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Abstract

In 2015, the International Association of Geodesy (IAG) introduced the International Height Reference
System (IHRS) as the global standard for the determination of physical heights. At present, its
realization relies on precise regional gravity field modeling, since high-resolution terrestrial, airborne,
and shipborne gravity data are only available in specific regions. These data sets allow for a regional
gravity field refinement through a combination with medium-resolution satellite altimetry data and
low-resolution satellite gravimetry data. A proper combination of these heterogeneous data sets is
the key to obtaining a high-resolution and high-precision regional gravity model. Consequently, this
thesis aims at studying and developing different procedures for regional geoid modeling based on the
combination of data from various observation techniques.

Spherical radial basis functions (SRBFs) are used for the representation of the gravity field and its
functionals. Four properties in the SRBF setup influence the modeling accuracy, namely the bandwidth,
the location, and the type of the SRBFs, as well as the extension of the data zone for reducing edge
effects. These properties are discussed and specified in this work. Two groups of SRBFs are considered,
namely the Shannon function, as well as the Blackman and the Cubic Polynomial (CuP) functions, both
characterized by smoothing features. An SRBF with smoothing features serves further as a low-pass
filter, e.g., for reducing the high-frequency noise in the gravity data.

For the determination of the unknown gravity field parameters, the data sets of the measured gravity
functionals have to be combined. However, in case of a least-squares adjustment, the system is almost
always ill-posed, and regularization is inevitable. As the conventional regularization methods cannot
be applied if the relative weight factors of different observation groups are unknown, and the variance
component estimation (VCE) might deliver unreliable regularization results, an extended approach is
proposed in this work. It combines VCE for estimating the relative weights between the different data
sets and the L-curve method for determining the regularization parameter.

The derived procedures and strategies are then applied for the regional (quasi-) geoid modeling in
Colorado, USA. The computation is carried out in the frame of the "1 cm geoid experiment", which
was initiated by the IAG in 2017 to test the possibility of reaching an accuracy of 1 cm in regional
geoid modeling for the realization of the IHRS. Due to the high elevation and the rugged terrain
of this study area, the modeling procedure is further adapted to consider the topographic effect.
High-resolution terrestrial and airborne gravity measurements are combined along with a global
gravity model (GGM) and topography models. It has to be stated that the final (quasi-) geoid model
benefits from all types of data sets. The modeling results are validated using both the mean solution
delivered by fourteen institutes worldwide with different modeling approaches and GNSS/leveling
data. The comparison results show that the SRBF-based quasi-geoid model delivers one of the smallest
standard deviations among all the participating groups w.r.t. the validation data, which proves the
validity of the developed modeling procedures based on the SRBFs.

Different types of gravity measurements vary not only in their spatial resolution but also in their
spectral sensitivity. It has been suspected that the single-level SRBF approach could be biased
towards the high-resolution measurements and cannot extract the full information from measurements
with medium to low resolution. To take into consideration the spectral sensitivities of different
data types, a spectral combination based on SRBFs is implemented through the multi-resolution
representation (MRR). The spectral domain is discretized into different resolution levels, and each type
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of gravity observations is introduced to the estimation procedure at the level of its highest sensitivity.
Furthermore, the resolution levels are connected by the pyramid algorithm, and its application based
on sequential parameter estimation for regional gravity field modeling is realized in this thesis.
The benefits of applying the MRR based on the pyramid algorithm are demonstrated by numerical
investigations based on both simulated and real gravity measurements.
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Kurzfassung

Im Jahr 2015 führte die "International Association of Geodesy" (IAG) das Internationale Höhenref-
erenzsystem (IHRS) als globalen Standard für die Bestimmung physikalischer Höhen ein. Dessen
Realisierung basiert derzeit auf einer präzisen regionalen Schwerefeldmodellierung, falls in diesen
Regionen hochaufgelöste terrestrische Messungen und/oder Daten der Flug- und Schiffsgravimetrie
vorliegen. Diese Datensätze ermöglichen eine Verfeinerung des regionalen Schwerefeldes durch
eine Kombination mit Satellitenaltimetriedaten mittlerer Auflösung und Satellitengravimetriedaten
niedriger Auflösung. Voraussetzung für die Erstellung eines hochaufgelösten und hochpräzisen re-
gionalen Schwerefeldmodells ist dabei eine geeignete Kombination dieser heterogenen Datensätze. Ziel
dieser Arbeit ist es daher, verschiedene Verfahren zur regionalen Geoidmodellierung zu entwickeln
und anzuwenden, die auf der Kombination von Daten verschiedener Beobachtungstechniken basieren.

Dabei werden für die Darstellung des Schwerefeldes und seiner Funktionale sphärische radiale
Basisfunktionen (SRBFs) verwendet. Vier Eigenschaften des SRBF-Setups beeinflussen die Model-
lierungsgenauigkeit, nämlich die Bandbreite, der Ort und der Typ der SRBFs sowie die Ausdehnung
der Datenzone. Letztere reduziert dabei die Randeffekte. Es werden zwei Gruppen von SRBFs
betrachtet, nämlich die nicht glättende Shannon-Funktion sowie die Blackman- und die Cubic Poly-
nomial (CuP)-Funktionen, die beide durch Glättungsmerkmale gekennzeichnet sind. SRBFs mit
Glättungsmerkmalen dienen weiterhin als Tiefpassfilter, z.B. zur Reduzierung des hochfrequenten
Rauschens in Schwerefelddaten.

Zur Bestimmung der unbekannten Schwerefeldparameter müssen die beobachteten Datensätze der
Schwerefunktionale kombiniert werden. Im Falle einer Schätzung nach der Methode der kleinsten
Quadrate ist das Normalgleichungssystem jedoch fast immer schlecht gestellt, sodass eine Regu-
larisierung unumgänglich ist. Da die konventionellen Regularisierungsmethoden nicht angewandt
werden können, wenn die relativen Gewichtungsfaktoren der verschiedenen Beobachtungsgruppen
unbekannt sind und die Varianzkomponentenschätzung (VCE) möglicherweise unzuverlässige Regu-
larisierungsergebnisse liefert, wird in dieser Arbeit ein erweiterter Ansatz vorgeschlagen, der die VCE
zur Schätzung der relativen Gewichte zwischen den verschiedenen Datensätzen mit der Methode der
L-Kurve zur Bestimmung der Regularisierungsparameter kombiniert.

Die abgeleiteten Verfahren und Strategien werden dann für die regionale (Quasi-)Geoidmodellierung
in Colorado, USA, angewendet. Die Berechnung erfolgt im Rahmen des "1-cm-Geoid-Experiments",
das 2017 von der IAG initiiert wurde, um die Möglichkeit zu testen, eine Genauigkeit von 1 cm bei
der regionalen Geoid Modellierung für die Realisierung des IHRS zu erreichen. Aufgrund der großen
Höhe und des zerklüfteten Geländes dieses Untersuchungsgebiets wird das Modellierungsverfahren
weiter angepasst, um den topografischen Effekt zu berücksichtigen. Dabei werden die hochaufgelösten
terrestrische Messungen und die Daten der Fluggravimetrie mit einem globalen Schwerfeldmodell
(GGM) sowie Topographiemodellen kombiniert. Dabei lässt sich feststellen, dass das finale (Quasi-
)Geoidmodell von allen Datensätzen profitiert. Anschließend wird dieses Ergebnis sowohl mit der
mittleren Lösung aller übrigen 14 Einzellösungen, die mittels unterschiedlicher Modellierungsansätze
berechnet wurden, als auch mit GNSS-/Levellingsdaten verglichen. Dabei zeigt sich, dass das SRBF-
basierte (Quasi-)Geoidmodell mit die kleinsten Abweichungen unter allen teilnehmenden Gruppen
gegenüber den Validierungsdaten aufweist, was die Qualität des entwickelten Ansatzes belegt.

Die Messungen der verwendeten verschiedenen Schwerefeldtechniken unterscheiden sich nicht nur
in ihrer räumlichen Auflösung, sondern auch in ihrer spektralen Empfindlichkeit. Der einstufige
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SRBF-Ansatz ist auf die hochaufgelösten, hochfrequenten Messungen ausgerichtet und nicht die
gesamte Information aus Messungen mit mittlerer oder geringer Auflösung extrahieren kann. Daher
wurde in dieser Arbeit die spektrale Kombination als Multi-Resolutions-Darstellung (Multi-Resolution-
Representation, MRR) realisiert. Bei diesem Vorgang wird der Spektralbereich in verschiedene
Auflösungsbereiche, die sogenannten Levels, unterteilt. Aufgrund der spektralen Auflösung wird jede
verwendete Schwerefeldtechnik in das Schätzverfahren auf dem Level ihrer höchsten Empfindlichkeit
eingeführt. Darüber hinaus werden die Levels mathematisch durch den sogenannten pyramidalen Al-
gorithmus verbunden, der in dieser Arbeit durch eine sequentielle Parameterschätzung realisiert wird.
Die Vorteile dieser Vorgehensweise werden durch numerische Untersuchungen mittels simulierter und
realer Schwerefeldmessungen aufgezeigt und diskutiert.
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Preface

This cumulative dissertation is based on the following three first-author papers:

P-I Liu, Q., Schmidt, M., Pail, R., and Willberg, M. (2020a). Determination of the regularization
parameter to combine heterogeneous observations in regional gravity field modeling. Remote
Sensing, 12(10), 1617. https://doi.org/10.3390/rs12101617

P-II Liu, Q., Schmidt, M., Sánchez, L., and Willberg, M. (2020b). Regional gravity field refinement
for (quasi-) geoid determination based on spherical radial basis functions in Colorado. Journal
of Geodesy, 94, 99. https://doi.org/10.1007/s00190-020-01431-2

P-III Liu, Q., Schmidt, M., and Sánchez, L. (2022). Combination of different observation types through
a multi-resolution representation of the regional gravity field using the pyramid algorithm and
parameter estimation. Journal of Geodesy, 96, 80. https://doi.org/10.1007/s00190-022-01670-5

These publications are cited within this dissertation using the letter P (for "publication") and a Roman
number (for the chronological order).

The main body of this thesis starts with an introduction to the topic of regional gravity field modeling
based on various types of observations. The fundamental theory and different gravity observation
techniques are introduced. The applied modeling methods and procedures are explained, and the
setting up of the estimation model is demonstrated. Numerical modeling results in different study
areas are also discussed. In the end, conclusions and an outlook for future work are provided.

In the appendix, the three original publications are included along with a declaration of the author’s
contribution for each.

Besides the three first-author publications, the following two co-author publications supplement this
dissertation:

CP-I Sánchez, L., Ågren, J., Huang, J., Wang, Y., Mäkinen, J., Pail, R., Barzaghi, R., Vergos, G.,
Ahlgren, K., and Liu, Q. (2021). Strategy for the realisation of the International height Reference
System (IHRS). Journal of Geodesy, 95, 33. https://doi.org/10.1007/s00190-021-01481-0

CP-II Wang, Y., Sánchez, L., Ågren, J., Huang, J., Forsberg, R., Abd-Elmotaal, H., Barzaghi, R., Bas̆ić,
T., Carrion, D., Claessens, S., Erol, B., Erol, S., Filmer, M., Grigoriadis, V., Isik, M., Jiang, T., Koç,
Ö., Li, X., Ahlgren, K., Krcmaric, J., Liu, Q., Matsuo, K., Natsiopoulos, D., Novák, P., Pail, R.,
Piton̆ák, M., Schmidt, M., Varga, M., Vergos, G., Véronneau, M., Willberg, M., Zingerle, P. (2021).
Colorado geoid computation experiment – Overview and Summary. Journal of Geodesy, 95, 127.
https://doi.org/10.1007/s00190-021-01567-9

These two publications are cited using the usual citation style in this thesis. A short summary as well
as the author’s contribution are provided for each co-author publication in the Appendix.

https://doi.org/10.3390/rs12101617
https://doi.org/10.1007/s00190-020-01431-2
https://doi.org/10.1007/s00190-022-01670-5
https://doi.org/10.1007/s00190-021-01481-0
https://doi.org/10.1007/s00190-021-01567-9




vii

Contents

Abstract ii

Kurzfassung iv

Preface v

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research questions and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Fundamental theory 7
2.1 Physical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Gravitational functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Heights and height system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Regional gravity field modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Gravity data and models 15
3.1 Satellite gravimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Satellite altimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Regional gravity measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Global gravity models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Topography models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Methodology 23
4.1 Spherical radial basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Multi-resolution representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Pyramid algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Scaling and wavelet functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Estimation model 33
5.1 Model configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Sequential parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Results and discussion 43
6.1 "1 cm geoid experiment" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Spectral combination via MRR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Summary and outlook 61
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Abbreviations 67



viii Contents

List of Figures 69

List of Tables 71

Bibliography 73

Acknowledgements 85

Appendix 87
A1 Publication I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A2 Publication II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A3 Publication III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A4 Co-author publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



1

1 Introduction

1.1 Motivation

In 2003, a height difference of 54 cm was found when the two sides of a bridge (Laufenburg bridge)
between Germany and Switzerland over the Rhine river were going to connect in the middle. How
did this happen? What is the height of Mount Everest, and why did it vary between measurements
from different countries? Is it possible that a river flows from a lower to a larger height value?

Figure 1.1: What happens when different height reference systems are used at the two sides of a bridge

One answer to all these questions is the usage of different local height reference systems in different
countries, which all refer to local levels. As an example, the physical height (H in Fig. 1.1) in Germany
and Switzerland refers to the sea level of the North Sea from the tide gauge in Amsterdam and
the fundamental station Geneva, which is tightly linked to the tide gauge in Marseille, respectively.
They differ 27 cm from each other. Instead of eliminating the difference caused by the local vertical
datum before the construction of the bridge, it was doubled by mistake in the calculation. At present,
hundreds of local height systems exist (Ihde et al., 2017), and the discrepancies between them can
reach more than 2 m. There is a rapidly increasing need for the establishment of a global physical
height reference system.

The definition and unification of physical height systems is an essential geodetic application of the
Earth’s gravity field. For both scientific and practical reasons, it is desirable to establish an accurate,
consistent, and well-defined global height reference system (Sánchez et al., 2021). The general case
for the realization and unification of height reference systems is the combination of the Global
Navigation Satellite Systems (GNSS) positioning, which can reach an accuracy of a few millimeters,
and the (quasi-) geoid modeling (Ihde et al., 2017). In 2015, the International Association of Geodesy
(IAG) introduced the International Height Reference System (IHRS) as the conventional reference
for the determination of physical heights worldwide (Drewes et al., 2016). The IHRS is a gravity
potential based reference system (Ihde et al., 2017), and the determination of potential values as
IHRS coordinates can be performed following the strategies applied for the (quasi-) geoid modeling.
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Therefore, a high-resolution and high-precision (quasi-) geoid model is the key for the realization of
the IHRS.

Figure 1.2: High-resolution regional gravity data
(airborne and terrestrial measurements)
in combination with global satellite
data1

Observations from satellite missions, such as
the CHAllenging Minisatellite Payload (CHAMP)
(Reigber et al., 2002b), the Gravity Recovery
And Climate Experiment (GRACE) (Tapley et al.,
2004), the GRACE-Follow-On (GRACE-FO) (Ko-
rnfeld et al., 2019), and the Gravity field and
steady-state Ocean Circulation Explorer (GOCE)
(Rummel et al., 2002) are currently the main
data sources for global geoid modeling. How-
ever, their main limitation is the spatial resolu-
tion, which is only around 100 km at the Earth’s
surface (Pail et al., 2011). The missing high-
frequency part of the gravity signal can cause an
omission error of 30 to 40 cm (in extreme cases
even several meters) in the geoid models (Gru-
ber et al., 2012; Sánchez et al., 2021). In contrast,
other types of measurements such as terrestrial,
airborne, and shipborne observations are able
to provide a much higher spatial resolution of a
few kilometers. Thus, they can be used on top of
global models for regional geoid refinement to
extend the spectral content and to improve the
resolution and precision.

To optimally combine different types of obser-
vations, a proper modeling approach needs to
be set up. Different regional gravity field mod-
eling methods have been developed during the
last decades, and among them, the method of
Spherical Radial Basis Functions (SRBFs) is the focus of this work. The fundamentals of the SRBFs
are introduced by Freeden et al. (1998), and further studies can be found in Freeden and Michel
(2004); Schmidt et al. (2007); Klees et al. (2008); Eicker et al. (2014), among many others. SRBFs fulfill
the Laplace equation such as the Spherical Harmonics (SHs). At the same time, they can be used
appropriately for regional approaches to consider the heterogeneity of data sources, due to their
localizing features. The SRBFs are computationally easy to implement, and the observations can be
used directly at their original positions without applying any griding or interpolation procedures,
which are often required in other regional modeling methods, e.g., the numerical evaluation of the
Stoke’s formula. Four properties in the SRBF setup influence the modeling accuracy, namely the type,
the bandwidth, the location of the basis functions, and the extension of the data zone for reducing
edge effects.

Heterogeneous data sets can be combined within a parameter estimation procedure (see Koch, 1999;
Koch and Kusche, 2002). However, in the context of regional gravity field modeling, the derived
least-squares adjustment system is in most cases ill-posed, due to three reasons: (1) the number of
used basis functions is usually larger than required, (2) data gaps in the inhomogeneously distributed
observations, and (3) the downward continuation of satellite and airborne data to the Earth’s surface.
Thus, a regularization is inevitable, and choosing an appropriate regularization parameter is a crucial
issue. The Tikhonov regularization is applied in this work, which can be interpreted as a least-

1GRACE satellite image source: http://geoid.colorado.edu/grace/
GOCE satellite image source: https://gisgeography.com/earth-satellite-list/

http://geoid.colorado.edu/grace/
https://gisgeography.com/earth-satellite-list/
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squares estimation including prior information (Tikhonov and Arsenin, 1977). Various approaches
have been developed and used for the regularization parameter determination, such as the L-curve
method (Hansen, 1990), the Generalized Cross Validation (GCV) (Golub et al., 1979), and the Variance
Component Estimation (VCE) (Koch and Kusche, 2002). However, when measurements from various
observation techniques with different unknown variance factors are to be combined, all regularization
methods may not be appropriately applicable unless the VCE is implemented (Xu et al., 2006).
Nonetheless, it has been suspected that the regularization parameter generated by VCE might be
unreliable (Liang, 2017). Lieb (2017) pointed out that in regional approaches, regularization is much
more sensitive and less well-investigated than in global approaches.

Due to the different spectral sensitivities of each observation technique, the long wavelength parts, i.e.,
the large-scale structures, of the gravity field can only be evaluated by global satellite observations,
while the short wavelength parts are mainly detectable by other types of gravity observations, such as
terrestrial and airborne data. To take the spectral resolution of various observation techniques into
consideration, a spectral combination (see e.g., Sjöberg, 1981; Kern et al., 2003; Denker, 2013) can be set
up such that the different measurement techniques contribute their information in the spectral domain
with the highest sensitivity. One way to realize the spectral combination is to set up a Multi-Resolution
Representation (MRR), which was initially proposed, e.g., by Freeden et al. (1998); Freeden (1999);
and Haagmans et al. (2002). Its realization has been investigated, e.g., by Beylkin and Cramer (2002);
Schmidt et al. (2005); Panet et al. (2011); and Bolkas et al. (2016). The fundamental idea of the MRR
is to split a given signal into a smoothed version, i.e., a low-pass filtered global gravity model, and
a number of detail signals, i.e., band-pass filtered gravity signals (Schmidt et al., 2007). In this case,
the final gravity model could benefit from the individual strengths of each observation technique.
Furthermore, a pyramid algorithm (Freeden, 1999; Schmidt et al., 2005, 2006) can be applied to connect
the different resolution levels, by consecutive low-pass filtering. However, although the proposal of
using the pyramid algorithm dates back nearly two decades, its practical realization in regional cases
faces several challenges (Lieb, 2017), e.g., the low-pass filter matrix needs to be set up properly, and
the extension of the data zone should be adapted for each resolution level.

1.2 Research questions and objectives

This dissertation is aiming to investigate and realize the regional gravity refinement by optimally
combining data from different observation techniques using SRBFs. This general goal leads to the
following main research objectives:

1. To investigate and derive an appropriate regularization method when different data types are
to be combined,

2. To develop a high-resolution regional (quasi-) geoid model using SRBFs based on real gravity
measurements,

3. To realize the spectral combination of data from various observation techniques via MRR based
on the pyramid algorithm.

These three objectives are accomplished by the three first-author papers P-I to P-III respectively, all
published in peer-reviewed journals with open access. As a cumulative dissertation, the three papers
are reprinted in the Appendix, along with a declaration of the author’s contributions. To demonstrate
how the corresponding objectives are addressed in each paper, a few research questions are defined.

P-I Determination of the regularization parameter to combine heterogeneous observations in re-
gional gravity field modeling
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By Qing Liu, Michael Schmidt, Roland Pail, and Martin Willberg. Published in "Remote Sensing".

This publication focuses on the determination of the regularization parameter, which is an inevitable
issue in regional gravity field modeling. As mentioned in Sect. 1.1, VCE could give unreliable
regularization results, and other conventional regularization methods are not properly applicable
when the weight factors of different gravity measurements are unknown. To solve these issues, two
combined approaches are proposed for the regularization parameter determination when different
data sets are to be combined. The two approaches combine VCE and the L-curve method in such a
way that the relative weights are estimated by VCE, but the regularization parameter is determined by
the L-curve method. They differ in whether determining the relative weights between each observation
type first (VCE-Lc) or the regularization parameter by the L-curve method first (Lc-VCE). Numerical
experiments are carried out to compare the performance of these two approaches with the original
L-curve method and VCE. In P-I (Liu et al., 2020a), we answer the following research questions:

Q-1. Is VCE sufficient for determining the regularization parameter?

Q-2. How to apply a conventional regularization method if various data sets are to be combined?

Q-3. How large is the impact of the regularization parameter on the modeling accuracy?

P-II Regional gravity field refinement for (quasi-) geoid determination based on spherical radial
basis functions in Colorado

By Qing Liu, Michael Schmidt, Laura Sánchez, and Martin Willberg. Published in "Journal of Geodesy".

This publication applies SRBFs for computing the regional quasi-geoid and geoid models using
real terrestrial and airborne gravity observations in Colorado, USA, which is a challenging study
area with high elevation and rugged terrain. Thus, the topographic effect is also considered in the
computation. The model settings, i.e., the type, the bandwidth, the location of the SRBFs, and the
extension of the data zone, are explained in detail. The Cubic Polynomial (CuP) function, which has
smoothing features, is applied to the airborne observations to further serve as a low-pass filter for
reducing the high-frequency noise. In P-II (Liu et al., 2020b), we also discuss the contribution of each
data set, namely the Global Gravity Model (GGM), the topography models, and the regional gravity
observations, to the final (quasi-) geoid model. The results contribute to the "1 cm geoid experiment"
(Wang et al., 2021; Sánchez et al., 2021), within which the (quasi-) geoid models calculated by fourteen
institutes worldwide using different approaches are compared. Furthermore, the model accuracy
is evaluated by the GNSS/leveling data from the Geoid Slope Validation Survey 2017 (GSVS17) in
southern Colorado. The following research questions are defined in P-II:

Q-4. How to set up the estimation model using SRBFs?

Q-5. How much does each observation group contribute to the final (quasi-) geoid model?

Q-6. Which accuracy can the SRBF-based regional (quasi-) geoid model achieve, and how is its
performance compared to other methods?

P-III Combination of different observation types through a multi-resolution representation of the
regional gravity field using the pyramid algorithm and parameter estimation

By Qing Liu, Michael Schmidt, Laura Sánchez. Published in "Journal of Geodesy".

This paper develops an MRR scheme based on the pyramid algorithm and sequential parameter
estimation for the spectral combination of data from various observation techniques. The challenges
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in the practical realization of the pyramid algorithm are addressed. Different observation types are
introduced successively into the evaluation process at the spectral levels of their highest sensitivities,
which makes it possible to benefit from the individual strength of each data set. In P-III (Liu et al.,
2022), we explain in detail how the estimation model is set up for the MRR, how the different resolution
levels are connected by the pyramid algorithm, and how different observations are introduced into
the estimation model at each level. The derived gravity model from the MRR based on the pyramid
algorithm is then compared directly to the one computed by the single-level SRBF approach, using
both simulated and real gravity measurements. Additionally, the advantages of applying the MRR
based on the pyramid algorithm are demonstrated and discussed. The following research questions
are answered in P-III:

Q-7. How can the MRR and the pyramid algorithm be realized in regional gravity field modeling?

Q-8. What and how large is the benefit of applying the MRR based on the pyramid algorithm?

Q-9. In which cases the MRR based on the pyramid algorithm should be applied?

These research questions are answered in the aforementioned papers, and will be structured and
summarized in this dissertation. Although each publication is a self-contained study, this thesis will
provide more insights, details, and connect them in a scientific context.

1.3 Outline

This thesis contains seven chapters. It covers the whole procedure of regional gravity field refinement
using data from various observation techniques; from the theory and methodology to the estimation
models and the results. Figure 1.3 shows the structure of this work, including the connection between
the chapters as well as their connection to the three papers. Since this is a cumulative dissertation,
there is a certain overlap between some contents presented in the following chapters, especially in
the methodology and the result parts, and the three publications. They are repeated here to keep this
work comprehensive on its own as much as possible. Nevertheless, this thesis will show in particular
the insights and relations between the publications in a structured manner.

Chapter 2 explains the fundamentals. Section 2.1 introduces the background of the gravity and the
potential theory. Section 2.2 lists different gravity functionals, which are obtained as the first or second
order derivatives of the gravity potential. Section 2.3 is dedicated to the height systems. Different
height definitions and the IHRS are introduced. It also explains why the physical height system can be
realized by regional gravity refinement. Section 2.4 introduces different methods for regional gravity
field modeling, and among them, the SRBFs will be explained in detail in Chap. 4.

Chapter 3 presents various gravity observation techniques which are involved in this work, including
terrestrial, airborne, shipborne, satellite gravimetry, and satellite altimetry. Each observation technique
corresponds to a certain type of gravity functionals and is characterized by its spectral sensitivity. The
observation data, the GGMs, and the topography models used in this work are also introduced.

Chapter 4 is dedicated to the methodology. Section 4.1 introduces the SRBFs, and how they are
adapted to different gravity functionals as given in Sect. 2.2. The spectral convolution of a gravity
functional by SRBFs is also demonstrated. Sections 4.2 and 4.3 discuss the principle and the procedure
of the MRR and the pyramid algorithm, respectively. These two sections explain how the resolution
levels can be chosen, how the levels are connected, and how different observation techniques are used
at these levels. Section 4.4 introduces and compares different types of scaling and wavelet functions,
which can be interpreted as low-pass and band-pass filters, respectively.

Chapter 5 discusses how the methodologies presented in Chap. 4 are realized to compute regional
gravity models using different types of gravity observations introduced in Chap. 3. Section 5.1 shows
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Figure 1.3: Structure of this dissertation, including the connection between the chapters, and in
particular their connection to the three publications

the model settings, i.e., how the aforementioned four properties, namely the type, the bandwidth, the
location of the SRBFs, and the extension of the data zone, are chosen. Sections 5.2 and 5.3 demonstrate
how the estimation models are established for the single-level approach and the MRR, respectively.
The combination of data from various observation techniques is explained in detail, including the
relative weighting between each other. Section 5.4 introduces existing methods for determining the
regularization parameter, discusses their drawbacks, and therefore, proposes a new approach when
different data types are to be combined.

The estimation models derived in Chap. 5 are applied to different study cases, and the corresponding
results are presented in Chap. 6. The results can be divided into two groups, one from the single-level
approach using SRBFs (Sect. 6.1) and one from the multi-level approach, i.e. spectral combination
through MRR (Sect. 6.2). In Sect. 6.1, the results from the "1 cm geoid experiment" are discussed, where
the SRBF-based (quasi-) geoid model is thoroughly validated with the other thirteen independent
solutions delivered by different modeling methods as well as the GNSS/leveling data. Section 6.2
presents the gravity model computed by the MRR based on the pyramid algorithm, and compares it
directly with the single-level model.

Finally, Chap. 7 summarizes the findings of this dissertation, provides conclusions and the outlook for
future work.
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2 Fundamental theory

This chapter addresses the theoretical background of the Earth’s gravity field, introduces different
gravity related quantities and height systems, and provides a short summary of gravity field modeling
approaches.

2.1 Physical background

Gravitation is a function of mass distribution. According to Newton’s universal law of gravitation, the
force F exerted by a body with attracting mass m on a unit mass located at a distance l from m reads

F = G
m
l3 l, (2.1)

where G = 6.6742 · 10−11 m3kg−1s−2 is Newton’s gravitational constant (Hofmann-Wellenhof and
Moritz, 2006), l is a vector pointing from the unit mass to the attracting mass with length l. The Earth
can be considered as an attracting mass with continuously distributed mass elements dm, and the
gravitational potential V at any point P with coordinates (x, y, z) is the integral of the contributions of
individual mass elements

V = G
∫∫∫ dm

l
= G

∫∫∫
ρ

l
dv (2.2)

where dv is the volume element, and ρ = dm/dv is the density of the attracting mass.

The gravitational potential V satisfies the Poisson equation

∇2V = −4πGρ, (2.3)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplace operator (Hofmann-Wellenhof and Moritz, 2006).
Moreover, in the exterior space outside the Earth, under the assumption ρ = 0 by neglecting the
density of the atmosphere, it further satisfies the Laplace equation

∇2V = 0. (2.4)

Thus, the gravitational potential V is a harmonic function outside the attracting masses.

The gravity potential W is the sum of the gravitational potential V and the centrifugal potential Z

W = V + Z, (2.5)

where Z at any point P(x, y, z) can be calculated as

Z =
1
2

ω2(x2 + y2), (2.6)

with ω being the angular velocity of the Earth.

The gravity acceleration g is derived as the gradient of the gravity potential W (Heiskanen and Moritz,
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1967)

g = ∇W =

[
∂W
∂x

,
∂W
∂y

,
∂W
∂z

]T
. (2.7)

The magnitude g = |g| is called gravity, which is usually measured in the unit Gal or mGal (1 mGal =
10−5 m/s2). The direction of the gravity vector is pointing into the Earth along the plumb line, which
intersects all equipotential surfaces of the Earth’s gravity field perpendicularly.

Figure 2.1: The geoid and the ellipsoid

The Earth can be first approximated as a sphere, and
second as an ellipsoid of revolution, i.e., a spheroid,
whose surface is an equipotential surface of the
normal gravity field (Heiskanen and Moritz, 1967).
The ellipsoid is regarded as the normal form of the
geoid (see Fig. 2.1), which is an equipotential sur-
face of the actual gravity field with W = W0. The
normal potential U of the ellipsoid is constant on its
surface with U = U0 = W0. The value of this con-
stant differs between different reference ellipsoids,
e.g., the Geodetic Reference System 1980 (GRS80)
(Moritz, 2000), and the World Geodetic System 1984
(WGS84) (Hofmann-Wellenhof and Moritz, 2006).
The normal potential U is mathematically easy to
handle; it can be determined by the constant GM
value (with M being the total mass), the semi-axes of the ellipsoid, and the angular velocity ω (Heiska-
nen and Moritz, 1967). The Earth’s gravity potential is then split into a "normal" and a remaining
"disturbing" field

T(x, y, z) = W(x, y, z)−U(x, y, z), (2.8)

where T is called the disturbing potential. It also satisfies the Laplace equation ∇2T = 0 outside the
attracting masses, and thus, is a harmonic function. Gravity field modeling usually deals with T
instead of W, since the latter can always be reconstructed by adding the normal potential (Heiskanen
and Moritz, 1967).

Spherical harmonics

The global gravity field is usually modeled by a series expansion in terms of spherical harmonics (e.g.,
Heiskanen and Moritz, 1967; Torge, 1991). As a solution of the Laplace equation (2.4) in spherical
coordinates, the series expansion of the disturbing potential T in terms of spherical harmonics in the
exterior space reads

T(ϕ, λ, r) =
GM

R

∞

∑
n=0

(
R
r

)n+1 n

∑
m=0

[Cnm cos(mλ) + Snm sin(mλ)] Pnm(sinϕ) (2.9)

where ϕ and λ are the spherical latitude and longitude, R is the radius of the Earth, and r ≥ R is the
radial distance. Cnm and Snm are the fully normalized spherical harmonic coefficients, and Pnm are the
fully normalized associated Legendre functions,

Pnm(t) =





√
2n + 1 Pnm(t), when m = 0√
2 (2n + 1) (n−m)!

(n+m)! Pnm(t), when m 6= 0
. (2.10)

Pnm is the associated Legendre function of degree n and order m, and it is defined by

Pnm(t) = (1− t2)m/2 ∂m

∂tm Pn(t), (2.11)
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with t = sinϕ; Pn is the Legendre polynomial of degree n

Pn(t) =
1

2nn!
∂n

∂tn (t
2 − 1)n. (2.12)

In practice, the Legendre polynomials Pn can be calculated more simply by the evaluation of the
recursion formula

Pn(t) = −
n− 1

n
Pn−2(t) +

2n− 1
n

t Pn−1(t) (2.13)

with P0(t) = 1 and P1(t) = t (Hofmann-Wellenhof and Moritz, 2006).

2.2 Gravitational functionals

Various gravitational functionals can be derived from the disturbing potential T based on field
transformations (Rummel and van Gelderen, 1995). This section introduces some of the functionals
which are involved in this thesis, while more details related to different gravitational functionals are
presented, e.g., by Heiskanen and Moritz (1967) and Hofmann-Wellenhof and Moritz (2006).

Figure 2.2: Geoid height N. Note that
the curve of the ellipsoid is ne-
glected in this and the following
figures

Geoid height

As mentioned in Sect. 2.1, the geoid is a unique equipo-
tential surface with W = W0 that coincides with the
worldwide mean ocean surface; it was described as the
"mathematical figure of the Earth" by Gauss. As shown
in Fig. 2.2, the metric difference between the geoid (with
W = W0) and the reference ellipsoid (with U = U0 = W0)
is denoted as the geoid height (also known as geoid
undulation) N. According to Bruns’ formula, it can be
calculated as

N =
TP0

γ0
(2.14)

(Hofmann-Wellenhof and Moritz, 2006), where TP0 is the
disturbing potential of P0 at the geoid, and γ0 is the
normal gravity of P′0 at the ellipsoid.

Figure 2.3: Quasi-geoid height ζ

Quasi-geoid height

The quasi-geoid is a surface identical to the geoid over the
oceans, and close to the geoid anywhere else (Heiskanen
and Moritz, 1967). In the same manner as the geoid
height, the metric difference between the quasi-geoid
and the reference ellipsoid is denoted as the quasi-geoid
height (also known as height anomaly) ζ. According to
Bruns’ formula, it can be calculated as

ζ =
TP
γQ

, (2.15)

where TP is the disturbing potential at the Earth’s surface
point P, and γQ is the normal gravity of the correspond-
ing point Q at the telluroid (Fig. 2.3), which is a surface
that is composed of points which have the same normal
potential as the gravity potential of the corresponding surface points, i.e., UQ = WP.
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Gravity disturbance

The gravity disturbance δg of the point P is defined as the difference between the gravity and normal
gravity at this point

δg = gP − γP. (2.16)

Recalling Eq. (2.7), the gravity vector g = ∇W, the normal gravity vector γ = ∇U, thus, the gravity
disturbance vector δg can be expressed as the gradient of the disturbing potential T

δg = ∇(W −U) = ∇T. (2.17)

Its magnitude in spherical approximation can be written as

δg = −∂T
∂r

, (2.18)

see e.g., Hofmann-Wellenhof and Moritz (2006).

Gravity anomaly

The (surface) gravity anomaly ∆g is the difference between the gravity gP at point P and the normal
gravity γQ of the corresponding point Q at the telluroid (see Fig. 2.3)

∆g = gP − γQ. (2.19)

With Bruns’ formula and the spherical approximation (Hofmann-Wellenhof and Moritz, 2006), it yields

∆g = −∂T
∂r
− 2

R
T. (2.20)

Gravity gradient

The gravity gradient tensor (also known as the Eötvös tensor) includes all second-order derivatives of
the disturbing potential T, which quantifies the change of gravity

∇ ·∇T =




Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz


 (2.21)

with Txy = Tyx, Txz = Tzx, Tyz = Tzy (Torge, 1991). Moreover, the trace ∇2T = Txx + Tyy + Tzz = 0
outside the attracting mass, according to the Laplace equation (2.4). In spherical approximation, we
obtain Tzz = Trr.

2.3 Heights and height system

The definition and determination of heights include two aspects, the geometric part which provides
the ellipsoidal height h (elevations above a reference ellipsoid), and the physical part which provides
the physical height H (heights above a level surface of the Earth’s gravity field, Ihde et al., 2017). These
two parts are connected to each other by the geoid height N and the quasi-geoid height ζ, which were
introduced in Sect. 2.2.

Ellipsoidal height

The ellipsoidal height (or geometric height) h of a point P is defined as the distance from this point to
the ellipsoid along the normal plumb line (see Fig. 2.4). It can be directly measured by GNSS, with an
accuracy of a few millimeters.
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Figure 2.4: Overview of heights and reference surfaces, adapted from Sánchez et al. (2021)

Orthometric height

The orthometric height HO of a point P is the distance from this point to the geoid, along the plumb
line (Fig. 2.4). It can be calculated by

HO =
W0 −WP

g
=

CP
g

(2.22)

(Heiskanen and Moritz, 1967), where W0 and WP are the potential values at the geoid and the point P,
respectively; CP = W0 −WP is denoted as the geopotential number, and g is the mean value of the
gravity along the plumb line between the point P0 at the geoid and the point P. The relation between
the orthometric height HO and the ellipsoidal height h reads

h = HO + N, (2.23)

neglecting the deflection of the vertical and the curvature of the plumb line (Torge, 1991).

Normal height

The normal height HN of a point P is the distance from this point to the quasi-geoid, along the normal
plumb line (Fig. 2.4). The normal height can be derived as

HN =
W0 −WP

γ
=

CP
γ

, (2.24)

(Heiskanen and Moritz, 1967), where γ is the mean normal gravity along the normal plumb line
between the point Q0 at the quasi-geoid and the point P. The relation between the normal height HN
and the ellipsoidal height h reads

h = HN + ζ. (2.25)

The orthometric height HO and the normal height HN are the two most important types of physical
heights. Although the ellipsoidal heights generally have a much better accuracy, they cannot replace
the physical heights, due to their geometrical nature (Ihde et al., 2017). For applications related to
geophysical fluids, e.g., sea level changes, the Earth’s interior, or the river flow, the physical heights
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need to be available. Two approaches can be applied to determine the physical heights. The first is
spirit leveling combined with gravimetry, following Eq. (2.22) or Eq. (2.24). It is the classical technique
that delivers precise results, but the disadvantages are that their measurement is time consuming
and expensive, and it may contain systematic distortions. The second approach is to combine the
ellipsoidal height from GNSS positioning with a (quasi-) geoid model from gravity field modeling,
following Eq. (2.23) or Eq. (2.25). The costs of this approach are much lower, and it is regarded as
the future trend for physical height determination (Rummel, 2012). Thanks to the recent advances in
optical atomic clocks, a new approach that might be used for physical height determination in the
future is the chronometric leveling by high-precision clocks (see e.g., Bjerhammar, 1985; Lion et al.,
2017; Müller et al., 2018; Shen et al., 2019).

A physical height can be determined as orthometric height in combination with the geoid height
following Stokes’ theory or as normal height in combination with the quasi-geoid height following
Molodensky’s theory. The geoid height and the quasi-geoid height can be transformed from each
other through a geoid-quasigeoid separation term. One formulation of this separation term reads

N − ζ ≈ ∆gB
γ̄

HO, (2.26)

∆gB = g− AB + F− γ (2.27)

(Heiskanen and Moritz, 1967), where ∆gB is the simple Bouguer anomaly, AB = 0.1119 · HO mGal is
the topographic mass effect, and F ≈ 0.3086 · HO mGal is the free-air reduction. More refined formulas
for the geoid-quasigeoid separation have been derived, e.g., by Flury and Rummel (2009) and Sjöberg
(2010). In this work, the quasi-geoid height is calculated directly at the Earth’s surface following
Molodensky’s theory, and then it is transformed to the geoid height following the Eqs. (2.26) and
(2.27). If the geoid is to be computed first, the gravity values should be reduced to gravity anomalies
at the geoid, which includes the reduction of topographic masses. In this case, consistencies should be
ensured between the gravity reductions in different regions to guarantee a globally consistent physical
height system (Sánchez and Sideris, 2017).

Currently, the existing height reference frames around the world all refer to local sea levels. Ihde
et al. (2017) pointed out that hundreds of national or regional physical height systems are in use,
with discrepancies of more than 2 m between each other. This does not fulfill the demand of having
global height systems consistent at the level of a few centimeters or better (Plag et al., 2009), for both
scientific and practical reasons. Thus, it is important and necessary to establish a global physical height
reference system and to integrate the regional height systems into the global one. Sánchez and Sideris
(2017) showed that the height system unification is based on the comparison of the quasi-geoid height
(or geoid height) obtained from the gravity field modeling and that derived from GNSS/leveling, i.e.,
h− H (Eqs. (2.23) and (2.25)). The GNSS/leveling combination can also be used to validate the (quasi-)
geoid models obtained by regional gravity field refinement, which is demonstrated in P-II, Sánchez
et al. (2021), and Wang et al. (2021).

International Height Reference System

The Earth can be characterized by its geometry together with its geopotential. A globally unified
geometric reference system was already introduced by the International Terrestrial Reference System
(ITRS) and realized by the International Terrestrial Reference Frame (ITRF) (Petit and Luzum, 2010).
However, an equivalent high-precision global physical reference system is still not available, and thus
desired (Ihde et al., 2017). In 2015, the IHRS was introduced by the IAG as a global standard for the
determination of physical heights (Drewes et al., 2016). The strategies for the definition and realization
of the IHRS have been discussed in many publications, e.g., Sánchez (2012); Sánchez and Sideris (2017);
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Ihde et al. (2017); and Sánchez et al. (2021).

The IHRS is defined as a geopotential reference system co-rotating with the Earth. It is realized by the
establishment of the International Height Reference Frame (IHRF), by determining the coordinates of
the selected stations worldwide following the definition of the IHRS. Station coordinates are determined
(1) as gravity potential values W(x) and their changes with time dW(x)/dt, defined within the Earth’s
gravity field and, (2) as geocentric Cartesian coordinates x and their changes with time dx/dt, referring
to the ITRS. For practical purposes, the geocentric position vector x can be transformed to the ellipsoidal
height h, and the potential value W(x) of point P should be transformed to the geopotential number
CP (see Eqs. (2.22) and (2.24)) by referring to an equipotential surface of the Earth’s gravity field, i.e.,
the geoid, with conventional value W0 (Ihde et al., 2017). According to the IAG Resolution No. 1 from
Drewes et al. (2016), the conventional value is defined as W0 = 62, 636, 853.4 m2/s2, which was derived
by Sánchez et al. (2016).

Sánchez et al. (2021) showed that there are three approaches for the determination of potential values
as IHRF physical coordinates, namely (1) the unification of existing local height systems, (2) using
high-resolution GGMs, and (3) using regional (quasi-) geoid models. The authors further stated
that except for regions without or with very few surface gravity data, the IHRF coordinates should
be determined by high-resolution regional gravity field modeling. The reliability of the potential
estimation thus undergoes the same limitations of the precise (quasi-) geoid modeling. According to
Ihde et al. (2017), the target uncertainty of W(x) should be at the 10−2 m2/s2 level, which is equivalent
to ∼ 1 mm for physical heights. This goal is unrealistic at the current moment due to the limitation
of available resources, and Sánchez et al. (2021) stated that the possibility of reaching an accuracy at
10−1 m2/s2 level (equivalent to ∼ 1 cm in height) should be evaluated first.

To test the feasibility of reaching a 1 cm accuracy and to assess the repeatability of IHRS coordinates
determination using different regional gravity field modeling methods, the "1 cm geoid experiment"
(also known as the "Colorado experiment") was set up in 2017 (Sánchez et al., 2018). It was proposed
by four scientific groups within the IAG, namely

- the Global Geodetic Observing System (GGOS) Joint Working Group (JWG) 0.1.2 "Strategy for
the realization of the IHRS",

- the IAG JWG 2.2.2 "The 1 cm geoid experiment",

- the IAG Sub-Commission (SC) 2.2 "Methodology for geoid and physical height systems",

- the Inter-Commission Committee on Theory (ICCT) Joint Study Group (JSG) 0.15 "Regional
geoid/quasi-geoid modeling – Theoretical framework for the sub-centimeter accuracy".

With high-resolution terrestrial and airborne gravity data provided by the National Geodetic Survey
(NGS), fourteen institutions worldwide computed the (quasi-) geoid model and geopotential values
(as IHRS coordinates) for Colorado, USA using different methodologies, within this experiment.

2.4 Regional gravity field modeling

SHs (see Sect. 2.1) are an appropriate method for global gravity field modeling. However, they
are not ideal for regional cases, and the reasons are summarized, e.g., by Naeimi (2013) and Li
(2018). Accordingly, different regional gravity modeling approaches have been developed during the
last decades, e.g., the statistical method of Least Squares Collocation (LSC) (Krarup, 1970; Moritz,
1978), the Stokes’ integral (Heiskanen and Moritz, 1967; Moritz, 1980), the method of mascons (mass
concertrations, Rowlands et al., 2005; Jacob et al., 2012), and point masses (Barthelmes, 1988; Antunes
et al., 2003), besides the SRBFs which are used in this work. Comparisons between the different
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methods have been studied, e.g., by Tscherning (1981); Eicker (2008); and Ophaug and Gerlach (2017,
2020).

The method of LSC has been used in regional gravity field modeling for a long time, since its
development by Krarup (1970). A detailed method description is given in Moritz (1978, 1980), and
its application can be found in numerous studies, e.g., Pail et al. (2010); Reguzzoni and Sansò (2012);
Tscherning (2013), and the references therein. Willberg et al. (2019) further developed the Residual
Least Squares Collocation (RLSC) as an enhancement of LSC by applying the Remove-Compute-
Restore (RCR) procedure and including the full variance-covariance information of the GGM. LSC
is considered as a combination of least-squares adjustment, filtering, and prediction (Moritz, 1980).
It tries to minimize the prediction error based on the knowledge of the signal covariance (Ophaug
and Gerlach, 2017). The advantages of LSC are (1) it is flexible for handling and combining different
types of observation data, (2) it is able to deliver error information with full covariance matrices,
and (3) the measurements can be used directly without the need of grid interpolation (Denker, 2013).
However, the challenges in applying the LSC are the proper computation of the covariance function
(Alberts, 2009), and the high computational costs when dealing with a large number of point-wise
data (Wittwer, 2009). For tackling the latter issue, Zingerle et al. (2021) made practical modifications to
the original LSC and proposed a "partition-enhanced" LSC.

The Stokes’ integral, also known as the Stokes’ formula, is a classical method initiated by Stokes
(1849), which delivers the disturbing potential T or geoid height N by an integration of gravity data
in terms of gravity anomalies. The original form of the Stokes’ integral has later been modified for
the case of an arbitrary reference ellipsoid (Heiskanen and Moritz, 1967). For the more recent geoid
determination, the Stokes’ integral is usually employed in combination with SHs (Torge, 1991) in such
a way that the long-wavelength features are represented by SHs, and the Stokes’ integral furnishes the
short-wavelength part. In this case, the modified Stokes’ kernels should be used so as to minimize
the resulting truncation error (Jekeli, 2015). Different modifications to the Stokes’ kernel have been
proposed, e.g., by Wong and Gore (1969); Sjöberg (1981, 1991, 2003); and Featherstone et al. (1998).
Featherstone (2013) provided a detailed review and classification of the modifications applied to the
Stokes’ integral. The Stokes’ integral is a widely used method with plenty of applications available, e.g.,
Saleh et al. (2013); Jiang and Wang (2016); McCubbine et al. (2018); Koji and Yuki (2020), among many
others. However, one challenge in applying the Stokes’ integral is the combination of heterogeneous
data (Wu et al., 2017b), since a grid interpolation is needed in this approach, and the integral is
formulated only for one data type each.

The method of SRBFs will be explained in detail in Chap. 4, as it is used in this thesis and the three
publications P-I to P-III. These regional gravity field modeling methods have been applied in the "1 cm
geoid experiment" by different institutions worldwide (e.g., Willberg et al., 2020; Claessens and Filmer,
2020; Wang et al., 2020), and their performances are compared and presented in the two co-author
publications, i.e., Sánchez et al. (2021) and Wang et al. (2021). The (quasi-) geoid model calculated by
SRBFs is also validated with the other methods in Sect. 6.1 and P-II.
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3 Gravity data and models

This chapter introduces different gravity observation techniques, and presents the data and models
that are involved in this thesis.

3.1 Satellite gravimetry

GOCE satellite mission

The GOCE mission was the first Earth Explorer mission within the framework of the Living Planet
Programme of the European Space Agency (ESA) and the first gravity gradiometry satellite mission.
It was launched by ESA in March 2009 and deorbited in November 2013. The primary objective of
the GOCE mission was to provide gravity observations for modeling the Earth’s gravity field and the
geoid with high accuracy (Drinkwater et al., 2003; Johannessen et al., 2003), and more specifically

- to determine the Earth’s gravity field with an accuracy of 1 mGal,

- to determine the geoid with an accuracy of 1 cm,

- to achieve both of the above goals at length scales down to 100 km, which corresponds to an SH
degree and order (d/o) 200.

The core of the GOCE sensor system was a three axes gravity gradiometer with two accelerometers on
each axis, which measured the difference in gravitational acceleration inside the spacecraft (Drinkwater
et al., 2003). Each accelerometer was ultra sensitive along two orthogonal directions and less sensitive
along the third one (Rummel et al., 2011). Gruber et al. (2014) reported that the gradient precision along
the two sensitive axes was 10 mE/

√
Hz. The measured signal corresponds to the second derivatives of

the gravitational potential V, i.e., the gravity gradient (Eicker et al., 2006). The gradiometer components
Vxx, Vyy, Vzz, and Vxz have been derived with high precision, whereas the components Vxy and Vyz
have much lower precision (Bouman et al., 2011; Fuchs and Bouman, 2011).

GOCE data products are provided in different level categories, depending on the processing status.
Level 0 data are the raw observations. For Level 1a, the instrument time series with the calibration data
are attached; after calibration and correction, Level 1b products are generated. Level 2 products are
precise orbits, gravity gradients and GOCE gravity field models. The processing details for obtaining
the Level 2 products can be found, e.g., in Gruber et al. (2007, 2014).

GRACE satellite mission

The GRACE mission was jointly implemented by the National Aeronautics and Space Administration
(NASA) and the German Aerospace Center (DLR); it was launched in March 2002 and operated till
October 2017. On 22 May 2018, its successor GRACE-FO was successfully launched as the continuation
of the mission. The objectives of GRACE were to track changes in the Earth’s gravity field and to map
the global gravity field with a spatial resolution of 400 km and a temporal resolution of 30 days (Tapley
et al., 2004). The GRACE mission consists of two satellites in the same orbit, with an inter-satellite
distance of around 220 km, at an initial altitude of 500 km and an inclination of 89◦. The measurements
of GRACE include:
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- the precise distance between the twin satellites, which reflects the changing gravity field of the
Earth, obtained by a K-band microwave ranging system,

- the non-gravitational accelerations from high precision accelerometers,

- the position of the satellite using the onboard Global Positioning System (GPS) receiver (Tapley
et al., 2005).

GRACE data are also provided from Level 0 (raw data) to Level 2 products, which include the satellite
orbits as well as the estimated SH coefficients for the gravity field models (Dahle et al., 2013).

CHAMP satellite mission

The German satellite CHAMP was launched in July 2000; the mission generated gravity and magnetic
field measurements simultaneously for 10 years and ended in September 2010. The CHAMP mission
was operated in an almost circular and near-polar orbit with an inclination of 87.3◦, which enables a
homogeneous and complete global coverage of the Earth’s sphere. The satellite was equipped with a
GPS flight receiver and a three-axis accelerometer, which allow a Precise Orbit Determination (POD)
as well as the separation of gravitational and non-gravitational accelerations to resolve the gravity field
parameters (Reigber et al., 2002a).

CHAMP data products are categorized from Level 0 (raw data) to Level 4, which are the precise
satellite orbits and global gravity models represented by the adjusted SH coefficients (Reigber et al.,
2002b).

In P-I and P-III (simulated data case), satellite data are simulated from the GGMs in terms of the
disturbing potential difference ∆T = TA − TB between the two satellites A and B for GRACE and
the second-order derivative Trr of the disturbing potential (see Sect. 2.2) for GOCE. In P-II and P-III
(real data case), the satellite data are involved directly by the GGMs being subtracted within the RCR
procedure.

3.2 Satellite altimetry

Figure 3.1: Quantities related to satellite altimetry

Satellite altimetry missions are initially not devel-
oped for gravity field modeling; however, gravity
values such as the geoid height and the deflec-
tion of the vertical can be converted from the
altimetry measurements and used as gravity ob-
servations. The derivation of different gravity
functionals (including the gravity anomaly, ver-
tical gravity gradient, deflection of the vertical,
etc.) from altimetry data is discussed and ap-
plied, e.g., by Sandwell and Smith (1997); Hwang
and Hsu (2008); and Sandwell et al. (2014). In
this work, the altimetry observations are used in
terms of geoid height.

The direct observable of satellite altimetry is the
traveling time for a radar signal to reach the
sea surface and back using a pulse-limited radar.
Thus, the distance hs from the satellite to the sea surface is obtained. Meanwhile, the distance h from
the satellite to the ellipsoid is given from POD (Sandwell and Smith, 1997). As shown in Fig. 3.1, the
Sea Surface Height (SSH) can be calculated as the difference between the two distances h and hs. The
sea surface differs from the geoid due to different hydrodynamic processes, and their difference is
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denoted as the Dynamic Ocean Topography (DOT). DGFI-TUM provides instantaneous DOT values
through the Open Altimeter Database (OpenADB, https://openadb.dgfi.tum.de/en/), which are
derived using a "profile approach" with cross-calibration between different missions (Bosch et al., 2014).
The geoid height N is then obtained as

N = h− hs − DOT. (3.1)

Numerous satellite altimetry missions have been launched in the last four decades, and a list of
past, active, and potential future missions is shown in Fig. 3.2. Detailed information about these
missions can be found at the OpenADB. The precision of the derived SSH is listed in Vermeer (2020); it
varies between different altimetry missions and averages around 3 cm. In P-III, geoid heights derived
from the satellite altimetry mission ERS-1, Jason-1, Envisat, and Cryosat-2 are used as major offshore
observations for regional gravity field modeling.

Figure 3.2: List of past, active, and potential future satellite altimetry missions2

3.3 Regional gravity measurements

As mentioned in Chap. 1, the main limitation of satellite data is their spatial resolution, which is
around 100 km. Gravity measurements from terrestrial, airborne, and shipborne gravimetry deliver a
much higher resolution of a few kilometers, and thus, are the major data contributors for regional
gravity field refinement. Therefore, they are categorized here as regional gravity measurements.
However, it is worth clarifying that terrestrial, airborne, and shipborne data can be used not only for
regional gravity modeling but also for global gravity field modeling. Although the costs for collecting
these data are generally much lower than for satellite missions, their availability and distribution
vary between different regions. Hence, it is of great importance to develop approaches to optimally
combine the heterogeneous regional observations in addition to global satellite data.

Terrestrial gravimetry

Terrestrial gravimetry measures the gravity field on the Earth’s surface and can be divided into two
types, absolute gravimetry and relative gravimetry. Absolute gravimetry delivers the magnitude
of the gravity vector g directly at specific stations, while relative gravimetry measures the gravity
difference with respect to the absolute stations. The measuring principle and related instruments of

2Image source: https://openadb.dgfi.tum.de/en/missions/

https://openadb.dgfi.tum.de/en/
https://openadb.dgfi.tum.de/en/
https://openadb.dgfi.tum.de/en/missions/
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both types of gravimetry are explained, e.g., by Torge (1991) and Vermeer (2020). Absolute gravimetry
can achieve an instrument uncertainty of 1 µGal (Niebauer et al., 1995), but it is expansive. Relative
gravimeters are the standard instruments for rapid field measurements, and their measurement
precision can reach 10µGal (Timmen, 2010). The most accurate and stable relative gravimeters, namely
the superconducting gravimeters, are able to achieve a sensitivity of 1 µGal (Virtanen, 2006).

Airborne and shipborne gravimetry

Airborne gravimetry is conducted by the highly sensitive accelerometers on board an aircraft, following
the principle of relative gravimetry. The details about its measuring principles can be found in Forsberg
and Olesen (2010) and Vermeer (2020). Airborne gravimetry became a major tool for gravity field
modeling in the 1990s, thanks to the development and availability of carrier-phase kinematic GPS,
which measures the acceleration of the aircraft (Alberts, 2009). Removing it from the acceleration
captured by the accelerometer, only gravity and system errors remain. Airborne gravimetry is
important for geodesy, since it is able to collect data over areas that are difficult for other observation
techniques to access, e.g., in polar, mountainous, and coastal regions. It is able to provide data with
high spectral resolution over large scales, with relatively low costs. Nowadays, the airborne gravity
measurements are at an accuracy level of 1-2 mGal (Forsberg and Olesen, 2010).

Like airborne gravimetry, shipborne gravimetry is conducted by gravimeters on board a ship, and
it also follows the measuring principle of relative gravimetry. It is a major method for measuring
the Earth’s gravity field in coastal and offshore areas. Lu et al. (2019) reported that a measurement
accuracy of sub-mGal can already be achieved by shipborne gravimetry.

Regional gravity data

As an example, the regional gravity data used in this work for the "1 cm geoid experiment" are
visualized in Fig. 3.3a. The estimation model is then set up according to the resolution and quality
of the data, and the corresponding modeling results are validated by the GNSS/leveling data at the
GSVS17 benchmarks (red line in Fig. 3.3a) and presented in Sect. 6.1.

(a) (b)

Figure 3.3: (a) terrestrial (blue dots) and airborne (green flight tracks) gravity measurements in Col-
orado, as well as GNSS/leveling data at the GSVS17 benchmarks (red line) for validation;
(b) terrain map of the study area

Two types of observations are provided by the NGS in terms of gravity values g. The terrestrial gravity
data (blue dots in Fig. 3.3a) were collected by different organizations during a large time span (since
the late 1930s). Thus, their exact accuracy is unknown. However, Saleh et al. (2013) estimated that the
NGS’s surface gravity database generally contains high-frequency errors with a Root Mean Square
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(RMS) of around 2.2 mGal, and the error is larger in mountainous areas such as the Rocky Mountains
and the Appalachians. The terrestrial measurements have full coverage over the whole study area,
with a total amount of 59,303 points, given with orthometric height HO. Although they are not evenly
distributed, the average point distance reaches approximately 3 km for the whole terrestrial data set.

The airborne gravity data (green flight tracks) were collected by the "Gravity for the Redefinition of
the American Vertical Datum" (GRAV-D) project (GRAV-D Team, 2017) in recent years, and resampled
to a 1 Hz observation frequency. The data consist of 56 flight lines, with a mean flight altitude of
6,186 m. They cover most of the study area in the southeastern part, generally between -109◦ and
-102◦ longitude and between 35◦ and 38.5◦ latitude. The total number of airborne measurements
amounts to 283,716 points, given with ellipsoidal height h. The along-track spatial resolution depends
on the aircraft speed, with an average of around 100 m; the cross-track resolution is almost 10 km. A
crossover error analysis has been done by the GRAV-D Team (2018), which suggests an RMS error of
2.32 mGal in the GRAV-D data for this region.

The following preprocessing steps are performed to the original terrestrial and airborne data before
they are used for computation:

1. For the terrestrial data, duplicate values are removed. To be more specific, in case of several
gravity observations located at the same position, only the first of these observations is kept.
However, if the observations at the same position differ more than 2 mGal from each other, all
of them are deleted. This step results in a deletion of 1,175 points.

2. Downsampling of the airborne data from 1 Hz to 1/8 Hz to save computation time, as the
consecutive airborne observations are highly correlated (see P-II for more detail). Low-pass
filtering is also required in the preprocessing for the airborne data (see e.g., Olesen et al., 2002;
GRAV-D Team, 2018), and different low-pass filters have been applied by the participating
groups in the "1 cm geoid experiment". However, in SRBFs, the low-pass filtering can be directly
implemented in the computation by applying an SRBF with smoothing features (see Sect. 4.4).

3. Transformation of the orthometric heights HO in the terrestrial data to the ellipsoidal heights h
using a geoid model provided by the NGS following Eq. (2.23).

4. Transformation of both the terrestrial and airborne observations in terms of absolute gravity
values g to gravity disturbance δg by subtracting the normal gravity γ following Eq. (2.16).

5. The normal gravity subtracted in the previous step contains the gravitation of the atmospheric
mass, i.e., it considers the mass of the Earth’s atmosphere on the ellipsoidal surface. However,
gravity observations on or close to the Earth’s surface are not affected by the atmospheric mass.
Thus, the atmospheric correction (see Torge, 1989) is added to these two types of observations,
which is calculated as

δgATM = 0.874− 9.9 · 10−5h + 3.56 · 10−9h2. (3.2)

3.4 Global gravity models

In this thesis, the global gravity field modeled by SHs serves as background model for regional
gravity field refinement, using the RCR procedure (e.g., Forsberg and Tscherning, 1981; Forsberg,
1993). To be more specific, the long-wavelength component derived from a GGM is removed from
the gravity measurements before computation, the remaining part is then modeled using regional
gravity field modeling methods, and afterwards, this removed part is restored to the final gravity
model. Existing global models approximate the long-wavelength component of the gravity field very
accurately. Furthermore, it also solves the problem that regional gravimetry cannot estimate the
long-wavelength parts (Lieb et al., 2016). Numerous GGMs are provided by the International Centre
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for Global Earth Models (ICGEM) and available through http://icgem.gfz-potsdam.de/; the ones that
are involved in this work are introduced in this section.

EGM2008

The Earth Gravitational Model 2008 (EGM2008) was developed and evaluated by Pavlis et al. (2012),
and it is the first high-resolution GGM with SH expansion up to degree 2190 (calculated in terms
of ellipsoidal harmonic coefficients up to degree 2159, and converted to the SH representation with
degree 2190). This global model was developed by a combination of

- the GGM ITG-GRACE03S (Mayer-Gürr et al., 2010), which was developed using GRACE data
up to d/o 180, along with its associated error covariance matrix,

- a global 5′ × 5′ gravity anomaly grid formed by merging terrestrial, altimetry-derived, and
airborne gravity data,

- gravitational information obtained from a detailed global topographic database over areas
where only lower resolution gravity data were available.

Pavlis et al. (2012) further showed that over areas covered with high quality gravity data, the accuracy
of the geoid heights calculated by EGM2008 is similar (or even better) compared to those obtained
from corresponding regional geoid models w.r.t. independent GNSS/leveling data.

EIGEN-6C4

The EIGEN-6C4 (Förste et al., 2014) is a high-resolution global gravity model (up to degree 2190) of the
European Improved Gravity model of the Earth by New techniques (EIGEN) series. It was calculated
by a band-pass combination of normal equations from different types of data, namely Satellite Laser
Ranging (SLR) data up to degree 30, GRACE data up to degree 175, GOCE data up to degree 300, and
a 2′ × 2′ global gravity anomaly grid of the Technical University of Denmark (DTU), which is obtained
by altimetry over the oceans and EGM2008 over the continent (Andersen, 2010).

XGM2016 and XGM2019e

The eXperimental Gravity field Model 2016 (XGM2016) was derived by Pail et al. (2018) up to
degree 719, as a successor of the model GOCO05c (Fecher et al., 2017). The main difference is that
XGM2016 includes an improved terrestrial data set of 15′ × 15′ gravity anomaly provided by the
National Geospatial-Intelligence Agency (NGA), which improves the model especially in continental
areas such as South America, Africa, parts of Asia, and Antarctica. In near-coastal regions, the model
performance is also improved by a combination strategy of relative regional weighting.

The eXperimental Gravity field Model 2019 extended with topographic information (XGM2019e)
(Zingerle et al., 2020) is the successor of XGM2016, with a highest degree of 5540. The same terrestrial
data set as in XGM2016 is used up to degree 719. Beyond d/o 719, the topography-derived gravity
information is taken from the Earth2014 spherical harmonic model (Rexer et al., 2016). Over the oceans,
the DTU13 (Andersen et al., 2013) altimetry-derived gravity anomalies with a resolution of 1′ × 1′ are
used.

GECO

The GOCE and EGM2008 Combined model (GECO) (up to degree 2190, Gilardoni et al., 2016) merges
gravity information derived from a GOCE satellite-only global model, namely GOCE-TIM-RL05 (up
to d/o 280, Brockmann et al., 2014), with EGM2008. Gilardoni et al. (2016) pointed out that such a
combination could improve the model accuracy in the low to medium frequencies in comparison to
EGM2008, especially in areas where ground data were not available for the EGM2008 computation,
such as Africa, South America and Antarctica.

As mentioned in Sect. 2.3, using high-resolution GGMs is also one way to determine the IHRF
physical coordinates (Sánchez et al., 2021). However, how precise are the modeling results from the

http://icgem.gfz-potsdam.de/
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high-resolution GGMs, and can they replace the regional (quasi-) geoid models? These questions are
answered in Sect. 6.1, where the performance of here-listed GGMs is compared with the regional
gravity model in the "1 cm geoid experiment".

3.5 Topography models

The consideration of topographic effects is important for high-resolution regional gravity field model-
ing, especially in mountainous areas (e.g., the Colorado study area shown in Fig. 3.3b), as the very
short wavelengths are correlated with local topography to a large extent (Bucha et al., 2016). The
following two topography models are used in this thesis to represent the high-frequency topographic
effect.

dV_ELL_Earth2014

The topographic gravity field model dV_ELL_Earth2014 (Rexer et al., 2016) was developed by spectral
forward modeling with volumetric mass layers using data from the Earth2014 topography model
(Hirt and Rexer, 2015). Earth2014 is a set of global topography, bathymetry, and ice-sheet grids.
It combines up-to-date digital elevation data with multi-source gridded surface data in terms of
mean sea level heights, and delivers a high resolution of 1′ × 1′. Rexer et al. (2016) established a
layer concept, and derived the topography models relying on mass layer modeling based on two
different levels of approximation, namely spherical and ellipsoidal. Rexer et al. (2016) pointed
out that the ellipsoidal one should be used for applications requiring ultra-high-resolution or high
accuracy, and thus, it is used in this study. dV_ELL_Earth2014 was initially calculated with a
highest degree of 2190, and later extended to degree 5480 (Rexer et al., 2017); it is available through
http://ddfe.curtin.edu.au/models/Earth2014/.

ERTM2160

The ERTM2160 (Earth Residual Terrain Modeled-gravity field with the spatial scales equivalent to
spherical-harmonic coefficients up to degree 2160 removed, Hirt et al., 2014) was developed for
the approximation of the short-scale gravity field, from degree 2160 to a degree of around 80,000
(equivalent to a spatial resolution of 250 m). It was calculated by high-resolution gravity forward
modeling using the Shuttle Radar Topography Mission (SRTM) global topography model. ERTM2160
is the first model to represent the short scale gravity field characteristics at a near-global scale with
ultra-high resolution (Hirt et al., 2014). It is provided as globally distributed 0.002◦ × 0.002◦ grid
points within ±60◦ latitude in terms of gravity disturbance, (quasi-) geoid height, and deflection of
the vertical, and is accessible via http://ddfe.curtin.edu.au/models/ERTM2160/. Thus, interpolation
is usually required when using ERTM2160 in regional gravity field modeling.

The influence of the topographic effect and the importance of including the topography models are
demonstrated in P-II. In study areas with high elevation (e.g., Fig. 3.3b), the gravity field becomes
much smoother after subtracting the topographic effect computed from these two topography models
(see Fig. 3.4). The terrestrial and airborne observations (Fig. 3.3a) are smoothed by 69% and 61%,
respectively, in terms of Standard Deviation (STD), after including the topography models. Such a
significant smoothing effect enables a better least-squares fit in the parameter estimation (see Sect. 5.2),
and thus, a better modeling result.

http://ddfe.curtin.edu.au/models/Earth2014/
http://ddfe.curtin.edu.au/models/ERTM2160/


22 Chapter 3. Gravity data and models

(a) (b)

Figure 3.4: Terrestrial gravity observations (a) before and (b) after the topographic effect reduction
(long-wavelength part from the GGM has already been removed)
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4 Methodology

This chapter explains the methodology of SRBFs, as well as the principle of the MRR and the pyramid
algorithm.

4.1 Spherical radial basis functions

The methodology of SRBFs is the base of this thesis, and it has been described and applied in all
the three papers, P-I, P-II, and P-III. For completeness, this section reformats the related parts of
the papers and explains the foundations of the method. SRBFs are an appropriate tool for regional
gravity field modeling to consider the heterogeneity of different data sources, due to their localizing
features. SRBFs are a good compromise between optimal spectral localization (SHs) and optimal
spatial localization (Dirac delta function, Freeden et al., 1998).

In general, a spherical basis function B(x, xk) related to a point Pk with position vector xk = R · rk
on a sphere ΩR with radius R and an observation point P with position vector x = r · r = r ·
[cos ϕ cos λ, cos ϕ sin λ, sin ϕ]T can be expressed by

B(x, xk) =
∞

∑
n=0

2n + 1
4πR2

(
R
r

)n+1
BnPn(rTrk) (4.1)

(Schmidt et al., 2007). Pn is the Legendre polynomial (2.12) of degree n, and Bn is a Legendre
coefficients which specifies the shape of the SRBF. When Bn = 1 for all n, B(x, xk) represents the Dirac
delta function.

A harmonic funtion F(x) given on the sphere ΩR or in the exterior space of ΩR, can be described as a
series expansion in terms of the SRBFs (4.1)

F(x) =
K

∑
k=1

dkB(x, xk), (4.2)

where K is the number of basis functions. For describing different gravity functionals listed in Sect. 2.2,
e.g., the gravity disturbance δg or the gravity anomaly ∆g, obtained from different observation
techniques (see Chap. 3), the general expression of SRBFs (4.1) needs to be adapted. The adapted basis
functions are listed in Table 1 of P-I, and a more complete version is presented here in Table 4.1 (Koop,
1993).

Spherical convolution

The content of this part is taken and adjusted from the Sect. 3.2 of P-II. SRBFs (4.1) can act as high-pass,
low-pass or band-pass filter (Schmidt et al., 2007), and a harmonic function F(x) can be filtered by it
through a spherical convolution. The filtered function F′(x) can be represented by

F′(x) = (B ∗ F)(x) =
∫

ΩR

B(x, xk)F(xk)dΩR. (4.3)
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Table 4.1: The adapted basis functions for different gravity functionals obtained from various observa-
tion techniques

gravity functionals units adapted basis function B(x, xk)

Disturbing potential T or
gravitational potential V m2/s2 B(x, xk) =

∞
∑

n=0

2n+1
4πR2

(
R
r

)n+1
BnPn(rTrk)

Gravitational potential difference
(GRACE) m2/s2 B(xA, xB, xk) =

∞
∑

n=0

2n+1
4πR2 Bn{

(
R
rA

)n+1
Pn(rAT

rk)−
(

R
rB

)n+1
Pn(rBT

rk)}
Gravity disturbance δg

(terrestrial, airborne, shipborne) mGal Br(x, xk) =
∞
∑

n=0

2n+1
4πR2

(n+1)
r

(
R
r

)n+1
BnPn(rTrk)

Gravity anomaly ∆g
(terrestrial, airborne, shipborne) mGal Br(x, xk) =

∞
∑

n=0

2n+1
4πR2

(n−1)
r

(
R
r

)n+1
BnPn(rTrk)

Gravity gradients Trr or Vrr
(GOCE)

E
(1E = 10−9 s−2) Brr(x, xk) =

∞
∑

n=0

2n+1
4πR2

(n+1)(n+2)
r2

(
R
r

)n+1
BnPn(rTrk)

In case of using a band-limited SRBF, which means setting the Legendre coefficient Bn = 0 for n > nmax,
the SRBF acts as a low-pass or band-pass filter. Furthermore, the band-limited SRBF is defined as the
reproducing kernel Krep(x, xk), in case of Bn = 1 for all degree values n = 0, 1, . . . , nmax, i.e.,

Krep(x, xk) =
nmax

∑
n=0

2n + 1
4πR2

(
R
r

)n+1
Pn(rTrk), (4.4)

and it fulfills the condition that the spherical convolution of a harmonic function F(x), which is
band-limited with n = 0, 1, . . . , n′ ≤ nmax, with Krep(x, xk) is equal to the original function

F(x) = (Krep ∗ F)(x) =
K

∑
k=1

dkKrep(x, xk). (4.5)

The band-limited basis functions B(x, xk) span the Hilbert space H0,1,...,nmax (ΩR) with finite dimension
n = (nmax + 1)2. The points Pk on the sphere ΩR need to guarantee an admissible point system
(Freeden et al., 1998)

SK = {xk ∈ ΩR | k = 1, 2, . . . , K}, (4.6)

so that the series coefficients dk can be estimated, i.e., the K× n matrix containing the outer spherical
harmonics possesses full column rank (see Schmidt et al., 2007 for more details). The point system SK
from Eq. (4.6) is admissible for K ≥ n = (nmax + 1)2, and it is called fundamental if the equality
K = (nmax + 1)2 holds.

Theorem (cf. P-II): In a Hilbert space H0,1,...,nmax (ΩR), let B(x, xk), Eq. (4.1), be a band-limited SRBF
with

Bn =

{ 6= 0 for n = 0, 1, . . . , nmax
= 0 for n > nmax

, (4.7)

the filtered function F1(x) of the band-limited function F(x) by the spherical convolution reads

F1(x) = (B ∗ F)(x) =
K

∑
k=1

dkB(x, xk). (4.8)

If C(x, xk) =
∞
∑

n=0

2n+1
4πR2 (

R
r )

n+1CnPn(rTrk) has the same upper band limitation with

Cn = 0 for n > nmax (4.9)
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then

F2(x) = (C ∗ F)(x) =
K

∑
k=1

dkC(x, xk) (4.10)

holds by using the same coefficients dk as in Eq. (4.8). This theorem, which was proven by Freeden
et al. (1998) and Schreiner (1999), shows that the coefficients dk can be used to calculate different
convolutions of a band-limited signal F(x). Thus, it is possible to use different types of SRBFs for
different data sets and to use different SRBFs in the analysis step (in which the unknown coefficients
are estimated) and in the synthesis step (in which the estimated coefficients are used to calculate the
output gravity functionals), respectively. Usually the reproducing kernel Krep(x, xk) from Eq. (4.4) is
used in the analysis step to avoid loss of spectral information, and any types of SRBFs (see Sect. 4.4)
can be used in the synthesis, according to this theorem.

4.2 Multi-resolution representation

The publications P-I and P-II apply a conventional single-level approach to combine different types
of observations, which is commonly implemented in current literature based on SRBFs (e.g., Bentel
et al., 2013a; Lieb et al., 2016; Bucha et al., 2016; Wu et al., 2017a). In this case, all the data sets are
combined at the maximum degree nmax of the expansion. However, as explained in Chap. 3, gravity
data obtained from various observation techniques are not only heterogeneously distributed, but also
characterized by different spectral sensitivities. To take into account the spectral resolution, a spectral
combination based on SRBFs can be set up through the MRR (Freeden et al., 1998; Haagmans et al.,
2002). The realization of the MRR has been investigated in many studies during the last decades, e.g.,
Beylkin and Cramer (2002); Panet et al. (2011); and Bolkas et al. (2016). The MRR approach suggested
by Schmidt et al. (2005, 2006, 2007) is realized in P-III, where the gravity signal is decomposed into an
expansion in terms of SHs for the long-wavelength part, and a number of frequency-dependent detail
signals in terms of spherical wavelet functions (see Sect. 4.4) for the medium and high frequency parts.

This section outlines parts of P-III, while more details can be found there. To set up the MRR,
the frequency domain should be discretized into different resolution levels, as shown in Fig. 4.1
(corresponds to Fig. 2 in P-III). Each resolution level defines a frequency band, and thus, includes
a certain number of spectral degree values. In this study, the upper boundary (maximum degree
value) ni of each level is defined as

ni = 2i − 1. (4.11)

Correspondingly, the maximum spatial resolution of level i reads ρi = πR/ni, with R being the Earth’s
radius in km (Lieb et al., 2016). Different observation techniques can then be classified according to
their spectral resolution.

The MRR of the gravity functional F(x), which is band-limited to nI = 2I − 1, can be expressed as

F(x) = F(x) +
I

∑
i=i′

Gi(x) (4.12)

where F(x) is the smoothed version, i.e., usually the long-wavelength component evaluated by a GGM
(Schmidt et al., 2006), and it is used as the background model within the RCR procedure. i′ and I are
the lowest and highest level of the MRR respectively, and Gi(x) is the detail signal of resolution level i,

Gi(x) = (Ψi ∗ F)(x) =
Ki

∑
k=1

dk,iΨi(x, xk,i) (4.13)

where Ψi(x, xk,i) is a spherical wavelet function (see Sect. 4.4), which acts as a band-pass filter. Ki and
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Figure 4.1: The discretization of the frequency domain, and the corresponding spectral degree value
ni as well as the approximate spatial resolution ρi of each level i, adapted from Lieb et al.
(2016)

dk,i are the number of basis functions and the corresponding series coefficients of level i, respectively.
Again, the system of grid points Pk,i is required to guarantee an admissible point system of level i

SKi = {xk,i ∈ ΩR | k = 1, 2, . . . , Ki} (4.14)

with Ki ≥ (ni + 1)2 = 2i+1.

4.3 Pyramid algorithm

In existing publications applying this MRR approach, the coefficients are generally estimated at each
level independently, using all or selected groups of observations (e.g., Lieb, 2017; Wu et al., 2018).
However, a compromise is required in this case to balance the spectral range and the spatial distribution
of the observations and to avoid the multiple use of the observation groups at different levels (Lieb,
2017). To be more specific, if all observation types are used at each level, the corresponding detail
signals are strongly correlated. If only specific data sets are used, large data gaps may occur, and the
prior information is insufficient for filling these data gaps at higher resolution levels. This leads to
large erroneous effects in the output signals. Instead, a pyramid algorithm (Freeden et al., 1998) can be
applied to consider all available information by connecting the different levels. Furthermore, Klees
et al. (2018) applied a two-scale approach and suggested that it should be applied in combination with
a sequential estimation of the scale-dependent coefficients. The pyramid algorithm is implemented
in this work to connect the resolution levels and to estimate the coefficients sequentially. However,
as pointed out by Lieb (2017), there are still challenges when applying the pyramid algorithm in
the regional case: (1) it is difficult to set up a proper low-pass filter matrix in the regional case, and
(2) the margin size has to be adapted appropriately at each level to minimize edge effects. In P-III,
these issues are addressed, and the pyramid algorithm based on sequential parameter estimation is
successfully implemented, for the first time. The setting up of the low-pass filter is discussed in this
section, while the proposed strategies for adapting the extension of the data zone at each level will be
explained in Sect. 5.1.

The pyramid algorithm starts with the calculation of the coefficient vector dI = [d1,I , d2,I , . . . , dKI ,I ]
T of

the highest resolution level through the parameter estimation, which will be explained in Sect. 5.2.
The coefficients of the lower resolution levels can then be determined from the coefficients of the
highest level, by a low-pass filtering. With the pyramid algorithm, the coefficient vector at level i
(i = i′, i′ + 1, . . . , I − 2, I − 1) can be expressed as

di|i+1 = Lidi+1 (4.15)
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Σdi|i+1
= LiΣdi+1

LT
i (4.16)

where Li is a Ki × Ki+1 low-pass filter matrix, transforming the Ki+1 × 1 coefficient vector di+1 of the
higher level i + 1 to the Ki × 1 coefficient vector di|i+1 of the lower level i. Σdi|i+1

is the covariance
matrix of di|i+1 obtained from the covariance matrix Σdi+1

following the law of error propagation.

According to Schreiner (1999) and Schmidt et al. (2007), the low-pass filter matrix Li can be decomposed
as

Li = W i H i, (4.17)

where H i is a Ki × Ki+1 matrix containing the reproducing kernel Krep(xk,i, xk,i+1) from Eq. (4.4)
between the grid points Pk,i+1 (k = 1, 2, ..., Ki+1) of level i + 1 and the grid points Pk,i (k = 1, 2, ..., Ki) of
level i. Note that the grid points Pk,i+1 and Pk,i guarantee admissible point systems SKi+1 of level i + 1
and SKi of level i (4.14), respectively. W i = diag(w1,i, w2,i, . . . , wKi ,i) is the Ki × Ki diagonal matrix of
the integration weights wk,i associated with the grid points Pk,i of level i, and it depends on the type of
implemented grid.

The derivation of the low-pass filter matrix Li is presented in the following. The band-limited
function Fi(x) in the Hilbert space H0,1,...,nmax (ΩR) can be represented by the reproducing kernel as

Fi(x) =
Ki

∑
k=1

dk,iKrep(x, xk,i) (4.18)

according to Eq. (4.5).

On the other hand, the numerical integration of Fi(x) can be expressed as

Fi(x) = (Krep ∗ Fi)(x) =
Ki

∑
k=1

wk,iFi(xk,i)Krep(x, xk,i). (4.19)

Comparing Eq. (4.18) with Eq. (4.19), we obtain

dk,i = wk,iFi(xk,i). (4.20)

As the grid points Pk,i+1 fulfill an admissible point system SKi+1 of level i+ 1 with Ki+1 ≥ (ni+1 + 1)2 =

2i+2, it further fulfills an admissible point system SKi at level i with Ki+1 > (ni + 1)2 = 2i+1. Replacing
the admissible point system SKi in Eq. (4.18) by the admissible point system SKi+1 , it can be rewritten
as

Fi(x) =
Ki+1

∑
k=1

dk,i+1Krep(x, xk,i+1). (4.21)

By setting x = xk,i in Eq. (4.21), it follows

Fi(xk,i) =
Ki+1

∑
k=1

dk,i+1Krep(xk,i, xk,i+1). (4.22)

Combining Eq. (4.22) with Eq. (4.20), we obtain

dk,i = wk,i

Ki+1

∑
k=1

dk,i+1Krep(xk,i, xk,i+1) (4.23)

Collecting d1,i, d2,i, . . . , dKi ,i to the vector di|i+1 = [d1,i, d2,i, . . . , dKi ,i]
T , collecting d1,i+1, d2,i+1, . . . , dKi+1,i+1

to the vector di+1, the integration weights wk,i to the diagonal matrix W i, and the reproducing kernel
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Krep(xk,i, xk,i+1) to the matrix H i, it follows from Eq. (4.23) that

di|i+1 = W i H idi+1 (4.24)

and thus, Eq. (4.15).

In this work, the Reuter grid (Reuter, 1982) is used. It generates a homogeneous coverage of grid
points P(ϕl , λl,m) on the sphere with spherical coordinates

ϕ0 = −π

2
and λ0,0 = 0 (4.25)

ϕl = −
π

2
+ l ∆ϕ and λl,m = m

2π

γl
(4.26)

ϕγ =
π

2
and λγ,0 = 0 (4.27)

for l = 1, 2, . . . , γ− 1 and m = 0, 1, . . . , γl − 1. ∆ϕ and 2π
γl

are the sampling intervals in the latitude
and longitude direction, respectively

∆ϕ =
π

γ
(4.28)

γl =

⌊
2π

arccos((cos∆ϕ− sin2 ϕl)/cos2 ϕl)

⌋
(4.29)

where γ is a positive integer control parameter. Thus, the total amount of Reuter grid points Z on
the sphere is determined by this positive integer γ. Figure 4.2 visualizes the generated Reuter grid
points on the sphere at level 4 (red triangles in Fig. 4.2) and level 5 (green dots in Fig. 4.2), respectively.
Reuter grids are regarded as equidistributed point systems on the sphere (Fengler et al., 2004; Eicker,
2008).

Figure 4.2: Reuter grid points on the sphere for level 4 (red triangles) and level 5 (green dots)

P-III proposes a way for computing the corresponding integration weights wk,i to set up the low-pass
filter matrix Li (4.17) in case of using the Reuter grid, which reads

wk,i =
4πR2

Zi
, (4.30)

where Zi is the total number of Reuter grid points on the sphere at level i.
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MRR based on the pyramid algorithm

The developed MRR scheme based on the pyramid algorithm and sequential parameter estimation is
visualized in Fig. 4.3 (cf. Fig. 4 in P-III). The coefficient vector dI of the highest level I is first estimated
using only the high-resolution data set(s). It is used to compute the detail signal GI and to start the
pyramid algorithm, i.e., to calculate the coefficient vector dI−1|I of the next lower level according to
Eq. (4.24). At this level, the coefficient vector dI−1|I is then updated by the direct combination with the
lower-resolution data set(s) involved at the level I − 1 through the parameter estimation (see Sect. 5.3).
Continuing this process until the lowest level i′ of the MRR, the scaling coefficients and the detail
signals of each level can be obtained, and thus, the final gravity functional is computed according to
Eq. (4.12). Typically, the terrestrial data are used at the highest level. Then the shipborne or airborne
data can be introduced at a level lower, followed by the altimetry data and the satellite gravimetry
data, if applicable (see Fig. 4.1).

Figure 4.3: The multi-resolution representation (MRR) based on the pyramid algorithm (cf. P-III)

The advantages of applying the pyramid algorithm are demonstrated in P-III in detail, including

- different observation types can be used only once at the spectral level of their highest sensitivi-
ties,

- the covariance information can be calculated following the law of error propagation from the
higher levels and serve as input for the lower levels,

- the computational effort is reduced when the observations are included at the lower levels,
which require a smaller number of SRBFs.

4.4 Scaling and wavelet functions

A spherical scaling function of resolution i is a band-limited SRBF B(x, xk) =: Φi(x, xk,i), which
can act as a low-pass filter (see Sect. 4.1), with Legendre coefficient Bn =: φn,i > 0 for degree
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n = 0, 1, . . . , nmax =: 2i − 1 and φn,i = 0 for degree values n > 2i − 1. Based on the scaling function, a
spherical wavelet function Ψi(x, xk,i), which can be interpreted as a band-pass filter, can be defined as

Ψi(x, xk,i) = Φi(x, xk,i)−Φi−1(x, xk,i)

=
2i−1

∑
n=0

2n + 1
4πR2

(
R
r

)n+1
ψn,iPn(rTrk,i)

(4.31)

(Schmidt et al., 2007), where its Legendre coefficients ψn,i are computed as

ψn,i = φn,i − φn,i−1. (4.32)

Different types of basis functions have been introduced and applied in numerous studies, including
band-limited SRBF, e.g., the Shannon and Blackman function (Schmidt et al., 2007), as well as non-
band-limited SRBF, e.g., the Poisson kernel (Klees et al., 2008) and radial multipoles (Marchenko,
1998). Wittwer (2009) and Bentel et al. (2013b) summarized and compared the characteristics of
different types of SRBFs. Tenzer and Klees (2008) pointed out that the band-limited property of the
basis functions is an advantage due to the reduced numerical complexity. Naeimi et al. (2015) and
Bucha et al. (2016) showed the advantages of applying the Shannon function in regional gravity field
modeling for satellite and terrestrial data, respectively. Lieb (2017) demonstrated that it is beneficial to
use the non-smoothing Shannon function in the analysis but apply the Blackman or CuP function with
smoothing features in the synthesis. These three types of band-limited SRBF, i.e., scaling functions, are
considered in this work:

1. The Shannon function, which is a reproducing kernel (4.4), its Legendre coefficients φSha
n,i are

given by

φSha
n,i =

{
1 for n ∈ [0, 2i)
0 else

(4.33)

2. The Blackman function, its Legendre coefficients φBla
n,i are given by

φBla
n,i =





1 for n ∈ [0, 2i−1)
(A(n))2 for n ∈ [2i−1, 2i)
0 else

(4.34)

where

A(n) =
21
50
− 1

2
cos

(
2πn

2i

)
+

2
25

cos
(

4πn
2i

)
(4.35)

3. The Cubic Polynomial (CuP) function, its Legendre coefficients φCuP
n,i are given by

φCuP
n,i =

{
(1− n

2i )
2(1 + n

2i−1 ) for n ∈ [0, 2i)

0 else
. (4.36)

Correspondingly, three types of wavelet functions can be obtained, with Legendre coefficients ψSha
n,i =

φSha
n,i − φSha

n,i−1, ψBla
n,i = φBla

n,i − φBla
n,i−1, and ψCuP

n,i = φCuP
n,i − φCuP

n,i−1. Figure 4.4 visualizes the characteristics
of these three types of scaling functions (left column) as well as their corresponding wavelet functions
(right column). In each sub-plot, the upper and bottom panels show the spatial and spectral domain,
correspondingly. According to Heisenberg’s uncertainty principle (Heisenberg, 1927; Freeden and
Michel, 2004), the spatial and spectral domain cannot be sharply localized at the same time, and a
trade-off between these two localizations is required in the choice of SRBFs. The comparison between
the different types of basis functions, i.e., between the Figs. 4.4a, 4.4c, 4.4e, shows that the Shannon
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: The (a) Shannon scaling functions, (b) Shannon wavelet functions, (c) Blackman scaling
functions, (d) Blackman wavelet functions, (e) CuP scaling functions, and (f) CuP wavelet
functions at different resolution levels, in the spatial domain (upper panel, ordinate values
are normalized to 1), and in the spectral domain (bottom panel, ordinate values are not
normalized)

function has the highest localization in the spectral domain, but it also has the strongest oscillations
in the spatial domain. In contrast, the CuP function has the least oscillations in the spatial domain
but has a smoothing decay and extracts the least spectral information in the spectral domain. The
Blackman function is regarded as a compromise between these two domains. When the resolution
level i increases, the peak becomes sharper, but stronger oscillations show up in the spatial domain.
In the spectral domain, the corresponding frequency band becomes wider at higher resolution level.
Comparing the plots in the right with those in the left, it is clear that the wavelet function is the
difference between two scaling functions of neighboring levels in the spectral domain. In the spatial
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domain, the wavelet function has stronger oscillations than the scaling function of the same resolution
level.

In P-I, both the Shannon and CuP scaling functions are applied for comparing different regularization
methods, as Naeimi et al. (2015) stated that the performance of regularization methods differs when
using SRBFs with or without smoothing features. In P-II and P-III, the Shannon scaling function
is implemented in the analysis to avoid the loss of spectral information, and a smoothing function
is applied in the synthesis to reduce erroneous systematic effects, as suggested by Lieb (2017).
Furthermore, P-II shows that the SRBF with smoothing features can be applied to the airborne data as
a low-pass filter to reduce the high-frequency noise. The results also indicate the validity of combining
different SRBFs for different observations, which is applied to real data for the first time, in P-II. When
the terrestrial and airborne data are combined at a high maximum degree of the expansion, the noise
in the high frequency of the airborne data needs additional filtering (Childers et al., 1999; Forsberg
and Olesen, 2010). This issue can be solved either by applying a smoothing SRBF, which is done in
P-II, or by implementing the MRR based on the pyramid algorithm to include the airborne data at a
lower resolution level, which is realized in P-III. And in the latter case, the Shannon function can be
applied to all types of observations in the analysis.
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5 Estimation model

Based on the methodologies of the SRBFs discussed in Chap. 4, estimation models are set up. This
chapter discusses the model settings, how different types of observations are included and combined
within the estimation model in terms of both the SRBFs and the MRR, how the regularization parameter
is determined, and how the unknown coefficients are calculated.

5.1 Model configuration

As mentioned in Chap. 1, there are four properties that influence the modeling accuracy, and thus,
need to be specified in the model settings. The type of the SRBFs has been discussed in Sect. 4.4, and
this section explains the other three, namely the bandwidth and location of the SRBFs as well as the
extension of the data zone. Detailed explanations regarding the settings of these four properties are
given in P-II; in P-III these settings are adapted in case of the MRR.

Bandwidth of the SRBFs

In this work, the maximum degree nmax of the expansion is defined according to the spatial resolution ρ
of the observations (Bucha et al., 2016; Lieb et al., 2016), and it is chosen following

nmax ≤
πR
ρ

, (5.1)

with ρ calculated as the average spatial resolution of all types of observations used in the whole study
area. For instance, in the "1 cm geoid experiment", the average spatial resolution of the terrestrial and
airborne gravity data (see Fig. 3.3a) amounts to 3.5 km, and correspondingly, the maximum degree of
the expansion is chosen as nmax = 5600.

Extension of data zone

Three areas need to be defined in regional gravity modeling, the observation area ∂ΩO where the
observations are available, the computation area ∂ΩC where the SRBFs are located, and the investigation
(target) area ∂ΩI in which the final gravity functionals are computed as output. The observation
area ∂ΩO is fixed by the given data, and as shown in Fig. 5.1, ∂ΩC and ∂ΩI are chosen following
∂ΩI ⊂ ∂ΩO ⊂ ∂ΩC to mitigate edge effects. The detailed reasons for such settings are explained in
P-II, which include:

- the oscillations of the SRBFs cannot overlap and balance with each other at the boundaries of
the computation area ∂ΩC due to the neglect of SRBFs outside ∂ΩC, and thus, the computation
area ∂ΩC needs to be chosen larger than the observation area ∂ΩO, i.e., ∂ΩC ⊃ ∂ΩO.

- the unknown coefficients dk cannot be estimated appropriately at the border of the observation
area ∂ΩO due to the lack of fully surrounding observations, and thus, the observation area ∂ΩO
should be larger than the investigation area ∂ΩI , i.e., ∂ΩO ⊃ ∂ΩI .

The margin size between the three areas is influenced by the shape of the SRBFs; if nmax is chosen
higher, the SRBFs become narrower (see Fig. 4.4), and thus, a smaller margin size can be selected. In
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this work, the margin size ηC,O between ∂ΩC and ∂ΩO is determined following a method described by
Lieb et al. (2016), but modified to

ηC,O =
360◦

nmax cos(|φmax|)
(5.2)

where φmax is the maximum latitude value of the investigation area. In case of applying the MRR, the
margin size ηC,O increases by multiples of 2 from the highest level to the lowest level, as nmax = 2i − 1
for each resolution level i. The margin size ηO,I between ∂ΩO and ∂ΩI is usually chosen equal to
the margin size ηC,O (Bentel et al., 2013a), which is applied in P-I. Depending on the desired final
model size (target area), any value ηO,I ≥ ηC,O is valid, which is the case in P-II. When the MRR
is applied, the margin size ηC,O differs between different resolution levels, and P-III shows that the
margin size ηO,I can be chosen as the median of the applied ηC,O of each level.

Figure 5.1: The different extensions for the areas of
computation ∂ΩC, of observations ∂ΩO
and of investigation ∂ΩI , as well as the
distribution of the Reuter grid points in
∂ΩC

Location of the SRBFs

The location of the SRBFs depends on the type
and the number of grid points. Eicker (2008)
examined four types of grids, and the results
indicate that the Reuter grid and the triangle ver-
tex grid are the most suitable choices for space
localizing basis functions. According to Bentel
et al. (2013a) and Naeimi (2013), different grid
types do not have a strong impact on the mod-
eling results, especially comparing to the other
three properties. In this work, the Reuter grid is
implemented, which generates a homogeneous
coverage of equidistributed grid points on the
sphere. As explained in Sect. 4.3, the total num-
ber of Reuter grid points Z on the sphere is set
by a control parameter γ (Eicker, 2008), and it is
estimated by

Z ≤ 2 +
4
π

γ2. (5.3)

The minimum total number of required grid
points on the sphere depends on the maximum
degree nmax of the expansion. When nmax in-
creases, the SRBFs need to be placed at denser
grid points in order to cover the full spectral content of the gravity observations. As already mentioned
in Sect. 4.1, the system of grid points needs to be admissible, which means

Z ≥ (nmax + 1)2, (5.4)

and it is fundamental if Z = (nmax + 1)2 holds (Schmidt et al., 2007). In practice, it is difficult
to generate grids with the exact amount of points fulfilling a fundamental system. In case of an
admissible system, linear dependencies exist between the SRBFs, which yield a global rank deficiency
of Z− (nmax + 1)2. This is one of the reasons why regularization is required. The choice of the total
amount of Reuter grid points Z thus needs to guarantee an admissible grid point system, and to
minimize the rank deficiency at the same time. For these reasons, the control parameter γ is usually
chosen as γ = nmax + 1 (Bucha et al., 2016; Lieb et al., 2016) or γ = nmax (Wittwer, 2009; Bentel, 2013) in
existing literature. In this thesis, γ = nmax is applied, and those Reuter grid points that are distributed
inside the computation area ∂ΩC are used as the locations of the SRBFs (see Fig. 5.1).
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5.2 Parameter estimation

To calculate the unknown coefficients, a classical numerical integration technique (de Min, 1995) or a
parameter estimation procedure (Koch, 1999) can be applied. The advantages of numerical integration
are that each coefficient can be computed independently of the others and no (ill-conditioned) linear
system needs to be solved (Schmidt et al., 2007). The advantages of parameter estimation include:

- data from different observation techniques can be used directly at their original observation
sites, without the need of grid interpolation,

- the covariance, and thus, the standard deviations can be estimated along with the coefficients
and the gravity model, which evaluate their uncertainty,

- the downward continuation of the airborne and satellite data can be directly performed in the
estimation step,

(Bentel et al., 2013b). Thus, in geodesy the parameter estimation is usually applied to combine hetero-
geneous data sets (Schmidt et al., 2015). The procedure of parameter estimation has been discussed in
all the three publications, P-I to P-III, and the key points are repeated here for completeness.

The following estimation models are developed based on the Eq. (4.2). For each gravity data set p =
1, 2, · · · , P, collecting the observations yp(x1), yp(x2), . . . , yp(xnp) with position vector x1, x2, . . . , xnp

into the np × 1 observation vector yp, the Gauss–Markov model

yp + ep = Apd with D(yp) = σ2
pP−1

p (5.5)

can be set up. ep = [ep(x1), ep(x2), . . . , ep(xnp)]
T is the np × 1 vector of the observation errors, and

Ap = [Bp(x, xk)] is the np × K design matrix, which contains the corresponding (adapted) scaling
functions between the observation points and the grid points. D(yp) is the covariance matrix of the
observation vector yp, with σ2

p being the unknown variance factor and Pp being the given positive
definite weight matrix. However, the model (5.5) is in most cases ill-posed due to three reasons, namely

- the number of used basis functions is larger than required (as explained in Sect. 5.1),

- existing data gaps,

- the downward continuation of airborne and satellite data.

Thus, regularization is inevitable. To solve this problem, an additional linear model

µd + ed = d with D(µd) = σ2
d P−1

d (5.6)

is introduced as prior information. µd is the K× 1 expectation vector of the coefficient vector d, ed is
the corresponding error vector, and D(µd) is the covariance matrix of the prior information, with σ2

d
being its variance factor and Pd being the positive definite weight matrix.

Combining the two models (5.5) and (5.6), an extended Gauss–Markov model can be formulated
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Applying the least-squares adjustment to Eq. (5.7), the unknown coefficient vector d̂ can be estimated
as

d̂ =

(
P

∑
p=1

ωpAT
p PpAp + λPd

)−1( P

∑
p=1

ωpAT
p Ppyp + λPdµd

)
, (5.8)

with the covariance matrix

Σ̂d = σ2
1

(
P

∑
p=1

ωpAT
p PpAp + λPd

)−1

. (5.9)

ωp = σ̂2
1 /σ̂2

p denotes the relative weights between the observation groups, which are estimated by
VCE. λ = σ̂2

1 /σ̂2
d can be interpreted as the regularization parameter (Koch and Kusche, 2002), and its

determination is discussed in Sect. 5.4. In this work, the expectation vector µd is set to the zero vector,
since the background model subtracted in the remove step of the RCR procedure serves as the prior
information.

The estimated coefficient vector d̂ and its covariance matrix Σ̂d are then used to calculate the output
gravity functional F̂ as well as its covariance matrix Σ̂F in the synthesis step

F̂ = Bd̂ (5.10)

Σ̂F = BΣ̂dBT , (5.11)

where B is the design matrix, which contains the scaling functions between the grid points and the
computation points of the final gravity model.

5.3 Sequential parameter estimation

As explained in Sect. 4.2, the unknown coefficients need to be estimated at each resolution level when
the MRR is applied. They are estimated sequentially in this work, by implementing the pyramid
algorithm (see Sect. 4.3). In this procedure, the unknown coefficient vector d̂I as well as its covariance
matrix Σ̂dI of the highest level I are estimated first by the parameter estimation procedure explained in
Sect. 5.2, i.e., the Eqs. (5.8) and (5.9). Afterwards, they are transformed to the lower levels by low-pass
filtering according to the Eqs. (4.15) and (4.16), and updated by including observations successively
at each level. The combination of the coefficient vector di|i+1 from the pyramid algorithm with the
observations of level i is realized again by parameter estimation, and it is detailed in P-III.

Assuming that Q data groups with observation vector yq,i are introduced at level i, the combination of
di|i+1 and yq,i reads




y1,i
y2,i

...
yQ,i

di|i+1



+




e1,i
e2,i

...
eQ,i
ed



=




A1,i
A2,i

...
AQ,i

I



· di with D







y1,i
y2,i

...
yQ,i

di|i+1







=




σ2
1,iP
−1
1,i 0 0 . . . 0

0 σ2
2,iP
−1
2,i

...
...

...
... 0

. . .
...

...
...

...
... σ2

Q,iP
−1
Q,i 0

0 0 . . . 0 Σdi|i+1




(5.12)
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The updated coefficient vector d̂i of level i is derived as

d̂i =

(
Q

∑
q=1

1
σ2

q,i
AT

q,iPq,iAq,i + Σ−1
di|i+1

)−1( Q

∑
q=1

1
σ2

q,i
AT

q,iPq,iyq,i + Σ−1
di|i+1

di|i+1

)
(5.13)

with the covariance matrix

Σ̂di
=

(
Q

∑
q=1

1
σ2

q,i
AT

q,iPq,iAq,i + Σ−1
di|i+1

)−1

. (5.14)

The variance factors σ2
1,i, σ2

2,i, . . . , σ2
Q,i of the data sets y1,i, y2,i, . . . , yQ,i are estimated by VCE.

The combination of yi = [yT
1,i, yT

2,i, ..., yT
Q,i]

T and di|i+1 can also be solved in analogy to a Kalman
filter (Kalman, 1960), where the di|i+1 and Σdi|i+1

can be regarded as the predicted state vector and
the related predicted covariance matrix, respectively. Then the corrected state vector di as well as its
covariance matrix Σdi

are computed by incorporating the involved measurements yi at level i

d̂i = di|i+1 + Ki

(
yi − Aidi|i+1

)
(5.15)

Σ̂di
= (I − Ki Ai)Σdi|i+1

(5.16)

where Ki is the gain matrix

Ki = Σdi|i+1
AT

i

(
AiΣdi|i+1

AT
i + Σyi

)−1
(5.17)

with Ai = [AT
1,i, AT

2,i, ..., AT
Q,i]

T , and Σyi = diag
(

σ2
1,iP
−1
1,i , σ2

2,iP
−1
2,i , . . . , σ2

Q,iP
−1
Q,i

)
being the covariance

matrix of the observation vector yi. After taking into account the matrix identities (Koch, 1999)

D−1C(A− BD−1C)−1 = (D− CA−1B)−1CA−1 (5.18)

and
(A− BD−1C)−1 = A−1 + A−1B(D− CA−1B)−1CA−1 (5.19)

the solution delivered by the Eqs. (5.15) and (5.16) ends up identical to the Eqs. (5.13) and (5.14).

In the synthesis step, the estimated coefficient vector d̂i and its covariance matrix Σ̂di
are used to

calculate the estimated detail signal Ĝi as well as its covariance matrix Σ̂Gi of level i

Ĝi = Bid̂i (5.20)

Σ̂Gi = BiΣ̂di
BT

i , (5.21)

where Bi is the design matrix containing the corresponding wavelet functions between the computation
points of the gravity model and the grid points of level i.

5.4 Regularization

As mentioned in Sect. 5.2, regularization is in most cases inevitable in the parameter estimation.
Bouman (1998) discussed and compared different regularization methods, and among them, the
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Tikhonov regularization (Tikhonov and Arsenin, 1977) is applied here. It finds the solution dλ that
solves the minimization problem

dλ = arg min
d
{(Ad− y)TP(Ad− y) + λ(d− µd)

T R(d− µd)}. (5.22)

The residual term ‖Ad− y‖P measures the least-squares fit, and the penalty term ‖d− µd‖R quantifies
the regularity, where µd is the prior information of d, λ and R are the regularization parameter and
regularization matrix, respectively. Ilk (1993) concluded that the modeling result is insensitive to the
choice of the regularization matrix R. In this thesis, it is chosen as the identity matrix, i.e., R = I,
which is commonly applied in existing literature (see e.g., Naeimi et al., 2015; Klees et al., 2018; Slobbe
et al., 2019). Eicker et al. (2014) explained why the regularization matrix can be approximated by I.
Other choices for R are given, e.g., by Kusche and Klees (2002) and Wu et al. (2017a). However, a
detailed discussion about the regularization matrix is beyond the scope of this study.

This section focuses on the determination of the regularization parameter λ when different data types
are to be combined, which is the first main research objective of the thesis (see Sect. 1.2), accomplished
by P-I. The regularization parameter determination is a crucial issue, and it directly influences the
modeling results. A weak regularization, i.e., λ chosen too small, leads still to instabilities in the
results, and if λ is chosen too large, some information contained in the observations would be lost
(Naeimi, 2013). Different methods have been developed and applied for the regularization parameter
determination, e.g., the L-curve criterion (Hansen, 1990; Hansen and O’Leary, 1993), the GCV (Golub
et al., 1979; Wahba, 1990), and the VCE (Koch and Kusche, 2002). Each method has its own advantages
and disadvanteges, and a comparison between different methods can be found, e.g., in Farquharson
and Oldenburg (2004); Naeimi et al. (2015); and Xu et al. (2016). Xu et al. (2006) modified the
VCE and proposed a bias-corrected variance component estimator. Tanir et al. (2009) combined two
regularization methods, namely the VCE and GCV for the Very Long Baseline Interferometry (VLBI)
intra-technique combination. Naeimi (2013) proposed a Parameter-Signal Correlation (PSC) approach
based on the idea that in case of SRBFs, an appropriate regularization parameter gives the maximum
correlation between the estimated coefficients and the gravitational potential.

Koch and Kusche (2002) demonstrated that the Tikhonov regularization can be interpreted by Bayesian
statistics as estimation with prior information, and it is realized by adding a positive definite matrix Pd
times the regularization parameter λ to the normal equations for stabilizing the solution, as shown in
Eq. (5.8). In this case, the regularization parameter is regarded as an additional variance component
for the prior information µd of the unknown coefficients, i.e., the prior information is treated as an
additional observation group. The VCE is commonly used in regional gravity field applications (see
e.g., Bentel et al., 2013a; Eicker et al., 2014; Bucha et al., 2016; Wu et al., 2017b), especially when
different types of observations are combined. It estimates the relative weights between different
observation groups and the regularization parameter simultaneously. However, it has been suspected
that the regularization parameter generated by VCE could be unreliable (Liang, 2017), due to the fact
that the prior information is required to be of random character (Koch and Kusche, 2002), and this
is not fulfilled when a background model serves as prior information. Naeimi et al. (2015) showed
that VCE delivers larger RMS errors in the calculated geoid model than the L-curve method and GCV,
and further concluded that the L-curve method should be applied when the Shannon function is used.
However, the L-curve or other conventional regularization methods cannot deliver the relative weights
between heterogeneous observations (Xu et al., 2006). Thus, P-I proposes to combine the L-curve
method and VCE in such a way that the relative weights are estimated by VCE, but the regularization
parameters are determined by the L-curve method.

Variance component estimation

VCE is an iterative process; it starts with given initial values for the variance factors σ2
p and σ2

d to
calculate an initial solution for d̂, following Eq. (5.8). This leads to new estimations for σ̂2

p and σ̂2
d , with
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



σ̂2
p =

êT
p Pp êp

rp

σ̂2
d =

êT
d Pd êd

rd

(5.23)

where êp and êd are the residual vectors, which read

{
êp = Apd̂− yp

êd = d̂− µd
(5.24)

rp and rd are the partial redundancies, which can be computed as




rp = np − trace( 1
σ2

p
AT

p PpApN−1)

rd = K− trace( 1
σ2

d
PdN−1)

(5.25)

(Koch and Kusche, 2002). np denotes the number of observations in the pth data set, K is the number of
coefficients, and N = ∑P

p=1
1

σ2
p
AT

p PpAp +
1

σ2
d

Pd is the extended normal equation matrix. The procedure

iterates until a convergence point is reached.

L-curve method

Figure 5.2: An example of the L-curve function

The L-curve is a graphical procedure. As shown
in Fig. 5.2, the plot of the regularized solu-
tion norm ‖d̂λ − µd‖Pd against the residual norm
‖Ad̂λ − y‖P by changing the numerical value for
the regularization parameter λ shows a typical L-
curve behavior. The corner point in this L-shaped
curve corresponds to the desired regularization
parameter. The L-shaped curve can be exam-
ined on a logarithmic scale (Hansen and O’Leary,
1993), or a linear scale when the variation of the
residual norm is low (Eriksson, 2000).

Based on these two methods, two combined ap-
proaches are proposed, namely VCE-Lc and Lc-
VCE. The following descriptions about these two
approaches are taken from P-I, which answer the
research question Q-2 raised in Sect. 1.2: how
to apply a conventional regularization method,
i.e., the L-curve method, if various data sets are
combined.

VCE-Lc

The first approach (VCE-Lc) is visualized in Fig. 5.3 (Fig. 3 in P-I). It starts with the calculation of the
relative weights between the observation groups by means of VCE; a regularization parameter λVCE
is also generated. In the second step, the weighting factors ωp are kept, but the regularization
parameter λVCE is not used. Instead, a new regularization parameter is regenerated using the L-curve
method, based on these weights. The final solution is then computed using Eq. (5.8) with the
weights ωp from VCE and the new regularization parameter λL-curve from the L-curve criterion.

Lc-VCE

Figure 5.4 (Fig. 4 in P-I) illustrates the procedure of the Lc-VCE. In contrast to the VCE-Lc, in the Lc-
VCE the L-curve method is applied first based on empirically chosen values for the relative weights ωp.
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Figure 5.3: Combination of different types of observations based on the regularization method VCE-Lc
(adapted from P-I)

A regularization parameter λL-curve is obtained in the first step, and it is used for defining the value
of σ2

d in the VCE. In the second step, the VCE is applied with initial values σ2
1 = σ2

2 = . . . = σ2
P and

σ2
d = σ2

1 /λL-curve. After each iteration within the VCE, the value of σ2
d is set to σ2

1 /λL-curve again, with
the new value of σ2

1 obtained in this iteration. In this case, the regularization parameter λ calculated
from the L-curve method will be kept, but the relative weighting factors ωp are recomputed in each
iteration step.

In P-I, these two combined approaches are compared with the L-curve method and VCE using
simulated terrestrial, airborne, and satellite gravimetry data in six study cases, based on different
combinations of data groups. Two comparison criteria are used; the RMS error between the computed
disturbing potential and the validation data, as well as the correlation between the estimated coefficients
and the validation data. A higher correlation indicates a better representation of the gravity signal
(see Sect. 4.2 in P-I for more details). Numerical results and detailed discussions can be found in P-I,
while the key findings and conclusions are summarized here. The investigation shows that the L-curve
method or the VCE alone does not guarantee a reliable regularization result. The answer to Q-1 is that
VCE fails to provide a sufficient regularization in study cases where strong regularization is required,
e.g., when only satellite gravity data are used, and when large data gaps exist (see Sect. 5.1 in P-I for
more details). In such cases, the RMS error obtained from VCE-Lc decreases by up to 60% compared
to the one delivered by the VCE. This conclusion is further verified in P-II by the modeling results
using real gravity observations. In the "1 cm Geoid Experiment", when calculating the airborne-only
solution (see Sect. 6.1), the regularization parameter delivered by VCE is almost two magnitudes
smaller than the one given by the VCE-Lc, due to the data gaps and downward continuation of the
airborne observations (see Fig. 3.3a).

On the other hand, the L-curve method relies heavily on the empirically chosen relative weights, and
it cannot deliver reasonable modeling results if these weights are not chosen accurately. When various
types of observations are combined, the L-curve method delivers an RMS error 75% larger than the
one given by the combined approaches if the relative weights are chosen equally, i.e., ωp = 1. These
results answer Q-3: the impact of the regularization parameter on the modeling accuracy is significant.
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Figure 5.4: Combination of different types of observations based on the regularization method Lc-VCE
(adapted from P-I)

When the regularization parameter is not estimated properly, i.e., when the L-curve method or VCE is
applied alone, the gravity model could deliver an RMS error up to two times larger. The drawbacks
of these two methods are overcome by applying the proposed combined approaches. Among the
two combined approaches, the VCE-Lc generally gives better results in terms of both the two criteria.
Furthermore, the performance of the Lc-VCE also depends on the empirically chosen weights, as the
regularization parameter generated by the L-curve method in the first step will be kept. Thus, the
VCE-Lc approach is then applied throughout this work for determining the regularization parameter.
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6 Results and discussion

This chapter presents the major results of this work, i.e., regional gravity models derived from both
the single-level SRBF approach and the MRR using various types of gravity observations in different
study areas. These regional models are computed by setting up the estimation models (Chap. 5) based
on the methodologies presented in Chap. 4 using gravity data and models as introduced in Chap. 3.
The connection between related sections are shown in Fig. 6.1.

Figure 6.1: Flowchart regarding the procedure for calculating regional gravity models

6.1 "1 cm geoid experiment"

The "1 cm Geoid Experiment" means a milestone in the international effort towards the high-accuracy
geoid determination for the realization of the IHRS, and it provides a basis for the evaluation and
further development of procedures. This experiment is of great interest and importance for three
reasons:

- Colorado is a mountainous area with high elevations (with an average of 2017 m and a maximum
of 4386 m) and rugged topography (see Fig. 3.3b), which makes the gravity field modeling
challenging. If a 1 cm accuracy is obtained in this study area, even higher accuracies can be
expected in other study areas by the applied modeling procedure, since the accuracy of the
geoid determination decreases when the topographic heights increase (Foroughi et al., 2019).
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- The NGS provides not only high-resolution terrestrial and airborne gravity observations (see
Sect. 3.3), but also a set of GNSS/leveling data at 223 GSVS17 benchmarks (red line in Fig. 3.3a)
with a mean distance of 1.6 km along the U.S. Highway 160. Thus, the accuracy of the modeling
results can be evaluated.

- With altogether fourteen participated groups from thirteen countries involved in this experiment
with different methodologies, the comparison of the results highlights the disparities of each
method.

Each group calculates the height anomaly, the geoid height, and the geopotential values at the GSVS17
benchmarks and for the whole target area (black rectangle in Fig. 3.3a), respectively, without the
knowledge of the GNSS/leveling data. The involved computation methods include the Stokes’ integral
(Claessens and Filmer, 2020; Wang et al., 2020), the LSC (Willberg et al., 2020; Grigoriadis et al., 2021),
the least-squares modification of Stokes’ formula (Jiang et al., 2020; Varga et al., 2021), and the SRBFs
(P-II), which well-represent the state-of-art methodologies in regional (quasi-) geoid modeling. Beside
the methodologies, discrepancies exist in processing strategies regarding

- the filtering and downward continuation of the airborne data,

- the combination of terrestrial and airborne observations,

- the handling of terrain effects,

- the choice of the GGMs.

The detailed comparison of the height anomaly and the geoid height results delivered by each
participating group is presented in Wang et al. (2021), and the comparison of geopotential values is
given in Sánchez et al. (2021). Among the fourteen contributions, eleven groups followed Molodensky’s
theory, i.e., calculated the height anomaly directly, and converted it to geoid height by including
a geoid-quasigeoid separation term (see Sect. 2.3); three groups calculated the geoid height first
following Stokes’ theory. As our geoid height result is obtained from the height anomaly by adding the
geoid-quasigeoid separation term given by Heiskanen and Moritz (1967), i.e., the Eqs. (2.26) and (2.27),
which includes an approximation, it is expected to be less accurate than the height anomaly result.
Consequently, the evaluation in P-II and this section focuses only on the height anomaly results.

As the only group implementing the method of SRBFs, we documented the computation procedure
step by step in P-II, where the research question Q-4 is answered in detail. Due to the high elevation
and rugged terrain in this study area, not only a GGM but also topography models (see Sect. 3.5)
are included in the RCR procedure. The remaining part is then modeled by the combination of the
terrestrial and the airborne observations, and the estimation model is set up following Eq. (5.7). The
relative weight between the two data types and the regularization parameter are determined by the
VCE-Lc approach proposed in P-I. An innovation of P-II is the combination of two different types of
SRBFs for the terrestrial and the airborne data, respectively. To be more specific, the Shannon function
is used for the terrestrial data and the CuP function is applied to the airborne data as a low-pass
filter for reducing the high-frequency noise. Although the idea of using different SRBFs for different
observations was proven in theory to be possible by the Theorem presented in Sect. 4.1, it is applied to
real data for the first time, in P-II.

An internal validation, i.e., the statistical analysis of the residuals is presented in P-II, and the Figs. 6.2a
and 6.2b (cf. Fig. 7 in P-II) show the residuals of the terrestrial and the airborne data, respectively.
These residuals give STD values of 2.13 mGal and 1.25 mGal for the terrestrial and the airborne data,
which indicate that the estimation model fits the airborne data better than the terrestrial data. This
is explainable as the terrestrial observations were gathered during a large time span with varying
quality, and the GRAV-D airborne measurements were collected in recent years (see Sect. 3.3). The
largest residuals in Fig. 6.2 are located in high-elevation areas, and a correlation with the terrain
map (Fig. 3.3b) can be seen. This indicates that a further improvement in the quasi-geoid model
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(a) (b)

Figure 6.2: Residuals of (a) the terrestrial gravity data, and (b) the airborne gravity data from the
least-squares estimation

could be achieved by applying a more accurate topography model that might be available in the near
future. The SRBF-based modeling results are evaluated w.r.t. the mean results of all contributions
in P-II, as the GNSS/leveling data have not been available to the participating groups until recently.
Compared to the mean results, the SRBF-based height anomaly values give RMS errors of 1.0 cm
and 1.6 cm along the GSVS17 benchmarks and in the whole study area, respectively, which are the
smallest among all the contributions. This section focuses on the validation of the SRBF-based results
w.r.t. the GNSS/leveling data. Note that the GNSS/leveling data actually contain 222 instead of
223 benchmarks, as the benchmark Nr. 77 was ultimately omitted because of its location on a sharp
switchback in the route (see van Westrum et al., 2021 for more details).

Validation with the GNSS/leveling data

Compared to the GNSS/leveling data, the SRBF-based height anomaly result gives an STD of 2.64 cm,
which is among the five models of the best agreement (Wang et al., 2021). This comparison confirms
that the modeling result delivered by the SRBFs is comparable to those obtained by other methods,
and also answers the research question Q-6. The differences between the SRBF-based height anomaly
result and the GNSS/leveling data are plotted in Fig. 6.3 (red line), and the statistics are listed in
Table 6.1. It is worth mentioning that a bias of 88 cm between the models and the GNSS/leveling
data has been removed (Wang et al., 2021), which is due to the difference between the adapted W0
value used in this experiment and that of the North American Vertical Datum of 1988 (NAVD88). As a
reference, the differences between the mean result of all contributions and the GNSS/leveling data are
also plotted (cyan line in Fig. 6.3). The mean result is close to the SRBF-based solution, giving an STD
of 2.55 cm.

In Fig. 6.3, there is a noticeable sudden increase of almost 10 cm after benchmark Nr. 160 (vertical line
in Fig. 6.3) in both the SRBF-based result and the mean result in comparison to the GNSS/leveling
data, and such behavior is observed in all the fourteen contributions (see Wang et al., 2021 for more
details). The fourteen groups performed the computation independently with different methods and
procedures. Thus, it is unlikely that this increase comes from computation errors. Although this slope
seems to be correlated with the peak in the ellipsoidal height (black line in Fig. 6.3), there is no such
behavior at the first peak of height (around Nr. 86) where the elevation raises from 2200 m to 3300 m
in about 60 km distance. Wang et al. (2021) pointed out that the exact reason for such a behavior is
unknown yet, but it could be caused by errors in the GSVS17 validation data or in the gravity data.
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Figure 6.3: Differences between the GSVS17 validation data and the SRBF-based height anomaly result
(red line) as well as the mean result (cyan line). The ellipsoidal height (black line) of the
GSVS17 benchmarks and the benchmark Nr. 160 (vertical line) are plotted for interpretation
reasons

Table 6.1: Comparison between the GNSS/leveling data and the height anomaly results, unit [cm]

Min Max Mean STD

222 benchmarks
SRBF -3.44 7.69 0.85 2.64

Mean of all contributions -2.92 7.82 0.33 2.55

160 benchmarks
SRBF -3.44 3.64 -0.43 1.37

Mean of all contributions -2.92 1.79 -1.06 0.82

In either case, it makes sense to exclude the benchmarks after Nr. 160 in the validation for a fair
comparison. The statistics of the comparison at the first 160 benchmarks are also listed in Table 6.1.
The STD values of the SRBF-based result and the mean result are 1.37 cm and 0.82 cm, respectively.
van Westrum et al. (2021) estimated the accuracy of the GNSS/leveling data to be around 1.3 cm,
and thus, the accuracies of both the mean result and the SRBF-based result are generally within the
uncertainty of the GNSS/leveling data. Providing validation data with sub-cm accuracy to verify the
1 cm geoid accuracy could be as challenging as calculating the 1 cm geoid itself (Wang et al., 2021).
Nevertheless, the results obtained in this experiment indicate that the 1 cm (quasi-) geoid is achievable
even in areas with rugged terrain.

Contribution of the regional gravity measurements

To assess how much the quasi-geoid model benefits from the regional terrestrial and airborne grav-
ity data, i.e., to answer the research question Q-5, four solutions are computed and compared,
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namely the terrestrial and airborne combined solution, the terrestrial-only, the airborne-only, and the
models-only solution, i.e., only the GGM (XGM2016 up to degree 719) and the topography models
(dV_ELL_Earth2014 from degree 720 to 2159 and ERTM2160 from degree 2160 to ∼ 80, 000) are used
without any regional observations. The terrestrial-only and the airborne-only solutions are computed
in the same manner as the combined solution, i.e., the same GGM and topographic models as for
the combined solution are used in the RCR procedure, and the remaining part is then modeled by
the terrestrial or airborne data individually. In P-II, each solution is validated by the mean result of
the other thirteen contributions along the GSVS17 benchmarks. Compared to the mean result, the
models-only solution gives the worst result, with an RMS error of 4.04 cm; it is improved to 1.76 cm
by adding the terrestrial data, and further improved to 1.08 cm by including the airborne data. The
detailed comparison is presented and discussed in Sect. 5.2 of P-II. Here these four solutions are
validated by the GNSS/leveling data, and the differences between each solution and the GNSS/leveling
data are plotted in Fig. 6.4. The corresponding statistics are listed in Table 6.2. In this validation, the
models-only solution (grey line in Fig. 6.4) still shows the worst performance, delivering the largest
variation compared to the GNSS/leveling data (zero value line), with an STD of 4.39 cm (3.85 cm at
the first 160 benchmarks). As explained in P-II, the topography models cannot represent the true
high-frequency gravity signal accurately despite their high resolution, as they assume the topographic
masses to have constant density, which is not the case in reality.

Figure 6.4: Differences between the GSVS17 validation data and the combined solution (red line), the
terrestrial-only solution (green line), the airborne-only solution (blue line), as well as the
models-only solution (grey line)

The statistics listed in Table 6.2 indicate that the airborne-only solution, with an STD of 2.84 cm, is
better than the terrestrial-only solution, which gives an STD of 3.47 cm. However, Fig. 6.4 shows that
the airborne-only solution (blue line in Fig. 6.4) actually has larger oscillations than the terrestrial-only
solution (green line in Fig. 6.4), compared to the GNSS/leveling data. The reason for the smaller STD
value in the airborne-only solution is that it shows a smaller slope after benchmark Nr. 160. This further
indicates that the benchmarks after Nr. 160 should be excluded from the validation data to guarantee
a fair comparison. At the first 160 benchmarks, the obtained STD values are 3.85 cm, 1.88 cm, 1.68 cm,
and 1.37 cm for the models-only, airborne-only, terrestrial-only, and combined solution, respectively.
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Table 6.2: Comparison between the GNSS/leveling data and the different solutions, unit [cm]

Min Max Mean STD

222 benchmarks

Combined -3.44 7.69 0.85 2.64

Terrestrial-only -3.58 11.89 1.13 3.47

Airborne-only -3.31 8.39 1.78 2.84

Models-only -8.38 11.08 1.44 4.39

160 benchmarks

Combined -3.44 3.64 -0.43 1.37

Terrestrial-only -3.58 4.60 -0.57 1.68

Airborne-only -3.31 6.29 0.52 1.88

Models-only -8.38 7.67 0.62 3.85

The possible reasons for the terrestrial-only solution to be better than the airborne-only solution are
explained in P-II, which include (1) the terrestrial data have a larger coverage, and (2) the downward
continuation of the airborne data, i.e., the airborne measurements are collected at an average altitude
of 6 km to model the gravity field on the Earth surface, and thus, the modeling results are expected to
be less accurate than using the surface gravity data.

For the terrestrial-only solution, its differences w.r.t. the GNSS/leveling data are highly correlated to
the variations of the topography (black line in Fig. 6.4) at the GSVS17 benchmarks. This phenomenon
is also reported in P-II, where the comparison is made with the mean results of the other thirteen
groups. To be more specific, when the ellipsoidal heights are constant (between around benchmark
Nr. 110 to Nr. 180), the terrestrial-only solution is almost identical to the combined solution. However,
when there are big changes in the ellipsoidal heights (e.g. between around benchmark Nr. 40 to
Nr. 90 as well as after benchmark Nr. 180), larger differences between the terrestrial-only solution and
the validation data are observed. Including the airborne data seems to improve the terrestrial-only
solution the most in rugged regions. This is reasonable due to the varying gravity in such regions, and
thus, denser gravity observations are necessary to achieve a higher modeling accuracy.

The improvement in the combined solution is 18% compared to using terrestrial data only and 27%
compared to using airborne data only, and it reaches 64% compared to using no regional gravity
observations. Such significant improvements indicate the importance of high-resolution regional
gravity data. It is clear from both Table 6.2 and Fig. 6.4 that the combined solution (red line in Fig. 6.4)
benefits from both the terrestrial and the airborne data. Moreover, an interesting observation in Fig. 6.4
is that the combined solution always coincides with the solution (terrestrial-only or airborne-only)
which shows less variation to the GNSS/leveling data. To be more specific, from benchmark Nr. 1
to Nr. 36 and from Nr. 116 to Nr. 180, the terrestrial-only solution shows smaller differences than
the airborne-only solution w.r.t. the GNSS/leveling data, and the combined solution is close to the
terrestrial-only solution at these parts. In contrast, from Nr. 37 to Nr. 100 and from Nr. 181 to Nr. 210,
the combined solution coincides to the airborne-only solution, as it is better than the terrestrial-only
solution. This indicates that the two types of gravity data are combined in a proper way.

Figure 6.5 shows the comparison between the combined solution and the models-only solution
(Fig. 6.5a), the terrestrial-only solution (Fig. 6.5b), as well as the airborne-only solution (Fig. 6.5c), in
the whole study area. Significant differences are observed between the combined solution and the
models-only solution, especially at locations with high elevation. A correlation between Fig. 6.5a
and the terrain map (Fig. 3.3b) can be seen. In the eastern part of the study area, which is more flat
than the western and central part, smaller differences appear between the combined solution and the
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(a)

(b) (c)

Figure 6.5: The differences between the combined solution and (a) the models-only solution, (b) the
terrestrial-only solution, as well as (c) the airborne-only solution, in the whole study area

models-only solution. This comparison shows the necessity and importance of including regional
gravity observations despite the high resolution of the used GGM and topography models, especially
in high-elevation areas with rugged topography. The comparison between the combined solution and
the terrestrial-only solution reveals the contribution of the airborne data to the quasi-geoid model.
Larger differences in Fig. 6.5b show up in rugged region (central part of the study area), which
coincides with the conclusion drawn from the validation w.r.t. the GNSS/leveling data. This gives
some hints about where to place new airborne measurements in mountainous study areas. According
to the findings in this study, airborne observations should be performed in rugged terrain in addition
to the local terrestrial data. In the comparison between the combined solution and the airborne-only
solution (Fig. 6.5c), differences mainly occur in areas without the airborne data coverage (see Fig. 3.3a),
which is reasonable. In the area with airborne observations, the airborne-only solution is closer to
the combined-solution than the terrestrial-only solution. This can be explained by the fact that the
estimation model fits the airborne data better than the terrestrial data (see Fig. 6.2), since the airborne
observations have been collected in recent years and are expected to have a higher quality than the
terrestrial observations. Nevertheless, additional contribution of the terrestrial data is still observed,
especially in high-elevation regions.

Performance of the GGMs

To answer the questions raised in Sect. 3.4, i.e., to compare the GGMs with the regional quasi-geoid
model, the performance of different high-resolution GGMs, namely EGM2008, EIGEN-6C4, GECO,
and XGM2019, is also validated in comparison to the GNSS/leveling data. Each GGM is truncated to
degree 2159, and the topography model ERTM2160 is added to count for the very high frequency parts
from degree 2160 to ∼ 80,000. The differences between the GNSS/leveling data and the quasi-geoid
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Figure 6.6: Differences between the GNSS/leveling data and the four GGMs (in combination with
ERTM2160) at the GSVS17 benchmarks

Table 6.3: Comparison between the GNSS/leveling data and the GGMs (in combination with
ERTM2160) at the first 160 benchmarks, unit [cm]

Min Max Mean STD

EGM2008 -6.08 3.83 -1.92 2.32

EIGEN-6C4 -2.82 3.86 0.80 1.39

GECO -4.93 4.63 0.65 2.66

XGM2019 -8.02 7.97 0.48 3.80

calculated directly by the four GGMs in combination with ERTM2160 are shown in Fig. 6.6, and the
statistics at the first 160 benchmarks are listed in Table 6.3. As shown in Fig. 6.6, the four tested GGMs
differ significantly in comparison to the GNSS/leveling data, giving STD values ranging from 1.39 cm
(EIGEN-6C4) to 3.80 cm (XGM2019). EGM2008, EIGEN-6C4, and GECO show the same pattern in the
variation to the GNSS/leveling data, since the latter two models are developed based on EGM2008.
However, EGM2008 gives a much larger mean value (-1.92 cm) at the first 160 benchmarks compared
to the other three models, which could be due to the absence of GOCE data in the development of
this model (see Sect. 3.4). Although EIGEN-6C4 and GECO are both based on EGM2008, EIGEN-6C4
delivers the smallest STD, thanks to the contribution of GOCE, GRACE, and SLR data to the long-
wavelength component as well as the usage of a high-resolution gravity anomaly grid (2′ × 2′, see
Sect. 3.4 for more details). XGM2019 shows a pretty different pattern than the other three models,
and it gives the largest STD. This could be explained by the low resolution of the terrestrial gravity
anomaly data set (15′ × 15′) used in the model determination of XGM2019 (Sánchez et al., 2021). In
contrary, much denser gravity anomaly grids are employed by EGM2008 (5′ × 5′), GECO (5′ × 5′), and
EIGEN-6C4 (2′ × 2′). Furthermore, in XGM2019 the gravity information above d/o 719 is derived from
the topography model Earth2014, which assumes the topographic masses to have constant density.
Thus, it is less accurate than using a high-resolution gravity anomaly grid formed by real gravity
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observations, which contain signals of density mass changes. Nevertheless, it is worth clarifying that
the performance of the GGMs depends on the testing region, and the validation here is not intended
to rank the different GGMs but to compare the GGMs with the regional (quasi-) geoid model.

The comparison results show that it is not reliable to use only the GGMs in combination with
topography models for (quasi-) geoid determination. The significantly varying performance of the
GGMs implies that they are not sufficient for engineering purposes or geophysical investigation (Wu
et al., 2017a), especially in mountainous areas. The standard deviations delivered by three of the test
GGMs are much larger than the one given by the regional model, which demonstrates the necessity
and importance of regional gravity field refinement with local gravity measurements. Thus, the GGMs
cannot replace the regional (quasi-) geoid models, and high-resolution regional gravity field modeling
is preferred for the determination of the IHRF coordinates, except for regions without or with very
few surface gravity data (Sánchez et al., 2021).

Table 6.4: Comparison between the GNSS/leveling data and the regional quasi-geoid model calculated
using different GGMs, truncated at different SH degrees, as background model (at the first
160 benchmarks), unit [cm]

2159 1079 719 359

Mean STD Mean STD Mean STD Mean STD

EGM2008 -2.13 1.40 -2.24 1.31 -2.29 1.33 -2.54 1.42

EIGEN-6C4 -0.25 1.19 -0.54 1.21 -0.88 1.29 -1.83 1.48

GECO -0.01 1.51 -0.31 1.45 -0.69 1.39 -1.74 1.53

XGM2019 -0.54 1.37 -0.55 1.37 -0.55 1.35 -1.65 1.53

Figure 6.7: Differences between the GNSS/leveling data and the regional quasi-geoid model calculated
using the four GGMs (truncated at degree 719) as background model

These four GGMs are also tested as background model within the RCR procedure for regional quasi-
geoid modeling, i.e., in replacement of XGM2016. Each reference model is truncated to degree values
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2159, 1079, 719, and 359, respectively, and the parts above the truncation degree are covered by the
topography models (dV_ELL_Earth2014 and ERTM2160). The statistics (at the first 160 benchmarks)
of the differences between the GNSS/leveling data and the regional quasi-geoid model based on
each GGM are listed in Table 6.4. The regional models based on the different GGMs deliver similar
results in terms of STD, with discrepancies less than 2 mm between each other. Among the four
truncation degree values, 1079 and 719 generally give better results, i.e., smaller STD values. However,
the differences between the four truncation degrees are also less than 2 mm in terms of STD. As an
example, the differences between the GNSS/leveling data and the regional quasi-geoid model based
on the four GGMs with truncation degree 719 are shown in Fig. 6.7. Despite the large discrepancies
between the four GGMs (Fig. 6.6), they are able to provide almost identical result after regional
quasi-geoid modeling. These results further show the reliability of the SRBF-based regional (quasi-)
geoid determination method, as it is able to deliver stable modeling results regardless the choice of
the GGMs. However, in Fig. 6.7 an offset (large mean value) is again observed in the solution based on
EGM2008 at the first 160 benchmarks, and it disappears after the benchmark 160. The exact reason for
such behavior of EGM2008 still requires further investigation.

6.2 Spectral combination via MRR

The gravity models calculated by the spectral combination via MRR are presented and discussed in
P-III, and this section summarizes the key findings. The developed approach, i.e., the MRR based
on the pyramid algorithm is firstly tested using simulated data and then applied to real gravity
observations in different study areas, as shown in the Figs. 6.8a and 6.8b, respectively. The results
obtained from the MRR are directly compared with those delivered by the single-level SRBF approach
in order to highlight the benefits of the MRR based on the pyramid algorithm.

(a) (b)

Figure 6.8: The study areas and the distributions of gravity data in (a) the simulated case, including
terrestrial (yellow dots), airborne (orange dots), altimetry (green dots), GOCE (grey dots),
and GRACE (blue dots) data, and (b) the real case, including terrestrial (yellow dots),
shipborne (red dots), airborne (orange dots), and altimetry (green dots) data

In the simulated case, five types of gravity data are involved, namely terrestrial, airborne, and altimetry
data, as well as satellite gravimetry data from GOCE and GRACE. These data are simulated from
GECO, with the position of the observations (except the altimetry data) provided by the IAG-ICCT
JWG 0.3, running from 2011 to 2015. The position of the altimetry data is obtained from the real
ground track of Envisat (Extended Mission, see Sect. 3.2). All observations are simulated in the sense
of disturbing gravity field quantities, i.e., first order radial derivatives of the disturbing potential for
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Figure 6.9: The estimated scaling coefficients at level I = 11 (first row), and levels i = 10, 9, 8, 7 (second
to fifth row). From the second to the fifth row, the left column represents the coefficients
di|i+1 computed directly from the pyramid algorithm, and the right column represents the
updated coefficients di after including the gravity data involved at this level. The black
rectangle inside each plot shows the observation area ∂ΩO

the terrestrial and airborne data, geoid height for the altimetry data, second order radial derivatives
of the disturbing potential for GOCE, and disturbing potential differences between the two satellites
for GRACE. White noise with standard deviations of 0.01 mGal, 1 mGal, and 0.03 m is added to
the terrestrial, airborne, and altimetry data; colored noise with standard deviations of 10 mE and
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8 · 10−4 m2/s2 is added to the satellite data of GOCE and GRACE, respectively. The observation
area ∂ΩO is located between 39◦ and 45◦ latitude and between 10◦ and 20◦ longitude (Fig. 6.8a).
Following the pyramid algorithm shown in Fig. 4.3, only the terrestrial data, which cover almost half
of the study area, are used at the highest resolution level I = 11, according to the spatial resolution
of the data. The coefficient vector d11 and its covariance matrix Σd11 are estimated according to the
Eqs. (5.8) and (5.9) and transformed to d10|11 and Σd10|11

of level i = 10 by low-pass filtering according
to the Eqs. (4.15) and (4.16). They are then updated by including the airborne data at level 10, and the
updated coefficient vector d10 as well as Σd10 are calculated by the Eqs. (5.13) and (5.14). Continuing
this process, the altimetry data are added at level i = 9, the GOCE data at level i = 8, and the GRACE
data at level i = i′ = 7; the coefficient vector of each resolution level is then estimated. Figure 6.9 (cf.
Fig. 6 in P-III) visualizes the updated coefficients (right column) and those obtained directly from
the pyramid algorithm (left column) at each resolution level. From the first row (level I = 11) to
the last row (level i′ = 7), the margin size ηC,O increases from 0.3◦ to 4.8◦ following Eq. (5.2), and
the density of the coefficients decreases gradually, as explained in Sect. 5.1. The top row shows the
scaling coefficients collected in the vector d11 at level I = 11, which are estimated from the terrestrial
observations only. Comparing it with Fig. 6.8a, additional gravity signals are only captured at the
locations with terrestrial data coverage, which is reasonable. The comparison between the left plots
and the right ones shows that the gravity observations at each level insert additional information in
the areas where they are located, and at the same time, the gravity signals captured from the previous
levels are preserved.

Figure 6.10 (cf. Fig. 7 in P-III) visualizes the estimated detail signals Gi of the MRR as well as the
gravity signals F i at each level i. The detail signals (left column in Fig. 6.10) at different levels show
the spectral information contained in the corresponding frequency ranges (see Fig. 4.1). When the
resolution level increases from level i′ = 7 (fifth row) to level I = 11 (first row), more and more fine
structures show up. At level I = 11, the detail signal G11 captures gravity information only in the
onshore area where the terrestrial data are located. However, at the border of the terrestrial data,
strong edge effects appear due to the Gibbs phenomenon. At level 10 where only terrestrial and
airborne data are involved, large edge effects are also observed at the border of the data coverage, i.e.,
in the coastal area of the Tyrrhenian Sea. After level 9, the involved observations have full coverage
over the observation area ∂ΩO (Fig. 6.8a), and no edge effects are visible within ∂ΩI . The edge
effects in G11 and G10 will further contaminate the final gravity model, as shown in Fig. 6.11b. To
address this issue, a strategy is developed in P-III to reduce the edge effects in the calculated detail
signals Gi. Besides the observation area ∂ΩO and the investigation area ∂ΩI for the whole study area
(see Sect. 5.1), we also define ∂ΩOi and ∂ΩIi for each resolution level i when calculating the detail
signals. ∂ΩOi depends on the data coverage of the observation groups involved at this level i, and
∂ΩIi is adapted to ∂ΩIi = ∂ΩOi ∩ ∂ΩI . The detail signals Gi of level i are then calculated within ∂ΩIi .
As an example, ∂ΩO11 is defined as the onshore areas in Fig. 6.8a since only terrestrial observations
are involved at level 11. Consequently, ∂ΩI11 is adapted to the onshore areas within the investigation
area ∂ΩI . The new detail signals of level 11 and 10 after adapting ∂ΩIi are presented in Fig. 6.10 (mid
column), and the edge effects are significantly reduced. Figure 6.10 (right column) shows the gravity
signal (in terms of disturbing potential) F I′ = F̄ + ∑I′

i=7 Gi of each level, with the gravity signal F̄ = F6
in the bottom panel of the right column being the long wavelength component modeled from GECO.

Figures 6.11a and 6.11b (cf. Fig. 8 in P-III) show the differences between the validation data and
the gravity model in terms of disturbing potential calculated from the MRR based on the pyramid
algorithm after and before applying the proposed strategy for reducing the edge effects, respectively.
The corresponding statistics are listed in Table 6.5 (Table 2 in P-III). Comparing Fig. 6.11a to Fig. 6.11b,
the edge effects at the border (outside the coverage) of the terrestrial data are significantly reduced.
The improvement achieved by applying this strategy is 21% in terms of RMS, w.r.t. the validation data.
However, at the border (inside the coverage) of the terrestrial observations, the edge effects remain
the same after adapting ∂ΩIi , as also shown in the calculated detail signals at levels 11 and level 10
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Figure 6.10: The detail signal Gi of the MRR based on the pyramid algorithm before (left column)
and after (mid column) adapting the investigation area ∂ΩIi , as well as the estimated
gravity signal (in terms of disturbing potential) F I′ = F̄ + ∑I′

i=7 Gi (right column) from
level I′ = 11 (first row) to level I′ = 7 (fifth row), with F̄ (right column, last row) modeled
from GECO

(Fig. 6.10, mid column). Thus, it is planned for future work to develop strategies that further reduce
these edge effects, e.g., implementing a tapering at the border of the high-resolution gravity data.

To demonstrate the benefits of the spectral combination through MRR, the gravity model based on the
single-level approach is computed, and Fig. 6.11c shows it differences w.r.t. the validation data. In the
single-level model, much larger differences are obtained in offshore than in onshore regions, where
the terrestrial data are available. It indicates that the single-level approach majorly recovers gravity
information from the terrestrial observations, and the contribution of other measurements which
are sensitive to lower spectral bands is not captured sufficiently. In contrast, such terrestrial-data-
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(a) (b)

(c) (d)

Figure 6.11: Differences between the estimated disturbing potential and the validation data, delivered
by (a) the MRR based on the pyramid algorithm, (b) the MRR based on the pyramid
algorithm before applying the developed strategy for reducing edge effects, (c) the single-
level approach, and (d) the MRR without pyramid algorithm

dependent pattern is not visible in the solution of the MRR based on pyramid algorithm (Fig. 6.11a).
The RMS error delivered by the MRR based on the pyramid algorithm is 2.72 m2/s2, which is 50%
smaller than the value given by the single-level approach. These results answer the research question
Q-8, and demonstrate the necessity and benefits of the developed MRR approach.

Table 6.5: Evaluation of the MRR and the single-level model with respect to the validation data in
terms of disturbing potential values (unit [m2/s2])

Min Max RMS

MRR based on pyramid algorithm (Fig. 6.11a) -11.63 11.41 2.72

MRR based on pyramid algorithm

(before adapting ∂ΩIi to reduce edge effects, Fig. 6.11b)
-20.98 12.82 3.44

Single-level model (Fig. 6.11c) -38.22 21.64 5.48

MRR without pyramid algorithm (Fig. 6.11d) -27.13 27.64 4.21

Furthermore, to verify the advantages of applying the pyramid algorithm, an additional comparison is
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conducted with the MRR without applying the pyramid algorithm, i.e., the coefficients are estimated
independently at each level using all types of observations. The differences between the validation data
and the calculated model are shown in Fig. 6.11d, and the statistics are listed in Table 6.5. Compared
with the single-level approach, its differences w.r.t. the validation data decrease in offshore regions,
which indicates that the gravity information in lower-resolution observations are better captured.
Consequently, the RMS error delivered by the MRR without pyramid algorithm is 23% smaller than
that of the single-level model. However, the same pattern as the single-level model is observed in
Fig. 6.11d, i.e., larger differences show up in the offshore regions comparing to the onshore area. After
applying the pyramid algorithm (Fig. 6.11a), the differences in the offshore area become much smaller,
and an improvement of 35% is obtained in terms of RMS value. These results further contribute to the
answer of the research question Q-8, i.e., show the benefit of applying the pyramid algorithm.

In the case of real data, the developed method is applied to calculate the regional quasi-geoid and
gravity anomaly models in Northern Germany, i.e., between 53.2◦ and 55.3◦ latitude and between 5.9◦

and 14.3◦ longitude (see Fig. 6.8b). Four types of gravity observations are used, namely terrestrial,
shipborne, airborne, and altimetry data, and a detailed data description can be found in P-III. The
computation of the MRR based on the pyramid algorithm is carried out in the same manner as the
simulated case, following Fig. 4.3. The terrestrial observations are used at the highest level I = 12 to
calculate the unknown coefficients of this level and to start the pyramid algorithm. The shipborne,
airborne, and altimetry measurements are included at levels 11, 10, and 9, respectively. The number
of grid points at each resolution level as well as the margin sizes ηC,O and ηO,I are chosen following
Sect. 5.1. The developed strategy as explained in the simulated case, i.e., adapting ∂ΩIi to reduce edge
effects in the calculated detail signals, is applied as well.

(a)

(b)

Figure 6.12: Differences between the calculated quasi-geoid model and the GNSS/leveling data in
the onshore area, delivered by (a) the MRR based on the pyramid algorithm, and (b) the
single-level approach. Note that the mean values of the differences are removed

The quasi-geoid models calculated by the MRR based on the pyramid algorithm and the single-level
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(a)

(b)

Figure 6.13: Differences between the calculated gravity anomaly model and the DTU17 in the offshore
area, delivered by (a) the MRR based on the pyramid algorithm, and (b) the single-level
approach

approach are validated using GNSS/leveling data in Northern Germany (Gruber et al., 2011), and
their differences are visualized in Fig. 6.12 (cf. Fig. 11 in P-III). The MRR based on the pyramid
algorithm delivers smaller differences w.r.t. the GNSS/leveling data, giving an RMS error of 2.23 cm,
as shown in Table 6.6, which is 35% smaller than that of the single-level approach (3.43 cm). The
calculated gravity anomaly models are validated with a DTU 2′ × 2′ gravity anomaly grid (DTU17,
Andersen and Knudsen, 2019) in the offshore area. Figure 6.13 (cf. Fig. 12 in P-III) shows the
differences between the computed gravity anomaly models and the DTU17, delivered by the MRR
based on pyramid algorithm (Fig. 6.13a) and the single-level approach (Fig. 6.13b), respectively. The
corresponding statistics are listed in Table 6.6. In the single-level model, much smaller differences
are observed in regions with shipborne data coverage (see Fig. 6.8b), which suggests that it majorly
recovers gravity information from the high-resolution shipborne data, and information from other
measurement types is not captured sufficiently. The MRR based on pyramid algorithm again delivers
smaller differences, and the obtained RMS value decreases by 63% in comparison to the single-level
approach. The improvement achieved by applying the MRR based on the pyramid algorithm is even
larger in the offshore area than in the onshore area, where the high-resolution terrestrial data are
available. These results agree with the conclusion drawn from the simulated study case, and further
answer the research question Q-8.

In these two study cases, gravity data from various observation techniques with different spectral and
spatial resolution are combined, and the high-resolution measurements do not have coverage over the
whole study area. In such case, it is especially beneficial to apply the MRR, as the single-level approach
would be biased towards the high-resolution data and is not able to extract the full information from
measurements with medium to low resolution. The improvement by applying the MRR based on the
pyramid algorithm is significant in these study cases, with the RMS values decrease by more than
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Table 6.6: Evaluation of the MRR based on the pyramid algorithm and the single-level model w.r.t.
GNSS/leveling data (in terms of quasi-geoid, note that the mean differences are removed) in
the onshore area, and w.r.t. DTU17 (in terms of gravity anomaly) in the offshore area

w.r.t. GNSS/leveling data

(unit [cm])

w.r.t. the DTU17 grid

(unit [mGal])

Min Max RMS Min Max RMS

MRR based on pyramid algorithm -4.50 5.15 2.23 -7.98 8.70 2.67

Single-level -6.48 9.36 3.43 -53.24 60.46 7.22

30% compared to those obtained from the single-level approach, w.r.t. the validation data. However,
when the high-resolution data have almost full coverage, the single-level approach is not expected to
deliver worse results than the MRR. For instance, in the "1 cm geoid experiment", only the terrestrial
and airborne gravity observations are involved with high data quality and almost full coverage, the
single-level quasi-geoid model actually gives slightly smaller STD than the one calculated by the MRR.
This could be due to the fact that less erroneous effects, e.g., edge effects, are included in the synthesis
step in the single-level than in the multi-level. Thus, the choice of applying the single-level SRBF or
the MRR based on the pyramid algorithm depends on each study case, i.e., depends on the involved
data types and distributions. The answer to research question Q-9 is: the MRR based on the pyramid
algorithm should be applied when there are many types of gravity observations with different spectral
resolution, especially in study areas where the high-resolution data do not have full coverage, such as
offshore regions and developing areas with sparse terrestrial data.
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7 Summary and outlook

7.1 Summary

This thesis focuses on regional gravity field modeling based on the combination of data from vari-
ous observation techniques, for the realization of physical height systems. Chapter 2 presents the
fundamental theory of gravity and the definition of different heights and height systems. Chapter 3
introduces various types of gravity observation techniques, as well as the gravity data and models
involved in this work. The method of SRBFs is used, and based on it, a spectral combination is further
implemented through the MRR by means of the pyramid algorithm to consider the spectral sensitivity
of different observation techniques. Chapter 4 explains the methodologies of the SRBFs, the MRR,
and the pyramid algorithm. The estimation models based on both the SRBFs and the MRR are then
set up in Chap. 5, with the model configuration discussed in detail, including the type, bandwidth,
location of the SRBFs, as well as the extension of the data zone. Different types of gravity observations
are combined by the parameter estimation procedure, and the Tikhonov regularization is applied for
solving the ill-posed problem. A new approach is proposed and recommended for the determination
of the regularization parameter, which combines VCE and the L-curve method (P-I). The modeling
results based on the SRBFs (P-II) and the MRR (P-III) are discussed in Chap. 6. In the single-level
SRBF approach, the calculated high-resolution regional (quasi-) geoid model in Colorado contributes to
the "1 cm geoid experiment", where it is compared with thirteen independent solutions from different
modeling methods. The comparison shows that the STD of the SRBF-based (quasi-) geoid model is
among the smallest w.r.t. both the mean result of all fourteen contributions and the GNSS/leveling
data. In the MRR case, regional gravity models calculated by the MRR based on the pyramid algorithm
are compared with those obtained from the single-level SRBF approach. The results show that it is
beneficial to apply the MRR based on the pyramid algorithm, especially when the high-resolution
gravity observations do not have full coverage over the study area, as it is able to extract information
from measurements with medium to low resolution better than the single-level approach.

In summary, the research objectives listed in the Introduction are accomplished, and the research
questions raised in Sect. 1.2 are answered:

Regularization method

Q-1. Is VCE sufficient for determining the regularization parameter?

VCE is not sufficient for the regularization parameter determination when a strong regularization is
required, e.g., when large data gaps exist. In regions without data coverage, the estimation model
relies heavily on the background model. However, as explained in Sect. 5.4, the prior information
is regarded as an additional observation technique in VCE, and thus, is expected to be of random
character. This requirement cannot be fulfilled as the background model, which is not stochastic, is
used as the prior information. In such case, the regularization parameter generated by VCE is not
reliable. Results in P-I show that in study areas with large data gaps, the regularization parameter λ
generated by VCE is not strong enough, and it could be more than two magnitudes smaller than the
one obtained by the VCE-Lc method. Consequently, the RMS error w.r.t. the validation data delivered
by VCE is almost 100% larger than that given by the proposed VCE-Lc method in such study cases.

Q-2. How to apply a conventional regularization method if various data sets are to be combined?
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When various types of gravity observations with unknown weight factors are to be combined, a
conventional regularization method, e.g., the L-curve method, can be applied in combination with
VCE, such that the relative weights between the data sets are estimated by VCE but the regularization
parameter is determined by the L-curve method. This study further suggests that it is preferred to
apply the VCE first, and then determine the regularization parameter by the L-curve method based on
the estimated weights. P-I shows that the VCE-Lc method generally delivers smaller RMS errors as
well as higher correlations between the estimated coefficients and the validation data, compared to the
Lc-VCE. Furthermore, as mentioned in Sect. 5.4, the relative weights need to be selected empirically if
the L-curve method is to be applied first, and wrongly chosen weights could lead to the degradation
of modeling results.

Q-3. How large is the impact of the regularization parameter on the modeling accuracy?

As mentioned in the answer to Q-1, if VCE is applied alone in study cases that require a strong
regularization, the calculated gravity model could deliver an RMS error up to 100% larger, compared
to the one acquired when the regularization parameter is chosen appropriately by the proposed
VCE-Lc method. On the other hand, numerical investigations in P-I show that if the L-curve method
is used solely when different types of observations are combined, the obtained RMS error is 75%
larger than that of the VCE-Lc method. These results demonstrate that the regularization parameter
has a significant impact on the modeling accuracy in regional gravity field refinement. Thus, the
regularization parameter determination plays a crucial role in regional gravity field modeling.

High-resolution regional (quasi-) geoid model based on SRBFs

Q-4. How to set up the estimation model using SRBFs?

To set up the estimation model, the settings need to be chosen first, including the type, the bandwidth,
the location of the SRBFs, as well as the margin size for the extension of the data zone. The bandwidth
of the SRBFs, i.e., the maximum degree nmax of the series expansion, depends on the spatial resolution
of the gravity observations following Eq. (5.1). The number of the SRBFs as well as the margin size
are then chosen based on the maximum degree nmax of the expansion, following the rules defined
in Sect. 5.1. Generally, the Shannon function is applied in the analysis to avoid the loss of spectral
information, and an SRBF with smoothing features, such as the Blackman or the CuP function is used
in the synthesis to reduce erroneous effects. However, the SRBFs with smoothing features can also be
used in the analysis as a low-pass filter to reduce the high-frequency noise in the gravity data. The
validity of combining different types of SRBFs for different types of observations is proven in P-II. The
extended Gauss–Markov model (Eq. (5.7)) is then set up to estimate the unknown coefficients, with
the relative weights between different observation groups estimated by VCE, and the regularization
parameter determined by the L-curve method, i.e., using the VCE-Lc method proposed in P-I.

Q-5. How much does each observation group contribute to the final (quasi-) geoid model?

In the "1 cm geoid experiment", the regional quasi-geoid model is calculated using terrestrial and
airborne gravity measurements in combination with a GGM and topography models. The final quasi-
geoid model benefits from all the data types. Including the topography models is of great importance
in mountainous areas, as it smoothens the input observations, which enables a better least-squares
fit. However, the topography models alone do not guarantee an accurate modeling result, despite
their high resolution. Compared to the GNSS/leveling data, the STD value of the height anomaly
result delivered by the combined solution decreases by 18% compared to using terrestrial data only
and 27% compared to using airborne data only, and it reaches 64% compared to using only the GGM
and the topography models. The calculated quasi-geoid model is also compared with those directly
obtained by different high-resolution GGMs, namely EGM2008, EIGEN6C4, GECO, and XGM2019, in
combination of the topography models. This comparison shows that the performance of the GGMs
varies significantly, delivering larger STDs compared to the regional model. Thus, regional (quasi-)
geoid modeling based on local gravity observations is preferred for determining the IHRF coordinates,
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compared to using the high-resolution GGMs directly. Furthermore, the SRBF-based regional (quasi-)
geoid models deliver stable results regardless of the choice of the GGMs as background model.

Q-6. Which accuracy can the SRBF-based regional (quasi-) geoid model achieve, and how is its
performance compared to other methods?

Compared with the mean result of all the fourteen contributions in the "1 cm geoid experiment", the
SRBF-based quasi-geoid model delivers RMS errors of 1.0 cm and 1.6 cm at the GSVS17 benchmarks
and in the whole target area, respectively. They are both the smallest among all the solutions calculated
by different regional gravity field modeling methods. Compared with the GNSS/leveling data, the
STD obtained by the SRBF-based quasi-geoid model is 2.64 cm, which is among the five results with
the smallest STD values. However, the goal of having a (quasi-) geoid with 1 cm accuracy is not
reached yet. As shown in Fig. 6.3, there is a noticeable sudden increase in the differences between the
height anomaly results and the GNSS/leveling data after benchmark Nr. 160, which could be caused
by errors in the leveling data or in the gravity data. The exact reason for this increase needs further
investigation. Nevertheless, the STD at the first 160 benchmarks reaches 1.37 cm, which is close to
the 1.3 cm uncertainty of the GNSS/leveling data. These results show the reliability of the SRBFs for
regional (quasi-) geoid modeling, and its performance is comparable with other methods, such as the
Stoke’s formula and the LSC.

Spectral combination via MRR based on pyramid algorithm

Q-7. How can the MRR and the pyramid algorithm be realized in regional gravity field modeling?

To set up the MRR based on the SRBFs, the frequency domain needs to be discretized into different
resolution levels. From the highest level to the lowest level, the density of the required basis functions
decreases gradually but the margin size increases to reduce edge effects. The exact values for the
number of basis functions and the margin size at each level are chosen following the discussions in
Sect. 5.1. In this work, an MRR scheme is developed based on the pyramid algorithm and sequential
parameter estimation. The different resolution levels are connected by the pyramid algorithm, which
means the estimated coefficients of the highest level are transformed to the lower levels by successive
low-pass filtering. One choice of the low-pass filter in case of using the Reuter grid is proposed in
P-III. The coefficients obtained from the pyramid algorithm are updated by the gravity data included
at each lower resolution level through the parameter estimation. These updated coefficients are then
used in combination with spherical wavelet functions to calculate the corresponding detail signals of
each level, and thus, the final gravity model is obtained.

Q-8. What and how large is the benefit of applying the MRR based on the pyramid algorithm?

This question is answered in both Sect. 6.2 and P-III. The detailed benefits of applying the MRR
based on the pyramid algorithm are listed in Sect. 4.3. The major advantage is that different types
of observations can be included into the estimation procedure at the spectral level of their highest
sensitivities, which makes it possible to benefit from the individual strength of each data set. It has
been pointed out in the existing literature that the single-level approach might be biased towards the
high-resolution measurements, and the contribution of measurements with medium to low resolution
(e.g., altimetry data, satellite gravimetry data) could be understated, since they are not sensitive at
high spectral degrees. Numerical results based on both simulated and real gravity observations in
this work confirm this suspicion. The single-level gravity models show much larger differences w.r.t.
the validation data in regions without high-resolution gravity data. In the two study cases presented
in P-III, where the high-resolution terrestrial data do not have full coverage over the study area, the
improvement achieved by the MRR based on the pyramid algorithm is more than 30% in terms of
RMS, compared to the single-level SRBF approach.

Q-9. In which cases the MRR based on the pyramid algorithm should be applied?

In P-III, different types of gravity observation techniques with varying spectral sensitivities are
involved, including high-resolution terrestrial, airborne, and shipborne data, medium-resolution
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altimetry data, as well as low-resolution satellite gravimetry data. Moreover, the high-resolution data
do not have coverage over the whole study area. In such cases, applying the developed MRR scheme,
i.e., MRR based on the pyramid algorithm and sequential parameter estimation, is especially beneficial.
The MRR models do not show larger differences w.r.t. the validation data in areas without coverage of
high-resolution observations than in areas with coverage, which is the case in the single-level model.
These results demonstrate that the MRR based on the pyramid algorithm is able to capture gravity
information from measurements that are sensitive to different spectral bands. Thus, it should be
applied when gravity observations with varying spectral resolution are used, and especially when the
high-resolution gravity data do not have a large coverage, e.g., in offshore regions and developing
areas with sparse terrestrial data. However, it is worth mentioning that the choice of applying the
single-level SRBF or the MRR based on the pyramid algorithm depends on each study case. As shown
in Sect. 6.2, the MRR does not deliver smaller STD w.r.t. the GNSS/leveling data than the single-level
approach in the "1 cm geoid experiment", where the terrestrial and airborne data cover almost the
whole study area with high density.

7.2 Outlook

Based on the results and discussions of this thesis, the following open research questions need to be
investigated in future studies.

Combination of VCE and other regularization methods

In this thesis, VCE is combined with the L-curve method for regularization parameter determination.
It solves the problem that VCE could deliver unreliable regularization results, and the L-curve method
cannot be applied when the relative weights between different types of gravity data are not available.
However, besides the L-curve method, there are other conventional regularization methods, such as the
GCV and the quasi-optimality method (Morozov, 1984; Bouman, 1998), that should be used with the
knowledge of weight matrices. Thus, they can also be combined with VCE, and it would be interesting
to compare the performance of these new "combined approaches" (e.g., VCE-GCV) with the VCE-Lc
method.

Inclusion of the covariance information

In the parameter estimation, i.e., Eq. (5.7), the weight matrix of each observation vector is set to be
the identity matrix, Pp = I, under the assumption that observations within the same group have the
same accuracy and are uncorrelated. Furthermore, the weight matrix of the prior information is also
set to Pd = I assuming that the coefficients are not correlated and have the same accuracy. These
assumptions are commonly used in existing publications, but they are not necessarily the ideal choices.
It is usually difficult to acquire the realistic full error variance-covariance matrix of the observations,
since information about the real data quality is often not available. If an improper Pp is included, it
might not improve the modeling results, and at the same time increase the computation effort. Thus, it
is reasonable to set Pp = I. However, the weight matrix Pd of the prior information could be obtained
from the covariance matrix of the GGM. Although this procedure would be computationally intensive,
more realistic modeling results might be obtained (Willberg et al., 2019). The full covariance matrix
of the GGM can also be included in the MRR based on the pyramid algorithm during the parameter
estimation of the highest resolution level.

Further reduction of edge effects in the MRR based on the pyramid algorithm

In case of the MRR based on pyramid algorithm, larger differences in the calculated gravity model
w.r.t. the validation data show up near the border of the high-resolution observations, due to edge
effects. To address this issue, a strategy is proposed and developed in P-III and Sect. 6.2, which
adapts the investigation area according to the observations involved at each level when calculating
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the detail signals. The edge effects at the border outside the coverage of the high-resolution data are
significantly reduced by applying this procedure. However, those at the border inside the coverage
of the high-resolution data remain. Thus, further work is planned to develop strategies for further
reducing these edge effects, which could lead to an even better performance of the MRR based on the
pyramid algorithm.

Error assessment in the "1 cm geoid experiment"

As reported in Wang et al. (2021), the STD of the height anomaly results delivered by the fourteen
contributions ranges from 1.5 cm to 5.3 cm in comparison to the mean result in the whole target
area, and it ranges from 1.7 cm to 3.6 cm in comparison to the GNSS/leveling data at the GSVS17
benchmarks. Thus, the next step of the "1 cm geoid experiment" is to study and understand the
possible reasons for the differences between the individual solutions. Actually, the JWG 2.2.1 "Error
assessment of the 1 cm geoid experiment" has been set up for this purpose in the IAG period 2019-2023.
Currently, different contributions have discrepancies not only in the computation method but also in
the data pre-processing. Thus, it is planned within the JWG that the data-driven errors should first be
removed by using a common database, i.e., a common joint data grid of free-air gravity anomalies, and
then the method-driven errors could be quantified. Moreover, the reason for the sudden increase after
the GSVS17 benchmark Nr. 160 (see Fig. 6.3) in the validation between the height anomaly results and
the GNSS/leveling data needs to be investigated within this JWG.

For the SRBF-based quasi-geoid model, there are also a few possibilities for further improving the
model accuracy according to the numerical investigation and discussions in Sect. 6.1 and P-II.

Handing of the topographic effect As shown in Fig. 6.2, the modeling residuals are highly
correlated to the topography, which indicate that improvements in the quasi-geoid model could
be achieved by a more accurate topography modeling. Currently, the applied topography
models (dV_ELL_Earth2014 and ERTM2160) have a spatial resolution of around 250 m. Thus,
higher-resolution topography models that are newly available (e.g., TerraSAR/TanDEM 30 m)
can be considered, and the results should be compared to study the impact of topography
models in regional gravity field modeling.

Bias/outlier detection in the gravity data Data pre-processing strategies could be further
applied and assessed. A bias detection or an outlier detection could be implemented by a cross-
over adjustment or newly proposed methods (e.g., Li, 2018). Furthermore, the measurement
accuracy might be derived from these pre-processing procedures.

Improvement of stochastic models Further improvement could be obtained by considering
the covariance information of the global quasi-geoid background model, instead of using an
identity matrix in the parameter estimation. In addition, the measurement accuracy derived
from the pre-processing procedures could also be included as the stochastic information.

In summary, significant advances have been made in regional gravity field modeling by numerous
research groups using different methodologies in order to achieve the goal of geoid determination
with 1 cm accuracy. This thesis presents a contribution towards this goal based on the method of
SRBFs; procedures for the combination of data from various observation techniques are developed,
and potential improvements for future work are proposed accordingly.
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Abstract: Various types of heterogeneous observations can be combined within a parameter
estimation process using spherical radial basis functions (SRBFs) for regional gravity field refinement.
In this process, regularization is in most cases inevitable, and choosing an appropriate value
for the regularization parameter is a crucial issue. This study discusses the drawbacks of two
frequently used methods for choosing the regularization parameter, which are the L-curve method
and the variance component estimation (VCE). To overcome their drawbacks, two approaches for the
regularization parameter determination are proposed, which combine the L-curve method and VCE.
The first approach, denoted as “VCE-Lc”, starts with the calculation of the relative weights between
the observation techniques by means of VCE. Based on these weights, the L-curve method is applied
to determine the regularization parameter. In the second approach, called “Lc-VCE”, the L-curve
method determines first the regularization parameter, and it is set to be fixed during the calculation
of the relative weights between the observation techniques from VCE. To evaluate and compare
the performance of the two proposed methods with the L-curve method and VCE, all these four
methods are applied in six study cases using four types of simulated observations in Europe, and their
modeling results are compared with the validation data. The RMS errors (w.r.t the validation data)
obtained by VCE-Lc and Lc-VCE are smaller than those obtained from the L-curve method and
VCE in all the six cases. VCE-Lc performs the best among these four tested methods, no matter
if using SRBFs with smoothing or non-smoothing features. These results prove the benefits of the
two proposed methods for regularization parameter determination when different data sets are to
be combined.

Keywords: regional gravity field modeling; spherical radial basis functions; combination of
heterogeneous observations; regularization parameter; VCE; the L-curve method

1. Introduction

Gravity field modeling is a major topic in geodesy, and it supports many applications, including
physical height system realization, orbit determination, and solid earth geophysics. To model the
gravity field, approaches need to be set up to represent the input data as well as possible. The global
gravity field is usually described by spherical harmonics (SH), due to the fact that they fulfill the
Laplacian differential equation and are orthogonal basis functions on a sphere; see, e.g., [1,2] for more
detailed explanations. However, the computation of the corresponding spherical harmonic coefficients
requires a global homogeneous coverage of input data. As this requirement cannot be fulfilled,
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SHs cannot represent data of heterogeneous density and quality in a proper way [3,4]. Regional gravity
refinement is, thus, performed for combining different observation types such as airborne, shipborne,
or terrestrial measurements, which are only available in specific regions. Different regional gravity
modeling methods have been developed during the last decades, e.g., the statistical method of Least
Squares Collocation (LSC) [5–7], the method of mascons (mass concentrations) [8–10], and the Slepian
functions [11,12]. The method based on SRBFs will be the focus of this work.

The fundamentals of SRBFs can be found among others in [13–15]. SRBFs are kernel functions
given on a sphere which only depend on the spherical distance between two points on this sphere [16].
They are a good compromise between ideal frequency localization (SHs) and ideal spatial localization
(Dirac delta functions) [17,18]. Due to the fact that SRBFs are isotropic and characterized by
their localizing feature, they can be used for regional approaches to consider the heterogeneity of
data sources; examples are given by [4,19,20]. Li et al. [21] listed the advantages of using SRBFs in
regional gravity field modeling: they can be directly established at the observation points without
gridding, and they are computationally easy to implement. There are four major factors in SRBF
modeling that influence the accuracy of the regional gravity model [22,23]: (1) the shape, (2) the
bandwidth, (3) the location of the SRBFs, and (4) the extension of the data zone for reducing the
edge effects. Tenzer and Klees [24] compared the performance of different types of SRBFs using
terrestrial data and concluded that comparable results could be obtained for each tested type of SRBFs.
Naeimi et al. [23] showed that SRBFs with smoothing features (e.g., the cubic polynomial function) or
without (the Shannon function) deliver different modeling results. Bentel et al. [25] studied the location
of the SRBFs, which depends on the point grids; the results showed that the differences between SRBFs
types are much more significant than the differences between different point grids. Another detailed
investigation about the location of SRBFs can be found in [26], where the bandwidth of the SRBFs was
also studied, and methods for choosing a proper bandwidth were introduced. Lieb [27] discussed the
edge effects and provided a way to choose area margins in order to minimize edge effects.

After setting up the aforementioned four factors, heterogeneous data sets can be combined within
a parameter estimation process. Regional gravity modeling is usually an ill-posed problem due
to (1) the number of unknowns related to the basis functions, i.e., here the SRBFs; (2) data gaps;
and (3) the downward continuation. Thus, regularization is in most cases inevitable in the parameter
estimation process. Bouman 1998 [28] discussed and compared different regularization methods,
including Tikhonov regularization [29], truncated singular value decomposition [30], and iteration
methods [31]. We apply the Tikhonov regularization in this study, which can be interpreted as an
estimation including prior information [32]. Instead of minimizing only the residual norm, the norm
of the estimated coefficients is minimized in this procedure. Moreover, it is realized by introducing an
additional condition (also called penalty term) containing the regularization parameter. Choosing an
appropriate value for the regularization parameter is, however, a crucial issue.

Different methods have been developed for estimating the regularization parameter in the
last decades, such as the L-curve criterion [33,34], the variance component estimation (VCE) [32,35,36],
the generalized cross-validation (GCV) [37–41], and Akaike’s Bayesian information criterion [42–46].
Recently, some new methods have been proposed [47–50], and a summary of existing methods
can be found in [28,51–53]. As two of the most commonly used methods for determining the
regularization parameter, the L-curve method and VCE have been applied in numerous studies for
different research fields. Ramillien et al. [54] applied the L-curve method for the inversion of surface
water mass anomalies; Xu et al. [53] used the L-curve method for solving atmospheric inverse problems;
Xu et al. [55] applied VCE for the geodetic-geophysical joint inversion; and Kusche [56], Bucha et al. [57],
and Wu et al. [58] used VCE in global and regional gravity field modeling; similar applications can be
found in the references therein.

The L-curve method is a graphical procedure. The plot of the solution norm versus the
residual norm displays an “L-shape” with a corner point, which corresponds to the desired
regularization parameter. Koch and Kusche [32] demonstrated that the relative weighting
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between different observation types, as well as the regularization parameter, could be determined
simultaneously by VCE. The prior information is added and regarded as an additional
observation technique, and thus the regularization parameter can be interpreted as an additional
variance component. However, in this case, the prior information is required to be of random
character [32]. In most of the regional gravity modeling studies, a background model serves as
prior information. In this case, the prior information has no random character, and the regularization
parameter generated by VCE is not reliable [59]. Lieb [27] presented a case that shows the instability
of VCE. Naeimi [60] showed that VCE delivers larger geoid RMS errors than the L-curve method,
based on GRACE and GOCE data.

As VCE does not guarantee a reliable regularization solution, and the L-curve method (or other
conventional regularization methods) cannot weight heterogeneous observations [61], the purpose
of this paper is to combine VCE and the L-curve method to improve the stability and reliability
of the gravity solutions. The idea of combining VCE for weighting different data sets only, and a
method for determining the regularization parameter was introduced in the Section “future work” of
both works in [59,60], but have not yet been applied in any further publications. The study in this
manuscript is also inspired by the authors of [62,63]; the formal combines VCE for VLBI intra-technique
combination and GCV for regularization; the latter combines a U-curve method for determining the
regularization parameter and discriminant function minimization (DFM) for estimating the relative
weighting between GPS and InSAR data. Our novel contribution focus on applying this idea for
combining heterogeneous observations in regional gravity field modeling. Thus, we introduce and
discuss in this paper two methods that combine VCE for determining the relative weighting between
different observation types and the L-curve method for determining the regularization parameter,
denoted as “VCE-Lc” and “Lc-VCE”, depending on the order of the applied procedures. Numerical
experiments are carried out to compare their performance to the original L-curve method and VCE.

This work is organized as follows. Section 2 presents the fundamental concepts of SRBFs, different
types of gravitational functionals, and their adapted basis functions. The parameter estimation,
the Gauss–Markov model as well as the combination model are also introduced. Section 3 is dedicated
to the regularization method, the L-curve method, VCE, and the two proposed combination methods.
In Section 4, the study area, the data used in this study, and the model configuration are explained.
Section 5 discusses the results. The performance of these four regularization methods is compared.
Finally, the summary and conclusions are given in Section 6.

2. Regional Gravity Field Modelling Using SRBF

In general, a spherical basis function B(x, xk) related to a point Pk with position vector xk on a
sphere ΩR with radius R and an observation point P with position vector x can be expressed by

B(x, xk) =
∞

∑
n=0

2n + 1
4π

(
R
r

)n+1
BnPn(rTrk) (1)

Ref. [4], with x = r · r = r · [cos φ cos λ, cos φ sin λ, sin φ]T , where λ is the spherical longitude, φ is the
spherical latitude, xk = R · rk, Pn is the Legendre polynomial of degree n, and Bn is the Legendre
coefficient which specifies the shape of the SRBF. When Bn = 1 for all n, B(x, xk) represents the Dirac
delta function, which has ideal spatial localization. With the spherical basis function (1), a harmonic
signal F(x) given on the sphere ΩR or in the exterior space of ΩR, can be described as

F(x) =
K

∑
k=1

dkB(x, xk), (2)

where K is the number of basis functions. The unknown coefficients dk can be evaluated from
the observations. As will be shown in the following subsection, using these coefficients, any functional
of F(x) can be described.
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2.1. Gravity Representations

Various functionals can be derived from the gravitational potential V or from the disturbing
potential T based on field transformations. The corresponding kernels can be derived from the
definition (1) of the basis functions, and are listed in Table 1.

Disturbing potential: The disturbing potential T is defined as the difference between the gravity
potential W and the normal gravity potential U,

T = W −U, (3)

where the latter is the potential related to the level ellipsoid. The gravity potential W consists of
two parts: the gravitational potential V and the centrifugal potential Z, i.e.,

W = V + Z. (4)

Combining Equation (3) and Equation (4) yields [2]

T = V −U + Z. (5)

The disturbing potential T can be represented by

T(x) =
K

∑
k=1

dkB(x, xk). (6)

Gravitational potential difference: The satellite gravity field mission Gravity Recovery and
Climate Experiment (GRACE) [64] consists of two satellites A and B. The main observable is the exact
separation distance between the two satellites and its rate of change [65]. Several GRACE products
exist (level 0 to level 2) [66,67]; the gravitational potential V can be computed from the level 2 products.
In many studies (see, e.g., [20,27,60,68]), the differences between the gravitational potential values V of
A and B are used as observations ∆V, i.e., ∆V(xA, xB) = V(xA)−V(xB). Including the measurement
error e, the observation equation reads

∆V(xA, xB) + e(xA, xB) = V(xA)−V(xB) + e(xA, xB) =
K

∑
k=1

dkB(xA, xB, xk). (7)

Gravity disturbance: The gravity disturbance is used in airborne and terrestrial gravity
field determination. The gravity disturbance vector δg is expressed as the gradient of the disturbing
potential T

δg =

[
∂T
∂x

,
∂T
∂y

,
∂T
∂z

]T
= gradT. (8)

In spherical approximation, the magnitude of the gravity disturbance can be written as

δg = −∂T
∂r

= −Tr, (9)

its observation equation reads

δg(x) + e(x) =
K

∑
k=1

dkBr(x, xk). (10)

Gravity gradient: Equipped with a 3-axis gradiometer, the satellite mission Gravity Field
and Steady-State Ocean Circulation Explorer (GOCE) [69] observed the gravity gradients Vab with
a, b ∈ {x, y, z}, i.e., all second-order derivatives of the gravitational potential V
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V =




Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz


 (11)

with Vxy = Vyx, Vxz = Vzx, Vyz = Vzy and trace V = 0 due to the Laplacian differential equation.

The observation data of GOCE used in this study are simulated as the radial component Vrr =
∂2V
∂r2 ,

and the observation equation reads

Vrr(x) + e(x) =
K

∑
k=1

dkBrr(x, xk). (12)

For each type of gravitational functional, the adapted basis functions are derived by the zeroth,
first, or second order derivatives of Equation (1), and they are listed in Table 1. Basis functions adapted
to other functionals of the disturbing potential which are not used here can be found in [20,27,70].

Table 1. Kernels, i.e., the adapted basis functions for different gravitational functionals.

Gravitational Functionals Adapted Basis Function B(x, xk)

Disturbing potential B(x, xk) = ∑∞
n=0

2n+1
4π

(
R
r

)n+1
BnPn(rTrk)

ine Gravitational potential difference B(xA, xB, xk) = ∑∞
n=0

2n+1
4π Bn{

(
R
rA

)n+1
Pn(rAT

rk)−
(

R
rB

)n+1
Pn(rBT

rk)}

ine Gravity disturbance Br(x, xk) = ∑∞
n=0

2n+1
4π

(n+1)
r

(
R
r

)n+1
BnPn(rTrk)

ine Gravity gradients Brr(x, xk) = ∑∞
n=0

2n+1
4π

(n+1)(n+2)
r2

(
R
r

)n+1
BnPn(rTrk)

2.2. Types of Spherical Radial Basis Functions

Different types of SRBFs can be found among others in [4,68]; the frequently used types
include the Shannon function, the Blackman function, the cubic polynomial (CuP) function, and the
Poisson function. Two types of band-limited SRBFs are used in this work, one without smoothing
features (Shannon function), i.e., their shape coefficients (Legendre coefficients) equal to 1 for all
frequencies within a certain bandwidth, and the other one with smoothing features (CuP function).
The Shannon function has the simplest representation; its Legendre coefficients are given by

Bn =

{
1 for n ∈ [0, Nmax]

0 else
(13)

In case of the CuP function, the Legendre coefficients are given by a cubic polynomial, namely,

Bn =

{
(1− n

Nmax
)2(1 + 2n

Nmax
) for n ∈ [0, Nmax]

0 else
(14)

Nmax is a certain degree to which the SRBFs are expanded, representing the cut-off degree.
These two functions for Nmax = 255 are plotted in Figure 1, the top sub-plot and the bottom one
visualize the characteristics in the spatial and the spectral domain, respectively. In the spatial domain,
the Shannon function shows the sharper transition but also the stronger oscillations compared to
the CuP function. In the spectral domain, the Shannon function is characterized by its exact band
limitation without any smoothing features. The CuP function, however, has a smoothing decay.
In this study, we apply both the Shannon function and the CuP function in the same experiments to
test the performance of our proposed regularization methods.
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Figure 1. The different spherical radial basis functions (SRBFs) in the spatial domain (top, ordinate
values are normalized to 1) and the spectral domain (bottom) for Nmax = 255.

2.3. Parameter Estimation

To determine the unknown coefficients dk in Equation (2), parameter estimation [36] is used
in this study. This process allows the combination of different types of observations with varying
resolutions, accuracies and distributions [71].

2.3.1. Gauss–Markov Model

For one single observation F(x), the observation equation reads

F(x) + e(x) =
K

∑
k=1

dkB(x, xk), (15)

B(x, xk) represents the adapted SRBFs as listed in Table 1. Collecting the observations F(x1), F(x2), . . . ,
F(xn) in the n× 1 observation vector f , the Gauss–Markov model

f + e = Ad (deterministic part) with D(f ) = σ2P−1 (stochastic part) (16)

can be set up. In the deterministic part, e = [e(x1), e(x2), . . . , e(xn)]T is the n × 1 vector of the
observation errors and A = [B(x, xk)] is the n × K design matrix containing the corresponding
basis functions. In the stochastic part, D(f ) is the n× n covariance matrix of the observation vector f
with σ2 being the unknown variance factor and P being the given positive definite weight matrix.

Due to the three reasons mentioned in the introduction, namely, (1) the number of unknowns
related to the basis functions, (2) data gaps, and (3) the downward continuation, the normal equation
matrix N = ATPA is ill-posed or even singular. For handling this problem, we introduce an additional
linear model

µd + ed = d with D(µd) = σ2
d P−1

d (17)

as prior information. µd is the K× 1 expectation vector of the coefficient vector d, ed is the corresponding
error vector, and D(µd) is the K× K covariance matrix of the prior information with σ2

d the unknown
variance factor and Pd the positive definite weight matrix. Combining the two models (16) and (17)
yields the extended linear model

[
f

µd

]
+

[
e
ed

]
=

[
A
I

]
d with D

([
f

µd

])
= σ2

[
P−1 0

0 0

]
+ σ2

d

[
0 0
0 P−1

d

]
(18)
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Now the least-squares adjustment can be applied and leads to the normal equations
(

1
σ2 ATPA +

1
σ2

d
Pd

)
d̂ =

1
σ2 ATPf +

1
σ2

d
Pdµd (19)

The variance factors σ2 and σ2
d can either be chosen or estimated within a VCE, and the solution reads

d̂ = (ATPA + λPd)
−1(ATPf + λPdµd) (20)

D(d̂) = σ2(ATPA + λPd)
−1, (21)

wherein λ = σ2/σ2
d can be interpreted as the regularization parameter, see [4,32]. When µd is set to the

zero vector, Equation (20) reduces to the Tikhonov regularization, and the regularization parameter λ

can be determined by the L-curve method.

2.3.2. Combination Model

To combine different types of heterogeneous data sets for regional gravity field modeling,
combination model (CM) needs to be set up (see, e.g., [4,32]). In general, let f l with l = 1, . . . , L
be the observation vector of the lth observation technique, such as f l = [Fl(x1), Fl(x2), . . . , Fl(xnl )]

T , el
and Al are the corresponding error vector and the design matrix. Note that for different techniques,
the data are observed as different gravitational functionals and thus, the adapted SRBFs as discussed in
the Section 2.1 must be applied accordingly, Al = [Bl(x, xk)]. For the combination of the L observation
techniques, an extended Gauss–Markov model can be formulated by including the additional linear
model (17) for the prior information




f 1
f 2
...

f L
µd



+




e1

e2
...

eL
ed



=




A1

A2
...

AL
I



· d with D







f 1
f 2
...

f L
µd







=




σ2
1 P−1

1 0 0 . . . 0

0 σ2
2 P−1

2
...

...
...

... 0
. . .

...
...

...
...

... σ2
LP−1

L 0
0 0 . . . 0 σ2

d P−1
d




(22)

Ref. [27], where Pl is the nl × nl positive definite weight matrix of the lth observation technique.
Applying the least-squares method to Equation (22), the extended normal equations read

(
L

∑
l=1

(
1
σ2

l
AT

l PlAl) +
1
σ2

d
Pd

)
d̂ =

L

∑
l=1

(
1
σ2

l
AT

l Plf l) +
1
σ2

d
Pdµd. (23)

The values for the variance factors can either be chosen or estimated by VCE (refer to Section 3.2).
Consequently, the solution of Equation (23) reads

d̂ =

(
L

∑
l=1

(
1
σ2

l
AT

l PlAl) +
1
σ2

d
Pd

)−1( L

∑
l=1

(
1
σ2

l
AT

l Plf l) +
1
σ2

d
Pdµd

)
. (24)

The covariance matrix of the unknown parameter vectors reads

D(d̂) =

(
L

∑
l=1

(
1
σ2

l
AT

l PlAl) +
1
σ2

d
Pd

)−1

. (25)

Equation (24) can be rewritten as
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d̂ =

(
L

∑
l=1

(ωlA
T
l PlAl) + λPd

)−1( L

∑
l=1

(
ωlA

T
l Plf l

)
+ λPdµd

)
, (26)

such that λ = σ̂2
1 /σ̂2

d is the regularization parameter, and the factors ω1 = σ̂2
1 /σ̂2

1 = 1,
ω2 = σ̂2

1 /σ̂2
2 , . . . , ωL = σ̂2

1 /σ̂2
L express the relative weights of the observation vector f l with respect

to f 1.

3. Determination of the Regularization Parameter

A critical question of regularization is the selection of an appropriate regularization parameter
λ [72]. In the following, the L-curve method and the VCE will be explained in more detail. Finally,
two new proposed methods are presented as combinations of VCE and the L-curve method.

3.1. L-Curve Method

The L-curve is a graphical procedure for regularization [28,33,34,73]. The norm of the regularized
solution ‖d̂λ − µd‖ is plotted against the norm of the residuals ‖ê‖ = ‖Ad̂λ − f‖ by changing
the numerical value for the regularization parameter λ. Moreover, the plot shows a typical
L-curve behavior, i.e., it looks like the capital letter “L” (see Figure 2). The corner point in this L-shaped
curve means a compromise of the minimization of the solution norm (which measures the regularity
of the solution) and the residual norm (which quantifies the quality of fit to the given data), and thus
can be interpreted as the “best fit” point that corresponds to the desired regularization parameter.

It should be mentioned that if the L-curve method is to be applied when different types of
observations are combined, the relative weights ωl in Equation (24) need to be chosen. However, as it
is not possible to know the accurate weights, the solution delivered by the L-curve method alone is,
thus, not reliable.

Figure 2. An example of the L-curve function.

3.2. Variance Component Estimation

Variance component estimation not only estimates the relative weighting between each data
set but also determines the regularization parameter simultaneously. The variance components are
estimated by an iterative process [20,32]. It starts from initial values for σ2

l , σ2
d , and ends in the

convergence point. The estimations read
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



σ̂2
l =

êT
l Pl êl

rl

σ̂2
d =

êT
d Pd êd

rd

(27)

where the residual vectors êl and êd are given as
{

êl = Al d̂− f l
êd = d̂− µd

(28)

and rl , rd are the partial redundancies, which are the contributions of the observations f l and the
prior information µd to the overall redundancy of Equation (22). The redundancy numbers rl , rd are
computed following Koch and Kusche [32],





rl = nl − trace( 1
σ2

l
AT

l PlAl N−1)

rµ = K− trace( 1
σ2

d
PdN−1)

(29)

where nl denotes the number of observations in the lth data set, K is the number of coefficients, and

N =

(
L

∑
l=1

(
1
σ2

l
AT

l PlAl) +
1
σ2

d
Pd

)
. (30)

Starting with initial values for σ2
l , σ2

d , an initial solution for d̂ can be calculated, and it leads to the new
estimations for σ̂2

l , σ̂2
d in Equation (27). The procedure iterates until the convergence point is reached.

As in the model represented by Equation (17) the prior information is regarded as an additional
type of noisy observation, µd is expected to be of stochastic character. However, when the background
model serves as prior information, µd is a deterministic vector. Consequently, ed = d − µd is
also deterministic, and the requirements for the Equation (17) are in fact not fulfilled. Thus, in this case
the regularization parameter λ generated by VCE is not reliable.

3.3. Combination of VCE and the L-Curve Method

To overcome the drawbacks in the L-curve method and in the VCE for combining heterogenous
observations, two methods are proposed and applied in this study, namely, VCE-Lc and Lc-VCE.

3.3.1. VCE-Lc

Figure 3 illustrates the procedure of the VCE-Lc. In the first step, the VCE is applied to determine
the relative weights between the observation types. This step gives the relative weighting factors ωl ,
and a regularization parameter λVCE simultaneously, after the iteration converges. In the second step,
the weighting factors ωl are kept, but the regularization parameter λVCE is not used. Instead, a new
regularization parameter is regenerated using the L-curve method. The corner point in the plot of the
regularized solution norm ‖d̂λ − µd‖Pd against the the residual norm ‖ê‖ = ‖Ad̂λ − f‖P corresponds
to the new regularization parameter. In this case, the L-curve method is applied based on the variance
factors σ̂2

l of each observation type generated by VCE. The corner point in Figure 2 corresponds to the
new regularization parameter λL-curve.

Thus, the final solution is computed using Equation (26) with the weights ωl from VCE and the
new regularization parameter λL-curve from the L-curve criterion.
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Figure 3. Analysis and synthesis for combining different types of observations based on the VCE-Lc.

3.3.2. Lc-VCE

Figure 4 illustrates the procedure of the Lc-VCE. In contrast to the VCE-Lc, in the Lc-VCE the
L-curve method is applied first based on chosen values for the relative weights ωl in Equation (24).
A regularization parameter λL-curve is obtained in the first step, and it is used for defining the value of
σ2

d in the variance component estimation.
In the second step, the VCE is applied with initial values σ2

1 = σ2
2 = . . . = σ2

L and σ2
d = σ2

1 /λL-curve.
After each iteration within the VCE, the value of σ2

d is set to σ2
1 /λL-curve again, with the new value of

σ2
1 obtained in this iteration. In this case, the regularization parameter λ calculated from the L-curve

method will be kept, but the relative weighting factors ωl are recomputed in each iteration step.
The final solution is computed using Equation (26) with the relative weights ωl and the regularization
parameter λL-curve.

Figure 4. Analysis and synthesis for combining different types of observations based on the Lc-VCE.
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It is worth clarifying that the solution obtained from the Lc-VCE is not unique. Due to the fact
that the regularization parameter λL-curve is fixed during VCE, the results change when λL-curve refers
to different observation techniques. To be more specific, as already mentioned in the last paragraph,
the value of σ2

d is set to σ2
1 /λL-curve after each iteration. Thus, the value of σ2

d changes by setting
different observation types as σ2

1 , and the results of Equation (24) change, consequently.
To summarize, the purpose of these two proposed methods is to benefit from the L-curve method

and VCE, and thus to overcome the drawbacks when using each method individually. VCE-Lc fixes the
relative weights of each observation technique first and tries to find a “best fit” regularization parameter,
whereas Lc-VCE fixes the regularization parameter first and then tries to find the relative weights for
each observation technique.

4. Numerical Investigation

4.1. Data Description

The data used in this study are provided by the ICCT (Inter-Commission Committee on Theory)
Joint Study Group (JSG) 0.3 “Comparison of current methodologies in regional gravity field modelling”,
part of the IAG (International Association of Geodesy) programme running from 2011 to 2015.
The observation data are simulated from the Earth Gravitational Model EGM2008 [74] and are
provided along with simulated observation noise. In this study, all observations are simulated
in the sense of disturbing gravity field quantities, i.e., functionals of the disturbing potential T:
disturbing potential differences ∆T for GRACE, the first order radial derivatives Tr for the terrestrial
and airborne observations as well as the second order radial derivatives Trr for GOCE. The standard
deviations of the given white noise are 8 · 10−4 m2/s2 for GRACE, 10 mE for GOCE, 0.01 mGal for the
terrestrial data and 1 mGal for the airborne data. The study area chosen here is “Europe”, where the
validation data are also simulated from the EGM2008 and provided on geographic grid points in terms
of disturbing potential values T.

Figure 5 illustrates the available observation data as well as the validation data. The two validation
areas are presented with black rectangles: the larger area (Synthesis Data I) has a spatial resolution
of 30′ × 30′ and is simulated with a maximum degree of 250; the smaller area (Synthesis Data II)
has a spatial resolution of 5′ × 5′ and with a maximum degree of 2190. Four types of observations
are included:

1. GRACE data: provided along the real satellite orbits of GRACE (green tracks in Figure 5), with a
time span of one month.

2. GOCE data: provided along the real satellite orbits of GOCE (red tracks), covering a full repeat
cycle of 61 days.

3. Terrestrial data: provided in a regular grid on the surface of the topography (DTM2006.0 [75])
with two different resolutions: one over an area of 20◦ × 30◦ (latitude × longitude) with a grid
spacing of 30’ (blue dots) and the other one over an inner area of 6◦ × 10◦ with a grid spacing of
5’ (yellow highlighted area).

4. Airborne data: provided on two different flight tracks: one over the Adriatic Sea (magenta striped
area) and the other one over Corsica connecting Southern Europe with Northern Africa (cyan
striped area).
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Figure 5. The study area as well as the GRACE, GOCE, terrestrial and airborne observations

This study uses simulated data to take advantage of the availability of validation data. As this is a
conceptual study to compare different methods, it is important to have an accurate validation data
serving as the “true value” so that the gravity modeling result from each method can be evaluated
and compared. Although validation when using real data is also possible, e.g., by comparing to
GNSS/leveling data or to existing regional gravity models in the same region, the accuracy of the
validation data then needs to be assessed beforehand.

4.2. Model Configuration

A Remove–Compute–Restore approach [76,77] is applied in this study, i.e., from each type
of observation, the background model EGM2008 up to spherical harmonic degree 60 is removed and
restored in the synthesis step. The background model serves additionally as prior information, and thus
the vector d of the unknown coefficients contains the gravity information referring to a reference field
(background model) up to degree and order 60. Koch and Kusche [32] pointed out that in this case,
the expectation vector µd can be set to the zero vector [4,27]. We assume that the coefficients have the
same accuracy and are uncorrelated; thus, Pd = I, where I denotes the identity matrix. Further, we set
Pl = I by assuming the measurement errors to be uncorrelated and the same type of observations to
have the same accuracy. These assumptions are commonly used in the existing publications for both
simulated and real data, since it is usually difficult to acquire the realistic full error variance-covariance
matrix, and examples can be found in, e.g., [27,57,58].

As discussed in Section 3.1, the values of σ2
l need to be chosen beforehand for the L-curve method.

In studies where different observation types are involved, one might conduct an analysis on the
relative weighting between the data sets in order to apply the L-curve method. Thus, in this study,
empirically chosen values of σ2

l are used for each observation type to have a more realistic result for the
L-curve method. Lieb et al. [20] pointed out that the variance factors σ2

l depend on the measurement
accuracy, but also on the number, the spectral resolution, and the spatial distribution of the data.
By using only the noise levels of each data set for calculating the variance factors, the σ2

l values should
be 0.64 · 10−6 for the GRACE data, 10−22 for the GOCE data, 10−10 for the airborne data, and 10−14

for the terrestrial data. However, Lieb (2017) showed that the airborne and terrestrial data are less
sensitive in the low-frequency part, and their weights could degrade up to six orders of magnitude
when the maximum degree of expansion is low. Taking both factors into consideration, the values
of σ2

l are chosen as 10−6 for the GRACE data, 10−22 for the GOCE data, and 10−8 for the terrestrial
data and the airborne data in this study. It is worth mentioning that these values of σ2

l are only
approximations, and they are a choice for applying the L-curve method when VCE is not considered.
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Moreover, the purpose of this study is not to compare between the L-curve method and VCE, but to
compare the two proposed methods with using the L-curve method or VCE individually. The results
for the L-curve method without relative weights (equal weighting between each data set) are also
presented in Section 5.1 as a comparison scenario.

In this study, different observation types are combined in a “one-level” manner, which is also
applied in, e.g., [20,58,68]. The relative weights indicate the contributions of different observation
types [20]. Another way for combining different types of observations is the spectral combination (see,
e.g., in [78–80]), where the (spectral) weights depend on the spectral degree. The spectral weights
at each degree can be incorporated into the (kernel) functions [79], and studies about how to find
the optimal kernels can be found in, e.g., [80,81]. However, details about the spectral combination
technique would go beyond the scope of this study.

Figure 6 presents the computation area ∂ΩC, the observation area ∂ΩO, as well as the investigation
area ∂ΩI . The computation area ∂ΩC should be larger than the observation area ∂ΩO, due to the
oscillations of the SRBFs. The observation area ∂ΩO should be larger than the investigation area ∂ΩI ,
because the unknown coefficients dk cannot be accurately estimated in the border of the observation
area ∂ΩO. Thus, ∂ΩI ⊂ ∂ΩO ⊂ ∂ΩC, and detailed explanations for this extension can be found
in [27,60]. In the analysis step, we estimate the vector d̂ of the unknown coefficients dk related to the
grid points Pk within the computation area ∂ΩC, from the measurements available within the area ∂ΩO.
In the following synthesis step, these coefficients are used for calculating the output gravity functional
within the area ∂ΩI . It has to be mentioned that the points Pk within the computation area ∂ΩC are
defined by a Reuter grid [82]. The Reuter’s algorithm generates a system of homogeneous points on
the sphere [22]. Margins η between the computation area ∂ΩC and the observation area ∂ΩO as well
as between the observation area ∂ΩO and the investigation area ∂ΩI are chosen equally, and they have
to be defined to minimize edge effects in the computation process [20]. In this study, we conducted
the experiments using different margin sizes (from 1◦ to 4◦), and the ones (values given in Section 5)
which result in the smallest difference between the estimated disturbing potential and the validation
data are finally chosen.

Figure 6. Extensions for the different areas ∂ΩC of computation, ∂ΩO of observations, and ∂ΩI

of investigation.

The aforementioned four methods for choosing the regularization parameter, i.e., (1) L-curve
method, (2) VCE, (3) VCE-Lc, and (4) Lc-VCE, are applied to six groups of data sets, respectively. The
types of observations involved in the six study cases as well as the corresponding validation data for
each study case are listed in Table 2. These six groups cover the possible combination among the four
data types, to make sure that the comparisons of these four methods are conducted in different data
combination scenario. The computed disturbing potential Tc is compared with the corresponding
validation data Tv and assessed following two criteria:

1. Root mean square error (RMS) of the computed disturbing potential Tc with respect to the
validation data Tv over the investigation area ∂ΩI
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RMS =

√√√√∑npoints
(Tv − Tc)2

npoints
(31)

where npoints is the number of points in the validation data.

2. Correlation coefficient between the estimated coefficients dk collected in the vector d̂ and the
validation data Tv. It has to be clarified that the estimated coefficients dk and the validation data
Tv are located at different points, and an interpolation is conducted to transit dk to the grid of the
validation data.

The reason that this correlation can be used as a criterion is that the coefficients dk reflect the
energy of the gravity field at their locations. On a sphere embedded in a three-dimensional space,
the energy of a signal F(x) can be expressed by

E =
∫

ΩR

|F(x)|2dΩR. (32)

Combining Equation (2) with Equation (32), it yields

E =
∫

ΩR

|
K

∑
k=1

dkB(x, xk)|2dΩR =
K

∑
k=1

dk

K

∑
i=1

di

∫

ΩR

B(x, xk)B(x, xi)dΩR. (33)

By inserting the series expansion of the SRBFs (Equation 1) on ΩR to Equation (33) and applying
the addition theorem (details about the equation manipulation can be found in [27]), the energy
contribution Ek (k = 1, 2, . . . , K) at location xk is given as

Ek = dk

K

∑
i=1

di

Nmax

∑
n=0

2n + 1
4π

B2
nPn(rT

i rk). (34)

When Nmax goes to ∞, and Bn=1 for all n, i.e., in the case of the Dirac delta function, Ek = d2
k .

In the case of SRBFs where Nmax 6= ∞, and Bn is not necessarily equal to 1, the relation Ek = d2
k

is only approximately valid. However, a higher correlation between the coefficients dk and the
validation data still indicates a better representation of the gravity signal. The same criterion is
used as a quality measure by [23,25].

Table 2. Study cases.

Study Case Data Combination Validation Data

A GRACE + GOCE

Synthesis Data IB GRACE + Airborne I + Airborne II

C GRACE + Terrestrial I

D GOCE + Terrestrial I
ine E Terrestrial II + Airborne I Synthesis Data II

F GRACE + GOCE + Terrestrial II +Airborne I

5. Results

The experiments are carried out using the Shannon function for both analysis and synthesis.
However, to test the performance of these four methods when a smoothing SRBF is used,
the same experiments are also applied using the CuP function for analysis and synthesis as a
comparison scenario. The maximum degree in the expansion in terms of SRBF is chosen based
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on the spatial resolution of the observations [20,57], and it is set to Nmax = 250 for the study cases A
and B; Nmax = 400 for the study cases C and D; Nmax = 2190 for the study cases E; and Nmax = 1050
for the study case F. The margin η between the different areas (Figure 6) is chosen to be 4◦ for the study
cases A, B, C, and D, and 2◦ for the study cases E and F.

For the sake of brevity, only the results of two study cases (case A in Table 3 and case F in Table 4)
are detailed here. Results from the case A and the case F clearly show the drawbacks of VCE and
the L-curve method, respectively. However, results obtained from all study cases, including the RMS
errors and the correlations between the estimated coefficients dk and the validation data Tv of each
method are summarized in the Tables 5 and 6, respectively. The results when using the CuP function
are listed in the Tables 7 and 8.

5.1. Results Using the Shannon Function

5.1.1. Study Case A

GRACE and GOCE observations are combined. Four solutions are estimated according to the
aforementioned four methods for determining the regularization parameter. For each solution, the RMS
error as well as the correlation between the estimated coefficients dk and the validation data Tv are
listed in Table 3. Two scenarios are considered, depending on how the relative weights ωl (or the
variance factors σ2

l ) between each observation type are chosen in the L-curve method and Lc-VCE.
In the first scenario, the relative weights ωl are chosen empirically (see Section 4.2). The lowest
RMS error is obtained from the VCE-Lc which is 4.59 m2/s2. This method also delivers the highest
correlation between the estimated coefficients dk and the validation data. Lc-VCE gives the second best
RMS value which is 4.61 m2/s2 (Referring to Section 3.3.2, the solution obtained from Lc-VCE is not
unique, and the results listed here for Lc-VCE are always the best ones, i.e., the solution which gives
the lowest RMS and largest correlation). For each solution, the estimated coefficients dk, the calculated
disturbing potential Tc, as well as its difference to the validation data are plotted in Figure 7. VCE gives
the smallest correlation and the largest difference compared to the validation data. The RMS error
obtained from VCE is 7.84 m2/s2, which is ~70% larger than those obtained from VCE-Lc or Lc-VCE.

In reality, it is difficult to choose the empirical weights between different observation
types accurately, as the accuracy of different observation types is not available. As listed in Table 3,
in the second scenario, when no relative weights are applied (equal weighting between data sets),
the performance of the L-curve method decreases, with a 56% increase in RMS error. This increase
demonstrates the importance of accurately weighting different data sets. The result obtained from
the Lc-VCE also decreases slightly, with the RMS error increases from 4.61 m2/s2 to 5.17 m2/s2.
In this scenario, VCE-Lc and Lc-VCE still deliver the lowest and second lowest RMS error, respectively.
The same order applies to the correlation between the estimated coefficients dk and the validation data.
The RMS error from VCE-Lc is 36% and 41% smaller than that delivered by the L-curve method and
VCE, respectively. The RMS error from Lc-VCE is 28% and 34% smaller than that delivered by the
L-curve method and VCE, respectively. VCE still gives the largest RMS error as well as the smallest
correlation, which proves that VCE does not determine the regularization parameter as successful as
the L-curve method, since it gives a worse result than the L-curve method which is based on an equal
weighting between each observation type.
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Table 3. Results of Study Case A: the root mean square error (RMS) values (unit [m2/s2]) as well as
the correlations for each regularization method, when different relative weights ωl are chosen for the
L-curve method

Regularization Method
ωl Chosen Empirically ωl = 1

RMS Correlation RMS Correlation

L-curve method 4.6185 0.9376 7.2153 0.9078
VCE 7.8374 0.8965 7.8374 0.8965

VCE-Lc 4.5876 0.9384 4.5876 0.9384
Lc-VCE 4.6062 0.9382 5.1655 0.9310

Figure 7. The estimated coefficients dk (left column), the recovered disturbing potential Tc (mid
column), and the differences w.r.t the validation data (right column) for study case A. The results are
obtained using: the L-curve method (first row), VCE (second row), VCE-Lc (third row), and Lc-VCE
(fourth row).

5.1.2. Study Case F

In case F, four data sets (GRACE, GOCE, the terrestrial II, and the airborne I observations)
are combined. Compared to the study case A, the results in the study case F (listed in Table 4)
show a general improvement, in terms of both the two criteria. When the relative weights ωl are
chosen empirically (see Section 4.2), VCE-Lc provides the smallest RMS error 0.84 m2/s2, followed by
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the Lc-VCE. The same order applies to the correlation between the estimated coefficients dk and the
validation data. The L-curve method delivers the largest RMS value with 0.91 m2/s2, as well as the
smallest correlation. It shows that the empirically chosen relative weights between different observation
types are not accurate, and it is necessary to estimate the weights with VCE. For each solution,
the estimated coefficients dk, the calculated disturbing potential Tc as well as its difference to the
validation data are plotted in Figure 8. It shows that the L-curve method delivers the largest difference
compared to the validation data.

When no relative weights are applied (equal weighting), the performance of the L-curve
method decreases, with a 61% increase in RMS error. Further, in this case, it delivers the worst results,
with an RMS error 75% larger than the ones obtained by VCE-Lc or Lc-VCE. It shows that when
more types of observation are involved, combining each observation technique with a relative
weight becomes even more important. VCE-Lc again delivers the smallest RMS error as well as
the highest correlation, followed by Lc-VCE.

Table 4. Results of Study Case F: the RMS values (unit [m2/s2]) as well as the correlations for each
regularization method, when different relative weights ωl are chosen for the L-curve method

Regularization Method
ωl Chosen Empirically ωl = 1

RMS Correlation RMS Correlation

L-curve method 0.9106 0.9803 1.4687 0.9766
VCE 0.8410 0.9807 0.8410 0.9807

VCE-Lc 0.8377 0.9916 0.8377 0.9916
Lc-VCE 0.8394 0.9842 0.8403 0.9831

Figure 8. The estimated coefficients dk (left column), the recovered disturbing potential Tc (mid
column), and the differences w.r.t the validation data (right column) for study case F. The results are
obtained using: the L-curve method (first row), VCE (second row), VCE-Lc (third row) and Lc-VCE
(fourth row).
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5.1.3. Results of All Six Cases

For all the six study cases, the RMS error obtained from each regularization method using the
Shannon function are summarized in Table 5, the correlations between the estimated coefficients and
the validation data are listed in Table 6.

Table 5. RMS values (unit [m2/s2]) of each method for different study cases using the Shannon function.

Regularization Method A B C D E F

L-curve method 4.6185 6.4345 5.0590 4.7712 0.1396 0.9106
VCE 7.8374 15.7168 5.1393 4.7724 0.1421 0.8410

VCE-Lc 4.5876 6.1696 4.9435 4.3974 0.1345 0.8377
Lc-VCE 4.6062 6.1610 4.9554 4.4549 0.1367 0.8394

Table 6. Correlations between the estimated coefficients and the validation data of each method for
different study cases.

Regularization Method A B C D E F

L-curve method 0.9376 0.9159 0.9432 0.9468 0.9923 0.9803
VCE 0.8965 0.7424 0.9430 0.9463 0.9923 0.9807

VCE-Lc 0.9384 0.9194 0.9451 0.9511 0.9923 0.9916
Lc-VCE 0.9382 0.9184 0.9449 0.9499 0.9923 0.9842

Comparing to VCE, the two proposed methods, VCE-Lc and Lc-VCE, give smaller RMS errors as
well as larger correlations in all the six study cases. In study cases A and B, the differences between
the results delivered by VCE and the ones from the proposed methods are large, i.e., the RMS errors
obtained from the VCE-Lc or Lc-VCE are 41% and 61% smaller than the ones obtained by VCE in
case A and B, respectively. It indicates that VCE is unable to regularize the solutions properly in these
two cases. In case A, when GRACE and GOCE are combined, the downward continuation of the
satellite data requires strong regularization. VCE cannot provide sufficient regularization in this case.
This result coincides with the conclusion drawn by Naeimi [60], who showed that VCE gives similar
RMS errors as the L-curve method at the orbit level, but it is not able to provide sufficient regularization
at the Earth surface for the regional solutions based on satellite data. Moreover, the high errors in the
satellite data could be another reason for the large RMS error from VCE in this study case. And if the
data errors are reduced by two orders of magnitude, the RMS error delivered by VCE-Lc or Lc-VCE
becomes 22% smaller than that from VCE in case A. In case B, when the GRACE data are combined
with the two airborne data sets, large data gaps exist along the study area, which also requires
strong regularization. As we have mentioned in the Introduction, data gaps and the downward
continuation are two of the major reasons why regularization is needed in regional gravity field
modeling. Thus, VCE is also not able to provide sufficient regularization in study case B due to both
large data gaps and the downward continuation of the data. The study cases A and B could be two
extreme cases, i.e., in realistic applications of regional gravity field modeling, usually not only satellite
data are used, and data gaps will not be as large as in study case B. However, we present these two
cases here to give a complete view for the comparisons of the four regularization methods in different
combination scenarios.

In the other four cases, when the terrestrial data are included, and there are much less data gaps,
the RMS errors obtained from VCE differ with VCE-Lc and Lc-VCE less. The RMS errors from the
VCE-Lc decrease by 4%, 8%, 5%, and 0.4%, and the RMS errors from the Lc-VCE decrease by 4%, 7%,
4%, and 0.2% in study cases C, D, E, F, compared to the ones obtained from VCE. These results show
a more unbiased view of the benefits of the two proposed approaches compared to VCE, in realistic
applications when different regional gravity observations are involved. Although the improvements
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obtained by VCE-Lc or Lc-VCE compared to VCE are not as large as in the cases A and B, the two
proposed methods still deliver smaller RMS errors and higher correlations in all the study cases.

The RMS errors from the VCE-Lc decrease by 0.7%, 4%, 2%, 8%, 4%, and 8%, and the RMS
errors from the Lc-VCE decrease by 0.3%, 4%, 2%, 7%, 2%, and 8% compared to the ones from the
L-curve method, in the six study cases. The improvements of the proposed methods compared
to the L-curve method are not that large because the relative weights between different data sets
were chosen empirically, with the knowledge of the data accuracy. In reality, the relative weights
are not necessarily to be chosen accurately, especially when the accuracy of different real data sets
is not available. Moreover, the results from the L-curve method heavily depend on the chosen
relative weights. As shown in Sections 5.1.1 and 5.1.2, if different data sets are combined without
relative weights (equal weighting), the RMS error from VCE-Lc decreases by 36% and 43% compared
to the L-curve method in case A and F, respectively. These results show that the empirically chosen
weights are important for the L-curve method, and wrongly chosen weights will lead to unreliable
modeling results. VCE-Lc not only reduces the RMS errors compared to the L-curve method, but it
also avoids the need for determining empirical weights, and thus, avoids the effect of wrongly
chosen weights.

As the results delivered by Lc-VCE also change slightly when different relative weights are chosen
(see Sections 5.1.1 and 5.1.2), it is worth mentioning that we have also conducted an iterative procedure
for the Lc-VCE, which means applying the Lc-VCE repeatedly until the regularization parameter
stays unchanged. At each iteration, the L-curve method is applied based on the relative weights
obtained from the last VCE procedure. To be more specific, based on the relative weights obtained
from the Lc-VCE, the L-curve method is applied again to generate the regularization parameter; VCE
is then applied based on this regularization parameter to generate the relative weights, and the L-curve
method is applied again, and so on. The L-curve method and VCE are applied successively until the
regularization parameter and the relative weights do not change anymore. However, no significant
improvements have been observed compared to the results delivered by the Lc-VCE; furthermore, this
iterative procedure is time-consuming. Thus, we do not propose it in this paper.

To summarize, the two proposed methods improve the modeling results compared to using
the L-curve method or VCE alone in all the six study cases. Among the two proposed methods,
VCE-Lc delivers not only smaller RMS errors but also higher correlations than the Lc-VCE in five out of
six study cases. Lc-VCE also shows good performance; however, the reference observation type in this
method needs to be chosen carefully. Another advantage of using the VCE-Lc is that there is no need
for determining the empirical weights in this approach, which is required in the L-curve method and
Lc-VCE. Moreover, the results in terms of RMS value and correlation are consistent, i.e., the method
which gives a smaller RMS error also delivers a larger correlation. However, the correlations differ
much less than the RMS errors do between each method.

5.2. Results Using the CuP Function

Tables 7 and 8 list the RMS values as well as the correlations between the estimated coefficients dk
and the validation data Tv of each method when the CuP function is used.

Table 7. RMS values (unit [m2/s2]) of each method for different study cases using the CuP function.

Regularization Method A B C D E F

L-curve method 4.5501 6.9931 3.7021 3.3181 0.2262 0.9191
VCE 4.6870 7.7205 4.1689 3.7096 0.2497 0.8814

VCE-Lc 4.5104 6.4675 3.5848 2.9911 0.2232 0.8810
Lc-VCE 4.5106 6.4665 3.6076 2.9913 0.2237 0.8811
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Table 8. Correlations between the estimated coefficients and the validation data of each method using
the CuP function.

Regularization Method A B C D E F

L-curve method 0.9002 0.8722 0.8848 0.9019 0.7536 0.7650
VCE 0.8705 0.4721 0.7896 0.7926 0.1791 0.7632

VCE-Lc 0.9117 0.8734 0.8996 0.9189 0.7658 0.7652
Lc-VCE 0.9055 0.8875 0.8866 0.9061 0.7662 0.7652

When the CuP function is used, the proposed two methods still always deliver better results than
the L-curve method and VCE, in terms of both RMS value and correlation for all the six study cases.
The RMS errors from the VCE-Lc decrease by 4%, 16%, 14%, 19%, 11%, and 0.05% compared to
those obtained from VCE, and by 1%, 8%, 3%, 10%, 1%, and 4% compared to the results from the
L-curve method, in the six study cases. The RMS errors from the Lc-VCE decrease by 4%, 16%,
13%, 19%, 10%, and 0.03% compared to those obtained from VCE, and by 1%, 8%, 3%, 10%, 1%,
and 4% compared to the results from the L-curve method, in the six study cases. These results show
that improvements are achieved in the proposed methods, no matter using SRBFs with or without
smoothing features. VCE-Lc still performs the best among the four regularization methods. When the
CuP function is used, the differences between VCE and VCE-Lc become smaller in terms of RMS error
(especially in cases A and B) but larger in terms of correlation. This behavior is consistent with the
publication [23], which demonstrated that the SRBFs with smoothing features have a built-in regularity.
Naeimi [60] concluded that VCE should be used with SRBFs which have smoothing features (e.g., the
CuP function), based on both simulated and real satellite observations. The results using the CuP
function in this study show that even when using an SRBF with smoothing features, the proposed
VCE-Lc and Lc-VCE can still achieve improvements compared to using VCE alone.

6. Summary and Conclusions

This study discusses the regularization methods when heterogeneous observations are to be
combined in regional gravity field modeling. We analyze the drawbacks of the two traditional
regularization methods, namely, the L-curve method and VCE. When the L-curve method is applied,
the relative weights between different observation types need to be chosen beforehand, and the
modeling results heavily depend on if the relative weights are chosen accurately. In VCE, the prior
information is regarded to be another observation type and is required to be stochastic. However,
in regional gravity modeling, the prior information is not stochastic, and in this case, the regularization
parameter generated by VCE could be unreliable. We propose two “combined methods” which
combine VCE and the L-curve method in such a way that the relative weights are estimated by VCE,
but the regularization parameters are determined by the L-curve method. The two proposed methods
differ in whether determining the relative weights between each observation type first (VCE-Lc) or the
regularization parameter by the L-curve method first (Lc-VCE).

We compare the two proposed methods, VCE-Lc and Lc-VCE, with the L-curve method and VCE.
Each method is applied to six groups of data sets with simulated satellite, terrestrial and airborne data
in Europe, and the results are compared to the validation data with corresponding spatial and spectral
resolutions. These data are simulated from EGM2008 and are provided by the IAG ICCT JSG 0.3, along
with the simulated observation noise. The RMS error between the computed disturbing potential and
the validation data, as well as the correlation between the estimated coefficients and the validation
data are used as the comparison criteria. The investigation shows that the two proposed methods
deliver smaller RMS errors and larger correlations than the L-curve method and VCE, in all the six
study cases. In cases A and B, VCE fails to provide sufficient regularization due to large data gaps,
the downward continuation, and high errors in the satellite data. In cases C–F, the RMS errors from
VCE-Lc decrease by 4%, 8%, 5%, and 0.4%, respectively, compared to those obtained from VCE. The
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RMS errors from VCE-Lc decrease by 0.7%, 4%, 2%, 8%, 4%, and 8% compared to the results from the
L-curve method (when the relative weights are chosen empirically), in the six study cases. However,
when the relative weights are chosen inaccurately (e.g. equal weighting), the RMS error obtained
by VCE-Lc reaches a value 43% smaller than that from the L-curve method. Among the four tested
methods, the VCE-Lc gives the best results in terms of both RMS error and the correlation between the
estimated coefficients and the validation data. Moreover, another advantage of using the VCE-Lc is
that there is no need for determining the empirical weights beforehand, which is required in both the
L-curve method and Lc-VCE.

We also carry out the same investigation using the CuP function, which has smoothing features as
a comparison scenario. VCE-Lc and Lc-VCE still give the best and second best results in terms of both
RMS error and the correlation. From our investigation, we conclude that VCE-Lc is the best choice
among the applied methods for the determination of the regularization parameter when heterogeneous
observations are to be combined, no matter using SRBFs with or without smoothing features.

In the future, a primary concern is to apply the newly devised methods using more types of SRBFs,
so that the performance of different SRBFs can be compared while making sure that the differences
in results are not coming from the regularization method. In addition, after validating the proposed
methods with simulated data in this study, they have also been applied to real observations for the
regional geoid modeling in Colorado, USA, within the “1 cm Geoid Experiment” [83]. The experiment
was proposed within four scientific groups, namely, (1) the Global Geodetic Observing System (GGOS)
Joint Working Group (JWG) 0.1.2, (2) the IAG JWG 2.2.2, (3) the IAG Sub-Commission (SC) 2.2, and (4)
the ICCT JSG 0.15. We are currently preparing a related publication; the validation and comparison of
different methodologies applied in this experiment can be found in [84].
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Abstract
This study presents a solution of the ‘1 cm Geoid Experiment’ (Colorado Experiment) using spherical radial basis functions
(SRBFs). As the only group using SRBFs among the fourteen participated institutions from all over the world, we highlight the
methodology of SRBFs in this paper. Detailed explanations are given regarding the settings of the four most important factors
that influence the performance of SRBFs in gravity field modeling, namely (1) the choosing bandwidth, (2) the locations of
the SRBFs, (3) the type of the SRBFs as well as (4) the extensions of the data zone for reducing the edge effect. Two types
of basis functions covering the same spectral range are used for the terrestrial and the airborne measurements, respectively.
The non-smoothing Shannon function is applied to the terrestrial data to avoid the loss of spectral information. The cubic
polynomial (CuP) function which has smoothing features is applied to the airborne data as a low-pass filter for filtering the
high-frequency noise. Although the idea of combining different SRBFs for different observations was proven in theory to be
possible, it is applied to real data for the first time, in this study. The RMS error of our height anomaly result along the GSVS17
benchmarks w.r.t the validation data (which is the mean results of the other contributions in the ‘Colorado Experiment’) drops
by 5% when combining the Shannon function for the terrestrial data and the CuP function for the airborne data, compared to
those obtained by using the Shannon function for both the two data sets. This improvement indicates the validity and benefits
of using different SRBFs for different observation types. Global gravity model (GGM), topographic model, the terrestrial
gravity data, as well as the airborne gravity data are combined, and the contribution of each data set to the final solution
is discussed. By adding the terrestrial data to the GGM and the topographic model, the RMS error of the height anomaly
result w.r.t the validation data drops from 4 to 1.8 cm, and it is further reduced to 1 cm by including the airborne data.
Comparisons with the mean results of all the contributions show that our height anomaly and geoid height solutions at the
GSVS17 benchmarks have an RMS error of 1.0 cm and 1.3 cm, respectively; and our height anomaly results give an RMS
value of 1.6 cm in the whole study area, which are all the smallest among the participants.

Keywords ‘1 cm Geoid Experiment’ · Spherical radial basis functions · Regional geoid modeling · Heterogeneous data
combination

1 Introduction

The unification of physical height systems is an essential
geodetic application of the Earth’s gravity field. It is impor-
tant and urgent to have a globally consistent height system
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within a few centimeters or better, for both scientific and
societal reasons (Plag et al. 2009; Sánchez 2012; Ihde et al.
2017). In 2015, the International Association of Geodesy
(IAG) introduced the International Height Reference System
(IHRS) as the global standard for the determination of phys-
ical heights (see Drewes et al. 2016). The IHRS is defined
as a geopotential reference system corotating with the Earth.
Station coordinates are given by (1) potential values W (X)

(and their changes with time dW (X)/dt) defined within the
Earth’s gravity field and, (2) geocentric Cartesian coordi-
nates X (and their changes with time dX/dt) referring to the
International Terrestrial Reference System (ITRS, Petit and
Luzum 2010). For practical purposes, potential valuesW (X)
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and geocentric positions X can be transformed to geopo-
tential numbers CP and ellipsoidal heights h, respectively
(Ihde et al. 2017). The determination of potential values as
IHRS coordinates may be performed following the strategies
applied for the (quasi-) geoid modeling. In the following,
we basically determine the disturbing potential T (X), and
after restoring the reference potential U (X), we can obtain
W (X) = U (X)+T (X). According to Ihde et al. (2017), the
target uncertainty ofW (X) should be at the 10−2 m2/s2 level
(equivalent to around 1 mm for physical heights). However,
the reliability of the potential estimation undergoes the same
limitations of the precise (quasi-) geoid modeling. Thus, a
high-resolution and high-precision (quasi-) geoid model is
the key for the realization of the IHRS.

Satellite gravity observation missions such as the Gravity
Recovery and Climate Experiment (GRACE, Tapley et al.
2004) and the Gravity Field and Steady-State Ocean Circu-
lation Explorer (GOCE, Rummel et al. 2002) are the main
data sources for global geoid modeling. However, the main
limitation of satellite gravity models is the spatial resolution,
since they lack information about spatial wavelengths below
70–80 km (Pail et al. 2011). This missing high-frequency
part of the gravity signal can cause an omission error of 20 to
40 cm in terms of geoid heights (Rummel 2012). This value
can be even higher in regions with very rough topography. In
contrast, other types of measurements such as airborne, ship-
borne or terrestrial gravity observations can provide a much
higher spatial resolution of a few kilometers. Thus, they can
be used in addition to the global models for regional geoid
refinement to improve the resolution and accuracy. High-
resolution regional gravity modeling is especially inevitable
in mountainous areas, since the very short wavelengths are
correlated with local topography to a large extent (Bucha
et al. 2016).

This study focuses on the computation of height anoma-
lies, geoid heights, and geopotential values (as IHRS coor-
dinates) in Colorado, USA (Fig. 1). These results contribute
to the ‘1 cm Geoid Experiment’ (Wang et al. 2020). This
study is of great interest and importance for three reasons,
namely (1) Colorado is a mountainous area with high ele-
vations and rugged topography, which makes the gravity
field modeling challenging, (2) with altogether fourteen con-
tributions worldwide (see Wang et al. 2020 for the list of
the participants) involved in this experiment with different
methodologies, the comparison of the results should high-
light the disparities of eachmethod, (3) we apply an approach
based on spherical radial basis functions (SRBFs), which
has not been widely studied for modeling the airborne data
(Li 2018). According to Sánchez et al. (2020), the calcula-
tion of reference stations for the IHRS realization might be
distributed worldwide, and the calculation methods have to
be verified and documented beforehand. Within the ‘1 cm
Geoid Experiment,’ we prove that our SRBF-based (quasi-)

geoid model is consistent with thirteen independent results
calculated by different methods, and we provide a detailed
documentation about our method within this paper.

Wu et al. (2017a) pointed out that it is difficult to combine
heterogeneous data using the Stokes/Molodensky integral,
since it requires a grid interpolation; and when dealing
with large number of point-wise data (which is the case
for the ‘Colorado Experiment’), the least-squares colloca-
tion (LSC) is numerically inefficient (Wittwer 2009). SRBFs
are an appropriate tool for regional gravity field modeling,
since they fulfill the Laplace equation such as the spherical
harmonics (SHs), due to their relations to the Legendre poly-
nomials.AlthoughSRBFs are thus also global functions, they
can be used appropriately for regional applications to con-
sider the heterogeneity of different data types, due to their
localizing feature. SRBFs are a good compromise between
ideal frequency localization (SHs) and ideal spatial local-
ization (Dirac delta functions) (Freeden et al. 1998). The
fundamentals of SRBFs are introduced by Freeden et al.
(1998), Freeden and Michel (2004), among many others.
They have been applied in gravity field modeling during the
last two decades, e.g., by Schmidt et al. (2006), Schmidt
et al. (2007) andKlees et al. (2008). The SRBFs are placed on
point grids, towhich the unknown coefficients are associated.
These coefficients can be estimated from the observations,
and they reflect the energy of the gravity signal (Naeimi et al.
2015). The modeled gravitational functionals are then com-
puted from these estimated coefficients. Four factors of the
SRBFs need to be specified, which influence the modeling
accuracy. We discuss in detail (see Sect. 4.2) the choice of
(1) the choosing bandwidth, (2) the locations of the SRBFs,
(3) the type of the SRBFs, and (4) the extensions of the data
zone for reducing edge effects.

Two types of high-resolution data sets, the terrestrial and
the airborne gravity measurements, are combined in this
study. However, theGRAV-D (Gravity for the Redefinition of
the American Vertical Datum) airborne gravity data require
additional editing or low-pass filtering before being used
(see e.g., GRAV-D Science Team 2018). Various low-pass
filtering methods exist and have been applied to the air-
borne gravity data, such as the spatial Gaussian filter, the fast
Fourier transform (FFT, Childers et al. 1999), and the Butter-
worth filter (Forsberg et al. 2001). Lieb et al. (2015) proposed
a low-pass filtering in the spectral domain by SRBFs. Li
(2018) demonstrated that the SRBFs show certain de-noising
or smoothing properties of the high-frequency noise in the
airborne data. In this study, we apply the low-pass filter to the
airborne gravity data by using the cubic polynomial (CuP)
function, and the smoothing features in this type of SRBFs
are used for filtering the high-frequency noise in the airborne
data. An advantage of using theCuP function for low-pass fil-
tering is that the filtering process is automatically done when
establishing the observation equations, i.e., no extra compu-
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tation efforts are required. For the terrestrial gravity data, the
non-smoothing Shannon function is preferred to avoid the
loss of spectral information (Bucha et al. 2016). Schreiner
(1999) showed that it is possible to use different types of
SRBFs for different types of observations, since the coeffi-
cients are independent on the choice of the SRBFs, as long
as they cover the same frequency range. Klees et al. (2018)
achieved an improvement by applying a truncated SRBF for
the terrestrial data but a tapered SRBF for the satellite data,
based on simulations. However, to the best of our knowledge,
the idea of combining different types of SRBFs for different
types of observations has not been applied to real data sets
yet. Thus, our results based on real data also indicate the
validity of this idea.

We apply the remove–compute–restore (RCR) procedure
(e.g., Forsberg and Tscherning 1981; Forsberg 1993), in
which a global gravity model (GGM) is usually removed
before the computation. In this study, however, not only a
GGM, but also a topographic model is removed, due to the
high elevation and rugged terrain of the study area. Forsberg
and Tscherning (1981) pointed out that the inclusion of the
topographic effects is indispensable for regional gravity field
modeling in mountainous areas. Hirt (2010) showed that the
signal omission error (gravity field components which are
omitted by a truncated expansion) can be greatly reduced, and
the model accuracy can be significantly improved by includ-
ing the residual terrain model (RTM) in mountainous areas.
After the remove step, the remaining part is then modeled
by the combination of the terrestrial and airborne observa-
tions. These two types of observations are combined within
a parameter estimation procedure (Schmidt et al. 2007).
However, the derived least-squares system is in most cases
ill-posed or even singular, due to three reasons, namely (1) the
number of used basis functions is usually larger as required,
(2) the given data gaps as well as (3) the downward continu-
ation of the airborne or satellite measurements to the surface
of the Earth. Thus, regularization is necessary to obtain a
numerically stable solution. We apply the Tikhonov regular-
ization which can be interpreted as an estimation with prior
information (Koch 1990). The relative weight between the
two observation types as well as the relative weight between
the observations and the prior information, which can be
interpreted as the regularization parameter, is determined by
the method of variance component estimation (VCE, Koch
1999; Koch and Kusche 2002). Naeimi et al. (2015) demon-
strated, however, that VCE does not always give reliable
regularization results. Thus, the L-curve method (see e.g.,
Hansen 1990) or the generalized cross-validation (GCV, see
e.g., Golub et al. 1979) could be used instead. We here pro-
pose a method which combines VCE for determining the
relative weight between the two observation types and the L-
curve method for determining the regularization parameter
(Liu et al. 2020).

This work is organized as follows: In Sect. 2, we present
the study area as well as the available data; also the pro-
cedure of data preprocessing is briefly described. Section 3
introduces the fundamental concepts of SRBFs, the spher-
ical convolution, and the parameter estimation procedure.
We explain how the observation equations are formulated,
how the unknown coefficients are estimated, and how the
resulting gravitational functionals are calculated. Section 4
explains the computation procedure: the RCR, the choices
of each factors in SRBFs, and the combination of the data
sets. Section 5 presents our models as well as the validation
of the results. Finally, Sect. 6 provides the conclusions and
outlook.

2 Study area and data preprocessing

2.1 Study area and data

This study is conducted between − 110◦ and − 102◦ lon-
gitude and between 35◦ and 40◦ latitude (Fig. 1a), majorly
located in Colorado, USA. It is a mountainous area, with an
average elevation of 2017 m. The highest location reaches
4386 m, the lowest 932 m. The eastern part of the study area
is more flat than the western and the central part, while it is
still higher than 1000 m. The larger the topographic heights
are, the worse the accuracy of the geoid becomes (Foroughi
et al. 2019). Thus, this is a challenging study area, due to the
rugged terrain, high elevation, and varying gravity field.

Two data sets are provided by the National Geodetic Sur-
vey (NGS). Figure 1b shows the spatial distribution of these
two data sets, projected on the Earth’s surface. The terrestrial
gravity data (blue points) have full coverage over the whole
study area, but they are not evenly distributed. Comparing
Fig. 1a, b, it is clear that this data set has a higher density
in the area with higher elevation and a lower density in the
low elevation area (eastern part). However, the average point
distance reaches approximately 3 km for the whole terrestrial
data set. The airborne gravity data (green flight tracks) were
collected by the GRAV-D project (GRAV-D Science Team
2017) at a mean flight altitude of 6186 m. They cover most
of the study area in the southeastern part, generally between
− 109◦ and − 102◦ longitude and between 35◦ and 38.5◦
latitude. The along-track spatial resolution depends on the
aircraft speed, with an average of around 100 m; the cross-
track resolution is almost 10 km. We use the data given at
their original observation sites, i.e., the observation equations
are directly established at the observation points.

We compute two sets of output gravity functionals, and the
results will be presented and discussed. The first one is at the
Geoid Slope Validation Survey 2017 (GSVS17) benchmarks
(red line in Fig. 1b), and the second one is the quasi-geoid
and geoid model for the target area from − 109◦ to − 103◦
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Fig. 1 a Terrain map of the study area; b given terrestrial (blue points) and airborne (green flight tracks) gravity data, GSVS17 benchmarks (223
points of the red line) as well as the model grid area (black rectangle)

and 36◦ to 39◦ (black box in Fig. 1b) with a spatial resolution
of 1′ × 1′.

2.2 Data preprocessing

In the original terrestrial data (with a total amount of 59,303
points), there are cases that several gravity observations
locate at the same position, and we then use only the first
of these observations (1090 points deleted). However, in
case gravity observations at the same position differ with
more than 2mGal from each other, we delete both of them
(85 points deleted). Since the measurements are provided in
orthometric heights H , we transform them to the ellipsoidal
heights h using the geoid model ‘GEOID 12B,’ provided by
the National Geodesy Survey (NGS 2012)

h = H + NGeoid 12B. (1)

The airborne data have a very dense distribution with a total
amount of 283,716 observation points, resulting in a design
matrix with a size of 55 GB (see Sect. 3.3). To save com-
putation time and to improve the efficiency, we reduce the
sampling interval from 1 to 1/8 Hz, i.e., only one observation
of an eight-observation block is kept. Thus, an average spa-
tial resolution of approximately 1 km along-track is obtained.
The reason that justifies the ‘down sampling’ procedure of
the airborne data is that consecutive airborne observations
are highly correlated.

Then, for both types of observations, the following data
preprocessing steps are performed:

1. Transfer the observations in terms of absolute gravity g to
gravity disturbance δg by subtracting the normal gravity
γ at the ellipsoidal height h of the observations

δgobs = g − γ. (2)

2. Add the atmospheric correction to the observations

δg = δgobs + δgATM, (3)

the atmospheric correction δgATM is calculated following
Torge (1989) by

δgATM = 0.874 − 9.9 · 10−5h + 3.56 · 10−9h2. (4)

3 Methodology

3.1 Spherical radial basis function

In general, SRBFs are centered at points Pk with position
vector xk on a sphere ΩR with radius R. A spherical radial
basis function B(x, xk) can be defined between Pk and an
observation point P by the Legendre series (Freeden et al.
1998; Schmidt et al. 2007),

B(x, xk) =
∞∑

n=0

2n + 1

4π

(
R

r

)(n+1)

Bn Pn(rT rk) (5)

wherein x = r · r = r · [cosφ cos λ, cosφ sin λ, sin φ]T
is the position vector of the observation point P , λ is the
spherical longitude,φ is the spherical latitude, and r = R+h′
with h′ the spherical height of P above the sphere ΩR . The
position vector of Pk reads xk = R · rk , Pn is the Legendre
polynomial of degree n, and Bn is the Legendre coefficient
which contributes to specify the shape of the SRBFs.

A harmonic function F(x) can be represented as a series
expansion of the SRBFs B(x, xk)
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F(x) =
K∑

k=1

dk B(x, xk), (6)

where K is the number of basis functions, and thus, the num-
ber of grid points Pk and unknown coefficients dk as well.

The general expression (Eq. 5) needs to be adapted for
describing different gravitational functionals (Lieb et al.
2016). In this study, the observations are given in terms of
gravity disturbances δg, which can be expressed as the gradi-
ent of the disturbing potential T . In spherical approximation,
the magnitude of the gravity disturbance can be written as
(Heiskanen and Moritz 1967).

δg = −∂T

∂r
. (7)

Thus, if T is modeled as in Eq. (6), the adapted spherical
basis function for describing δg(x) given at an observation
site P with position vector x is given as

Br (x, xk)=
∞∑

n=0

2n+1

4π

(
n + 1

r

)(
R

r

)(n+1)

Bn Pn(rT rk).

(8)

A complete list of basis functions adapted to different func-
tionals of the disturbing potential can be found in Koop
(1993) or Liu et al. (2020).

3.2 SRBF as a filter

Any SRBF (Eq. 5) can be used as a high-pass, low-pass,
or band-pass filter (Schmidt et al. 2007; Lieb 2017), and
a harmonic function F(x) can be filtered by it through a
spherical convolution. The filtered function G(x) can then
be represented by

G(x) = (B ∗ F)(x). (9)

In case the SRBF B(x, xk) in Eq. (6) is chosen as a unique
reproducing kernel Z(x, xk), in which Bn = 1 for n =
0, . . . ,∞, i.e.,

Z(x, xk) =
∞∑

n=0

2n + 1

4π

(
R

r

)n+1

Pn(rT rk), (10)

the filtered function equals the original function

F(x) = (Z ∗ F)(x) =
K∑

k=1

dk Z(x, xk). (11)

In case of using a band-limited SRBF, which means setting
the Legendre coefficient Bn = 0 for all degree n > nmax, the

SRBF acts as a low-pass filter. Schreiner (1999) and Freeden
et al. (1998) prove a theorem which shows that the coeffi-
cients dk are independent on the type of SRBFs as soon as
they are band-limited to the same degree.

Theorem In a Hilbert space L2(ΩR) of all real square-
integrable functions F on ΩR , let B(x, xk), Eq. (5), be a
band-limited SRBF with

Bn =
{ �= 0 for n = 0, 1, . . . , nmax

= 0 for n > nmax
(12)

thefiltered functionG1 (x) by the spherical convolution reads

G1(x) = (B ∗ F)(x) =
K∑

k=1

dk B(x, xk). (13)

If C(x, xk) = ∑∞
n=0

2n+1
4π ( Rr )n+1Cn Pn(rT rk) has the band

limitation Cn = 0 for n > nmax, then

G2(x) = (C ∗ F)(x) =
K∑

k=1

dkC(x, xk) (14)

holds by using the same coefficients dk , as in Eq. (13). The
only condition is that they are band-limited to the samedegree
nmax. This theorem makes it possible to use different SRBFs
for different data sets and to use different SRBFs in the anal-
ysis step (in which the unknown coefficients are estimated)
and in the synthesis step (in which the estimated coefficients
are used to calculate the output gravitational functionals),
respectively.

3.3 Estimationmodel

As discussed in Sect. 3.1, an observation in terms of gravity
disturbance can be represented as

δg(x) + e(x) =
K∑

k=1

dk Br (x, xk), (15)

where e(x) is the observation error and Br is described in Eq.
(8). With L observations, we can set up the Gauss–Markov
model

f + e = Ad with D(f ) = σ 2P−1 (16)

where f is the observation vector, e is the error vector, A
is the design matrix which contains the corresponding basis
functions, d is the vector of the unknown coefficients, and
D(f ) is the covariance matrix of the observation vector f ,
with σ 2 being the unknown variance factor and P being the
given positive definite weight matrix. However, the associ-
ated least-squares system is ill-posed or even singular due to
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the three reasons mentioned in the Introduction. This prob-
lem can be solved by introducing the expectation vector
µd = E(d) of the coefficient vector d as prior information.
Then, the additional linear model can be formulated as

µd + ed = d with D(µd) = σ 2
d P

−1
d , (17)

where ed is the error vector of the prior information.
Combining the terrestrial observations f 1 and the airborne
observations f 2, as well as the additional linear model, the
extended Gauss–Markov model can be set up (see e.g.,
Schmidt et al. 2007; Liu et al. 2020 for more details). Apply-
ing the least-squares method to the extended Gauss–Markov
model, the unknown coefficients are estimated as

d̂ = (AT
1 P1A1 + ωAT

2 P2A2 + λPd)
−1

(AT
1 P1f 1 + ωAT

2 P2f 2 + λPdµd), (18)

with the covariance matrix:

D(̂d) = σ 2
1 (AT

1 P1A1 + ωAT
2 P2A2 + λPd)

−1. (19)

ω = σ 2
1 /σ 2

2 is the relativeweight between the airborne obser-
vations f 2 and the terrestrial observations f 1, λ = σ 2

1 /σ 2
d

is the regularization parameter (Koch and Kusche 2002;
Schmidt et al. 2007), and the numerical values for the vari-
ance factors σ 2

1 , σ 2
2 , σ 2

d can be estimated by VCE (see
Sect. 4.3). The covariance matrix (19) describes the accu-
racy of the estimated coefficients. Its main diagonal contains
the variances v(̂d), which define the standard deviations of
the estimated coefficients as σ̂ =

√
v(̂d).

3.4 Computation of the resulting gravitational
functionals

In the synthesis step, the estimated unknown coefficients are
used to determine the disturbing potential T at the computa-
tion points xc

T̂ = Bd̂, (20)

where T̂ is the vector of the computed disturbing potential
andB is the designmatrix, which contains the basis functions
between the grid points Pk and the computation points Pc.

Applying the error propagation law to Eq. (20), the covari-
ance matrix

D(T̂) = BD(̂d)BT (21)

is obtained. The estimated standard deviations of themodeled
disturbing potential, σ̂T =

√
v(̂T), indicate the accuracy of

the resulting gravity model.

The gravity potential valuesW (Pc) at computation points
Pc are then calculated by adding the normal gravity potential
U (Pc) to the disturbing potential T (Pc), i.e.,

Ŵ (Pc) = T̂ (Pc) +U (Pc). (22)

From the disturbing potential, the height anomaly (quasi-
geoid) ζ at the computation points Pc can be calculated
following the Bruns’ formula (Heiskanen and Moritz 1967):

ζ̂ = T̂

γ
(23)

where γ is the normal gravity at the normal height of point Pc.
Following Sánchez et al. (2018), we use the ellipsoid GRS80
(Moritz 2000) for the computation of U and γ . According
to the error propagation law, the standard deviation of the
quasi-geoid vector σζ can be calculated by

σ̂ζ = σ̂T

γ
. (24)

The geoid height N can then be calculated from the quasi-
geoid ζ following the transformation formula in Heiskanen
andMoritz (1967). It is worthmentioning that since the geoid
height is obtained from a transformation which includes an
approximation, it is expected to be less accurate than the
quasi-geoid model. The same transformation formula is also
used bymost of the other participants in the ‘ColoradoExper-
iment,’ in order to facilitate the comparison between different
contributions.

It is worth mentioning that the zero-degree terms T0 and
ζ0 (Heiskanen andMoritz 1967) have been added to our final
results (see Sánchez et al. 2018), which include the difference
between the constant GM values of the GGM (which is the
XGM2016 in our case) and the reference ellipsoidGRS80, as
well as the difference between the reference potential value
W0 adopted by the IHRSand the potentialU0 on the reference
ellipsoid (Sánchez et al. 2016; Sánchez and Sideris 2017),

T0 = GMGGM − GMGRS80

rP
(25)

ζ0 = (GMGGM − GMGRS80)

rP · γQ
− ΔW0

γQ
(26)

with GMGGM = 3.986004415 · 1014 m3/s2, GMGRS80 =
3.986005 · 1014 m3/s2, ΔW0 = −7.45m2/s2, and rP is the
geocentric radial distance of the computation points Pc.
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4 Computation configuration

4.1 Remove–compute–restore procedure

We apply the remove–compute–restore (RCR) procedure
(e.g., Forsberg 1993). As is described by its name, the RCR
procedure means that a part δgR of the observations (signal)
δg is removed before the computation

Δδg = δg − δgR . (27)

The remaining part Δδg is then processed using the SRBFs
to model the gravitational functional ΔT̂ . Afterward, the
removed part is restored in terms of the disturbing potential
TR as

T = ΔT̂ + TR . (28)

The removed part δgR is usually the long-wavelength compo-
nent from a GGM, since existing global models approximate
this part very accurately (Lieb et al. 2016). The RCR proce-
dure also solves the problem that regional gravimetry cannot
estimate the long-wavelength parts (Lieb et al. 2016). Beside
the GGM, a further improvement in the modeling results can
be achievedby additionally including a residual terrainmodel
(RTM) to δgR in the remove step (Hirt et al. 2010; Sjöberg
2005). The topographic effect plays a key role especially
in mountainous areas, since it smoothens the input observa-
tions, and this smoothing step is of utmost importance for
obtaining a good least-squares fit (Bucha et al. 2016).

In this study, the long-wavelength component is computed
from the global gravity model XGM2016 (Pail et al. 2018)
up to maximum degree 719 for both the terrestrial and the
airborne data. The topographic model dV_ELL_Earth2014
(Rexer et al. 2016) from degree 720 to degree 2159 and a
residual terrain model ERTM2160 (Hirt et al. 2014) from
degree 2160 to degree ∼80,000 (equivalent to a spatial res-
olution of 250 m) are removed from the terrestrial data;
the dV_ELL_Earth2014 from degree 720 to degree 5480
is removed from the airborne data. We use two different
topographic models above degree 2160 for the terrestrial
and airborne data; this is justifiable due to the fact that the
two models (dV_ELL_Earth2014 and ERTM2160) are cal-
culated using the same original data and contain the same
signal (Hirt et al. 2014; Rexer et al. 2016). For airborne data,
the effect of dV_ELL_Earth2104 from degree 2160 to degree
5480 is equal to the ERTM2160, but the ERTM2160 is only
available as a grid on the Earth surface, i.e., not as spherical
harmonic coefficients with which the gravity values can be
computed at any height.

Figure 2 visualizes the remove step. Comparing the last
two rows, it is clear that after the GGM reduction, the gravity
field is dominated by the topographic effect, which is very

large in this study. This implies the importance of including
the topographic effect in the RCR, especially in mountainous
areas. After subtracting this topographic effect, the gravity
field becomes much smoother, especially in regions with
varying elevation (mid part of the study area). As shown by
the statistics listed in Table 1, the terrestrial observations are
smoothed by 42% in terms of the standard deviation (SD) by
subtracting the GGM, and by 82% after including the topo-
graphic model. The airborne observations are smoothed by
72% by subtracting the GGM and by 89% after including
the topographic model. Such significant smoothing effects
enable a better least-squares fit. Including the topographic
model gives larger smoothing effects for the terrestrial obser-
vations than for the airborne observations. This could be
explained by the fact that the high-frequency signal of the
gravity field decreases with height, and the airborne grav-
ity measurement is less sensitive to the high-frequency part
than the terrestrial gravity measurement. Thus, subtracting
the topographic effect affects the terrestrial gravity data more
than the airborne gravity data.

4.2 Model configuration

4.2.1 Maximum degree of expansion

The maximum degree nmax of expansion is related to the
spatial resolution (sr) of the observations (Bucha et al. 2016),
and their relation reads (Lieb et al. 2016).

nmax ≤ πR

sr
. (29)

Although the observations are distributed unevenly in this
study area, the mean spatial resolution counts around 3.5 km
for the whole study area. Consequently, nmax = 5600 is
chosen as the maximum degree of expansion.

4.2.2 Definition of the target, observation, and
computation area

In regional gravity modeling, the extension of the target
area ∂ΩT, the observation area ∂ΩO, and the computation
area ∂ΩC needs to be defined carefully. In the border of the
observation area ∂ΩO, the unknown coefficients dk cannot be
appropriately estimated, due to the lack of fully surrounding
observations. This fact provokes edge effects. The observa-
tion area ∂ΩO, where the observations are given, should
be larger than the target area ∂ΩT, in which the final out-
put gravitational functionals are computed. Furthermore, the
computation area ∂ΩC, where the SRBFs are located, should
be larger than the observation area ∂ΩO. The reason for this
extension is due to the oscillation of the SRBFs, especially
at the boundaries of the computation area ∂ΩC, where the
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Fig. 2 a, b The observations (δg); c, d the remaining gravity disturbance after the GGM reduction (δg-δgGGM); e, f the remaining parts after both
the GGM and topographic reduction (δg-δgGGM-δgTopo) for the terrestrial data (left column) and the airborne data (right column)

Table 1 The statistics of the
observations δg, the remaining
parts after subtracting the GGM,
and the remaining parts after
subtracting both GGM and the
topographic model

Min (mGal) Max (mGal) Mean (mGal) SD (mGal)

Terrestrial δg −146.37 207.87 0.34 38.71

Terrestrial δg − δgGGM −151.46 137.17 − 5.83 22.39

Terrestrial δg − δgGGM − δgTopo −135.98 75.12 0.57 6.91

Airborne δg −43.56 123.87 7.66 29.47

Airborne δg − δgGGM −43.07 68.28 0.26 8.14

Airborne δg − δgGGM − δgTopo −17.82 17.96 0.30 3.19
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Fig. 3 The different extensions for the areas of computation ∂ΩC, of
observations ∂ΩO and of target ∂ΩT, as well as the location of the
observations (grey points) and the location of the grid points (red points)

oscillations cannot overlap and balance with each other (see
Naeimi et al. 2015; Lieb et al. 2016 for more details). Thus,
∂ΩT ⊂ ∂ΩO ⊂ ∂ΩC.

To minimize the edge effects in the computation, margins
η need to be defined between the three areas. Usually, the
margin size ηO,T between ∂ΩO and ∂ΩT and the margin
size ηC,O between ∂ΩC and ∂ΩO are chosen equally (Bentel
et al. 2013a, b). In our case, the target area ∂ΩT is given to be
between − 109◦ to− 103◦, and 36◦ to 39◦. The observations
(grey points in Fig. 3) aremainly located between− 110◦ and
− 102◦ and 35◦ and 40◦. So, the margin size ηO,T between
∂ΩO and ∂ΩT is fixed to be 1◦. The determination of the
margin size ηC,O between ∂ΩC and ∂ΩO follows a method
described by Lieb et al. (2016), but it is modified to

ηC,O = 360◦

nmaxcos(|φmax|) , (30)

where φmax is the maximum latitude value of the target area.
The margin size is influenced by the shape of the SRBFs,
when the nmax is higher, the SRBFs become narrower, and
thus, a smaller margin size should be chosen. With nmax =
5600, the value ηC,O ≈ 0.1◦ follows. Figure 3 visualizes the
target area, the observation area, the computation area, as
well as the margins.

4.2.3 The location of the SRBFs

The location of the SRBFs depends on the type and number
of the grid points. Eicker (2008) examined four types of grids,
and the results indicate that the Reuter grid and the triangle
vertex grid are the most suitable choices for space localizing
basis functions. According to Bentel et al. (2013a), differ-
ent grid types do not have a strong impact on the modeling
results, especially comparing to the other three factors listed
in the Introduction. In this study, the Reuter grid (Reuter

1982) is chosen. The points of the Reuter grid have a homo-
geneous coverage on the sphere ΩR . The total number Q
of the Reuter grid points on the global sphere is determined
following the rule (Lieb et al. 2016),

(nmax + 1)2 ≤ Q ≤ 2 + 4

π
(nmax + 1)2, (31)

and it amounts to Q = 31,828,509. Then, those Reuter grid
points that are distributed in the computation area ∂ΩC are
used as the locations of the SRBFs (see Fig. 3). In this case,
the number of the SRBFs amounts to K = 26,012.

4.2.4 The type of the SRBFs

Different types of basis functions are introduced and stud-
ied in, for example, Schmidt et al. (2007) and Bentel et al.
(2013b). Here, the following three types are considered:

1. The Shannon function, and its Legendre coefficients are
given by

Bn =
{
1 for n ∈ [0, nmax]
0 else

. (32)

2. The Blackman function, and its Legendre coefficients are
given by

Bn =
⎧
⎨

⎩

1 for n ∈ [0, n1)
(A(n))2 for n ∈ [n1, nmax ]
0 else

, (33)

where

A(n) = 21

50
− 1

2
cos

(
2π(n − nmax)

2(nmax − n1)

)

+ 2

25
cos

(
4π(n − nmax)

2(nmax − n1)

)
. (34)

3. The cubic polynomial (CuP) function, and its Legendre
coefficients are given by

Bn =
{

(1 − n
nmax

)2(1 + 2n
nmax

) for n ∈ [0, nmax]
0 else

.

(35)

Figure 4 visualizes the characteristics of these three basis
functions in the spatial and the spectral domain, correspond-
ingly. The Shannon function has the highest localization in
the spectral domain, but it also gets the strongest oscillations
in the spatial domain. In contrast, the CuP function has the
least oscillations in the spatial domain but has a smooth-
ing decay and extracts the least spectral information in the
spectral domain. The Blackman function is regarded as a
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Fig. 4 Different SRBFs in the
spatial domain (top, ordinate
values are normed to 1) and the
spectral domain (bottom) for
nmax = 5600 (n1 = 3000 is
chosen in the Blackman
function)

compromise between these two domains. Usually, the Shan-
non function is used in the analysis step to avoid the loss of
spectral information, and the Blackman function or the CuP
function is applied in the synthesis step to reduce erroneous
systematic effects (Lieb et al. 2016).

In this study, we apply the CuP function in the synthesis
step. In the analysis step, we use the Shannon function for
the terrestrial observations; the advantages of using the Shan-
non function for terrestrial data are explained in Bucha et al.
(2016). For the airborne observations, however, we choose
the CuP function in the analysis step. This is due to the fact
that noise in the high frequencies of the airborne data is
large; thus, a low-pass filtering is necessary. Forsberg and
Olesen (2010) explained why all types of airborne gravity
data need filtering; the filtering is a compensation between
the resolution and the accuracy. In the low-frequency part
of the airborne data, the gravity signal dominates the noise
(Childers et al. 1999); thus, low-pass filters are themost com-
monly usedfilters. Bucha et al. (2015) showed that the SRBFs
could act as a low-pass filter, and Naeimi (2013) demon-
strated that both the Blackman function and the CuP function
can be used as build-in low-pass filters, due to their smooth-
ing features. We used the Blackman function and the CuP
function for low-pass filtering, and the results (presented in
Sect. 5.1) show that both of these two functions can low-
pass-filter the airborne observations well.We choose the CuP
function for the airborne observations in this study, as it gives
slightly better results than the Blackman function does (see
Table 2 in Sect. 5.1). And as already discussed in Sect. 3.2,
different types of SRBFs can be used for different observa-
tion types, in case of the same band limitation.

4.3 Combination of the terrestrial and the airborne
data

We combine the terrestrial data and the airborne data using
the extended Gauss–Markov model (see Sect. 3.3). Since

information about the data quality is not available, we assume
that themeasurements have the same accuracy and are uncor-
related, and thus, P p = I, where I is the identity matrix. The
same assumptions are commonly used in existing publica-
tions (see e.g., Lieb et al. 2016;Wu et al. 2017b; Slobbe et al.
2019), since it is usually difficult to acquire the realistic full
error variance–covariance matrix, and the procedure would
become computationally intensive by including it.Moreover,
Olesen et al. (2002) showed that for airborne gravity distur-
bances, noise correlations can be ignored if one aims at a
1-cm quasi-geoid model. Furthermore, we set Pd = I by
assuming that the coefficients are not correlated and have the
same accuracy. The models subtracted in the remove step
of the RCR procedure serve as the prior information; in this
case, we can set the expectation vector µd to the zero vector
(Schmidt et al. 2007). The solution for the estimated coef-
ficients can be obtained from Eq. (18), where two variables
need to be determined; one is the relative weight ω between
the two types of observations, and another is the regulariza-
tion parameter λ.

The relative weight ω is determined by VCE, which is an
iterative process to estimate the variance factors σ 2

1 , σ 2
2 , σ 2

d
of different observation types and the prior information. The
iteration starts from initial values for σ 2

1 , σ 2
2 , σ 2

d , and it ends
when convergence is reached. The variance factors obtained
from VCE read σ̂ 2

1 = 6.13×10−10, σ̂ 2
2 = 1.61×10−10, and

σ̂ 2
d = 8.17×10−14. These estimates indicate that the airborne

gravity data might have a higher quality than the terrestrial
data. It is explainable since the terrestrial observations were
gathered during a large time span (since the late 1930s), and
thus, their qualitymay vary regionally. On the other hand, the
GRAV-Dairborne datawere collected in the recent fewyears.
Moreover, the value of σ̂1 (2.48 mGal) coincides with Saleh
et al. (2013), who estimated theNGS’s terrestrial gravity data
to contain error with an RMS of ∼ 2.2 mGal. However, it
should be noted that the estimated variance factors actually
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Table 2 RMS values of the height anomaly results w.r.t the validation data, when using the Shannon function, the Blackman function, and the CuP
function for the airborne observations, respectively

Terrestrial + Airborne Min (cm) Max (cm) Mean (cm) RMS (cm)

Shannon + Shannon −3.95 1.78 −0.28 1.135

Shannon + Blackman −3.93 1.57 −0.34 1.080

Shannon + CuP −3.89 1.87 −0.13 1.075

represent the quality of the least-squares fit rather than the
accuracy of the data (Bucha et al. 2016).

From the estimated variance factors, the relative weight
between the terrestrial data and the airborne dataω = σ̂ 2

1 /σ̂ 2
2

and the regularization parameter λVCE = σ̂ 2
1 /σ̂ 2

d can be
obtained. However, according to Liu et al. (2020), this reg-
ularization parameter is not always reliable, so we apply the
L-curve method (see e.g., Hansen and O’Leary 1993; Eriks-
son 2000) to regenerate the regularization parameter λ, based
on the relative weighting ω. In this case, the regenerated reg-
ularization parameter is λ = 10,000.

5 Results and discussion

As already mentioned in Sect. 2.1, we compute two sets of
output gravity functionals. The first one is at the GSVS17
benchmarks, at which thirteen groups worldwide have pro-
vided independent height anomaly results as well as geopo-
tential values, and fourteen groups have provided the geoid
height results. A list of all participants, as well as an exter-
nal validation to the leveling-based physical heights, can be
found in Wang et al. (2020). Since we do not have access to
the leveling-based validation data, we validate various solu-
tions using themean value of the other groups. Thus, the term
‘validation data’ used in Sects. 5.1–5.2 refers to the mean
height anomaly results of the other twelve groups along the
GSVS17 benchmarks. We do not include our own results in
the evaluation of models to keep the comparison indepen-
dent; however, the validation of our final results to the mean
value of all participants (including ours) is also presented in
Sect. 5.4. The second one is a model grid from − 109◦ to
− 103◦ and 36◦ to 39◦ with a resolution of 1′ × 1′. Thirteen
groups have provided the height anomaly grid models, four-
teen groups have provided the geoid height grid model, and
the comparison between our models and the mean of all the
models are given.

5.1 Evaluation of the low-pass filtering

To test the validity of the low-pass filtering based on the CuP
function, we compare this low-pass filtering result to the ones
using the Shannon function or the Blackman function for
the airborne observations. The height anomaly results at the

GSVS17 benchmarks when using these three functions for
the airborne data, respectively, are compared with respect to
the validation data. (The Shannon function is used for the ter-
restrial data as already discussed in Sect. 4.2.4.) The statistics
are listed in Table 2. The RMS deviations w.r.t the validation
data when using the CuP function and the Blackman function
for the airborne data are 1.075 cm and 1.080 cm, respectively,
which are around 0.5 mm smaller than that when using the
Shannon function for both the data sets. It should be noted
that when using the Blackman function or the CuP function
as low-pass filters, the results improve by 5%, which is not
neglectable. These results also indicate the importance of the
low-pass filtering for the airborne data. Although the results
obtained from the Blackman function and the CuP function
are similar, the CuP function still gives a slightly better result
(i.e., smaller RMS error) than the Blackman function, and
thus, the CuP function is chosen for low-pass filtering the
airborne data.

It isworthmentioning thatwe have also tried to smooth the
airborne gravity observations directly by a mean filter, i.e.,
assign the average value of consecutive observations to the
mid observation, and then use the Shannon function. How-
ever, the results are worse than those using the CuP function
to the original data, which indicates the efficiency of applying
the CuP function for smoothing the airborne observations.

5.2 Evaluation of the combined solution comparing
to the terrestrial or the airborne-only solution

Shih et al. (2015) demonstrated that the RMS error of their
gravity anomaly model drops when an additional data set
is incorporated. Jiang and Wang (2016) showed that by
adding the GRAV-D airborne data, the agreement to the
GPS/leveling data (GSVS11) improves from 1.1 to 0.8 cm in
Texas, USA. Forsberg et al. (2012) reported an improvement
by the airborne data from 15 to 13 cm in the United Arab
Emirates. To assess how much our quasi-geoid model bene-
fits from the regional terrestrial and airborne gravity data, the
computation is also conducted to the terrestrial observations
and the airborne observations, individually, in the sameman-
ner. Each result is compared to the combined solution with
respect to the validation data. The differences between our
height anomaly results and the validation data when using
both data sets, using the terrestrial data only, using the air-
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Fig. 5 Differences between our
solutions and the mean value of
all the other institutions at the
GSVS17 benchmarks

Table 3 Comparison between
the combined solution and the
terrestrial-only, airborne-only, or
models-only solution at the
GSVS17 benchmarks, w.r.t the
validation data

Min (cm) Max (cm) Mean (cm) RMS (cm)

Combined −3.89 1.87 −0.13 1.08

Terrestrial-only −5.37 2.88 −0.70 1.76

Airborne-only −9.14 5.30 −0.64 2.38

Models-only −7.93 7.90 −1.03 4.04

borne data only, and using no observation data, i.e., only the
GGMand the topographic model (models-only solution), are
plotted in Fig. 5, respectively. (The ellipsoidal height of the
GSVS17 benchmarks is plotted for interpretation reasons.)
The statistics are listed in Table 3.

Compared to the validation data, using only the GGM and
the topographicmodelwithout any observation data gives the
worst result, with an RMS error of 4.04 cm; it is improved to
1.76 cm by adding the terrestrial data and further improved to
1.08 cm by including the airborne data. Figure 5 shows that
themodels-only solution (grey) has the largest variation com-
paring to the validation data (zero value line), although the
models reach a very high harmonic degree. It shows that the
topographicmodels cannot represent the true high-frequency
gravity signal accurately, since they usually assume the topo-
graphic masses to have constant density (Hirt et al. 2010;
Bucha et al. 2016), which is not the case in practice. Thus,
regional gravity field refinement with local data is neces-
sary, despite the availability of high-resolution topographic
models. From Fig. 5, we can see that the airborne-only solu-
tion (blue) has larger oscillations than the terrestrial-only
solution (green), and the combined solution (red) benefits
from both data sets. The terrestrial-only solution is better
than the airborne-only solution, which could be explained
by the larger coverage of the terrestrial data as well as the
downward continuation of the airborne data. To be more spe-
cific, the airborne measurements are collected at an average
altitude of 6 km to model the gravity field on the Earth sur-
face, and thus, the modeling results are expected to be less
accurate than using the surface gravity data. The improve-

ment in the combined solution is 39% compared to using
terrestrial data only and 55% compared to using airborne
data only, and it reaches 73% compared to using no gravity
observations but only GGM and topographic models. Such
significant improvements indicate the validity of our combi-
nation model.

A significant outcome from Fig. 5 is that the differ-
ences between the terrestrial-only solution and the validation
data are highly correlated with the variations of the topog-
raphy (black) at the GSVS17 benchmarks. To be more
specific, when the ellipsoidal heights are constant (between
around benchmark Nr. 110–180), the terrestrial solution is
almost identical to the combined solution; when there are
big changes in the ellipsoidal heights (e.g., between around
benchmark Nr. 30–90 as well as after benchmark Nr. 180),
larger differences between the terrestrial-only solution and
the validation data can be observed. Including the airborne
data seems to improve the terrestrial-only solution the most
in rugged region, which could give some hints about where
to place new airborne measurements in mountainous study
areas. According to the findings in this study, airborne obser-
vations should be taken place in rugged terrain in order to
give the maximum benefits, in addition to the local terres-
trial data.

5.3 Significance of the estimated coefficients

The estimated coefficients d̂ and their standard deviation σ̂

are plotted in Fig. 6a, b. As we can see, the estimated coef-
ficients inside the observation area ∂ΩO (black rectangle)
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Fig. 6 a The estimated coefficients d̂, b their standard deviations σ̂ , c the histogram of the estimated coefficients, d the test statistic |d̂|/σ̂ , e the
histogram of the test statistic, and f the corresponding significant coefficients when p = 0.9 is chosen

represent the gravitational structures well, i.e., a correlation
between Figs. 2e, f and 6a is visible. Larger values in the
estimated coefficients (positive and negative) indicate that
additional gravity signals with respect to the background
model are captured, which shows the physical meaning of
the estimated coefficients (Lieb 2017). Outside the observa-
tion area ∂ΩO (i.e., in the margin between ∂ΩO and ∂ΩC),
the estimated coefficients are close to zero, and their standard
deviations are much larger than those inside the observation

area. Larger standard deviations also occur in areas with data
gaps (referring to Fig. 1b), which is reasonable.

Theoretically, only the coefficients that are significantly
different from zero contribute to the obtained signals and,
thus, to model the gravitational functionals. The nonsignif-
icant coefficients then must be removed. To test how many
coefficients are significant in our study case, we conduct a
t test by the test statistic |d̂|/̂σ (Bentel et al. 2013a). It is
worth mentioning that the t test can be applied here because
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Fig. 7 The least-squares residuals of a the terrestrial gravity data, and b the airborne gravity data

we assumed that the coefficients are not correlated with each
other (see Sect. 4.3). The hypothesis statements to test an
individual coefficient d are

H0 : d = 0 vs. H1 : d �= 0 (36)

The hypothesis H0 : d = 0 will be rejected if its test statis-
tic |d̂|/σ̂ (Fig. 6d) is larger than a critical value tnu,p for
the t test. Figure 6e shows the histogram of the test statis-
tic |d̂|/σ̂ . In our case, the degree of freedom nu is equal
to 90,236 − 26,012 = 64,224, where 90,236 is the num-
ber of observations and 26,012 is the number of unknown
coefficients. The confidence level p = 0.9 is chosen, then
t64224,0.9 = 1.282. It means that if the test statistic |d̂|/σ̂ is
larger than 1.282, then this coefficient is significantly differ-
ent from zero with 90% confidence, and the corresponding
coefficients are considered. The corresponding significant
coefficients are plotted in Fig. 6f.

5.4 Final results and validation

5.4.1 Least-squares residuals of our estimated model

Figure 7 displays the residuals of the least-squares adjust-
ment for the terrestrial gravity observations (Fig. 7a) and the
airborne gravity observations (Fig. 7b). The residuals of the
terrestrial observations have a mean value of −0.19 mGal,
with a SD of 2.13mGal, and the residuals of the airborne data
have a mean value of −0.15 mGal, with a SD of 1.25 mGal.
The functional model fits the airborne data better than the
terrestrial data, which could be explained by the fact that
the airborne data get a higher weight than the terrestrial data
during the VCE procedure. It is also clear from Fig. 7 that
the prominent residuals are located in high-elevation areas
for both the terrestrial and airborne data, and a clear correla-
tionwith Fig. 1a can be observed. This indicates that a further

improvement in our model could be achieved by (1) applying
a more accurate terrain model that might be available in the
near future, or (2) including a better gravity data distribution
on the rugged topography areas.

5.4.2 Height anomaly and geoid height results at the
GSVS17 benchmarks

Our height anomaly as well as the geoid height results are
displayed in Fig. 8, in comparison with the mean value of
all participants. It is visible that our results agree very well
with other contributions, with differences ranging between
−4 and 4 cm. The geoid height (blue) fits worse than the
height anomaly (red) with respect to the mean, which is as
expected due to the transformation (see Sect. 3.4). Accord-
ing to Wang et al. (2020), the RMS errors of our height
anomaly and geoid height compared to the mean value of
all groups are 1.0 cm and 1.3 cm, respectively, which are
the smallest among all the participants. It is worth men-
tioning that we have also calculated the geopotential values
W , and it has a mean of 0.01 m2/s2 with a standard devia-
tion of 0.09 m2/s2 comparing to the mean results of all the
contributions, which is also the smallest. A detailed compar-
ison of the geopotential values is presented in Sánchez et al.
(2020).

The validationwith theGPS/leveling data is done byWang
et al. (2020), and the differences of our height anomaly results
compared to the GSVS17 GPS/leveling data range between
−7.6 and 4.5 cm, with a mean value of 0.81 cm and a SD
of 2.89 cm. Considering the not homogeneously distributed
observations with obvious data gaps, this result is quite sat-
isfying. However, it has to be mentioned that the quality of
these GPS/leveling data is not reported by data providers yet,
and thus, the validation with the mean values of all partici-
pants is of higher importance.
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Fig. 8 Results at the GSVS 17
benchmarks

Fig. 9 a Height anomaly and b its standard deviation

5.4.3 Height anomaly and geoid height results in the whole
study area

Figure 9a visualizes the quasi-geoid model for the whole tar-
get area ∂ΩT, with a grid resolution of 1′ × 1′. The standard
deviation map of the modeled height anomaly is plotted in
Fig. 9b, which ranges from only few millimeters to around
2 cm. The values are smaller in regions with denser obser-
vations. The RMS error of our height anomaly and geoid
height grid model comparing to the mean value of all groups
are 1.6 cm (which is the smallest among all the participants)
and 2.9 cm, respectively (Wang et al. 2020).

Comparisons are also made between our height anomaly
model and two widely used global gravity models, namely
EGM2008 with d/o 2190 (Pavlis et al. 2012, 2013) and
EIGEN6c4 with d/o 2190 (Förste et al. 2014). As shown in
Fig. 10a, b, the differences are at the decimeter level. Com-
paring these differences to the terrain map (Fig. 1a), it is
clear that the large differences are mainly observed in areas
with high topography. These differences could be coming
from the effects above degree 2190, i.e., the GGMs are only
modeled till degree 2190, while we model the gravity signals
till a much higher degree. To verify the reason for these dif-
ferences, we also compare our height anomaly model to the
XGM2019e with d/o 5540 in Fig. 10c, and their difference

does not show a correlation with the topography as strong
as in Fig. 10a, b. In Fig. 10d, we add the residual terrain
model ERTM2160 to the EIGEN6c4 and compare it with our
height anomaly model. The difference is heavily reduced in
this case, and the plot becomes much smoother. Due to the
consideration of the topographic effect as well as the large
amount of observations in the mountainous area, our model
improves a lot in this study area comparing to the global grav-
ity model. The poor performance of the GGMs implies that
they are not reliable for engineering purposes or geophysical
investigation (Wu et al. 2017a), especially in mountainous
areas. Moreover, the regional gravity field modeling with
locally distributed data improves the fine structures primar-
ily, which demonstrate the importance of regional gravity
field refinement.

6 Conclusion and outlook

In this study, we calculate the high-resolution quasi-geoid
model and geoid model using spherical radial basis functions
in Colorado, USA. The results contribute to the ‘1 cm Geoid
Experiment,’ which enables a comparison of our SRBF-
based results to thirteen independent solutions calculated
within other approaches, such as LSC (Moritz 1980; Tsch-
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Fig. 10 Height anomaly differences between our model and a EGM2008, b EIGEN6c4, c XGM2019, d EIGEN6c4+ERTM2160

erning 2013) and the least-squares modification of Stokes’
formula (Sjöberg 2003, 2010). Detailed explanations are
given regarding the choice of the SRBFs characteristics: the
bandwidth, the location, the type of the SRBFs as well as the
extensions of the data zone.

We combine two types of basis functions covering
the same spectral domain in the analysis step. The non-
smoothing Shannon function is applied to the terrestrial data
to avoid the loss of spectral information. The CuP function
is applied to the airborne data as a low-pass filter, and the
smoothing features of this type of SRBFs are used for filtering
the high-frequency noise in the airborne data. The RMS error
of our height anomaly result along the GSVS17 benchmarks
w.r.t the mean results of the other twelve groups drops by 5%
when combining the Shannon function for the terrestrial data
and the CuP function for the airborne data, compared to those
obtained by using the Shannon function for both the two data
sets. We present a theorem which shows that the unknown
coefficients are independent of the type of SRBFs as soon as
they are band-limited to the same degree, and thus, different
types of SRBFs can be used for different types of observa-
tions. As no publications based on real data are known to the
authors which applied the idea of combining different types
of SRBFs for different observations, our results also serve
as an application of this idea and further indicate its validity
and benefits.

We combine the GGM, topographic model, terrestrial
gravity data, and airborne gravity data within the RCR pro-

cedure and the parameter estimation procedure. Numerical
investigations show that including the topographic model
is of great importance in mountainous areas, as it helps to
obtain a better least-squares fit. However, the topographic
model alone does not guarantee an accurate regional grav-
ity field model, despite their high resolution. Comparing to
the mean value of other contributions at the GSVS17 bench-
marks, combining theGGMand the topographicmodel gives
an RMS error of 4.04 cm, which is reduced to 1.76 cm after
adding the terrestrial observations and further reduced to
1.08 cm after including the airborne data. These results indi-
cate the importance of local data sets in regional gravity field
refinement.

Comparisons are made with respect to the mean results of
all the contributions, andour height anomaly andgeoid height
solutions at the GSVS17 benchmarks give an RMS error of
1.0 cm and 1.3 cm, respectively. Our quasi-geoid and geoid
grid models for the whole study area deliver an RMS value
of 1.6 cm and 2.9 cm, respectively. Both our height anomaly
and geoid height results at the GSVS17 benchmarks, as well
as the height anomaly result in the whole study area, have the
smallest RMS value w.r.t the mean values of all participants,
which validates our SRBF-based model. However, there is a
disagreement between theRMSerrorw.r.t themean solutions
and w.r.t the GPS/leveling data. Thus, a major concern for
the future work is to understand this disagreement after the
release of the GPS/leveling data.
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Abstract
The optimal combination of different types of gravity observations is the key to obtaining a high-resolution and high-precision
regional gravity model. Current studies based on spherical radial basis functions (SRBFs) majorly consider a single-level
approach for data combination. Despite the promising results reported in numerous publications, it has been suspected that the
single-level model might be biased towards high-resolution measurements. Instead, a multi-resolution representation (MRR)
can be applied to further take into consideration the varying spectral sensitivities of different observation techniques. In this
study, we develop a new MRR scheme based on the pyramid algorithm and sequential parameter estimation. We propose
strategies to solve the challenges in the practical application of the pyramid algorithm, and this study represents its first
successful realization in regional gravity field modeling. The modeling results based on both simulated and real gravity data
show that either the single-level approach or the MRR without pyramid algorithm is able to capture gravity information from
lower resolution measurements as sufficient as our newly developed MRR algorithm. In the simulated case, the RMS error
w.r.t. the validation data obtained by the MRR based on the pyramid algorithm decreases by 50% and 35%, in comparison
to that of the single-level model and the MRR without pyramid algorithm, respectively. In the real case, the improvement
achieved by the MRR based on the pyramid algorithm is 35% and 23% in the onshore area, and it reaches 63% and 57% in
the offshore area, compared to the single-level approach and the MRR without pyramid algorithm, respectively.

Keywords Heterogeneous data combination · Multi-resolution representation · Pyramid algorithm · Regional gravity filed
modeling · Spherical radial basis functions

1 Introduction

Regional gravity field modeling is an important topic in
geodesy; it plays an essential role for applications in geo-
physics and physical height system realization. A high-
resolution and high-precision geoid model derived from
regional gravity field modeling is the key to the realization of
the International Height Reference System (IHRS, Sánchez
et al. 2021). In the last decades, spherical radial basis func-
tions (SRBFs, see e.g., Freeden et al. 1998; Freeden and
Michel 2004; Schmidt et al. 2007) have been widely used for
regional gravity field modeling. Thanks to their localizing

B Qing Liu
qingqing.liu@tum.de

1 Deutsches Geodätisches Forschungsinstitut der Technischen
Universität München (DGFI-TUM), Arcisstrasse 21,
80333 Munich, Germany

features in both the spectral and the spatial domain, SRBFs
are an appropriate approach to consider the heterogeneity of
different gravity data types with varying spectral and spatial
resolutions.

In regional gravity field modeling, local high-resolution
gravity measurements (e.g., terrestrial, airborne, and ship-
borne gravity data) are usually combined with medium-
resolution data (e.g., inferred from satellite altimetry mis-
sions) and low-resolution global data provided by dedicated
satellite gravity missions, such as the Gravity Recovery and
Climate Experiment (GRACE, Tapley et al. 2004) and the
Gravity Field and Steady-State Ocean Circulation Explorer
(GOCE, Rummel et al. 2002). Each observation technique
has different spectral sensitivities and varying data distri-
bution. Thus, a data combination method that extracts the
maximum gravity information from different measurements
is required to ensure the best possible high-precision regional
gravity model. Typically, the data combination based on
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SRBFs is implemented using a single-level approach (see,
e.g., Bentel et al. 2013a, b; Lieb et al. 2016; Bucha et al.
2016;Wu et al. 2017a, b; Liu et al. 2020a, b). In this approach,
different observation techniques are combined at the max-
imum degree of expansion, and their contributions to the
final gravity model are determined by the relative weight-
ing between each data set. This approach is straightforward,
and promising modeling results have been reported in the
aforementioned publications. However, the contribution of
measurements withmedium to low resolution (e.g., altimetry
data, satellite gravity data) could be understated, since they
are not sensitive at high spectral degrees. For instance, Klees
et al. (2018) demonstrate that the single-scale model lacks
the flexibility to deal with data sets of significantly different
bandwidths, while Wu et al. (2018) state that the single-level
approach may fail to extract the full information contained
in the gravity data.

To take the spectral sensitivity of different observation
techniques into consideration and to combine heterogeneous
data by spectral weights, a spectral combination can be
applied (see, e.g., Sjöberg 1981; Kern et al. 2003; Denker
2013). The spectral combination based onSRBFs can be real-
ized through a multi-resolution representation (MRR). The
MRR of the gravity field was initially proposed by Freeden
et al. (1998), Freeden (1999), andHaagmans et al. (2002), and
its realization has been investigated in the last two decades.
TheMRR is often associated with wavelet functions. Kusche
et al. (1998) conclude that the spherical wavelet functions
show outstanding properties in the medium frequency band,
and they are thus recommended for modeling the medium
wavelength part of the gravity field. Beylkin and Cramer
(2002) present several multi-resolution gravity models and
show their performance results. Fengler et al. (2007) set up an
MRR approach based on GRACE data using the cubic poly-
nomial (CuP) wavelets and show that they are an appropriate
tool to investigate regional and temporal variations of the
Earth’s gravity field. Panet et al. (2011) introduce the itera-
tive domain decomposition by extending the Poissonwavelet
modeling approach (Holschneider et al. 2003) to combine the
surface (land,marine and altimetry) gravity datawith satellite
gravity data. Bolkas et al. (2016) state that wavelet decompo-
sition is a useful tool for fusing terrestrial gravity data with
satellite and airborne data and show that the multiscale fused
model is able to fill data gaps.

Schmidt et al. (2005, 2006, 2007) develop an MRR
approach where the representation is decomposed into an
expansion in terms of spherical harmonics for the long-
wavelength part, and a number of frequency-dependent detail
signals in terms of wavelets for the medium and high fre-
quency parts. This MRR was applied for regional gravity
field modeling by Lieb (2017) and Wu et al. (2018), where
the coefficients for calculating the detail signals are estimated
simultaneously at each resolution level, using all or selected

data groups. However, if all observation types are used at
each level, the corresponding detail signals are strongly cor-
related (Lieb 2017). If only specific data sets are used, large
data gaps may occur, and the prior information is insuffi-
cient for filling these data gaps at higher resolution levels.
This leads to large erroneous effects in the output signals.
Consequently, Lieb (2017) recommends for future work the
implementation of the pyramid algorithm (Freeden et al.
1998) to consider all available information by connecting the
different levels. Klees et al. (2018) show that a two-scale (or
multi-scale) model needs to be applied in combination with
a sequential estimation of the scale-dependent coefficients.
The sequential estimation can be realized by applying the
pyramid algorithm, which determines the coefficients of the
lower resolution levels sequentially from the coefficients of
the higher level, by successive low-pass filtering.

Although the pyramid algorithmwas proposed nearly two
decades ago, its practical application based on parameter
estimation has never been realized in regional gravity field
modeling, until this study. This is due to the challenges of
applying the pyramid algorithm in the regional case, as stated
by Lieb (2017): (1) it is difficult to set up a proper low-pass
filter matrix in the regional case, and (2) the margin size has
to be adapted appropriately at each level to minimize edge
effects.We come up with methods in this study to solve these
difficulties: (1) a low-pass filter is newly introduced in case
of using the Reuter grid; (2) the choice of the margin size and
the setting up of the estimationmodel at each resolution level
are characterized; (3) strategies for reducing edge effects in
the calculated detail signals are proposed.

A new MRR scheme based on the pyramid algorithm is
developed, as visualized in Fig. 1, the text in blue highlights
the novelty of this work. One main innovation is the real-
ization of the sequential parameter estimation in the MRR
scheme. The coefficients are firstly estimated at the highest
chosen resolution level I using only the high-resolution data
set(s) 1, and they are used to compute the detail signal G I

by wavelet functions. Then, these estimated coefficients are
transformed to the next lower level I − 1 by applying a low-
pass filtering, i.e., the pyramid algorithm using the proposed
low-pass filtermatrix L I−1. At the lower level I−1, the coef-
ficient vector is updated by the lower-resolution data set(s)
2 introduced at this level. This updated coefficient vector
is then used in combination with wavelet functions to cal-
culate the detail signal G I−1. Continuing this process until
the lowest level i ′ of the MRR, all data sets are introduced
into the scheme at different resolution levels and the coef-
ficient vectors as well as the detail signals are obtained. At
each lower resolution level, the coefficients from the pyra-
mid algorithm are combined directlywith the new data set(s),
through the parameter estimation procedure. In the two-scale
model presented by Klees et al. (2018), the coefficients from
the high-resolution level are used to generate a new pseudo
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Fig. 1 The developed MRR scheme based on the pyramid algorithm. The text in blue highlights the novelty of this work

data set (with the same resolution as the low-resolution data
set), which is then combined with the low-resolution data set
to estimate the coefficients of the lower level. However, the
authors point out that the high-resolution data set is required
to have a larger area coverage than the low-resolution data
set (due to edge effects), which frequently cannot be fulfilled
when dealing with real data. In this study, we solve this limi-
tation by the direct combination of the coefficient vector and
the new data set(s), in analogy to a Kalman filter.

In this research, we additionally demonstrate that: (1) dif-
ferent observation types can be introduced into the evaluation
model at the spectral level of their highest sensitivities, which
makes it possible to benefit from the individual strengths of
each data set optimally; (2) since all computations within
the pyramid algorithm are based on linear equation systems
(Schmidt et al. 2015), all covariance information can easily
be calculated following the law of error propagation from the
higher levels and serve as input for the lower levels; (3) as
the number of required SRBFs decreases from the highest
level to the lower levels, the design matrices of the lower-
resolution data sets are now calculatedwith a smaller number
of grid points, which reduces the computational effort signif-
icantly. We test the MRR based on the pyramid algorithm by
using simulated data and then apply it to real data in different
study areas. The modeling results are directly compared to
those obtained from the single-level approach and the MRR
without using the pyramid algorithm (where the coefficients
are estimated independently at each level using all types of
observations) in order to highlight the benefits of the MRR
based on the pyramid algorithm.

This work is organized as follows: In Sect. 2, we intro-
duce the fundamental concepts of theMRR based on SRBFs,
the wavelet functions, and the pyramid algorithm. Section3

explains the newly developed MRR procedure based on the
sequential parameter estimation, and shows how the coef-
ficient vector from the pyramid algorithm is updated by
including new observations at the lower levels. Sections4
and 5 present the performance of our approach based on sim-
ulated and real data, respectively. The model configuration
is explained, and the developed strategy for reducing edge
effects is demonstrated. The results are evaluated and dis-
cussed, and comparisons are made with both the single-level
approach and the MRR without pyramid algorithm. Finally,
Sect. 6 provides conclusions and outlook.

2 Multi-resolution representation

2.1 Spherical radial basis functions

In general, SRBFs are isotropic localizing functions centered
at grid points Pk on a sphere �R with radius R (Freeden
et al. 1998; Schmidt et al. 2007), and can be defined by the
Legendre series

B(x, xk) =
nmax∑

n=0

2n + 1

4πR2

(
R

r

)n+1

Bn Pn(rT rk), (1)

wherein x = r · r is the position vector of an arbitrary point
P(ϕ, λ, r), with latitude ϕ, longitude λ, and radial distance
r = |x| = R + h′; h′ is the height of P over the sphere
�R ; r = [cosϕ cos λ, cosϕ sin λ, sin ϕ]T is the correspond-
ing unit vector. xk = R · rk is the position vector of a grid
point Pk . Pn is the Legendre polynomial of degree n, which
is a function of the spherical distance between the point P
and the grid point Pk . nmax is the maximum degree of the
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Fig. 2 Spectral degree ni and spatial resolution ρi of each resolution level i in the MRR

expansion. Bn is the Legendre coefficients, which specify
the shape of the SRBFs. In case of Bn = 1 for all degree
values n = 0, 1, . . . , nmax, the SRBF is defined as the repro-
ducing kernel Krep(x, xk), which has the ability of the unique
reproduction of a harmonic function. To bemore specific, the
convolution of a harmonic function F(x) (band-limited with
n = 0, 1, . . . , n′ ≤ nmax) with the reproducing kernel Krep

is equal to the original function (Schmidt et al. 2007), i.e.,

F(x) = (Krep ∗ F)(x). (2)

Any gravity observation y(x) can be represented as a
series expansion in terms of the SRBFs, i.e.,

y(x) − e(x) =
K∑

k=1

dk B(x, xk) + s(x), (3)

where K and dk are the number of grid points and the
corresponding series coefficients, respectively. s(x) is the
truncation error, and e(x) is the observation error. It is worth
mentioning that the general expression (1) of the basis func-
tions B(x, xk) needs to be adapted for describing different
gravitational functionals (e.g., the gravity disturbance δg or
the gravity anomaly �g). A list of basis functions adapted
to different functionals can be found in Koop (1993) and Liu
et al. (2020a).

2.2 Multi-resolution representation

The fundamental idea of theMRR is to split a given input sig-
nal into a smoothed version and a number of detail signals by
successive low-pass filtering (Schmidt et al. 2007). Follow-
ing Schmidt et al. (2006), the MRR of the gravity functional
F(x) can be expressed as

F(x) = F̄(x) +
I∑

i=i ′
Gi (x) + s(x) (4)

where F̄(x) is a reference model, i.e., usually the long-
wavelength component from a global gravity model (GGM),

and it is used as the background model within the remove-
compute-restore (RCR, e.g., Forsberg 1993) procedure.
Gi (x) is the detail signal of resolution level i , and s(x) is
the truncation error.

To set up the resolution level i , the frequency domain
needs to be discretized. Each resolution level defines a fre-
quency band, and thus, includes a certain number of degree
values. In this study, the upper boundary (maximum degree
value) ni of each level is defined as

ni = 2i − 1. (5)

It is worth mentioning that the resolution levels can also be
adapted differently, i.e., the base 2 in Eq. (5), which spec-
ifies the range of the frequency bands, can be chosen as a
different number (see Schmidt et al. 2007 for more details).
Figure2 (cf. Lieb et al. 2016) visualizes the discretization of
the frequency domain, and the relation between the resolu-
tion level i and its corresponding spectral degree ni as well
as spatial resolution ρi . The corresponding maximum spa-
tial resolution of level i is ρi = πR/ni , with R the Earth’s
radius.Gravity data obtained fromdifferent observation tech-
niques can then be classified according to their spectral
resolution. Terrestrial, airborne, and shipborne observations
are high-resolution regional data, thus, they cannot be used
to estimate the low-frequency part. Therefore, they should
be combined with the medium-resolution satellite altimetry
measurements, and the low-resolution satellite gravimetry
data, such as GRACE and GOCE.

2.3 Wavelet functions

SRBFs (1) can act as high-pass, low-pass or band-pass filters,
depending on the chosen Legendre coefficients Bn , and a har-
monic function F(x) can be filtered by it through a spherical
convolution (Schmidt et al. 2007; Liu et al. 2020b). In case of
using a band-limited SRBF, e.g., a spherical scaling function
B(x, xk) =: 	i (x, xk,i ), which means the Legendre coeffi-
cient Bn =: φn,i > 0 for degreen = 0, 1, . . . , nmax =: 2i−1
and φn,i = 0 for degree n > 2i − 1, the SRBF acts as a low-
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pass filter. Based on the scaling function, a spherical wavelet
function�i (x, xk,i ), which can be interpreted as a band-pass
filter, is defined as

�i (x, xk,i ) = 	i (x, xk,i ) − 	i−1(x, xk,i )

=
2i−1∑

n=0

2n + 1

4πR2

(
R

r

)n+1

ψn,i Pn(rT rk,i )
(6)

where xk,i is the position vector of the grid point Pk,i at
resolution level i , and theLegendre coefficientsψn,i are com-
puted as

ψn,i = φn,i − φn,i−1. (7)

The detail signal Gi (x) of level i in Eq. (4) can then be
defined in terms of the spherical wavelet function as

Gi (x) =
Ki∑

k=1

dk,i�i (x, xk,i ), (8)

where Ki and dk,i are the number of grid points and the
corresponding series coefficients, respectively, at the level
i . As explained in Liu et al. (2020b), the coefficients dk,i
do not depend on the choice of the SRBFs, as soon as the
SRBFs are band-limited up to the same degree, i.e., their
Legendre coefficients are equal to 0 for all degree values
n > 2i − 1. Thus, the same set of unknown coefficients dk,i
at level i can be used with both the spherical scaling function
and the spherical wavelet function of the same level. Also,
it is possible to use different types of SRBFs in the analysis
step (in which the unknown coefficients are estimated) and
in the synthesis step (in which the estimated coefficients are
used to calculate the output gravity models), respectively.

In this study, we use the following spherical scaling func-
tions (see Schmidt et al. 2007; Lieb et al. 2016):

1. The Shannon function, which could be interpreted as the
reproducing kernel (see Sect. 2.1), its Legendre coeffi-
cients are given by

φSha
n,i =

{
1 for n ∈ [0, 2i − 1]
0 else

. (9)

2. The Blackman function, its Legendre coefficients are
given by

φBla
n,i =

⎧
⎨

⎩

1 for n ∈ [0, 2i−1 − 1]
(A(n))2 for n ∈ [2i−1, 2i − 1]
0 else

, (10)

Fig. 3 The Blackman wavelet function at different resolution levels, in
the spatial domain (upper, ordinate values are normed to 1), and in the
spectral domain (bottom)

where

A(n) = 21

50
− 1

2
cos

(
2πn

2i

)
+ 2

25
cos

(
4πn

2i

)
. (11)

The Shannon scaling function is used in the analysis step to
estimate the unknowncoefficients, and theBlackmanwavelet
function (with Legendre coefficients ψ Bla

n,i = φBla
n,i −φBla

n,i−1)

is applied in the synthesis step to calculate the detail signals
at each level. The reason for using the Shannon function in
the analysis step is to avoid the loss of spectral information.
An SRBF with smoothing features, such as the Blackman
function, is used in the synthesis step to reduce erroneous
effects (Lieb et al. 2016; Liu et al. 2020b). Figure3 visu-
alizes the characteristics of the Blackman wavelet function
in the spatial (upper plot) and the spectral domain (bottom
plot) for different resolution levels. As we can see, the Black-
man wavelet function has smoothing features. At the same
time, it has strict band-pass features, i.e., only the Legendre
coefficients within the spectral band [2i−2, 2i ) are not zero.
The spectral weight, which is defined by the Legendre coeffi-
cients, increases fromdegree 2i−2 to 2i−1 and decreases from
degree 2i−1 to 2i . In the spectral domain, the corresponding
frequency band becomes wider at higher resolution levels.
In the spatial domain, with increasing resolution level i , the
peak becomes sharper.

2.4 The pyramid algorithm

Freeden (1999) shows that the coefficients of neighboring
resolution levels depend on each other linearly, and thus, can
be computed successively. Therefore, the pyramid algorithm
can be set up to determine the coefficients of the lower res-
olution levels from the coefficients of the higher level by a
low-pass filtering. This procedure is based on a down sam-
pling strategy, as the number of coefficients decreases at each
level. With the pyramid algorithm, the coefficients at level i
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(i = i ′, i ′ + 1, . . . , I − 2, I − 1) can be expressed as

di |i+1 = Li di+1 (12)

�di |i+1 = Li�di+1L
T
i (13)

where Li is a Ki × Ki+1 low-pass filter matrix, transform-
ing the Ki+1 × 1 coefficient vector di+1 of the higher level
i + 1 to the Ki × 1 coefficient vector di |i+1 of the lower
level i . �di |i+1 is the covariance matrix of di |i+1 obtained
from the covariance matrix �di+1 following the law of error
propagation.

According to Schmidt et al. (2007), the low-pass filter
matrix Li can be decomposed as

Li = W iH i (14)

where H i is a Ki × Ki+1 matrix containing the reproducing
kernel Krep(xk,i , xk,i+1) between the grid points Pk,i+1 (k =
1, 2, . . . , Ki+1) of level i + 1 and the grid points Pk,i (k =
1, 2, . . . , Ki ) of level i .W i is the Ki ×Ki diagonal matrix of
the integration weights associated with the grid points Pk,i
of level i , and it depends on the implemented type of grid.
Although the Reuter grid (Reuter 1982) is one of the most
commonlyusedgrids in regional gravityfieldmodeling, there
are no previous studies about how to define W i for this type
of grid. In this study, we develop a strategy to set up the
corresponding integration weights, which read

wi = 4πR2

Zi
(15)

where Zi is the total number of the Reuter grid points on
the sphere at level i . Reuter grids are regarded as equidis-
tributed point systems on the sphere (Fengler et al. 2004;
Eicker 2008), and the corresponding integration weights are
constant for each grid point.

3 Parameter estimation

In this paper, a new MRR scheme is developed based on
the pyramid algorithm using sequential parameter estima-
tion. The initial step of the MRR procedure is to estimate the
unknown coefficient vector d I = [d1,I , d2,I , . . . , dKI ,I ]T
at the highest resolution level I using parameter estima-
tion (Koch 1999; Schmidt et al. 2007). Assuming that P
groups of observations are used at level I , the estimated coef-
ficient vector d̂ I and the corresponding covariance matrix
D(̂d I ) = �̂dI can be obtained as (Liu et al. 2020a, b)

d̂ I =
⎛

⎝
P∑

p=1

(
1

σ 2
p,I

AT
p,IP p,IAp,I

)
+ 1

σ 2
μ

Pμ

⎞

⎠
−1

⎛

⎝
P∑

p=1

(
1

σ 2
p,I

AT
p,IP p,I yp,I

)
+ 1

σ 2
μ

Pμμ

⎞

⎠ (16)

�̂dI =
⎛

⎝
P∑

p=1

(
1

σ 2
p,I

AT
p,IP p,IAp,I

)
+ 1

σ 2
μ

Pμ

⎞

⎠
−1

(17)

yp,I is the observation vector of the pth gravity data set used
at level I , P p,I is its positive definite weight matrix, and
Ap,I is the design matrix, which contains the corresponding
(adapted) scaling functions. μ is the expectation vector of
the coefficient vector d I , and Pμ is its given positive definite
weight matrix. σ 2

p,I and σ 2
μ are the corresponding variance

factors for the observations yp,I and the prior information
μ, respectively.

After estimating the scaling coefficient vector and its
covariance matrix, they are used to calculate the scaling
coefficient vector d I−1|I and the corresponding covariance
matrix �dI−1|I of the next lower level, by applying the pyra-
mid algorithm according to Eqs. (12) and (13). Then, instead
of transforming the coefficient vector d I−1|I directly to the
next lower level I − 2, which is the usual procedure in pre-
vious studies about the pyramid algorithm, it is updated by
the gravity observations introduced at this level I − 1. The
updated coefficient vector d I−1 is then transformed to the
level I − 2 following Eqs. (12) and (13). Assuming that Q
groups of observations yq,I−1 are introduced at level I − 1,
the combination of yq,I−1 and d I−1|I is realized through the
parameter estimation:

⎡

⎢⎢⎢⎢⎢⎣

y1,I−1
y2,I−1

...

yQ,I−1
d I−1|I

⎤

⎥⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎢⎢⎣

e1,I−1

e2,I−1
...

eQ,I−1

ed

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

A1,I−1

A2,I−1
...

AQ,I−1

I

⎤

⎥⎥⎥⎥⎥⎦
· d I−1 with

D

⎛

⎜⎜⎜⎜⎜⎝

⎡

⎢⎢⎢⎢⎢⎣

y1,I−1
y2,I−1

...

yQ,I−1
d I−1|I

⎤

⎥⎥⎥⎥⎥⎦

⎞

⎟⎟⎟⎟⎟⎠

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ 2
1,I−1P

−1
1,I−1 0 0 . . . 0

0 σ 2
2,I−1P

−1
2,I−1

...
...

...

... 0
. . .

...
...

...
...

... σ 2
Q,I−1P

−1
Q,I−1 0

0 0 . . . 0 �dI−1|I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)
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The updated coefficient vector of level I − 1 is estimated as

d̂ I−1 =
⎛

⎝
Q∑

q=1

(
1

σ 2
q,I−1

AT
q,I−1Pq,I−1Aq,I−1

)
+ �−1

dI−1|I

⎞

⎠
−1

⎛

⎝
Q∑

q=1

(
1

σ 2
q,I−1

AT
q,I−1Pq,I−1yq,I−1

)
+ �−1

dI−1|I d I−1|I

⎞

⎠

(19)

with the covariance matrix

�̂dI−1 =
⎛

⎝
Q∑

q=1

(
1

σ 2
q,I−1

AT
q,I−1Pq,I−1Aq,I−1

)
+ �−1

dI−1|I

⎞

⎠
−1

(20)

The variance factors σ 2
1,I−1, σ

2
2,I−1, . . . , σ

2
Q,I−1 of the data

sets y1,I−1, y2,I−1, . . . , yQ,I−1 are estimated by the vari-
ance component estimation (VCE, Koch and Kusche 2002).

The combination of yI−1 = [ yT1,I−1, yT2,I−1, . . . ,

yTQ,I−1]T and d I−1|I can also be solved in analogy to the
Kalman filter (Kalman 1960), where d I−1|I and �dI−1|I can
be regarded as the predicted state vector and the related pre-
dicted covariance matrix, respectively. Then the corrected
state vector d I−1 as well as its covariance matrix �dI−1 are
computed by incorporating the involved measurements yI−1
at level I − 1

d̂ I−1 = d I−1|I + K I−1
(
yI−1 − AI−1d I−1|I

)
(21)

�̂dI−1 = (I − K I−1AI−1)�dI−1|I (22)

where K I−1 is the gain matrix

K I−1 = �dI−1|I A
T
I−1

(
AI−1�dI−1|I A

T
I−1 + �yI−1

)−1

(23)

with AI−1 = [AT
1,I−1, AT

2,I−1, . . . , AT
Q,I−1]T , and �yI−1

being the covariance matrix of the observation vector yI−1.
After taking into account the matrix identities, the solution
delivered by Eqs. (21) and (22) ends up identical to Eqs. (19)
and (20). We refer to Koch (1999) and Erdogan et al. (2020)
for the details of the matrix identities.

In the synthesis step, the estimated coefficient vector d̂ I−1

and its covariance matrix �̂dI−1 are used to calculate the
estimated detail signal Ĝ I−1 as well as its covariance matrix
�̂GI−1

Ĝ I−1 = B I−1 d̂ I−1 (24)

�̂GI−1 = B I−1�̂dI−1B
T
I−1, (25)

where Ĝ I−1 = [Ĝ I−1(x1), Ĝ I−1(x2), . . . , Ĝ I−1(xC )]T is
the vector of the estimated detail signal values at the com-
putation points x1, x2, . . . , xC of the output gravity model.
B I−1 is the design matrix, which contains the Blackman
wavelet functions �I−1(xc, xk,I−1), as defined in Eq. (6),
between the computation points of the gravity model and the
grid points of level I − 1.

The developed MRR procedure is summarized in Fig. 4:
after determining the estimated coefficient vector d̂ I at the
highest level I , it can be used to compute the detail signal
Ĝ I and to start the pyramid algorithm, i.e., to calculate the
coefficient vector d I−1|I of the next lower level. Then, this
coefficient vector d I−1|I is updated by introducing the obser-
vations at level I−1. Continuing this process until the lowest
level of the MRR, the scaling coefficients and the detail sig-
nals of each level can be obtained, and thus, the final gravity
functional is obtained according to Eq. (4). In this process,
the input gravity data obtained from different observation
techniques can be introduced into the estimation model at
the resolution level of their highest sensitivities. Hence, they
are able to contribute to the final model with maximum grav-
ity information. Typically, the terrestrial data are used at the
highest level. Then the shipborne or airborne data can be
introduced at a level lower, followed by the altimetry data and
the satellite gravity data, if applicable (see Fig. 2). Another
advantage of including data by levels is that the high frequen-
cies of the airborne data, which have large noise (Childers
et al. 1999), could be excluded to guarantee a stable solu-
tion (Jiang and Wang 2016). Moreover, since the data are
now introduced at the lower levels which require less grid
points, the size of the design matrices, and consequently, the
computation time is significantly reduced.

4 Validation with simulated data

4.1 Data

In the following, the MRR based on the pyramid algorithm
is first realized and evaluated using simulated data to ben-
efit from the availability of an accurate validation data set
serving as the “truth”. The study area is between 10◦ and 20◦
longitude and between 39◦ and 45◦ latitude (Fig. 5), covering
parts of South Europe, the Adriatic Sea, and the Tyrrhenian
Sea. Five types of gravity observations are used, namely ter-
restrial, airborne, and altimetry data, as well as satellite data
from GOCE and GRACE. These data are simulated from
the global gravity model GECO (Gilardoni et al. 2016), with
the position of the observations provided by the IAG-ICCT
(International Association of Geodesy - Inter Commission
Committee on Theory) Joint Study Group (JSG) 0.3 (“Com-
parison of current methodologies in regional gravity field
modeling”), running from 2011 to 2015. All observations
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Fig. 4 The multi-resolution representation (MRR) based on the pyramid algorithm

are simulated in the sense of disturbing gravity field quan-
tities, i.e., functionals of the disturbing potential. A detailed
data description can be found in Liu et al. (2020a). The ter-
restrial observations (yellow dots in Fig. 5) are generated on
a regular grid at the surface of the topography (DTM2006.0,
Pavlis et al. 2006) with a grid spacing of 5′ (which corre-
sponds to a spatial resolution of 10km). They are simulated
up to spherical harmonic (SH) degree and order (d/o) 2190,
in terms of the first order radial derivatives of the disturbing
potential. The airborne data (red dots in Fig. 5) are located
over the Adriatic Sea along synthetic flight tracks with an
altitude of 2.5km, generated in terms of the first order radial
derivatives of the disturbing potential up to SH d/o 1600. The
altimetry data (green dots in Fig. 5) are simulated up to SH
d/o 1000 in terms of geoid height N , based on the real ground
track of the altimetry mission Envisat (Extended Mission).
The GOCE (grey dots in Fig. 5) and GRACE (blue dots in
Fig. 5) data are simulated up to SH d/o 250, based on real
satellite orbits with a time span of 61 days and one month,
respectively.They are used in termsof the second-order radial
derivatives of the disturbing potential for GOCE and the dis-
turbing potential differences between the two satellites for
GRACE. Observation noise is also generated and added to
the gravity data, while the noise level is chosen according to
the assumptions of the JSG 0.3. White noise with standard

Fig. 5 The study area (observation area ∂�O ) and simulated gravity
data, including terrestrial (yellow dots), airborne (red dots), altimetry
(green dots), GOCE (grey dots), andGRACE (blue dots) data. The black
rectangle represents the investigation area ∂�I , where the final gravity
model is calculated

deviations of 0.01 mGal, 1 mGal, and 0.03m is added to the
terrestrial, airborne, and altimetry data, respectively. Colored
noise (Austen and Grafarend 2004; Naeimi 2013) is added to
the satellite data of GOCE and GRACE, with standard devi-
ations of 10 mE and 8 · 10−4 m2/s2, respectively. Validation
data are disturbing potential values simulated from GECO
with a spatial resolution of 5′ × 5′ and a maximum degree of
2190.
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Table 1 The data sets involved
at each resolution level i

i 1 2 3 4 5 6 7 8 9 10 11

data sets GGM GRACE GOCE altimetry airborne terrestrial

4.2 Model configuration

In this study case, the highest resolution level of MRR is
chosen as I = 11, considering the spatial resolution of the
data (see Fig. 2). The terrestrial data are used at the high-
est level to calculate the unknown coefficients of this level
following Eq. (16), with the expectation vector μ set to the
zero vector and the weight matrix P p,I and Pμ set to be the
identity matrix I (Lieb et al. 2016; Liu et al. 2020a, b). As
listed in Table 1, the airborne data are included at level 10,
the altimetry data are then added at level 9, followed by the
GOCE observations at level 8 and GRACE observations at
level 7. The long-wavelength component (up to level 6) is
modeled by the GGM within the RCR procedure, i.e., the
background model GECO up to spherical harmonic degree
n6 = 26 − 1 = 63 is removed from each observation, and
then restored to the estimatedmodel in the synthesis step. The
single-level model and the MRR without the pyramid algo-
rithm (see Sect. 1) are also calculated to serve as comparison
scenarios. For the single-level model, all observations are
combined at level 11, with the long-wavelength component
(up to degree 63) modeled by GECO. For the MRR without
pyramid algorithm, the unknown coefficients are estimated
at each resolution level by combining all types of observa-
tions, and these coefficients are used to calculate the detail
signals of each level. Wu et al. (2018) point out that the exist-
ing publications lack comparisons between the MRR and
the single-level approach. Thus, the direct comparison of the
single-level approach, the MRR without pyramid algorithm,
and the MRR based on the pyramid algorithm, presented in
this study fills this gap in current literature.

The Reuter grid is used, which generates a homogeneous
coverage of equidistributed grid points on the sphere. The
total number Z of Reuter grid points on the sphere is decided
by a control parameter γ , and γ + 1 denotes the number of
points along the meridian (Eicker 2008). In this study, we
choose the parameter γ to be equal to the maximum spectral
degree ni of the expansion at each resolution level i (Wittwer
2009; Bentel et al. 2013b). In regional gravity fieldmodeling,
the computation area ∂�C , where the SRBFs are located,
needs to be chosen larger than the observation area ∂�O ,
where the observations are given (Fig. 5), and ∂�O needs
to be larger than the investigation area ∂�I , where the final
gravitymodels are computed, i.e., ∂�C ⊃ ∂�O ⊃ ∂�I . This
hierarchy is necessary to mitigate edge effects. The margin
size ηC,O between the computation area ∂�C and the obser-
vation area ∂�O is determined following (Lieb et al. 2016),
with

ηC,O = 360◦

ni cos(|ϕmax|) (26)

where ϕmax is the maximum latitude value. The margin size
is influenced by the shape of the SRBFs; they become wider
at the lower resolution levels (i.e., when nmax is smaller, see
Fig. 3), and thus, a larger margin size has to be chosen to
reduce edge effects (Liu et al. 2020b). In this case, the ηC,O is
chosen as 0.3◦, 0.6◦, 1.2◦, 2.4◦, 4.8◦ for the levels 11, 10, 9,
8, 7, correspondingly (as shown in Fig. 6). Consequently, the
number of unknown coefficients is decided by the generated
Reuter grid points that are located inside the computation area
∂�C of each resolution level (which amounts to K11 = 7759,
K10 = 2238, K9 = 856, K8 = 326, and K7 = 157). In
the single-level approach, the margin size ηO,I between the
observation area ∂�O and the investigation area ∂�I is usu-
ally chosen the same as ηC,O . For the MRR, multiple values
of ηC,O are chosen for the different resolution levels. Numer-
ical investigations in this work show that it is sufficient to
choose the margin size ηO,I as the median of the applied
ηC,O of each level, i.e., ηO,I = 1.2◦. Figure5 (black rectan-
gle) presents the corresponding investigation area ∂�I .

In case of the MRR based on the pyramid algorithm, only
specific observation groups are used at the higher resolu-
tion levels, which means the involved observations do not
have full coverage over the observation area ∂�O . This will
cause strong edge effects at the border of the high-resolution
observations in the calculated detail signals, and further con-
taminate the final gravity model. For example, at level 11, the
terrestrial data are available only in the onshore area. Strong
edge effects inG11 thus showup at the border of the terrestrial
data coverage, i.e., near the coastal lines (as will be shown in
Sect. 4.3). As pointed out by Lieb (2017), it is a challenging
task to handle the edge effects properly in case of MRR, and
it is one of the major difficulties in the practical realization
of the pyramid algorithm. To address this issue, we develop a
strategy in this study to reduce the edge effects in the calcu-
lated detail signals of each level. Besides the observation area
∂�O (Fig. 5) and the investigation area ∂�I (black rectangle
in Fig. 5) for the whole study area, we also define ∂�Oi and
∂�Ii for each resolution level i when calculating the detail
signals. To be more specific, ∂�Oi depends on the data cov-
erage of the observation groups involved at this level, and
∂�Ii is adapted to ∂�Ii = ∂�Oi ∩ ∂�I . As an example,
∂�O11 is defined as the onshore areas in Fig. 5 since only ter-
restrial observations are involved at level 11. Consequently,
∂�I11 (see Fig. 7) is adapted to the onshore areas within the
investigation area ∂�I . The detail signals Gi of level i are
then calculated within ∂�Ii .
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Fig. 6 The estimated scaling coefficients at level 11 (first row), and lev-
els 10, 9, 8, 7 (second to fifth row). From the second to the fifth row, the
left column represents the coefficients di |i+1 estimated directly from
the pyramid algorithm, and the right column represents the updated

coefficients di after including the new data at this level (following the
procedure explained in Sect. 3). The black rectangle inside each plot
shows the observation area ∂�O
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Fig. 7 The detail signal Gi of theMRRbased on the pyramid algorithm
before (left column) and after (mid column) adapting the investigation
area ∂�Ii , as well as the modeled gravity signal (in terms of disturbing

potential) F I ′ = F̄+∑I ′
i=7 Gi (right column) from level 11 (first row)

to level 7 (fifth row), with F̄ (right column, last row) modeled from
GECO

4.3 Modeling results and discussions

The estimated coefficients at each level are plotted in Fig. 6,
and the black rectangle inside each plot represents the obser-
vation area ∂�O (Fig. 5). From the first row (level 11) to
the fifth row (level 7), the margin size ηC,O increases and
the number of unknown coefficients decreases. The top row

shows the scaling coefficients d11 at level 11, which are esti-
mated from the terrestrial observations only. Comparing the
plot of d11 to Fig. 5, it is clear that the values of the coef-
ficients are almost zero in the area where no terrestrial data
exist, and larger absolute values are observed where these
data are available. This shows that additional gravity infor-
mationwith respect to the backgroundmodel is only captured
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at the locations with terrestrial data coverage, which is rea-
sonable (Liu et al. 2020b). The left plot at the second row
shows the scaling coefficients d10|11 calculated directly from
the pyramid algorithm, and the right one displays the updated
coefficients d10 after including the airborne data at level 10.
Comparing the two plots at level 10, we can see that the air-
borne observations insert additional gravity information in
the region where they are located. They fill parts of the data
gaps from the terrestrial data, and the gravity signals captured
from the previous level (level 11) are preserved at the same
time. At level 9 (third row), the same behavior as at level 10
can be observed, i.e., the altimetry data fill data gaps at the
left bottom corner of the observation area, and meanwhile,
the gravity signals from level 10 are kept. At level 8 (fourth
row) and level 7 (fifth row), the satellite data which have even
distributions are used. It can be observed that the right plots
showdarker colors (larger values) than the left ones inside the
observation area ∂�O , which indicate the contribution of the
GOCE and GRACE data at level 8 and level 7, respectively.

Figure7 (left column) visualizes the detail signals Gi of
theMRRbased on the pyramid algorithm at each level, which
show the spectral information contained in the corresponding
frequency ranges (see Fig. 2). At level 11, the detail signal
G11 captures gravity information only in onshore area where
the terrestrial data are located. However, at the border of the
terrestrial data, strong edge effects showup. The same is valid
in the detail signal G10 of level 10, large edge effects occur
at the border of the data coverage, i.e., in the coastal area of
the Tyrrhenian Sea. We thus apply the strategy explained in
Sect. 4.2 to reduce these edge effects by defining ∂�Ii , i.e.,
by setting ∂�I11 = ∂�O11 ∩∂�I and ∂�I10 = ∂�O10 ∩∂�I .
After level 9, the involved observations have full coverage
over the observation area ∂�O (i.e., ∂�Ii = ∂�I ), and no
edge effects are visible within ∂�I . Correspondingly, the
new detail signals of level 11 and 10 after adapting ∂�Ii
are presented in Fig. 7 (mid column), and the edge effects
are significantly reduced. Figure7 (right column) shows the
gravity signal F I ′ = F̄ + ∑I ′

i=7 Gi of each level. The grav-
ity signal (in terms of disturbing potential) of level 6 (F̄,
right column, last row) is the long wavelength component
from the global gravity model GECO, which only contains
very smooth information.When the resolution level increases
from level 7 (fifth row) to level 11 (first row), more and more
fine structures show up in both the detail signals and the
gravity signals.

The final modeling result (Fig. 7 right column, first row) is
evaluated by the validation data, and their difference is visu-
alized in Fig. 8d. For comparison, the single-level model, the
MRR without pyramid algorithm, and the MRR based on
pyramid algorithm before adapting the ∂�Ii are also com-
puted, and their differences to the validation data are shown
in Fig. 8a, b, and c, respectively. The corresponding statistics

are listed in Table 2. As shown in Fig. 8a, the single-level
model delivers small differences compared to the validation
data in onshore regions, where the terrestrial data are avail-
able. However, in offshore regions with no terrestrial data
coverage, the differences are quite large. This result demon-
strates that the single-level approachmajorly recovers gravity
information from the terrestrial observations, and the contri-
bution of other measurements which are sensitive to lower
spectral bands is not captured sufficiently. It indicates that the
single-level model is not able to benefit from all the obser-
vation types, as mentioned in the Introduction, and the MRR
is necessary, especially in cases where the terrestrial data do
not have large coverage over the study area. After applying
the MRR, the differences w.r.t. the validation data in off-
shore regions decrease (see Fig. 8b), which indicates that the
gravity information in lower-resolution observations are bet-
ter extracted. The MRR without pyramid algorithm delivers
an RMS error of 4.21 m2/s2, which is 23% smaller than
the one given by the single-level approach. However, Fig. 8b
still shows the same pattern as the single-level model, i.e.,
larger differences show up in the offshore regions compared
to the onshore regions. Although the MRR (without pyramid
algorithm) already gives better results than the single-level
approach, it is not optimal. Indeed, Lieb (2017) points out
that the detail signals of different levels become correlated
when all the observation groups are used at each level and
recommends the implementation of the pyramid algorithm
as further development of the MRR approach.

In case of the MRR based on the pyramid algorithm, as
shown in Fig. 8d, the differences between the calculated grav-
ity model and the validation data do not show dependency
on the distribution of certain types of observations, i.e., the
offshore area does not show larger differences than the area
with terrestrial data. It suggests that each observation type
makes a contribution to the final result, and the MRR bene-
fits from all the measurements. This statement is supported
by the fact that theRMSvalue delivered by theMRRbased on
the pyramid algorithm decreases by 50%w.r.t. the one deliv-
ered by the single-level approach, and 35% w.r.t. that of the
MRR without pyramid algorithm. The comparison between
Fig. 8d and Fig. 8c shows the benefit of applying the pro-
posed strategy for reducing edge effects, i.e., by adapting the
investigation area ∂�Ii at each level. The edge effects at the
border (outside the coverage) of the terrestrial data are sig-
nificantly reduced in Fig. 8d. The improvement achieved by
applying this strategy is 21% in terms of RMS, w.r.t. the val-
idation data. However, at the border (inside the coverage) of
the terrestrial observations, the edge effects remain the same
after adapting ∂�Ii , as also shown in the calculated detail
signals at level 11 and level 10 (Fig. 7, mid column). Thus,
a main challenge to be faced in future studies regarding the
MRR based on the pyramid algorithm is to further reduce
these edge effects.
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Fig. 8 Differences between the modeled disturbing potential results
and the validation data, delivered by a the single-level approach, b the
MRR without pyramid algorithm, c the MRR based on the pyramid

algorithm before adapting the investigation area ∂�Ii , and d the MRR
based on pyramid algorithm after adapting ∂�Ii to reduce edge effects

Table 2 Comparison between the single-level model, the MRR without pyramid algorithm, and the MRR based on the pyramid algorithm, with
respect to the validation data in terms of disturbing potential values (unit [m2/s2])

Min Max RMS

Single-level model (Fig. 8a) −38.22 21.64 5.48

MRR without pyramid algorithm (Fig. 8b) −27.13 27.64 4.21

MRR based on pyramid algorithm (before adapting ∂�Ii , Fig. 8c) −20.98 12.82 3.44

MRR based on pyramid algorithm (after adapting ∂�Ii to reduce edge effects, Fig. 8d) −11.63 11.41 2.72

5 Validation with real data

5.1 Data andmodel configuration

After testing the performance of the MRR based on the
pyramid algorithm with simulated data successfully, we
apply this method to real data sets. Figure9 shows the
study area, located between 5.9◦ and 14.3◦ longitude and
between 53.2◦ and 55.3◦ latitude, covering Northern Ger-
many, parts of the North Sea and the Baltic Sea, and a small
part of the Netherlands and Denmark. The gravity obser-
vations are taken from Lieb et al. (2016), where a detailed

data description can be found. The terrestrial data (yellow
dots in Fig. 9) are provided by the Federal States Schleswig-
Holstein, MecklenburgWest-Pomerania, and Lower Saxony,
with 23,465 observations covering Northern Germany. This
high-resolution data set is given in terms of absolute gravity g
and used in terms of gravity anomalies�g. Two airborne data
sets (orange flight tracks in Fig. 9) are provided by the Fed-
eral Agency of Cartography and Geodesy (BKG), one over
the North Sea, and another one over the Baltic Sea, collected
in 2007/2008 and 2006, respectively. They have been pre-
processed and are provided in terms of gravity disturbance
δg; the data accuracy is estimated by BKG to be 2 to 3 mGal.
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Fig. 9 The observation area
∂�O and the distribution of real
gravity data, including terrestrial
(yellow dots), shipborne (red
dots), airborne (orange dots),
and altimetry (green dots) data.
The black rectangle represents
the investigation area ∂�I ,
where the final gravity model is
calculated

The flight campaign over theNorth Sea contains 5,651 obser-
vations, with an average flight altitude of 592m; the flight
campaign over the Baltic Sea contains 6,508 observations,
with an average flight altitude of 832m. The 1,183 shipborne
measurements (red dots in Fig. 9) in the Baltic Sea are pre-
processed and provided by the Federal State Mecklenburg
West-Pomerania in terms of gravity anomalies �g. Satellite
altimetry data (greendots inFig. 9) are providedby theDGFI-
TUM altimetry group in terms of geoid height N , which is
derived from the measured sea surface heights (SSH) and
the instantaneous dynamic ocean topography (iDOT) (Bosch
et al. 2013). The altimetry data include measurements from
multiple altimetry missions, namely the ERS-1e/f (Geode-
tic Mission phase, 1994–1995, cycles Nr. 139-143), Envisat
(Extended Mission phase, 2010–2012, cycles Nr. 096-113),
Jason-1 (Geodetic Mission phase, 2012–2013, cycles Nr.
500-537), andCryosat (2010-2013, cyclesNr. 011-035),with
an average spatial resolution of 10km in the North Sea. In the
Baltic Sea, we use a sparse altimetry data distribution delib-
erately in order to test our approach also in areas with poor
data coverage. For each altimetry measurement, corrections
derived from a multi-mission cross-calibration (Bosch et al.
2014) have been applied. The satellite data from GOCE and
GRACE are included in this study case as the satellite-only
global gravity model (GGM), instead of direct observations.
Lieb et al. (2016) point out that the study area is too small
(especially in the north–south direction) in comparison with
the spatial resolution of the satellite data, and thus, does not
allow resolving reliable long-wavelength information. In this
way, we present the performance of the MRR based on the
pyramid algorithm in two different scenarios of using the
satellite data, i.e., as direct observations and as a satellite-only
GGM, in the simulated (Sect. 4) and real case, respectively.

The highest resolution level of the MRR is chosen as
I = 12 according to the spatial resolution of the data, and
only the terrestrial data are used at the highest level to cal-
culate the unknown coefficients of this level and to start
the pyramid algorithm. The shipborne and the airborne data

are included at level 11 and level 10, respectively, and the
altimetry data are added at level 9. The long-wavelength com-
ponent up to level 8 (degree 255) is modeled by using the
RCR procedure with GOCO06s (Kvas et al. 2021), which
enhances an optimal combination of the GOCE and GRACE
data. Same as in the simulated case (see Sect. 4), we also
calculate the single-level model and the MRR without the
pyramid algorithm for comparison. The number of Reuter
grid points at each level is determined in the same man-
ner as for the simulated study case, and the margin size
ηC,O between the computation area ∂�C and the observa-
tion area ∂�O is determined following Eq. (26). In this study
case, the ηC,O is chosen as 0.15◦, 0.3◦, 0.6◦, 1.2◦ for levels
12, 11, 10, 9, correspondingly. Consequently, the number of
unknown coefficients amounts to K12 = 6638, K11 = 2111,
K10 = 684, and K9 = 315 at each resolution level. The
margin size ηO,I between the observation area ∂�O and the
investigation area ∂�I (black rectangle in Fig. 9) is chosen
as the median of the applied ηC,O , i.e., ηO,I = 0.45◦. As
discussed in Sect. 4.2, strong edge effects show up in the cal-
culated detail signals of the high resolution levels, due to
the fact that the involved observations at these levels do not
have full coverage over ∂�O . Again, we apply the strategy
proposed in Sect. 4.2, and define ∂�Ii = ∂�Oi ∩ ∂�I for
calculating the detail signals at each level. In the following,
we always refer the MRR based on the pyramid algorithm to
the one after adapting ∂�Ii .

5.2 Modeling results and discussions

The elements of the estimated coefficient vectors d̂i and their
standard deviations at each level i are plotted in Fig. 10;
the black rectangle inside each plot represents the observa-
tion area ∂�O . As we can see, the estimated coefficients at
level 12 only contain additional gravity information from the
terrestrial data. Consequently, their standard deviations are
much larger in regionswithout terrestrial observations,which
is reasonable. At level 11, level 10, and level 9, the shipborne,
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Fig. 10 The estimated scaling coefficients (left column) and their standard deviations (right column) from level 12 (first row) to level 9 (fourth
row). The black rectangle inside each plot represents the observation area ∂�O

airborne, and altimetry data insert additional information,
respectively. The new observations introduced at the lower
levels fill the data gaps from the terrestrial observations, and
the features from the highest level are preserved at the same
time. The behavior of the standard deviations coincides with
the coefficients, i.e., from level 12 to level 10, the standard
deviations at the locations with shipborne and airborne data
decrease, and from level 10 to level 9, thosewithin the altime-
try data coverage decrease.

The computed regional quasi-geoid models from the
single-level approach, the MRR without pyramid algorithm,
and the MRR based on the pyramid algorithm (after adapt-
ing ∂�Ii ) are firstly validated using GPS/leveling data in
Northern Germany (Gruber et al. 2011). 53 data points are
available within the investigation area ∂�I (black rectan-

gle in Fig. 9), which are derived from GPS-based ellipsoidal
heights and leveling-based normal heights. The differences
between the computed height anomaly results and those
from GPS/leveling are shown in Fig. 11, and the correspond-
ing statistics are listed in Table 3. The mean value of the
difference between the gravimetrically determined height
anomalies and those from GPS/leveling amounts to around
33cm. It is consistent with the value reported in Gruber
et al. (2011)), and is caused by differences in the height
system definition, i.e., the local normal heights in Germany
refer to the vertical datum of the European Vertical Network
(EUVN), which is defined as the equipotential surface of the
Earth’s gravity field passing through the “Normaal Amster-
dams Peil” (NAP; fundamental tide gauge in Amsterdam, the
Netherlands). Figure11 shows clearly that theMRRbased on
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Fig. 11 Differences between the
calculated quasi-geoid model
and the GPS/leveling data,
delivered by a the single-level
approach, b the MRR without
pyramid algorithm, and c the
MRR based on the pyramid
algorithm. Note that the mean
values of the differences are
removed

Table 3 Comparison between the single-level approach, theMRRwith-
out pyramid algorithm, and the MRR based on the pyramid algorithm
w.r.t. GPS/leveling data (in terms of quasi-geoid, note that the mean

differences are removed) and w.r.t. the DTU17 grid (in terms of gravity
anomaly)

w.r.t. GPS/leveling data (unit [cm]) w.r.t. the DTU17 grid (unit [mGal])

Min Max RMS Min Max RMS

Single-level −6.48 9.36 3.43 −53.24 60.46 7.22

MRR without pyramid algorithm −9.70 4.57 2.88 −44.17 39.63 6.25

MRR based on pyramid algorithm −4.50 5.15 2.23 −7.98 8.70 2.67

the pyramid algorithm delivers the smallest difference w.r.t.
the GPS/leveling data, with an RMS error of 2.23cm, which
is 23% smaller than the one given by the MRR without pyra-
mid algorithm, and 35% smaller than that of the single-level
model. Such large improvements demonstrate the benefits
of applying the MRR based on the pyramid algorithm. Fig-
ure11a (single-level approach) and Fig. 11b (MRR without
pyramid algorithm) show much larger differences w.r.t. the
GPS/leveling data in comparison to Fig. 11c (MRR based
on the pyramid algorithm), even in regions with very dense
terrestrial data (between 11◦ and 13.85◦ longitude).

In the offshore area where no GPS/leveling data are avail-
able, the computed gravity models are validated with the
2′ × 2′ altimetric gravity anomaly grid DTU17 (Andersen
and Knudsen 2019). The differences between the com-
puted gravity anomaly results and the DTU17 are shown in
Fig. 12, and the corresponding statistics are listed in Table

3. Again, the largest differences are delivered by the single-
level approach (Fig. 12a), with an RMS error of 7.22 mGal.
In the single-level model, much smaller differences show up
in regions with shipborne data coverage (see Fig. 9), which
suggests that itmajorly recovers gravity information from the
high-resolution shipborne data, and information from other
measurement types are not captured sufficiently. This result
agrees with the conclusion drawn from the simulated study
case (see Sect. 4.3). In comparison to the single-level model,
applying theMRR (without pyramid algorithm) improves the
modeling results by 13%. Comparing Fig. 12b with Fig. 12a
reveals significant improvements in regionswhere the altime-
try data are located (between 6.35◦ and 7◦ longitude). This
indicates that the MRR extracts gravity information from the
lower resolution altimetry data better than the single-level
approach. However, it can still be seen from Fig. 12b that
larger differences occur in regions without shipborne data
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Fig. 12 Differences between the
calculated gravity anomaly
results and the DTU17 grid in
the offshore area, delivered by a
the single-level approach, b the
MRR without pyramid
algorithm, and c the MRR based
on the pyramid algorithm

coverage. The differences w.r.t. the DTU17 are significantly
reduced when the MRR based on the pyramid algorithm is
applied, giving an RMS of 2.67 mGal, which is 57% smaller
than the one delivered by the MRR without pyramid algo-
rithm, and 63% smaller than that of the single-level approach.
The improvement achieved by applying the MRR based on
the pyramid algorithm is larger in the offshore area than in
the onshore area, where high-resolution terrestrial data are
available. It demonstrates that the single-level approach can-
not represent the lower-resolution data in an optimal way,
and the MRR based on the pyramid algorithm is beneficial,
especially in regions where high-resolution gravity data are
not available. In the MRR based on the pyramid algorithm
(Fig. 12c), larger differences again occur at the border of
the higher-resolution gravity data (shipborne and airborne),
which is caused by edge effects, as discussed in Sect. 4.3.

It is worth mentioning that validation in the offshore area
was also made w.r.t. the NKG2015 gravimetric quasi-geoid
model (Ågren et al. 2016) to rule out possible conflicts
when validating our results with external models also based
on satellite altimetry data as the DTU17. The differences
between the calculated quasi-geoid results and theNKG2015
model show the same pattern as those w.r.t. the DTU17, i.e.,
Fig. 12. Thus, this comparison is not shown in detail here
due to the length of the manuscript. In comparison to the
NKG2015, the improvement achieved by applying the devel-
oped MRR scheme based on the pyramid algorithm is 39%

w.r.t. the MRR without pyramid algorithm, and it reaches
55% w.r.t. the single-level approach, in terms of RMS value.

6 Conclusion and outlook

This study focuses on the spectral combination of different
types of gravity observations through the MRR based on the
pyramid algorithm,which is realized successfully for the first
time in connection with sequential parameter estimation, in
regional gravity field modeling. We address in this paper the
challenges regarding the practical realization of the pyramid
algorithm. Firstly, a successive low-pass filtering for trans-
forming the estimated coefficients of the highest resolution
level to lower resolution levels is proposed. Furthermore, we
develop an innovative MRR scheme where the coefficients
for calculating the detail signals at each lower resolution
level are not only determined from the pyramid algorithm
but also updated by a direct combination with observation
groups included according to their spectral resolution. The
main contribution of our approach is that the final gravity
model is able to benefit from the individual strengths of each
observation type. The settings of the MRR are characterized,
including the type of the SRBFs, the location of the SRBFs,
and the margin size applied at each level. When the MRR
based on the pyramid algorithm is applied, only specific
data sets are used at the higher resolution levels, resulting
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in strong edge effects at the border of the high-resolution
observations. Therefore, we additionally develop a suitable
strategy to adapt the investigation area ∂�Ii at each level i
according to the coverage of involved observations. This is
also a remarkable innovation of our approach as it reduces
edge effects in the calculated detail signals (and therefore,
the final gravity model) significantly.

The performance of the MRR based on the pyramid
algorithm is evaluated in comparison to the conventional
single-level approach and the MRR without pyramid algo-
rithm using both simulated and real gravity data. In the
simulated study case, the RMS obtained by the MRR based
on the pyramid algorithm is 50% smaller than the one deliv-
ered by the single-level approach, and 35% smaller than the
one given by the MRR without pyramid algorithm, compar-
ing to the validation data. Moreover, the single-level model
shows very large differences to the validation data in offshore
regions,which indicates that the contribution of other types of
observations is not captured as sufficiently as the terrestrial
observations. This shows that the single-level approach is
biased towards the terrestrial measurements, and the gravity
information frommeasurements with medium to low resolu-
tion is not extracted sufficiently. Applying theMRR (without
pyramid algorithm) improves the modeling results in off-
shore regions. However, it still shows larger differences w.r.t.
the validation data in the offshore area in comparison to the
onshore area. Thus, it is important and beneficial to apply
the MRR based on the pyramid algorithm, especially when
the high-resolution terrestrial data do not have full coverage
over the study area.

In the real data case, the MRR based on the pyramid
algorithm is applied for regional gravity field modeling in
Northern Germany. The terrestrial, shipborne, airborne, and
altimetry observations are used at the resolution levels 12,
11, 10, and 9, respectively. At the lower levels, the grav-
ity information obtained from the highest level is preserved,
and at the same time, the new observations introduced at
this specific level contribute with additional information and
fill data gaps. Such features in the estimated coefficients
are observed in both the simulated and real data cases. The
computed gravity models are validated in terms of quasi-
geoid and gravity anomaly with GPS/leveling data in land
and the DTU17 in offshore area, respectively. In compari-
son to the single-level approach, the improvement achieved
by the MRR based on the pyramid algorithm is 35% and
63% in terms of RMS value, w.r.t. the GPS/leveling data and
DTU17, respectively. Comparedwith theMRRwithout pyra-
mid algorithm, the RMS error obtained by the MRR based
on the pyramid algorithm decreases by 23% and 57% w.r.t.
the GPS/leveling data and DTU17, respectively. Such signif-
icant improvements further demonstrate the benefits of the
MRRbased on the pyramid algorithm.Results in the real case
again show that both the single-level approach and the MRR

without pyramid algorithm cannot recover gravity informa-
tion from the lower-resolution observations as sufficient as
the MRR based on the pyramid algorithm.

In both the simulated and the real cases, larger differences
w.r.t. the validation data in the MRR based on the pyramid
algorithm occur at the border of the high-resolution data, due
to edge effects. Thus, a major concern for future work is to
develop strategies for further reducing the edge effects in
the calculated detail signals. We also plan to include the full
variance-covariance matrix of the GGM. In current studies,
theweightmatrix of the prior information (used at the highest
level) is defined as the identity matrix, which is computation-
ally easy. However, better andmore realisticmodeling results
might be obtained by considering the full covariance matrix
of the GGM instead of a simple identity matrix. In addition,
it is also planned for future work to use real GOCE gravity
gradients and K-band range-rate (KBRR) data fromGRACE
as direct observations in our developed MRR scheme.
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