up works propose further variants of correlation alignment (Morerio et al.,

2018; Zhang et al., 2018b; Cheng et al., 2021) for UDA in image categorization. Guo et al. (2016)

propose to project features from both domains to a common representation space by transforming

the representations with a linear kernel, and Haeusser et al. (2017) align latent representations

for images from DS and DT by minimizing an association loss. Zhang et al. (2019c) introduce

the margin disparity discrepancy (MDD), a theoretically founded metric to measure the distance

between representations, and propose a loss to minimize this metric to align the domains.

Although these methods were quite successful in the context of image categorization, they may

not work well for the task of pixel-wise classification, as the representations for neighbouring pix-

els are highly correlated and therefore cannot be considered to be independently and identically

distributed, which is assumed, for example, in MMD based alignment (Matasci et al., 2015). This

potential problem was empirically confirmed e.g. in (Zhang et al., 2021b). The authors used a vari-

ant of correlation alignment for the pixel-wise classification of aerial images and found this approach

to be inferior to other approaches such as adversarial representation transfer (cf. Section 3.2.2).

Nevertheless, some successful approaches for UDA in pixel-wise classification can be categorized

as being based on non-adversarial representation transfer. However, such methods perform the

representation matching in a more implicit way. One non-adversarial approach to UDA for pixel-

wise classification was proposed by Kang et al. (2020). The authors suggest to find representations

of pixels from images coming from the source and target domains that are similar with respect to a

hand-crafted metric and to make these representations even more similar by adjusting the encoder

of the network. They empirically show that this approach can reduce the performance gap to some

extent in a street scene classification scenario, but it remains unclear whether this approach can be

transferred to RS applications. Another non-adversarial method is adaptive batch normalization

(ABN) (Li et al., 2018), cf. also Section 2.6.1. The authors use batch normalization layers in a

FCN to perform the adaptation of a pre-trained classifier to DT. In particular, they recalculate the

batch normalization parameters using statistics derived from target domain images, which aims

at aligning the distributions of output activation maps of the batch normalization layers. The

approach is evaluated for the pixel-wise detection of clouds in satellite imagery and shows much

better performance than other non-adversarial representation transfer methods such as correlation

alignment. ABN has further practical advantages. On the one side, it is very fast as it does not

require any training beyond the initial training in DS. On the other hand, as mentioned by Li et

al. (2018), ABN can easily be combined with other methods for deep UDA. In this thesis, ABN

is used in two ways. First, it is used as a baseline to compare the method proposed in this work

against. Second, as ABN follows a different strategy of UDA compared to the proposed method for

appearance adaptation, it is also examined whether the two methods can be combined to achieve

better performance in the target domain.

3.2 Representation Transfer 47

3.2.2 Adversarial Representation Transfer

The second way to perform representation transfer is based on adversarial training of a domain

discriminator and either a shared representation encoder or a representation encoder for the target

domain. In the latter case, representations for images from DS are obtained by feeding them to

a representation encoder with fixed weights obtained by supervised training in DS. In both cases,

the domain discriminator network is trained to distinguish between representations for images from

the two domains by predicting the correct domain label. Simultaneously, the shared representa-

tion encoder (or the one for the target domain) is trained to fool the discriminator by predicting

representations for images from DT such that they are classified by the discriminator as coming

from DS. This concept was first introduced for image categorization (Ganin et al., 2016; Tzeng et

al., 2017). Ganin et al. (2016) implemented the adversarial training using a gradient reversal layer

and a shared representation encoder and showed that adversarial training outperformed the non-

adversarial approach of minimizing the MMD. Tzeng et al. (2017) used two separate representation

encoders for the two domains, which outperformed the approach by Ganin et al. (2016).

In recent years, some methods for UDA for image categorisation based on adversarial represen-

tation transfer have been developed that are difficult to be transferred to the task of pixel-wise

classification. For example, Wei et al. (2021) proposed an extension of adversarial representation

matching for image categorization by optimising some of the hyper-parameters related to the adap-

tation in training. To this end, they use concepts from the field of meta learning. Particularly, they

treat the domain alignment as meta training task and the classification on data from DS as meta

test task. Transferring this approach to pixel-wise classification may be not practical, because the

meta optimization step would lead to a massive computational overhead as in each meta training

step the classifier needs to be trained. Hu et al. (2018) and Wang et al. (2020a) use a multi-class

discriminator in adversarial training. Here, instead of predicting only the domain from which the

input image originates, the discriminator should also predict the class label of the image. As the

discriminator has to learn to distinguish the classes, it becomes class-aware, which, according to

the authors, has positive effects on the domain adaptation. Transferring this approach to pixel-wise

classification would be equivalent to using a pixel-wise classifier as discriminator, which would lead

to a very large memory footprint of this DNN. Moreover, adversarial training aligns the marginal

distribution of the representations, which can be problematic if the label distributions in DS and

DT are very different. Making the discriminator explicitly class-aware could amplify this problem,

because the discriminator has to consider the class structure and thus could easily make predictions

based on the label distributions.

Besides the developments in the field of adversarial representation transfer for image catego-

rization, this concept has been well studied in the field of pixel-wise classification, often for the

pixel-wise classification of street scenes. Note that here, the representations usually correspond to

2D activation maps. The first publication in this group was (Hoffman et al., 2016). Similarly to

(Ganin et al., 2016), a shared representation encoder is trained in a domain-adversarial manner, but

instead of predicting a single class label for each representation, the representations are processed

by a single transposed convolutional layer in order to make pixel-wise class predictions. Huang

et al. (2018a) use separate representation encoders for DS and DT and align the representations

48 3 Related Work

simultaneously at multiple stages of a FCN. Particularly, they feed the respective activation maps

to several domain discriminators and perform a joint adversarial training of all discriminators and

the representation encoder in DT, while the parameters of the representation encoder for the source

domain are not changed. In the adaptation process, both approaches explicitly restrict the distri-

bution of labels predicted by the current model in DT to be similar to the label distribution in DS.

This implies the assumption that the respective underlying distributions are indeed similar, which

may not be true in an adaptation scenario in RS.

Many follow-up works based on adversarial representation transfer deal specifically with the

task of street scene classification. Similarly to Huang et al. (2018a), Tsai et al. (2018) perform

adversarial adaptation at two layers of the FCN, namely at an intermediate layer of the network

and at the last layer of the network. Unlike Huang et al. (2018a), they use a shared encoder

for both domains. Hong et al. (2018) align the representations by jointly training the domain

discriminator and a network that modifies the representations of images from DT , such that the

modified representations are similar to those for images from DS. In particular, the latter network

predicts a residual, which is added to the initial representations for images from DT. Luo et al.

(2019a) also apply adversarial representation transfer but restrict the representations to contain

only necessary task-specific information, i.e. the information required to perform the classification,

to make the task more difficult for the discriminator. In particular, they propose two loss terms that

regularise the distributions of the representations for images of both domains. Another approach,

conceptually very similar to (Huang et al., 2018a), was proposed in (Shan et al., 2020). The authors

perform representation transfer at multiple layers of a network, but instead of using multiple

discriminators, they concatenate the activation maps from different layers and process them by

a single discriminator. Besides these variations of basic adversarial representation transfer, there

are more sophisticated approaches, but they were not evaluated for a RS application. Luo et al.

(2019b) propose to weight the adversarial loss at a pixel level, deriving the respective weights from

measuring the agreement of two classification networks that are trained in parallel. In this way,

pixels that are more difficult to classify should receive a larger weight. According to the authors,

this should avoid an incorrect alignment of source and target domain representations of classes that

are initially aligned poorly. In (Tsai et al., 2019), the representations are first clustered in DS to

obtain a so called cluster space to which each feature can be mapped. Then, domain adversarial

training is performed, in which each representation is first transformed into the cluster space to

reduce the dimensionality of the input space of the discriminator. Tsai et al. (2019) argue that

adversarial alignment of lower dimensional representations has positive effects on the optimisation.

However, it does not solve the problems related to different label distributions in the two domains.

Du et al. (2019) perform a class-wise adversarial matching, relying on semi-labels in DT. Thus,

this method inherits the possible problems of instance transfer i.e. the requirement of a very good

initial performance of the model in DT after pre-training in DS. The above-mentioned methods have

in common that they solely address UDA for street scene classification in which, both, the local

distributions of label maps and the marginal label distributions in DS and DT are rather similar.

Many approaches exploit this similarity in the form of loss terms (Hoffman et al., 2016; Ganin et

al., 2016) or in terms of the main adaptation principle (Tsai et al., 2019). This is seen problematic

3.2 Representation Transfer 49

when such methods are applied to adaptation scenarios in which such assumptions may not always

apply.

There exist several works that address UDA based on adversarial representation transfer for pixel-

wise classification outside the domain of street scene classification. Mei et al. (2020) transfer the

concept to medical image segmentation. Three discriminators are used to match the distribution

of activation maps at different layers of a joint FCN, which is conceptually very similar to (Tsai et

al., 2018). Although not addressing street scene classification, a high similarity of the distributions

of label maps in the two domains can be expected in this adaptation scenario, as the images of

both domains depict the same objects and differ only in acquisition time, lightning conditions and

the method for medical image acquisition.

Several publications address adversarial representation transfer for the pixel-wise classification

of remotely sensed imagery. An example for UDA based on representation transfer in RS is (Riz

et al., 2016). Here, a domain-independent feature representation from images of two geographical

areas is obtained by training a stacked auto-encoder using images from both domains that learns

to reconstruct the input image via a lower-dimensional feature space. This seems to work well

for domains that are rather similar, but it remains unclear whether it would still be sufficient in

the presence of larger domain differences. Gritzner and Ostermann (2020) perform representation

transfer based on a domain distance for the pixel-wise classification of aerial images. Their results

show that the adaptation performance strongly decreases if the class distributions are very different

in the two domains. To improve the adaptation performance, they align the representations using

target images found to be semantically similar according to the label maps predicted by the classifier

trained on source domain data, but this only leads to an improvement in half of the experiments

presented. Liu et al. (2020) aim at representation transfer by matching so-called feature curves

from both domains using adversarial training. However, the domain gap that could be bridged by

this method was rather limited. This indicates that adversarial representation transfer is difficult

if the domain gap is large, e.g. when adapting between two different cities where the objects have a

different appearance or where the label distributions are dissimilar, both of which is the case for the

public benchmark dataset used in (Liu et al., 2020). This approach is used as a further baseline in

the experiments of this thesis. In (Wittich and Rottensteiner, 2019) representation transfer based

on adversarial training for UDA was also used. A small but stable improvement of the classification

results could be achieved if an early network layer was chosen for transfer. However, the results

strongly depended on the hyper-parameters used in training, which makes this approach difficult

to tune. Noa et al. (2021) extended such an approach for the bi-temporal deforestation detection

based on satellite imagery by an advanced constraint between the encoders for DSand DT , which

resulted in a positive transfer in all evaluated scenarios. However, in some scenarios a rather large

performance gap remained after UDA. In (Lee et al., 2021), adversarial representation transfer is

applied to binary pixel-wise building classification in aerial images. After pre-training a classifier

in the source domain, the representations obtained from a layer in the middle of the network are

matched using adversarial training. The authors propose to restrict the encoder for DT so that

the representations can be used to reconstruct the samples from DT. In particular, a decoder is

introduced that should reconstruct the original images from DTbased on the reconstruction, while

simultaneously performing adversarial representation alignment. This approach has been successful

50 3 Related Work

for building classification, but in these adaptation scenarios the structural similarity is quite large

and the marginal label distributions are quite similar. For example, the authors consider the Inria

Aerial Image Labeling Dataset (Maggiori et al., 2017) and the Massachusetts Buildings Dataset

(Mnih, 2013) in their adaptation scenarios, which contain 15.8% and 13.2% of building pixels,

respectively. It remains doubtful whether such an approach can work in a more difficult multi-class

adaptation scenario like land cover classification, especially when the marginal label distributions

and the local label distributions are very different in DS and DT.

3.2.3 Discussion

In the literature reviewed, a frequently used strategy for UDA is to align the distributions of

representations of samples from DS and DT, respectively, such that a shared classifier can be

applied to them. Adversarial training has been shown to outperform previous approaches that

minimise hand-crafted metrics for measuring the dissimilarity between representations for images

from both domains. Especially in the field of street scene classification, adversarial representation

transfer has been extensively studied and several variants and modifications have been proposed.

However, the success of such methods in RS applications was rather limited. Tsai et al. (2018) state

that adversarial representation matching using layer in the middle of a FCN as representations is

inherently difficult due to high dimensionality of the feature space. As pointed out in (Zhao et

al., 2019), having similar label distributions in DS and DT is an important factor when trying to

learn invariant representations. In their work, they conclude that having a high feature similarity

between the two domains and a low classification loss in DS is not necessarily sufficient for a

good performance in DT. This is consistent with commonly made assumptions about the domains,

such as a similar label distributions in DS and DT (Hoffman et al., 2016; Huang et al., 2018a).

However, such assumptions are not generally justified in RS applications. Some methods make no

explicit assumptions about a high similarity label distributions, but as they were evaluated only in

adaptation scenarios in which the label distributions are actually high, it remains unclear whether

these methods would work in adaptation scenarios with different characteristics. In particular, it is

supposed that in adaptation scenarios with unequal distributions of labels inDS andDT adversarial

training leads to an incorrect alignment of representations, so that the shared classifier does not

perform well in DT. Although similar arguments hold for appearance adaptation (cf. Section 3.3),

the latter strategy is preferred in this work because the adapted images can be assessed visually,

which is advantageous when developing a method and tuning its hyper-parameters. Consequently,

the main approach presented in this work is not based on representation transfer but on appearance

adaptation. Furthermore, the appearance adaptation based approach is combined with adaptive

batch normalization (Li et al., 2018), which was shown to perform well in a RS application. This

method for representation transfer is favoured, as it is very fast, has very few hyper-parameters

and does not require any training with gradient descent.

To assess the performance of adversarial representation matching, an UDA approach based on

adversarial domain adaptation similar to (Tsai et al., 2018) is evaluated in the experiments, too.

Furthermore, adaptive batch normalisation (Li et al., 2018), an approach for UDA based on rep-

3.3 Appearance Adaptation 51

resentation transfer that addresses an RS application is used as another baseline to compare the

proposed method to in the experiments.

3.3 Appearance Adaptation

The third group of methods for UDA apply the domain adaptation to the original images. They

make use of methods for appearance adaptation, which aim to create modified versions of images

from either DS or DT that look similar to the images from the respective other domain (cf. Sec-

tion 2.5). The appearance adaptation is performed using FCNs, which are referred to as appearance

adaptation networks. In the literature, this technique is used in two variants. In the first variant,

images from DT are adapted to match the appearance of images from DSbefore being fed to a

classifier that was trained in DS. In this thesis, this strategy is referred to as target-to-source adap-

tation, and methods based on this strategy are discussed in Section 3.3.1. In the second variant

(cf. Section 3.3.2), images are adapted from DSsuch that they look like images from DT. The

adapted images are then used in combination with the original label maps to train or fine-tune a

classifier to perform well in DT. This strategy is referred to as source-to-target adaptation.

3.3.1 Target-to-Source Appearance Adaptation

This group of methods can be seen as a special case of representation transfer, where the shared

representation space is the original feature space of the images of the source domain. Soto et al.

(2020) use this concept for bi-temporal deforestation detection based on satellite imagery (cf. 2.1).

Particularly, they train a so-called CycleGAN (Zhu et al., 2017a) which makes use of cycle consis-

tency (cf. Section 2.5) to perform the appearance adaptation in both directions. Note that here,

the input and output of the appearance adaptation networks are composite images that contain

image pairs. Palladino et al. (2020) propose the same approach for medical image segmentation, i.e.

for the detection of white matter in brain scans. While Palladino et al. (2020) achieved quite good

results for medical image segmentation, Soto et al. (2020) found out that cycle consistency is not

sufficient for achieving semantic consistency in the addressed RS application, as the adapted images

from DT tend to show patterns that appear more frequently in DS. This phenomenon is referred

to as hallucination of structures (Cohen et al., 2018). To avoid this problem, Soto et al. (2020)

propose to add an identity regularization term ensuring the source-to-target appearance adaptation

network to perform an identity mapping when fed with an image from the source domain. In the

same way, the target-to-source appearance adaptation network should perform an identity map-

ping when fed with an image from the target domain. When evaluating this method on a single

adaptation scenario, the resulting approach achieved a small positive transfer on average, but with

a rather high standard deviation due to random influences such as the sampling order of patches

and the random initialisation of the models.

In (Soto et al., 2021), the approach of (Soto et al., 2020) is extended by an additional loss term

to constrain the appearance adaptation networks in the CycleGAN architecture. Soto et al. (2021)

exploit that in bi-temporal image classification the input and output of the appearance adaptation

networks is a composite of two images and consider the difference between the earlier and the later

52 3 Related Work

image in the composite image. In particular, the proposed loss restricts the change of the differences

due to the appearance adaptation. Using this extension, the authors could slightly outperform the

previous variant. However, this extension is restricted to applications in which the images to be

classified are such composite images of the same region. In the experiments, the method proposed

by (Soto et al., 2021) will serve as another baseline to compare the proposed method to.

Pandey et al. (2020) address the task of pixel-wise classification of images of persons to differ-

entiate skin and background. In the application, the target domain consists of unlabelled infrared

images and the source domain contains labelled red-channel images. They propose to generate an

artificial red channel image from the infrared image by latent space optimization of a variational

auto encoder, pre-trained on images from DS, with respect to a structural similarity loss. This

approach might be reasonable in the application addressed, but it requires a high similarity with

respect to the scene contents in both domains. Otherwise it is likely to fail as the content of images

from DT may not be properly represented by a variational auto encoder.

3.3.2 Source-to-Target Appearance Adaptation

Again, using concepts from appearance adaptation, approaches from this group of methods take

an image from DS and adapt it to look like an image from DT. As the training labels for images

from DS are available in UDA, a classifier can be trained in a supervised way based on the adapted

images. Maintaining semantic consistency as defined in Section 2.5 is crucial for the success of this

strategy. Some authors addressing street scene classification try to achieve this goal in the frequency

domain, where the adaptation is applied only to the amplitude component of the images, either

based on learning a corresponding mapping (Yang et al., 2020c) or by swapping the low frequency

coefficients between the source and target images (Yang and Soatto, 2020). In RS, however, it may

sometimes also be required to consider modifications of higher frequencies, e.g. when transferring

between domains corresponding to images acquired at different seasons, in which deciduous trees

look completely different.

Hoffman et al. (2018) first proposed to use a CycleGAN architecture for the appearance adap-

tation from DT to DS . As they propose a combination of appearance adaptation and adversarial

representation transfer, this contribution is discussed in Section 3.4. Gong et al. (2019) also use a

CycleGAN to perform UDA solely based on appearance adaptation. They extend the method by

using a continuous domain space for the domain discrimination instead of a binary space. In par-

ticular, instead of considering discrete domain labels, for example zero for DSand one for DT , they

consider the domain label to be a real value between zero and one, where zero would correspond

to the source domain and one corresponds to the target domain. A value between zero and one

would indicate an intermediate domain in which the images have an appearance that corresponds

to a mix of the appearance in the source and target domains. This aims at improved appearance

adaptations, but it is limited to settings in which using a continuous domain space is actually

meaningful.

In RS, Benjdira et al. (2019) used CycleGAN to adapt images from one city to another one, each

of them being considered a domain. Their main goal is to learn a semantically consistent image

3.3 Appearance Adaptation 53

adaptation between the two domains by incorporating the cycle consistency loss. The method

leads to quite large improvements in the classification performance for two out of six classes due

to UDA, but the performance of the other classes could hardly be improved. Zhao et al. (2023)

also use CycleGAN to adapt images from DS to DT, but extend the method by an auxiliary task,

which is to predict the height map. This auxiliary task aims at improving the semantic consistency.

They consider only the multi-spectral images as input to the classifier and, thus, require the height

information only in the training phase but not for inference. Those two methods serve as further

baselines in the evaluation of the method proposed in this thesis.

In other works on UDA for RS applications, modifications of CycleGAN are presented to improve

the performance of the adaptation. Soto et al. (2020), already mentioned in Section 3.3.1, also

evaluate a variant of appearance adaptation in which they use CycleGAN to adapt images from

DSto DT and use the adapted images to train the classifier. In their experiments, the variant

of using a network for appearance adaptation from the target to the source domain performed

significantly worse than the variant of training on source-to-target adapted images fromDS. Gritzner

and Ostermann (2020) address the pixel-wise land cover classification based on aerial images. The

authors observed that using CycleGAN without modifications resulted in negative transfer in 50%

of their experiments. The authors tried to improve the adaptation by training on semantically

paired images (cf. Section 3.2.2), but this did not result in a significant improvement compared to

using random images.

There are also strategies to achieve semantic consistency that do not require cycle consistency.

Tasar et al. (2020a) learn a colour mapping to perform the image adaptation from the source to

the target domain. However, this approach cannot adapt the texture of objects and may therefore

be too limited to perform well in more complex UDA scenarios, for example, adapting the appear-

ance of images from different seasons to each other. Tasar et al. (2020b) use a bidirectional image

adaptation based on an alternative to cycle consistency called cross-cycle consistency (Lee et al.,

2018), and align the gradients of images before and after the adaptation to achieve semantic con-

sistency. However, this may be a too strong regularization when trying to apply UDA to imagery

from different seasons, as gradient maps can change significantly in vegetated areas.

3.3.3 Discussion

Comparing the two variants for appearance adaptation, the target-to-source adaptation is less

frequently used in literature than the source-to-target adaptation. It is assumed that the target-

to-source adaptation is less robust to errors in the image adaptation, as such errors directly affect

the classification result. In particular, when classifying an image that was adapted from DT to DS

using the source domain classifier, areas that correspond to one class in DT but look like another

class in DS after adaptation will most likely be classified wrongly. However, if images adapted from

the source domain to the target domain are used for training, possible errors in the appearance

adaptation process may only occur occasionally and, thus, only slightly affect the parameters of

the resulting classifier, which can still yield a satisfactory performance in DT. A further advantage

of source-to-target adaptation is that, after adaptation, only the adapted classifier is required to

make predictions for images from DT, while in target-to-source adaptation, both the appearance

54 3 Related Work

adaptation network and the source classifier are required. Thus, source-to-target adaptation reduces

the memory footprint during inference and also the inference time.

The method proposed in this thesis is also based on appearance adaptation, particularly on the

variant in which the classifier is trained using images from DS that are adapted to DT, following the

arguments just mentioned. Compared to the publications cited in Section 3.3.2, a different strategy

to achieve semantic consistency is proposed. Instead of relying on cycle consistency or cross-cycle

consistency, only a single adaptation network that adapts images from the source to the target

domain is trained. Conceptually, this differs from all approaches based on CycleGAN, as only a

single adaptation network is used. This leads to a smaller memory footprint and also to a reduced

number of hyper-parameters, making the approach easier to tune. The proposed method achieves

semantic consistency by not only enforcing the adapted source images to look like those from DS

after adaptation, but by also requiring them to be classified correctly after the adaptation.

Furthermore, this thesis proposes two new methods aiming to further improve the semantic

consistency in difficult adaptation scenarios, i.e. where the appearance adaptation network tends

to hallucinate structures. Existing approaches try to constrain the appearance adaptation networks

either by architectural choices, e.g. by only allowing a change of the colour of the images in the

adaptation process, or by constraining the adaptation networks with respect to the predictions,

e.g. by applying the cycle consistency constraint. In contrast, the methods presented in this work

do not regularise the appearance adaptation network, but rather aim to mitigate the reasons for

semantically inconsistent appearance adaptations.

3.4 Hybrid Approaches

Some methods proposed in the literature combine instance transfer with representation transfer.

Yang et al. (2020b) jointly use entropy minimization and adversarial representation transfer. Wang

et al. (2020b) differentiate between stuff and things, assuming that stuff looks rather similar in

different domains while things look different. They combine adversarial representation transfer

with explicit instance transfer, making use of multi-scale predictions to improve the semi-labels for

things. Both methods were evaluated solely for street scene classification and it remains unclear if

the approaches can be transferred to RS. Further, as they rely on instance transfer they require a

rather good initial performance of the classifier after source-training.

Several hybrid approaches combine instance transfer and appearance adaptation. Yang et al.

(2020a) integrate the appearance adaptation from the target to the source domain (cf. Section 3.3.1)

into an hybrid two-step procedure. First, they train a CycleGAN to adapt images from DT to DS.

In the second stage, they apply a domain discriminator to the output of the classifier to match

the representations of images from DS and images from DT adapted to DS. Simultaneously, they

train a reconstruction network that takes the label maps as input and reconstructs the input to

the classifier. The corresponding reconstruction loss is also used to train the classifier, thus, the

classifier has to predicted label maps that allow the reconstruction network to reconstruct the

original image. According to the authors, this leads to improved classification results for target

3.4 Hybrid Approaches 55

images adapted to DS. It can be argued that this is not generally applicable, because reconstructing

the original input of a classifier based on the predicted label map is an ill-posed problem for which

there are several possible solutions. Furthermore, the approach strongly relies on the performance

of the target-to-source adaptation which can be problematic as discussed in Section 3.3.3. Previous

work has shown that a CycleGAN based approach for appearance adaptation easily fails in RS

applications (Soto et al., 2021; Gritzner and Ostermann, 2020).

Pizzati et al. (2020) combine explicit instance transfer with the second variant of appearance

adaptation, training the classifier on images adapted from DS to DT. Pizzati et al. (2020) use a

frozen, pre-trained MUNIT network (Huang et al., 2018b) trained in a fully unsupervised way

on images from DS and DT, and they extend the datasets by web-crawled data to support the

adaptation process from rainy to sunny street scenes. They obtain the final classifier by training

on the adapted images from DT while simultaneously performing explicit instance transfer. Using

web-crawled data to overcome a specific domain difference is a meaningful approach in principle,

but it requires to explicitly know the reasons for differences between the domains. If these reasons

are unknown or even a combination of several aspects the approach is no longer applicable. For

example, in RS applications, the domain difference is related to regional differences, which are

difficult to define precisely.

Several approaches combine representation matching and appearance adaptation. For example,

Zhang et al. (2018a) use gradient-based style transfer (Gatys et al., 2016) to reduce the visual

difference between the two domains before feeding the images to the classification network, where

adversarial representation transfer is applied. However, this approach leads to high computation

times and requires a considerable amount of hyper-parameter tuning to achieve good results. One

of the first hybrid approaches combining CycleGAN for appearance adaptation and adversarial

representation transfer was CyCADA (Hoffman et al., 2018), applied to street scene classification.

It is based on a rather complex network that, according to the authors, cannot be trained end-

to-end on a consumer GPU due to very high memory requirements. Musto and Zinelli (2020)

extend CyCADA by feeding the predicted label map to the appearance adaptation network along

with the images and enforcing consistency between the label maps predicted for both, the original

and the adapted source images. Chen et al. (2019b) additionally enforce consistency between

the predictions of original target images and adapted target images, whereas Chang et al. (2019)

replace cycle consistency with cross-cycle consistency. All these methods are very complex due to

the high number of networks, parameters and loss terms. This often requires to train parts of the

architecture in different steps, which could be the reason why none of theses methods directly use

the classification loss for the adapted source images jointly with the losses related to the adaptation

network to enforce semantic consistency.

An architecture very similar to CyCADA was trained end-to-end in (Murez et al., 2018a). The

authors train two encoders which embed images from both domains in a shared feature space by

adversarial training. Simultaneously, two decoders are trained, which recover images based on the

embeddings. To enforce semantic consistency the authors use an identity loss that enforces recov-

ered representations to look like the original inputs. Further, they perform appearance adaptation

by decoding representations from each domain to the corresponding other one. The second as-

56 3 Related Work

pect is again achieved via adversarial training, requiring two additional discriminators. The actual

classifier is optimized to correctly classify embeddings for the source domain and embeddings for

images adapted from DS to DT. The approach achieves good results for the pixel-wise classification

of street scenes. However, it is unclear if it is transferable to UDA in RS, where domain differ-

ences related to the distribution of labels in both domains pose additional challenges (Wittich and

Rottensteiner, 2019). Another architecture very similar to CyCADA is suggested in (Li et al.,

2019). The authors separate the appearance adaptation (CycleGAN) and the classification part

in the sense that the corresponding parameters are updated in an alternating way in the training

procedure. To update the parameters of the CycleGAN, the frozen classifier is considered in the

form of an additional loss term that enforces similarity of representations obtained for original

source images and the adapted source images. On the other hand, when updating the parameters

of the classifier, the adapted source images are used for supervised training but also to match the

respective representations to those obtained for real samples from DT. Assessing this approach, it

can be argued that it is evaluated only for the classification of street scenes and it remains unclear

if the approach can cope with the additional difficulties encountered in RS adaptation scenarios.

Whereas there are many hybrid methods for street scene classification, there are fewer such ap-

proaches addressing the pixel-wise classification of remotely sensed images. Ji et al. (2020) combine

appearance adaptation and representation transfer, using adversarial training in both cases. For the

appearance adaptation they also rely on cycle consistency and adversarial representation transfer is

applied in the last layer of the network. As already discussed in Section 3.3, cycle consistency may

not be sufficient if the domains are very different. However, since the authors report their results

on a publicly available dataset, this approach is used as another baseline for the evaluation of the

method proposed in this thesis. In (Zhang et al., 2021b), the authors combine correlation alignment

as a method based on non-adversarial representation transfer with explicit instance transfer. They

evaluate this combination on a single adaptation scenario addressing aerial image classification,

which however only leads to an improvement for some classes. Kwak and Park (2022) combine ad-

versarial representation transfer with explicit instance transfer for crop classification. Their main

contribution is in a semi-label selection method that is tailored to crop classification. They could

reduce the domain gap by quite a large amount, but the semi-label selection approach is based

on an existing parcel boundary map and, thus, not transferable to tasks such as pixel-wise land

cover classification. Peng et al. (2022) propose an approach that combines appearance adaptation

with both, instance transfer and representation transfer. The authors approximate appearance

adaptation by performing a locally adaptive contrast enhancement using a so-called Wallis filter.

Furthermore, they use adversarial representation transfer to align the distributions of representa-

tions in DS and DT. Finally, they use explicit instance transfer by re-training the classifier using

semi-labels. The authors obtain good results for the task of building detection. However, as they

do not address differences in the label distributions between the domains, it remains unclear if the

method would perform well in a more difficult adaptation scenario involving multiple classes.

3.5 Parameter Selection in Unsupervised Domain Adaptation 57

3.4.1 Discussion

The combination of different approaches for UDA has been frequently studied in recent years. The

underlying assumption is that different variants can handle different types of domain shifts and

thus complement each other, leading to improved adaptation performance. This assumption was

empirically demonstrated, e.g. for applications such as street scene classification. However, the

approach proposed in this thesis is not based on a hybrid method including instance transfer or

adversarial representation transfer for the following reasons: Instance transfer has the disadvantage

that it requires a fairly good initial performance of the classifier in the target domain and can lead

to a negative transfer if not strongly regularised (Arazo et al., 2020). In particular, if too many

semi-labels are wrong while at the same time they have been predicted with a low entropy, instance

transfer is likely to fail as the parameter update is strongly affected by such wrong semi-labels.

Adversarial representation transfer is based on aligning the distributions of the representations for

images from both domains. As it was shown in the literature, this approach is likely to fail in

difficult adaptation scenarios where, for example, the label distributions of the two domains are

very different (Tanwani, 2020). Furthermore, combining adversarial representation matching and

appearance adaptation usually requires very complex architectures that are difficult to train and

to tune. This is often solved by pre-training a CycleGAN for the appearance adaptation, which,

however, has been shown to be problematic if there are large differences in the label distributions

of the domains (cf. Section 3.3). These disadvantages of adversarial representation transfer and

instance transfer probably also apply in a hybrid adaptation variant.

The main method proposed in this thesis is only based on appearance adaptation. However, in a

variant it is also combined with adaptive batch normalisation (ABN), a non-adversarial approach

for representation transfer. Thus, the extended variant can be considered as a hybrid method.

However, the two strategies are combined in a two-step adaptation process, where the first step

corresponds to the joint training of the appearance adaptation and the classifier. The representation

transfer is then done in the second step by applying ABN, which does not require any training

procedure in terms of gradient descent. This approach is assumed to combine the two strategies

without drastically increasing the complexity of the architecture and the training procedure.

3.5 Parameter Selection in Unsupervised Domain Adaptation

A problem that is barely addressed in research on UDA is the stopping criterion for the adaptation.

In supervised training, it is common practice to monitor the performance of the classifier on a

validation set. If this metric stops increasing, the training can be stopped, which is called early

stopping. Furthermore, the parameter values that lead to the best validation performance are

commonly used as the final outcome of the training process (Prechelt, 1998). This strategy is the

standard parameter selection method and can be used in combination with early stopping or as an

alternative to it. In this thesis, the concept of deciding which parameter set to use is referred to as

parameter selection. However, in the UDA scenario considered in this thesis, neither early stopping

nor the standard parameter selection method can be used because of the lack of labelled samples

that could be used for validation in the target domain. Unfortunately, in UDA it is particularly

58 3 Related Work

important to decide for how long the adaptation process is performed. For example, Gritzner and

Ostermann (2020) show that the performance on a test set from the target domain decreases after

some time if the adaptation is carried out for too long. Benaim et al. (2018) discuss this problem for

unsupervised appearance adaptation. However, they do not propose a solution but derive a bound

to predict the success of such methods. The common strategy in UDA is to specify the number of

epochs for the adaptation and to use the very last parameter set for inference (Tasar et al., 2020b,a;

Benjdira et al., 2019; Musto and Zinelli, 2020), which means that this hyper-parameter must be

tuned with care. Many publication do not even tell for how many epochs they train their model,

e.g. (Murez et al., 2018a; Liu et al., 2020; Hoffman et al., 2018; Chen et al., 2019b; Yang et al.,

2020b; Zhang et al., 2021b). This makes it difficult to assess the transferability of such methods to

new adaptation scenarios, as the used hyper-parameters regarding the number of training iterations

might not be suitable for other domains.

To conclude, the parameter selection has been identified as a substantial factor regarding the

performance of UDA. However, to the best of the author’s knowledge, the parameter selection

is not addressed in existing works for UDA, and consequently, no solution has been proposed in

the literature. Therefore, the proposed approach for unsupervised parameter selection in UDA is

believed to be the first of its kind in the literature.

3.6 Discussion

In this section, conclusions of the literature review are drawn. In Section 3.6.1, the research gap to

be filled by this thesis is identified and it is discussed how the contributions proposed in this thesis

address this gap. In Section 3.6.2 the proposed method is compared to the most similar works in

the literature.

3.6.1 Research Gap

In the literature, many methods for deep UDA for the pixel-wise classification of images have

been proposed that make use of different adaptation strategies. All reviewed methods have in

common that they cannot fully compensate for the domain gap, meaning that the classifier that

was trained in the source domain and adapted to the target domain performs worse compared to a

classifier that was directly trained in the target domain. For example, (Hoyer et al., 2022), which is

considered to be the currently best performing method for the adaptation of a pixel-wise classifier

from synthetic to real images of street scenes, can reduce the performance gap from 30.8% in the

mean intersection over union to 18.2%. Thus, a rather large performance gap remains. Similarly,

recent methods for UDA addressing the pixel-wise classification of remotely sensed images, e.g.

(Zhao et al., 2023), a recent publication addressing the task of land cover classification, report an

improvement from 44.3% to 65.8% with respect to the mean F1-score. Unfortunately, they do not

report the performance of a classifier trained in DT. However, based on experiments performed by

the author of this thesis, the expected performance in DT is about 80% in the mean F1-score. The

remaining performance gap leaves room for improving methods for deep UDA.

3.6 Discussion 59

Strategy for Unsupervised Domain Adaptation: Methods based on instance transfer have

been shown to be able to reduce the performance gap for some applications to some extent, e.g. (Vu

et al., 2019). However, they have the disadvantage that they strongly rely on the initial performance

in the target domain of a classifier that was trained in the source domain in order to produce useful

semi-labels (cf. Section 3.1). This can be problematic in classification tasks in which the initial

performance in DT is rather poor, which is the reason why the method proposed in this thesis does

not use instance transfer.

A commonly used approach in both appearance adaptation and representation transfer is the

concept of domain adversarial training (Hoffman et al., 2018; Huang et al., 2018a; Soto et al., 2021;

Gritzner and Ostermann, 2020). This training scheme has successfully been used to adapt the

appearance of images or to align representations for images from both domains in order to perform

the domain adaptation. Although adversarial representation transfer was shown to outperform

non-adversarial representation transfer for image categorisation (Ganin et al., 2016; Tzeng et al.,

2017) and pixel-wise classification (Huang et al., 2018a) it has some disadvantages. On the one

hand, it is rather difficult to tune, on the other hand it is likely to fail if the domains have large

differences in the distributions of labels (cf. Section 3.2) (Wittich and Rottensteiner, 2019; Gritzner

and Ostermann, 2020).

The strategy of adversarial appearance adaptation has high potential in the context of deep UDA

because the appearance adaptation networks can in principle compensate for major differences in

the appearance of objects in the two domains. However, there is the major problem of performing

the appearance adaptation in a semantically consistent way (Soto et al., 2021; Tasar et al., 2020b),

and methods that do not consider semantic consistency result in a poor classification performance

(Benjdira et al., 2019). In the literature, many approaches have been proposed to achieve seman-

tically consistent adaptations, as described in Section 3.3. However, they often perform too strong

a regularisation of the appearance adaptation network (Tasar et al., 2020a; Soto et al., 2021; Yang

and Soatto, 2020; Tasar et al., 2020b), such that adapted source images do not properly represent

the style of images in DT. Thus, achieving a semantically consistent appearance adaptation remains

an unsolved problem for scenarios in which the label distributions in the source and target domains

are very different.

Consequently, the method proposed in this thesis is based on appearance adaptation and has a

major focus on achieving semantic consistency. In particular, in this thesis, UDA is achieved by

source-to-target appearance adaptation, i.e. by training on images from DS that were adapted to

DT. In order to achieve semantic consistency, the source-to-target adaptation network is trained

jointly with the classifier, which allows to use the classification loss of the adapted images to

constrain the adaptation network. This approach is assumed to already result in semantically

consistent appearance adaptation in adaptation scenarios in which there is only a small difference

in the label distributions between the domains. As this method requires only a single source-

to-target appearance adaptation network and a single discriminator, it is inherently simpler than

many existing methods that require a second target-to-source adaptation network, e.g. methods

that are based on CycleGAN, such as (Hoffman et al., 2018; Benjdira et al., 2019; Soto et al., 2021;

Gritzner and Ostermann, 2020). On the other hand, the appearance adaptation is not limited to

60 3 Related Work

very simple colour mappings, such as in (Tasar et al., 2020a; Yang and Soatto, 2020), because a

FCN is used to perform the appearance adaptation. The approach of training a single appearance

adaptation network and the classification network jointly is also adopted in existing works (Chen

et al., 2019c; Choi et al., 2019), but using more complex architectures with multiple decoders,

additional appearance adaptation networks or auxiliary tasks. The proposed method is assumed

to achieve semantic consistency with fewer networks and loss terms, thus being easier to tune and

having a smaller memory footprint.

In the literature, several works have suggested hybrid methods that combine appearance adap-

tation and representation transfer, e.g. (Zhang et al., 2018c; Hoffman et al., 2018; Chang et al.,

2019). It has been shown that the combination of the two strategies is superior to using only a single

approach. However, existing hybrid methods are often very complex in terms of the number of loss

terms and hyper-parameters, which makes them difficult to tune. On the other hand, to the best

of the author’s knowledge, there is no work that tries to combine another method for UDA with

adaptive batch normalisation (Li et al., 2018). In this thesis, such a combination is investigated,

assuming that the benefits of combining different adaptation strategies can be achieved without

making the training scheme considerably more complex. In particular, the proposed method based

on appearance adaptation is combined with adaptive batch normalisation to evaluate if this leads

to a higher performance of the classifier after adaptation.

Improving Semantic Consistency: In the literature, there are several works that aim to

achieve semantic consistency in adaptation scenarios with very different label distributions. How-

ever, such methods (Tasar et al., 2020a; Soto et al., 2021; Yang and Soatto, 2020; Tasar et al.,

2020b) regularise the adaptation network by introducing loss terms or constraints which usually

cannot achieve semantic consistency without restricting the appearance adaptation too much. This

thesis proposes joint training of the source-to-target adaptation network and the classifier to solve

this problem at least to some extent, because the classification loss can be used to constrain the

adaptation network. However, it is also assumed that regularizing the adaptation network alone

does not fully solve the problem of semantically inconsistent appearance adaptation. Therefore,

unlike in existing works (Benjdira et al., 2019; Yang and Soatto, 2020; Tasar et al., 2020b; Soto

et al., 2021), the actual reasons resulting in inconsistent adaptations are addressed. In particular,

this thesis presents two methods that aim to prevent the discriminator from learning patterns that

result in semantically inconsistent appearance adaptation instead of regularizing the appearance

adaptation network.

The first variant is to restrict the variability of the predictions of the discriminator. To the best

of the author’s knowledge, the idea of limiting the variability of discriminator outputs to achieve

semantic consistency has not been proposed in the literature except for his own publications. The

second variant proposed is to train an auxiliary generator to produce images that are fed to the

discriminator together with the adapted images from DS. The idea guiding this strategy is that

the images produced by the auxiliary generator can compensate for differences in the underlying

distributions of label maps of the two domains and, thus, the appearance adaptation network will

not adapt the images in a semantically inconsistent way. After an exhaustive literature research,

3.6 Discussion 61

no work was found in which image generation from noise is used to achieve semantically consistent

adaptations.

Parameter Selection: Another research gap resulting from the literature research is related

to the parameter selection criterion. In particular, several works have shown that the number of

training iterations during deep UDA is a very important parameter that can strongly affect the

performance of the domain adaptation (Gritzner and Ostermann, 2020; Wittich, 2020). Simulta-

neously, as discussed in Section 3.5, this topic is hardly addressed in literature and, to the author’s

best knowledge, there is no work that proposes a method to solve this problem. Furthermore, many

works (Murez et al., 2018a; Liu et al., 2020; Hoffman et al., 2018; Chen et al., 2019b; Yang et al.,

2020b; Zhang et al., 2021b) do not tell for how long they train during deep UDA, whereas choosing

the number of training epochs is considered very problematic when trying to transfer such methods

to new applications.

Addressing this research gap, in this thesis, a method for parameter selection in deep UDA is

proposed. In particular, it is suggested to consider the average entropy in the target domain as

a metric to assess the performance in the target domain and to perform the parameter selection

based on this metric.

3.6.2 Comparison to Most Similar Works

To further underline the contributions of this thesis, the three works from the literature which are

considered to be most similar to the method proposed in this thesis are discussed in detail.

The first similar work is Murez et al. (2018a). The authors propose an hybrid approach for UDA

addressing the adaptation from synthetic images to real images for the application of street scene

classification. The approach combines source-to-target appearance adaptation and adversarial rep-

resentation transfer. Similar to the approach proposed in this thesis, the authors train the classifier

and the appearance adaptation network jointly using the classification loss of adapted source images

as supervision for both, the classifier and the respective appearance adaptation network. However,

they also apply a cycle consistency constraint based on the bi-directional CycleGAN architecture

and an identity constrained similar to (Soto et al., 2020). The approach presented in this work

only performs a source-to-target adaptation, which reduces the number of hyper-parameters to tune

and also reduces the memory footprint as less networks are required. Also, instead of achieving

semantic consistency solely by constraining the appearance adaptation network, in this work the

discriminator is regularized, too, suggesting that this is necessary to achieve semantic consistency

in difficult adaptation scenarios, i.e. with large differences in the label distributions.

A source-to-target appearance adaptation that does not build upon CycleGAN is introduced

in (Choi et al., 2019). The authors train the appearance adaptation network jointly with the

classifier, which follows the same principle as the approach presented in this thesis. Choi et al.

(2019) achieve semantic consistency by a semantic constraint forcing the appearance adaptation

network to produce images that are classified correctly. This strategy is also used in this thesis,

but Choi et al. (2019) use a pre-trained network to apply the semantic constraint, whereas in this

62 3 Related Work

thesis the actual classifier is used to perform such a regularization. It is assumed that using the

actual classifier instead of a classifier with fixed parameters is superior to using a classifier with

fixed parameters that was trained in the source domain, because it can adapt to the target domain

and, thus, regularise the appearance adaptation network in a more meaningful way.

Lastly, the approach by Chen et al. (2019c) is also considered to be very similar to the one

proposed in this thesis, because it also performs joint training of a single source-to target adaptation

network and the classifier. Chen et al. (2019c) also deal with street scene classification and assume

depth information to be available for each image. The authors perform the update of the parameters

of the classifier by training on the source images after having them adapted to the target domain for

both, pixel-wise classification but also for the auxiliary task of depth estimation. In addition, they

apply a sort of adversarial representation transfer using the predictions of the classifier (i.e. the

classification result and the estimated depth maps) for adapted images from DSand for the original

images from DT . The respective objectives are used to train all networks jointly. Conceptually,

this is very similar to the approach presented in this thesis. However, unlike in (Chen et al., 2019c),

neither adversarial representation transfer, nor auxiliary tasks are used in this thesis. Instead, for

more challenging adaptation scenarios, new regularisation strategies for the domain discriminator

are introduced.

It is noted that none of these methods addresses the problem of parameter selection. Murez et

al. (2018a) do not tell at all for how many iterations they train the networks during UDA. Choi

et al. (2019) provide adaptation results after 10K and 56K training iterations without giving any

argument for the selection of these numbers. Chen et al. (2019c) train the networks for 10 epochs

in the adaptation phase, also without providing any reason for the selection of this number. Thus,

the fact that in this thesis a method for parameter selection is proposed is another difference to

these methods.

63

4 Methodology

In this chapter, a new approach for unsupervised domain adaptation (UDA) is presented. The

setting of UDA follows the definition given in Section 2.6. The prerequisites for the proposed

method and the underlying assumptions about the data in the domains are presented in Sec-

tion 4.1. Section 4.2 provides an overview of the proposed method for UDA. Section 4.3 presents

the architectures of all neural networks used. The strategies for training the networks used for UDA

is presented in Section 4.4. The novel approaches to regularise the discriminator are presented in

Section 4.5, and the proposed parameter selection technique in Section 4.6. Section 4.7 introduces

the second, optional adaptation step, which is based on a method from the literature. Section 4.8

describes how the UDA method deals with different spatial resolutions in the source and target

domains.

4.1 Prerequisites and Assumptions

The overall scenario addressed in this work corresponds to the setting of homogeneous deep UDA as

described in Section 2.6. The addressed task is the pixel-wise classification of images using a FCN

as classifier. In principle, the method is agnostic to the application, but the method is described

and evaluated on the basis on the two RS applications: land cover classification and bi-temporal

deforestation detection (cf. Section 2.1). Depending on the application, the input images to be

classified by the FCN can contain different information. To avoid confusion, the variable nC is

introduced, which describes the number of channels of the input image to the classifier, while d

denotes the number of channels in the original multispectral images (MSIs). For the application of

land cover classification, the input consists of a single georeferenced MSI (nC = d) or the composite

of georeferenced MSIs and a rasterised normalised digital surface models (nDSM) (nC = d + 1)

which either comes from a photogrammetric 3D reconstruction of the surface or from LiDAR

measurements. Thus, if height information is available, the first d channels in the input data to

be classified correspond to the orthorectified multi-spectral image and the last channel contains

the metric height information for each pixel in the form of a nDSM, which contains the height

above terrain for every pixel. For the application of bi-temporal deforestation detection based on

satellite imagery, the input consists of a composite image that contains two georeferenced MSIs,

thus nC = 2 · d. Here, the first d channels correspond to the earlier MSI and the last d channels

correspond to the later MSI. Note that both MSIs have to show the exact same region.

In principle, there is no restriction regarding the number of channels, the spectral resolution or

the spatial resolution of the images. However, the spatial resolution should fit the size of the objects

which are to be classified.

64 4 Methodology

In this thesis, the variables hj and wj are used to describe height and width, respectively, of the

jth image in a set of images. However, as it is common practice, the FCN is trained on square

patches with a side length p that are classified by the FCN (cf. Section 2.4). During inference, a

sliding window approach is used to classify images with an arbitrary size, which will be described

in detail in Section 5.2. Based on this notation, the common input feature space of both domains is

X = Rp×p×nC . The common output space of both domains is Y = Lp×p, where L = {L1, . . . , LnL}
is the pre-defined class structure with nL classes.

It is again pointed out that the focus on the work is on the homogenous setting of UDA. For

example, an adaptation scenario in which the image channels in DS correspond to the bands red,

green and blue, and those in DT correspond to the bands infrared, red and green is not considered

to be homogenous and is therefore not primarily addressed by the method proposed in this thesis.

Instead the images from both domains are assumed to come from comparable sensors and the

respective MSI to cover similar spectral bands.

Regarding the availability of data, it is assumed that in the source domain DS a training set

TS = {XS
j , Y

S
j }

nT
j=1 of nT data samples XS

j and corresponding reference label maps Y S
j is available.

In the target domain DT, only the set UT = {XT
k }

nU
k=1 of nU unlabelled images is available. The

resolution of the imagery from both domains is assumed to be known in the addressed applications,

in which the images to be classified are georectified. Unlike many existing UDA methods, the

proposed method does not assume the label distributions to be similar in the source and target

domains. However, following (Tuia et al., 2016), it is assumed that the knowledge of the classifier

trained in DS is sufficient, although not perfect when applied to DT.

4.2 Adaptation Overview

In this thesis, a new method for deep UDA is proposed, aiming to adapt a classifier C from a

source domain DS to a target domain DT. The base variant of the method is based on appearance

adaptation using a new joint training scheme of the classifier and an appearance adaptation network

A. In a further variant, this approach is extended by adaptive batch normalization (ABN), an

existing method for representation transfer from the literature (Li et al., 2018), which is applied as

a second adaptation step.

It is assumed that combining the two methods can result in an improved performance of the

classifier after adaptation because the methods follow different strategies and address different sets

of parameters. In particular, there are two sets of parameters in the classifier. The first set ΘC,S

consists of those parameters that are updated by minimising a loss function. The second set ΘC,B

consists of the running averages in the 2D batch normalisation layers that approximate the batch

statistics of the activation maps (cf. Section 2.3.3). The proposed method for appearance adaptation

aims at adapting the parameters ΘC,S of the classifier to perform well in the target domain. In

principle, the parameters ΘC,B could be updated in this adaptation step as well using the adapted

images. However, updating these parameters using ABN may result in a better performance,

because ABN directly uses the images in the target domain.

4.2 Adaptation Overview 65

Figure 4.1 shows an overview of the processing steps. Note that the figure uses exemplary

images and references from the application of land cover classification with aerial imagery, but the

processing steps would be equivalent for other applications. The first step is to pre-scale the data

in the source domain to the resolution of the target domain (cf. Section 4.8). This step is optional,

because it is only required if the data in the two domains have a different spatial resolution. The

second step is the training in DS, which is referred to as source training (cf. Section 4.4.1). In

this step, a supervised loss is minimised for the training data in DS. After source training, the new

approach for appearance adaptation (cf. Section 4.4.2) is used to adapt the classifier to the target

domain, which corresponds to step three in Figure 4.1. In the extended version of the method,

another adaptation step is performed, namely the adaptive batch normalisation. This step is

skipped in the basic variant. Finally, the adapted classifier is used to predict the probabilistic class

scores for the images from the target domain.

XS

Y S

XS

Γ̂S

Y S

Lsup

C

XT

C
XT

C
Γ̂T

1. Resize (opt.) 2. Source training

3. Appearance adaptation
(cf. Figure 4.2)

4. Adaptive batch normalisation (opt.) 5. Inference

Figure 4.1: Overview of the processing steps of the proposed method. XS and Y S denote the images and

reference label maps in the source domain and XT are the images in the target domain. In

the first step, the data from DS are pre-scaled to match the resolution from DT. Then, in the

source training, the classifier C predicts the maps of probabilistic class scores Γ̂S for XS and the

supervised loss Lsup is minimised. After the two steps for domain adaptation, the classifier C is

used to predict the maps of probabilistic class scores Γ̂T for XT based on which the final class

predictions are computed. opt.: optional processing step.

The main contribution of this thesis is related to the new method for UDA based on appearance

adaptation, i.e. to step three in Figure 4.1. An overview of the concept of the basic variant of

joint training for appearance adaptation, including the main loss terms, is shown in Figure 4.2.

As in many UDA methods based on appearance adaptation, the core idea is to substitute missing

label information in DT by labelled images from DS that were adapted such that they have an

appearance similar to images from DT. The adaptation of a source image XS to its adapted version

XST is achieved by an appearance adaptation network A. The classification network C should be

trained in a supervised way so that it performs well for images XT from DT ; due to the lack of

66 4 Methodology

labelled samples in this domain, the adapted source images XST with the corresponding label maps

Y S are the main source of supervision available to achieve this goal.

XS
XT

XST

A C

D

Γ̂S

Γ̂ST Y SLSTsup

Lsup

LadvD,T

LadvD,ST ,LadvAΨST

ΨT

Figure 4.2: Illustration of the concept of joint training for deep UDA (step 3 in Figure 4.1); the coloured

arrows indicate the processing flow in the UDA phase and the black arrows correspond to loss

terms. In each training iteration in UDA, the appearance adaptation network A adapts the

labelled images XS from DS such that they look like images from DT (green dotted line). The

adapted images XST and the original ones XS are processed by the classification network C (red

and dotted blue arrows), resulting in the maps of class probabilities Γ̂S and Γ̂ST , respectively,

which are compared to the reference label maps Y S to determine the loss terms Lsup and LST
sup.

Both are minimized in the training of A and C, but only LST
sup affects the parameters of A. Within

the same training iteration, XST and the images XT from DT are also processed by D, which
delivers probability maps ΨST and ΨT for the corresponding images to belong to DT (green

and yellow arrows, respectively). These maps are considered in the adversarial loss terms LadvA,

LadvD,T and LadvD,ST . While the latter two are used to train D, the first term is considered in

the parameter update of A.

To make images that were adapted by A look like images from the target domain, adversar-

ial training of A and a domain discriminator D is performed. Many approaches for appearance

adaptation, e.g. (Soto et al., 2020; Benjdira et al., 2019; Gritzner and Ostermann, 2020), start

by adversarial training to learn how to adapt images from DS to DT and use the adapted images

along with the known labels for training the classifier C in a separate step. However, for the ap-

pearance adaptation to be successful, the adapted images should not only look like images from the

target domain, but the transformation also has to be semantically consistent in the way defined in

Section 2.5, which is difficult to achieve in a two-step approach. Thus, in the method presented in

this thesis, A and C are not trained separately, but jointly. The core idea of this approach is that

A learns to adapt input images from DS to DT such that they look like coming from DT, which

is achieved by minimizing an adversarial loss LadvA, while at the same time they are classified

correctly by C, which is achieved by minimizing a supervised loss LSTsup. At the same time, the

classifier C is trained so that it classifies transformed samples XST
j correctly, which is also achieved

by minimizing LSTsup. This is required to achieve the main goal of UDA, i.e. a good performance of C

4.3 Network Architecture 67

in DT. By simultaneously minimizing another supervised loss Lsup, C also learns to classify images

XS from the source domain, which acts as a kind of regularization to avoid a drift of the parameters

(cf. Section 4.4.2). Besides this theoretical consideration, it was also empirically shown in (Soto et

al., 2020) that training on XS and XST is superior to training only using XST with respect to the

performance in the target domain after UDA. As usual in adversarial training, the discriminator

D is trained to make the adaptation task difficult for A, which is achieved by minimizing the two

adversarial loss terms LadvD,T and LadvD,ST . Note that besides the basic variant of joint training,

two methods are introduced in this thesis that aim to improve the semantic consistency of the

appearance adaptation (cf. Section 4.5).

4.3 Network Architecture

The overall network architecture consists of the three sub-networks (cf. Figure 4.2): the classifi-

cation network C, the appearance adaptation network A and the domain discriminator D, with
corresponding sets ΘC , ΘA, and ΘD of trainable parameters. The parameters ΘC of C consist of

two subsets ΘC,S and ΘC,B. ΘC,B contains the running averages from all batch normalisation layers

(cf. Section 2.3.3) and ΘC,S are the remaining trainable parameters of the network (cf. Section 4.2).

4.3.1 Classification Network C

The pixel-wise classification of images is performed by a FCN C. The input to C corresponds to a

square patch with side length p and nC channels (cf. Section 4.1), and the output corresponds to

the pixel-wise probabilistic class scores. The probabilistic class scores for each pixel are obtained

by normalising the unnormalised class scores using the softmax function (cf. Equation 2.7). The

probabilistic class scores for every pixel are arranged in maps Γ̂S for images from DS and Γ̂ST

for adapted images XST . This corresponds to the red and blue paths in Figure 4.2, respectively.

During inference, the maps of probabilistic class scores Γ̂T are predicted for the images XT from DT

(cf. Figure 4.1). The actual class predictions are obtained by selecting the class with the highest

probability for each pixel. In this work, a U-Net-like architecture (Ronneberger et al., 2015) is

used, having an Xception backbone (Chollet, 2017) pre-trained on ImageNet (Deng et al., 2009).

In preliminary experiments, this architecture in combination with initialisation of the encoder by

pre-training on ImageNet was compared to a residual network with completely random initialization

similar to the one used in (Wittich, 2020). It was observed that a comparable performance can be

achieved, but the pre-training results in a noticeable reduction of the training time.

Figure 4.3 shows an overview of the classification network and Table 4.1 provides an overview of

all layers. The encoder of the classification network (layers 1-17 in Table 4.1 and Figure 4.3) cor-

responds to the layers 1-17 of the Xception network that was explained in detail in Section 2.3.6.2.

In the decoder of the network, nearest neighbour interpolation is used for upsampling. All convolu-

tions in the decoder use 3×3 kernels and zero padding with 1 px. The only exception is the very last

convolution in layer 33 that uses 1× 1 kernels and no padding. The layers that correspond to the

Xception network are pre-trained on the ImageNet dataset. The implementation of the Xception

68 4 Methodology

U-Net and the pre-trained weights are taken from the Segmentation Models Pytorch repository1

(Iakubovskii, 2019).

Layer: 1,2,3,4,5,6,7-14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33

Figure 4.3: Illustration of the Xception U-Net architecture. The layer numbers correspond to those in Ta-

ble 2.3. Blue and green layers correspond to Xception blocks of type A and B, respectively. The

dotted lines represent skip connections.

Layer(s) Layer type h, w Depth Simpl.

E
n
co
d
er

1 Input layer p nC y
2 StrConv, BN, ReLU p/2 32 y
3 Conv, BN, ReLU p/2 64 y
4 Xception block A p/4 128 y
5 Xception block A p/8 256 y
6 Xception block A p/16 728 y
7-14 8× Xception block B p/16 728 y
15 Xception block A p/32 1024 n
16 SepConv, BN, ReLU p/32 1536 n
17 SepConv, BN, ReLU p/32 2048 n

D
ec
o
d
er

18 Upsample, Concat(14) p/16 2776 n
19, 20 2×{Conv, BN, ReLU} p/16 256 n
21 Upsample, Concat(5) p/8 984 y
22, 23 2×{Conv, BN, ReLU} p/8 128 y
24 Upsample, Concat(4) p/4 256 y
25, 26 2×{Conv, BN, ReLU} p/4 64 y
27 Upsample, Concat(3) p/2 128 y
28,29 2×{Conv, BN, ReLU} p/2 32 y
30 Upsample p 32 y
31,32 2×{Conv, BN, ReLU} p 16 y
33 Conv, Softmax p nL y

Table 4.1: Layers of the architecture of C. Conv: Convolutional layer. StrConv: Strided convolutional layer.

SepConv: Separable convolutional layer. BN: 2D batch normalisation; ReLU: Rectified linear

unit. Concat(LX): Depth-wise concatenation of the output of layer LX and the current layer. h,

w, depth: Output dimensions. p is the predefined patch size. Xception blocks are described in

Section 2.3.6.2. The column Simpl. denotes whether this layer or group of layers is used in the

simplified variant (y) or not (n).

1URL: https://github.com/qubvel/segmentation models.pytorch (last accessed on 09/12/2022)

4.3 Network Architecture 69

Because the backbone is pre-trained on three-channel RGB-images, the first layer of the network

cannot be used if the number nC of input channels is different from three. In that case, the first layer

is replaced by a convolution layer with nC input channels, the parameters of which are initialized

randomly. The parameters of the decoder are also initialized randomly; all random initializations

are based on (He et al., 2015). Overall, this network has about 28.8 M parameters. This rather

large network was chosen because it has to learn to classify images from DS and from DT (cf.

Section 4.4), which is assumed to be a more complex task than classifying only images from one

domain, due to the higher variability of the data. Using a larger network reduces the risk that the

learning capacity of C becomes a limiting factor of the method. The network also has a very large

theoretical receptive field of 1179 px. Practically, if the the patch size p is smaller than 590 px,

every pixel in the input image can potentially contribute to the predicted label for every pixel in

the output.

Note that in this architecture the number of layers and parameters can be reduced by removing

the last layers of the encoder and the first layers of the decoder. Whether or not this is advantageous

depends on the particular application. In this work, a smaller variant of this network is used in

the context of bi-temporal deforestation. Particularly, in that variant, the layers 15-20 are omitted,

resulting in a smaller network with 15.5M parameters and a theoretical receptive field of 907 px.

This network consists of the layers that are marked with y in the column Simpl. in Table 4.1.

4.3.2 Appearance Adaptation Network

The appearance adaptation network A takes a square image patch with side length p with nC

channels extracted from an image XS from the source domain as input and delivers an adapted

image patch XST . This corresponds to the dotted green line in Figure 4.2. For this task a residual

FCN with about 5 M parameters is used that is a simplified version of the one used in (Wittich,

2020). Table 4.2 lists all layers of the network.

Layer(s) Layer type h, w Depth

1 Input layer p nC
2 StrConv, ReLU p/4 256
3-18 15× Residual block p/4 256
19 T-Conv, ReLU p/2 128
20 T-Conv p nC

Table 4.2: Residual network A for appearance adaptation. T-Conv: Transposed convolution. For other

abbreviations, cf. Table 4.1. The structure of the residual blocks used in this architecture is given

in Table 4.3.

An initial 6 × 6 strided convolution with a stride of four pixels and zero padding of 1 px down-

samples the image patch spatially by a factor of 4. It is followed by 15 residual blocks at the

reduced scale. Each of them consists of two subsequent 3× 3 convolutions with 64 and 256 filters,

respectively, replicate-padding with 1 px and ReLU activation. The result of each residual block is

added to its input. The layers of a residual block are defined in Table 4.3.

After the residual blocks, two transposed 4 × 4 convolutions, each performing an upsampling

by a factor of two, are used to enable predictions at the original spatial resolution of the input,

70 4 Methodology

corresponding to the spatial extent p× p of the patch. Commonly, non-linearities with a bounded

range of values such as the hyperbolic tangent function are applied to the output of the final layer

of networks for image generation (Goodfellow et al., 2014). However, as in some cases the last

channel of the output of A corresponds to the adapted nDSM, the values are not restricted to a

fixed range. Consequently, no activation function is applied to the output of the last convolutional

layer in the network A.

Layer Layer type h, w Depth

1 Input layer s(in) 256

2 Conv, ReLU s(in) 64

3 Conv, ReLU s(in) 256

5 Add(1,3) s(in) 256

Table 4.3: Layers of a residual block. Conv: Convolutional layer. s(in): Height and width of the input to

the block. Remaining abbreviations and symbols as in the caption of Table 4.1. Add(1,3): the

outputs of layer 1 and layer 3 are element-wise added.

A residual FCN is chosen for the appearance adaptation because the optimal solution for this task

should not deviate too much from an identity mapping. For example, objects that have the same

appearance in both domains should not be changed at all in the adaptation. Following (He et al.,

2016), it is assumed that residual networks are well suited to learn such a solution, an assumption

that was also supported by preliminary experiments. This network uses replicate-padding instead of

zero-padding in the residual blocks. In preliminary experiments, this was found to reduce artefacts

in the border regions of the adapted images. The network has a theoretical receptive field of

250× 250 px, which is considered large enough to consider enough context to perform an adequate

image adaptation for the addressed resolutions. In particular, when classifying aerial images with a

ground sampling distance (GSD) of 20 cm, this receptive fields corresponds to an area of 50×50m2,

which is in most cases larger than objects of interest such as buildings or trees. In the addressed

application of bi-temporal deforestation detection, for a GSD of the satellite images of 20m, the

size of the receptive field is 5000 × 5000m2, which again is in most cases larger than the objects

which are to be classified in that application, namely deforestation areas.

4.3.3 Domain Discriminator

The domain discriminator network D is required for the training of the appearance adaptation

network in an adversarial way (cf. Section 4.4.2). It takes either an adapted image XST from DS

or a target domain image XT as input and predicts from which domain the image originates. This

corresponds to the solid green and yellow paths in Figure 4.2. Consequently, the discriminator

performs a binary classification with the class labels y = LT that corresponds to the case in which

the input image comes from DT and y = LST , corresponding to the case in which the input

image is an image from DS that was adapted by the appearance adaptation network. Instead of

predicting a single class score per image patch (Goodfellow et al., 2014), the network predicts a

map of probabilistic class scores (cf. Section 2.5). In the literature, this concept has been shown

to achieve better results for adapting the appearance of images, for instance by Isola et al. (2017),

whose discriminator architecture is adapted here.

4.4 Training 71

The predicted probability maps are denoted by ΨST and ΨT for the input images XST and

XT , respectively. Each value ψST
i in ΨST and ψT

i in ΨT correspond to the probability for the

corresponding support window in the input image to come from the target domain (cf. Section 2.5).

Thus, ψT
i = P (yW (i) = LT |XT) and ψST

i = P (yW (i) = LT |XST), where yW (i) refers to the label of

the support window W (i) that corresponds to the i-th prediction in the probability map predicted

by the discriminator. Note that the i-th prediction in the probability map corresponds to the i-th

pixel in the output of D, but it does not correspond to a specific pixel in the input.

The discriminator network, which has about 2.8 M parameters, is described in Table 4.4. This

architecture follows the architecture proposed by Isola et al. (2017) which is frequently used for

appearance adaptation and in the context of appearance based deep UDA, e.g. in (Murez et al.,

2018b; Tasar et al., 2020b; Zhao et al., 2023). It consists of five convolutional layers, each using

a 4 × 4 kernel. The first three convolutions are strided convolutions with a stride of 2 px; the

final two layers do not use striding. Using this sequence of convolutions the support window of

each pixel in the output of D is a 70 × 70 px area in the original input image. Isola et al. (2017)

propose to use leaky ReLU as activation function for all layers but the last one. The output of

the last layer is normalised by the sigmoid function (cf. Equation 2.4) such that the output values

can be interpreted as probabilities. In this thesis, deviating from (Isola et al., 2017), the 2D batch

normalization layers are replaced by a spectral normalization of the weights of the kernel matrices,

i.e. such that after normalisation the largest singular value of the weights of each kernel is one, as

proposed in (Miyato et al., 2018). In preliminary experiments this was found to lead to a more

realistic appearance of the adapted images in a visual evaluation.

Layer Layer type h, w Depth

1 Input layer 254 d
2 StrConv, LReLU 126 64
3 SN-StrConv, LReLU 62 128
4 SN-StrConv, LReLU 30 256
5 SN-Conv, LReLU 27 512
6 SN-Conv, Sigmoid 24 1

Table 4.4: Layers of the discriminator network D. SN-Conv: Convolution with spectral normalization of the

weights. SN-StrConv: Strided convolution with spectral normalization of the weights. LReLU:

Leaky ReLU with negative slope of θL = 0.1 (as in (Wittich, 2020)). For other abbreviations,

cf. Table 4.1.

4.4 Training

To determine the parameters of all networks according to the proposed joint training scheme, a

three-stage training strategy which consists of the source training and the subsequent UDA is

proposed. In the first stage, source training is performed. Here, only the parameters ΘC of the

classification network C are determined by conventional supervised training using the labelled source

domain dataset TS (cf. Section 4.4.1), resulting in the parameter set Θ̂
(src)
C . In the second stage,

described in Section 4.4.2, the proposed method for appearance adaptation is carried out using

the datasets TS and UT . In this process, the parameter set Θ̂
(src)
C is used as initialization for C,

72 4 Methodology

and the parameters of the other networks are randomly initialized according to (He et al., 2015).

The second stage could also be carried out starting from a random initialization. However, in

preliminary experiments it was observed that performing the UDA from a random initialization

increased the training time by a factor of approximately 2 and in a few cases also had a negative

effect of the classification performance after UDA. The result of the joint appearance adaptation

is the parameter set Θ̂
(jaa)
C = (Θ̂

(jaa)
C,S , Θ̂

(jaa)
C,B) which can be decomposed into the set Θ̂

(jaa)
C,B that

contains the running averages from all 2D batch normalisation layers after appearance adaptation,

and the set Θ̂
(jaa)
C,S that are the remaining trainable parameters of the network.

In the last stage, described in Section 4.7, an optional further unsupervised adaptation step is

performed that is based on adaptive batch normalization (ABN), a method proposed in the literature

(Li et al., 2018). ABN starts from the parameter set Θ̂
(jaa)
C and updates only the parameter set

Θ̂C,B. This adaptation step results in the parameter set Θ̂
(abn)
C = (Θ̂

(jaa)
C,S , Θ̂

(abn)
C,B), where Θ̂

(abn)
C,B are

the updated running averages from all 2D batch normalisation layers.

In the base variant, the parameters Θ̂
(jaa)
C are used for the final evaluation and in the extended

variant the parameter set Θ̂
(abn)
C is used.

4.4.1 Supervised Source Training

During source training, the parameters ΘC = (ΘC,S ,ΘC,B) for the classification network C are

determined using the training data set TS . The subset ΘC,B, i.e. the running averages in the

2D batch normalisation layers are updated according to Equations 2.30 and 2.31. The remaining

parameters ΘC,S are initialised as described in Section 4.3.1 and iteratively updated using mini-

batch stochastic gradient descent with momentum (cf. Section 2.2.2.1), minimising the loss

L(src)C (ΘC,S , T
S) = Lsup(ΘC,S , T

S) + ωL2 · LL2(ΘC,S). (4.1)

The first loss term Lsup is a supervised loss that measures the discrepancy between the pre-

dicted labels and the reference (cf. Section 2.2.2.1). The second loss term corresponds to a L2-

regularisation of the parameters ΘC,S according to Equation 2.19, which is weighted by ωL2.

Commonly, the multi-class cross-entropy loss (cf. Section 2.2.2) is used for a multi-class classifica-

tion problem. However, this loss can be suboptimal if the class distribution of the training dataset is

imbalanced, as it is often the case in RS applications. In such a case, the cross-entropy loss is dom-

inated by the frequent classes, which is the reason why the prediction quality of under-represented

classes may be not satisfactory after training.

In this thesis, the adaptive cross entropy, proposed in (Wittich and Rottensteiner, 2021), is

used to mitigate the problems due to an imbalanced label distribution. Similarly to the focal loss

(Lin et al., 2017; Yang et al., 2019), it also adopts the idea of assigning larger weights to more

difficult samples. However, in contrast to the focal loss, the training procedure should not focus on

individual pixels whose class labels are difficult to predict, but it should focus on classes which are

4.4 Training 73

predicted with low quality. Thus, one weight per class is determined (and not per pixel as in (Lin

et al., 2017)), which depends on the current global prediction quality for this class.

After initialization, training starts with one training epoch in which the standard multi-class

cross-entropy loss (cf. Equation 2.36) is minimised. Note that in this thesis, the term epoch is

defined as consisting of niter training iterations. After the first training epoch, training images of

a mini-batch are classified using the current state of the classifier and the results are compared to

the reference to determine class-wise quality metrics. In particular, the F1 score is used. The F1

score F1,k is a class-specific performance indicator for the k-th class Lk:

F1,k =
2 · TPk

2 · TPk + FPk + FNk
. (4.2)

In Equation 4.2, TPk, FPk and FNk are the numbers of true positives, false positives and false

negatives, respectively, for class Lk. The F1-scores are used to determine the class-wise weights

wk = (1−∆F1,k)
κ = (1− (F1,k −

1

nL

nL∑
k∗=1

F1,k∗))
κ, (4.3)

where ∆F1,k is the difference between the class-wise F1 score for the k-th class Lk and the mean

F1 score of all classes, and the hyper-parameter κ modulates the influence of the weight of each

class. Starting from the second epoch, the classifier is trained using a weighted cross-entropy loss

in which the loss of each pixel is weighted by wk according to its reference label. After each epoch,

the weights are recalculated according to Equations 4.2 and 4.3 and used for the following epoch.

For a batch of nB training images with patch size p, this loss becomes

Lsup(ΘC,S , T
S) = − 1

nB · p2
nB∑
b=1

p2∑
i=1

nL∑
k=1

γb,i,k · log(γ̂Sb,i,k) · wk, (4.4)

where γ̂Sb,i,k = P (yb,i = Lk|XS
b) is the predicted probability for the i-th pixel in the b-th image

in the batch to belong to class yb,i = Lk, wk is the weight of class Lk according to Equation 4.3

and TS is the training dataset. Recall that the symbol γb,i,k indicates whether the i-th pixel in

the b-th label map belongs to class Lk (γb,i,k = 1) or not (γb,i,k = 0) (cf. Section 2.2.2). Note that

practically, the weights are initialised by ones. By doing so, the loss in Equation 4.4 becomes the

regular cross-entropy loss from Equation 2.36, which is used in the first training epoch.

To further prevent the classifier from overfitting, data augmentation is applied. Details will

be described in Section 5.4.1. To determine the number of training epochs, the performance of

the classifier is evaluated on a validation set after each epoch. Source training is performed for

n
(S)
E epochs or stopped if the performance on the validation set does not increase for nes epochs,

following the strategy of early stopping defined in Section 2.2.3. After training, the parameter set

Θ̂
(src)
C that resulted in the best validation performance is used for the further processing steps.

4.4.2 Joint Training for Appearance Adaptation

In the appearance adaptation phase, the parameters of all networks are determined using variants

of mini-batch stochastic gradient descent (cf. Section 2.2.2.1). To simplify the notation, a combined

74 4 Methodology

set ΘA,C = {ΘA,ΘC,S} is defined, which consists of the parameters of the adaptation network A
and the classification network C. While the parameters of C are initialised by those determined in

the source training, i.e. Θ̂
(src)
C , the parameters of the discriminator are initialized randomly based

on (He et al., 2015). As these parameters are to be determined by joint training of the two networks,

according to the principles of adversarial training, the gradient of a joint loss function LA,C with

respect to ΘA,C is first calculated in each iteration. This corresponds to the paths visualized by

the red, the blue and the two green arrows in Figure 4.2, based on a batch of nB image patches

from DS and the corresponding labels. The resulting gradient is used to update the parameter

set ΘA,C . Then, within the same training iteration, the gradient of a discriminator loss LD with

respect to the discriminator parameters ΘD is calculated and used to update ΘD. This requires

an additional set of nB unlabelled image patches from DT, which are processed jointly with the nB

adapted images from DS that contributed to the update of ΘA,C , and it corresponds to the paths

visualized by the yellow and green arrows in Figure 4.2. This work follows the common practice of

alternating between updating ΘA,C and ΘD (Goodfellow et al., 2014). The two steps are described

in detail below. Algorithm 1 summarizes joint appearance adaptation process. The parameter

update process (lines 10 and 11) is described in the subsequent sections. Line 5 and lines 15-20 are

related to the new parameter selection approach, which will be described in Section 4.6.

4.4.2.1 Joint Update of A and C

The joint loss LA,C used to update the parameters of A and C in every iteration (line 11 of

Algorithm 1) consists of four components:

LA,C(ΘA,C ,ΘD, T
S) =

ωT · LSTsup(ΘA,C , T
S) + ωA · LadvA(ΘA,ΘD, T

S) + Lsup(ΘC,S , T
S) + ωL2 · LL2(ΘC,S), (4.5)

where ωT , ωA and ωL2 are weighting factors to control the influence of the corresponding loss terms

relative to the influence of the supervised term Lsup.

The first term, LSTsup, is related to the main goal of the UDA, namely to achieve a good classification

performance on images from the target domain. It is formulated as a supervised classification loss

for adapted images similar to Equation 4.4:

LSTsup(ΘA,C , T
S) = − 1

nB · p2
nB∑
b=1

p2∑
i=1

nL∑
k=1

γb,i,k · log(γ̂STb,i,k) · wk, (4.6)

where γ̂STb,i,k denotes the predicted probabilistic class score for the i-th pixel in the b-th adapted input

image from a batch of images fromDS to belong to class yb,i = Lk. Thus, γ̂
ST
b,i,k = P (yb,i = Lk|XST

b).

The remaining symbols are those already defined in the context of Equation 4.4. Besides adapting

C to the target domain, this loss is also required to guide A towards performing semantically

consistent adaptations, i.e. that images XST are still correctly classified by C. Note that the

weights wk in Equation 4.6 are those calculated on the basis of samples from DS.

The second term in Equation 4.6 is the adversarial loss LadvA which only affects A and realizes

the component of adversarial training that influences A. The appearance adaptation network A

4.4 Training 75

Algorithm 1: Joint appearance adaptation S → T

1 Function JointAppearanceAdaptation(Θ̂
(src)
C ,TS,UT ,nE,niter,nmin):

// Θ̂
(src)
C : parameters after source training

// TS: labelled source domain data

// UT: unlabelled target domain data

// nE: number of training epochs

// niter: number of training iterations per epoch

// nmin: related to parameter selection

2 ΘC ← Θ̂
(src)
C // start with parameters after source training

3 ΘA,ΘD ← random initialization

4 Θ̂
(jaa)
C ← Θ̂

(src)
C // initialize optimal parameter sets

5 entmin ← inf

6 (w1, w2, ...)← initialise class weights with ones

7 for e← 1 to nE do // e: epoch

8 for i← 1 to niter do // i: iteration

9 BS ← batch from TS // labelled data from DS

10 BT ← batch from UT // unlabelled data from DT

11 update ΘA,C by minimizing LA,C using BS // (eq. 4.5)

12 update running averages ΘC,B // (eq. 2.30 and 2.31)

13 update ΘD by minimizing LD using BS and BT // (eq. 4.8)

14 end

15 update each class weight wl // (eq. 4.3)

16 if e > nmin then

// do not evaluate the entropy for the first nmin epochs

17 entt ← average entropy for images from UT

18 if entt < entmin then

19 entmin ← entt

20 Θ̂
(jaa)
C ← ΘC // update optimal parameters

21 end

22 end

23 end

24 return Θ̂
(jaa)
C

76 4 Methodology

should learn to adapt images from DS such that they look like images from DT by maximising the

probabilities ψST predicted by D for the adapted images XST to be from DT, which results in the

following loss:

LadvA(ΘA,ΘD, T
S) = − 1

nB · p̃2
nB∑
b=1

p̃2∑
i=1

log(ψST
b,i), (4.7)

where ψST
b,i corresponds to the i-th prediction of D for the bth image in the mini-batch of adapted

images, i.e. the predicted probability ψST
b,i = P (yb,W (i) = LT |XST) for the corresponding support

window W (i) in the input image presented to D to be from the target domain, which should be

large such that A can learn to fool the discriminator (cf. Section 4.3.3). p̃ represents the height

and the width of the discriminator output.

The third term in Equation 4.5, Lsup(ΘC,S , T
S), is the supervised loss for images from the source

domain and is computed according to Equation 4.4. This is a further important component to

achieve semantic consistency and to avoid a drifting effect of A and C. Particularly, if C were

solely trained using the adapted images, it would be possible for the parameters of the appearance

adaptation network to converge to a parameter state where A produces semantically inconsistent

results, e.g. images in which after appearance adaptation trees look like buildings in DT and vice

versa. C could adapt to such a state and still predict the label maps correctly, but it would no

longer perform well for real target images. Considering Lsup for source images will constrain the

classifier so that it still performs well as a classifier in the source domain, so that this loss acts as

a regularization term.

The last term in Equation 4.5, LL2(ΘC), corresponds to a L2-regularisation of the parameters

ΘC as introduced in Section 2.2.3, which is weighted by ωL2.

As stated above, each training iteration starts with a step aiming at minimizing the joint loss

LA,C with respect to ΘA and ΘC,S (line 10 of algorithm 1). While LA,C depends on ΘD via the

adversarial term LadvA, these parameters are not updated in this context. Minimizing LA,C will

adapt the adaptation network A such that it deceives the discriminator D, i.e. such that its output

cannot be discriminated from a real target domain image. At the same time the parameters of the

classifier C are updated such that C performs well for target domain images. The supervised loss

Lsup for images from DS acts as a kind of regularization for ΘC,S .

In one training iteration, a source domain image will contribute to the loss LA,C twice, namely

via LSTsup (Equation 4.6) and Lsup (Equation 4.4). This has to be considered in the 2D batch

normalization layers of C. As pointed out in (Li et al., 2018), the running averages in 2D batch

normalization layers capture domain specific feature distributions and can have a major effect on the

performance of the final classifier in DT. In this thesis, it is proposed to address the batch statistics

in a subsequent adaptation step, namely by applying adaptive batch normalisation. However, in

the basic variant of the proposed method, only the images XS from DS are used to update the

running averages of these layers. This variant was found to result in a better performance after UDA

compared to updating the running averages on adapted images XST from DS , but also compared

to updating them using both image types XS and XST . In the optional subsequent adaptation

4.4 Training 77

step, the running averages are adapted to the target domain, which will be discussed in detail in

Section 4.7.

Random Spatial Shifts: As a minor extension, it is proposed to perform a random spatial

shifting of the adapted images XST jointly with the corresponding label maps used to compute

LSTsup, before they are fed to the discriminator. This is motivated by the following two considerations.

First, as the output of A is to be classified by C and both networks A and C are jointly trained

to minimize the classification loss LSTsup, the classification task which should be learned by C could

in principle also be learned to some extent by A. Particularly, A could learn to perform the

classification task and to encode the classification result in the adapted images e.g. in terms of

superimposed patterns that can easily be recognized by the classifier. In a few cases, such behaviour

was observed in preliminary experiments, visible as superimposed high-frequency patterns in the

adapted images and leading to a reduced adaptation performance. It is assumed that this behaviour

occurs in a setting in which the appearance adaptation leads to a reduction of information in the

images. For instance, if the appearance adaptation network has to add dark shadows in order to

mimic the style of images from DT it would be more difficult for C to perform a correct classification

given the adapted images. In order to minimise LSTsup, A may encode the semantic information by

superimposing patterns in XST . This can prevent the classifier from learning patterns that are

relevant for performing a proper classification in DT . As a countermeasure for this undesirable

behaviour, the adapted images are randomly shifted horizontally and vertically by ±1 px with a

probability of 50%, respectively. By performing the random shifting, it is more difficult for the

classifier to detect and use the superimposed patterns generated by A. Note that larger shifts

would not bring any further benefits because the step size of the first convolutional layer in C is

2 px, which means that shifting the input by 2 px would lead to the same relative alignment of the

adapted images and the kernel positions in the first layer of C. However, only shifting the input of

C would break the alignment with the reference label map. This is why the label maps are shifted

correspondingly with the images, using the same random values. The shifting operation potentially

results in empty border regions which are not considered when computing the overall loss LSTsup.
It shall be noted that this proposed counter-measure cannot fully prevent A from superimposing

patterns that encode semantic information in the generated images. However, the proposed shift is

computationally inexpensive and assumed to prevent this behaviour at least to some extent, which

was confirmed in preliminary experiments.

Second, a rather common problem in adversarial training for image generation is that the gen-

erated images are overlayed with high-frequency checkerboard artefacts (Palladino et al., 2020).

This was also observed when using the proposed method for appearance adaptation in preliminary

experiments. In particular, occasionally, the parameters of the appearance adaptation network con-

verged to a state in which the adapted images showed checkerboard artefacts and the adaptation

performance was very poor. In preliminary experiments, it was found that randomly shifting the

input images of the discriminator by ±1 px prevents this behaviour, which is the reason why such

a random shift is used in the proposed method. In particular, the shifted images are used as input

for the domain discriminator instead of the original, non-shifted variants.

78 4 Methodology

4.4.2.2 Update of D

The second step of adversarial training is related to the update of the parameters of the discrimi-

nator network D (line 12 of Algorithm 1). In the following, the default loss for domain adversarial

training is explained. Aiming at an improved semantic consistency of the adapted images, an ex-

tension of this loss is proposed, which is described in Section 4.5.1. In the base variant, the loss

LD minimised in the update step of D consists of two terms

LD(ΘA,ΘD, T
S , UT) = LadvD,T (ΘD, U

T) + LadvD,ST (ΘA,ΘD, T
S). (4.8)

This corresponds to the typical loss formulation for adversarial training and aims at training the

discriminator network D to differentiate real images XT from DT and adapted source images XST .

The first term aims at maximising the probability for images from DT to be classified as coming

from DT :

LadvD,T (ΘD, U
T) = − 1

nB · p̃2
nB∑
b=1

p̃2∑
i=1

log(ψT
b,i), (4.9)

where ψT
b,i = P (yb,W (i) = LT |XT) is the probability for the support window W (i) corresponding

to the i-th prediction in the discriminator output for the bth image in a batch of image patches

from DT to be obtained from a target domain image. The remaining symbols are identical to those

defined in the context of Equation 4.7.

The second term in Equation 4.8 aims at minimising the probability of adapted images from DS

to be classified as coming from DT :

LadvD,ST (ΘA,ΘD, T
S) = − 1

nB · p̃2
nB∑
b=1

p̃2∑
i=1

log(1− ψST
b,i), (4.10)

with ψST
b,i = P (yb,W (i) = LT |XST) as defined in the context of Equation 4.7. The remaining symbols

are identical to those defined in the context of Equation 4.7. Note that although this loss depends

on the parameters of the appearance adaptation network, these parameters are not changed in this

update step.

In order to update the parameters of D, the gradients of LD(ΘA,ΘD) with respect to ΘD are

used, which will train D such that it can discriminate well between real target images and adapted

source images, thus making the task of the adaptation network A more difficult.

4.5 Improving Semantic Consistency

As extensively discussed in Section 3.3, it is crucial for the appearance adaptation to be done in a

semantically consistent way to achieve an improvement of the classifier when trained on the adapted

images.

So far, semantic consistency was targeted by training A to minimize the supervised loss LSTsup
of adapted images. However, this approach cannot solve problems that are related to different

distributions of label maps in the two domains. In particular, this refers to the situation in which the

4.5 Improving Semantic Consistency 79

domain gap is due to P (Y)S ̸= P (Y)T (cf. Section 2.6). Such a scenario can lead to a semantically

inconsistent appearance adaptation, in which structures that are more frequent in the target domain

are hallucinated and structures that are more frequent in the source domain are removed in the

adapted images (Cohen et al., 2018). It is pointed out that P (Y)S ̸= P (Y)T can either be due to

differences in the global label distributions or due to differences in the local distributions of label

maps of the two domains. In particular, the global label distribution is the distribution of labels at

pixel-level. If the global label distributions of two domains are different, it means that at least one

class appears more frequently in one of the domains. On the other side, the local distribution of

label maps refers to the arrangement of labels relative to each other in patches with a specific patch

size. If the local label map distributions are different, some structures appear more frequently in

either domain. Particularly relevant in adversarial training is the local label map distribution with

respect to the window size that corresponds to the receptive field of the discriminator. An example

for two regions with different local label map distributions is shown in Figure 4.4. Although the

global label distributions of both regions are almost identical, there are differences in the local label

map distributions; there are structures that appear only in one of the domains, as indicated by the

black squares in Figure 4.4, resulting in a differences in the local distributions of label maps. For

example, there are groups of very small trees in DS, a structure that does not appear in DT. On

the other hand, DT contains large areas of low vegetation, a pattern that hardly exists in DS. Note

that the area within a marker corresponds to 70 × 70 px at a resolution of 20 cm per pixel, which

is the receptive field of the discriminator used in this work.

L
ab

el
m
ap

fr
om

D
S

Im
ag

e
fr
om

D
S

L
ab

el
m
ap

fr
om

D
T

Im
ag

e
fr
o
m
D

T ■
S
ea
le
d
gr
ou

n
d

■
B
u
il
d
in
g

■
L
ow

V
eg
et
at
io
n

■
T
re
e

■
C
ar

Global
label distribution [%]

DS

DT

35 41 11 11 2

34 42 9 11 4

Figure 4.4: Example of a challenging scenario for appearance adaptation. The two domains have almost

identical global label distributions (cf. table to the right), but there are differences in the local

distribution of label maps. The black squares, also indicated by the black arrows, indicate

examples for structures in the label maps that appear only in one domain.

Such differences are problematic in adversarial training, because the distributions of the labels

directly affect the distribution of the features. When using an adversarial training scheme, the

80 4 Methodology

appearance adaptation network aims at producing images XST that have a distribution similar to

the images in the target domain, i.e. such that P (X)ST = P (X)T . However, this will result in

semantically inconsistent adaptations if P (Y)S ̸= P (Y)T .

This is explained on the basis of a toy example, illustrated in Figure 4.5. In the example, an

image XS is adapted to different target domains DT,1 - DT,4. It is assumed that all domains consist

of a single image, i.e. the ones shown in Figure 4.5. Thus, each image represents the corresponding

feature distribution P (X). Each image is associated with a label map Y that represents the global

label distribution and the local distribution in the label map. In the toy example, there is a

foreground class and a background class, which can be interpreted e.g. as trees in front of low

vegetation. The classes correspond to the colours dark grey and light grey in the label maps,

respectively. Furthermore, there are different kinds of trees, i.e. larger ones and groups of smaller

ones. Those two structures appear in different frequencies in the domains.

Y S XS

Y T

XT

XST

A

DT,1 DT,2 DT,3 DT,4

Receptive field of D:

D

Figure 4.5: Toy example to illustrate the effect of differences in the label distributions of source and tar-

get domain with respect to semantic consistency. Here, the task is to classify each pixel into

foreground objects, i.e. the blob-like structures, and background. An image XS is adapted to

multiple target domains DT,1 - DT,4. Each of them is associated with a target image XT and the

underlying label map Y T . Y S denotes the underlying label map of XS and XST is the output

to be expected for the appearance adaptation network A for the different target domains if the

differences in the label distributions are not considered. Colour-codes: foreground (dark-grey),

background (light-grey).

The third row in the table in Figure 4.5 illustrates the output to be expected of the appearance

adaptation network XST for the different target domains when applying the proposed joint training

scheme for appearance adaptation. In particular, the appearance adaptation network is trained to

align the distributions P (X)ST of adapted images XST and the distribution P (X)T of images

XT , which is the main goal of adversarial training, but also to produce adapted images which are

classified correctly by the classifier C which is adapted simultaneously. The dotted rectangle in

Figure 4.5 illustrates the receptive field of the discriminator.

4.5 Improving Semantic Consistency 81

In the first case (DT,1), the global and local label distributions of source and target domain are

identical. Recall that the local label distribution refers to the receptive field of the discriminator,

illustrated by the dotted rectangle in Figure 4.5. Here, a semantically consistent appearance adap-

tation is to be expected, as the distribution P (X)ST of the adapted image XST is equivalent to the

distribution P (X)T of the images from DT with respect to the receptive field of the discriminator.

In the second scenario, in which the image is adapted to DT,2, the global label distributions of

both domains are still identical, but now the local distributions in the label maps are different,

in particular, because in the target domain the structure of a large foreground object appears

only once, while at the same time there is another group of smaller structures. Performing the

appearance adaptation in a semantically consistent way (cf. XST when adapting to DT,1) would

result in P (X)ST ̸= P (X)T , i.e. the distributions of the features with respect to the receptive field

of D would be different. In this scenario A is likely to hallucinate the group of smaller objects

(cf. purple arrow in Figure 4.5) in order to deceive the discriminator. A similar behaviour is to

be expected when adapting to the domains DT,3 and DT,4, where some structures are under- or

overrepresented, respectively, in the target domain. This is likely to result in (partial) removal

of structures in XST (cf. red and blue arrows in Figure 4.5), because A tries to create an image

that follows the distribution of P (X)T while at the same time trying to predict an image that is

correctly classified by C.

It is noted that, in principle, the degree of the semantic consistency can in most cases be increased

by setting a relatively larger weight to the supervised loss term LSTsup in the joint training scheme.

However, by doing so, the appearance adaptation network is heavily regularised, which may lead

to adapted images that are semantically consistent but no longer give the impression of the images

in the target domain.

To conclude, without any countermeasures, adversarial appearance adaptation is likely to fail if

there are considerable differences in the local distributions of the label maps in both domains, and

the adapted images will no longer be semantically consistent with the original images. Training on

such images in combination with the original label maps from the source domain is expected to result

in a poor classification after adaptation, because the training samples are no longer representative

for the target domain. Based on this consideration, two methods are proposed in this thesis which

both aim to improve semantic consistency even if there are such differences between the domains.

The first method is based on reducing the variability in the probability maps predicted by D.
The second variant is based on training an auxiliary generator that predicts images that should

compensate for potential differences in the label distributions of the two domains.

4.5.1 Method 1: Reduction of Variability

The first method to improve the semantic consistency corresponds to a reduction of the variability

in the output of D. This is motivated by the following line of thought, supported by observations

in preliminary experiments. If the discriminator learns to distinguish real images from DT and

adapted source images based on features that are related to the label distributions, this will lead

to semantically inconsistent adaptations, but it will also lead to a high variability in the output of

D. For instance, if DT has a higher frequency of pixels corresponding to the class vegetation than

82 4 Methodology

DS, the discriminator will quickly learn to predict the probability for an image patch corresponding

to the receptive field of the discriminator to originate from DT based on the number of pixels that

are representative for vegetation. Consequently, D will predict a high probability for such patches

to come from DT. At the same time, for patches that are more difficult to differentiate, i.e. that

show a structure that appears in both domains, the predicted probabilities to originate from DT

might be close to 50%. Such a situation results in a high variance in the predicted probability

maps. Consequently, in order to increase semantic consistency, the variability in the output of D
has to be reduced.

To that end, it is proposed to constrain the standard deviation of the output of the discriminator.

In this way, D must also learn to differentiate domains in more difficult areas and thus to learn

non-trivial differences between the domains. In practice, large standard deviations of the values

of the discriminator output ΨT = D(XT) for the images from DT and ΨST = D(XST) for the

adapted source images are penalised. This results in the regularization loss

Lreg(ΘA,ΘD, T
S , UT) = Lreg,T (ΘD, U

T) + Lreg,ST (ΘA,ΘD, T
S), (4.11)

that consists of the two terms

Lreg,T (ΘD, U
T) =

√√√√ 1

(nB · p̃2)− 1

nB∑
b=1

p̃2∑
i=1

(ψT
b,i − ψ̄T)2, (4.12)

and

Lreg,ST (ΘA,ΘD, T
S) =

√√√√ 1

(nB · p̃2)− 1

nB∑
b=1

p̃2∑
i=1

(ψST
b,i − ψ̄ST)2, (4.13)

where ψ̄T denotes the average value in ΨT for the batch {XT
b }

nB
b=1 of images from DT and ψ̄ST

denotes the average value in ΨST for the batch of adapted images {XST
b }

nB
b=1. The remaining

symbols are as described in the context of Equation 4.7. This regularization loss is weighted by the

hyper-parameter ρ and added to the original discriminator loss from Equation 4.8, resulting in the

modified loss term for the discriminator:

LRD
advD(ΘA,ΘD, T

S , UT) = LadvD(ΘA,ΘD, T
S , UT) + ρ · Lreg(ΘA,ΘD, T

S , UT). (4.14)

It is noted that when using this method, the loss for the appearance adaptation network remains

unchanged, i.e. as in Equation 4.5.

4.5.2 Method 2: Auxiliary Generator

The second method to achieve semantically consistent appearance adaptation in a scenario in

which the domains have different local distributions of label maps corresponds to a modification

of the overall architecture of the proposed method. This approach is based on the following line of

thought. The problematic scenarios described above result from differences in the local distribution

of the underlying label maps of the target images XT and of the adapted source images XST , the

latter distribution being identical to the one for the original source images XS . As adversarial

training aligns the local distributions of XST and XT with respect to the receptive field of the

4.5 Improving Semantic Consistency 83

discriminator, this can result in semantically inconsistent adaptations. This could be prevented by

modifying the adversarial training scheme in the following way. Let us assume, that an auxiliary

image set UA = {XA
i } is available in which each auxiliary image XA

i has the appearance of images

from DT and follows a distribution P (X)A that fulfils the condition

β · P (X)A + (1− β) · P (X)ST = P (X)T . (4.15)

If such an image set UA is available, the local distribution P (X)A,ST of a mixed set UA,ST of images

that contains β · 100% auxiliary images from UA and (1− β) · 100% adapted source images XST ,

would be identical to P (X)T , i.e. P (X)A,ST = P (X)T .

The benefit of this formulation is that P (X)ST is no longer required to match P (X)T exactly,

but only the distribution P (X)A,ST of the mixed set UA,ST has to match P (X)T . This leaves more

freedom to the appearance adaptation network, which is assumed to result in a larger degree of

semantic consistency. Following this line of thought, the second method to achieve semantically

consistent appearance adaptations consists of a modified adversarial training scheme that does not

result in P (X)ST = P (X)T but instead in P (X)A,ST = P (X)T . In the following, the motivation

of this approach is underlined using a toy example in Figure 4.6 before further details about the

training scheme will be provided.

Y S XS

Y T

XT

XST

XA

A

DT,1 DT,2 DT,3 DT,4

Receptive field of D:

D

Figure 4.6: Toy example to illustrate how auxiliary images XA help the appearance adaptation to achieve

semantic consistency. An image XS is adapted to multiple target domains DT,1 - DT,4, each

associated with a target image XT and an underlying label map Y T . Y S denotes the underlying

label map of XS and XST is the output to be expected for the appearance adaptation network

A for the different target domains. Colour-codes as in the description of Figure 4.5.

Similarly to Figure 4.5, Figure 4.6 illustrates the appearance adaptation to be expected for an

image XS to different target domains DT,1 - DT,4, considering the auxiliary images XA. In this

84 4 Methodology

variant, the adversarial training does not aim at the equilibrium P (X)ST = P (X)T but instead

P (X)A,ST = P (X)T . In particular, the adapted images in the third row in Figure 4.5 illustrate

the expected output of the appearance adaptation network XST for the different target domains

and the last row illustrates the auxiliary images XA that are chosen such that Equation 4.15

is fulfilled. Note that in the example, there is one auxiliary image for each adapted image, i.e.

β = 0.5. When adapting to the first target domain, in which P (X)T = P (X)S , A can perform

the appearance adaptation in a semantically consistent way. The auxiliary image is expected to be

a random image that fulfils P (X)A = P (X)T . In the second and third case, i.e. when adapting

to DT,2 and DT,3, the label distribution in DT is different from the one in DS. This resulted

in semantically inconsistent adaptations when using the default adversarial training scheme (cf.

Figure 4.5). However, when considering the auxiliary images and the modified adversarial training

scheme,XST can be semantically consistent withXS , as Equation 4.15 is still fulfilled. In particular,

the local feature distribution in the mixed set UA,ST is equivalent to the one in XT . For example,

in DT,3 there are two large objects and one small object in one patch, which results in the same

local feature distribution than in UA,ST , in which four large objects and two small objects appear

in two patches.

Yet, this approach has some limitations, i.e. if the difference in the local distributions of the

label maps between the two domains is too large, the auxiliary images may not compensate for this

difference. For example, when adapting to DT,4, a non-consistent transformation of the structures

is to be expected (cf. red arrow in Figure 4.6), because the small objects do not appear in the

target domain.

In conclusion, auxiliary images can help to achieve semantically consistent appearance adaptation

in scenarios in which the regular adversarial training scheme would fail. In the following, the method

resulting from this consideration is explained. The general idea is to learn to generate images XA

jointly with performing the appearance adaptation and to use these images to improve the semantic

consistency of the adapted source images. This results in a modified architecture that is depicted

in Figure 4.7.

An auxiliary generator G is introduced. In each training iteration, G generates a batch of nG

images XA based on nG random noise vectors z. They should look like images from DT, so that G is

trained to maximise the probability predicted byD forXA to originate fromDT, i.e. P (y = LT |XA)

(cf. purple arrow in Figure 4.7). The main purpose for considering these images is that they

compensate for the differences in the label distributions between the domains. To that end the

adversarial training scheme is extended as described in detail in Section 4.5.2.2. Using the extended

adversarial training scheme, G and A are both trained to deceive the discriminator, i.e. to generate

images that look like coming from the target domain. Simultaneously, D is trained to correctly

predict whether an input image patch comes from the target domain or not. In the extended training

scheme, the input images for training the discriminator are either images from XT , adapted images

XST or auxiliary images XA. Image patches from XST and from XA are to be classified as not

coming from the target domain by the discriminator. As the adversarial training scheme will align

the distribution of images in DT and the distribution of the remaining images, it will eventually

reach an equilibrium in which Equation 4.15 is fulfilled.

4.5 Improving Semantic Consistency 85

XS

XT

XST

XA

A

Gz

C

D

Γ̂S

Γ̂ST Y SLSTsup

Lsup

LadvD,T

LadvD,A,LadvG

LadvD,ST ,LadvA

ΨT

ΨA

ΨST

shared

Figure 4.7: Proposed extension of the training scheme for joint appearance adaptation by an auxiliary gen-

erator G aiming to increase the semantic consistency of the adapted image XST with the image

XS ; the coloured arrows indicate the processing flow in the UDA phase and the solid black ar-

rows correspond to loss terms. The main parts remain unchanged (cf. Figure 4.2); the differences

are highlighted with purple background. In this variant the auxiliary generator G is introduced.

This network takes a batch of random vectors z and predicts one auxiliary image XA per vector.

The last layers of G are shared with the network A (cf. Section 4.5.2.1). In the extended variant,

D also predicts the origin of the auxiliary images, i.e. whether they come from DT or not. The

corresponding probability maps ΨA predicted by D for the XA are considered in the additional

loss terms LadvD,A and LadvG (cf. Section 4.5.2.2).

As a last remark, aiming to reach an equilibrium in which Equation 4.15 is fulfilled does not

guarantee the images XST to be semantically consistent with XS . In particular, the equilibrium

would also be fulfilled if the outputs of A and G were swapped. Considering the toy example

from Figure 4.6, this would mean that when swapping the images XST with the corresponding

auxiliary images XA, Equation 4.15 would still be fulfilled, but the adapted images would no

longer be semantically consistent. However, it has to be considered that the images XST are further

constrained by the supervised loss term LSTsup, which also aims at semantic consistency. On the other

hand, the auxiliary images are not further constrained but only affect the adversarial loss. Thus, it

is assumed that when using the extended adversarial training scheme, the appearance adaptation

network will converge to a state in which the images are adapted in a semantically consistent way,

while the auxiliary generator will be trained to predict images such that Equation 4.15 is fulfilled.

In Sections 4.5.2.1 and 4.5.2.2, the architecture of G and the modified loss formulations are

presented, respectively.

4.5.2.1 Architecture of G

The auxiliary generator G takes a random Gaussian noise vector z of length nz as input and predicts

an image patch XA with nC channels and a spatial size of p× p px, where p is the patch size that

86 4 Methodology

is used for training the remaining networks (cf. Section 4.1). Generating images at high resolution

is a rather difficult task and usually requires progressive learning, which means that training is

performed in multiple phases, where in each phase the resolution of the images is increased (Karras

et al., 2018). As such a strategy is rather slow and requires a unhandy training schedule it is not

used in this thesis. Instead, the presented approach exploits the fact that both networks A and

G should produce images that look like coming from DT, which is the reason why these networks

share the nSH last layers. In this work, nSH is empirically set to 17. Consequently, the auxiliary

generator consist of two parts. The first layers start from a 1 × 1 × nz random noise vector and

process this vector by several transposed convolutional layers until the spatial size is p/4. The

second part corresponds to the last nSH layers of A, the weights of which are shared between A
and G. Table 4.5 provides the full architecture of G.

Layer(s) Layer type h, w Depth Shared

1 Input layer 1 nz n
2 T-Conv, ReLU, BN p/32 256 n
3 Conv, ReLU, BN, DROP p/32 512 n
4 T-Conv, ReLU, BN p/16 256 n
5 Conv, ReLU, BN p/16 256 n
6 T-Conv, ReLU, BN p/8 256 n
7 Conv, ReLU, BN p/8 256 n
8 T-Conv, ReLU, BN p/4 256 n
9 Conv, ReLU, BN p/4 256 n
10-25 15× Residual block p/4 256 y
26 T-Conv, ReLU p/2 128 y
27 T-Conv p d y

Table 4.5: Architecture of the auxiliary generator G. T-Conv: transposed convolution. DROP: Dropout

layer with a dropout probability of 10%. For other abbreviations, cf. Table 4.1. The structure of

a residual block is given in Table 4.3. Shared: this column indicates whether the layer is shared

with appearance adaptation network A . The shared layers correspond to layers 3-20 in Table 4.2.

All convolutional layers in the architecture use 3 × 3 kernels and zero-padding by 1 px. All

transposed convolutional layers except for the first one in layer 2 use 4 × 4 kernels and perform

upsampling by a factor of 2. The first transposed convolutional layer is applied to the 1 × 1 × nz
random noise vector and predicts an activation map with the extent p/32× p/32× 256. Thus, the

kernel size is p/32 × p/32 and the upsampling factor is also p/32. The parameters of all layers of

the network are initialised randomly based on (He et al., 2015). This architecture was chosen based

on a limited number of preliminary experiments in which different variants were compared.

4.5.2.2 Modifications of Adversarial Loss Terms

The extension of the architecture with the auxiliary generator G results in a few minor modifications

of the loss terms. First, the joint loss of A and C (cf. Equation 4.5) is replaced by the joint loss

LA,C,G for A, C and G which us used to update the respective parameters:

LA,C,G(ΘA,C ,ΘG,ΘD, T
S) = LA,C(ΘA,C ,ΘD, T

S) + ωG · LadvG(ΘD,ΘG), (4.16)

4.6 Entropy-based Parameter Selection 87

where ΘG is the parameter set of G. Practically, the original loss LA,C (cf. Equation 4.5) is

extended by an additional loss term LadvG, weighted by ωG. This loss term aims at maximising the

probability predicted by D for the generated images XA to originate from DT. Thus, it is formulated

similar to the adversarial loss term LadvA for the appearance adaptation network (cf. Equation 4.7):

LadvG(ΘD,ΘG) = −
1

nG · p̃2
nG∑
b=1

p̃2∑
i=1

log(ψA
b,i), (4.17)

where ψA
b,i corresponds to the probability P (yb,W (i) = LT |XA

b) for the support window W (i) corre-

sponding to the i-th pixel in the probability map predicted by D for the b-th image in the batch of

nG auxiliary images {XA
b }

nG
b=1 to originate from DT. The remaining symbols are identical to those

described in the context of Equation 4.7. Note that the ratio nG/nB corresponds to the parameter

β in Equation 4.15. If the difference of the label distributions of both domains is higher, nG and,

thus, β has to be larger in order to compensate for such differences. Of course, the difference is

unknown in a practical application, thus, nG has to be tuned as a hyper-parameter of the method.

Furthermore, if nG is set to a value that is larger than required, the positive effects would remain,

but only the memory footprint would be increased, which is considered less critical.

The second loss modification in this extended method affects the discriminator loss LD from

Equation 4.8, which becomes the extended discriminator loss

LD+(ΘA,ΘD,ΘG, T
S , UT) = LadvD,T (ΘD, U

T) + LadvD,ST (ΘA,ΘD, T
S) + LadvD,A(ΘG,ΘD).

(4.18)

The original loss LD from Equation 4.8 is extended by a third term that considers the auxiliary

images XA. In order to correctly predict images XA produced by the auxiliary generator as not

originating from DT the loss is formulated as

LadvD,A(ΘG,ΘD) = −
1

nG · p̃2
nG∑
b=1

p̃2∑
i=1

log(1− ψA
b,i), (4.19)

with the symbols being identical to those introduced in the context of Equations 4.17 and 4.7.

The overall training scheme of appearance adaptation remains the same. In each training itera-

tion, first, the parameters of A, C and G are updated by minimising LA,C,G before the parameters

of D are updated by minimising LD+ in the second step.

4.6 Entropy-based Parameter Selection

Many UDA methods rely on iterative training procedures that are repeated for a fixed number

of iterations, with the parameter set after the very last iteration being used for inference (Tasar

et al., 2020b,a; Benjdira et al., 2019). For the reasons given in Section 3.5, a different strategy

is proposed in this thesis, namely to select the final parameter set according to an optimality

criterion derived from the data in DT. As there are no labelled data in DT, this criterion cannot be

based on the validation error in that domain. Instead, the average entropy of the predicted class

scores for images XT from DT is used as an approximate measure for the validation performance.

88 4 Methodology

The entropy of the class scores can be interpreted as a measure of uncertainty of the predictions

(Wittich, 2020; Pan et al., 2020). Based on this interpretation, good parameters can be expected to

lead to low uncertainty of the predictions and, thus, to low entropy. After each epoch of adaptation,

the classification network C is used to predict the probabilistic class scores γ̂T = (γ̂1, . . . , γ̂nL) for

each pixel of all nT images from UT . For the i-th pixel in image XT
j , the entropy Ej,i is computed

according to

Ej,i = −
nL∑
k=1

γ̂k · log(γ̂k), (4.20)

and the average entropy

Ēj =
1

npx

nT∑
j=1

hj ·wj∑
i=1

Ej,i (4.21)

is determined from all npx pixel-wise values, where

npx =

nT∑
j=1

hj · wj (4.22)

and hj , wj are height and width of image XT
j . Note that the height and width is not the same for

all images. The parameter set Θ̂
(jaa)
C having the lowest average entropy is selected after running

the adaptation for a nE epochs. To save computation time, the mean entropy is not computed

for the first nmin epochs, because A and D are not expected to deliver meaningful results in the

beginning of the adaptation phase (cf. lines 5 and 15-20 in Algorithm 1).

4.7 Adaptive Batch Normalization

The common procedure when using 2D batch normalisation layers is to track running averages of

the mean and standard deviation of the activations in each channel (cf. Section 2.3.3). The set of

all running averages ΘC,B approximates the domain statistics, i.e. the average values and standard

deviations of the activation values, when computed for a whole dataset (domain). In a domain

adaptation scenario, it may not be reasonable to use the statistics that were calculated based on

the images of the source domain, because the statistics of the target domain may be different.

In this thesis, it is proposed to address this issue by an optional adaptation step, which is to

apply ABN (cf. Section 2.6.1) after having adapted the classifier using the proposed method based

on appearance adaptation. The input of ABN consists of the images from DT and the classifier

C with the parameter set Θ̂
(jaa)
C = (Θ̂

(jaa)
C,S , Θ̂

(jaa)
C,B) resulting from the joint appearance adaptation.

Instead of using the running averages Θ̂
(jaa)
C,B for the inference, the running averages are updated

to approximate the statistics of the target domain. Note that the statistics are practically not

calculated exactly on the entire target domain dataset, as this would require too much memory.

Instead, an iterative approximation is used (Li et al., 2018). In particular, to approximate the

statistics from the target domain, nI,ABN mini-batches with a batch size of nB,ABN that contain

patches from target domain images are presented to the classification network. In each forward

pass, the running averages in the 2D batch normalisation layers in the network are updated as

described in Section 2.3.3. After having processed all mini-batches the updated parameters Θ̂
(abn)
C,B

are obtained. The final parameter set used for the inference is Θ̂
(abn)
C = (Θ̂

(jaa)
C,S , Θ̂

(abn)
C,B).

4.8 Resolution Adaptation 89

4.8 Resolution Adaptation

In adaptation scenarios related to RS applications it might happen that the ground sampling

distance (GSD) of the source domain (GSDS) is different from the one of the target domain

(GSDT). In such a case, objects appear at a different scale in both domains, which can lead to

differences in the local distribution of labels in the label maps in the two domains. As discussed in

Section 4.5, this poses additional challenges for the appearance adaptation. Furthermore, having

different resolutions affects the appearance of objects in the two domains. This can strongly increase

the domain gap, which may no longer be bridged with methods for UDA.

Obviously, the larger the difference in the GSD of both domains is, the larger the domain gap

becomes and, thus, the more difficult it becomes to achieve a successful adaptation of a classifier.

This was empirically shown in literature. For example, Liu et al. (2020) and Benjdira et al. (2019)

try to adapt a classifier from a source domain with a GSD of 9 cm to a target domain with 5 cm and

vice versa using methods for deep UDA. In both scenarios, the initial target domain performance in

of a classifier that was trained in DS is very poor. It was shown that even after domain adaptation

the performance in the target domain remained at a rather low level.

In this thesis, a possible difference of the GSD in the source domain and the one in the target

domain is not addressed by deep UDA. Instead, to overcome this problem, the data of the source

domain are pre-scaled using the information about the GSD of both domains, which is usually

available in RS applications if the images are georectified.

Practically, if GSDT ̸= GSDS , i.e. if the data in DS have a different geometrical resolution

than the data in DT, the data from DS are either downsampled or upsampled to GSDT . This

includes resampling of both, the image data (using bilinear interpolation) and the reference (using

nearest neighbour interpolation). Note that if the image data are downsampled to GSDT , Gaussian

smoothing is applied first to avoid aliasing effects. Then, source training and UDA are performed

using the resampled data from DS and the original data from DT.

91

5 Experimental Setup

The proposed method for UDA is evaluated based on two applications using multiple datasets.

These datasets are introduced in Section 5.1. Section 5.2 provides the evaluation protocol and

quality metrics which are used to assess the performance of the classifiers after source training and

after domain adaptation. Furthermore, an evaluation method for assessing semantic similarity is

proposed. This is followed by an overview of the experiments in Section 5.3. Section 5.4 describes

the hyper-parameters used in the experiments and describes how methods from literature are

adapted to allow a comparison to the state of the art.

5.1 Datasets

The main goal of the experiments is to assess the performance of the proposed method for UDA for

the pixel-wise classification of remotely sensed imagery. To this end, two groups of datasets are used

that address two different applications. The first group of datasets, introduced in Section 5.1.1,

addresses the application of land-cover classification based on airborne imagery and co-registered,

rasterised height information. Here, each pixel in the images is to be classified according to typical

land-cover classes such as vegetation, building or road. The datasets in the second group, introduced

in Section 5.1.2, address the application of deforestation detection in the Brazilian Amazon region

using satellite imagery. Here, the goal is to detect recent deforestation at pixel-level based on a

pair of satellite images showing the same region but acquired at different dates. This application is

related to the work by the National Institute for Space Research (INPE) in Brazil, which provides

manually generated references for new deforestation areas on a yearly basis (Assis et al., 2019).

5.1.1 Data for Land-cover Classification using Aerial Imagery

For the evaluation of the proposed method with respect to the first application, seven datasets are

used, each showing a different German city and each being treated as a single domain. The first

group of datasets consists of orthorectified multi-spectral images (MSI), height data and label maps

for the cities of Schleswig (S), Hameln (Hm), Buxtehude (B), Hannover (H) and Nienburg (N) with

a GSD of 20 cm (Wittich, 2020). All of these datasets include RGBI images (red, green, blue, near

infrared) and a normalised digital surface model (nDSM) which contains the height above ground

for each pixel. The height information comes from image based 3D reconstruction. It is noted

that the data were pre-processed by the providers of the dataset and there are some differences

between the datasets related to the preprocessing, i.e. to the georectification and the generation of

the nDSMs. In the experiments, the blue channel is not used because it is not available for another

92 5 Experimental Setup

dataset (Vaihingen) introduced below. A reference was generated at pixel level by manual labelling

according to the class structure shown in Table 5.1.

Further, the Potsdam (P) and Vaihingen (V) datasets of the ISPRS labelling benchmark are

used (Wegner et al., 2017). They consist of orthorectified MSI, nDSMs and label maps with 6

classes as shown in Table 5.1. P consists of RGBI images, captured with a GSD of 5 cm, whereas

the imagery from V has a GSD of 9 cm and does not include a blue channel. Both datasets were

split into training and testing areas by the benchmark organizers. In some experiments, resampled

versions of the datasets P and V are used, which is indicated by a subscript showing the GSD,

e.g. V20 refers to data from V resampled to a GSD of 20 cm. To that end, bilinear interpolation is

used for resampling the image and height data, and nearest neighbour interpolation is used for the

label maps. In order to align the class structure of P and V to the one of the other cities, the class

Clutter is ignored, as suggested in (Liu et al., 2020). The corresponding regions in the reference do

not contribute to the average loss during training, and at test time they are not considered in the

evaluation procedure. Whenever Clutter is not ignored, the datasets for Potsdam and Vaihingen

are denoted by P ′ and V ′, respectively.

City P ′
5 V ′

9 P20 V20 S Hm B H N

Capturing season A S A S S A S S S

Size [M px]

Training 648 56.9 40.5 11.5 13 18 55.6 55.6 55.6

Validation 216 21.2 13.5 4.3 4 7 11.1 11.1 11.1

Testing 504 90.2 31.5 18.2 9 12 33.3 33.3 33.3

All 1368 168.3 85.5 34 26 37 100 100 100

Class distribution [%]

Sealed ground (SG) 29.6 27.7 31.1 27.9 14.1 18.8 22.1 33.6 22.8

Building (BU) 25.7 26.0 27.0 26.2 14.7 19.1 19.7 36.7 18.4

Low vegetation (LV) 22.6 21.6 23.8 21.8 38.9 36.2 36.9 7.5 40.3

High vegetation (HV) 15.5 22.7 16.2 22.8 31.5 24.5 20.3 20.6 17.8

Vehicle (VH) 1.8 1.3 1.9 1.3 0.8 1.3 1.0 1.6 0.7

Clutter (CL) 4.8 0.7 - - - - - - -

Table 5.1: Dataset overview; capturing season is either autumn (A) or summer (S). Class distribution:

percentage of pixels assigned to the corresponding class in the corresponding city.

Figure 5.1 gives an overview of the data in all domains and Table 5.1 shows the global label

distributions and the overall size of each dataset, along with the capturing season as another possible

reason for a domain gap. In all datasets, the class vehicle is strongly under-represented. Also,

the class distributions are very different between the datasets, which is problematic for appearance

adaptation, as discussed in Section 4.5. For example, S has a much larger amount of high vegetation

(31.5%) than P (15.5%), and H has a much smaller amount of Low Vegetation (7.5%) than B

(36.9%). The domain pairs (P20, V20) and (B,N) are rather similar with respect to the marginal

label distribution. Besides the differences in the global label distributions of the datasets, there are

also differences in the local distribution of labels in the label maps (cf. Section 4.5). In particular,

5.1 Datasets 93

several structures appear with different frequencies. An obvious example is the structure of a

larger area (e.g. a square of size 50× 50m2) that shows only low vegetation. This pattern appears

frequently in Nienburg, Buxtehude, Schleswig and Hameln, but barely in Potsdam and never in

Vaihingen or Hannover, as those images show more densely built-up areas. Such differences are

very challenging when applying image adaptation as discussed in Section 4.5.

Figure 5.1: Dataset overview; False-colour images (infra red, red, green) for the 7 datasets for land cover

classification. Areas with cyan outline are used for training, yellow corresponds to the validation

set. The remaining areas are used for testing. The dotted lines show the borders of the individual

images.

94 5 Experimental Setup

All datasets are split into subsets for training, validation and testing. Note that the test sets

from P and V correspond to those suggested by the organisers of the ISPRS labelling benchmark.

Figure 5.1 illustrates the split of the data into the subsets for training, validation and testing. In

the figure, it can also be seen that there are some obvious systematic differences in the image data

from different domains, such as different lighting conditions that affect the contrast between areas

in the sun and those in the shade. Also, the characteristics regarding colour and brightness are

different; for example the images from Potsdam are darker and the images in Buxtehude appear

more bluish compared to the other domains. Such differences are to be expected because the

appearance of colours is affected e.g. by the weather conditions and the sensor configuration.

To slightly reduce these differences, the image data of each dataset is pre-processed so that after

normalisation each channel has a mean of zero and a standard deviation of one. In case of the

nDSMs, the height values are also shifted to have a mean of zero, but they were divided by a

constant value of 30m (instead of the standard deviation) to preserve the relative metric height

information.

Figure 5.2 shows the MSI, the nDSM and the reference for exemplary patches from the different

domains. It can be seen that there are further differences in the domains with respect to the

height information. In particular, the nDSM from Hannover has a different appearance compared

to the other domains. It appears less smooth and height changes are badly aligned with the object

boundaries. The height maps from Schleswig and Hameln appear less sharp than those from the

other domains. Note that the height information was provided by the respective authors of the

datasets and was only available in the form of the rasterized maps as exemplarily presented in

Figure 5.2.

City P20 V20 S Hm B H N

MSI

nDSM

Ref.

Figure 5.2: Exemplary data samples from the aerial image classification datasets. The side length of the

patches is 256× 256 px and the GSD is 20 cm. MSI: False-colour multi-spectral image (infrared,

red, green). nDSM: rasterized normalised digital surface model. Brighter pixels correspond to

larger heights. Ref.: Reference label map. Colour-codes: SG (grey), BU (red), HV (green), LV

(yellow), VH (blue), CL (black) with class abbreviations according to Table 5.1.

5.1 Datasets 95

5.1.2 Data for Bi-temporal Deforestation Detection using Satellite Imagery

The presented method for UDA is further evaluated for the application of deforestation detection.

This application is driven by the work of INPE, which performs a yearly manual investigation of

Brazil to detect legal and illegal deforestation. The institute provides freely available reference

data via the TerraBrasilis1 platform (Assis et al., 2019). INPE performs a yearly manual labelling

of newly deforested areas based on different databases, but mainly based on imagery coming from

the Landsat program of NASA. Multiple images from different acquisition dates from late May

to September are considered in the manual analysis depending on the cloud coverage and data

availability (Soto et al., 2021). Areas which were labelled as deforested in the past are not considered

in the analysis. The yearly information about new deforestation areas are provided in the form of

polygons that describe the outline of new deforestation areas.

This application corresponds to the following classification scenario. The input to the classifier

consists of a pair of two satellite images that show the same region, but that were taken at different

times, and a binary map that contains the areas that were recognised as deforested in the past.

The classifier’s task is to predict for each pixel that has not been labelled as deforested in the past

whether it shows deforestation. In particular, the class deforestation means that there is forest in

the earlier image and no forest in the later image.

In (Soto et al., 2021; Soto et al., 2020), three datasets were proposed for evaluating methods

for UDA for this application. To enable a comparison of the proposed method to existing ones,

the same datasets are also used in this thesis to evaluate the proposed method. The datasets

correspond to three different areas, two of which are located in the Amazon biome and one is

located in the Cerrado biome in Brazil. The first region (MA) is located in the the state Maranhão

in the north-west of the Amazon biome. The second region (PA) lies in the state Pará in the north

of the Cerrado biome, and the third region (RO) is in the state of Rondônia in the south of the

Amazon biome. Table 5.2 gives the location of the tree test sites.

Test site North-West South-East

Maranhão (MA) S4◦44’52” W44◦1’23” S5◦12’48” W43◦37’58”

Pará (PA) S3◦8’21” W51◦16’12” S3◦26’16” W50◦34’4”

Rondônia (RO) S9◦36’51” W64◦20’51” S10◦18’35” W62◦56’41”

Table 5.2: Geographical coordinates (latitude and longitude) of the North-West and South-East corners of

the three datasets.

For each region, the dataset consists of two Landsat 8 images (Xe, Xl), both of which show the

whole area of the respective region, but were acquired at different dates. Furthermore, each dataset

contains the past deforestation maps and the reference for the deforestation that happened between

the two dates. The latter two are derived from the manual annotations provided by INPE. The

acquisition dates of the two images which define the deforestation period are selected according to

the reference, i.e. the images, that were used in the manual labelling process are considered. The

1URL: http://terrabrasilis.dpi.inpe.br (last accessed on 23. November 2022)

96 5 Experimental Setup

image acquisition dates are provided in Table 5.3. Each region is treated as a different domain,

assuming that the regional differences and differences in the acquisition dates affect the appearance

of vegetated and non-vegetated areas in the images (Soto et al., 2021).

Test site Acq. date of Xe Acq. date of Xl

Maranhão (MA) 18/08/2017 21/08/2018

Pará (PA) 02/08/2016 20/07/2017

Rondônia (RO) 18/07/2016 21/07/2017

Table 5.3: Acquisition dates of the images for all test sites.

Figure 5.3 provides examples for the image pairs and reference labels coming from the three test

sites.

Dataset MA PA RO

Earlier image Xe

Later image Xl

Reference labels

Figure 5.3: Exemplary samples from datasets for deforestation detection; the side length of the patches is

224 px (6720m). Note that only the red, green and blue channels are visualised. Colour-codes

of the reference: Unknown (grey), deforestation (orange), no deforestation (green)

For the automated classification, the first 7 multi-spectral bands of the georeferenced Landsat

8 satellite images are used, having a GSD of 30m. All images were normalised such that after

normalisation each band has a mean value of zero and a standard deviation of one calculated over

the respective image.

In pre-processing, the reference data for yearly deforestation increments and past deforestation

were rasterised with a resolution of 30m, resulting in maps that are aligned with with the images

of the test sites. Furthermore, following (Soto et al., 2021), a padded version of the reference was

created, to be used for supervised training, validation and testing. Here, pixels that have a Eu-

clidean distance of less than 2 px to the closest boundary of an area that is labelled as deforestation

in the reference are marked as unknown.

5.1 Datasets 97

The data from each domain is tiled and split into three subsets for training, validation and testing

according to the scheme that was used in (Soto et al., 2021). An overview of the three test sites

and of the split into the subsets is provided in Figure 5.4.

Rondônia

Pará

Maranhão

Brazil

Cerrado

Amazon

Figure 5.4: Test sites for deforestation detection; the figure shows the locations of the three test sites and an

overview of the rasterized reference data. Colour code for the reference: no deforestation (green),

past deforestation (grey), deforestation(orange). The broken lines show outlines of the tiles that

were created to split the images into the subsets for training, validation and testing. Colour-code

for tiling: Training (cyan), validation (yellow), testing (no colour).

The original version of the dataset for the area of Rondônia used in (Soto et al., 2021) has badly

aligned reference data due to a mistake in the rasterisation process. To enable a fair comparison

of the two methods, this version of the dataset, referred to as RO0 is used in the corresponding

98 5 Experimental Setup

experiments. However, in the remaining experiments, a corrected version, referred to as RO is

used. Table 5.4 provides information about the size of each dataset and about the corresponding

class distribution.

Dataset MA PA RO0 RO

Size [M px]

Training 0.7 0.8 2.5 2.5

Validation 0.3 0.4 0.7 0.7

Testing 1.5 1.7 9.9 9.9

All 2.5 2.9 13.1 13.1

Class distribution [%]

Deforestation (DF) 1.4 1.3 1.1 1.1

No deforestation (ND) 55.4 64.2 26.1 28.3

Unknown (UK) 43.2 34.6 72.8 70.6

Table 5.4: Dataset overview; Class distribution: percentage of pixels assigned to the corresponding class in

the corresponding region in the padded reference.

5.2 Evaluation and Quality Metrics

To assess the performance of a classifier on a set of images, the predictions are compared to the

reference labels. During inference, the predictions for images that are larger than the patch size are

obtained in a sliding-window based approach. This means that the images are processed by slicing

them into horizontally and vertically overlapping patches of size p× p and processing the patches

by the network. It is pointed out that the patch size p used in the inference is the same that is

used during training. Using the sliding window based approach, one obtains redundant predictions

for the pixels in the overlapping areas. The probabilistic class scores predicted for different patches

that correspond to the same pixels are averaged before the class with the largest probability is

identified and returned as final class prediction. In all experiments, the overlap of the patches

during evaluation is half of the patch size.

Based on the predicted label maps, a confusion matrix is determined by comparing each pixel

in the predictions to the each pixel in the reference label maps. From the confusion matrix, the

number of pixels which correspond to true positive (TPk), false positive (FPk) and false negative

(FNk) predictions are derived for each class Lk ∈ L .

For each class, the F1 score F1,k (cf. Equation 4.2) is computed. As global metrics, the overall

accuracy OA, i.e. the percentage of correct class assignments, the mean F1-score F̄1 is reported,

where the mean is taken over all classes. Some experiments are repeated several times to assess

the influence of random components such as the parameter initialisation on the result. In general,

only the average performance metric and the corresponding standard deviation are reported.

In order to quantitatively assess the semantic consistency a strategy is proposed that is motivated

by the following line of thought. A pair consisting of an input image XS and the corresponding

5.3 Goals and Structure of Experiments 99

adapted image XST is considered to be semantically consistent if the original label map Y S still

matches the scene depicted in XST in which the objects imitate the style of the target domain.

Thus, when XST is presented to a perfect classifier for DT, the predicted label map Ŷ ST should

correspond to Y S . A perfect classifier is not available, but a classifier CT trained in DT is assumed

to be sufficient in order to assess the consistency. In particular, it is proposed to quantitatively

assess the semantic consistency by the agreement of the predictions made by CT for adapted images,

measured using the quality metrics introduced above.

5.3 Goals and Structure of Experiments

To investigate different aspects of the proposed method several experiments are conducted, grouped

into five experiment sets (E1 - E5). The first four sets consider the application of land cover

classification and the last one evaluates the proposed approach for deforestation detection. In the

following paragraphs, an overview of the experiments is provided. Further details are given in the

subsequent sections.

E1) Source Training and Näıve Transfer: In the first experiment, the source training is

performed for each domain in two settings optimised either for intra-domain (ID) or for cross-

domain (CD) evaluation, respectively. In the ID scenario, classifiers are trained in a supervised

fashion on each domain and evaluated on the same domain. The performance of these classifiers

serves as a reference to assess any approach for UDA. In particular, it is assumed that supervised

training always outperforms UDA, which is the reason why the respective performance is considered

to be an upper bound for the performance after UDA. In the CD scenario, classifiers are trained

on each (source) domain and evaluated on every other (target) domain without adaptation. This

approach is also referred to as näıve transfer. The performance of näıve transfer serves as a sort

of lower bound to assess the performance of any approach for UDA. In particular, if in later

experiments, the performance after UDA is better than the performance of näıve transfer, this will

be considered to be a positive transfer, otherwise it will be considered a negative transfer.

E2) Proposed Method for UDA: Next, different variants of the proposed method for UDA

are evaluated using the domains from land cover classification to construct multiple scenarios for

UDA. This experiment should answer the first scientific question (cf. Section 1.2):

Do the different variants of the proposed method for UDA achieve a stable positive transfer when

adapting between different domains? By how much can the performance gap be reduced and where

are the limitations?

Furthermore, the proposed methods for improved semantic consistency are evaluated. This com-

parison aims at answering the second scientific question:

Is the joint training scheme of the classifier and the appearance adaptation network sufficient

to achieve semantically consistent adaptations? Do the proposed methods for improving semantic

100 5 Experimental Setup

consistency actually result in a higher semantic consistency and if so, does this also lead to a higher

classification performance after UDA?

Lastly, the combination of the proposed strategy for UDA and adaptive batch normalisation is

evaluated to answer the third scientific question:

Can the performance of UDA be improved further by combining the proposed method for UDA

based on appearance adaptation with adaptive batch normalisation?

Based on the results of this set of experiments the best performing variants are selected and only

those are used in the remaining experiments.

E3) Evaluation of Parameter Selection: In this set of experiments, the parameter selection

criterion is evaluated for the application of land cover classification by comparing it to the näıve

strategy of performing the adaptation for a fixed number of epochs. This aims at answering the

fourth scientific question (cf. Section 1.2):

Does the proposed parameter selection method based on the entropy in the target domain lead to

better results compared to running the UDA process for a fixed number of epochs?

E4) Comparison to other Strategies and Methods: In the fourth set of experiments, the

best performing variants identified in the experiment set E2 are evaluated by comparing them to

other adaptation strategies and existing methods from literature. First, the architecture and the

training scheme are changed to follow different adaptation strategies, one being instance transfer

according to (Vu et al., 2019) and the other being adversarial representation transfer according to

(Tsai et al., 2018). The best performing variants resulting from experiment set E2 are compared

against these strategies. Second, the proposed variants are compared against three methods from

literature which were evaluated on public datasets for aerial image classification, which allows

for a direct comparison of the final performance by applying the method to the same adaptation

scenarios.

E5) Evaluation of UDA for Bi-temporal Deforestation Detection: In the last set of

experiments, the method is evaluated on the task of bi-temporal deforestation detection using

satellite imagery. This experiment allows to assess the transferability of the proposed method to

other applications. Furthermore, the method will be compared to a method for UDA from literature

that was evaluated for deforestation detection using the same datasets.

Consequently, the goal of the experiment sets E4 and E5 is to answer the fifth scientific question

posed in Section 1.2:

Does a variant of the proposed method outperform approaches from the literature for UDA when

evaluated on the applications of land cover classification and bi-temporal deforestation detection?

5.3 Goals and Structure of Experiments 101

5.3.1 Experiment Set E1: Source Training and Näıve Transfer

In the first set of experiments, no UDA is used, but only supervised training in different variants is

performed. This type of training in a single domain is referred to as source training. In particular,

classifiers are (source) trained on the domains P20, V20, B,H,N . The domains S and Hm are not

used for evaluation, because they are used for tuning the hyper-parameters (cf. Section 5.4). Two

variants of source training (ST) are considered.

In the first variant, classifiers are trained on the training set of one domain and the validation

set of the same domain is used for early stopping (cf. Section 5.4.1). The resulting classifiers

are evaluated on the test set of the respective domain, resulting in the so called intra-domain

performance. The intra-domain performance in a domain is considered to be an upper bound for

the performance of a classifier that was trained in another domain and adapted to this domain

using UDA. This variant of ST is referred to as ST for intra-domain evaluation.

In the second variant, classifiers are trained on the union of training set and test set in each

(source) domain, again using the respective validation set for early stopping. However, the classifiers

resulting from this setting are not evaluated in the domain they were trained on but instead on

the test set of all other (target) domains. The reason for using the joint set in DS for training

is that these classifiers should maximise the performance in the respective target domains and it

is assumed that using more training data could help in this regard, even more so because some

datasets are rather small. This variant of ST is referred to as ST for cross-domain evaluation.

The strategy of training a classifier in DS and apply it to DT without adaptation is referred

to as näıve transfer (NT) and the respective performance of the classifier in DT is called näıve

cross-domain performance. The näıve cross-domain performance for a specific pair of DS and DT

serves as a lower limit when assessing the performance of UDA in that scenario. In particular, if

the performance of a classifier after UDA is worse than the näıve cross-domain performance, this

will be considered a negative transfer, otherwise it will be considered a positive transfer. Besides

assessing the näıve cross-domain performance, the parameters of the classification network resulting

from the cross-domain training scenario are also used for initialisation of C in the UDA.

All classifiers are trained five times using a different random initialisation of the weights and a

different random sampling of the training batches to assess the influence of these random compo-

nents on the results. Note that the encoder of the segmentation network is always initialised by

the weights after pre-training on the ImageNet dataset (cf. Section 4.3.1).

5.3.2 Experiment Set E2: Proposed Method for UDA

In the second set of experiments, the classifiers that were trained in the source domain for cross-

domain evaluation in experiment set E1 are adapted to the other domains using several variants of

the proposed method for UDA. Again, the domains S and Hm are not used for evaluation in this

experiment because they were involved in the hyper-parameter tuning process (cf. Section 5.4.2).

In the adaptation process, the full datasets are used for DS and DT, but the resulting classifiers

are evaluated only on the test set of DT in order to compare them to the results from the first

experiment set.

102 5 Experimental Setup

In the first variant, referred to as VSEP , the loss term LSTsup is not used to train the appearance

adaptation network A. Consequently, A is only trained by minimising the adversarial loss LadvA.
Furthermore, none of the methods aiming at an improved semantic consistency are applied. This

variant is used as a baseline to investigate the benefits of the joint training scheme which is crucial

to use LSTsup for training A.

The second variant, referred to as VBSLN , uses the proposed joint loss for A and C. Like in the

first variant, none of the methods aiming at an improved semantic consistency are applied. Thus,

the difference to VSEP is that A is also trained to minimise LSTsup. By comparing the performance of

the classifiers adapted using this variant to the ones adapted using variant VSEP the benefit of the

joint training scheme can be assessed. Further, this variant serves as a baseline for the proposed

modifications aiming at an improved semantic consistency.

In the next two variants, the proposed modifications for improved semantic consistency are

applied. VRD denotes the method in which the variability in the output of D is regularised (cf. Sec-

tion 4.5.1) and VAG corresponds to the variant in which the auxiliary generator G is used (cf. Sec-

tion 4.5.2).

Lastly, the combinations of the variants VRD and VAG with a strategy for representation transfer,

adaptive batch normalisation (ABN) (Li et al., 2018), are evaluated. These variants are denoted

by VRD,ABN and VAG,ABN , respectively.

In this experiment set, first a qualitative and quantitative evaluation of the appearance adaptation

is presented before the evaluation of the performance after using the different variants of the

proposed method for UDA is done. To assess the semantic consistency quantitatively, the images

from the validation set of the respective source domains are adapted to the target domain using

A. Then, the adapted images are classified using the classifier that was trained in DT using the

variant of source training for cross-domain evaluation. The resulting predictions are compared

against the reference, assuming that a semantically consistent appearance adaptation leads to a

proper classification (cf. Section 5.2). Afterwards, the performance of the adapted classifiers on the

test set of the target domain is evaluated.

Like in the previous set of experiments, all adaptation scenarios are repeated five times using the

parameter sets of the classifiers after source-training for cross-domain evaluation from experiment

set E1 as initialisation. Based on the results of this experiment set, final variants will be suggested

and only those variants will be used in the remaining experiments.

5.3.3 Experiment Set E3: Evaluation of Parameter Selection

This set of experiments focusses on an evaluation of the suggested parameter selection method. In

particular, the experiments should help to evaluate whether this method leads to a superior perfor-

mance compared to the näıve approach of performing the UDA for a fixed number of iterations. To

that end, the best variant of the method resulting from the experiment E2 that does not use ABN

is used to adapt classifiers that were trained on P20, V20, B,H and N , serving as source domains,

to all other domains using a fixed number of epochs. After each training epoch, the cross-domain

5.3 Goals and Structure of Experiments 103

performance is evaluated and compared to the cross-domain performance which is achieved using

the parameter selection approach proposed in this thesis. Such a comparison will reveal if the

parameter selection approach results in a better performance after UDA compared to using a fixed

number of epochs. Furthermore, the impact of the number of epochs itself on the performance after

UDA can be assessed.

5.3.4 Experiment Set E4: Comparison to other Strategies and Methods

In this set of experiments, the method is compared to several UDA strategies (E4.1) and methods

(E4.2) from literature.

5.3.4.1 Experiment Set E4.1: Comparison to other Strategies

In a first set of experiments, the best performing variants of the method selected in experiment

set E2 are compared to three different strategies for UDA. To assess the influence of the main

adaptation strategy, other aspects such as the architecture for the classification network, the loss

function for the supervised loss term and the parameter selection based on the entropy in DT are

not modified. The first two strategies to compare to are adapted from methods from literature,

one proposing variants of instance transfer (Vu et al., 2019) and the other one proposing variants

of adversarial representation transfer (Tsai et al., 2018). These two methods were selected because

they are considered to be rather representative approaches for the respective strategy. The third

strategy against which the method proposed in this thesis is compared to corresponds to applying

ABN to the classifiers after source training. Details about the three strategies are presented in the

next paragraphs.

I) Instance Transfer: Vu et al. (2019) propose a method based on instance transfer. They

combine implicit instance transfer by direct entropy minimisation (EM) for images from DT and

indirect EM via adversarial training, in which a discriminator network is trained to discriminate

entropy maps into those coming from from DS from those from DT. The authors propose three

variants. The first one uses only direct EM, the second one uses indirect EM and the third one

uses a combination of direct and indirect EM. The three variants are adapted to the proposed

architecture by replacing the loss terms accordingly while keeping the remaining aspects unchanged

to enable a comparison of the main strategy for UDA. In particular, the pre-training scheme, the

architecture of the classification network and the parameter selection criterion correspond to the

method proposed in this thesis. Details about how the strategy is adapted are given in Section 5.4.3.

II) Representation Transfer: A method based on representation transfer is presented in (Tsai

et al., 2018). The authors apply the basic concept of adversarial representation transfer, in which

a discriminator network is trained to distinguish latent representations coming from DS and those

from DT. In order to match the representations for samples from both domains, the classifier is

trained to deceive the discriminator by producing representations for target domain images that

look like coming from DS. Again, the pre-training scheme, the architecture of the classification

104 5 Experimental Setup

network and the parameter selection criterion correspond to the ones of the method proposed in

this thesis, but only the loss used during domain adaptation is changed to match (Tsai et al., 2018).

Details about how the strategy is adapted are given in Section 5.4.3.

III) Adaptive Batch Normalisation: This strategy corresponds to the application of adaptive

batch normalisation (Li et al., 2018) to the classifiers obtained by source training for cross-domain

evaluation. This method was described in Section 4.7.

5.3.4.2 Experiment set E4.2: Comparison to other Methods

For a comparison of the proposed method to those from literature, three methods that address the

application of land cover classification are selected that were evaluated on the basis of the data of

the ISPRS Semantic Labelling challenge, i.e., P ′
5 and V ′

9 , using P
′
5 as DS and V ′

9 as DT. The best

performing variants of the method selected in experiment set E2 are compared quantitatively by

applying them to the same adaptation scenarios and comparing the resulting quality metrics. The

specific settings and evaluation protocols are described in the following two paragraphs.

I) (Benjdira et al., 2019): This method is based on source-to-target appearance adaptation

using CycleGAN and was evaluated by adapting from P ′
5 to V ′

9 . Benjdira et al. (2019) use the RGB

data in P ′
5 and IRG in V ′

9 . Note that according to the interpretation of the criterion for homogenous

UDA in Section 4.1 this setting is considered to correspond to heterogeneous UDA. To apply the

proposed method to this adaptation scenario, the RGB data from Potsdam are downsampled to P ′
9

to be used as DS , and V ′
9 is used as DT (cf. Section 4.8).

II) (Ji et al., 2020): This method uses a hybrid approach for UDA and was also evaluated by

adapting from P ′
5 to V ′

9 , but the authors use IRG data in both domains. Ji et al. (2020) resample

the data from P ′
5 to P ′

10 before adapting to V ′
9 , which is similar to the proposed strategy for dealing

with different GSDs.

III) (Zhao et al., 2023): Similar to (Benjdira et al., 2019), this method also uses source-to-

target appearance adaptation using CycleGAN. However, Zhao et al. (2023) extend the training

scheme of CycleGAN by an auxiliary task, which is to predict the height maps during UDA,

aiming at improving the semantic consistency. Similarly to the strategy for dealing with different

GSDs proposed in this thesis, they perform an resampling of the data from DS to the GSD from

DT. However, they do not resample the input images to the appearance adaptation network, but

instead the adapted images. The method is evaluated in the same adaptation setting that was used

in (Ji et al., 2020), i.e. by adapting from P ′
5 to V ′

9 , using IRG data in both domains.

5.4 Training Details and Hyper-parameters 105

5.3.5 Experiment set E5: Evaluation of UDA for Bi-temporal Deforestation

Detection

In the last set of experiments, the best performing variants from experiment E2 are evaluated

on adaptation scenarios for the task of bi-temporal deforestation detection. Note that the hyper-

parameters of the method are slightly changed (cf. Section 5.4).

In the first part, the datasets PA, MA and RO are used. For each of the domains PA, MA

and RO, source-training is performed by training on the corresponding training subset and using

the corresponding validation set for early stopping and parameter selection (cf. Section 5.4.1). The

classifiers are evaluated on the test set of the respective domains they were trained on, but also on

the test sets of the respective other domains. Note that in this experiment set no source training

optimised for cross-domain adaptation is performed, i.e. no classifiers that were trained on the

union of the subset for training and validation are evaluated. Each experiment is repeated five

times to asses the influence of random factors such as the random initialisation of the parameters

on the performance on the classifier.

Next, the proposed method for UDA using the best performing variants resulting from the exper-

iment set E2 are used to adapt the classifiers to the respective other domains. The performance on

the target domains after UDA is compared to the performance in the intra-domain and cross-domain

settings to assess the performance of the proposed method for the application of deforestation de-

tection.

In the second part of this experiment set, the variant of the method that performs best in this

application is compared to the one proposed in (Soto et al., 2021). To this end, the datasets PA,

MA and RO0 are considered. The results of source-training and UDA are presented and compared

to those reported in (Soto et al., 2021).

5.4 Training Details and Hyper-parameters

In this section, the hyper-parameters of the method and further training details are described.

The hyper-parameters related to the source training are discussed in Section 5.4.1 and those of the

domain adaptation in Section 5.4.2. In Section 5.4.3, details about the implementation of instance

transfer and representation transfer against which the proposed method is compared to in the

experiment set E4 are provided.

5.4.1 Source Training

Most of the hyper-parameters for source training were tuned empirically by performing source

training with different hyper-parameters on the domains S and Hm and searching for the variant

that achieves the highest average cross-domain performance. In particular, for each variant, two

classifiers were trained on the training sets of both domains, using the corresponding validation sets

for early stopping. The resulting classifiers were evaluated on the test set of the respective other

106 5 Experimental Setup

domain, and the performance, here measured by the mean F1 score, was averaged. Some further

hyper-parameters were set on the basis of related work or preliminary experiments.

For both applications, source training is performed for a maximum number of n
(S)
E = 100 epochs,

where an epoch is defined as consisting of niter = 2500 training iterations. Training is stopped earlier

if the performance on the respective validation set does not increase for nes = 25 epochs. The final

parameter set is the one that yields the highest performance on the validation set. For aerial

image classification, the mean F1 score is used to assess the performance and for the deforestation

detection, the F1 score of the class deforestation is used. Mini-batch stochastic gradient descent

with a friction of β0 = 0.9 is used as optimisation strategy and the weight ωL2 of weight decay is set

to 1e−5. The hyper-parameter κ in Equation 4.3 of the adaptive cross entropy loss (cf. Section 4.4.1)

is set to 4. The training batches consist of patches that were randomly cropped from the images

and the reference of the training set after applying a random rotation for data augmentation. In

particular, the rotation angle is drawn from a uniform distribution in the range [0◦, 360◦]. The

image data is interpolated using bi-linear interpolation and the corresponding label maps using

nearest neighbour interpolation. Further the extracted patches are flipped along the main diagonal

with a probability of 50%. For additional data augmentation, each channel in the training images

is multiplied by a random value drawn from a normal distribution centred at µ = 1.0 and having a

standard-deviation of σ = 0.1, and each channel is shifted by adding a random value drawn from

a normal distribution with µ = 0 and σ = 0.1.

The remaining hyper-parameters and configurations depend on the application. For the applica-

tion of land cover classification the learning rate λ is set to 0.01, the mini-batch size nB is set to 4

and the patch size is set to p = 256 px. This corresponds to the optimisation parameters that were

used to pre-train the encoder of the classifier on the ImageNet dataset (Chollet, 2017).

For the bi-temporal deforestation detection the smaller classification architecture is used (cf. Sec-

tion 4.3.1). In comparison to the version used for land cover classification, the central layers were

removed. This is motivated by preliminary experiments in which only a very minor drop of perfor-

mance was observed when using the smaller network for a similar task, the pixel-wise classification

of the vitality loss based on a pair of satellite images (Wittich et al., 2022). Following (Soto et

al., 2021), the patch size is set to p = 128 px. To have the same number of pixels in a batch, the

batch size is increased to 16. The learning rate is decreased to 0.002, assuming that this partially

compensates for the potential optimisation problems due to the sparsity of the usable reference

pixels during training. In particular, less pixels contribute to the loss which is likely to result in

more noisy gradients. The strategy for the extraction of patches for training and data augmentation

are the same as those for land cover classification. An overview of all hyper-parameters is given in

Table 5.5.

5.4 Training Details and Hyper-parameters 107

Value

Parameter Symbol (LCC) (BDD) cf.

Early stopping patience nes 25 epochs
Sec. 4.4.1

Max. number of epochs n
(S)
E 100 epochs

Param. of adaptive CE loss κ 4 Eq. 4.3

Optimiser for C - MB-SGD-M Sec. 2.2.2.1

Learning rate λ .01 .002 Eq. 2.14

Friction parameter β0 0.9 Eq. 2.13

Weight of L2-regularisation ωL2 10−5 Eq. 4.1

Batch size nB 4 16 Sec. 2.2.2.1

Patch size p 256 128 Sec. 2.4

Simplified network - No Yes
Sec. 4.3.1

(Network parameters) - 28.8M 15.5M

Strength of radiometric augmentation σ 0.1 This section

Table 5.5: Hyper-parameters for source training for the two applications tested in the experiments. LCC:

Land cover classification. BDD: Bi-temporal deforestation detection.

5.4.2 Unsupervised Domain Adaptation

The hyper-parameters for the domain adaptation were tuned by adapting classifiers from S to

Hm and vice-versa. To this end, classifiers were first trained on S and Hm as DS and the fi-

nal parameters after source training were used for the initialisation of the classifiers in the UDA

phase. The classifiers were then adapted to the corresponding other domain, using different hyper-

parameters for the adaptation. The performance of the models after UDA was compared to the

initial cross-domain performance without UDA, using the mean F1 score as quality metric. The set

of hyper-parameters resulting in the best performance of UDA, averaged over the two scenarios,

was maintained.

In the tuning process, first, the variant VRD, using the regularisation of the discriminator output,

is considered. In a subsequent step, the variant VAG, using the auxiliary generator, was evaluated

to tune parameters related to the optimisation of G and the hyper-parameter nG (cf. Section 4.5.2).

In a last step the hyper-parameters related to the ABN were tuned.

The patches for DS and DT are sampled from all available data in the respective domains.

After each epoch starting from epoch nmin = 3, the average entropy in the test set of the target

entropy is tracked. The first epochs are not considered because it is assumed that the appearance

adaptation network will not deliver any meaningful adapted images in the beginning. After running

the adaptation for nE = 50 epochs, the parameter set that results in the smallest mean entropy in

DT is kept as final parameter set. When sampling the batch for the images from DS, the strategy for

data augmentation is equivalent to the one used in source training. For the images from DT, only

the geometric augmentation is performed when sampling the patches. Radiometric augmentation

is applied to the adapted images before they are presented to the networks D and C and, in variant

VAG, to the images generated by the auxiliary generator before they are presented to D.

108 5 Experimental Setup

ABN is applied with the following hyper-parameters. Batches of nB,ABN = 64 samples from DT

are presented to C and the running averages of the batch normalisation (BN) layers are updated.

The batch size is increased to better approximate the statistics from DT. Note that using such a

large batch size compared to the one used in source-training and adaptation is only possible because

during ABN only the network C is updated and, thus, the other networks, A, D and possibly G, are
no longer required, which drastically reduces the memory footprint. To adapt the batch statistics

from DT , nI,ABN = 1000 randomly drawn batches are presented to C. Note that practically ABN

may converge after much fewer iterations, but the training time of ABN is comparably short, which

is the reason why this conservative approach was chosen.

Table 5.6 lists all hyper-parameters of the adaptation process. All hyper-parameters related to

training the classification network C are equal to those from source training (cf. Section 5.5).

Parameter Symbol Value cf.

Optimizer for A,D,G - ADAM Sec. 2.2.2.1

Learning rate for A,D,G λ 5 · 10−4 Eq. 2.18

Parameter 1 for A,D,G β1 0.5 Eq. 2.15

Parameter 2 for A
β2

0.99
Eq. 2.16

Parameter 2 for D,G 0.999

Weights of loss terms ωT , ωG, ωA 2, 2, 2 Eq. 4.5, 4.16

Weight of D regularisation ρ 4 Eq. 4.14

Batch size for generated images nG 8 Eq. 4.17

ABN batch size nB,ABN 64 Sec. 4.7

Number of ABN iterations nI,ABN 1000 This section

Table 5.6: Hyper parameters for UDA for the two applications tested in the experiments.

5.4.3 Implementation Details of Baseline Strategies

In the experiment set E4, the suggested method for UDA is compared to different adaptation

strategies for UDA from the literature. In particular, several variants for UDA are evaluated to

which the proposed method is compared to. The first variants are adapted from (Vu et al., 2019)

and the others from (Tsai et al., 2018).

Instance Transfer: In (Vu et al., 2019), instance transfer by direct and indirect entropy min-

imisation is proposed. This is realised by formulating the following adaptation loss for C:

LV u = Lsup + λent · Lent + λadv · Ladv,T . (5.1)

Vu et al. (2019) use the regular softmax cross-entropy loss to model the supervised loss Lsup. In

the experiments reported in this thesis the adaptive cross-entropy loss as described in Equation 4.4

is used, because this choice is not related to the main adaptation concept. The second term, Lent,
corresponds to the direct entropy loss as proposed in (Vu et al., 2019), thus Lent = Ē, where

Ē is the average entropy in the target domain according to Equation 4.21. This loss term is

5.4 Training Details and Hyper-parameters 109

weighted by λent. The third term corresponds to the approach of adversarial entropy minimisation,

involving a domain discriminator DV u. This network takes the so-called weighted self-information

maps MSI = −r · log r as input, where r is a map of class scores for a sample X predicted by

the classification network C. Each pixel in the output of DV u is interpreted as the probability

for the corresponding window according to the receptive field of DV u to come from DS. Vu et al.

(2019) propose to use the common strategy of alternating training C and DV u, which is adopted

without further changes in this thesis. DV u is trained to correctly predict whether a weighted self-

information map comes from DS or not and C is trained to deceive the discriminator by maximising

the probability predicted by DV u for a weighted self-information map obtained for a sample from

DT to come from DS. The architecture of DV u, the hyper-parameters related to the optimisation

of DV u and the hyper-parameters λent = λadv = 1e−3 of the method are taken from (Vu et al.,

2019) without modifications. As also done in (Vu et al., 2019), two further variants are evaluated,

obtained by setting either λent = 0 or λadv = 0. Note that in some experiments in (Vu et al., 2019),

an additional class ratio prior is used to regularise the classifier. Variants including such a prior

are not evaluated in this thesis.

Representation Transfer: Tsai et al. (2018) propose a variant for UDA based on adversarial

representation transfer. In particular, they use the following loss for C:

LTsai = Lsup + λe · Ladv,e + λl · Ladv,l. (5.2)

Note that in (Tsai et al., 2018), a further variant is evaluated in which an auxiliary classification loss

is considered. This variant is not considered in the experiment reported here. Again, the first term

Lsup is the supervised loss, which corresponds to the one that is used in the method proposed in this

thesis (cf. Equation 4.4). The second and third terms correspond to the adversarial representation

alignment and are taken without modification from (Tsai et al., 2018). The terms correspond to

two variants of adversarial training using a layer in the middle of the network (Ladv,e) and the

last layer of the network (Ladv,l). These terms are weighted by λe and λl, respectively. For the

adversarial training, two discriminator networks are introduced. The first one, called DTsai,e, takes

the activation maps from the layer 6 in Table 4.1 as input, and the second one, DTsai,l, takes the

activation maps from the last layer, which is layer 32 in Table 4.1. The discriminator architectures,

the hyper-parameters related to the training of the discriminator networks and the alternating

training strategy of C, DTsai,e and DTsai,l are used as described in (Tsai et al., 2018). The authors

suggest two variants with different weights for the adversarial loss terms in Equation 5.2. In the first

variant, the weights are set to λl = 1e−3 and λe = 0.0, which corresponds to applying adversarial

representation transfer only to the last layer. In the second variant, the weights are set to λl = 1e−3

and λe = 2e−4, so that the representation transfer is applied to the earlier layer, too.

111

6 Results and Discussion

In this chapter, the results of the experiments are reported and discussed. The structure of the

experiments corresponds to the structure presented in Section 5.3.

In this chapter, the term adaptation scenario corresponds to a combination of source and target

domains, and the shorthandDA → DB is used to refer to an adaptation scenario with source domain

DA and target domain DB. The term intra-domain scenario refers to an adaptation scenario in

which DS = DT and the term cross-domain scenario refers to an adaptation scenario in which

DS ̸= DT . Lastly, the term näıve transfer describes the strategy of training a classifier in DS and

applying that classifier to DT directly, thus, without applying any method for UDA.

6.1 Results of Experiment Set E1: Source Training and Näıve

Transfer

Source Training: First, the results of source training for the intra-domain evaluation are re-

ported. Table 6.1 provides means and standard deviations of the F̄1 score obtained for five training

runs on each domain. Note that the standard deviations for the values that correspond to the

average performance does not represent the variability of the performance in the different domains,

but only the variability due to random factors of training.

DS B H N P20 V20 Avg.

F̄1 [%] 87.1±0.2 80.3±0.2 85.5±0.2 89.1±0.1 84.3±0.2 85.3±0.2

OA [%] 88.6±0.1 86.4±0.1 88.7±0.1 89.8±0.1 86.9±0.1 88.1±0.1

Table 6.1: Results of source training for intra-domain evaluation. Performance on the test set of each source

domain DS when training on the training set from DS and using the validation set from DS for

parameter selection. In the last column, the average performance over all domains is given. The

table provides means and standard deviations of the F̄1 scores and overall accuracies resulting

from five repetitions of each experiment.

For all domains, F̄1 scores and overall accuracies between 80% and 90% are achieved. The per-

formance on H is worst with F̄1 = 80.3%, which is mainly due to the low classification performance

of the class low vegetation that has a F1 score of less than 60%. This has only a minor impact on

the overall accuracy achieved for this domain, because only 8.6% of the pixels in the test set of

H belong to the class low vegetation. A reason for this relatively poor performance in H could be

that in this domain the difference between training and test sets in this domain is larger compared

to the other domains or that there is a higher ratio of errors in the reference label maps.

112 6 Results and Discussion

On the other hand, the intra-domain performance is highest for B and P20 with F̄1 scores and

overall accuracies close to 90%. The standard deviations over the five runs are only about 0.2% in

F̄1 and about 0.1% in OA for all domains, which indicates that the influence of random factors on

the source training is relatively low. The performance achieved in each domain will be considered

an upper bound for any UDA scenario in which a classifier is adapted to that domain.

Näıve Transfer: The results of näıve transfer are reported in Table 6.2. Here only the means and

standard deviations of the F̄1 scores are reported. The last row and column in the table correspond

to the results averaged over all source domains and all target domains, respectively. The value in

the lower right corner corresponds to the average performance over all scenarios.

PPPPPPPDS

DT

B H N P20 V20 Avg.

B - 61.5±1.2
(-18.9)

80.4±0.6
(-5.0)

70.7±1.4
(-18.4)

81.9±0.2
(-2.4)

73.6±0.8
(-11.6)

H 76.8±1.1
(-10.3) - 77.1±0.9

(-8.3)
78.5±0.3
(-10.6)

77.7±0.6
(-6.6)

77.5±0.6
(-7.7)

N 82.9±0.8
(-4.2)

63.1±1.7
(-17.3) - 78.0±0.5

(-11.1)
82.6±0.5

(-1.7)
76.6±0.4

(-8.6)

P20
73.7±0.8
(-13.4)

60.8±1.9
(-19.5)

77.6±0.8
(-7.8) - 77.2±0.4

(-7.1)
72.3±0.6
(-12.9)

V20
80.1±0.5

(-7.0)
55.9±1.1
(-24.5)

79.0±0.7
(-6.4)

76.2±0.4
(-12.9) - 72.8±0.5

(-12.4)

Avg. 78.4±0.2
(-8.7)

60.3±1.2
(-20.0)

78.6±0.5
(-6.9)

75.9±0.3
(-13.2)

79.9±0.2
(-4.4)

74.6±0.4
(-10.7)

Table 6.2: Results of source training for cross-domain evaluation. Performance on the test set of each target

domain DT when training on the training and test sets from DS and using the validation set from

DS for parameter selection (näıve transfer). Each cell provides means and standard deviations of

the F̄1 scores in % resulting from five repetitions of the experiments. Values in parentheses are the

performance drops, i.e. the differences to the intra-domain performance that was achieved when

training and testing on the same domain (cf. Table 6.1). The last row and column provide the

performances for each target domain averaged over all source domains and vice versa, respectively.

The value in the lower right cell corresponds to the performance averaged over all scenarios.

In general, a rather large performance drop can be observed (−10.7% in the F̄1 score on average).

In several scenarios the performance drop is even larger with values up to −24.5% for the scenario

V20 → H. The smallest performance drop is observed for the scenario N → V20 with −1.7%, which

is still about 3 times larger than the respective standard deviation of the F̄1 in this setting and,

thus, considered to be significant. These observations underline the necessity of methods for UDA.

Table 6.2 also reveals that the scenarios in which DT= H are particularly difficult, indicated

by very large performance drops. This also leads to a rather poor performance of the classifiers

evaluated in H after being trained in another domain, i.e. of F̄1 = 60.3% on average. On the

other hand, the scenarios in which DT= V20 result in the smallest performance drops, on average

only −4.4% in the F̄1 score. This observation, i.e. that adapting to V20 is particularly easy and

adapting to H is comparably difficult, becomes even clearer when assessing the symmetry of the

performance drops. For the domains B, N and P20 the difference between the average performance

6.2 Results of Experiment Set E2: Proposed Method for UDA 113

drop when using the respective domain as source domain to the average performance drop when

using the same domain as target domain are rather small, i.e. less than 3% in the F̄1 score. On

the other hand, the average performance drop when using H as target domain is −20.0% while

the average performance drop when using H as source domain is only −7.7% in the F̄1 score. For

all combinations of H and any other domain, the scenario in which H is the target domain results

in a larger performance drop compared to the corresponding scenario in which H is the source

domain. For example B → H results in a performance drop of −18.9% while the scenario H → B

results in a smaller performance drop of −10.3% with respect to the F̄1 score. The domain V20

behaves exactly in the other way round. The performance drops for all domain pairs involving V20

are smaller if V20 is used as target domain.

From this observation is is concluded that H includes the other domains to a large extent, i.e.

it represents the appearance of objects in the other domains rather well. Consequently a classifier

trained in H achieves a relatively good performance when applied to the other domains. On

the other hand, the domain V20 is rather well represented by the other domains, but V20 is not

particularly representative for the other domains.

In general, it is difficult to predict the performance drop in the näıve transfer setting for a pair of

source and target domains. In the visual assessment of the domains, H was assumed to be rather

different from the others in terms of the appearance of objects and the overall appearance of the

scene, which is in line with the low performance when using H as target domain. However, it is

somehow surprising that H works comparably well when it is used as source domain. The seasonal

effects seem to have an impact on the performance drop as well. For example, when training in

P20, which is the only domain of the ones evaluated in which the deciduous trees have no leaves,

and applying that classifier to V20, this results in the largest performance drop and the lowest

performance of all scenarios in which DT= V20. Furthermore, the performance drops are quite high

when adapting to P20, which is largely related to the performance drop in the class high vegetation.

For example, in the setting N → P20, the performance drop for this class is about −20% in F̄1,

while it is only −11.1% on average. Again, this is to be expected, because the pattern of a tree

without leaves was not learned by the classifiers that were trained in the other domains.

To summarise, the scenarios in which DT= H result in the largest performance drops (−20.0%
in the F̄1) followed by the scenarios in which there are large seasonal differences, i.e. in which P20 is

source or target domain (−13.1% in the F̄1). A smaller, yet comparably high, performance drop is

observed if DS= H (−7.7% in the F̄1). In the remaining scenarios, i.e. those between the domains

B, N and V20 the average performance drop is only −4.5% in the F̄1.

6.2 Results of Experiment Set E2: Proposed Method for UDA

In this set of experiments, the variants of the proposed method for UDA introduced in Section 5.3.2

are evaluated and compared to each other. Table 6.3 provides an overview of all variants of UDA

compared in this section, for details cf. Section 5.3.2.

114 6 Results and Discussion

Modification for

Variant Use LSTsup for A semantic consistency Apply ABN

VSEP No None No

VBSLN Yes None No

VRD Yes Regularise output of D No

VAG Yes Auxiliary generator No

VRD,ABN Yes Regularise output of D Yes

VAG,ABN Yes Auxiliary generator Yes

Table 6.3: Variants for UDA to be evaluated for the task of land cover classification. For detailed descriptions

of the variants cf. Section 5.3.2

6.2.1 Evaluation of Appearance Adaptation

First, the variants VSEP , VBSLN , VRD and VAG are compared with respect to the quality of the

appearance adaptation to assess which modifications lead to an improvement of the appearance

adaptation and to assess how large the respective improvement is. To this end, for several adapta-

tion scenarios the appearance adaptation network with the parameters from the epoch selected using

the proposed parameter selection criterion is used to adapt images from DS to DT. The adapted

images are assessed qualitatively, but also quantitatively by predicting labels for the adapted im-

ages using the classifier that was trained in the target domain of the respective adaptation scenario.

In particular, the images of the validation set of the source domain are adapted to the target do-

main and classified using the classifier that was trained in DT using the the cross-domain source

training scheme from experiment set E1. The F̄1 score for these predictions is reported, assuming

that images that were adapted in a semantically consistent way should be classified correctly by a

classifier that was trained in the respective target domain.

Five adaptation scenarios are selected such that each domain is used once as a source domain and

once as a target domain. The first scenario is B → H. Figure 6.1 shows the results of appearance

adaptation achieved by the four variants. The figure also shows the predictions that were made

by a classifier trained in the target domain. At a first glance, all adapted images look meaningful,

because they give an impression that is similar to the appearance of images in the target domain

H (cf. last row in Figure 6.1 for an exemplary image from H). In H, the appearance of the

nDSM is not very smooth but rather consists of patches with similar height values and steep height

changes in-between. This style is imitated well in the adapted images using VBSLN and VRD, but

not very well when using the variants VSEP and VAG. In the adapted nDSMs delivered by the

latter two variants, high objects like buildings and high vegetation have sharp outlines and a rather

homogenous height, which at least partially imitates the style of nDSMs in H. In the nDSMs

related to VSEP , some artefacts are visible that look like holes in high objects (cf. position marked

by the red arrow in Figure 6.1).

The target domain H has a much higher amount of sealed ground and a lower amount of low

vegetation compared to the source domain B. Thus, without any countermeasures, the appear-

ance adaptation network has to hallucinate structures that look like low vegetation to align the

6.2 Results of Experiment Set E2: Proposed Method for UDA 115

MSI nDSM Ref./Pred. F̄1 [%]
D

S
V
S
E
P

53.6

V
B
S
L
N

62.8

V
R
D

78.3

V
A
G

75.2

D
T

Figure 6.1: Examples for appearance adaptation in scenario B → H. First row (left to right): MSI and

nDSM for a patch from DS, reference label map. Rows 2-5: The first and second columns show

the adapted images using the appearance adaptation network trained with the respective variant

of UDA. The third column shows the predictions for the adapted images using a classifier that

was trained in DT and the last column shows the corresponding F1 score in %. Colour-codes of

label maps as in Figure 5.2. The last row shows an example from DT.

distributions of features (cf. Section 4.5). This could be a reason why the adapted images in the

variants VSEP and VBSLN tend to show sealed ground where there is low vegetation in the reference

(cf. the positions marked by black arrows in Figure 6.1). Note that these wrongly adapted areas

are in fact classified as sealed ground by the classifier trained in DT. When using the architectural

modifications for improved semantic consistency, i.e. variants VRD and VAG, the respective areas

are adapted correctly, i.e. in a semantically consistent way, and are classified as low vegetation.

Although the adapted images using these variants are not classified completely correct, the perfor-

mance is clearly better compared to the first two variants. The variant VRD achieves the highest

performance when classifying all adapted images from the validation set using the classifier trained

in DT, with an F̄1 score of 78.3%. As expected, the variant VSEP , in which only the adversarial

loss term is used to train A, i.e. in which the only constraint is for the adapted images to give

an overall impression that is similar to the images from DT, the semantic consistency is poor. Not

only do artefacts appear in the adapted images, but also the performance of a classifier trained in

DT is very low (F̄1 = 53.6%).

116 6 Results and Discussion

The next scenario that is evaluated with respect to the appearance adaptation is H → N . The

results of appearance adaptation and the respective predictions are shown in Figure 6.2.

MSI nDSM Ref./Pred. F̄1 [%]

D
S

V
S
E
P

22.6

V
B
S
L
N

41.3

V
R
D

79.3

V
A
G

61.5

D
T

Figure 6.2: Examples for appearance adaptation in scenario H → N . The structure of the figure follows

the one of Figure 6.1.

In this scenario, the results of appearance adaptation are quite heterogeneous for the different

variants. The variants VSEP , VBSLN and VAG show inconsistent adaptations of building areas. This

is most prominent in the adaptations related to the variants VSEP and VBSLN . Here, building areas

were adapted to structures that look like high vegetation and are classified as such by the target

domain classifier (cf. black arrow in Figure 6.2). Furthermore, in the variants VSEP and VBSLN ,

after appearance adaptation, the trees in the upper left area correspond to a structure that looks

like low vegetation in DT. In general, the appearance adaptation networks trained using these two

variants hallucinate many structures that look like low vegetation in DT, which is to be expected

because this class is much more frequent in DT. The building to the right could only be adapted

by VRD in a way such it is mostly classified correctly, i.e. in a semantically consistent way. The

other image adaptations result in hallucinations of patterns that look like high and low vegetation

(cf. white arrow in Figure 6.2) or like sealed ground in DT. Regarding the performances of the

target domain classifier applied to the adapted images, again the variant VRD achieves the highest

F̄1 score of 79.3%, indicating that this variant results in the highest semantic consistency. The

lowest performance is related to the variant VSEP with a F̄1 score of 22.6%. The variant VAG that

uses the auxiliary generator results in a higher semantic consistency compared to VBSLN , with the

6.2 Results of Experiment Set E2: Proposed Method for UDA 117

target domain classifier achieving a F̄1 score of 61.5%, which nevertheless is still much lower than

the one achieved by VRD.

The third scenario that is discussed in detail is P20 → V20; the results of appearance adaptation

and the respective predictions for this scenario are shown in Figure 6.3. This scenario is interesting,

because the adapted images related to VBSLN already show a quite high semantic consistency.

The corresponding F̄1 score is comparable to those that were achieved using the architectural

modifications in the variants VRD and VAG. This indicates that the differences with respect to

the label distributions are rather small between the domains P20 and V20. A small difference in

the global label distribution was already confirmed in Section 5.1.1, cf. Table 5.1. However, the

variant VSEP still fails to produce adapted images that are semantically consistent and results in

a very low performance when applying the target domain classifier. It is concluded that even in

adaptation scenarios in which the domains are rather similar with respect to the label distributions,

the supervised loss term has to be considered when training the appearance adaptation network in

order to achieve semantic consistency.

MSI nDSM Ref./Pred. F̄1 [%]

D
S

V
S
E
P

34.6

V
B
S
L
N

70.6

V
R
D

77.0

V
A
G

72.7

D
T

Figure 6.3: Examples for appearance adaptation in scenario P20 → V20. The structure of the figure follows

the one of Figure 6.1.

A detailed discussion of the remaining two scenarios N → P20 and V20 → B is omitted at this

point as the effects that can be observed are very similar to those in the scenarios just discussed and

the quantitative analysis also turns out to be similar. Figures showing qualitative results similar

to those in Figures 6.1 - 6.3 can be found in Appendix A. An overview of the F̄1 scores achieved by

118 6 Results and Discussion

applying the target domain classifiers to the adapted images is presented in Table 6.4. Note that

the numbers for B → H, H → N and P20 → V20 are identical to those in Figures 6.1 - 6.3.

Variant B → H H → N N → P20 P20 → V20 V20 → B

VSEP 53.6 22.6 40.2 34.6 47.7

VBSLN 62.8 41.3 60.7 70.6 66.2

VRD 78.3 79.3 74.8 77.0 77.6

VAG 75.2 62.6 61.5 72.7 72.9

Table 6.4: F̄1 scores in % obtained for the predictions by classifiers trained in DT for images from DS

that were adapted to DT using four variants of the proposed method for UDA for five different

adaptation scenarios.

In all scenarios, the adapted images related to variant VSEP lead to the lowest performance

when classified by a classifier trained in the respective target domain. It is concluded that the

variant VBSLN that uses the supervised loss term for training the appearance adaptation network

without any further architectural modifications leads to a higher semantic consistency compared

to variant VSEP . This underlines the importance of the joint training scheme in order to consider

the supervised loss term for training A.

The methods aiming to improve the semantic consistency introduced in the variants VRD and VAG,

respectively, lead to an even higher semantic consistency, i.e. to better classification results when

applying the classifiers trained in DT to the adapted images, compared to VBSLN . The performance

values using VAG are higher than those related to VBSLN , and the variant VRD outperforms the

other variants in all evaluated scenarios by quite a large margin (about 3% − 13%). It is noted

that the difference between the performance of the best and the worst variants is largest in the two

scenarios that include H either as source or target domain. This indicates that achieving semantic

consistency is particularly difficult in these scenarios, which is in line with the observation that H

is not well represented by the other domains (cf. Section 6.1).

To summarise, the semantic consistency is larger when using the supervised loss term for training

the appearance adaptation network and it is further improved when one of the additional architec-

tural modifications is used. The highest semantic consistency is achieved using the variant VRD.

Due to the low performance of the variant VSEP with respect to the semantic consistency, it is not

considered in the remaining experiments. The results of this evaluation can be used to partially

answer the second scientific question. In particular, it was found out that using the joint training

scheme is not sufficient to achieve a semantically consistent adaptation even though it is better than

the variant in which the loss term LSTsup is not used to train the appearance adaptation network.

Both methods aiming at improving the semantically consistency have been shown to actually lead

to a higher degree of semantic consistency and are, thus, considered to be successful in that regard.

Whether the improved semantic consistency actually leads to a higher performance of UDA will be

evaluated in the next set of experiments.

6.2 Results of Experiment Set E2: Proposed Method for UDA 119

6.2.2 Evaluation of Unsupervised Domain Adaptation

In this section, the performance of the adapted classifiers is evaluated. To this end, the average F̄1

score for the target domain in each adaptation scenario is reported for the variants VBSLN , VRD

and VAG. The results for the baseline variant VBSLN are given in Table 6.5. Table 6.6 show the

results for the variant VRD and Table 6.7 shows the improvements of that variant compared to

VBSLN . Accordingly, Tables 6.8 and 6.9 show the results and improvements for the variant VAG.

Evaluation of VBSLN : Using this variant, the average performance is higher by 1.8% in the F̄1

score compared to the näıve transfer, thus, on average, a positive transfer was achieved. However,

there are several cases of negative transfers; in particular, all scenarios in which DS= H resulted

in a negative transfer with respect to the F̄1 score (−2.3% on average). This observation is in

line with the conclusions drawn for the evaluation of semantic consistency (cf. Section 6.2.1). In

particular, as the adapted images in the scenario B → H contain a lot of hallucinated structures

when using VBSLN (cf. Figure 6.1), the classifier can barely be improved when it is trained on such

adapted images. A large negative transfer can be observed in the scenario N → V20 (−11.7% in

F̄1 on average). In this scenario, the standard deviation is rather high, which indicates that the

results are not very stable. A closer look at the five repetitions of this experiment reveals that in

three cases, this scenario resulted in a minor negative transfer of about −1% in the F̄1, in one case

a small positive transfer was achieved (+0.5%) and in one case there was a very large negative

transfer in which the F̄1 score after UDA was only 25.2%. The highest improvements in the F̄1

scores were achieved in the scenarios in which DT= H, which is probably due to the fact that in

these scenarios the performance of näıve transfer was rather poor.

HH
HHHDS

DT

B H N P20 V20 Avg.

B - 65.1±2.9
(3.6)

81.6±0.6
(1.2)

74.4±0.8
(3.7)

82.5±0.2
(0.6)

75.9±0.8
(2.3)

H 72.3±0.9
(-4.5) - 76.0±1.0

(-1.1)
76.6±0.8

(-1.8)
76.2±1.5

(-1.6)
75.3±0.5

(-2.3)

N 83.8±0.2
(0.9)

70.8±1.3
(7.7) - 79.5±1.2

(1.5)
70.9±22.9

(-11.7)
76.2±5.7

(-0.4)

P20
76.9±0.9

(3.2)
73.7±0.5
(12.9)

79.9±0.5
(2.3) - 80.3±0.5

(3.1)
77.7±0.2

(5.4)

V20
81.5±0.4

(1.4)
68.2±1.0
(12.4)

80.7±0.3
(1.7)

76.4±0.6
(0.2) - 76.7±0.2

(3.9)

Avg. 78.6±0.4
(0.3)

69.5±0.6
(9.1)

79.6±0.3
(1.0)

76.7±0.5
(0.9)

77.5±6.0
(-2.4)

76.4±1.2
(1.8)

Table 6.5: F̄1 scores in % obtained for the test sets in DT after source-training in DS and adapting the

classifier to DT using the variant VBSLN . Each cell gives mean and standard deviation of F̄1

over five runs of the respective scenario. The value in parentheses corresponds to the difference

in F̄1 compared to the näıve transfer setting in which the classifier trained in DS was directly

applied to DT (cf. Table 6.2). A positive value corresponds to a positive transfer with respect to

the F̄1 score of the same scenario. The last row provides the performance for each target domain

averaged over all source domains and the last column provides the performance for each source

domain averaged over all target domains. The values in the lower right cell correspond to the

performance averaged over all scenarios.

120 6 Results and Discussion

Evaluation of VRD: Turning to VRD (Table 6.6), performing UDA using this variant results in

a positive transfer for all adaptation scenarios with respect to the F̄1 score averaged of over the

five repetitions of each adaptation. In all experiments (100 experiments in total), there were only

4 cases in which the adaptation resulted in a negative transfer, with a drop in F̄1 of −0.8% on

average. Thus, this variant is considered to be rather stable and a negative transfer could be avoided

in most cases. The average performance of 77.7% is 1.3% higher than the average performance

that was achieved using VBSLN and 3.1% higher compared to the results of näıve transfer. The

improvement over the variant VBSLN is to a large degree related to the scenarios in which DS= H.

In these scenarios, a positive transfer could achieved, while the adaptation using VBSLN resulted

in a negative transfer. This is probably the case because the modification aims at improving the

semantic consistency, which is particularly important in these scenarios, as it was shown e.g. in

Figure 6.1.

H
HHHHDS

DT

B H N P20 V20 Avg.

B - 68.4±0.6
(6.9)

82.3±0.2
(1.9)

73.0±0.4
(2.3)

82.4±0.3
(0.5)

76.5±0.1
(2.9)

H 77.6±0.9
(0.8) - 79.2±0.6

(2.1)
79.6±0.6

(1.2)
79.6±0.3

(1.9)
79.0±0.4

(1.5)

N 84.2±0.3
(1.4)

71.2±1.2
(8.1) - 79.7±0.6

(1.7)
83.5±0.2

(0.9)
79.6±0.3

(3.0)

P20
76.2±0.9

(2.5)
69.7±1.1

(8.9)
80.0±0.2

(2.4) - 78.9±0.4
(1.7)

76.2±0.5
(3.9)

V20
81.5±0.3

(1.4)
68.4±0.6
(12.5)

81.1±0.4
(2.1)

77.6±0.3
(1.4) - 77.2±0.1

(4.4)

Avg. 79.9±0.4
(1.5)

69.4±0.6
(9.1)

80.7±0.1
(2.1)

77.5±0.1
(1.6)

81.1±0.2
(1.2)

77.7±0.2
(3.1)

Table 6.6: F̄1 scores in % obtained for the test sets in DT after source-training in DS and adapting the

classifier to DT using the variant VRD. The structure of the table follows the one of Table 6.5.

A detailed comparison of the results of VRD to the results of VBSLN shows that in 9/20 scenarios

the improvement due to UDA is larger than the standard deviation of the differences over the five

repetitions of each experiment. On the other hand, in two scenarios, a negative transfer occurred

with a magnitude larger than the standard deviation, namely in P20 → V and P20 → V20. The

differences and corresponding standard deviations are shown in Table 6.7.

HHH
HHDS

DT

B H N P20 V20 Avg.

B - 3.3±2.8 0.7±0.4 -1.4±1.2 -0.1±0.4 0.6±0.8

H 5.3±0.8 - 3.2±1.1 3.0±1.2 3.4±1.5 3.7±0.9

N 0.4±0.2 0.4±1.8 - 0.2±0.9 12.5±22.8 3.4±5.6

P20 -0.7±1.4 -4.0±1.2 0.1±0.6 - -1.4±0.8 -1.5±0.5

V20 0.0±0.6 0.2±1.2 0.4±0.3 1.2±0.4 - 0.4±0.2

Avg. 1.3±0.6 0.0±0.7 1.1±0.2 0.8±0.4 3.6±6.0 1.3±1.3

Table 6.7: Difference of F̄1 scores obtained using variants VRD and VBSLN . A positive value means that the

variant VRD performed better, considering the average over five repetitions of each experiment.

The structure of the table follows the one of Table 6.5.

6.2 Results of Experiment Set E2: Proposed Method for UDA 121

Interestingly, for the scenario P20 → V , the results of the evaluation of the semantic consistency

have shown that the variant VRD leads to a improved semantic consistency compared to VBSLN

(cf. Table 6.4) while at the same time the variant VRD performed worse than VBSLN with respect to

the performance of the classifier after UDA. It is assumed that in scenarios in which the appearance

adaptation is semantically consistent when using the variant VBSLN , applying the regularisation of

D has negative effect on the performance of UDA. The regularisation might prevent the discrimi-

nator from achieving a high performance in discriminating the domains to some extent, resulting

in a weaker supervised signal for training A. Thus, the adapted images might look less like coming

from DT, which would mean that the classifier cannot adapt well to the appearance of objects in

DT. At the same time, when looking at all five scenarios from Table 6.4, a weak positive correla-

tion between the improvement of semantic consistency when moving from VBSLN to VRD and the

improvement of the performance due to UDA in those scenarios can be seen, with a correlation

coefficient of 0.74. These observations indicate that improving the semantic consistency in appear-

ance adaptation based UDA mostly leads to an improvement of the performance after UDA, even

though this is not always the case.

It is concluded that, compared to VBSLN , the variant VRD results in a considerably better classi-

fication performance after UDA in about half of the scenarios, while it is considerably worse in only

2 scenarios. On average, the performance of VRD is better, although the average improvement is

as large as the standard deviation of the improvements over five repetitions of the experiment and,

thus, only of limited significance. At the same time, the number of negative transfers is drastically

reduced, which indicates that the method is more stable. Consequently, VRD is considered to be

better than VBSLN because a higher average performance was achieved and no negative transfers

with respect to the F̄1 scores occurred.

Evaluation of VAG: The results for the alternative variant VAG are reported in Table 6.8. The

performance of this variant is again superior to the baseline variant VBSLN with respect to the

average performance of all scenarios and on the same level as the performance of variant VRD.

The largest reductions of the performance gap were achieved in the scenarios in which DT= H

(about 8%− 13% in the F̄1 score). As these scenarios were identified as being rather difficult, it is

concluded that method using the auxiliary generator performs well in challenging scenarios. There

are also considerable reductions of the performance gap in the scenarios in which DS= P20. For the

remaining scenarios the improvement compared to näıve transfer is rather small. In the scenario

H → B this variant resulted in a considerable negative transfer of −1.3% with respect to the F̄1

score.

Analogously to Table 6.7, Table 6.9 shows the difference of the performance of the classifiers

after UDA using variant VAG compared to the ones that were achieved using variant VBSLN .

Comparing the F̄1 averaged over the target domains to those of the variant VBSLN (cf. last column

in Table 6.9) it can again be seen that the largest improvement, namely of 2.5%, is achieved

for DS= H. Comparing the results of VAG to VBSLN , in 6/20 scenarios the improvement due

to UDA is better than the standard deviation of the differences over the five repetitions of each

experiment. Only in one scenario a negative transfer occurred with a magnitude larger than the

122 6 Results and Discussion

HHH
HHDS

DT

B H N P20 V20 Avg.

B - 69.6±1.0
(8.1)

82.0±0.2
(1.6)

72.9±1.2
(2.1)

82.4±0.2
(0.5)

76.7±0.5
(3.1)

H 75.5±1.1
(-1.3) - 78.9±1.3

(1.7)
78.4±0.9

(0.0)
78.2±0.8

(0.4)
77.7±0.8

(0.2)

N 83.9±0.1
(1.0)

71.0±0.8
(7.9) - 79.6±0.3

(1.6)
83.0±0.2

(0.4)
79.4±0.2

(2.7)

P20
77.7±0.6

(4.0)
72.3±1.3
(11.4)

80.3±0.2
(2.7) - 79.6±0.4

(2.5)
77.5±0.2

(5.2)

V20
81.4±0.7

(1.3)
69.1±1.4
(13.2)

80.8±0.5
(1.7)

77.3±0.7
(1.1) - 77.1±0.5

(4.3)

Avg. 79.6±0.4
(1.2)

70.5±0.6
(10.2)

80.5±0.3
(1.9)

77.0±0.6
(1.2)

80.8±0.3
(0.9)

77.7±0.2
(3.1)

Table 6.8: F̄1 scores in % obtained for the test sets in DT after source-training in DS and adapting to DT

using the variant VAG. The structure of the table follows the one of Table 6.5.

standard deviation, i.e. B → P20. In the scenario P20 → H, the variant VAG also performed

worse than VBSLN , but the magnitude of the difference is as large as the corresponding standard

deviation, thus, the difference is only of limited significance.

HH
HHHDS

DT

B H N P20 V20 Avg.

B - 4.4±2.4 0.4±0.6 -1.6±1.5 -0.1±0.2 0.8±0.8

H 3.2±1.5 - 2.9±1.7 1.8±0.9 2.0±1.6 2.5±0.7

N 0.1±0.1 0.3±1.0 - 0.1±1.0 12.0±22.9 3.1±5.8

P20 0.8±1.2 -1.4±1.4 0.5±0.6 - -0.6±0.7 -0.2±0.3

V20 -0.1±1.1 0.9±2.0 0.0±0.4 0.9±0.4 - 0.4±0.6

Avg. 1.0±0.5 1.0±1.0 0.9±0.5 0.3±0.5 3.3±5.9 1.3±1.2

Table 6.9: Difference of F̄1 scores obtained using variants VAG and VBSLN . A positive value means that the

variant VAG performed better, considering the average over five repetitions of the experiments.

The structure of the table follows the one of Table 6.5.

Figure 6.4 shows some examples for the images generated by the auxiliary generator G in the

adaptation process. First of all, it is noticed that the generated images give a similar impression to

the images from the respective target domain, cf. third and fourth rows in Figure 6.4 for exemplary

images from DT. The overall layout of the created scenes is not very meaningful, but this was not

expected, because the discriminator only rates support windows of size 70 × 70 px. Instead of a

meaningful scene layout, it is required for the created images to compensate for potential differences

in the local distributions of labels in the label maps.

Regarding this requirement, the generated images are actually meaningful. For example, the

image generated for the scenario B → H shows sealed ground and high buildings, two classes

that are less frequent in the source domain. The image generated for the scenario H → N shows

structures that can be interpreted as natural ground and water, which are again structures that

do not appear in the source domain. In a similar way, the auxiliary generator predicted structures

that look like natural ground in the scenario V20 → B to compensate for the fact that large areas

6.2 Results of Experiment Set E2: Proposed Method for UDA 123

B → H H → N N → P20 P20 → V20 V20 → B

M
S
I
-
X

A
n
D
S
M

-
X

A
M
S
I
-
X

T
n
D
S
M

-
X

T

Figure 6.4: Examples for auxiliary images XA (rows 1, 2) generated by the auxiliary generator G in different

adaptation scenarios in variant VAG and exemplary images from XT (rows 3, 4). The image size

is 256 × 256 px. Rows 1 and 3 show the infrared red and green channels as false colour images,

and rows 2 and 4 show visualisations of the nDSMs.

showing natural ground are much less frequent in the source domain. For the scenario N → P20,

G generated images that show high yellow buildings, which are very common in DT, though not

directly related to the label distributions. In the scenario P20 → V20, the global label distributions

of both domains are quite similar (cf. Section 5.1.1). In this scenario the baseline variant VBSLN

already worked quite well, which is the reason why it is assumed that the local distributions of

the labels are also quite similar between the two domains. Thus, there is no need to compensate

for differences in the global label distributions and it is reasonable that the generated image seems

rather representative for the target domain with respect to the appearance, but also with respect

to the underlying label distribution.

To conclude, extending the architecture for deep UDA by the auxiliary generator did work in the

expected way. It could increase the semantic consistency and improve the performance of UDA in

most scenarios.

Summary of Variant Comparison without ABN: Both variants aiming to improve the

semantic consistency did improve the performance of the classifiers after UDA compared to the

124 6 Results and Discussion

baseline variant VBSLN . A direct comparison of the respective improvements for all adaptation

scenarios reveals that both extensions achieved similar improvements. This is visualised in Fig-

ure 6.5. The figure shows the differences of the averaged F̄1 scores achieved with variants VAG and

VBSLN (cf. Table 6.9) as a function of the differences of the averaged F̄1 scores achieved with vari-

ants VRD and VBSLN (cf. Table 6.7) in a logarithmic scale. A strong correlation can be observed,

i.e. the correlation coefficient is 0.95.

−21

−20

20

21

22

23

24

−21 −20 20 21 22 23 24

Improvement of VRD over VBSLN [%]

Im
p
ro
ve
m
en
t
of
V
A
G
ov
er
V
B
S
L
N

[%
]

Figure 6.5: Comparison of the improvement of the classification performance of VAG and VRD to the baseline

VBSLN with respect to F̄1.

It is noted that in preliminary experiments, a combination of the two extended methods did not

result in a higher classification performance. The reason for this might be that both methods are

similar with respect to the actual effect on the training of the classifier.

In summary, the methods VRD and VAG perform similarly, i.e. there is no considerable difference

in the F̄1 score, averaged over all experiments. However, there are some advantages of the variant

VRD. First, the variant VRD resulted in a better performance on average compared to VAG in 15/20

adaptation scenarios. Second, the variant VRD did not result in a negative transfer with respect to

the averaged F̄1 scores, but using the variant VAG resulted in a negative transfer in one scenario.

Lastly, the variant VRD has a smaller memory footprint, because no additional network is required.

This also reduces the training time and makes the whole architecture easier to tune as the number

of hyper-parameters decreases. As a consequence, VRD is considered to be preferable to VBSLN

and VAG.

6.2.3 Combination of Appearance Adaptation with Adaptive Batch

Normalisation

In the experiments reported in this section, the appearance adaptation based strategy for deep

UDA proposed in this thesis is combined with adaptive batch normalisation (ABN). In the variant

VRD,ABN , ABN is used as an additional adaptation step after appearance adaptation using the

variant VRD and in variant VAG,ABN , ABN is used as an additional adaptation step after adaptation

6.2 Results of Experiment Set E2: Proposed Method for UDA 125

using the variant VAG. The corresponding results of the variants VRD,ABN and VAG,ABN are

presented in Tables 6.10 and 6.11, respectively.

H
HHHHDS

DT

B H N P20 V20 Avg.

B - 70.4±1.5
(8.9)

83.3±0.2
(2.9)

77.7±0.3
(7.0)

82.6±0.2
(0.7)

78.5±0.4
(4.9)

H 75.4±1.1
(-1.4) - 73.2±0.9

(-3.9)
79.2±0.8

(0.7)
78.1±0.3

(0.3)
76.5±0.4

(-1.1)

N 84.7±0.1
(1.9)

71.0±0.6
(8.0) - 79.6±2.7

(1.5)
83.2±0.1

(0.6)
79.6±0.6

(3.0)

P20
77.1±0.4

(3.4)
70.4±0.8

(9.5)
80.1±0.3

(2.5) - 78.8±0.2
(1.6)

76.6±0.2
(4.2)

V20
80.8±0.2

(0.6)
70.4±0.4
(14.5)

80.8±0.3
(1.8)

79.8±0.2
(3.6) - 77.9±0.1

(5.1)

Avg. 79.5±0.2
(1.1)

70.5±0.6
(10.2)

79.3±0.2
(0.8)

79.1±0.6
(3.2)

80.7±0.2
(0.8)

77.8±0.1
(3.2)

Table 6.10: F̄1 scores in % obtained for the test sets in DT after source-training in DS and adapting to DT

using the variant VRD,ABN . The structure of the table follows the one of Table 6.5.

H
HHHHDS

DT

B H N P20 V20 Avg.

B - 69.9±0.3
(8.4)

82.9±0.3
(2.5)

78.5±0.5
(7.8)

82.8±0.3
(0.9)

78.5±0.2
(4.9)

H 74.0±1.1
(-2.8) - 72.2±1.4

(-5.0)
77.0±0.8

(-1.5)
75.7±0.7

(-2.0)
74.7±0.7

(-2.8)

N 84.1±0.2
(1.2)

68.0±2.1
(4.9) - 80.5±0.3

(2.5)
82.8±0.1

(0.2)
78.8±0.5

(2.2)

P20
77.8±0.3

(4.1)
70.1±1.8

(9.3)
80.9±0.3

(3.3) - 79.9±0.5
(2.7)

77.2±0.4
(4.8)

V20
81.0±0.6

(0.9)
69.0±1.2
(13.1)

80.2±0.3
(1.1)

78.8±0.7
(2.6) - 77.3±0.4

(4.4)

Avg. 79.2±0.3
(0.9)

69.2±0.9
(8.9)

79.1±0.4
(0.5)

78.7±0.5
(2.9)

80.3±0.3
(0.4)

77.3±0.2
(2.7)

Table 6.11: F̄1 scores in % obtained for the test sets in DT after source-training in DS and adapting to DT

using the variant VAG,ABN . The structure of the table follows the one of Table 6.5.

Both extended methods, VRD,ABN and VAG,ABN achieve a positive transfer on average with an

improvement of the F̄1 score by 3.2% and 2.7%, respectively. While in most cases, a positive

transfer was achieved, both methods seem to struggle with the scenarios in which DS= H. Here,

the variant VAG,ABN leads to a negative transfer in all four scenarios with an average drop of

−2.8%. The variant VRD,ABN results in a negative transfer in the scenarios H → B and H → N ,

resulting in an average drop of −1.1% in the scenarios in whichDS= H. It is assumed that applying

ABN fails in these scenarios, because the global label distribution in H is very different from the

other domains (cf. Table 5.1), which results in a wrong alignment of the activation distributions.

In principle, this also affects the scenarios in which DT= H. However, in these scenarios the

performance of näıve transfer is rather poor (cf. Table 6.2), which makes it easier to achieve a

positive transfer.

126 6 Results and Discussion

6.2.4 Final Comparison of Variants

Finally, the results of UDA using the variants VBSLN , VRD, VAG, VRD,ABN , VAG,ABN are compared

side by side. In Table 6.12, the average F̄1 scores for each DT, averaged over all source domains

is presented for each variant. Table 6.13 shows the values for the overall accuracy, again for each

DT , averaged over all source domains. The variant VBSLN performs worst in the scenarios where

DT= B and DT= V20 and also results in the worst average performance for both metrics. The

variant VAG,ABN is the second worst variant with respect to the average performance and does not

achieve the highest performance in any case, again considering both metrics. For the remaining

target domains, except for the domain H, the variants RRD or RRD,ABN achieve the highest

performance metrics. However, for the scenarios in which DT= H, the variant VAG performs best.

In particular with respect to the overall accuracy, the variant VAG performs better than the other

methods.

H
HHHHStr.

DT

B H N P20 V20 Avg.

N.T. 78.4±0.2 60.3±1.2 78.6±0.5 75.9±0.3 79.9±0.2 74.6±0.4

VBSLN 78.6±0.4 69.5±0.6 79.6±0.3 76.7±0.5 77.5±6.0 76.4±1.2

VRD 79.9±0.4 69.4±0.6 80.7±0.1 77.5±0.1 81.1±0.2 77.7±0.2

VAG 79.6±0.4 70.5±0.6 80.5±0.3 77.0±0.6 80.8±0.3 77.7±0.2

VRD,ABN 79.5±0.2 70.5±0.6 79.3±0.2 79.1±0.6 80.7±0.2 77.8±0.1

VAG,ABN 79.2±0.3 69.2±0.9 79.1±0.4 78.7±0.5 80.3±0.3 77.3±0.2

T.T. 87.1±0.2 80.3±0.2 85.5±0.2 89.1±0.1 84.3±0.2 85.3±0.2

Table 6.12: Comparison of different variants of the proposed method for UDA. The values correspond to

the average F̄1 score in % by target domain after adaptation from each source domain (averaged

over the source domains) and the corresponding standard deviations. The first row shows the

results of näıve transfer (N.T.) and the last row (T.T.) shows the results of training in the target

domain. Str.: Strategy. Avg.: Average F̄1 score over all adaptation scenarios. The best results

after UDA are printed in bold font.

Although all variants achieve a positive transfer on average, there remains a considerable perfor-

mance gap after UDA. The best performing variants could compensate for about 25% of the initial

performance gap with respect to the overall accuracy and for about 30% with respect to the F̄1

score.

Based on the results presented in Tables 6.12 and 6.13, the variants RRD and RRD,ABN are

considered to be the best performing variants. Variant RRD is the most stable variant with zero

negative transfers considering the average F̄1 scores and with the highest average performance con-

sidering the overall accuracy. The variant RRD,ABN achieves the highest performance on average,

considering the F̄1 score. However, in Section 6.2.3 it was shown that this comes at the cost of

more negative transfers. This is the reason why in the following experiments, only the variants

RRD and RRD,ABN will be evaluated.

6.2 Results of Experiment Set E2: Proposed Method for UDA 127

H
HHHHStr.

DT

B H N P20 V20 Avg.

N.T. 80.0±0.4 69.5±1.0 82.2±0.4 77.5±0.5 82.7±0.2 78.4±0.4

VBSLN 79.8±0.4 77.1±0.7 82.5±0.4 78.7±0.3 80.4±5.2 79.7±1.1

VRD 81.2±0.4 77.3±0.4 83.9±0.1 79.0±0.1 83.8±0.1 81.0±0.1

VAG 80.9±0.4 77.9±0.5 83.6±0.4 78.6±0.6 83.4±0.3 80.9±0.2

VRD,ABN 80.7±0.3 77.0±0.6 81.4±0.3 80.8±0.4 83.1±0.1 80.6±0.1

VAG,ABN 80.5±0.4 75.2±1.0 80.9±0.5 80.2±0.6 82.6±0.3 79.9±0.2

T.T. 88.6±0.1 86.4±0.1 88.7±0.1 89.8±0.1 86.9±0.1 88.1±0.1

Table 6.13: Comparison of different variants of the proposed method for UDA. The values correspond to

the average overall accuracy in % by target domain after adaptation from each source domain

(averaged over the source domains) and the corresponding standard deviations. The first row

shows the results of näıve transfer (N.T.) and the last row (T.T.) shows the results of training

in the target domain. Str.: Strategy. Avg.: Average F̄1 score over all adaptation scenarios. The

best results after UDA are printed in bold font.

6.2.5 Detailed Evaluation of Selected UDA Scenarios

To better assess the capabilities and limitations of the proposed variants, the results for UDA

using the variants VRD and VRD,ABN in five adaptation scenarios are evaluated in detail, i.e. by

performing a qualitative evaluation and investigating the class-wise performance, measured by the

class-specific F1 scores.

Figure 6.6 shows exemplary predictions made by the classifiers after adaptation using the variants

VRD and VRD,ABN . The figure also shows predictions made by the classifiers that were trained inDS

(corresponding to the näıve transfer setting), and classifiers that were trained in DT (correspond-

ing to the intra-domain evaluation setting). The latter predictions should serve as a qualitative

reference for label maps that could be predicted when training in the respective target domain.

It can be seen that the predictions made by the classifiers trained in DT are very similar to the

reference, but some errors remain, for example the hedge in the upper-right area in the adaptation

scenario N → P20 is not detected by the classifier trained in P20. Figure 6.7 presents the class-wise

F1 scores on the test set of DT for the selected scenarios. The corresponding numbers can be found

in the Appendix B.

For the scenarios N → P20, P20 → V20 and V20 → B, the difference in the performance in the

target domain when comparing the two variants of the proposed method to näıve transfer was

comparably small with less than 1.1% in F̄1 for the variant VRD (cf. Table 6.6) and less than 1.6%

in F̄1 for the variant VRD,ABN (cf. Table 6.10). This is in line with the observations made in the

visual comparison of the respective results in Figure 6.6. The predicted label maps corresponding

to the variants VRD and VRD,ABN look rather similar to the predictions made by the classifier

trained in the respective source domain of those scenarios.

128 6 Results and Discussion

B → H H → N N → P20 P20 → V20 V20 → B
M
S
I

n
D
S
M

N
.T

.
V
R
D

V
R
D
,A

B
N

T
.T

.
R
ef
.

Figure 6.6: Exemplary image patches and predictions for five adaptation scenarios using classifiers that were

trained using different variants. The first row shows the MSI data for the image patch and the

second row shows the nDSM. N.T.: Näıve transfer (classifier was trained only in DS). VRD: First

variant of the proposed method (classifier trained in DS and adapted to DT using the variant

VRD). VRD,ABN : Second variant of the proposed method (classifier trained in DS and adapted

to DT using the variant VRD,ABN). T.T.: Target training (classifier was trained only in DT).

Ref.: Reference label map.

The most prominent errors in these scenarios are related to the areas showing the class high

vegetation in the reference. In particular, in the scenario N → P20 the classifier trained in N

cannot classify most of those areas correctly as high vegetation but instead predicts the class low

vegetation (cf. area marked by the black arrow in Figure 6.6). This can be explained by seasonal

differences, i.e. by the fact that in N trees without leaves are not represented. Using either of the

variants to adapt the classifier to P20, more areas that correspond to the class high vegetation are

detected, but there remain many false negative predictions for that class. This is most likely based

on the fact that trees in P20 do not have leaves and, thus, are barely visible in the nDSM. This

makes them look very similar to areas that belong to the class low vegetation in the target domain.

Looking at Figure 6.7, this observation is in line with the behaviour of the class-wise metrics. When

6.2 Results of Experiment Set E2: Proposed Method for UDA 129

training a classifier in N and directly applying it to P20, a large performance drop (cf. difference

between the blue bars and the red bars in Table 6.7) can be observed for the classes high vegetation

and low vegetation. When using either variant of the proposed method for appearance adaptation,

the class high vegetation can slightly be improved, but a large performance gap remains. It is

concluded that severe differences in the appearance of vegetation caused by seasonal effects in the

two domains cannot be compensated by the proposed method for UDA. On a more general level it

is deduced that objects in DS which have an appearance that is closer to the appearance of another

class in DT than to the appearance of objects of the the same class in DT remain problematic after

UDA.

In the scenario B → H, both variants for UDA achieve the largest improvements over näıve

transfer among the five adaptation scenarios investigated here. In the predicted label maps in

Figure 6.6 it can be seen that the classifier trained solely in DS struggles with areas in the shadows

of the high buildings, probably as such areas are not well represented in DS. Here, both variants of

the method clearly improve the predictions, but there remains a frequent confusion of the classes

low vegetation and sealed ground. In Figure 6.7 it can be seen that the performance metrics for all

classes could be improved by both methods for UDA, except for the class building which remains at a

similar level. The largest improvements were obtained for the class sealed ground with +12.8% and

+13.7% in the F1 score using the variants VRD and VRD,ABN , respectively. Also the improvements

for the class car are very high (more than 10% in the F1 score).

B → H H → N N → P20 P20 → V20 V20 → B

SG

50 75

SG

BU

LV

HV

VH

MEAN

70 90

SG

BU

LV

HV

VH

MEAN

70 90

SG

BU

LV

HV

VH

MEAN

70 90

SG

BU

LV

HV

VH

MEAN

70 90

SG

BU

LV

HV

VH

MEAN

BU

LV

HV

CA

Avg.

F1 score [%]

Figure 6.7: Class-wise F1 scores and F̄1 score for different adaptation scenarios. The blue bars correspond

to the classifiers trained in DSand the red bars to the classifiers trained in DT . The orange

bars correspond to the classifiers that were trained in DSand adapted to DTusing the proposed

method for UDA in variant VRD. The green bars correspond to the classifiers that were adapted

using variant VRD,ABN . Note that the scaling of the horizontal axis is different for the first

adaptation setting. The black bars indicate the standard deviation based on five repetitions of

the experiment. In particular, the length of the bars corresponds to twice the standard deviation.

Class abbreviations as in Table 5.1.

130 6 Results and Discussion

The scenario H → N corresponds to a scenario in which appearance adaptation using VRD

resulted in a positive transfer, but the combination of appearance adaptation and ABN, i.e. using

variant VRD,ABN , lead to a negative transfer. In the qualitative example in Figure 6.6, it can

be seen that there are many false positive predictions for the class tree in the prediction by the

classifier that was adapted using variant VRD,ABN , resulting in too large areas showing that class.

Looking at the results for the adaptation scenario H → N in Figure 6.7, it can be seen that the

performance of the classes low vegetation and high vegetation decreases, which is in line with the

observation that after UDA large areas showing low vegetation were misclassified as high vegetation.

To understand why the performance of the variant VRD,ABN is particularly worse in the scenario

H → N , a closer look at the global label distributions is helpful. Figure 6.8 shows the global label

distribution in H and N , but it also shows the distribution of the predicted labels for the validation

set in N when using the variants VRD and VRD,ABN .

SG BU LV HV VH
0

20

40

A
m
ou

n
t
[%

]

Figure 6.8: Global label distributions for the scenario H → N . The blue bars show the label distribution in

H and the red bars correspond to the one in N . The orange and green bars correspond to the

label distribution in the predictions using the variants VRD and VRD,ABN , respectively, for the

test set from N .

Looking at this figure, a considerable difference in the global label distributions of H and N can

be seen, cf. blue and red bars in Figure 6.8. The difference is particularly large for the classes

building and low vegetation. Comparing the label distributions of the predictions made by the

two variants, it can be seen that when using variant VRD,ABN there is a large gap in the relative

amount of pixels for the class low vegetation compared to the actual relative amount of labels for

that class in DT. (cf. green and red bars for the class low vegetation in Figure 6.8). This gap

is much smaller for the predictions generated by variant VRD. Thus, this problem is assumed to

be related to applying ABN. Recall that when applying ABN, the marginal distributions of the

features obtained for images from DT are aligned to the ones that are used during training on the

images from DS. As the features are related to the underlying global label distributions of both

domains, this alignment might not be meaningful if there are considerable differences in the global

label distributions of both domains. In the toy example provided in Section 2.6.1 it was shown that

ABN can result in a relative shift of the decision boundary towards a class which is more frequent

in DT compared to DS. It is assumed that a similar effect is observed in the adaptation scenario

H → N , considering the class LV to be considerably more frequent in N than in H. Consequently,

in the adaptation scenario H → N this effect results in many false negative predictions for the class

low vegetation, because the decision boundaries are shifted towards the features that correspond to

the class LV .

6.3 Results of Experiment Set E3: Evaluation of Parameter Selection. 131

A look at the confusion matrix obtained for this adaptation scenario using the variant VRD,ABN

shows that in most cases of false negative predictions for the class low vegetation, the class high

vegetation is predicted instead, which can also be seen in Figure 6.6. The reason why the class high

vegetation is predicted instead is probably because this class has the most similar appearance in

the images and, thus, those two classes are difficult to distinguish. Interestingly, the class building

is not negatively affected by the fact that there is a much higher fraction of pixels showing the class

building in the source domain. Actually, when applying ABN as a subsequent adaptation step, the

performance of that class increases (cf. the difference between the green and orange bars for the

scenario H → N in Figure 6.7). It is assumed that the features for the class building are rather

well separated from those of the other classes and, thus, aligning the activation distributions will

not lead to wrong decision boundaries. To conclude this observation, it was found, that applying

ABN may reduce the performance in the scenario in which the global label distributions are very

different. However, classes which are easy to differentiate from the other classes may not be affected

by this phenomenon.

Coming back to the thirst research question posed in Section 1.2, whether or not ABN can

improve the performance of UDA actually depends on the adaptation scenario. It seems to work

well in scenarios in which the global label distributions are rather similar but fails if they are

rather different. This is problematic in a real application, because the label distribution in the

target domain is unknown in an UDA setting. However, the strategy might be used if one has

additional knowledge about the data in the domains. For example, the similarity of the global

label distributions of two domains could be assessed by a visual inspection, which is probably much

less time consuming than the labelling process in many applications.

6.3 Results of Experiment Set E3: Evaluation of Parameter

Selection.

To evaluate the proposed entropy based parameter selection strategy it is compared against the

strategy of using the parameter values obtained after a fixed number of iterations, which is used

in most methods in the literature. To this end, the variant VRD is considered, i.e. ABN is not

considered here, because it has no impact on the parameter selection during appearance adaptation.

In the adaptation process of each adaptation scenario, the performance of the classifier after each

training epoch in terms of the F̄1 score on the test set of the target domain is tracked and compared

against the performance that was achieved when using the parameter set that resulted in the

minimal average entropy in DT. The results are illustrated in Figure 6.9.

First of all, in most scenarios a positive trend of the F̄1 score is visible, which means that the

adaptation process continuously improves the performance of the classifier in the target domain.

The duration of the adaptation process of 50 epochs seems to be enough in most scenarios, but

some still show an ascending trend towards the end of UDA, for example the scenario P20 → V20

(cf. red curve in the scenarios DT= V20 in Figure 6.9).

132 6 Results and Discussion

DT= B DT= H DT= N

F̄
1
[%

]

70

75

60

64

68

80

82

75

80
60

70

72
74
76
78

72

74

76

65

70

60

80

epoch epoch epoch

DT= P20 DT= V20

F̄
1
[%

]

70

72

74

78
80
82

DS= B

DS= H

DS= N

DS= P20

DS= V20

Min. ent.

N.T.

78

80

75

80

75

80

82

83

20 40

76

78

epoch epoch
Figure 6.9: Evaluation of the stopping criterion. Coloured lines correspond to the performance of the

classifier in DT in the UDA process as a function of the training epoch. Broken black lines

correspond to the performance if the entropy based stopping criterion is applied (Min. ent.), and

the dotted black lines indicate the performance of näıve transfer (N.T.).

On the other hand, the scenario B → P20 (cf. blue curve in the lower left group in Figure 6.9)

already shows a decreasing trend, which indicates that a longer training would lead to a further

reduction of the performance if the last parameter state would be used for inference. This shows

that setting a fixed number of training epochs is likely to result in a decreased performance for some

scenarios. It can also be seen that the F̄1 score can drastically change from one epoch to the next.

This is well visible in the scenario N → H (cf. green curve in the scenarios DT= H in Figure 6.9).

Here, the F1 scores show a positive trend during most of the adaptation process, but it drops to

a very low value towards the end, just to recover immediately afterwards. If the parameter state

in this epoch had been selected, the scenario would have resulted in a large negative transfer. The

6.4 Results of Experiment Set E4: Comparison to other Strategies and Methods 133

same applies for three more scenarios, namely N → B, P20 → N and B → V20. It is noted that

in these four scenarios, the parameter state which was selected by the proposed selection criterion

corresponds to an epoch earlier than the epoch in which the drop occurred.

When assessing the performance of the classifiers selected based on the entropy in DT, all of

them correspond to a positive transfer, i.e. the corresponding F̄1 score is higher than the one after

näıve transfer. In most scenarios, a parameter state was selected that is close to the maximum

performance tracked during the UDA process, although only in a a single case the very best epoch

was selected. On average, i.e. considering the average over all scenarios, the classifiers selected by

the proposed criterion achieve a performance of F̄1 = 77.7%, which is only slightly better than

the performance of the classifiers that would be obtained when using the last state that achieve

a F̄1 score of 77.6%. In 11/20 scenarios using the states with the minimum entropy in DT is

better than the last states, it is worse in 7/20 scenarios. In the remaining two scenarios the last

state corresponds to the one selected by the proposed method. Although the improvement is only

marginal on average, the advantage of the method becomes clearer, when considering the worst

case scenario. To that end, the lowest performance per scenario in the epochs 40-50 are averaged,

resulting in a F̄1 score of 73.3% on average, which is considerable lower than the result when using

the proposed strategy for parameter selection (F̄1 = 77.7%). Looking at the average performance of

the classifiers when using the best parameter states, a F̄1 score of 78.5% could have been achieved,

which underlines that the method failed to pick the very best parameter state.

Addressing the fourth research question from Section 1.2, it can be concluded that the parameter

selection criterion is better than training for a fixed number of epochs; whether or not the difference

in the performance is considerable, depends on the scenario. In the scenario presented above,

training for a fixed number of 50 epochs would result in a comparable performance. However, it

was shown that considerable performance drops occur and if this would happen at the very last

epoch, the difference would become larger. Thus, even though the proposed selection criterion,

even though it fails to pick the very best parameter state in most cases, is well suited to pick a

good epoch and particularly to avoid selecting an epoch that has a very poor performance.

6.4 Results of Experiment Set E4: Comparison to other

Strategies and Methods

In this section, the results of the experiment sets E4.1 and E4.2 are reported. In the first set,

the main strategy for UDA used in the proposed method will be compared to other strategies for

UDA. In the second set, the proposed method is compared to other methods for UDA in RS from

literature. In both sets, the variants VRD and VRD,ABN , which were selected in experiment set E2,

are considered.

134 6 Results and Discussion

6.4.1 Experiment set E4.1: Comparison to other Strategies.

In this section, the main strategy for UDA proposed in this thesis, i.e. appearance adaptation with

an optional extension of representation transfer, is compared to other strategies for UDA. Table 6.14

summarises the variants that are compared in this experiment set (cf. also Section 5.3.4).

Str. Explanation

N.T. Näıve transfer

ABN Adaptive batch normalisation

VRD Proposed method (Appearance adaptation) variant VRD

VRD,ABN Proposed method (Appearance adaptation + ABN) variant VRD,ABN

RT (e)

Representation matching following (Tsai et al., 2018)

(early layer)

RT (l) (late layer)

RT (e+l) (early and late layer)

IT (a)

Instance transfer following (Vu et al., 2019)

(adversarial alignment)

IT (d) (direct minimisation)

IT (a+d) (adversarial alignment

and direct minimisation)

ID-ST Performance in intra-domain setting

Table 6.14: Overview over the different strategies and variants for UDA compared in the experiment set

E4.1. For details, cf. Section 5.3.4. Str.: Strategy.

For a better overview, the individual results of all combinations of source and target domains

are omitted. Instead, the average performance is compared. In Table 6.15 the F̄1 score for each

source domain averaged over all target domains is presented for each variant. Table 6.16 shows the

average F̄1 score for each target domain averaged over all source domains for each variant.

The comparison in Table 6.15 shows that one of the variants of the proposed method achieves

the best average performance for all source domains. For DS= B, using ABN performs very well.

Here, the variant VRD,ABN achieves the highest F̄1 score, followed by only applying ABN and the

variant VRD. In the scenarios in which DS= H, the variant VRD performs best, being the only

variant that achieves an positive transfer on average. In these scenarios the representation transfer

based approach in which the representations of an early layer are aligned performs second best and

the variants that use adversarial instance transfer achieve a comparable performance, yet, all result

in a negative transfer on average. The variant that uses direct entropy minimization results in a

rather large negative transfer of −8.9% with respect to the F̄1 score.

It is also noted that using only ABN to perform UDA works rather well. For the source domains

B, N and V , ABN achieves the third best results. For the source domain P20, ABN performs

relatively badly, but still results in an average improvement of 1.8% in F̄1. Only for the source

domain H, ABN results in a negative transfer (−1.4%) on average. The combination of appearance

adaptation and ABN in variant VRD,ABN outperforms ABN for all source domains.

6.4 Results of Experiment Set E4: Comparison to other Strategies and Methods 135

PPPPPPPStr.

DS

B H N P20 V20 Avg.

N.T. 73.6±0.8 77.5±0.6 76.6±0.4 72.3±0.6 72.8±0.5 74.6±0.4

ABN 77.3 (3.7) 76.1 (−1.4) 78.3 (1.7) 74.1 (1.8) 76.0 (3.2) 76.4 (1.8)

VRD 76.5 (2.9) 79.0 (1.5) 79.6 (3.0) 76.2 (3.9) 77.2 (4.3) 77.7 (3.1)

VRD,ABN 78.5 (4.9) 76.5 (−1.1) 79.6 (3.0) 76.6 (4.2) 77.9 (5.1) 77.8 (3.2)

RT (e) 74.8 (1.2) 77.3 (−0.3) 77.2 (0.5) 73.6 (1.3) 73.4 (0.5) 75.2 (0.7)

RT (l) 76.1 (2.5) 74.9 (−2.7) 76.0 (−0.6) 74.6 (2.3) 73.9 (1.1) 75.1 (0.5)

RT (e+l) 76.2 (2.6) 75.4 (−2.1) 76.5 (−0.1) 74.9 (2.6) 75.3 (2.5) 75.7 (1.1)

IT (a) 75.2 (1.6) 77.2 (−0.3) 75.8 (−0.9) 74.2 (1.8) 74.4 (1.6) 75.4 (0.8)

IT (d) 74.8 (1.2) 68.7 (−8.9) 76.9 (0.3) 73.6 (1.2) 73.1 (0.3) 73.4 (−1.2)

IT (a+d) 75.5 (1.8) 77.0 (−0.6) 76.8 (0.2) 74.8 (2.4) 74.0 (1.2) 75.6 (1.0)

Table 6.15: Comparison of different strategies for UDA. Average F̄1 score in % by source domain after

adaptation to each target domain (averaged over the target domains). Values in parentheses cor-

respond to the improvements compared to näıve transfer (N.T.). Str.: Strategy. Avg.: Average

F̄1 score by source domain. For the results of näıve transfer, the standard deviation over five

training runs are reported.
PPPPPPPStr.

DT

B H N P20 V20 Avg.

N.T. 78.4±0.2 60.3±1.2 78.6±0.5 75.9±0.3 79.9±0.2 74.6±0.4

ABN 78.5 (0.1) 65.8 (5.5) 78.5 (−0.1) 79.1 (3.2) 79.9 (0.1) 76.4 (1.8)

VRD 79.9 (1.5) 69.4 (9.1) 80.7 (2.1) 77.5 (1.6) 81.1 (1.2) 77.7 (3.1)

VRD,ABN 79.5 (1.1) 70.5 (10.2) 79.3 (0.8) 79.1 (3.2) 80.7 (0.8) 77.8 (3.2)

RT (e) 79.1 (0.8) 61.7 (1.4) 79.5 (1.0) 75.7 (−0.1) 80.1 (0.3) 75.2 (0.7)

RT (l) 79.6 (1.2) 60.9 (0.6) 77.9 (−0.6) 76.8 (1.0) 80.4 (0.6) 75.1 (0.5)

RT (e+l) 79.7 (1.4) 62.4 (2.1) 78.5 (−0.0) 77.1 (1.2) 80.6 (0.7) 75.7 (1.1)

IT (a) 79.0 (0.7) 61.1 (0.8) 79.4 (0.8) 76.7 (0.9) 80.6 (0.7) 75.4 (0.8)

IT (d) 70.0 (−8.4) 61.1 (0.8) 79.3 (0.7) 76.6 (0.8) 80.0 (0.2) 73.4 (−1.2)

IT (a+d) 79.5 (1.1) 62.1 (1.8) 79.3 (0.7) 77.0 (1.1) 80.1 (0.3) 75.6 (1.0)

ID-ST 87.1±0.2 80.3±0.2 85.5±0.2 89.1±0.1 84.3±0.2 85.3±0.2

Table 6.16: Comparison of different strategies for UDA. Average F̄1 score in % by target domain after

adaptation from each source domain (averaged over the source domains). Values in parentheses

correspond to the improvements compared to näıve transfer (N.T.). Str.: Strategy. Avg.: Av-

erage F̄1 score by target domain. ID-ST: Performance of a classifier trained in the respective

target domain. For the results of näıve transfer, the standard deviation over five training runs

are reported.

An analysis of Table 6.16 shows that for all target domains, both variants of the proposed method

achieve the highest scores. In the two sets DT= H and DT= P20, the variant VRD,ABN outperforms

the variant without ABN. For DT= P20, using only ABN performs also very well, but for DT= H

the strategy of only using ABN is considerably worse compared to the variant VRD,ABN . In this set

of scenarios, i.e. for DT= H, the proposed method outperforms the other strategies by the largest

margin of up to 10% in the F̄1 score. The difference of the performance using variant VRD,ABN for

the target domain P20 to most other approaches is also considerable with a difference of 2 − 3%

in the average F̄1 score. For the other target domains, the proposed method is only slightly better

than the other strategies.

136 6 Results and Discussion

The results indicate that the proposed strategy is superior to simple variants of representation

transfer and instance transfer in most scenarios and both variants outperform such strategies on

average. However, there is no clear winner when comparing the two variants of the proposed

method, which was already discussed in Section 6.2.4.

6.4.2 Experiment Set E4.2: Comparison to other Methods

In this section, the proposed method for UDA in the variants VRD and VRD,ABN is compared to

three methods from the literature by applying them to the same adaptation scenario on which these

methods were evaluated in the original publications. The results are presented in Table 6.17.

[%] class-wise F1 score [%]

UDA OA F̄1 SG BU LV HV VH CL

P ′
5(RGB)→ V ′

9(IRG)

I)
N

n.r.
32

n.r.
Y 49

Prop.

N 60.4 52.8 63.5 74.9 31.4 75.5 63.5 8.1

VRD 65.1 56.9 59.5 75.4 43.8 77.6 62.4 12.7

VRD,ABN 68.0 60.5 69.4 84.5 45.9 72.1 67.1 23.8

P ′
5(IRG)→ V ′

9(IRG)

II)
N 52.6 38.8 51.0 61.2 28.6 69.5 14.0 8.2

Y 68.2 58.5 72.9 73.3 58.9 73.7 54.0 18.2

III)
N

n.r.
44.3 60.6 72.4 39.6 66.4 22.5 4.4

Y 65.8 81.5 87.4 61.2 77.2 73.0 14.2

Prop.

N 76.3 66.5 79.8 87.5 60.7 79.3 68.7 22.9

VRD 77.7 67.8 81.1 90.3 58.6 79.4 68.9 28.9

VRD,ABN 78.8 70.3 82.6 90.1 64.4 79.2 73.4 31.8

Table 6.17: Comparison to I) (Benjdira et al., 2019), II) (Ji et al., 2020) and III) (Zhao et al., 2023) based

on UDA between Potsdam and Vaihingen. Column UDA indicates whether the results were

achieved with UDA (Y) or without UDA (N), the latter case indicating that the source classifier

was applied to DT without any adaptation (näıve transfer). Prop.: Variant of the UDA method

proposed in this thesis. n.r.: not reported in the original publication.

It can be seen that using the proposed method for source training already leads to better per-

forming classifiers compared to the classifiers that were adapted using the methods proposed in

(Benjdira et al., 2019), (Ji et al., 2020) and (Zhao et al., 2023). In the first setting it can be argued

that the strategy for dealing with different GSDs in DS and DT has a major impact on the perfor-

mance. In particular, in the proposed method, the source training was performed on the resampled

dataset P ′
9 instead of P ′

5 as done in (Benjdira et al., 2019). This is assumed to drastically decrease

the initial difference between the domains and, thus, to lead to the better performance in DT

without UDA. Zhao et al. (2023) also perform an explicit resampling considering the GSD in both

domains during UDA, but not in their strategy for näıve transfer, which explains the poor initial

performance of F̄1 = 44.3% reported in that work. However, when comparing to (Ji et al., 2020),

6.4 Results of Experiment Set E4: Comparison to other Strategies and Methods 137

the initial performance in DT after source training is also much higher when using the proposed

method although Ji et al. (2020) resample the data from DS to a GSD of 10 cm, which is close to

the GSD in DT. It is assumed that the higher performance of the proposed method in DT after

source training is caused by the radiometric and geometric data augmentation used in this thesis.

In particular, Ji et al. (2020) perform only random cropping without rotation and no radiometric

augmentation, whereas in the proposed method the images are randomly rotated and augmented

radiometrically. This has a major impact on the initial performance, as shown in (Wittich, 2020).

Besides, the choice of the architecture for the classifier and the loss function may affect the initial

performance of the classifier in DT.

As reported in the respective publications, the classifiers from (Benjdira et al., 2019), (Ji et al.,

2020) and (Zhao et al., 2023) could further be improved using UDA. The same applies for the

classifiers adapted using the proposed method. Here, the absolute improvement with respect to

the global metrics is smaller compared to the improvements reported in (Benjdira et al., 2019), (Ji

et al., 2020) and (Zhao et al., 2023). However, this is to be expected because the initial classifiers

already perform much better even before applying UDA. In both adaptation scenarios, the F1 score

for the class high vegetation is slightly worse after adaptation when using the variant VRD,ABN ,

while it could be improved when using the variant VRD. For all other classes, the variant VRD,ABN

achieves the best F1 scores, clearly outperforming the methods from the literature by quite a large

margin. The variant VRD,ABN also outperforms the variant VRD. Considering the findings from

the previous experiment this is to be expected, because the marginal label distributions in the two

domains are not too different, in which case ABN seems to work very well.

Lastly, it has to be highlighted that both variants of the proposed method for UDA resulted in

a positive transfer in the inhomogeneous UDA setting, i.e. the setting in which the RGB data are

used in DS, whereas in DT, the data are the IRG images. This means that the method could cope

with a scenario in which different features are available in the two domains, i.e. in an inhomogeneous

UDA setting. An example for the appearance adaptation is given in Figure 6.10.

a) b) c) d)

Figure 6.10: Example for image adaptation from RGB to IRG. a) Image from DS(P20) b) Image adapted to

appearance from DT (V20) c) Reference label map. Class structure as in the caption of Figure 5.2

d) Exemplary image from DT to visualize the appearance of various objects in that domain.

138 6 Results and Discussion

A qualitative assessment of the appearance adaptation reveals that the images from DS are

adapted in a meaningful way, because they give an impression similar to images in DT and seem

to be semantically consistent. In particular, the areas that correspond to high vegetation and

low vegetation are changed in the appearance adaptation. The trees appear with a saturated red

colour, which is representative for healthy vegetation in the false-colour images as the red-channel

corresponds to the infra-red band. From the results of this experiment it is deduced that to some

extent the proposed method can also deal with inhomogeneous UDA scenarios.

6.5 Results of Experiment Set E5: Evaluation of UDA for

Deforestation Detection

In this experiment set, the proposed method for UDA, i.e. the variants VRD and VRD,ABN , are

evaluated for the application of deforestation detection. Following (Soto et al., 2021), the F1 score

for the class deforestation, denoted by F1,D, is used to assess the performance of the classifiers

after source training and after UDA.

Source Training and Näıve Transfer: First, the results of source training are presented and

discussed. Following (Soto et al., 2021), only one variant of source training is used to evaluate both,

the intra domain performance but also the initial cross-domain performance corresponding to the

näıve transfer approach. That means that no source training variant is used that is optimized for

the cross-domain evaluation. The results are summarised in Table 6.18.

PPPPPPPDS

DT

MA PA RO

MA 92.0±0.4 45.2±1.7 34.3±2.4

PA 73.2±4.5 74.1±1.6 50.6±2.8

RO 45.4±10.3 30.8±4.6 81.0±2.0

Table 6.18: F1,D in % obtained for the test set in DT after supervised training on the training set of DS

and using the validation set of DS for parameter selection. The reported values are average and

standard deviation of the F1,D scores over five training runs.

For the three domains, there is a rather large difference in the intra-domain performance (cf.

elements on the main-diagonal in Table 6.18). The performance in MA is the highest, achieving

F1,D = 92.0%. The scores in PA and RO are about 18% and 11% lower, respectively.

Comparing the cross-domain performance (cf. off-diagonal elements in Table 6.18) to the intra-

domain performance it can be seen that there is a major drop in the performance, and the respective

standard deviations are quite high. This indicates that the classifiers trained in each domain tend

to overfit to the respective domain and show a poor generalisation capability to the other domains.

This can be explained with the fact that the datasets are relatively small (cf. Table 5.4).

6.5 Results of Experiment Set E5: Evaluation of UDA for Deforestation Detection 139

Unsupervised domain adaptation: The results of UDA using VRD are presented in Table 6.19,

and Table 6.20 shows the result of UDA using the variant VRD,ABN . Using either variant for UDA,

a positive transfer is achieved in all adaptation scenarios, except for the scenario MA → RO, in

which the variant VRD results in a negative transfer of −0.4% in F1,D. In this adaptation scenario,

two of the five repetitions resulted in a considerable negative transfer of up to −15% in F1,D while

in the other three training runs a positiver transfer was achieved. This leads to the high standard

deviation in the F1,D score which indicates that the method is not very stable in this adaptation

scenario. The same applies for the variants PA → MA and PA → RO, in which the standard

deviations are also relatively high. However, in those two scenarios no negative transfers occurred

in the individual training runs.

PPPPPPPDS

DT

MA PA RO

MA - 65.7±0.8
(20.5)

42.1±13.1
(7.7)

PA 85.7±4.4
(12.5) - 61.0±9.4

(12.7)

RO 85.6±6.4
(40.2)

52.4±3.2
(21.6) -

ID-ST 92.0±0.4 74.1±1.6 81.0±2.0

Table 6.19: F1,D scores in % obtained for the test set in DT after source-training in DS and adapting to DT

using the variant VRD. The last row presents the results of a classifier trained in DT (cf.elements

on the main diagonal in Table 6.18). The reported values are the averages and standard deviations

over five training runs. The values in parentheses correspond to the improvement compared to

applying näıve transfer (cf. off-diagonal elements in Table 6.18).

PPPPPPPDS

DT

MA PA RO

MA - 61.4±0.6
(16.2)

61.3±8.2
(27.0)

PA 89.7±0.6
(16.5) - 64.2±5.9

(15.9)

RO 90.6±0.9
(45.1)

59.3±4.1
(28.5) -

ID-ST 92.0±0.4 74.1±1.6 81.0±2.0

Table 6.20: F1,D scores in % obtained for the test set in DT after source-training in DS and adapting to

DT using the variant VRD,ABN . The structure of the table corresponds to the one of Table 6.19.

The variant VRD,ABN also shows quite high standard deviations in some adaptation scenarios, but

in most cases the average performance is higher than the average performance that was achieved

when using VRD. The only exception is the scenario MA → PA, in which the variant VRD

performed better (4.3% in F1,D on average).

Averaged over all adaptation scenarios, the variant VRD,ABN resulted in considerable improve-

ments compared to applying näıve transfer with an increase between 16.2% and 45.1% in the F1,D

score and an average improvement of 24.9%. In comparison, the average improvement when using

140 6 Results and Discussion

VRD is 19.2% which is considerably lower but still quite high compared to the improvements that

were achieved for the application of land cover classification. Comparing the two variants, the vari-

ant VRD,ABN is clearly preferable in this application, because it achieves a better performance on

average and does not result in any negative transfer. The performance in the scenarios PA→MA

and RO →MA when adapting using the variant VRD,ABN is considered to be even comparable to

the performance that is obtained when training a classifier in DT with a remaining performance

gap of less than 2.3% in the F1,D score. When comparing this value to the size of the initial

performance gap when applying näıve transfer, i.e. of 46.6% in F1,D in the scenario RO →MA, it

can be concluded that the method almost fully bridges the performance gap. On the other hand,

the remaining performance gap for the target domain PA is still about 15% and for RO it is about

20% in F1,D. Thus, in those scenarios, the method can bridge the performance gap only partially,

but still to a large extent.

In Figure 6.11, exemplary predictions made by the adapted classifiers are shown.

H
HHHHDS

DT

MA PA RO

MA -

PA -

RO -

Ref.

Xe

Xl

Figure 6.11: Exemplary predictions made by the adapted classifiers. Rows 1-3 show the predictions by the

classifiers that were trained in the respective source domain and adapted to the target domain

using variant VRD,ABN . The fourth row shows the corresponding reference. The last two rows

show the RGB channels of the earlier image (Xe) and later image (Xl) for the patches. Colour-

code as in Figure 5.3. Note that the padded areas are also visualised in grey colour. Ref:

Reference.

6.5 Results of Experiment Set E5: Evaluation of UDA for Deforestation Detection 141

On a first glance, the predicted label maps look very similar to the reference maps. The label

maps predicted for PA miss some deforestation areas completely, in particular when adapting from

RO. In RO, there is one region that is falsely predicted as no deforestation to a small extent by

the classifier adapted from PA and to a larger extent by the classifier adapted from MA. In total,

there are no obvious false positive predictions for the class deforestation.

Based to these results it is concluded that the proposed method for UDA does not only perform

well for the application of land cover classification based on aerial imagery, but also for the appli-

cation of deforestation detection based on satellite imagery. Regarding the first scientific question,

posed in Section 1.2, it can be said that for the application of bi-temporal deforestation detection

the proposed method, i.e. the variant VRD,ABN , does achieve a stable positive transfer and can

reduce the performance gap by a large amount, yet not completely in all scenarios.

Comparison to Soto et al. (2021): In this comparison the domain RO is replaced by RO0

because this domain was used in (Soto et al., 2021). Note that in this comparison, only the variant

VRD,ABN is evaluated, because it performed better for the application of bi-temporal deforestation

detection. The results are summarised in Table 6.21.

Proposed (Soto et al., 2021)
PPPPPPPDS

DT

MA PA RO0 MA PA RO0

S
.T

./
N
.T

.

MA 92.0 45.2 24.9 85.5 70.7 47.9

PA 73.2 74.1 30.2 41.7 83.2 20.5

RO0 59.4 32.0 64.7 60.3 35.5 67.0

U
D
A

MA - 61.4 47.2 - 72.0 45.4

PA 89.7 - 44.7 48.0 - 48.0

RO0 87.2 48.4 - 67.0 51.0 -

Table 6.21: Comparison of the method proposed in this work to (Soto et al., 2021). F1,D score in % obtained

for the test set in DT 1) after source training (S.T.) in DS (upper three rows) and 2) after source-

training in DS and adapting to DTusing UDA (lower three rows). The off-diagonal elements in

the upper matrices correspond to the results of näıve transfer (N.T.). The highest performance

for each scenario is printed in bold font.

After source training, the classifiers achieve quite heterogeneous results in both the intra-domain

(DS=DT), and the cross-domain evaluation (DS ̸=DT). The classifier trained on MA (first row in

Table 6.21) using the proposed method achieves a higher score (F1,D = 92.0%) when evaluated on

the same domain compared to (Soto et al., 2021) (F1,D = 85.5%). However, if the classifiers are

evaluated in the other domains those trained in (Soto et al., 2021) perform much better (about

25% in F1,D in both cases). The initial performance of the classifiers trained on RO0 using both

methods achieve similar F1,D scores for all three target domains, but the classifier trained in (Soto

et al., 2021) is slightly better in all three cases. When training on PA the proposed method achieves

a lower intra-domain score compared to (Soto et al., 2021), but performs better when applied to

142 6 Results and Discussion

the other two domains. When using the proposed method, the intra-domain performance is lower

compared to (Soto et al., 2021), but the cross-domain performance is higher in both target domains.

On average, the performance after source training is not too different between both methods. The

proposed method achieves an average cross-domain performance of F1,D = 44.2% while Soto et al.

(2021) report F1,D = 46.1%. The average intra-domain performance using the proposed method is

F1,D = 76.9% and Soto et al. (2021) report F1,D = 78.6%. Thus, the initial performance using the

proposed method is about 2% worse compared to Soto et al. (2021). In this context, it has to be

noted that no hyper-parameter tuning for source training in terms of optimising the performance on

a validation set of either domain was performed for the application of deforestation detection. The

only changes in the hyper-parameters are based on preliminary experiments on related datasets or

adapted from (Soto et al., 2021).

When assessing the performance of the classifiers after UDA, the results are again very hetero-

geneous. The performance reported in (Soto et al., 2021) is higher for the scenarios MA → PA,

RO0 → PA and PA → RO0, but in the remaining three scenarios the proposed method obtains

better results in terms of F1,D. In the scenarios MA → RO0, RO0 → PA and PA → RO0, the

difference is rather small, with a maximum difference of 3.3% with respect to F1,D. In the setting

MA→ PA, the method by Soto et al. (2021) outperforms the proposed method by about 10% in

F1,D. The largest differences can be observed in the scenarios RO0 →MA and RO0 →MA, where

the proposed method performs better by about 20% and 40% in the F1,D score, respectively. On

average over all adaptation scenarios, this leads to a higher performance, with a F1,D of 63.1%

using the proposed method against 55.2% achieved by the method from (Soto et al., 2021). It is

concluded that the proposed method strongly outperforms the method from (Soto et al., 2021) in

two settings and the average performance is also higher by about 8% in the F1,D score. Further-

more, applying the method by Soto et al. (2021) results in one negative transfer in the scenario

MA → RO0. However, as the method by Soto et al. (2021) resulted in a better performance in

half of the scenarios, there is no clear winner in the comparison.

Lastly, it is again noted that besides the change in the architecture of the classifier, the batch-

size, the patch size and the learning rate related to C, all hyper-parameters of UDA are based on

the tuning for land cover classification. Using additional settings for tuning the method to this

application is assumed to result in a better performance of UDA. However, tuning the method

would require an additional pair of source and target domains, which was not available at this

point.

143

7 Conclusions and Outlook

7.1 Conclusion

In this thesis, the problem of deep unsupervised domain adaptation for the pixel-wise classification

of images was addressed with a focus on applications from remote sensing. A method for deep

UDA was proposed that is based on the strategy of appearance adaptation with an optional exten-

sion using adaptive batch normalisation, a method for UDA from the literature. For appearance

adaptation, a new training scheme was proposed that is based on jointly training an appearance

adaptation network and the actual classification network. This training scheme aims to perform

semantically consistent appearance adaptation, which is required for successfully adapting a clas-

sifier to the target domain. Two methods were proposed that build upon the joint training scheme

and aim to further improve the semantic consistency in scenarios in which differences related to

the label distributions in both domains pose additional challenges. The first method is based on

regularising the output of the domain discriminator network and the second method corresponds to

an extension of the architecture using an auxiliary image generation network. To further improve

the performance of UDA, a parameter selection criterion was proposed, which aims to find a good

parameter state during the adaptation process.

In the experiments, the method was evaluated on multiple adaptation scenarios and two different

applications from remote sensing. It was shown that the joint training scheme can achieve a positive

transfer on average (+1.8% in the F̄1 score), evaluated on 20 different adaptation scenarios related

to the task of land cover classification based on aerial imagery. However, some adaptation scenarios

remained problematic when using this training scheme without further modifications, resulting in

a negative transfer. An evaluation of the appearance adaptation revealed that only using the

joint training scheme is not sufficient to achieve semantically consistent appearance adaptation in

difficult scenarios, which points out the limitations of this training scheme. However, applying the

two methods aiming at an improved semantic consistency was shown to alleviate those problems

to a large extent, i.e. they could increase the semantic consistency, leading to an improved average

performance of the classifiers after UDA and a reduction of the number of negative transfers. The

method which is based on regularising the output of the domain discriminator network was found to

be preferable over the variant that uses the auxiliary generator, because it resulted in a comparable

improvement of the average performance, while at the same time avoiding a negative transfer in

96/100 cases. Due to the very low rate of negative transfers, this variant is considered to be the

most stable one.

A combination of the proposed method for UDA based on appearance adaptation with adaptive

batch normalisation was evaluated and it could be shown that this results in a slightly larger aver-

144 7 Conclusions and Outlook

age performance of the adapted classifiers, evaluated on the 20 adaptation scenarios for land cover

classification. Considering the average performance of the combined method, it could compensate

for about one third of the initial performance gap, reducing it from 10.7% to 7.5% in F̄1 on average

for the application of land cover classification. In several adaptation scenarios, the improvement

of the classifier due to UDA was much higher, with up to 14.4% with respect to the F̄1 score, and

in a few scenarios, the performance of the classifiers after adaptation were actually comparable to

the performance of the classifier trained in the target domain with a remaining performance gap

of about 1% in F̄1. However, in those scenarios the initial performance gap was rather small and

the improvement due to UDA was only minor. On the other hand, when using the combination of

appearance adaptation and ABN, considerable negative transfer occurred in two of the 20 adapta-

tion scenarios. A detailed analysis of five adaptation scenarios showed that the extension by ABN

seems to work well whenever the differences in the global label distributions of source and target

domain are not too different. If this prerequisite is not fulfilled, the classifiers adapted using ABN

will have problems to correctly predict classes that are overrepresented in one of the domains and

that at the same time have an appearance that is similar to another class. Consequently, whether

the performance of UDA using appearance adaptation can be improved when combining it with

ABN depends on the adaptation scenario. The combined variant has a higher potential of reducing

the performance gap but at the same time it is less stable than using only the proposed method

for appearance adaptation without ABN.

The proposed method, i.e. the variants with and without ABN, were further evaluated for the

application of bi-temporal deforestation detection based on satellite imagery. It was shown that

both variants work well in this application, evaluated on three different datasets showing regions

in Brazil. For this application, the combination of appearance adaptation and adaptive batch

normalisation performed better than only using appearance adaptation in 4/6 adaptation scenar-

ios and with respect to the average performance. Using the combined method, the classification

performance was improved by 25.5%, i.e. from 46.6% to 71.1%, on average in the F1 score of

the foreground class, thus, compensating for more than two thirds of the initial performance gap

(−35.8%). In one scenario, an even larger improvement of 45.1% in the F1 score of the foreground

class was achieved, resulting in a performance comparable the one of a classifier that was directly

trained in the target domain. In the other settings, the proposed method could also improve the

classification performance by a large margin, which, however, to a large amount is related to the

fact that the initial performance of näıve transfer was rather poor.

The evaluation in different adaptation scenarios also revealed some limitations of the method.

For example, in some of the evaluated adaptation scenarios, trees without leaves only appear in the

target domain, but not in the source domain. In those scenarios, the classes high vegetation were

frequently confused with low vegetation, because the two classes look very similar in aerial images.

Such classification errors could barely be prevented by the proposed method for UDA, resulting in

a rather poor performance of the classes high vegetation and low vegetation after UDA. In general,

if objects of one class in the target domain look more similar to objects of another class in the

source domain than objects of the same class in the source domain, appearance adaptation will

probably fail to compensate the domain gap.

7.1 Conclusion 145

Another contribution proposed in this thesis is a method for selecting the parameters of a classifier

during UDA. The proposed method is rather simple and can be integrated in various methods for

deep UDA. In a set of experiments it was shown that this method is superior to the common

strategy of simply running the UDA for a fixed number of iterations. Although in the experiments,

this strategy achieved only a minor improvement on average, it was shown that it can help to avoid

selecting a very bad parameter state. Thus it is considered to be superior to the common strategy

of simply running the UDA for a fixed number of iterations.

To further assess the proposed method, it was compared against several different strategies and

methods for deep UDA from the literature. It was shown that the proposed method outperforms

other adaptation strategies by at least 1.4% in the average F̄1 score, evaluated on the task of

land cover classification. Compared to three methods from the literature the combined method

outperformed those from the literature by a rather large margin of about 5−12% w.r.t. the F̄1 score.

In the corresponding experiments, it was also shown that the method can deal rather well with an

inhomogeneous adaptation scenario, even though it was not explicitly developed for such a setting.

The method was also compared to one that addresses deep UDA for bi-temporal deforestation

detection. When comparing to the results reported for that method in the literature, the method

proposed in this thesis achieved a comparable performance in most settings, but outperformed the

method from the literature by a large margin in two adaptation scenarios and by about 8% in the

F1 score of the foreground class on average over all adaptation scenarios.

To conclude, the contributions proposed in this thesis do not completely solve the main problem of

missing labelled training data in any scenario, because in many cases the classification performance

after adaptation is not at a satisfactory level. However, the contributions are considered as a step in

the direction of reducing the performance gap as much as it is possible given the available training

data. It was shown that in a few scenarios, the proposed method leads to a major improvement of

the performance that is actually comparable to directly training in the target domain. In such a

setting, the method does indeed remove the requirement for having access to labelled data in the

target domain. However, it is not yet possible to automatically and reliably predict the performance

of a classifier after UDA. Thus, until this is possible, manual intervention is required to some extent,

for example to assess the similarity of two domains, to assess whether a domain adaptation was

successful or to assess if the classification results after UDA are satisfactory for the addressed

application.

Research Questions: The conducted experiments are considered to allow to answer all research

questions posed in Section 1. The first, second and third questions asked how the different variants

behave with respect to the stability, adaptation performance and where the limitations of the

method are. These aspects were directly addressed in the variant comparisons. The variant without

ABN but using the extension of the discriminator achieved the highest stability with almost no

negative transfers. Combining the method with ABN resulted in a higher performance for both

applications on average, but was shown to be limited to adaptation scenarios in which the global

label distributions of the source and target domains are not too different. The fourth research

question asked whether the proposed stopping criterion is better than using a fixed number of

146 7 Conclusions and Outlook

epochs during UDA. Based on the results of the experiments, this question can be answered with

yes. However, it is again noted that the stopping criterion failed to pick the very best parameter

states. Nevertheless, it helped to avoid to use a very bad parameter state, which is the main

reason why it is considered to be better than using a fixed number of epochs. In the experiments it

was also shown that the method clearly outperforms several existing methods and strategies for the

application of land cover classification and outperforms a method for UDA addressing deforestation

detection with respect to the average performance, but not in all scenarios. This allows to answer

the last research question, that asked how the method compares to approaches from the literature.

7.2 Outlook

The results of the experiments allowed to answer the initial research questions, but they also showed

that not all problems could be solved by the proposed method. In the following paragraphs an

outlook on possible extensions and future work is provided

Predicting and Assessing the Success of UDA: It the experiments, it was shown that in

some scenarios the proposed method for UDA can almost fully bridge the domain gap while at

the same time a very large performance gap remains in others. Having an automated method to

reliably estimate the success of UDA, either before it is applied or after having adapted the classifier

to the target domain, would help in this regard. Predicting the success of UDA in advance is very

challenging because it depends on many factors, such as the similarity of the appearance of objects

in the two domains and the similarity of the label distributions. In particular the latter one cannot

be assessed if no labels are available in the target domain. An alternative approach is to assess

the success of UDA after having adapted the classifier, i.e. by assessing the label maps predicted

by the adapted classifier for the target domain. For example, some hand-crafted criteria could

be applied, such as checking the height of buildings relative to the height of the ground, knowing

that they are in general higher by a couple of meters. Of course, this has the disadvantage of

requiring some knowledge about the target domain. Yet an alternative approach is to use a cyclic

adaptation approach, i.e. to adapt a classifier from the source domain to the target domain before

adapting it back to the source domain, an approach used e.g. in (Bruzzone and Marconcini, 2009).

A consistency after one cycle is a strong indicator for the adaptation to have been successful, but

does not guarantee it.

Further Improving the Semantic Consistency: Further potential for follow-up work is re-

lated to the proposed methods aiming to improve the semantic consistency. Both of these methods

have been shown to achieve their goal, however, it was also shown that in some scenarios the seman-

tic consistency was not perfect. One possible reason is that the hyper-parameters that are related

to the extensions were set to the same values for all domains. This may not result in an optimal

performance of those methods, as adaptation scenarios with a larger domain gap may require a

different set of hyper-parameters than those with a smaller domain gap. Consequently, it is sug-

gested to investigate the option of making the hyper-parameters adaptive to the performance of the

7.2 Outlook 147

appearance adaptation, which could, for example, be measured by the classification performance

of the domain discriminator. In that regard, much potential is seen in the extended adversarial

training scheme using the auxiliary generator. This concept has been proven to work in principle

as expected, even though it did not outperform the variant based on regulating the discriminator

output. However, it is considered to be much more flexible in principle, because it can better adapt

to the actual differences in the label distributions. It is noted that regarding the method using the

auxiliary generator, there is plenty of room for evaluating different hyper-parameters and architec-

tural design choices. For example, in the literature, several alternative loss functions for adversarial

training were proposed, e.g. (Mao et al., 2017), that have been shown to be superior to the regular

adversarial loss formulation for the task of image generation, but that were not evaluated in this

thesis.

Improving Adaptive Batch Normalisation: In the experiments, it was shown that ABN

has a high potential of further increasing the performance after UDA. At the same time, it was

shown that ABN struggles in an adaptation scenario in which the global label distributions between

source and target domain are very different. For future work, it is suggested to explicitly address

this problem of ABN, for example by performing a sample selection process of images that are

used to perform ABN, such that the label distribution of the selected samples is comparable to

the one in the source domain. In an UDA setting, this requires to use semi-labels, which might

be problematic if the initial performance of the classifier is rather poor. However, it was shown

that the proposed method for appearance adaptation results in a rather stable improvement of the

classifiers even in situations in which ABN results in a negative transfer. Thus, it is suggested to

use the classifier after adaptation using the proposed method for appearance adaption to predict

semi-labels, which then are used to improve the performance of ABN.

Parameter Selection: The proposed entropy based parameter selection criterion has been shown

to be well suitable for avoiding to select a very bad set of parameters. Nevertheless, it has largely

failed in selecting the very best set of parameters. This implies that the entropy is not a perfect

measure for the performance in the target domain. One reason could be that the average entropy

is lower in a constellation in which fewer objects, and, thus, fewer object boundaries are predicted,

because the entropy is usually high at the boundaries of objects. This means that the entropy

based parameter selection would prefer a parameter state in which fewer objects are predicted,

even though the classification performance is actually worse. Future work should address this

problem, for example by not considering the boundary areas in the predicted label maps when

calculating the average entropy, which has been shown to be advantageous in the context of direct

entropy minimisation in (Wittich, 2020).

Transition to other Training Scenarios: In future work, the proposed training scheme or

individual aspects of the proposed method could also be transferred to different training scenarios.

For example, the method could easily be transferred to a semi-supervised training scenario in which

few labelled images in the target domain are available. The joint training scheme could be used in

148 7 Conclusions and Outlook

the same way as in the UDA setting, but the classifier would be trained simultaneously using the

existing labelled data in the target domain. Having few labelled data in the target domain could

also be advantageous to better assess the differences in the label distributions, for example to decide

whether to apply ABN as a subsequent adaptation step. Another aspect of the proposed method

that could be transferred to another training scenario is the proposed use of an auxiliary generator.

The extended adversarial training scheme could also be used for appearance adaptation without

using the adapted images for domain adaptation. For example, the approach of CycleGAN could

be extended. This is supposed to improve the consistency in situations in which the two datasets

are very different with respect to the underlying class structure, which is of course given only

implicitly in this training scenario. As a last example, the proposed entropy based parameter

selection criterion could be transferred to many other settings, including supervised training. In

particular in scenarios where the amount of labelled training samples is limited but an additional

set of unlabelled samples is available, the proposed approach for parameter selection could be very

useful, because it does only require a set of unlabelled samples. Consequently, the unlabelled

samples could be used for parameter selection while all of the labelled data could be used for

training.

Transition to other Applications: Although the proposed method was only evaluated on

applications from remote sensing, it is not limited to this domain. In particular, the method can

directly be applied to any adaptation scenario in which the task is the pixel-wise classification.

With minor modifications, the approach could also be transferred to other image related task, such

as object detection, panoptic segmentation or multi-task problems. In principle, any task can be

used as long as the final loss can be propagated back to the input images. Besides, the approach

could also be transferred to different types of input data, such as image sequences or even point

clouds. Of course, this would require major changes of the architectures used, but it would not

require to change the training scheme.

Embedding the Method in Active Learning: When it comes to the practical use of deep

learning based approaches, it is often not yet possible to fully compensate for manually gener-

ated labels. The research field of active learning addresses this fact by developing strategies that

minimise the required human effort in the labelling process. Usually, this is done in an iterative

procedure. In the first step, the operator will provide some annotations which are used to train a

classifier. In the second step, the trained model is used to make predictions and aims to identify

difficult samples. Then the operator will label those samples, and the classifier is re-trained. This

process is repeated until a satisfactory performance is achieved. The proposed strategy could be

integrated in such a procedure as intermediate adaptation step after the model has been re-trained.

It is assumed that this would reduce the number of iterations required to achieve a satisfactory

performance.

7.2 Outlook 149

Acknowledgements

I would like to thank the Landesamt für Vermessung und Geoinformation Schleswig Holstein

and the Landesamt für Geoinformation und Landesvermessung Niedersachsen (LGLN) for pro-

viding the datasets Schleswig, Hameln, Nienburg, Buxtehude and Hannover. I also thank the

International Society for Photogrammetry and Remote Sensing (ISPRS) for providing the data

of the ISPRS labelling challenge. The Vaihingen dataset was provided by the German Soci-

ety for Photogrammetry, Remote Sensing and Geoinformation (DGPF) (Cramer, 2010): http:

//www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html.

I would also like to thank Franz Rottensteiner for the excellent supervision, the numerous scientific

discussions and the constant support. Further thanks go to Christian Heipke for the excellent

management of the institute and to all the colleagues who made me enjoy going to work every day.

http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html
http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html

151

Bibliography

Arazo, E., Ortego, D., Albert, P., O’Connor, N. E. and McGuinness, K., 2020. Pseudo-labeling and confirma-
tion bias in deep semi-supervised learning. In: IEEE International Joint Conference on Neural Networks
(IJCNN), pp. 1–8.

Assis, L. F., Ferreira, K. R., Vinhas, L., Maurano, L., Almeida, C., Carvalho, A., Rodrigues, J., Maciel,
A. and Camargo, C., 2019. TerraBrasilis: a spatial data analytics infrastructure for large-scale thematic
mapping. ISPRS International Journal of Geo-Information pp. 513–540. Vol. 8(11).

Benaim, S., Galanti, T. and Wolf, L., 2018. Estimating the success of unsupervised image to image transla-
tion. In: European Conference on Computer Vision (ECCV), pp. 218–233.

Benjdira, B., Bazi, Y., Koubaa, A. and Ouni, K., 2019. Unsupervised domain adaptation using generative
adversarial networks for semantic segmentation of aerial images. Remote Sensing 11(11), pp. 1369–1392.

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J., 1984. Classification and regression trees.
Chapman and Hall, London, UK.

Bruzzone, L. and Marconcini, M., 2009. Domain adaptation problems: A DASVM classification technique
and a circular validation strategy. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(5),
pp. 770–787.

Bruzzone, L., Chi, M. and Marconcini, M., 2006. A novel transductive SVM for semisupervised classification
of remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing 44(11-2), pp. 3363–3373.

Chang, W.-L., Wang, H.-P., Peng, W.-H. and Chiu, W.-C., 2019. All about structure: Adapting structural
information across domains for boosting semantic segmentation. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1900–1909.

Chen, M., Xue, H. and Cai, D., 2019a. Domain adaptation for semantic segmentation with maximum squares
loss. In: IEEE International Conference on Computer Vision (ICCV), pp. 2090–2099.

Chen, Y.-C., Lin, Y.-Y., Yang, M.-H. and Huang, J.-B., 2019b. CRDOCO: Pixel-level domain transfer with
cross-domain consistency. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1791–1800.

Chen, Y., Li, W., Chen, X. and Gool, L. V., 2019c. Learning semantic segmentation from synthetic data: a
geometrically guided input-output adaptation approach. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1841–1850.

Cheng, Z., Chen, C., Chen, Z., Fang, K. and Jin, X., 2021. Robust and high-order correlation alignment for
unsupervised domain adaptation. Neural Computing and Applications 33(12), pp. 6891–6903.

Choi, J., Kim, T. and Kim, C., 2019. Self-ensembling with GAN-based data augmentation for domain
adaptation in semantic segmentation. In: IEEE International Conference on Computer Vision (ICCV),
pp. 6829–6839.

Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1251–1258.

Cohen, J. P., Luck, M. and Honari, S., 2018. Distribution matching losses can hallucinate features in
medical image translation. In: International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI), Vol. Vol. 21, pp. 529–536.

152 Bibliography

Cortes, C. and Vapnik, V., 1995. Support-vector networks. Machine learning 20(3), pp. 273–297.

Cox, D. R., 1958. The regression analysis of binary sequences. Journal of the Royal Statistical Society:
Series B 20(2), pp. 215–232.

Cramer, M., 2010. The DGPF test on digital aerial camera evaluation. Photogrammetrie Fernerkundung
Geoinformation 2(2010), pp. 73–82.

Csurka, G., 2017. A comprehensive survey on domain adaptation for visual applications. In: Domain
Adaptation in Computer Vision Applications, Springer, pp. 1–35.

Csurka, G., 2020. Deep visual domain adaptation. In: 22nd International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), pp. 1–8.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L., 2009. Imagenet: A large-scale hierarchical
image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255.

Du, L., Tan, J., Yang, H., Feng, J., Xue, X., Zheng, Q., Ye, X. and Zhang, X., 2019. SSF-DAN: Separated
semantic feature based domain adaptation network for semantic segmentation. In: IEEE International
Conference on Computer Vision (ICCV), pp. 982–991.

Engel, J. H., Agrawal, K. K., Chen, S., Gulrajani, I., Donahue, C. and Roberts, A., 2019. Gansynth:
Adversarial neural audio synthesis. In: International Conference on Learning Representations (ICLR).

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M. and Lem-
pitsky, V., 2016. Domain-adversarial training of neural networks. Journal of Machine Learning Research
17(1), pp. 2096–2030.

Gatys, L. A., Ecker, A. S. and Bethge, M., 2016. Image style transfer using convolutional neural networks.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2414–2423.

Gong, R., Li, W., Chen, Y. and Gool, L. V., 2019. DLOW: Domain flow for adaptation and generalization.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2477–2486.

Goodfellow, I. J. and Vinyals, O., 2015. Qualitatively characterizing neural network optimization problems.
In: International Conference on Learning Representations (ICLR).

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio,
Y., 2014. Generative adversarial nets. In: Advances in Neural Information Processing Systems, Vol. 27,
pp. 2672–2680.

Gritzner, D. and Ostermann, J., 2020. Using semantically paired images to improve domain adaptation for
the semantic segmentation of aerial images. In: ISPRS Annals of Photogrammetry, Remote Sensing and
Spatial Information Science, Vol. V-2, pp. 483–492.

Guo, R., Liu, J., Li, N., Liu, S., Chen, F., Cheng, B., Duan, J., Li, X. and Ma, C., 2018. Pixel-wise
classification method for high resolution remote sensing imagery using deep neural networks. ISPRS
International Journal of Geo Information pp. 110–133. Vol. 7(3).

Guo, X., Chen, W. and Yin, J., 2016. A simple approach for unsupervised domain adaptation. In: IEEE
International Conference on Pattern Recognition (ICPR), pp. 1566–1570.

Haeusser, P., Frerix, T., Mordvintsev, A. and Cremers, D., 2017. Associative domain adaptation. In: IEEE
International Conference on Computer Vision (ICCV), pp. 2765–2773.

Hara, K., Saito, D. and Shouno, H., 2015. Analysis of function of rectified linear unit used in deep learning.
In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8.

He, K., Zhang, X., Ren, S. and Sun, J., 2015. Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. In: IEEE International Conference on Computer Vision (ICCV),
pp. 1026–1034.

He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.

Bibliography 153

Hein, M., Andriushchenko, M. and Bitterwolf, J., 2019. Why ReLU networks yield high-confidence predic-
tions far away from the training data and how to mitigate the problem. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 41–50.

Ho, T. K., 1995. Random decision forests. In: IEEE Proceedings of the 3rd International Conference on
Document Analysis and Recognition, pp. 278–282.

Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko, K., Efros, A. and Darrell, T., 2018. Cycada:
Cycle-consistent adversarial domain adaptation. In: International Conference Machine Learning (ICML),
pp. 1989–1998.

Hoffman, J., Wang, D., Yu, F. and Darrell, T., 2016. FCNs in the wild: Pixel-level adversarial and constraint-
based adaptation. arXiv Computing Research Repository (CoRR).

Hong, W., Wang, Z., Yang, M. and Yuan, J., 2018. Conditional generative adversarial network for struc-
tured domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1335–1344.

Hoyer, L., Dai, D. and Gool, L. V., 2022. DAFormer: Improving network architectures and training strategies
for domain-adaptive semantic segmentation. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 9924–9935.

Hu, L., Kan, M., Shan, S. and Chen, X., 2018. Duplex generative adversarial network for unsupervised do-
main adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1498–
1507.

Huang, H., Huang, Q. and Krahenbuhl, P., 2018a. Domain transfer through deep activation matching. In:
European Conference on Computer Vision (ECCV), pp. 590–605.

Huang, J., Lu, S., Guan, D. and Zhang, X., 2020. Contextual-relation consistent domain adaptation for
semantic segmentation. In: European Conference on Computer Vision (ECCV), Springer, pp. 705–722.

Huang, X., Liu, M., Belongie, S. J. and Kautz, J., 2018b. Multimodal unsupervised image-to-image trans-
lation. In: European Conference on Computer Vision (ECCV), pp. 179–196.

Iakubovskii, P., 2019. Segmentation models pytorch. https://github.com/qubvel/segmentation_models.
pytorch.

Ioffe, S. and Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. In: International Conference Machine Learning (ICML), Vol. 37, pp. 448–456.

Iqbal, J. and Ali, M., 2020. MLSL: Multi-level self-supervised learning for domain adaptation with spa-
tially independent and semantically consistent labeling. In: IEEE Winter Conference on Applications of
Computer Vision (WACV), pp. 1853–1862.

Isola, P., Zhu, J.-Y., Zhou, T. and Efros, A. A., 2017. Image-to-image translation with conditional adversarial
networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1125–1134.

Ji, S., Wang, D. and Luo, M., 2020. Generative adversarial network-based full- space domain adaptation for
land cover classification from multiple-source remote sensing images. IEEE Transactions on Geoscience
and Remote Sensing 59(5), pp. 1–13.

Kang, G., Wei, Y., Yang, Y., Zhuang, Y. and Hauptmann, A. G., 2020. Pixel-level cycle association: A new
perspective for domain adaptive semantic segmentation. In: Conference on Neural Information Processing
Systems (NeurIPS), Vol. 33, pp. 3569–3580.

Karras, T., Aila, T., Laine, S. and Lehtinen, J., 2018. Progressive growing of GANs for improved quality,
stability, and variation. In: International Conference on Learning Representations (ICLR).

Kingma, D. and Ba, J., 2014. Adam: a method for stochastic optimization. In: International Conference
on Learning Representations (ICLR).

Krizhevsky, A., Sutskever, I. and Hinton, G. E., 2012. Imagenet classification with deep convolutional neural
networks. In: Conference on Neural Information Processing Systems (NeurIPS), Vol. 25, pp. 1106–1114.

https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch

154 Bibliography

Krogh, A. and Hertz, J., 1991. A simple weight decay can improve generalization. Advances in Neural
Information Processing Systems. Vol. 4.

Kwak, G.-H. and Park, N.-W., 2022. Unsupervised domain adaptation with adversarial self-training for crop
classification using remote sensing images. Remote Sensing 14(18), pp. 4639–4663.

LeCun, Y., Haffner, P., Bottou, L. and Bengio, Y., 1999. Object recognition with gradient-based learning.
In: Shape, Contour and Grouping in Computer Vision, pp. 319–347.

Lee, H.-Y., Tseng, H.-Y., Huang, J.-B., Singh, M. and Yang, M.-H., 2018. Diverse image-to-image translation
via disentangled representations. In: European Conference on Computer Vision (ECCV), pp. 35–51.

Lee, K., Lee, H. and Hwang, J. Y., 2021. Self-mutating network for domain adaptive segmentation in aerial
images. In: IEEE International Conference on Computer Vision (ICCV), pp. 7068–7077.

Li, G., Kang, G., Liu, W., Wei, Y. and Yang, Y., 2020a. Content-consistent matching for domain adaptive
semantic segmentation. In: European Conference on Computer Vision (ECCV), Springer, pp. 440–456.

Li, X., Luo, M., Ji, S., Zhang, L. and Lu, M., 2020b. Evaluating generative adversarial networks based
image-level domain transfer for multi-source remote sensing image segmentation and object detection.
International Journal of Remote Sensing 41(19), pp. 7327–7351.

Li, Y., Wang, N., Shi, J., Hou, X. and Liu, J., 2018. Adaptive batch normalization for practical domain
adaptation. Pattern Recognition 80, pp. 109–117.

Li, Y., Yuan, L. and Vasconcelos, N., 2019. Bidirectional learning for domain adaptation of semantic
segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6936–
6945.

Lian, Q., Duan, L., Lv, F. and Gong, B., 2019. Constructing self-motivated pyramid curriculums for cross-
domain semantic segmentation: A non-adversarial approach. In: IEEE International Conference on
Computer Vision (ICCV), pp. 6757–6766.

Lin, T.-Y., Goyal, P., Girshick, R., He, K. and Dollár, P., 2017. Focal loss for dense object detection. In:
IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988.

Liu, M.-Y., Breuel, T. and Kautz, J., 2017. Unsupervised image-to-image translation networks. In: Advances
in Neural Information Processing Systems, Vol. 30, pp. 700–708.

Liu, W. and Qin, R., 2020. A multikernel domain adaptation method for unsupervised transfer learning on
cross-source and cross-region remote sensing data classification. IEEE Transactions on Geoscience and
Remote Sensing 58(6), pp. 4279–4289.

Liu, W., Su, F. and Huang, X., 2020. Unsupervised adversarial domain adaptation network for semantic
segmentation. IEEE Geoscience and Remote Sensing Letters 17(11), pp. 1978–1982.

Long, J., Shelhamer, E. and Darrell, T., 2015a. Fully convolutional networks for semantic segmentation. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440.

Long, M., Cao, Y., Wang, J. and Jordan, M., 2015b. Learning transferable features with deep adaptation
networks. In: International Conference Machine Learning (ICML), pp. 97–105.

Luo, Y., Liu, P., Guan, T., Yu, J. and Yang, Y., 2019a. Significance-aware information bottleneck for
domain adaptive semantic segmentation. In: IEEE International Conference on Computer Vision (ICCV),
pp. 6777–6786.

Luo, Y., Zheng, L., Guan, T., Yu, J. and Yang, Y., 2019b. Taking a closer look at domain shift: category-
level adversaries for semantics consistent domain adaptation. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2507–2516.

Maas, A. L., Hannun, A. Y. and Ng, A. Y., 2013. Rectifier nonlinearities improve neural network acoustic
models. In: International Conference Machine Learning (ICML), Workshop on Deep Learning for Audio,
Speech and Language Processing.

Bibliography 155

Maggiori, E., Tarabalka, Y., Charpiat, G. and Alliez, P., 2017. Can semantic labeling methods generalize to
any city? the inria aerial image labeling benchmark. In: International Geoscience and Remote Sensing
Symposium (IGARSS), pp. 3226–3229.

Mao, X., Li, Q., Xie, H., Lau, R. Y. K., Wang, Z. and Smolley, S. P., 2017. Least squares generative
adversarial networks. In: IEEE International Conference on Computer Vision (ICCV), pp. 2813–2821.

Marmanis, D., Wegner, J. D., Galliani, S., Schindler, K., Datcu, M. and Stilla, U., 2016. Semantic segmen-
tation of aerial images with an ensemble of CNSS. In: ISPRS Annals of Photogrammetry, Remote Sensing
and Spatial Information Science, Vol. III-3, pp. 473–480.

Matasci, G., Volpi, M., Kanevski, M. F., Bruzzone, L. and Tuia, D., 2015. Semisupervised transfer component
analysis for domain adaptation in remote sensing image classification. IEEE Transactions on Geoscience
and Remote Sensing 53(7), pp. 3550–3564.

McCulloch, W. S. and Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity. The
Bulletin of Mathematical Biophysics 5(4), pp. 115–133.

Mei, K., Zhu, C., Jiang, L., Liu, J. and Qiao, Y., 2020. Cross-stained segmentation from renal biopsy images
using multi-level adversarial learning. In: IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1424–1428.

Michieli, U., Biasetton, M., Agresti, G. and Zanuttigh, P., 2020. Adversarial learning and self-teaching
techniques for domain adaptation in semantic segmentation. IEEE Transactions on Intelligent Vehicles
5(3), pp. 508–518.

Miyato, T., Kataoka, T., Koyama, M. and Yoshida, Y., 2018. Spectral normalization for generative adver-
sarial networks. In: International Conference on Learning Representations (ICLR).

Mnih, V., 2013. Machine learning for aerial image labeling. PhD thesis, University of Toronto, Canada.

Morerio, P., Cavazza, J. and Murino, V., 2018. Minimal-entropy correlation alignment for unsupervised deep
domain adaptation. In: International Conference on Learning Representations (ICLR).

Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R. and Kim, K., 2018a. Image to image translation
for domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 4500–4509.

Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R. and Kim, K., 2018b. Image to image translation
for domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 4500–4509.

Musto, L. and Zinelli, A., 2020. Semantically adaptive image-to-image translation for domain adaptation of
semantic segmentation. arXiv e-prints.

Nair, V. and Hinton, G. E., 2010. Rectified linear units improve restricted boltzmann machines. In: Inter-
national Conference Machine Learning (ICML), pp. 807–814.

Noa, J., Soto, P. J., Costa, G. A. O. P., Wittich, D., Feitosa, R. Q. and Rottensteiner, F., 2021. Adversarial
discriminative domain adaptation for deforestation detection. ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Science V-3-2021, pp. 151–158.

Palladino, J. A., Slezak, D. F. and Ferrante, E., 2020. Unsupervised domain adaptation via CycleGAN for
white matter hyperintensity segmentation in multicenter MR images. In: International Symposium on
Medical Information Processing and Analysis, pp. 1158302–1158313. Vol. 11583.

Pan, F., Shin, I., Rameau, F., Lee, S. and Kweon, I. S., 2020. Unsupervised intra-domain adaptation for
semantic segmentation through self-supervision. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3763–3772.

Pan, S. J. and Yang, Q., 2009. A survey on transfer learning. IEEE Transactions on Knowledge and Data
Engineering 22(10), pp. 1345–1359.

156 Bibliography

Pandey, P., Tyagi, A. K., Ambekar, S. and Prathosh, A. P., 2020. Unsupervised domain adaptation for
semantic segmentation of NIR images through generative latent search. In: European Conference on
Computer Vision (ECCV), Springer, pp. 413–429.

Peng, D., Guan, H., Zang, Y. and Bruzzone, L., 2022. Full-level domain adaptation for building extraction
in very-high-resolution optical remote-sensing images. IEEE Transactions on Geoscience and Remote
Sensing pp. 1–17. Vol. 60.

Perona, P., 1995. Deformable kernels for early vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence 17(5), pp. 488–499.

Pizzati, F., de Charette, R., Zaccaria, M. and Cerri, P., 2020. Domain bridge for unpaired image-to-
image translation and unsupervised domain adaptation. In: IEEE Winter Conference on Applications of
Computer Vision (WACV), pp. 2979–2987.

Prechelt, L., 1998. Early stopping-but when? In: Neural Networks: Tricks of the trade, Springer Berlin
Heidelberg, pp. 55–69.

Riz, E., Demir, B. and Bruzzone, L., 2016. Domain adaptation based on deep denoising auto-encoders for
classification of remote sensing images. In: Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, pp. 197–204. Vol. 10004.

Ronneberger, O., Fischer, P. and Brox, T., 2015. U-Net: Convolutional networks for biomedical image
segmentation. In: International Conference on Medical Image Computing and Computer Assisted Inter-
vention (MICCAI), Vol. 9351, pp. 234–241.

Rosenblatt, F., 1962. Perceptions and the theory of brain mechanisms. Spartan Books, Washington, D. C.,
USA.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J., 1986. Learning representations by back-propagating
errors. Nature pp. 533–536. Vol. 323.

Sakaridis, C., Dai, D. and Gool, L. V., 2019. Guided curriculum model adaptation and uncertainty-aware
evaluation for semantic nighttime image segmentation. In: IEEE International Conference on Computer
Vision (ICCV), pp. 7373–7382.

Santurkar, S., Tsipras, D., Ilyas, A. and Madry, A., 2018. How does batch normalization help optimization?
In: Conference on Neural Information Processing Systems (NeurIPS), Vol. 31, pp. 2488–2498.

Shan, Y., Chew, C. M. and Lu, W. F., 2020. Semantic-aware short path adversarial training for cross-domain
semantic segmentation. Neurocomputing pp. 125–132. Vol. 380.

Shorten, C. and Khoshgoftaar, T. M., 2019. A survey on image data augmentation for deep learning. Journal
of Big Data 6(54), pp. 60–108.

Soto, P., Costa, G., Feitosa, R., Happ, P., Ortega, M., Noa, J., Almeida, C. and Heipke, C., 2020. Do-
main adaptation with cyclegan for change detection in the amazon forest. In: International Archives of
Photogrammetry, Remote Sensing and Spatial Information Science, Vol. XLIII-B3, pp. 1635–1643.

Soto, P. J., da Costa, G. A. O. P., Feitosa, R. Q., Ortega Adarme, M. X., de Almeida, C. A., Heipke, C.
and Rottensteiner, F., 2021. An unsupervised domain adaptation approach for change detection and its
application to deforestation mapping in tropical biomes. ISPRS Journal of Photogrammetry and Remote
Sensing pp. 113–128. Vol. 181.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R., 2014. Dropout: a
simple way to prevent neural networks from overfitting. Journal of Machine Learning Research 15(1),
pp. 1929–1958.

Subhani, M. N. and Ali, M., 2020. Learning from scale-invariant examples for domain adaptation in semantic
segmentation. In: European Conference on Computer Vision (ECCV), pp. 290–306.

Sun, B. and Saenko, K., 2016. Deep CORAL: Correlation alignment for deep domain adaptation. In:
European Conference on Computer Vision (ECCV), pp. 443–450.

Bibliography 157

Sun, B., Feng, J. and Saenko, K., 2016. Return of frustratingly easy domain adaptation. In: AAAI Conference
on Artificial Intelligence, Vol. 30(1), pp. 2058–2065.

Tanwani, A. K., 2020. DIRL: Domain-invariant representation learning for sim-to-real transfer. In: Confer-
ence on Robot Learning (CoRL), Vol. 155, pp. 1558–1571.

Tasar, O., Happy, S., Tarabalka, Y. and Alliez, P., 2020a. Colormapgan: Unsupervised domain adaptation
for semantic segmentation using color mapping generative adversarial networks. IEEE Transactions on
Geoscience and Remote Sensing 58(10), pp. 7178–7193.

Tasar, O., Happy, S., Tarabalka, Y. and Alliez, P., 2020b. Semi2i: Semantically consistent image-to-image
translation for domain adaptation of remote sensing data. In: International Geoscience and Remote
Sensing Symposium (IGARSS), pp. 1837–1840.

Tong, X.-Y., Xia, G.-S., Lu, Q., Shen, H., Li, S., You, S. and Zhang, L., 2020. Land-cover classification with
high-resolution remote sensing images using transferable deep models. Remote Sensing of Environment.
Vol. 237, Paper nr. 111322.

Tsai, Y., Hung, W., Schulter, S., Sohn, K., Yang, M. and Chandraker, M., 2018. Learning to adapt
structured output space for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7472–7481.

Tsai, Y., Sohn, K., Schulter, S. and Chandraker, M., 2019. Domain adaptation for structured output via
discriminative patch representations. In: IEEE International Conference on Computer Vision (ICCV),
pp. 1456–1465.

Tuia, D., Persello, C. and Bruzzone, L., 2016. Domain adaptation for the classification of remote sensing
data: An overview of recent advances. IEEE Geoscience and Remote Sensing Magazine 4(2), pp. 41–57.

Tzeng, E., Hoffman, J., Saenko, K. and Darrell, T., 2017. Adversarial discriminative domain adaptation.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2962–2971.

Ulyanov, D., Lebedev, V., Vedaldi, A. and Lempitsky, V. S., 2016. Texture networks: Feed-forward synthesis
of textures and stylized images. In: International Conference Machine Learning (ICML), JMLRWorkshop
and Conference Proceedings, Vol. 48, pp. 1349–1357.

Varga, D. and Szirányi, T., 2016. Fully automatic image colorization based on convolutional neural network.
In: IEEE International Conference on Pattern Recognition (ICPR), pp. 3691–3696.

Vu, T.-H., Jain, H., Bucher, M., Cord, M. and Perez, P., 2019. ADVENT: Adversarial entropy minimization
for domain adaptation in semantic segmentation. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2512–2521.

Wang, J., Ma, A., Zhong, Y., Zheng, Z. and Zhang, L., 2022. Cross-sensor domain adaptation for high
spatial resolution urbanland-cover mapping: From airborne to spaceborne imagery. Remote Sensing of
Environment. Vol. 277, Paper nr. 113058.

Wang, M. and Deng, W., 2018. Deep visual domain adaptation: A survey. Neurocomputing pp. 135–153.

Wang, Z., Jing, B., Ni, Y., Dong, N., Xie, P. and Xing, E. P., 2020a. Adversarial domain adaptation being
aware of class relationships. In: European Converence on Artificial Intelligence, Vol. 325, pp. 1579–1586.

Wang, Z., Yu, M., Wei, Y., Feris, R., Xiong, J., Hwu, W., Huang, T. S. and Shi, H., 2020b. Differential treat-
ment for stuff and things: A simple unsupervised domain adaptation method for semantic segmentation.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12632–12641.

Wegner, J.-D., Rottensteiner, F., Sohn, G. and Gerke, M., 2017. The ISPRS 2d semantic labelling contest.
www2.isprs.org/commissions/comm2/wg4/benchmark/semantic-labeling. (accessed 22/12/2020).

Wei, G., Lan, C., Zeng, W. and Chen, Z., 2021. MetaAlign: Coordinating domain alignment and classification
for unsupervised domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 16643–16653.

158 Bibliography

Wiejak, J., Buxton, H. and Buxton, B. F., 1985. Convolution with separable masks for early image processing.
Computer Vision, Graphics, and Image Processing 32(3), pp. 279–290.

Wittich, D., 2020. Deep domain adaptation by weighted entropy minimization for the classification of aerial
images. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Science, Vol.
V-2, pp. 591–598.

Wittich, D. and Rottensteiner, F., 2019. Adversarial domain adaptation for the classification of aerial
images and height data using convolutional neural natworks. In: ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information Science, Vol. IV-2/W7, pp. 197–204.

Wittich, D. and Rottensteiner, F., 2021. Appearance based deep domain adaptation for the classification of
aerial images. ISPRS Journal of Photogrammetry and Remote Sensing pp. 82–102. Vol. 180.

Wittich, D., Rottensteiner, F., Voelsen, M., Heipke, C. and Müller, S., 2022. Deep learning for the detection
of early signs for forest damage based on satellite imagery. In: ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Science, Vol. V-2-2022, pp. 307–315.

Xu, M., Wu, M., Chen, K., Zhang, C. and Guo, J., 2022. The eyes of the gods: A survey of unsupervised
domain adaptation methods based on remote sensing data. Remote Sensing 14(17), pp. 4380–4413.

Yang, C., Rottensteiner, F. and Heipke, C., 2019. Towards better classification of land cover and land use
based on convolutional neural networks. In: International Archives of Photogrammetry, Remote Sensing
and Spatial Information Science, Vol. XLII-2/W13, pp. 139–146.

Yang, J., An, W., Wang, S., Zhu, X., Yan, C. and Huang, J., 2020a. Label-driven reconstruction for
domain adaptation in semantic segmentation. In: European Conference on Computer Vision (ECCV),
pp. 480–498.

Yang, J., Xu, R., Li, R., Qi, X., Shen, X., Li, G. and Lin, L., 2020b. An adversarial perturbation oriented
domain adaptation approach for semantic segmentation. In: AAAI Conference on Artificial Intelligence,
pp. 12613–12620.

Yang, Y. and Soatto, S., 2020. FDA: Fourier domain adaptation for semantic segmentation. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4085–4095.

Yang, Y., Lao, D., Sundaramoorthi, G. and Soatto, S., 2020c. Phase consistent ecological domain adaptation.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9011–9020.

Yosinski, J., Clune, J., Bengio, Y. and Lipson, H., 2014. How transferable are features in deep neural
networks? In: Conference on Neural Information Processing Systems (NeurIPS), Vol. 27, pp. 3320–3328.

Zhang, G., Lei, T., Cui, Y. and Jiang, P., 2019a. A dual-path and lightweight convolutional neural network
for high-resolution aerial image segmentation. ISPRS International Journal of Geo-Information 8(12),
pp. 582–603.

Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y. and Wen, F., 2021a. Prototypical pseudo label
denoising and target structure learning for domain adaptive semantic segmentation. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 12414–12424.

Zhang, Q., Zhang, J., Liu, W. and Tao, D., 2019b. Category anchor-guided unsupervised domain adaptation
for semantic segmentation. In: Conference on Neural Information Processing Systems (NeurIPS), Vol. 32,
pp. 433–443.

Zhang, Y., David, P. and Gong, B., 2017. Curriculum domain adaptation for semantic segmentation of urban
scenes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2020–2030.

Zhang, Y., Liu, T., Long, M. and Jordan, M. I., 2019c. Bridging theory and algorithm for domain adaptation.
In: International Conference Machine Learning (ICML), Vol. 97, pp. 7404–7413.

Zhang, Y., Qiu, Z., Yao, T., Liu, D. and Mei, T., 2018a. Fully convolutional adaptation networks for
semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 6810–6818.

Bibliography 159

Zhang, Y., Wang, N., Cai, S. and Song, L., 2018b. Unsupervised domain adaptation by mapped correlation
alignment. IEEE Access 6, pp. 44698–44706.

Zhang, Z., Doi, K., Iwasaki, A. and Xu, G., 2021b. Unsupervised domain adaptation of high-resolution aerial
images via correlation alignment and self training. IEEE Geoscience and Remote Sensing Letters 18(4),
pp. 746–750.

Zhang, Z., Liu, Q. and Wang, Y., 2018c. Road extraction by deep residual U-Net. IEEE Geoscience and
Remote Sensing Letters 15(5), pp. 749–753.

Zhao, H., des Combes, R. T., Zhang, K. and Gordon, G. J., 2019. On learning invariant representations for
domain adaptation. In: International Conference Machine Learning (ICML), Vol. 97, pp. 7523–7532.

Zhao, Y., Guo, P., Gao, H. and Chen, X., 2023. Depth-assisted ResiDualGan for cross-domain aerial images
semantic segmentation. IEEE Geoscience and Remote Sensing Letters. Vol. 20, Paper nr. 2500305.

Zhu, J.-Y., Park, T., Isola, P. and Efros, A. A., 2017a. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision (ICCV),
pp. 2223–2232.

Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F. and Fraundorfer, F., 2017b. Deep learning
in remote sensing: A comprehensive review and list of resources. IEEE Geoscience and Remote Sensing
Magazine 5(4), pp. 8–36.

Zou, Y., Yu, Z., Kumar, B. and Wang, J., 2018. Unsupervised domain adaptation for semantic segmentation
via class-balanced self-training. In: European Conference on Computer Vision (ECCV), pp. 289–305.

161

Appendix

A: Additional Examples of Image Adaptation

Evaluation of adaptation for the scenariosN → P (cf. Figure 7.1) and V → B (cf. Figure 7.2).

MSI nDSM Ref./Pred. F̄1 [%]

D
S

V
S
E
P

40.2

V
B
S
L
N

60.7

V
R
D

74.8

V
A
G

61.5

D
T

Figure 7.1: Examples for appearance adaptation in scenario N → P20. The structure of the figure follows
the one of Figure 6.1.

162 Bibliography

MSI nDSM Ref./Pred. F̄1 [%]
D

S
V
S
E
P

47.7

V
B
S
L
N

66.2

V
R
D

77.6

V
A
G

72.9

D
T

Figure 7.2: Examples for appearance adaptation in scenario V20 → B. The structure of the figure follows
the one of Figure 6.1.

Bibliography 163

B: Numerical Results for Detailed Evaluation

Table 7.1 provides the class-wise quality metrics corresponding to Figure 6.7.

Class Strategy B → H H → N N → P20 P20 → V20 V20 → B

SG

N.T. 57.6±1.9 78.1±1.4 85.0±0.5 83.7±0.4 78.7±1.2

VRD 70.4±3.0 80.7±1.4 86.6±0.4 85.1±0.2 81.4±0.5

VRD,ABN 71.3±3.0 77.7±2.4 87.1±1.7 83.3±0.2 80.9±0.5

S.T. 86.5±0.1 88.5±0.1 92.0±0.1 88.8±0.1 86.7±0.4

BU

N.T. 89.3±0.3 84.5±1.3 93.2±0.8 92.1±0.5 87.1±1.6

VRD 91.1±0.5 87.0±0.9 94.8±0.6 93.1±0.2 87.4±0.7

VRD,ABN 90.0±0.2 89.0±0.4 95.0±0.7 93.2±0.1 88.2±0.7

S.T. 94.1±0.1 93.5±0.1 96.9±0.1 93.4±0.1 94.5±0.1

LV

N.T. 33.4±0.9 81.4±0.8 73.7±0.5 65.1±0.5 81.0±0.5

VRD 36.9±6.1 81.5±1.0 73.8±0.4 69.3±0.8 81.4±0.4

VRD,ABN 40.8±2.8 63.2±3.0 73.8±2.5 69.0±0.5 80.4±0.2

S.T. 57.3±0.4 89.8±0.2 83.8±0.2 78.8±0.4 87.8±0.2

HV

N.T. 70.8±4.2 72.7±0.6 59.4±3.3 80.0±0.2 81.4±0.8

VRD 76.6±1.7 73.4±0.5 61.6±1.6 81.3±0.4 83.1±0.1

VRD,ABN 80.0±0.5 62.3±1.9 64.1±1.4 80.9±0.2 82.5±0.3

S.T. 83.5±0.1 81.5±0.1 83.4±0.1 85.7±0.3 87.1±0.1

CA

N.T. 56.4±2.3 69.1±1.7 78.9±1.2 65.0±0.9 72.4±0.9

VRD 67.1±1.9 73.4±0.7 81.6±1.6 65.6±3.1 74.3±0.4

VRD,ABN 69.7±1.8 73.8±0.6 77.7±7.8 67.6±1.3 71.9±0.6

S.T. 80.3±0.6 74.0±0.5 89.4±0.3 74.8±0.7 79.5±0.7

Avg.

N.T. 61.5±1.2 77.1±0.9 78.0±0.5 77.2±0.4 80.1±0.5

VRD 68.4±0.6 79.2±0.6 79.7±0.6 78.9±0.4 81.5±0.3

VRD,ABN 70.4±1.5 73.2±0.9 79.6±2.7 78.8±0.2 80.8±0.2

T.T. 80.3±0.2 85.5±0.2 89.1±0.1 84.3±0.2 87.1±0.2

Table 7.1: Class wise and average F1 scores in % for different adaptation scenarios. Each cell gives the
mean and standard deviation computed over five repetitions of the experiments. N.T.: näıve
transfer (classifier was trained inDS). VRD, VRD,ABN : Variants of the proposed method (classifier
trained in DS and adapted to DT). T.T.: Target training (classifier was trained in DT). Class
abbreviations as in Table 5.1.

