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Abstract 

Even more than 75 years after the Second World War ended, numerous unexploded bombs (duds) 

linger in the ground and pose a considerable hazard to society. The areas that may contain duds 

are documented in so-called impact maps, which are based on locations of exploded bombs; these 

locations can be found in aerial wartime images taken after bombing. Often, several surveillance 

flights were carried out and, thus, areas may be covered by multiple images. Such images are being 

used today by experts to manually identify suspicious locations concerning duds, which entails an 

immense processing effort. Consequently, for the cost-efficient creation of an impact map, in this 

work flagging areas to be probed, an automatic generation is indispensable. 

To generate impact maps, in this thesis a novel probabilistic approach based on marked point 

processes (MPPs) for the automatic detection of bomb craters in aerial wartime images is investi-

gated. The object model for the craters is represented by circles and is embedded in the MPP-

framework. By means of stochastic sampling the most likely configuration of objects within the 

scene is determined. Randomly adding objects to and removing them from the current configura-

tion, or changing their positions and modifying the circle parameters, creates new object configu-

rations. Each configuration is evaluated using an energy function that describes its consistency 

with the predefined model. High gradient magnitudes along the object border, homogeneous grey 

values inside the object as well as a high contrast between the object and a concentric annulus 

around it are favoured while overlaps between objects are penalized. In connection with the sto-

chastic sampling, the Reversible Jump Markov Chain Monte Carlo method in combination with 

simulated annealing is used to search for the global optimum of the energy function in an iterative 

way. To take advantage of the multi-image coverage, the procedure allows the combination of 

individual detection results covering the same location. Afterwards, a probability map for duds is 

generated from the detections via kernel density estimation and areas around the detections are 

classified as contaminated, resulting in an impact map. 

The method is tested on aerial wartime images acquired by the Allied forces during World War 

II and taken over different areas in Europe. Within the images, content and appearance differ, the 

latter e.g. due to blurring, uneven illumination, lack of contrast or changes due to time. For evalu-

ation purposes, reference data manually annotated by experts are used. The results show the po-

tential of the procedure, also indicating that complex image content pushes the method to its limits. 

By using redundant image information, compared to the single image approach, a clear improve-

ment is achieved; experiments show an increased F1-score in almost every case. Finally, experi-

ments in connection with the precision of the generated impact map reveal that 45 % of the areas 
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that actually need to be probed can be detected with a precision of 90 %, rendering the procedure 

attractive for supporting the manual inspection of the images. 

 

Keywords: Marked point processes, Reversible Jump Markov Chain Monte Carlo sampling, 

aerial wartime images, bomb craters, duds, impact maps 
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Kurzfassung 

Selbst mehr als 75 Jahre nach Ende des Zweiten Weltkriegs verweilen noch zahlreiche nicht ex-

plodierte Bomben (Blindgänger) im Boden und stellen eine erhebliche Gefahr für die Gesellschaft 

dar. Die Gebiete, in denen sich Blindgänger befinden können, werden in so genannten Belastungs-

karten dokumentiert, die auf den Positionen der explodierten Bomben beruhen; diese Positionen 

sind auf Kriegsluftbildern zu finden, die nach der Bombardierung aufgenommen wurden. Oftmals 

wurden mehrere Aufklärungsflüge durchgeführt, sodass Gebiete durch mehrere Bilder abgedeckt 

sein können. Solche Bilder werden heutzutage von Experten genutzt, um manuell verdächtige 

Stellen im Hinblick auf Blindgänger zu identifizieren, was mit einem immensen Bearbeitungsauf-

wand verbunden ist. Folglich ist für die kosteneffiziente Erstellung einer Belastungskarte, welche 

in dieser Arbeit zu sondierende Gebiete ausweist, eine automatische Generierung unerlässlich. 

Zur Erstellung von Belastungskarten wird in dieser Arbeit ein neuartiger probabilistischer An-

satz auf Basis von markierten Punktprozessen (MPPs) zur automatischen Detektion von Bomben-

kratern in Kriegsluftbildern untersucht. Das Objektmodell für die Krater wird durch Kreise reprä-

sentiert und in das Verfahren der MPPs eingebettet. Mittels stochastischem Sampling wird die 

wahrscheinlichste Konfiguration der Objekte innerhalb der Szene ermittelt. Durch das zufällige 

Hinzufügen und Entfernen von Objekten zu bzw. aus der aktuellen Konfiguration, die Änderung 

ihrer Positionen und die Modifikation der Kreisparameter entstehen neue Objektkonfigurationen. 

Jede Konfiguration wird anhand einer Energiefunktion bewertet, die ihre Übereinstimmung mit 

dem vordefinierten Modell beschreibt. Hohe Gradientenmagnituden entlang des Objektrandes, ho-

mogene Grauwerte innerhalb des Objekts sowie ein starker Kontrast zwischen dem Objekt und 

einem konzentrischen Umring um dieses werden favorisiert, während Überlappungen von Objek-

ten bestraft werden. Im Zusammenhang mit dem stochastischen Sampling wird die Reversible-

Jump-Markov-Chain-Monte-Carlo-Methode in Kombination mit Simulated Annealing genutzt, 

um das globale Optimum der Energiefunktion iterativ aufzufinden. Um die Vorteile der Mehrbild-

abdeckung zu nutzen, erlaubt das Verfahren die Kombination einzelner Detektionsergebnisse des-

selben Ortes. Anschließend wird aus den Detektionen mittels Kerndichteschätzung eine Wahr-

scheinlichkeitskarte für Blindgänger erzeugt und Bereiche um die Detektionen werden als belastet 

klassifiziert, wodurch eine Belastungskarte entsteht.  

Das Verfahren wird an Luftbildern aus dem Zweiten Weltkrieg getestet, die von den alliierten 

Streitkräften über verschiedenen Gebieten in Europa aufgenommen wurden. Innerhalb der Bilder 

unterscheiden sich Inhalt und Aussehen, letzteres z. B. aufgrund von Unschärfe, ungleichmäßiger 

Beleuchtung, fehlendem Kontrast oder zeitlich bedingter Veränderungen. Zur Evaluierung werden 
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von Experten manuell annotierte Referenzdaten herangezogen. Die Ergebnisse zeigen das Poten-

tial der Methode auf, geben aber auch zu erkennen, dass komplexe Bildinhalte das Verfahren an 

seine Grenzen bringen. Durch die Verwendung redundanter Bildinformationen wird im Vergleich 

zum Einzelbildansatz eine deutliche Verbesserung erzielt; Experimente weisen in fast allen Fällen 

eine höhere F1-Score auf. Schließlich zeigen Experimente im Zusammenhang mit der Korrektheit 

der erzeugten Belastungskarte, dass 45 % der tatsächlich zu sondierenden Gebiete mit einer Kor-

rektheit von 90 % gefunden werden können, was das Verfahren für die Unterstützung der manu-

ellen Inspektion der Bilder attraktiv macht. 

 

Schlagworte: Markierte Punktprozesse, Reversible-Jump-Markov-Chain-Monte-Carlo-Samp-

ling, Kriegsluftbilder, Bombenkrater, Blindgänger, Belastungskarten 
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1 Introduction 

1.1 Motivation 

Although the last combat operations of World War II took place more than three quarters of a 

century ago, their aftermath is still present today. Unexploded ordnance, such as grenades or 

bombs, remain hidden in the ground. The latter, in particular, are dangerous due to their high ex-

plosive force. Experts of Lower Saxony's Explosive Ordnance Disposal Service estimate that about 

10 % - 15 % of all dropped bombs did not detonate. During construction works there is still a real 

danger today that these duds explode. 

Surveillance flights were often carried out shortly before and after an air strike, but also on 

other occasions; more information regarding military aerial surveillance can be found in (Vogler, 

2020).  Thus, while multiple coverage over time may exist, these images are often blurry, contain 

image errors, have only little contrast and are unevenly illuminated. Furthermore, they differ in 

scale and the earth surface changed quickly at occasions, for instance due to weather (e.g. craters 

were filled with water) or human intervention (e.g. craters were filled with soil). Consequently, 

the appearance of wartime images of the same location taken at different times may vary consid-

erably. In addition, the depth of the crater as well as the geological and hydrological conditions of 

the soil body affects the appearance of craters in the image (Waga and Fajer, 2021). All this makes 

the automatic bomb crater detection a challenging task (Figure 1.1). 

The wartime images are being used today by experts to find potentially dangerous sites. In this 

context, a central task of Lower Saxony's Explosive Ordnance Disposal Service is the manual 

inspection of aerial wartime images to identify suspicious locations concerning duds. Despite the 

restriction to particularly endangered or otherwise relevant areas, it entails an immense processing 

effort, as the number of aerial wartime images taken over Lower Saxony between 1939 and 1945 

exceeds 150.000; the number of images for the whole of Germany is around 1.3 million, according 

to a query by Lower Saxony's Explosive Ordnance Disposal Service. For many applications, it is 

sufficient to have comprehensive information on the basic occurrence of warlike impacts. Such 

knowledge can be represented in an “impact map” indicating whether areas are likely to be con-

taminated or not. In this context, contaminated areas are expected to contain duds with a high 

probability, whereas uncontaminated areas should not contain any. 

Compared to bomb craters, duds (Figure 1.1 g) are far more difficult to detect in aerial images. 

They are only visible if they are not covered by the material ejected by bomb explosions in their 
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vicinity or by the detonation hole itself. Moreover, a large scale and good image quality are essen-

tial. In addition, duds can easily be confused with other structures, such as small image errors or 

one-man holes. 

For the cost-efficient creation of an impact map, an automatic generation is indispensable. This 

work focuses on bomb craters to deduce the probability for the occurrence of duds as craters indi-

cate areas where duds may be located. Hence, this probability can be used to identify contaminated 

areas to be represented in the impact map. The thesis focuses on a scenario in which the precision 

of the impact map is most important: One is interested in detecting areas that have a high likelihood 

of containing a dud so that it makes sense to send a team of experts to that area to probe it using 

geophysical detectors. As this is expensive, false detections should be avoided. In general, probing 

is recommended for the areas of individual bomb craters as well as clusters of craters, given that 

the former already need to be probed due to a possible occlusion of duds by bomb craters together 

with their ejecta. The main benefit for the Explosive Ordnance Disposal Service is that the aerial 

images would then no longer have to be inspected manually in areas flagged as to be probed. 

Another scenario could be to exclude areas in advance in which there is a high probability that no 

dud exists. Here, bomb craters must not be missed, because an area falsely classified as uncontam-

inated could contain a dud, which might lead to a detonation, e.g. in a building project. Thus, this 

type of application is to be judged as very critical and will not be pursued further in this work. 

For the automatic detection of objects, various techniques from the field of image analysis have 

been suggested. In this context, prior knowledge expressed in terms of probabilities is frequently 

integrated into the object model. Markov Random Fields (Geman and Geman, 1984) and Condi-

tional Random Fields (Kumar and Hebert, 2006), integrating probabilistic models of context, are 

restricted to local interactions, e.g. between neighbouring pixels. More global constraints about 

the objects, for instance with respect to their shape, are difficult to integrate. This limitation can 

be addressed using marked point processes (MPPs; Descombes and Zerubia, 2002; Daley and 

Vere-Jones, 2003), a model-based probabilistic method, which is especially suitable if a strong 

object model is needed, e.g. to obtain useful results even for challenging data. The basic concept 

of MPPs is to model objects by a stochastic process. This involves modelling the number and the 

distribution of the objects in the image as well as the parameters describing their geometry as 

random variables. Based on simulations, different object configurations can be created to find the 

globally optimal configuration that best fits the input data and the integrated prior knowledge. In 

this way, knowledge about objects is expressed on a holistic level and characteristics of objects 

can be integrated beyond pixel-based relations. In addition, MPPs benefit from their flexibility in 

integrating knowledge about the objects and their mutual relationships. Furthermore, the number 

of objects in the scene during sampling is variable, i.e. it does not have to be known beforehand. 

Starting with pioneering works (Baddeley and van Lieshout, 1993; Rue and Hurn, 1999), MPPs 

have achieved good results in several object detection problems (e.g. Lafarge et al., 2010; Tour-

naire et al., 2010; Börcs and Benedek, 2015; Favreau et al., 2019). Often, the Bhattacharyya dis-

tance (Bhattacharyya, 1943), measuring the contrast between the object and a concentric annulus 
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around it, is used within the energy function of the MPPs for the detection of circular or elliptical 

objects (e.g. Gamal-Eldin et al., 2010; Descamps et al., 2011; Dubosclard et al., 2014). However, 

the frequently present annulus of bomb craters, caused by the ejected material, may differ 

considerably from image to image, e.g. in terms of its width and appearance (see Figure 1.1). 

Therefore, this measure does not appear suitable on its own. In this context, the additional consid-

eration of gradient magnitudes at the object’s border (e.g. Ortner et al., 2007; Brédif et al., 2013) 

seems reasonable, though these two approaches are designed for the detection of buildings in dig-

ital surface models. 

As usually multiple but coarsely georeferenced images of the same area exist, exploiting redun-

dancy by merging detection results from overlapping image parts seems beneficial. In order to 

overcome the coarse georeferencing, it would be possible to improve the co-registration of the 

respective images based on global approaches, e.g. automatic aerial triangulation (Ackermann and 

Krzystek, 1997). However, this may become challenging, particularly due to the different appear-

ances (e.g. caused by seasonal changes, noise) and missing camera information. Given this, a local 

approach, such as in (Brenner et al., 2018), the only work the author of the thesis is aware of on 

that topic that makes use of redundant image information in an automatic manner, may be consid-

ered. However, Brenner et al. (2018) do not provide detailed information on their procedure and 

double detections from different images are eliminated, which is not suitable for the proposed 

application scenario. 

 

     

       

  

Figure 1.1: Different appearances of bomb craters and aerial wartime images. (a-f) Bomb craters 

appear differently due to varying scale, size or appearance. (g) Two potential duds are indicated 

by yellow arrows. (h-i) Two subsets of images of the same location taken in April and May 1944, 

respectively. 

(a) (c) (e) 

(b) (d) (f) 

(g) 

(h) (i) 
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Having in mind the application scenario, individual positions of bomb craters are not very in-

formative to indicate areas that contain duds with a high probability. In this context, a useful tool 

to deduce area-based statements is statistical modelling. Here, the existence of a dud is represented 

by a probability density function (pdf; Parzen, 1962). In contrast to proposed tile-based approaches 

(Tavakkoli Sabour et al., 2014; Juhász and Neuberger, 2018), this allows for a more precise delin-

eation of potentially contaminated areas. In general, parametric or non-parametric approaches may 

be used. While the former assume an analytical model for the pdf, with a parameterisation derived 

from training data, the latter estimates the pdf directly from the data. This second approach avoids 

having to select a pdf model and to estimate its distribution parameters (Bishop, 2006). As a pop-

ular non-parametric technique, kernel density estimation is used (e.g. Scott, 2015). 

1.2 Objective and scientific contribution  

The aim of the work is to develop a method for the automatic detection of bomb craters in aerial 

wartime images and the subsequent generation of an impact map using the detected objects. The 

scientific contribution can be summarised as follows. 

 The development of a novel approach for the detection of bomb craters in aerial war-

time images based on marked point processes. MPPs have not yet been used for the de-

tection of bomb craters. Inspired by other works with the aim of detecting round (e.g. Zhou 

et al., 2010; Aval et al., 2018) or elliptical (e.g. Descamps et al., 2011; Craciun and Zerubia, 

2013) isolated objects, which applies to bomb craters, in this thesis bomb craters are mod-

elled as circles. In this context, it can be shown that the object model of an ellipse, which 

may seem more obvious due to the sometimes elliptical shape of bomb craters, leads to 

similar results as the circle. Using a circle, an object is defined by fewer parameters, keeping 

the search space in the optimization process small and making the model generally more 

stable. In connection with the modelling of the energy function of the MPP for circular 

objects, the Bhattacharyya distance is often used in the literature. However, this measure 

alone does not appear to be suitable for the detection of bomb craters, as their frequently 

present annulus may differ considerably from image to image, e.g. in terms of its width and 

appearance. For this reason, a novel energy function is introduced in this work, which takes 

into account – among other characteristics – the homogeneity of grey values inside the ob-

ject, a frequently occurring property of bomb craters. 

 The consideration of redundant image information. Considering that aerial wartime im-

ages vary considerably in their appearance, unlike most existing work on that topic, this 

approach exploits redundancy by merging detection results from multiple overlapping and 

coarsely georeferenced images. In order to relax the requirements for precise georeferenc-

ing of aerial wartime images, which is difficult to obtain, similar to (Brenner et al., 2018), 
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matching of the individual detections referring to the same object is taken into account. 

However, in their work double detections from different images are eliminated in order not 

to miss any crater in an investigated area. Thus, the idea of supporting detections, i.e. that 

several detections of the same object in different images are an indication for indeed having 

found a correct object, is not pursued in the way needed in the proposed application sce-

nario. Consequently, this is addressed in the newly developed approach. By exploiting re-

dundant image information, the impact map derived from the combined detection results 

can be improved considerably. 

 The development of an approach transferable to a variety of aerial wartime images 

and to further images concerning population counting. The MPP-procedure is expected 

to be applicable not only for the detection of bomb craters in aerial wartime images. Indeed, 

it is primarily designed for this purpose and can be used for different areas with varying 

characteristics (e.g. in terms of appearance, content, lighting, ground sampling distance, 

number of bomb craters). At the same time, however, it should also allow population count-

ing in images. 

1.3 Thesis outline 

The contents of this thesis are structured as follows. In Chapter 2, related work on methods for 

object detection tasks, including the procedure of MPPs, is given. Moreover, previous works on 

bomb and planetary crater detection are surveyed. Finally, possible ways to derive area-based in-

formation from the locations of individual objects are illustrated. The mathematical basics of sto-

chastic optimization based on MPPs using Reversible Jump Markov Chain Monte Carlo sampling 

coupled with simulated annealing and of kernel density estimation are described in Chapter 3. 

Chapter 4 presents the novel framework developed in this thesis for the detection of bomb craters, 

the combination of individual detection results in connection with redundant image information 

and the derivation of the impact map. The experimental setting, including the setup of the experi-

ments with their associated objectives, the data sets used, the parameters chosen for the experi-

ments and the evaluation procedure for the results, are given in Chapter 5. Chapter 6 shows and 

discusses the results of the conducted experiments to reveal strengths and weaknesses of the 

method. Finally, conclusions are drawn and future directions of research are sketched in Chapter 7. 
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2 Related work 

This chapter reviews and discusses literature relevant to this thesis. Methods for object detection 

are surveyed on a more general level in Section 2.1. Afterwards, related work on object detection 

with marked point processes (MPPs) is discussed (Section 2.2). Existing approaches associated 

with the task of bomb crater detection are addressed in Section 2.3. As this thesis is concerned 

with the generation of an impact map, i.e. the deduction of area-based information from objects, 

Section 2.4 deals with spatial data analysis and its techniques. Given that crater detection plays an 

important role in planetary science too, and because several interesting methods have been devel-

oped in the context of planetary data, previous work on planetary crater detection is also surveyed 

(Section 2.5). The chapter closes with a comprehensive discussion of the reviewed literature in 

Section 2.6. 

2.1 Methods for object detection 

Within the last decades, due to its important role for a wide range of applications, several methods 

have been developed for the automatic detection of objects in optical remote sensing images, the 

kind of data to which the aerial wartime images used in this thesis can also be attributed. As a 

consequence of the widespread interest regarding the detection of objects, a number of publications 

already exist that provide an overview of the topic. In this context, while the works of Zhao et al. 

(2019) and Dhillon and Verma (2020) solely survey deep leaning based approaches, Cheng and 

Han (2016) as well as Zou et al. (2019) also include more traditional detection methods. Generally, 

following Cheng and Han (2016), methods for object detection can be divided into four main cat-

egories. 

One category includes template matching-based approaches, which can be considered as one 

of the earliest methods for object detection. In a first step, templates for the objects to be detected 

are generated, which are afterwards used to scan an image at each possible position to find, ac-

cording to a similarity measure, the best matches. Early research in the area of template matching 

concentrated on rigid templates (e.g. McKeown and Denlinger, 1988) that have been designed for 

detecting specific objects with simple appearance and small variations such as roads (e.g. Kim et 

al., 2004). However, due to their scale and rotation dependency and the usually existent large intra-

class variations among the objects, the use of rigid templates is limited. In contrast, deformable 

template matching (Fischler and Elschlager, 1973), making use of free-form deformable templates 
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or parametric templates (Jain et al., 1998), is more powerful and flexible in dealing with shape 

deformations and intra-class variations. Nevertheless, for template design, prior information re-

garding possible manifestations of objects in the data and parameters of the geometrical shape are 

needed. 

Another category are knowledge-based object detection methods, a review related to optical 

remote sensing images is given in (Baltsavias, 2004). These approaches typically translate the task 

of object detection into a hypotheses testing problem by making use of knowledge and rules on 

the objects to be detected. In this context, geometric knowledge and context knowledge is widely 

employed. The geometric information of the object encodes prior knowledge by using parametric 

or generic shape models. For example, Weidner and Förstner (1995) developed an approach to 

extract the 3D shape of buildings from digital elevation models making use of domain knowledge, 

specifically parametric and prismatic building models. Context knowledge includes information 

on how an object interacts with its neighbourhood or involves spatial constraints or relationships 

between objects and background. An example can be found in (Peng and Liu, 2005), who devel-

oped a shadow-context model to extract buildings in dense urban aerial images. It is worth noting 

that the core of knowledge-based object detection methods is how to effectively transform implicit 

knowledge about the objects into explicit detection rules. If the defined rules are too strict, objects 

may be missed; conversely, rules that are too loose will probably lead to false positives. 

With the growing availability of sub-metre imagery around the turn of the millennium, an in-

crease in contributions of object-based image analysis (Blaschke, 2010) was observed, consisting 

of two steps. First, the image is segmented into regions, each representing a relatively homogene-

ous group of pixels. In a second step, those segments, also referred to as objects, are classified. For 

the segmentation, numerous techniques have been developed; a review of algorithms and chal-

lenges can be found in (Hossain and Chen, 2019). However, Hay et al. (2005) pointed out that the 

real challenge lies in the definition of appropriate segmentation parameters for the varying size, 

shape, and spatial distribution of objects composing a scene, as the subsequent feature extraction 

and classification is highly dependent on the quality of the image segmentation. 

Finally, there are machine learning-based approaches, in which object detection can be per-

formed by learning a classifier that captures the variation in object appearances from training data 

in a supervised framework. The input of the classifier is a set of image regions for which their 

corresponding feature vectors and class labels are known. In traditional machine learning, for the 

extraction of the so-called hand-crafted features, e.g. spectral, textural, structural and 3D infor-

mation can be considered; a review on feature extraction is available in (Li et al., 2015). In this 

context, it is important to cleverly design the features, as the performance of the classifier will be 

limited by their quality. After feature extraction, the classifier can be trained with the objective of 

minimizing the misclassification error on such training samples, i.e. a model of the appearance of 

the objects in the data is learned. Finally, during classification, the classifier predicts the class label 

for unseen samples based on the learned features. For the classification, probabilistic approaches, 
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such as logistic regression (Bishop, 2006), and non-probabilistic approaches, as, for instance, sup-

port vector machines (Cortes and Vapnik, 1995) or random forests (Breiman, 2001), can be used 

in connection with traditional machine learning. In contrast, deep learning-based approaches mak-

ing use of convolutional neural networks (Krizhevsky et al., 2012) and having been very popular 

for several years, do not require the separation into feature extraction and classification. In fact, 

features and model are learned together, i.e. both tasks support each other. In the context of CNN-

based object detection, there are one-stage and two stage detectors. The latter follows the tradi-

tional object detection pipeline by generating region proposals at first and then classifying each 

proposal into object categories. Girshick et al. (2014) took the lead in proposing regions with CNN 

features (R-CNN), followed by networks improved with regard to certain aspects. Well-known 

works are, for instance, Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2015) and Fea-

ture Pyramid Networks (Lin et al., 2017). On the contrary, one-stage detectors, such as You Only 

Look Once (Redmon et al., 2016), adopt a unified framework to extract the object classes and 

locations simultaneously, making them fast. Both traditional machine learning-based as well as 

deep learning-based approaches need labelled training data to work at all, also making the quality 

of the results dependent on the samples considered for training. Due to the huge number of param-

eters to be learned, approaches based on CNNs need a comparatively larger set of training samples 

to yield good results and, thus, their creation is rather time-consuming. 

2.2 Object detection based on marked point processes 

MPPs, a model-based probabilistic approach, provide an alternative to the previously mentioned 

methods. They allow the use of a strong object model, an important asset if data quality might be 

poor. Based on simulations, different object configurations are created in order to find the globally 

optimal configuration that best fits the input data and the integrated prior knowledge. To evaluate 

the quality of the object configuration, an energy function is employed, typically consisting of a 

data and a prior energy. The former measures the consistency of the configuration with the input 

data, the latter integrates prior knowledge about the arrangement of the objects in the scene. As a 

result, the object configuration is found for which the energy is minimal. For the detection of 

objects using MPPs, simple geometric primitives are used (Section 2.2.1); more complex models 

are also considered (Section 2.2.2). In this context, favouring the sampling of objects at certain 

locations is commonly applied (Section 2.2.3). 
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2.2.1 Simple geometric primitives 

Single geometric primitives 

Often, simple geometric primitives (e.g. circles, ellipses and rectangles) are employed to represent 

the objects to be detected. This frequently involves the use of one individual primitive, e.g. a circle 

for the detection of tree crowns. 

Circles have been applied to a wide variety of data types, e.g. to detect tree crowns in airborne 

(Zhang et al., 2013; Aval et al., 2018) and mobile (Yu et al., 2012; Li et al., 2016) laser scanning 

data sets or remotely sensed images (Perrin et al., 2004), combined with canopy altimetry from 

airborne Light Detection and Ranging (LiDAR; Zhou et al., 2010). Furthermore, they have been 

used for nuclei detection in microscopic images (Kowal and Korbicz, 2018) and oil tank detection 

in synthetic aperture radar (SAR) data (Arslan et al., 2009). In quite a few of these works and, e.g. 

(Descombes et al., 2009), overlaps between objects are penalized. Arslan et al. (2009), Descombes 

et al. (2009), Zhou et al. (2010) and Aval et al. (2018) compute the radiometric (grey level) distance 

between the pixels in the circle and the pixels inside a concentric annulus around it. Likewise, but 

in the context of elliptical objects, numerous works based on the Bhattacharyya distance have been 

proposed, e.g. for the detection of flamingos (Gamal-Eldin et al., 2010; Descamps et al., 2011), 

seed products (Dubosclard et al., 2014), boats in harbours (Craciun and Zerubia, 2013) or cell 

nuclei (Gadgil et al., 2016). Moreover, Verdié and Lafarge (2014) make use of ellipses for popu-

lation counting from images (e.g. birds and bees). In the context of tree crown detection from 

optical aerial images and airborne LiDAR, Perrin et al. (2005) and Andersen et al. (2012) also 

employ ellipses and ellipsoids, respectively. Besides the penalization of overlap, the works of (Per-

rin et al., 2005; Craciun and Zerubia, 2013; Aval et al., 2018) make use of objects being locally 

aligned. In clusters of bomb craters, no specific patterns exist, which is why such prior information 

cannot be exploited in the scope of this thesis. 

Rectangles are frequently used to extract buildings or other human-made objects. In this con-

text, MPPs have been applied to digital surface models (DSMs; e.g. Ortner et al., 2007; Tournaire 

et al., 2010; Brédif et al., 2013) and remotely sensed images (e.g. Benedek et al., 2012; Chai et al., 

2012). In all of these works, except (Chai et al., 2012), a rectangle is included in the object con-

figuration during sampling if high gradient magnitudes at the rectangle border are present while 

configurations with overlapping rectangles are penalized. Wenzel and Förstner (2016) use rectan-

gles to interpret facades of buildings based on rectified images, where statistics of typical config-

urations of facade objects (windows, entrances) are learned from training data. Börcs and Benedek 

(2015) employ rectangles for the extraction of vehicle groups in LiDAR point clouds. In order to 

improve their results, prior knowledge with respect to the expected vehicle configuration is incor-

porated. Similarly, Ortner et al. (2007) and Brédif et al. (2013) include assumptions regarding the 

alignment of rectangles in connection with the extraction of buildings. However, as mentioned 
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earlier, the integration of such (learned) prior information is not feasible within this work. Rectan-

gles have also been used, for instance, to detect and reconstruct rectangular road marks in high 

resolution aerial images (Tournaire and Paparoditis, 2009) and oil spills in SAR intensity imagery 

(Li and Li, 2010). 

Cylinders are more rarely employed and have been used, for example, to detect people in mul-

tiple calibrated camera views (Utasi and Benedek, 2011) and cosmic filaments from three-dimen-

sional data sets of galaxies (Stoica et al., 2007). While in the works listed so far the objects to be 

detected are modelled by isolated primitives, in the case of linear networks, individual objects (the 

line segments with a certain width) are connected. Examples using line segments for facial wrinkle 

detection, line network, road, river or vascular tree extraction and crack detection can be found in 

(Jeong et al., 2014), (Lacoste et al., 2005), (Stoica et al., 2004), (Verdié and Lafarge, 2014), (Sun 

et al., 2007) and (Vandoni et al., 2016), respectively. Chai et al. (2016) represent a linear feature 

by a string of points instead of a geometric mark. By choosing a graph as object model (Chai et 

al., 2013; Schmidt et al., 2017), the neighbourhood between individual objects is directly taken 

into account and thus, for example, no gaps occur at line network intersections. 

The description of objects by means of a single geometric primitive has the disadvantage that 

all objects to be detected in the scene should have similar characteristics, e.g. that tree crowns 

always appear circular in images. If the assumption with respect to the object’s characteristics does 

not apply and, for example, tree crowns also have an elliptical shape, such objects can hardly be 

detected. On the other hand, the use of one single geometric primitive may be preferable if there 

are comparatively few objects of other manifestation, meaning that, for instance, a circle is to be 

preferred if only a few tree crowns of elliptical shape exist, as this could reduce potential false 

detections of objects that also appear elliptical in the data. Furthermore, when using a circle, an 

object is defined by only a few parameters, keeping the search space in the optimization process 

small and making the model generally more stable. 

Combinations of geometric primitives 

In addition to using individual object types, combinations of more than one geometric primitive 

have also been suggested. In this way, different objects and their possibly different manifestations 

in the data can be modelled. 

Benedek (2017) proposes a method for extracting complex hierarchical object structures using 

different types of primitives, namely ellipses, rectangles and isosceles triangles. Within this MPP 

framework, object-subobject ensembles in parent-child relationships are admitted. In (Ortner et 

al., 2008), a model based on a process of rectangles and segments, respectively, is used for the 

extraction of buildings from a DSM. The former aims at segmenting homogeneous areas, whereas 

the latter is dedicated to the detection of linear networks of discontinuities. An energy is defined, 

favouring alignments of rectangles, connections of segments, and a relevant interaction between 

both types of objects. Other contributions that also use multiple object types include those related 
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to SAR image sequences (Benedek and Martorella, 2014), remotely sensed optical imagery (Perrin 

et al., 2006; Ben Hadj et al., 2010), microscopic images (Soubies et al., 2013; 2015), the latter two 

(Li et al., 2018) or others (Ben Salah et al., 2018). Based on a library of three geometric primitives 

(circle, line and rectangle), Lafarge et al. (2010) allow the object type to be changed in the sam-

pling process. Thus, detailed representations of a variety of scenes in terms of their linear and areal 

components can be produced. 

By using different geometric primitives, the detection of objects is not limited to only one par-

ticular characteristic. However, due to the larger number of parameters, the dimension of the search 

space increases, which may lead to a higher number of iterations in the process of finding the 

optimal object configuration. Furthermore, the complexity of the model is increased. Finally, the 

use of combined primitives can lead to problems with regard to correct detections, as potentially 

more disturbing objects (objects that appear similar to the objects to be found in the data) may be 

detected. 

2.2.2 More complex object shapes 

In some cases, objects cannot be approximated by simple geometric primitives or it is important 

to describe them more precisely, e.g. in terms of their shape. In this context, Descombes (2017) 

uses circles and ellipses for cell detection. In order to improve the resulting poor approximation of 

the cell shapes, the object space may be defined as a dictionary of precomputed shapes. Such a 

dictionary can be obtained from previous segmentation methods (Poulain et al., 2015) or by con-

structing an exhaustive description of convex shapes inside a small region (e.g. bounded by 5 x 5 

pixels; Cedilnik et al., 2018). Further examples making use of more complex models based on a 

predefined library of desired objects can, for instance, be found in (Mallet et al., 2010; Hervieu et 

al., 2015; Ghanta et al., 2018; Zhao et al., 2020). Hervieu et al. (2015) detect road-markings in 

intensity images derived from laser scanning data from Mobile Mapping Systems. Based on pre-

defined templates for road-markings (e.g. dashed-lines, arrows, characters), the correlation be-

tween the distribution of the model's intensity values with those in the data is used to evaluate a 

proposal in the sampling process. Mallet et al. (2010) and Zhao et al. (2020) use libraries including 

different parametric functions or road elements to model LiDAR waveforms or extract road net-

works, respectively. Kim et al. (2019) model narrow gaps as geometric structures called channels. 

In total, three different channel models are used for its detection in microscopic images. A so-

called Delaunay Point Process for the extraction of geometric structures is introduced by Favreau 

et al. (2019). Their approach simultaneously locates and groups geometric primitives (line seg-

ments, triangles) to form extended structures (line networks, polygons) for a variety of image 

analysis tasks such as line network extraction or object contouring. Another way to achieve a more 

accurate delineation of the desired objects is presented by Kulikova et al. (2009; 2012). They pre-

sent an MPP approach for multiple arbitrarily-shaped object extraction (here cell nuclei) by mod-

elling individual object boundaries as closed planar curves. Zhao and Comer (2016) combine 



 

 2.2  Object detection based on marked point processes 13 

MRFs and MPPs to take advantage of the strengths of each approach (MRFs are useful for impos-

ing local constraints while, on the contrary, it is convenient to model global constraints within the 

MPP framework). In this way, a precise boundary localization, here of materials, is likewise pos-

sible. 

The benefit of the methods described above is that, in contrast to modelling objects using simple 

geometric primitives, a more accurate delineation of the desired objects is possible. However, one 

drawback is that usually the library of respective objects has to be defined in advance (e.g. Zhao 

et al., 2020) or, in some cases, is derived by another method (e.g. Poulain et al., 2015). This typi-

cally involves considerable effort, as it may not be easy to find appropriate descriptions for the 

objects to be detected. In addition, the scene specific modelling, such as in (Mallet et al., 2010), 

limits the transferability to other applications. 

2.2.3 Favouring sampling of objects at certain locations 

In connection with MPPs, knowledge is often integrated such that the generation of objects being 

focused to specific locations. Respective examples can, for instance, be found in (Utasi and Bene-

dek, 2011; Benedek and Martorella, 2014; Kim et al., 2019) or (Descamps et al., 2008; Arslan et 

al., 2009; Benedek et al., 2012; Schmidt et al., 2017). The first group makes use of a foreground-

background classification, i.e. in the sampling process, objects are only created on foreground 

pixels. In the work of (Utasi and Benedek, 2011), cylinders are used to model people in 3D space 

and objects are only generated on a 2D ground plane, derived from multiple calibrated camera 

views. Benedek and Martorella (2014) segment inverse SAR images into foreground and back-

ground classes using a binary Markov Random Field model (Benedek and Szirányi, 2009). The 

other group derives a probability for the existence of an object for every pixel. In this context, 

Benedek et al. (2012) use low-level image features, for example local gradient orientations or the 

homogeneity of grey values. Schmidt et al. (2017), in connection with network extraction, set a 

threshold for simple raster data features, e.g. the heights in the digital terrain model (DTM) or the 

grey values in the image. However, for the data used in this thesis there is no height information 

available and objects such as trees or buildings as well as their shadows make an appropriate 

threshold selection rather difficult. In the context of planetary crater detection, Solarna et al. (2017; 

2020) create a so-called birth map from the available contour map by finding possible ellipse cen-

tres midway between contour points via a generalized Hough transform, which are then spread 

through Gaussian filtering. Bomb craters are generally not characterised by a distinct pair of high-

light and shadow regions (Figure 1.1), as planetary craters often are. 

If the method for limiting the search space is not chosen appropriately, it is possible that the 

sampling of objects no longer takes place at locations where objects to be detected are located. 

This, in turn, may lead to the fact that these objects are not detected at all. On the other hand, a 

sampling of objects at certain locations adapted to the particular task can also lead to the avoidance 

of, for example, more complex image contents that can potentially lead to more false detections. 
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Furthermore, a limitation of the search space to relevant areas in the data results in an accelerated 

detection of the optimal object configuration and, thus, the computational effort for the MPPs in 

the overall sampling process is reduced. In addition to the search space limitation, it seems rea-

sonable to also derive information regarding the initialisation of the object model used in the MPP 

framework in order to further reduce the sampling effort. However, the proposed methods do not 

allow this. 

2.3 Bomb crater detection 

There is only a limited number of contributions dealing with the detection of bomb craters availa-

ble in the literature, and none – other than own works (Kruse et al., 2018; 2019; 2020; 2022) – that 

use MPPs for this task. Generally, aerial wartime images are used, but there have also been works 

based on contemporary high resolution satellite images and LiDAR.  

In connection with aerial wartime images, Lücke et al. (2007) developed a method that directly 

detects duds semi-automatically using a neural network. Understanding the detection of duds as a 

binary classification problem, the selection of suitable training samples for the classes dud and 

background was carried out together with experts in aerial photo interpretation. However, this 

approach suffers from a rather high misclassification rate due to the easy confusion of duds with 

other structures, such as one-man holes, cattle watering tanks, chimneys or small image errors. 

Jensen et al. (2010) use a two-step approach for the detection of bomb craters. First, candidates 

are extracted, which are afterwards classified by linear discriminant analysis. In connection with 

the former task, the circle centre detector of Förstner and Gülch (1987) and the SIFT operator 

(Lowe, 2004) are tested; assuming the shape of bomb craters to be circular. However, the two 

methods are rejected due to the high number of falsely identified candidates. Instead, an approach 

based on cross correlation with representative templates for craters is used, which considerably 

reduces the amount of false candidates. In this context, however, it should be noted that the selec-

tion of crater templates must be conducted carefully in order not to exclude craters from the sub-

sequent classification. Especially in view of the fact that bomb craters differ not only in size and 

spatial intensity patterns, but also in the appearance of the ejecta, such an approach is to be con-

sidered disadvantageous. Likewise, the wide range of variations in the appearance of craters in the 

existing data complicates the use of templates – Jensen et al. (2010) conducted the investigations 

on fewer than 20 aerial wartime images. Building on (Furlanello et al., 2003), Merler et al. (2005) 

use a sliding window approach for the extraction of crater proposals from aerial wartime images. 

For the classification of the proposals, a promising variant of AdaBoost is applied, which aims to 

reduce the number of false alarms. The result is a map of the spatial density of craters, an indicator 

for the risk of finding duds. However, their method focuses only at detecting clusters of craters 

and, thus, the detection of individual craters not belonging to a cluster, the areas of which must 

also be probed due to the possible occlusion of duds, is omitted. 
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Brenner et al. (2018) and Clermont et al. (2019), also in connection with aerial wartime im-

agery, propose methods based on convolutional neural networks (CNNs). While the former authors 

make use of a sliding window approach for crater candidate extraction similarly to (Merler et al., 

2005), the latter employ a blob detector-based approach described in (Mallick, 2022) to lower the 

number of extracted proposals; the candidates are then classified using a CNN. In this context, 

Brenner et al. (2018) employ the DenseNet architecture (Huang et al., 2017) in a binary classifi-

cation setup using the same number of samples for the two classes, crater and background, during 

training. Testing their approach on data with the same class distribution, a precision of approx. 

91 % was achieved. However, in the case of a more realistic class distribution, in which the number 

of samples for background is much higher than for bomb craters, the precision drops to about 4 %. 

To counteract this problem, spatial information and a-priori assumptions regarding bomb crater 

distributions are exploited to filter the output of the CNN. In contrast, the approach of (Clermont 

et al., 2019), using a pre-trained version of Inception ResNet V2 (Szegedy et al., 2017) for feature 

extraction, directly considers the imbalance of the class distribution of training samples by assign-

ing higher weights to false detections during training. They show that the use of a weight corre-

sponding to the ratio of positive and negative samples is beneficial for the classification of samples 

with a realistic distribution, even though the false positive weight is generally not known when 

applying a trained CNN to new data. However, CNNs usually require a large set of training data 

to achieve good results. This fact, in addition to the given high appearance variation of bomb 

craters, is to be seen as a drawback regarding the employment of CNNs (see also Clermont et al., 

2019). 

In connection with contemporary satellite data of a Cambodian village, Lacroix and Vanhuysse 

(2015) make use of the circular shape of the craters by applying a circle detection algorithm based 

on the gradients of the intensity image that has to fulfil compatibility conditions with respect to 

the gradient angles and their local variations. On the other hand, Lin et al. (2020) address the crater 

detection task within a two-stage learning-based framework applied to a multispectral 

WorldView-2 image. A loose statistical classifier based on the histogram of oriented gradients and 

spectral information is used for a first pass of crater recognition. In a second stage, a patch-de-

pendent spatial feature is developed through dynamic mean-shift segmentation and scale-invariant 

feature transform descriptors. Finally, LiDAR data was utilized for the creation of highly accurate 

elevation data; the derived DTMs are then used for crater detection purposes (Foley, 2008; Juhász 

and Neuberger, 2018; Kazimi et al., 2019; Dolejš et al., 2020). Nowadays, for countries where 

there has been no warfare for many years, such as Germany, bomb craters will predominantly 

exist, if at all, in areas unaffected by humans or in forested areas. Thus, with respect to the identi-

fication of areas that have to be probed, the utility of contemporary data is limited. Particularly in 

forested areas, LiDAR data could help because it can partly penetrate vegetation, as in these areas 

bomb craters are usually not visible in images showing the respective locations. However, the risks 

associated with duds are mostly related to construction projects, which are planned less frequently 

in forest areas, so that the latter are of lesser importance. 
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The methods described above are applied to individual images. Typically, redundancy is not 

exploited, i.e. information from overlapping image parts is not combined. However, given the fact 

that aerial wartime images vary considerably in their appearance, using redundant image infor-

mation seems reasonable. In this regard, to the best of the author’s knowledge, only the works of 

(Lücke et al., 2007) and (Brenner et al., 2018) form exceptions. In the former, as a result of the 

neural network, the object classes dud and background are differentiated, and the patches classified 

as duds are subsequently checked interactively by human experts. By using overlapping images, 

image errors can be eliminated, as they will typically only be present in one image. However, this 

is a manual step that is not integrated into the framework. This issue is handled by Brenner et al. 

(2018), who combine the individual detections automatically (the outputs of the CNNs were con-

verted to individual crater positions of each image). For that purpose, the authors apply a neigh-

bourhood-based clustering method and double detections from different images are eliminated in 

order not to miss any crater in an investigated area. Finally, the clusters are replaced by their cen-

troids. Further details, e.g. the georeferencing accuracy of the images, are not provided. However, 

given the application scenario proposed within this thesis, it is not reasonable to focus on the de-

tection of each crater, meaning that same objects not being detected in several images are elimi-

nated due to their higher chance of being falsely detected objects (cf. objectives in Section 1.2). 

2.4 Spatial data analysis 

Spatial data analysis refers to a set of techniques having the ability to manipulate spatial data in 

different forms and extract additional information as a result. More rigorously, for a technique to 

be spatial, its results have to potentially differ when the objects of analysis are moved, i.e. location 

matters. Thus, the data that are subject to spatial data analysis must record the locations of phe-

nomena within some space, which is often the geographic domain (Goodchild, 2008). Section 2.4.1 

is concerned with the question how to classify spatial data analysis techniques with respect to the 

scope of this thesis. The literature concerning the use case of generating an impact map derived 

from the locations of bomb craters is discussed in Section 2.4.2.  

2.4.1 Classification of spatial data analysis techniques 

As in (Bailey, 1994), spatial data analysis techniques (Oyana and Margai, 2015) can be distin-

guished by their data structure. Depending on the data structure, different techniques may be ap-

plied. First, locational data, often referred to as object data, consists purely of the locations at 

which events occur. An example is the locations of cases of some disease within a study area. In 

the case of attribute data, their values are associated with locations; soil property at certain point 

locations in a field may serve as an example. Thus, interest is in analysing spatial variation of 
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attribute values, depending on the locations. Finally, there is interaction data consisting of quanti-

tative measurements, each of which is associated with a pair of locations. An example are the flows 

of individuals from residences to retail shopping outlets. Consequently, given the above separa-

tion, the thesis is concerned with the first group of data, i.e. data in which the point locations of 

objects are of prime interest. This is often referred to as point pattern analysis (e.g. Gatrell et al., 

1996) studying the spatial distribution of points. In addition to (Bailey, 1994), further information 

on spatial data analysis and its techniques can, for instance, be found in (Anselin et al., 2010). 

To study the properties of the point patterns, density-based and distance-based approaches have 

been developed. In general, these properties can be divided into the two categories of first-order 

and second-order properties. The former focuses on the characteristics of individual locations and 

their variations across space, whereas the latter focuses on properties that concern not only indi-

vidual points, but also the interactions between points and their influences on one another. While 

distance-based methods consider the distance between point pairs, e.g. the degree of dispersion of 

a point pattern, and therefore measure second-order properties, density-based methods mostly ad-

dress first-order properties. As this thesis is concerned with the deduction of area-based infor-

mation from the locations of individual objects in terms of flagging probing areas and not with 

how the objects influence each other, techniques based on densities are of relevance; a survey of 

existing methods regarding density estimation is given in (Silverman, 1986). 

A basic measure of a pattern’s density is its global density referring to the ratio between the 

observed number of points relative to the size of the study area. Consequently, such an approach 

is not capable of capturing local variations. In contrast, local density shows varying point densities 

at different locations; in the literature commonly used density-based measures are square density 

and kernel density. In the former, the study area is divided into smaller sub-regions, typically 

squares or tiles, but also other shapes may be used. Afterwards, the point density is determined in 

the same way as for the global density, but for each region. However, the result is highly sensitive 

to the selection of the region shape and size. If small regions are used, one risks having regions 

with no points, which may prove uninformative, whereas the choice of large regions may lead to 

missed subtle changes (Anderson and Marcus, 1993). In addition, for the same set of observed 

data, the densities could vary substantially depending on the delineation of the regions used, which 

leads to a difficulty in the interpretation of the distribution pattern. This is also known as the modi-

fiable areal unit problem in spatial data analysis (Fotheringham and Wong, 1991). Moreover, each 

region has a constant density and, thus, local variations within a region are neglected. Finally, such 

a density surface generally is not continuous as density may change abruptly at the region bound-

aries. Unlike square density analysis, kernel density estimation (Silverman, 1986) can handle the 

above issues by constructing a continuous density surface from the observed discrete data based 

on a kernel function. Kernel density estimation has been applied in various fields, such as archae-

ology (Baxter et al., 1997; Bonnier et al., 2019), medicine (Rushton et al., 2004; Yang et al., 2006; 

Lin et al., 2011), transport (Thakali et al., 2015), criminology (Hu et al., 2018) and ecology (Kuter 

et al., 2011), often for the purpose of hotspot detection and risk mapping. Therefore, kernel density 
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estimation is particularly well suited for the task pursued in this work, namely the generation of 

an impact map from detected bomb craters. 

2.4.2 Impact map generation from detected bomb craters 

In the literature, there are only a few works dealing with the generation of impact maps based on 

bomb craters. As in the thesis, automatic bomb crater detection may be carried out in advance (e.g. 

Juhász and Neuberger, 2018); the work of (Tavakkoli Sabour et al., 2014) makes use of manually 

mapped craters. The development of approaches for the derivation of the impact map is always 

based on the assumption that the more bomb craters there are in the vicinity, the higher the prob-

ability of duds. In this context, Juhász and Neuberger (2018) propose an impact map based on 

tiles, which are colour-coded according to the level of impact, i.e. the number of detections per 

tile, following a traffic light system. Especially with regard to flag areas to be probed, approaches 

based on tiles are not considered to be suitable for several reasons; see also the more general dis-

cussion above (Section 2.4.1). On the one hand, the choice of the tile size directly effects the 

resulting impact map; it may therefore not represent the actual extent of the contamination. More 

precisely, tiles that are too small result in a situation in which some areas that need to be probed 

will not be included, while tiles that are too large will result in overly large areas to be probed. In 

practice, the latter leads to unnecessary costs. In addition, designating probing areas correctly is 

hindered by the fact that detections can be located in the border areas of tiles, requiring a specific 

handling for neighbouring tiles. Another tile-based approach is given by Tavakkoli Sabour et al. 

(2014), who present a method for calculating a per-tile probability of duds according to the distri-

bution and density of exploded bombs. The drawbacks mentioned above, basically the need for an 

appropriate choice of the tile size and the fact that the designation of probing areas by tile-based 

approaches is only quite coarse, also apply to their work. 

2.5 Methods for planetary crater detection 

Planetary craters are among the most important topographic features on planetary surfaces, often 

formed by the impact of meteoroids. That is why various methods for crater detection have been 

extensively exploited to study the history of planets (Salamuniccar and Loncaric, 2008; Woicke et 

al., 2018; Emami et al., 2019). In this regard, catalogues of extracted craters were made publicly 

available (e.g. Robbins and Hynek, 2012; Wang and Wu, 2020) and are used for planetary science 

studies, e.g. to analyse the craters characteristics, such as diameter, slope or depth (Liu et al., 2017; 

Savage et al., 2018) or for planetary age determination based on counted craters (DeLatte et al., 

2019; Benedix et al., 2020). 

Methods for planetary crater detection can be broadly divided into unsupervised, supervised 

and hybrid approaches. The former often assume a circular or elliptical shape for the craters and 
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edge information is used for their detection. To detect such regions, the Hough transform (HT) 

and its variations have been among the most popular approaches. Cross (1988) applies common 

edge filters to highlight the edges in the image followed by a HT to reconstruct the circular shape 

of the craters. In a work based on a Martian digital elevation model (DEM), Salamuniccar and 

Loncaric (2010) also make use of HT and edge detectors. To detect the centres of crater regions, 

a chord midpoint or generalized HT is used by Meng et al. (2009) and Troglio et al. (2012), re-

spectively. The effect of different pre-processing techniques on the performance of planetary crater 

detection based on the HT was also evaluated (Honda et al., 2000). Other unsupervised approaches 

use highlight and shadow regions of the craters as the main features for their detection (Smirnov, 

2002; Liu et al., 2015). While the former detects such regions based on thresholding and shadow 

shape analysis, the latter map salient crater edge features and combine them with ellipse fitting. 

The works of Bandeira et al. (2007), Pedrosa et al. (2017) and Salih et al. (2017) are based on 

template-matching algorithms. In the former, a probability volume, determined from the template 

matching of circular crater templates in a certain range related to the extracted edge images, is 

analysed to detect the craters. Pedrosa et al. (2017) precede the template matching by morpholog-

ical image processing. Yue et al. (2013) and, more recently, Chen et al. (2018) make use of topo-

graphic analysis and mathematical morphology methods to DEM data of the moon. Also in the 

context of 3D-data, Huang et al. (2018) employ an alternative parametric active contour model for 

the detection of lunar craters. To the best of the author’s knowledge, there are only three contribu-

tions dealing with MPPs in the context of planetary crater detection (Troglio et al., 2010; Solarna 

et al., 2017; Solarna et al., 2020). All three works model craters as ellipses and pursue the same 

idea: First, contours are extracted by using the Canny edge detector (Canny, 1986), whereby noise 

is reduced beforehand by means of smoothing filters. To find the arrangement of ellipses that best 

fit the edge map in the sampling process, the spatial correlation between each ellipse and the ex-

tracted edges is measured and their mutual distance is taken into account. Furthermore, overlap-

ping objects are penalized. 

In the context of supervised learning methods used for crater detection, a continuously scalable 

template-matching algorithm is applied to Martian regions (Vinogradova et al., 2002). Wetzler et 

al. (2005) compare different supervised approaches for planetary crater detection, namely the pre-

viously mentioned template-matching method, support vector machines (SVMs), ensemble meth-

ods as well as an unsupervised HT. The approach based on SVMs with normalized image patches 

provided the best performance and was found to be more accurate than boundary-based approaches 

such as the HT. SVMs have also been used in (Ding et al., 2013; Chen et al., 2014; Kang et al., 

2019). Further supervised methods include boosting (Martins et al., 2009; Bandeira et al., 2012; 

Jin and Zhang, 2014; Wang and Wu, 2019) and, especially in recent years, CNNs (Cohen et al., 

2016; Silburt et al., 2018; Wang et al., 2018; Lee, 2019; Downes et al., 2021). Lee and Hogan 

(2021) extend the work of Lee (2019) by improving the crater detection algorithm in terms of 

precision and recall, mainly with the help of post-processing filters. Their algorithm uses optical 

imagery and DTMs and produces competitive results compared to those from human experts while 
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being hundreds of times faster. Another very recent work by Tewari et al. (2022) simultaneously 

utilizes slope maps besides optical images and elevation data. 

Hybrid approaches, i.e. combinations of unsupervised and supervised techniques, for planetary 

crater detection have also been proposed. The procedure of Kim et al. (2005) consist of three 

stages. First, crater edges are extracted and, secondly, optimal ellipses for craters are evaluated 

based on a fitness function and refined and verified by template matching. Finally, false detections 

are removed by a supervised neural network. Urbach and Stepinski (2009), similar to e.g. Chen et 

al. (2018), use different mathematical morphology-based filters to detect crescent-like regions, 

which are subsequently classified into crater or non-crater regions by a supervised machine learn-

ing technique. Unlike many other works in this field, Emami et al. (2015) assume crater regions 

to have a nearly convex shape (instead of being almost circular / elliptic or follow the highlight 

and shadow region assumption). The candidate regions extracted by convex grouping are then 

verified using CNNs. A recent hybrid approach can be found in (Li et al., 2021), where a random 

structured forest is trained to detect edges first. Secondly, considering the detected edge infor-

mation, morphological methods are employed for the determination of crater candidate areas, 

which are finally classified as either crater or background via a CNN. 

Even though the task of planetary crater detection in images seems to be similar to the one of 

detecting bomb craters, there are some major differences. One key aspect is the high appearance 

variation, or intra-class variation, of bomb craters, also due to possible fast changes in short time 

interval (e.g. water in craters) or human intervention (e.g. filling craters with soil). Furthermore, 

unlike on planets, man-made objects or trees and their shadows often lead to confusion with bomb 

craters. The poor quality of many aerial wartime images compared to planetary imagery is also 

worth mentioning. While planetary craters differ strongly in size, bomb craters are small and, thus, 

blend well into the surrounding terrain. Although planetary craters often have (partly) dark interi-

ors, their appearance is usually different from that of bomb craters. In this context, planetary craters 

can also exhibit a distinct pair of highlight and shadow regions, which is generally not the case for 

bomb craters. Finally, larger planetary craters may contain smaller craters. Examples of images 

illustrating some of the characteristics of planetary craters just mentioned are shown in Figure 2.1; 

for a comparison with bomb craters see Figure 1.1. Thus, it can be argued that the above ap-

proaches are not directly applicable to the task of bomb crater detection. 

 

    

Figure 2.1: Exemplary appearances of craters in planetary imagery. 
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2.6 Discussion 

As illustrated in Section 2.1, there are plenty of methods in the literature dealing with the de-

tection of objects in images. Although template matching-based approaches can be implemented 

fast, they are of limited use if the objects to be detected differ considerably in the data. Even though 

knowledge-based approaches offer the possibility to address the detection of objects through a 

coarse-to-fine hierarchical structure, how to define prior knowledge and detection rules is still 

subjective; too loose rules will cause false positives and vice versa. Another approach is object-

based image analysis, whereby the process of segmenting the image into objects can be seen as 

critical, as the subsequent feature extraction and classification is highly dependent on the quality 

of the image segmentation. Finally, machine learning-based approaches learn a model of the ap-

pearance of the objects in the images from training data, making the detection system scalable and 

compatible. In contrast to traditional machine leaning-based approaches, in which objects are rep-

resented by hand-crafted features, in deep learning-based approaches features are learned autono-

mously from the data, which is beneficial, as the usage of appropriate features is crucial for suc-

cess. This is why methods based on CNNs having been very popular for several years. However, 

deep leaning-based approaches usually need a large set of labelled training data to yield good 

results and the generation of such training samples is very time-consuming, especially given the 

high appearance variation of bomb craters (see also Clermont et al., 2019). 

In contrast, the procedure of MPPs does not require any training data at all and allows for the 

introduction of a strong object model, an important asset when data quality is poor. As illustrated 

in Section 2.2, there are many ways to describe the objects to be detected. Typically, simple geo-

metric primitives are chosen, while higher flexibility can be achieved by a combination of primi-

tives. However, bomb craters are usually round, sometimes slightly elliptical, and do not exhibit 

any object-subobject relationships. By using more complex models based on a library of desired 

objects, a more precise delineation becomes possible. However, this is of less importance, as area-

based information to be derived in a subsequent step, i.e. an impact map should be generated from 

the centres of detected bomb craters (see Section 1). Moreover, such a library would be difficult 

to obtain, since bomb craters together with their ejecta can have very different appearances, but 

the assumption of a roundish inner area with darker, homogeneous grey values compared to the 

surroundings is often justified. Thus, given the aim of detecting bomb craters in aerial wartime 

images, the use of a simple circular object model seems to be reasonable in the scope of this work. 

In this way, additionally, objects are defined by only a few parameters, keeping the search space 

in the optimization process small and potential false detections stemming from objects that appear 

elliptical in the data may be reduced. Regarding the modelling of the MPP’s energy function to be 

optimized, the Bhattacharyya distance is often used in the literature for the detection of elliptical 

or circular objects (e.g. Descamps et al., 2011). However, this measure alone does not appear to 

be suitable for the detection of bomb craters, as their frequently present annulus may differ con-

siderably from image to image, e.g. in terms of its width and appearance. For this reason, a novel 
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energy function is introduced in this thesis, which further takes into account – among others char-

acteristics – gradient magnitudes along the object border. As discussed in Section 2.2.3, in the 

context of MPPs it has proven beneficial to favour the sampling of objects at certain locations. 

Therefore, that idea is pursued within this work, but in contrast to existing research, a blob detector 

is used to not only limit the search space during sampling but also exploit the blob-like appearance 

of the bomb craters in the images. In addition to the position, the detector provides information on 

the size of the associated crater, which is used for the initialisation of the object radius within the 

MPP framework (see Section 4.1.4). 

As discussed in Section 2.3, there is only a limited number of contributions available in the 

literature dealing with the automatic detection of bomb craters. In (Lacroix and Vanhuysse 2015; 

Lin et al. 2020) and (Foley, 2008; Juhász and Neuberger, 2018; Kazimi et al., 2019; Dolejš et al., 

2020) contemporary satellite and LiDAR data is used, respectively. In the proposed application 

scenario, due to the large amount of change of land cover and local terrain shape, contemporary 

data is only useful for very special cases. In this context, e.g. Valjavec et al. (2018) remarked that 

due to intensive land use, war-related traces such as bomb craters are often not recognizable in 

present-day LiDAR topography. Particularly in wooded areas, LiDAR data could help because it 

can partly penetrate vegetation; however, the risks associated with unexploded bombs are mostly 

related to construction projects, which are planned less frequently in forest areas, characterising 

the latter as less relevant. Therefore, aerial wartime images are used that are available in abundance 

for large areas bombed in World War II. In particular, to overcome limitations due to the poor 

image quality and the complexity of the problem, redundancy is exploited, i.e. the fact that many 

of the bombed regions were photographed multiple times. Brenner et al. (2018) also make use of 

redundant image information by combining detection results from individual images. However, 

unlike in the thesis case, double detections from different images are eliminated in order not to 

miss any crater in an investigated area. Thus, the idea of supporting detections, i.e. that several 

detections of the same object in different images are an indication for indeed having found a correct 

object, is not pursued in the way needed in the proposed application scenario. Consequently, this 

is addressed in the newly developed procedure. 

As pointed out in Section 2.4, the goal pursued in the thesis is to generate an impact map from 

the locations of the detected bomb craters. In this context, approaches based on tiles in general, 

including the ones from the literature related to an impact map generation, entail several disad-

vantages. Besides others, they do not allow for a precise delineation of potentially contaminated 

areas, which is of great concern due to the costs involved in probing. Therefore, in the thesis, a 

method is used that allows to represent probing areas more precisely. Moreover, in contrast to 

(Merler et al., 2005), the primary objective is not only the identification of clusters of craters, i.e. 

high-risk zones for duds, but there is also a considerable interest in the identification of individual 

reliable craters that are not part of a cluster, as these areas likewise need to be probed (see Section 

1.1). Such less heavily bombed sites are mainly found in rural areas, which have been built on 
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comparatively rarely since the end of the war when compared to cities, and are thus of great rele-

vance regarding the designation of probing areas for future construction projects. Furthermore, it 

is usually necessary to completely probe bombed densely built-up areas, as a reliable interpretation 

(both automatically and manually by experts) of aerial wartime images of such areas is not possi-

ble, especially due to coverage by the debris of destroyed buildings. Against this background, the 

focus of the investigations within this thesis is on rural sites. 
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3 Basics 

This thesis is concerned with the detection of objects in raster data using marked point processes 

(MPPs). In this chapter, the mathematical basics of point processes are presented and, in addition, 

the Poisson point processes as well as the Gibbs energy are discussed (Section 3.1). From the 

object configurations generated by the MPP, the most likely configuration has to be determined; 

this optimization problem is solved by Monte Carlo methods, which are described in Section 3.2. 

Besides Markov Chain Monte Carlo techniques, two extensions, the Reversible Jump Markov 

Chain Monte Carlo methods and simulated annealing, are discussed. The former allow to model 

scenes with an unknown number of objects and changes in the number of parameters. Simulated 

annealing ensures that the procedure converges to the globally optimal object configuration and 

accelerates the convergence behaviour. As the generation of the impact map from the detected 

objects is done by kernel density estimation, its basics are described in Section 3.3. 

3.1 Marked point processes 

A point process is a special stochastic process (also referred to as random process) allowing the 

mathematical description of random events; it is studied in the field of probability theory. In con-

trast to deterministic approaches, modeling is carried out based on probabilities. For a detailed 

description of stochastic processes, the reader is referred to Ross (1996), Beichelt and Montgomery 

(2003) and Florescu (2014); details regarding point processes are given in (van Lieshout, 2000), 

(Daley and Vere-Jones, 2003) and (Baddeley, 2007). 

Following probability theory, a stochastic process is a collection of random variables defined 

on a probability space (Ω, ℱ, 𝑃). Here, Ω is the sample space of an experiment, i.e. the set of all 

possible outcomes of that experiment. ℱ represents subsets of Ω, also known as events. The prob-

ability measure 𝑃 is assigned to the events and corresponds to a number between 0 and 1 that 

expresses how likely the event is to occur. A simple example is the tossing of an ideal coin (Dek-

king et al., 2005). Assuming that the coin will never land on its rim, there are two outcomes: 

heads H and tails T. Consequently, the sample space is the set Ω = {𝐻, 𝑇}, possible events are                 

ℱ = {{𝐻}, {𝑇}} and 𝑃({𝐻}) = 𝑃({𝑇}) = 0.5. The random variables all take values in a state 

space 𝑆 that has to be measurable with respect to some 𝜎-algebra (Lamperti, 1977). In the case 

that the state space is finite or countably infinite, the process is called a point process. 
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In general, point processes 𝑋 can be classified as temporal point processes and spatial point 

processes. The temporal point process 𝑋 = {𝑡1, 𝑡2, … , 𝑡𝑛} is one-dimensional and captures the time 

points 𝑡𝑖  (𝑖 = 1, 2, … , 𝑛) of occurrence of events that consist of the times of isolated events scat-

tered in time. As an example may serve the random instants of time when a hospital receives 

emergency calls (Figure 3.1 a). Temporal point processes have been applied in fields such as seis-

mology, finance and the web to model, for instance, earthquake occurrences, trades and orders and 

user activities, respectively (Yan et al., 2019; Shchur et al., 2021). In contrast to temporal point 

processes, a spatial point process 𝑋 = {𝑝1, 𝑝2, … , 𝑝𝑛} captures the positions 𝑝𝑖 of events in a 𝑑-

dimensional space, where 𝑑 ≥ 2. For example, if a map of the locations of all the people who 

called the emergency service is created, this map constitutes a random pattern of points in two 

dimensions (Figure 3.1 b). Among others, applications of spatial point processes can be found in 

astrostatistics (Babu and Feigelson, 1996) and statistical ecology (Ludwig and Reynolds, 1988), 

for example to model the position of stars or trees; a general survey of applications is given in 

(Stoyan et al., 1995). Last but not least, a spatial point process forms the basis of the procedures 

for object detection in imagery and is used in this thesis. 

 

 

 
 

Figure 3.1: To describe a random event, point processes 𝑋 may be used. While the temporal point 

process specifies the times 𝑡𝑖 at which events occur, the spatial point process provides the positions 

𝑝𝑖 of occurred events. (a) An exemplary temporal point process indicating the days in May 2022, 

when a hospital received emergency calls concerning a particular disease, here                                         

𝑋 = {𝑀𝑎𝑦 02, 𝑀𝑎𝑦 08, 𝑀𝑎𝑦 11, 𝑀𝑎𝑦 17, 𝑀𝑎𝑦 21, 𝑀𝑎𝑦 28}. (b) An exemplary spatial point 

process representing the locations of all the emergency calls received, here                                                 

𝑋 = {(1,2), (5,5), (7,3), (11,1), (13,2), (17,4)}. 
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Within the procedure of spatial point processes, various configurations of points are generated 

in some space. As the data used in this work are digital images, in the following, the state space 𝑆 

is given by 𝑆 = ℝ2, where the positions 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖) of generated points are restricted by the 

image extent. As it is often not sufficient to describe a scene solely by points, approaches have 

been developed to extend each point with a vector of additional parameters 𝑚𝑖 (marks). In this 

way, the point can be associated with a geometric object 𝑜𝑖 = (𝑝𝑖, 𝑚𝑖): The object 𝑜𝑖 is fixed by 

the position 𝑝𝑖 (often its centre of mass) and the mark 𝑚𝑖, which can differ from point to point, 

containing further information about the object. By adding marks to each point, a MPP is created, 

which can be understood as a stochastic process of configurations of an unknown number of ob-

jects of type 𝑜𝑖 = (𝑝𝑖, 𝑚𝑖) in a bounded region 𝐹 ⊂ ℝ2. As the vector 𝑚𝑖 can be used to model 

any properties of the object, its detailed description is possible, which in turn can be exploited for 

the detection of objects in images. As already pointed out in Section 2.2.1, simple geometric prim-

itives are often used to represent the objects to be detected. For example, ellipses can be described 

by their centre, their major and minor semi-axis and their orientation; a possible realisation of a 

point process 𝑋 using ellipses can be found in Figure 3.2. 

 

 

 

 

 

 

 

 

 

Figure 3.2: A realisation of a marked point process 𝑋 using an ellipse as object model, whereby 

the exemplary configuration consists of a total of eight objects. Each object 𝑜𝑖 = (𝑝𝑖, 𝑚𝑖) is char-

acterised by its position 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖) in the image as well as the vector 𝑚𝑖 = (𝑎𝑖, 𝑏𝑖, 𝜃𝑖), where 

the semi-major and the semi-minor axis are denoted by 𝑎 and 𝑏, respectively, and 𝜃 is the orien-

tation of the ellipse; here indicated for object 𝑜2. 

3.1.1 Poisson point processes 

Different assumptions may be made about the distribution of points or objects in space and their 

relation to each other. To model this distribution, the spatial Poisson point process, i.e. a Poisson 

point process defined in the plane ℝ2 (Merzbach and Nualart, 1986) and, thus, subject of this 
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thesis, may be used. Considering a bounded region 𝐹 of the plane (e.g. an image), the number 𝑁 

of objects of a point process 𝑋 in this region 𝐹 ⊂ ℝ2 is modelled to be a Poisson-distributed ran-

dom variable, denoted by 𝑁𝑋(𝐹). Then, for a homogeneous Poisson point process with parameter 

𝜆 > 0, the probability 𝑝 of 𝑛 objects existing in 𝐹 is given by 

 

𝑝(𝑁𝑋(𝐹) = 𝑛) =
𝜆(𝐹)𝑛

𝑛!
∙ 𝑒−𝜆(𝐹), 

 

where 𝜆, often referred to as intensity parameter, describes the expected number of objects within 

𝐹. In other words, 𝜆(𝐹) corresponds to the mean of the Poisson distribution for region 𝐹. For a 

homogeneous Poisson point process, the intensity 𝜆 is constant in space, whereas for an inhomo-

geneous Poisson point process, 𝜆 is defined by some location-dependent function. 

In conclusion, Poisson point processes induce a complete spatial randomness, given by the fact 

that the object positions are uniformly and independently distributed. However, this characteristic 

often does not apply, because dependencies exist between objects. Consequently, more complex 

models are required to measure the quality of the object configurations. 

3.1.2 Gibbs energy 

In order to allow for a quantitative evaluation of different object configurations, a probability den-

sity ℎ(·) of the MPP can be formulated with respect to a reference point process, which is usually 

defined as the Poisson point process. In this thesis, ℎ(·) is expressed through a Gibbs energy 𝑈(·) 

in the form of ℎ ∝ 𝑒𝑥𝑝 − 𝑈(·), consisting of two parts, the data energy 𝑈𝐷(·) and the prior energy 

𝑈𝑃(·); their relative influence is controlled by a weight parameter 𝛽 ∈ [0, 1]. Thus, the Gibbs en-

ergy may be modelled by 

 

𝑈(·) = 𝛽 ∙ 𝑈𝐷(·) + (1 − 𝛽) ∙ 𝑈𝑃(·). 

 

The conformity of the object configuration with the input data is measured by 𝑈𝐷(·). Interactions 

between the objects are taken into account by 𝑈𝑃(·), allowing certain configurations to be favoured 

or penalized based on prior knowledge. In principle, both the data and the prior energy can consist 

of an arbitrary number of terms; typical examples of measures related to image analysis that may 

be incorporated into the terms can be found in Section 2.2, where object detection using MPPs has 

been discussed. 

The aim of the MPP is to find the most likely configuration, i.e. the one having the highest 

conformity with a predefined model. Such an optimal object configuration 𝑋̂ can be determined 

by maximizing the probability density ℎ(·), i.e. 𝑋̂ = 𝑎𝑟𝑔𝑚𝑎𝑥 ℎ(·) or, equivalently, by minimiz-

ing the Gibbs energy 𝑈(·), i.e. 𝑋̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑈(·). However, depending on the definition of the 
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underlying model of the MPP, typically complex processes in high-dimensional spaces evolve. 

This results in a probability density ℎ(·), which is multi-modal and defined in a configuration 

space with variable dimension, because the number of objects can change. For this reason, simu-

lation methods are typically employed to estimate the global minimum of 𝑈(·). In this context, 

Monte Carlo techniques are a widely used and are also applied in this work. 

3.2 Monte Carlo methods 

Monte Carlo (MC) methods are part of probability theory and rely on random experiments being 

performed a large number of times. Problems that are difficult or impossible to solve with deter-

ministic algorithms are determined numerically with the help of MC simulations based on the law 

of large numbers. This law states that the average of the results from a large number of trials under 

the same conditions should be close to the expected value and tends to approach the expected value 

as more trials are conducted. Consequently, MC techniques provide an approximate inference 

based on numerical sampling. There are also exact MC sampling methods (Propp and Wilson, 

1996). However, for most probabilistic models that are of practical interest, exact inference is 

intractable. For a detailed description of MC methods, the reader is referred to Neal (1993), Gilks 

et al. (1996), MacKay (2003) and Bishop (2006). 

MC methods are applied in various fields, such as in physical sciences or in finance and busi-

ness, to simulate fluids or to model phenomena with uncertainties in inputs, e.g. the calculation of 

risk. This work is concerned with optimization tasks, more precisely with determining the opti-

mum of an arbitrary target distribution 𝑃(·). Given the law of large numbers, its optimum can be 

achieved by considering a sufficient number of samples of 𝑃(·). For drawing the samples, funda-

mental techniques include importance sampling (Kahn and Harris, 1951) and rejection sampling 

(von Neumann, 1951). These approaches follow the idea of making use of a simpler distribution, 

also referred to as proposal distribution 𝑄(·), which is easy to sample from. However, importance 

sampling and rejection sampling only work well if 𝑄(·) is a good approximation of 𝑃(·), but in 

large and complex problems it is difficult to create a single proposal distribution having this prop-

erty. Here, Markov Chain Monte Carlo methods are more flexible and allow to draw samples from 

the high-dimensional and complex distributions that usually occur in practical problems. 

3.2.1 Markov Chain Monte Carlo sampling 

Markov Chain Monte Carlo (MCMC; Andrieu et al., 2003) is a technique for generating samples 

while exploring the state space 𝑆 based on a Markov Chain mechanism. This mechanism is con-

structed in a way that the chain spends more time in the most important regions while satisfying 

the Markov property. This states that the future of a stochastic process is independent of the past 
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given the current state. Thus, knowing solely the current state, predictions about the future can be 

made just as well as if the complete history of the process was already known. In other words, the 

mechanism of the Markov chain ensures that the drawn samples follow the target distribution 𝑃(·). 

Markov Chains 

A Markov chain consists of random variables 𝑋𝑡, where 𝑡 denotes the time or index in the Markov 

chain. The variables 𝑋𝑡, also referred to as states, all take values in the state space 𝑆, whereby the 

states of the chain are governed by transition probabilities, typically represented within a matrix 𝑇. 

A transition probability specifies for an arbitrary state the probability of changing to any new state. 

More formally, when introducing Markov chains in a finite state space 𝑆, where 𝑋𝑡 can only take 

a certain number 𝑛 of discrete values 𝑋𝑡 ∈ 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑛}, then the stochastic process is called 

a Markov chain if 

 

𝑃(𝑋𝑡+1|𝑋𝑡, 𝑋𝑡−1, … , 𝑋1) = 𝑇(𝑋𝑡+1|𝑋𝑡) 

 

holds. Consequently, the evolution of the chain in a space 𝑆 only depends on the current state 𝑋𝑡 

and not on its history {𝑋1, 𝑋2, … , 𝑋𝑡−1} (Markov property). In case the transition probabilities re-

main constant for all 𝑡, it is a homogeneous Markov chain. 

An example of a discrete and homogeneous Markov Chain with state space 𝑆 = {𝑥1, 𝑥2, 𝑥3} is 

given in Figure 3.3. For this example, let the transition probabilities be given by 

 

𝑇 = [
0 0.6 0
0.4 0.3 0.1
0.6 0.1 0.9

] 

 

and an initial state 𝑋0 by 𝑃(𝑋0) = (0.7, 0.2, 0.1)𝑇, where the column sums add up to one in each 

case. Then, with the transition between two states of the Markov Chain given by                  

𝑃(𝑋𝑡+1) = 𝑇 ∙ 𝑃(𝑋𝑡), the process evolves to 𝑃(𝑋1) = 𝑇 ∙ 𝑃(𝑋0) = (0.12, 0.35, 0.53)
𝑇. When 

multiplying the respective new state with the transition matrix for several iterations, the chain will 

stabilize at 𝑃(·) = (0.10, 0.16, 0.74), regardless of the initial state. The fact that for any initial 

distribution the chain will converge to the target distribution 𝑃(·), then called stationary (or invar-

iant) distribution, plays a fundamental role in MCMC simulations. However, prerequisite for con-

vergence towards the stationary distribution, for which 𝑃(·) = 𝑇 ∙ 𝑃(·) holds, is, that the transition 

matrix 𝑇 obeys certain properties. 

These properties, which can also be used to analyse the behaviour of Markov chains, include 

aperiodicity, irreducibility and recurrence. The former implies that the Markov chain does not 

exhibit cyclic behaviour, i.e. the process may return to a specific state at irregular time but, 

importantly, not at fixed intervals. Irreducibility means that for any state of the chain, there is a 

(3.3) 

(3.4) 
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positive probability of visiting all other states. A Markov chain is recurrent if all states can almost 

surely be reached infinitely often and, thus, recurrence characterises the long-term behaviour of a 

Markov chain. 

In order to construct a Markov Chain for which the distribution one wishes to sample from is 

stationary, time reversible homogeneous Markov Chains may be used. In this context, the revers-

ibility condition, also referred to as detailed balance, must hold. It states that the transition to a 

new state 𝑋𝑡+1 while the process is in state 𝑋𝑡 must be as likely as the transition to state 𝑋𝑡 when 

the process is in state 𝑋𝑡+1. In other words, 

 

𝑃(𝑋𝑡) ∙ 𝑇(𝑋𝑡+1|𝑋𝑡)  = 𝑃(𝑋𝑡+1) ∙ 𝑇(𝑋𝑡|𝑋𝑡+1) 

 

must hold. 

 

 

 

 

 

 

Figure 3.3: An example of a discrete Markov Chain given in form of a transition graph. Here, the 

nodes represent the state space 𝑆 = {𝑥1, 𝑥2, 𝑥3} and respective transition probabilities are given by 

directed edges. For instance, for state 𝑥1, the probability of a transition to 𝑥2 and 𝑥3 is 0.4 and 0.6, 

respectively, whereas the probability of maintaining the state is zero. 

Metropolis-Hastings 

There are different MCMC samplers, the most popular being the Metropolis-Hastings (Hastings, 

1970) algorithm, which is an extension of the Metropolis et al. (1953) algorithm. Indeed, most 

practical MCMC algorithms can be interpreted as special cases or extensions of this algorithm and, 

thus, it also provides the basis for Reversible Jump Markov Chain Monte Carlo sampling being 

employed in this thesis. 

The goal of the Metropolis-Hastings algorithm is to generate a collection of states according to 

the target distribution 𝑃(·). To accomplish this, the algorithm uses a Markov Chain that fulfils the 

above given properties (aperiodicity, irreducibility, recurrence) and the condition of detailed bal-

ance, such that its stationary distribution is chosen to be 𝑃(·). As with importance sampling and 

rejection sampling, samples are drawn from a proposal distribution 𝑄(·). In the Metropolis-Has-

tings algorithm, however, 𝑄(·) depends only on the current state 𝑋𝑡 = 𝑋 and not on the previous 

𝑥1 𝑥2 𝑥3 

0.4 

0.6 

0.6 

0.1 

0.9 

0.3 0.9 

(3.5) 
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states (Markov property). Given a potential new state 𝑋𝑡+1 = 𝑋′, the proposal distribution 𝑄(𝑋′|𝑋) 

may be any fixed distribution (e.g. Gaussian) from which samples can be drawn. In contrast to 

importance sampling and rejection sampling, it is not necessary for 𝑄(𝑋′|𝑋) to look similar to the 

target distribution in order for the algorithm to be practically useful. In addition, a measure for the 

acceptance of the proposed state 𝑋′, the acceptance probability or acceptance ratio 𝛼, is considered. 

Providing an initial state 𝑋0, the Metropolis-Hastings algorithm can be summarised as follows, 

whereby the following steps are repeated iteratively until a convergence criterion (e.g. a maximum 

number of iterations) is reached: 

 Generate a new state 𝑋′ based on the current state 𝑋 according to the proposal distribution 

𝑄(𝑋′|𝑋). 

 Compute the acceptance probability 𝛼 for the new state 𝑋′ via 

𝛼(𝑋′|𝑋) = min (1,
𝑃(𝑋′)

𝑃(𝑋)
∙
𝑄(𝑋|𝑋′)

𝑄(𝑋′|𝑋)
) 

and sample a uniform random number 𝛿 ∈ [0, 1]. Accept the new state 𝑋′ if 𝛿 < 𝛼, 

otherwise reject it, i.e. maintain the current state 𝑋. 

Note that the Metropolis-Hastings algorithm allows for drawing samples from non-symmetric 

proposal distributions. In contrast, the Metropolis algorithm assumes the proposal to be symmetric, 

i.e. 𝑄(𝑋′|𝑋) = 𝑄(𝑋|𝑋′). Thus, the acceptance probability 𝛼 is simply given by                    

𝛼(𝑋′|𝑋) = 𝑚𝑖𝑛(1,  𝑃(X′) 𝑃(X)⁄ ). Hence, the transition probabilities for the Metropolis and the 

Metropolis-Hastings algorithm are given by 

 

𝑇(𝑋′|𝑋)  = 𝑄(𝑋′|𝑋) ∙ 𝛼(𝑋′|𝑋), 

 

whereas the computation of the acceptance probability depends on the selected algorithm as stated 

before. 

Given the problem of object detection using MPPs, MCMC sampling would only allow deter-

mining the optimal configuration of objects if their number is known and constant. However, this 

is usually not the case, as, for example, when detecting tree crowns within an image (e.g. Zhang 

et al., 2014), the number of trees is not known in advance. Thus, making use of MCMC would be 

basically pointless. Here, Reversible Jump Markov Chain Monte Carlo methods provide a solution 

regarding the outlined drawback. 

3.2.2 Reversible Jump Markov Chain Monte Carlo sampling 

Reversible Jump Markov Chain Monte Carlo (RJMCMC) methods, introduced by Green (1995), 

form an extension of MCMC and can model scenes with a differing number of objects as well as 

(3.6) 

(3.7) 
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changes of the number of parameters between two sampling steps. In other words, RJMCMC sam-

pling allows to construct a Markov Chain of varying dimension and, importantly, to compare the 

states that may be present in such state spaces of differing dimension. The ability to change the 

dimension of the state space and to map one space to another is achieved by a move known as 

reversible (dimension) jump. Here, as the name implies, it must always be possible to return to the 

previous state. In principle, any reversible type of move can be defined, which makes RJMCMC 

approaches very flexible. More information on RJMCMC techniques are available in (Richardson 

and Green, 1997) and (Smith, 2007). 

As pointed out before, the mapping of the samples of two different state spaces to a common 

dimension is achieved by reversible jumps. This move defines a transition between a current state 

𝑋 and a proposed new state 𝑋′ by means of a deterministic, differentiable and invertible function, 

the transition function 𝜓. Moreover, for dimension-matching purposes, auxiliary variables 𝑢 and 

𝑢′ are introduced. Consequently, a transition from 𝑋 to 𝑋′, which may involve a change of dimen-

sion between the two states, can be described by (𝑋′, 𝑢′) = 𝜓(𝑋, 𝑢). To ensure reversibility, the 

corresponding reverse move, i.e. the function 𝜓𝑟 leading from 𝑋′ to 𝑋, has to be defined also. In 

practice, the possibility to return to the previous state is achieved by modelling move types being 

either a reversible pair of moves or reversible themselves. The latter group comprises the so-called 

non-jumping transformations that randomly select an object from the current configuration and 

randomly alter its parameters. For instance, the reverse move for “translation” (shift an object from 

its current position by a random transition vector) is “translation” itself. Thus, this group includes 

move types that do not involve a change in dimension. This is different for the other group, the 

dimensional jumping transformations. Here, to allow a return to the previous state, reversible move 

pairs are defined appropriately. For instance, one can think of move types being defined by adding 

objects to and removing them from the configuration, or splitting and merging objects. The move 

types used within this thesis are detailed in Section 4.1.3. 

Starting from an initial state 𝑋0 (as with MCMC), in each iteration, the RJMCMC sampler 

proposes a change to the current object configuration 𝑋 from a set of predefined reversible move 

types 𝑚. Each move type is associated with a proposal distribution 𝑄𝑚, in the following also called 

kernel. Then, similar to the MCMC algorithm, a new object configuration 𝑋′ is generated accord-

ing to the kernel 𝑄𝑚 and the acceptance probability 𝛼 of the new state is calculated, which for 

RJMCMC is given by 

 

𝛼(𝑋′|𝑋) = min(1,
𝑃(𝑋′)

𝑃(𝑋)
∙
𝑞𝑚
𝑟

𝑞𝑚
∙
𝑄𝑚
𝑟 (𝑋, 𝑢|𝑋′, 𝑢′)

𝑄𝑚(𝑋′, 𝑢′|𝑋, 𝑢)
∙ |
𝜕𝜓(𝑋, 𝑢)

𝜕(𝑋, 𝑢)
| ). 

 

Note that in the literature the fraction in Equation 3.8 is often referred to as the Green ratio 𝐺 

(Green, 1995), i.e. 𝛼(∙ | ∙) = 𝑚𝑖𝑛(1, 𝐺). Here, 𝑃(𝑋) and 𝑃(𝑋′) correspond to the values of the tar-

get distribution in the current state 𝑋 and in the new state 𝑋′. 𝑄𝑚(𝑋′, 𝑢′|𝑋, 𝑢) is the proposal for a 

move from 𝑋 to 𝑋′ and, in analogy, 𝑄𝑚
𝑟 (𝑋, 𝑢|𝑋′, 𝑢′) the proposal for the reverse move from 𝑋′ to 

(3.8) 
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𝑋, where 𝑢 and 𝑢′ are auxiliary dimension-matching variables. The probabilities for choosing ker-

nel 𝑄𝑚 and its reverse kernel 𝑄𝑚
𝑟  are given by 𝑞𝑚 and 𝑞𝑚

𝑟 , respectively. The last term 

|𝜕𝜓(𝑋, 𝑢) 𝜕(𝑋, 𝑢)⁄ | corresponds the Jacobian matrix of the transition function 𝜓 from 𝑋 to 𝑋′. 

Here, it has to be ensured that the derivatives in the matrix exist and that the Jacobian determinant 

is non-zero. Given that a transition from state 𝑋 to a new state 𝑋′ can be described by (𝑋′, 𝑢′) =

𝜓(𝑋, 𝑢), where 𝑋 and 𝑋′ contain 𝑛 objects, the Jacobian determinant can be determined via 

 

det [
𝜕𝜓(𝑋, 𝑢)

𝜕(𝑋, 𝑢)
] = det [

𝜕(𝑋′, 𝑢′)

𝜕(𝑋, 𝑢)
] = det

[
 
 
 
 
 
 
 
𝜕𝑋1

′

𝜕𝑋1
⋯

𝜕𝑋1
′

𝜕𝑋𝑛

𝜕𝑋1
′

𝜕𝑢
⋮ ⋱ ⋮ ⋮

𝜕𝑋𝑛
′

𝜕𝑋1
⋯

𝜕𝑋𝑛
′

𝜕𝑋𝑛

𝜕𝑋𝑛
′

𝜕𝑢
𝜕𝑢′

𝜕𝑋1
⋯

𝜕𝑢′

𝜕𝑋𝑛

𝜕𝑢′

𝜕𝑢 ]
 
 
 
 
 
 
 

. 

 

In the process of determining optimal object configurations with RJMCMC, or MCMC methods 

in general, long simulations can occur, caused by the so-called random walk behaviour. An exam-

ple of how slowly a random walk can explore the state space can be found in (MacKay, 2003), 

chapter 29.4. In order to reduce the random walk behaviour and thus to accelerate convergence, 

different possibilities exist (see e.g. MacKay (2003), chapter 30); one of them is simulated anneal-

ing. 

3.2.3 Simulated annealing 

The algorithm of simulated annealing (Kirkpatrick et al., 1983) originates from the observation 

that solving combinatorial optimization problems is analogous to the annealing (heat treatment 

that alters the physical properties of a material) of solids in condensed matter physics; its aim is to 

achieve a minimum energy state of the solid. First, the solid is melted in a heat bath. The following 

slow decrease in temperature (cooling) allows the solids’ particles to rearrange in a crystalline 

lattice structure that corresponds to the desired minimum energy state for the solid (Varanelli, 

1996). Cerny (1985) and Kirkpatrick et al. (1983) independently made use of this principle and 

proposed the combination of an MCMC algorithm with a temperature parameter to find the global 

minimum of an energy function. Here, the temperature can be interpreted as a probability with 

which an intermediate result of the optimization is allowed to get worse. An important advantage 

of this is that the algorithm would then not get stuck in a local optimum, but rather converge to the 

global optimum. Since the analogy was discovered, it has been used in numerous optimization 

problems, which also include applications in image analysis (see e.g. Winkler, 2003). 

To be more explicit, simulated annealing involves simulating a non-homogeneous Markov 

Chain in the form of 𝑃𝑡(·) ∝ 𝑃
1 𝑇𝑡⁄ (·), where 𝑇𝑡 is the parameter at iteration 𝑡 and also referred to 

(3.9) 
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as temperature. Here, the sequence of temperatures 𝑇𝑡 tends towards zero while 𝑡 → ∞, i.e. 

𝑙𝑖𝑚𝑡→∞𝑇𝑡 = 0. In this way, as already indicated above, the state space can be widely explored at 

the beginning of the sampling procedure, while with an increasing number of iterations the process 

becomes more selective, i.e. it operates around the global optimum. Consequently, given the tem-

perature 𝑇𝑡, also referred to as a decreasing cooling schedule, the calculation of the acceptance 

probability 𝛼 for the RJMCMC algorithm (Equation 3.8) extends to 

 

𝛼(𝑋′|𝑋) = min (1,
𝑃1 𝑇𝑡⁄ (𝑋′)

𝑃1 𝑇𝑡⁄ (𝑋)
∙
𝑞𝑚
𝑟

𝑞𝑚
∙
𝑄𝑚
𝑟 (𝑋, 𝑢|𝑋′, 𝑢′)

𝑄𝑚(𝑋′, 𝑢′|𝑋, 𝑢)
∙ |
𝜕𝜓(𝑋, 𝑢)

𝜕(𝑋, 𝑢)
| ). 

 

There are different cooling schedules, one of which is a logarithmic scheme that guarantees 

convergence to the global optimum. However, it leads to high computation times and is therefore 

too slow for a practical application. This is the reason why a number of cooling schemes were 

proposed that are able to reach low temperatures in finite time (van Laarhoven and Aarts, 1987). 

Although here the convergence to the global optimum is not guaranteed, these techniques are faster 

and still provide a good approximate solution (Salamon et al., 2002). The most common cooling 

schedule in the context of MPPs is based on a geometric sequence (cf. e.g. Mallet et al., 2010; 

Zhang et al., 2014) that is given by 

 

𝑇𝑡 = 𝑇0 ∙ 𝑐𝑐𝑇
𝑡 , 

 

where 𝑇0 is the starting temperature and 𝑐𝑐𝑇 a cooling coefficient for which 𝑐𝑐𝑇 < 1 applies. These 

two parameters have to be chosen according to the given task, whereby two aspects have to be 

taken into consideration. Firstly, to reduce computation time, the algorithm should not take too 

long to reach the final temperature close to zero. On the other hand, a wrong choice of parameters 

can lead to the process not converging to the global optimum, but getting stuck in a local minimum 

instead. Moreover, a stop criterion 𝑠𝑡𝑜𝑝_𝑐𝑟𝑖𝑡 must be defined, which determines when the execu-

tion of the simulation terminates (van Laarhoven and Aarts, 1987). In this context, often a maxi-

mum number of iterations is set (e.g. Schmidt et al., 2017), but other criteria can equally be used, 

such as stopping the algorithm if the last configurations of consecutive Markov chains are identical 

for a number of chains (e.g. Sechen and Sangiovanni-Vincentelli, 1985). 

3.3 Kernel density estimation 

Kernel density estimation, introduced by Rosenblatt (1956) and Parzen (1962), allows estimating 

the probability density function of a random variable in a non-parametric way. Unlike the histo-

gram as another non-parametric method for density estimation, the kernel technique produces a 

smooth estimate of the probability density function and uses all the sample points’ locations (see 

(3.10) 
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also discussion in Section 2.4.1). Therefore, kernel density estimates provide an effective way of 

data representation. For more details regarding non-parametric density estimation and particularly 

kernel density estimation, the reader is referred to Silverman (1986), Izenman (1991), Simonoff 

(1996) and Scott (2015). 

Given a sample (𝑥1, 𝑥2, … , 𝑥𝑛) drawn from a distribution with an unknown density 𝑝, an esti-

mate 𝑝̂ of this density can be calculated via 

 

𝑝̂(𝑥) =
1

𝑛ℎ
∑𝐾

𝑛

𝑖=1

(
𝑥 − 𝑥𝑖
ℎ

). 

 

Here, ℎ > 0 is the smoothing parameter, called the bandwidth, and 𝐾(𝑘) is a kernel function (not 

to be confused with the kernels for RJMCMC sampling from Section 3.2.2) that has to be a non-

negative function (𝐾(𝑘) ≥ 0) that integrates to one (∫𝐾(𝑘) 𝑑𝑡 = 1). In other words, the kernel 

estimator can be considered as a sum of “bumps” placed on each data point, where the kernel 

function 𝐾 determines the bumps’ shape and the bandwidth ℎ their width, i.e. ℎ governs the amount 

of smoothing applied to the sample. An example showing the individual bumps and the density 

estimate 𝑝̂ constructed by adding them up is given in Figure 3.4 a.  

For density estimation, a range of kernel functions may be used. In this context, the Epanechni-

kov kernel is optimal in terms of minimizing the discrepancy of the density estimator from the true 

density function (Epanechnikov, 1969). However, the loss in efficiency for other commonly used 

kernels, such as the Gaussian kernel, the triangular kernel or the rectangular kernel, is compara-

tively small (Wand and Jones, 1995). Therefore, it is appropriate to base the choice of the kernel 

function on other considerations, such as computational aspects or domain knowledge of the ap-

plication. Note that in contrast to the symmetric kernel functions just mentioned, asymmetric func-

tions can also be employed; the work of Chen (2000), who makes use of asymmetric gamma ker-

nels, may serve as an example. 

On the other hand, the choice of the bandwidth is much more crucial to the accuracy of kernel 

density estimators (Hall and Marron, 1987). Here, too large values for the bandwidth may result 

in oversmoothed information contained in the sample and, thus, important characteristics of the 

true density (e.g. multimodality) may be hidden. In contrast, too small bandwidth values may cause 

the estimator to create spurious data artefacts, i.e. valleys and peaks that actually do not exist. For 

the selection of the bandwidth, a variety of approaches can be used. A natural method is to subjec-

tively choose the bandwidth based on prior ideas with respect to the true density. Here, it can often 

be convenient to consider kernel density estimates for multiple values of the bandwidth. More 

objective or data-driven choices of the bandwidth can also be made. To this end, a wide range of 

methods have been proposed; a description of such techniques can be found, for instance, in Mar-

ron (1988). Moreover, there are ways to vary the bandwidth in different regions of the sample 

space, depending upon the location of either the estimate (balloon estimator) or the samples 

(3.12) 
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(pointwise estimator). For details on such techniques and on the so-called adaptive bandwidth 

kernel density estimation in general, the reader is referred to Terrell and Scott (1992). 

Spatial data analysis (cf. Section 2.4) usually deals with two-dimensional point data, which also 

applies to this work. Thus, in analogy with the previous discussion of univariate kernel density 

estimation, one can think in terms of 𝑛 points in a plane (e.g. a digital image) defined by coordi-

nates 𝑥(𝑖) = (𝑥𝑖, 𝑦𝑖) for 𝑖 = 1,2, … , 𝑛. Here, not a bump is placed at each point, but a “hill” (three-

dimensional bump). Then, in analogy, at each point in the plane, the height of the hills is summed 

up. An example of a kernel density estimate of bivariate data is given in Figure 3.4 b. 

 

 

           
 

Figure 3.4: Kernel density estimates 𝑝̂(𝑥) using a normal (Gaussian) kernel and a bandwidth of 

1.0 (dotted blue lines in (a), not shown in (b)). (a) An example of kernel density estimation (con-

tinuous black line) for univariate data, here consisting of four data points (blue crosses). (b) An 

example of kernel density estimation for bivariate data, here consisting of six two-dimensional 

points with its coordinates (3, 7), (4, 3), (6, 8), (7, 9), (8, 3) and (8, 3). 
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4 Generation of impact maps from bomb cra-

ters 

This chapter introduces a new approach for the automatic detection of bomb craters in aerial war-

time images and the subsequent impact map generation. Motivated by the available literature, this 

work uses marked point processes (MPPs), a model-based probabilistic approach, to deal with the 

bomb crater detection. Moreover, pursuing one of the research objectives within this thesis, the 

approach should also exploit redundant image information by merging detection results from mul-

tiple overlapping images; the overall workflow is illustrated in Figure 4.1 (note that only a subset 

of an image is shown). On the basis of pre-processed aerial wartime images (Figure 4.1 bottom 

left; note that the image shown on the top left is of comparatively good quality), bomb craters are 

detected using MPPs (Section 4.1). Here, craters are represented as circles and during sampling, 

the search space in the image is restricted using the blob detector described in Section 4.1.4, 

providing the coordinate centres of each valid blob as well as its size (Figure 4.1 bottom right, red 

circles). In the sampling process, high gradient magnitudes along the object borders, homogeneous 

grey values inside the objects as well as high contrast between the objects and a concentric annulus 

around them are favoured, while overlapping objects are penalized; the result is a set of detected 

objects per image (Figure 4.1 top right, filled yellow circles). If applicable, redundancy may be 

used, i.e. MPP results of multiple images covering the investigated area are combined (Section 

4.2). Finally, a probability map for duds based on the centres of the detected (and combined) bomb 

craters is created by kernel density estimation. By applying a threshold, areas around the detections 

are classified as contaminated or uncontaminated sites, respectively, resulting in an impact map 

(Section 4.3). Section 4.4 closes this chapter with a discussion of the proposed approach for the 

impact map generation from bomb craters. 

4.1 Bomb crater detection using marked point processes 

The MPP procedure is specified by three key components. First, the object model, describing the 

objects to be detected in the data (Section 4.1.1). Second, the energy, validating the quality of an 

object configuration based on the image content and the spatial interaction of neighbouring objects 

(Section 4.1.2). Third, the optimization method, allowing to determine the globally optimal object 

configuration, i.e. the configuration for which the energy function is minimal (Section 4.1.3). 

These three components and the way in which they are modelled in the context of bomb crater 
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detection are addressed in more detail in the referred subsections. In connection with MPPs, 

knowledge is typically integrated such that the creation of objects is focused to specific locations 

(cf. Section 2.2.3); the procedure for the limitation of the search space is presented in Section 4.1.4. 

Afterwards, the pre-processing of the aerial wartime images is detailed, also including the descrip-

tion of a manual masking procedure (Section 4.1.5). The overall conceptual workflow of the bomb 

crater detection method is outlined in Section 4.1.6. 

 

 

Figure 4.1: Workflow of the proposed method for the generation of impact maps from detected 

bomb craters (for details see main text). 

4.1.1 Object model 

The object model used for the detection of bomb craters is a circle. Each circle is described by its 

two-dimensional position (𝑥, 𝑦) in the image and a one-dimensional mark, the radius 𝑟 ∈  [𝑟𝑚, 𝑟𝑀], 

where 𝑟𝑚 and 𝑟𝑀 are the minimum and maximum value, respectively (Figure 4.2 a). The circular 

model enables to work on a small state space 𝑆 ⊂ ℝ3, which is advantageous for the simulations. 

This aspect is investigated in Section 6.1.2 by experiments comparing the results achieved using 

a circular and an elliptical model. As illustrated in Figure 4.2 b, an ellipse is described by its two-

dimensional position (𝑥, 𝑦) and a three-dimensional mark (𝑎, 𝑏, 𝜃). The semi-major and the semi-

minor axes are denoted by 𝑎 ∈  [𝑎𝑚, 𝑎𝑀] and 𝑏 ∈ [𝑏𝑚, 𝑏𝑀], respectively, where 𝑎𝑚 and 𝑏𝑚 are the 

minimum values while 𝑎𝑀 and 𝑏𝑀 are the maximum values. Here, 𝑎 ≥ 𝑏 as well as 𝑏 >  𝑎 1.5⁄  

are required, because bomb craters usually are almost circular. Moreover, if there is no constraint 
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on the value of 𝑏, elongated objects, such as roads, may be detected. The orientation of the ellipse 

is described by the angle 𝜃 ∈ [0, 𝜋[. 

 

 

 

 

 

 

 

 

 

Figure 4.2: Two different object models, a circle and an ellipse, used for the detection of bomb 

craters in aerial wartime images. (a) The circle, being the default object model used within this 

thesis, is described by its position (𝑥, 𝑦) and the radius 𝑟. (b) The ellipse is described by its position 
(𝑥, 𝑦) as well as the semi-major axis 𝑎, the semi-minor axis 𝑏 and the orientation of the longer 

semi-axis 𝜃. 

4.1.2 Energy function 

In order to evaluate each object configuration, the current configuration is compared with the new 

one based on the Gibbs energy (see Equation 3.2), describing the consistency of the object config-

uration 𝑋 with a predefined model for the objects to be detected. The energy function 𝑈(𝑋) con-

sists of two parts, the data energy and the prior energy. While the former measures the conformity 

of the objects with respect to the given image, in the latter spatial interactions between the objects 

are taken into account, allowing certain configurations to be favoured or penalized based on prior 

knowledge. Basically, the energy function can consist of an arbitrary number of terms. In this 

thesis, it is expressed as the sum of four terms. Each term will be described in the next subsections. 

Given the overall aim of determining the global minimum of the energy function, object con-

figurations that appropriately describe the bomb craters to be detected in the images should reduce 

the value of the energy function. In contrast, unfavourable configurations should increase its value, 

meaning that such object configurations are less likely to be accepted in the sampling process. 

Data energy 

The data energy 𝑈𝐷(𝑋) checks the consistency of the object configuration with the input data. 

Bomb craters are predominantly characterized by locally darker grey values in comparison with 
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the surrounding area. This is mainly due to the frequently circular shadow within the bomb craters 

cast by the sun. Moreover, due to the earth often ejected by the detonation, there may be a band of 

typically brighter pixels around the detonation hole, even though that annulus may differ consid-

erably from image to image, e.g. in terms of its width and appearance (Figure 1.1). Still, it is 

expected that this will help to differentiate bomb craters from other objects. Consequently, bomb 

craters are assumed to have high gradient magnitudes in the transition region from the detonation 

hole to its surroundings, more or less homogenous grey values inside the detonation hole as well 

as a high contrast between their inside and a concentric annulus around it. In the thesis, the data 

energy is thus modelled by 

 

𝑈𝐷(𝑋) = 𝑈𝐺(𝑋) + 𝑈𝐻(𝑋) + 𝑈𝐵(𝑋), 

 

where each term represents one of the three assumptions regarding bomb craters stated above, i.e. 

𝑈𝐺 considers the gradient magnitudes at the object borders, 𝑈𝐻 the homogeneity of grey values 

inside the objects and 𝑈𝐵 the contrast between the objects and a concentric annulus around them 

(see Figure 4.3). 

Note that the grey values in a square window centred over the object’s centre and having a side 

length of 2 ∙ (𝑟 + 𝑛𝑚) are normalized locally to the interval [0, 255], because experiments have 

shown that a normalization is beneficial for the quality of the detection results. The parameter 𝑛𝑚 

is empirically set to 𝑛𝑚 = 5 m and should ensure that the complete part of the inside of the crater 

as well as some surrounding pixels (typically including the craters annulus and some additional 

pixels) are contained in the window. 

 

 

Figure 4.3: Illustration of the three terms of the data energy for an object 𝑜𝑗 with radius 𝑟𝑗, where 

𝑈𝐺 considers the gradient magnitudes at the object border, 𝑈𝐻 the homogeneity of grey values 

inside the object and 𝑈𝐵 the contrast between the object and a concentric annulus around it. 

High gradient magnitudes: According to the previously made assumptions, a newly created or 

modified object leads to a reduction of the data energy if high gradient magnitudes occur along the 
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. 

edges of the object, i.e. the shape of the circle fits to the border of the shadow. The gradients along 

the border of the circle are determined and the corresponding data term is modelled by 

 

𝑈𝐺(𝑋) = 𝑓𝐺 ∙ ∑ (𝑐 −∑
1

𝑛𝑏𝑖

𝑛𝑣

𝑖=1

∑∇𝐼𝑀𝐺𝑝
⦝

𝑛𝑏𝑖

𝑝=1

) .

𝑜𝑗∈𝑋

 

 

Here, ∇𝐼𝑀𝐺𝑝
⦝ = ⟨ ∇⃗⃗ 𝐼𝑀𝐺𝑝 , 𝑏⃗

 
𝑖
⦝ ⟩ is the component of the grey value gradient at the border pixel 𝑝 in the 

direction of the normal vector 𝑏⃗ 𝑖
⦝ of object 𝑜𝑗 pointing outside (Figure 4.4). The border of the 

object is approximated by a polygon with a constant number of 𝑛𝑣 vertices and the gradient mag-

nitudes are summed up for all pixels 𝑝 along the object edges 𝑏𝑖, with 𝑛𝑏𝑖 representing the corre-

sponding number of pixels; the gradient magnitude of each pixel is equally weighted. The whole 

term is weighted by a positive factor 𝑓𝐺  and the constant 𝑐 ≥ 0 ensures that the energy only de-

creases if the sum in Equation 4.2 is larger than 𝑐. Without considering 𝑐, objects with very small 

gradient magnitudes at the object border would already reduce the energy, so that the optimal 

configuration would consist of an extremely large number of (mostly false positive) objects. 

Obviously, the data energy would decrease infinitely if a superimposition of objects on attrac-

tive locations, i.e. locations that lead to an energy reduction, was possible. Consequently, if this 

accumulation of objects is not prevented, the algorithm will not converge due to the energy con-

stantly decreasing. To avoid this problem, a term that penalizes the overlap of objects is included 

in the prior energy (see below). 

 

             

             

             

             

             

             

             

             

             

             

             

Figure 4.4: To calculate the first data term, the border of the object 𝑜𝑗 is approximated by a poly-

gon with a constant number of vertices (here twelve; yellow dots) and the gradient magnitudes in 

direction of the normal vector of the object edges 𝑏𝑖 pointing outside are summed up for all pixels 

𝑝 along the border (light grey). Dark grey pixels indicate the expected darker area within a bomb 

crater. 
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Homogeneous grey values: The second term of the data energy from Equation 4.1 requires the 

grey values inside the object to be homogeneous. Homogeneity is measured by the standard devi-

ation 𝜎 of the grey values within the object, which is assumed to be higher for a falsely detected 

object than for a bomb crater (Figure 4.5 b-d). A new or modified object 𝑜𝑗 increases the energy if 

𝜎𝑗 is higher than a predefined threshold 𝐻𝑡, which results in 

 

𝑈𝐻(𝑋) =  𝑓𝐻 ∙ ∑ max (0, 𝜎𝑗 − 𝐻𝑡).

𝑜𝑗∈𝑋

 

 

In Equation 4.3, the energy term is weighted by a positive constant 𝑓𝐻. For the computation of 𝜎𝑗 

the grey values of all pixels inside the object 𝑜𝑗 are considered. In this context, a certain percentage 

of border pixels are excluded to allow the shapes of bomb craters to deviate slightly from the 

geometrical model of a circle; this possibility is controlled via a parameter 𝐻𝑒 (Figure 4.5 a). 

 

 

 

 

 

 

 

 

 

Figure 4.5: (a) Homogeneity of an object 𝑜𝑗 with radius 𝑟𝑗 is measured by the standard deviation 

𝜎𝑗 of the grey values in the red area; pixels in 𝐻𝑒 (yellow) are excluded. (b) Bomb craters with a 

circular and (c) not quite circular shape; (d) shows a background object with a high standard devi-

ation. 

High contrast: The last term of the data energy requires high contrasts between the object 𝑜𝑗 and 

their concentric annulus 𝐶(𝑜𝑗). For this purpose, i.e. to highlight areas with distinct contrast in the 

data, the Bhattacharyya distance 𝑑𝐵 is used, which is given by 

 

𝑑𝐵(𝑜𝑗 , 𝐶(𝑜𝑗)) =
(𝜇𝑜𝑏𝑗 − 𝜇𝑎𝑛𝑛𝑢)

2

4 ∙ √𝜎𝑜𝑏𝑗
2 + 𝜎𝑎𝑛𝑛𝑢2

−
1

2
∙ log (

2 ∙ 𝜎𝑜𝑏𝑗 ∙ 𝜎𝑎𝑛𝑛𝑢

𝜎𝑜𝑏𝑗
2 + 𝜎𝑎𝑛𝑛𝑢2

), 
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where 𝜇𝑜𝑏𝑗 and 𝜎𝑜𝑏𝑗 are the mean and the standard deviation computed based on the grey values 

of all pixels being part of the object. Accordingly, 𝜇𝑎𝑛𝑛𝑢 and 𝜎𝑎𝑛𝑛𝑢 are the mean and the standard 

deviation of the grey values within the annulus. In connection with the annulus, a parameter 𝑒𝑎𝑛𝑛𝑢 

describing its extent, is introduced (see Figure 4.6). For instance, a value of 𝑒𝑎𝑛𝑛𝑢 = 5 means that 

all pixels within the concentric annulus of 5 pixels in diameter are considered for the computation 

of 𝜇𝑎𝑛𝑛𝑢 and 𝜎𝑎𝑛𝑛𝑢. The data energy term, weighted by the positive factor 𝑓𝐵, is defined via 

 

𝑈𝐵(𝑋) =  𝑓𝐵 ∙ ∑ 𝒬 (𝑑𝐵(𝑜𝑗 , 𝐶(𝑜𝑗))) ,

𝑜𝑗∈𝑋

 

 

with 𝒬(𝑑𝐵) ∈ [-1,1] a quality function that favours or penalizes the object configuration according 

to 

 

𝒬(𝑑𝐵) =

{
 

 1 −
𝑑𝐵
𝑑0

                            if 𝑑𝐵 < 𝑑0

exp (
𝑑0 − 𝑑𝐵
100

) − 1     if 𝑑𝐵 ≥ 𝑑0

     , 

 

where 𝑑0 is a threshold. Consequently, objects with a distinct contrast between their inside and 

their annulus, i.e. 𝑑𝐵 > 𝑑0, are favoured and the associated data energy becomes negative. In this 

context, higher values for the parameter 𝑑0 will of course lead to a more selective object fitting, 

resulting in fewer objects being included in the final object configuration. 

 

 

 

 

 

 

 

 

Figure 4.6: For the computation of the Bhattacharyya distance the grey values of all pixels inside 

the object 𝑜𝑗 (blue area) and its annulus 𝐶(𝑜𝑗) (grey area) are considered; the extent of the annulus 

is controlled via 𝑒𝑎𝑛𝑛𝑢. 
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Prior energy 

The prior energy 𝑈𝑃(𝑋) integrates prior knowledge into the model, allowing to favour or penalize 

certain object configurations. In this context, certain aspects of the configuration, e.g. with respect 

to the geometric relation of neighbouring objects, may be evaluated by different terms of 𝑈𝑃. For 

MPPs, it is in general reasonable to penalize the overlap of individual objects (see Section 2.2). 

As bomb craters or their clusters usually do not exhibit any particular patterns, the prior energy 

consists of one term only, resulting in 

 

𝑈𝑃(𝑋) = 𝑈𝑂(𝑋), 

 

where 𝑈𝑂 represents the prior energy term that penalizes the overlap of objects. 

Non-overlapping objects: To avoid the accumulation of objects in regions where the data terms 

lead to a reduction of the energy, configurations with overlapping objects are not prohibited but 

penalized, as, obviously, bomb craters can in principle overlap to any extent (see also the discus-

sion in Section 4.4 regarding the separate detection of each crater). For this purpose, an overlap-

ping object pair 𝑜𝑖, 𝑜𝑗  is considered (Figure 4.7). The overlapping areas 𝐴𝑖𝑗 of the objects 𝑜𝑖 and 

𝑜𝑗 as well as the respective relative overlapping areas 𝐴𝑖𝑗 𝐴(𝑜𝑖)⁄  and 𝐴𝑖𝑗 𝐴(𝑜𝑗)⁄  are computed. 

Here, 𝐴(𝑜𝑖) and 𝐴(𝑜𝑗) are the areas of the objects 𝑜𝑖 and 𝑜𝑗, respectively. The prior energy term 

with positive weight 𝑓𝑂 becomes 

 

𝑈𝑂(𝑋) = 𝑓𝑂 ∙ ∑ max(
𝐴𝑖𝑗

𝐴(𝑜𝑖)
,
𝐴𝑖𝑗

𝐴(𝑜𝑗)
)

𝑜𝑖,𝑜𝑗∈𝑋
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Figure 4.7: The prior energy term penalizes overlapping object configurations depending on their 

degree of overlap. The larger the common area, the higher the prior energy will be. 
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4.1.3 Changes in the object configuration 

The task is to find the object configuration that minimizes the energy function 𝑈, the components 

of which have been introduced in Section 4.1.2. As this function is of high complexity and its 

dimensionality is not known due to the unknown number of objects, to find the global optimum, 

optimization is carried out by means of Reversible Jump Markov Chain Monte Carlo sampling 

(Section 3.2.2) coupled with simulated annealing (Section 3.2.3). During sampling, for the transi-

tion from an object configuration to a new one, potential changes and corresponding kernels 𝑄𝑚 

have to be defined. In this work, transformations are used that involve and do not involve a change 

in dimension, respectively. More precisely, in each iteration, one of the two following move types 

is randomly selected: 

 Birth-and-death: An object is added to or removed from the configuration; this involves 

a change in dimension. This move type comprises the moves birth and death, forming a 

reversible pair, in which one move is the reverse of the other. 

 Modification: The object’s parameters are modified; this does not involve a change in 

dimension. This move type comprises the moves translation and mark-variation. 

The move types used in this thesis are described in more detail in the subsections below. Theoret-

ically, adding objects to or removing them from the configuration would be sufficient to simulate 

a MPP. However, to increase the convergence speed, it is reasonable to use also non-jumping 

transformations, as, for instance, a single translation is more efficient than a death followed by a 

birth, leading to the same result. Then, the new configuration 𝑋′ is evaluated depending on the 

current configuration 𝑋 using the Green ratio (cf. Section 3.2.2). Subsequently, the new state is 

accepted with acceptance probability 𝛼 (Equation 3.10), which, accounting for the energy function 

𝑈, is given by 

 

𝛼(𝑋′|𝑋) = min(1, exp (−
𝑈(𝑋′) − 𝑈(𝑋)

𝑇𝑡
) ∙
𝑞𝑚
𝑟

𝑞𝑚
∙
𝑄𝑚
𝑟 (𝑋, 𝑢|𝑋′, 𝑢′)

𝑄𝑚(𝑋′, 𝑢′|𝑋, 𝑢)
∙ |
𝜕𝜓(𝑋, 𝑢)

𝜕(𝑋, 𝑢)
| ). 

 

In connection with the Jacobian matrix in Equation 4.9, in the following subsections it will also be 

shown that the absolute value of the Jacobian determinant (Equation 3.9) reduces to unity for all 

moves. 

Birth-and-death 

During sampling, an object configuration is iteratively created by adding objects to or removing 

them from the configuration. In this context, while the birth-move adds an object, the death-move 

allows to return to the previous state by removing it. The corresponding changes to the object 

configuration induced by this reversible move pair are modelled by the kernel 𝑄𝐵𝐷. 

(4.9) 

) 
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Within the birth-move, the position of a new object is sampled from likely positions for bomb 

craters detected using the blob detector described in (Mallick, 2022; see also Section 4.1.4; Figure 

4.8). As pointed out before, this procedure provides information about the size of the associated 

crater, which is used for the initialisation of the circle radius. Given Equation 3.1 related to the 

Poisson point process and the fact that one object is added to the current configuration 𝑋, resulting 

in a new configuration 𝑋′ of 𝑛′ = 𝑛 + 1 objects, the kernel ratio from Equation 4.9 reduces to the 

probability 𝑝 for the number of objects in the respective configuration and is therefore 

 

𝑄𝐷(𝑋, 𝑢|𝑋′, 𝑢′)

𝑄𝐵(𝑋′, 𝑢′|𝑋, 𝑢)
=
𝑝(𝑛|𝑛′)

𝑝(𝑛′|𝑛)
=
𝜆𝑛

′
∙ 𝑒−𝜆

𝑛′!
∙

𝑛!

𝜆𝑛 ∙ 𝑒−𝜆
=

𝜆(𝑛+1) ∙ 𝑛!

𝑛! ∙ (𝑛 + 1) ∙ 𝜆𝑛
=
𝜆

𝑛′
   , 

 

where 𝜆 corresponds to the expected number of objects in the image. Similarly, for the death-

move, a randomly selected object is removed (Figure 4.8), i.e. the number of objects is reduced by 

one (𝑛′ = 𝑛 − 1), and the kernel ratio results in 

 

𝑄𝐵(𝑋, 𝑢|𝑋′, 𝑢′)

𝑄𝐷(𝑋′, 𝑢′|𝑋, 𝑢)
= ⋯ =

𝜆(𝑛−1) ∙ 𝑛!

(𝑛 − 1)! ∙ 𝜆𝑛
=
𝜆𝑛 ∙ 𝑛! ∙ 𝑛

𝜆 ∙ 𝑛! ∙ 𝜆𝑛
=
𝑛

𝜆
   , 

 

where 𝑛 is the number of objects in the current object configuration 𝑋.  

To recap, the transition from 𝑋 to 𝑋′ is modelled by a transition function 𝜓 that includes auxil-

iary variables 𝑢 and 𝑢′. Thereby, the Jacobian determinant of 𝜓 is of relevance, as it affects the 

calculation of the acceptance probability. In the following, using Figure 4.8, it is exemplarily 

shown how the value of the Jacobian determinant is computed in the case of the birth- and death-

move, respectively. Note that all parameters indicated with a prime belong to the proposed new 

configuration 𝑋′. In the birth-move, object 𝑜3
′  is added to the current object configuration 𝑋 =

{𝑜1, 𝑜2}, forming a proposed new state 𝑋′ = {𝑜1
′ , 𝑜2

′ , 𝑜3
′ }, while all other objects (here 𝑜1 and 𝑜2) 

are kept fixed. Thus, with the auxiliary variable 𝑢 acting as a placeholder for the missing dimension 

in 𝑋, the transition from 𝑋 to 𝑋′ can be expressed via 

 

𝑋 = {
𝑜1
𝑜2
𝑢
}    →    𝑋′ = {

𝑜1
′ = 𝑜1
𝑜2
′ = 𝑜2
𝑜3
′ = 𝑢

} 

 

and the Jacobian determinant reduces to 

 

det [
𝜕(𝑋′)

𝜕(𝑋, 𝑢)
] = det [

1
1

1

] = 1. 

 

(4.10) 
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The death-move, being the reverse of the birth-move, is designed in a way that it may revert the 

state back to the previous configuration. This is achieved by applying the death-move to the pro-

posed configuration 𝑋′ generated by the birth-move. However, for the sake of consistency, the 

following notation treats the death-move as applied to an initial configuration 𝑋. Thus, in analogy 

to the birth-move, the transition can be represented by 

 

𝑋 = {

𝑜1
𝑜2
𝑜3
}    →    𝑋′ = {

𝑜1
′ = 𝑜1
𝑜2
′ = 𝑜2
𝑢′ = 𝑜3

}. 

 

Note that as with Equation 4.12, Equation 4.14 refers to the exemplary object configuration from 

Figure 4.8, where object 𝑜3 is removed using the auxiliary variable 𝑢′ = 𝑜3 and objects 𝑜1
′  and 𝑜2

′  

remain unchanged from their previous state 𝑋 (note that the notation in Figure 4.8 is given accord-

ing to the birth-move; for the death-move it would be reversed). Again, the Jacobian determinant 

reduces to unity, as it is determined via 

 

det [
𝜕(𝑋′, 𝑢′)

𝜕(𝑋)
] = det [

1
1

1

] = 1. 

 

Consequently, with the kernel ratios from Equations 4.10 and 4.11 as well as the Jacobian de-

terminants equal to unity in both cases, the acceptance probability for the birth-event 𝛼𝑏𝑖𝑟𝑡ℎ is 

given by 

 

𝛼𝑏𝑖𝑟𝑡ℎ(𝑋′|𝑋) = min (1, exp (−
𝑈(𝑋′) − 𝑈(𝑋)

𝑇𝑡
) ∙
𝑞𝐷
𝑞𝐵
∙
𝜆

𝑛′
 ) 

 

and for the death-event 𝛼𝑑𝑒𝑎𝑡ℎ by 

 

𝛼𝑑𝑒𝑎𝑡ℎ(𝑋′|𝑋) = min (1, exp (−
𝑈(𝑋′) − 𝑈(𝑋)

𝑇𝑡
) ∙
𝑞𝐵
𝑞𝐷
∙
𝑛

𝜆
 ), 

 

where 𝑞𝐵 and 𝑞𝐷 are the probabilities for choosing the birth- and the death-move, respectively. 

Modification 

Besides adding objects to or removing them from the configuration, the parameters of objects can 

be modified. Here, an object is allowed to change with respect to its position (move: translation)  

 

(4.14) 
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(4.15) 
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(4.16) 
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Figure 4.8: Move type birth-and-death based on an exemplary configuration 𝑋 consisting of two 

objects {𝑜1, 𝑜2}. In the birth-move, object 𝑜3
′  is added to 𝑋, forming a new state 𝑋′ = {𝑜1

′ , 𝑜2
′ , 𝑜3

′ }. 
To return to the previous state 𝑋, the death-move is applied to 𝑋′, removing object 𝑜3

′  again. 

or mark (move: mark-variation), while all other objects are kept fixed. These two modifications, 

illustrated in Figure 4.9, are assumed to be equally probable, and one of them is chosen randomly. 

For a translation-move (Figure 4.9 upper row), a randomly chosen object is shifted from its current 

position by a random transition vector 𝑡 . The movement is realized in a given interval based on a 

uniform distribution. For a mark-variation-move (Figure 4.9 lower row), a circle of the current 

configuration is randomly selected and its radius is changed to a new value drawn from a uniform 

distribution within a predefined interval. Impossible proposals, e.g. a translation-move that moves 

the object (partly) out of the image, are not used. In this case, the respective move is rejected. 

Again, the determination of the Jacobian determinant is illustrated by using Figure 4.9. In this 

example, the parameters of object 𝑜2
′  (either the position within the translation-move or the radius 

within the mark-variation-move) are modified using the auxiliary variable 𝑢. Given that the move 

type modification is self-reversible, 𝑢′ is the reverse counterpart of 𝑢 and the transition from 𝑋 to 

𝑋′ can be expressed via 

 

𝑋 = {
𝑜1
𝑜2
𝑢
}    →    𝑋′ = {

𝑜1
′ = 𝑜1
𝑜2
′ = 𝑢

𝑢′ = 𝑜2

} 

 

and the Jacobian determinant reduces to 

 

det [
𝜕(𝑋′, 𝑢′)

𝜕(𝑋, 𝑢)
] = det [

1
0 1
1 0

] = −1. 

 

Note that the absolute value of the Jacobian determinant is of interest (cf. Equation 4.9). Consid-

ering this and the fact that the number of objects does not change, the acceptance probability for 

modification 𝛼𝑀𝑜𝑑 is simply given by 
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𝛼𝑀𝑜𝑑(𝑋′|𝑋) = min(1, exp (−
𝑈(𝑋′) − 𝑈(𝑋)

𝑇𝑡
) ∙
𝑞𝑀𝑜
𝑖𝑛𝑣

𝑞𝑀𝑜
 ), 

 

where 𝑞𝑀𝑜 and 𝑞𝑀𝑜
𝑖𝑛𝑣 are the probabilities for choosing the respective modification and its inverse. 

 

                                    

 

                                    

 

Figure 4.9: The move type modification induces changes to the object parameters, here illustrated 

using the same exemplary object configuration as in Figure 4.8. Upper row: In the translation-

move, the coordinates of object 𝑜2 are modified by a randomly generated transition vector 𝑡 . The 

reverse move from the proposed state 𝑋′ to the previous one 𝑋 is possible by applying the inverse 

modification, i.e. shifting 𝑜2
′  in the opposite direction. Lower row: In the mark-variation-move, 

the mark of object 𝑜2, i.e. its radius, is randomly changed within a predefined interval. 

4.1.4 Limitation of the search space 

As outlined in Section 2.2.3, in connection with MPPs, the generation of objects is often favoured 

at certain locations. In this way, the computational effort for the MPPs in the sampling process is 

reduced. That is why the general idea of restricting the search space in the image is also taken up 

in this thesis. However, it seems reasonable to also derive information with respect to the initiali-

sation of the object model used in the MPP framework, which the discussed approaches from the 

literature do not address. For that purpose, in this work, the blob detector described in (Mallick, 

2022) is employed. A blob is a group of connected pixels that share common properties (e.g. sim-

ilar grey values). The aim of the blob detection is to find and mark these pixel regions in the image. 

Hence, the detector provides the coordinate centres for each valid blob as well as its size. That is, 

translation 
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(4.20) 

) 

  

 



 

52 4  Generation of impact maps from bomb craters  

during sampling, the birth of an object is only possible on foreground pixels, i.e. a blob centre and 

the associated size information is used for the initialisation of the object radius. 

In the first step of blob detection, the image is converted into several binary images by applying 

different thresholds. Starting at a minimum threshold 𝐵𝑇_𝑚𝑖𝑛, this threshold is increased by step 

size 𝐵𝑇_𝑠𝑡𝑒𝑝, up to a maximum 𝐵𝑇_𝑚𝑎𝑥. After extracting connected components from each binary 

image, they are grouped according to the distance of their centres to form blobs. Blobs located 

closer than 𝐵𝐷 are merged. The algorithm also provides filter options allowing to detect only dark 

blobs, bright blobs or both types of blobs. Moreover, blobs can be filtered according to their cir-

cularity 𝐵𝐶𝑖𝑟𝑐, convexity 𝐵𝐶𝑜𝑛𝑣, inertia ratio 𝐵𝐼𝑛𝑅𝑎𝑡 or size 𝐵𝑆, defined in the respective intervals 

[𝐵𝐶𝑖𝑟𝑐_𝑚𝑖𝑛, 𝐵𝐶𝑖𝑟𝑐_𝑚𝑎𝑥], [𝐵𝐶𝑜𝑛𝑣_𝑚𝑖𝑛, 𝐵𝐶𝑜𝑛𝑣_𝑚𝑎𝑥], [𝐵𝐼𝑛𝑅𝑎𝑡_𝑚𝑖𝑛, 𝐵𝐼𝑛𝑅𝑎𝑡_𝑚𝑎𝑥] and [𝐵𝑆_𝑚𝑖𝑛, 𝐵𝑆_𝑚𝑎𝑥], 

meaning that e.g. the circularity 𝐵𝐶𝑖𝑟𝑐 has to be in the range of 𝐵𝐶𝑖𝑟𝑐_𝑚𝑖𝑛 and 𝐵𝐶𝑖𝑟𝑐_𝑚𝑎𝑥 to not be 

filtered out, where 𝐵𝐶𝑖𝑟𝑐_𝑚𝑖𝑛 and 𝐵𝐶𝑖𝑟𝑐_𝑚𝑎𝑥 are the minimal and maximal circularity, respectively. 

For the subset of an aerial wartime image, Figure 4.10 exemplarily shows the results of the blob 

detection for a rather suitable (Figure 4.10 middle) and rather unsuitable (Figure 4.10 right) selec-

tion of the parameters of the blob detector. In the example, in the latter case, smaller craters and 

those that are less circular are not detected. Although the number of false detections is reduced by 

a more restrictive choice of parameters, the MPP result will be less complete, because births of 

objects can only occur at blob centres, as stated above. In order not to miss any craters that could 

possibly be detected by the proposed MPP model, the parameters of the blob detector are selected 

accordingly (Section 5.3). 

 

     

Figure 4.10: Subset of an aerial wartime image (left) and the result of the blob detector (red cir-

cles) for a rather suitable (middle) and rather unsuitable (right) selection of its parameters, the 

latter resulting in smaller and less circular craters not being detected. 
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4.1.5 Pre-processing 

The quality of the aerial wartime images differs considerably due to their age as well as the cir-

cumstances during acquisition. In particular, as also mentioned by Farella et al. (2022), there are 

both, underexposed and overexposed areas as well as poor brightness and contrast levels. To coun-

teract these challenges, Contrast Limited Adaptive Histogram Equalization (CLAHE; Pizer et al., 

1987 – in this work, the OpenCV implementation is used) is applied to each image as a pre-pro-

cessing step. In this context, the image is initially divided into small blocks with a size of 𝐶𝑏 and 

histogram equalization is applied to every block. To avoid the amplification of noise, contrast 

limiting is applied before the equalization: Pixels in a histogram bin above the specified contrast 

limit 𝐶𝑙 are distributed uniformly to other bins. Finally, bilinear interpolation is applied at the 

borders of the blocks. In Figure 4.11, some exemplary image subsets (Figure 4.11 left column) of 

images to which CLAHE is applied (Figure 4.11 right column) can be found. 

 

  

  

  

Figure 4.11: Subsets of wartime images (left column) and the adapted subsets after applying Con-

trast Limited Adaptive Histogram Equalization (right column) resulting in more highlighted salient 

image features. 
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There are objects that have a similar appearance as bomb craters. Among others, shadow casts 

by buildings and trees can lead to false detections. If stereoscopic imagery is available, one way 

of counteract these limitations is to integrate 3D information. Another possibility is to consider 

additional information, such as historical maps and GIS data, to find and subsequently exclude 

such areas from further processing. For simulation purposes, high static objects (buildings, forests, 

trees, others) including their shadows were manually masked. Pixels inside such masked areas are 

considered neither for the detection nor for the evaluation. Figure 4.12 shows two examples of 

subsets of aerial wartime images with the corresponding masks. 

 

  

  

Figure 4.12: Exemplary subsets of aerial wartime images (left) and the respective manually cre-

ated masks of static objects with a certain height including their shadows (black); in these exam-

ples the masked areas include buildings and trees (top right) and forest (bottom right). 

4.1.6 Conceptual workflow 

In this section, for the sake of clarity, the overall conceptual workflow of the proposed method for 

bomb crater detection is briefly summarized. The individual steps can be summarized as follows, 

with all parameters involved in the procedure having to be initialized beforehand: 
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I. Pre-processing: CLAHE is applied to the input data (see Section 4.1.5). 

II. Blob detection: Likely positions and size information for bomb craters are determined 

using the blob detector (see Section 4.1.4). 

III. MPPs: The following MPP-related steps are repeated until the number of objects has 

not changed for a certain number of iterations (stop criterion): 

a. One of the available move types (birth-and-death or modification) is randomly 

chosen. 

b. All required parameters for the specific move to be applied (birth, death, trans-

lation or mark-variation) are generated and a new object configuration 𝑋′ is pro-

posed. 

c. The energy difference ∆𝑈 = 𝑈(𝑋′) − 𝑈(𝑋) of the proposed configuration 𝑋′ 

and the current one 𝑋 is determined. 

d. The corresponding acceptance probability 𝛼 (Equation 4.16, 4.17 or 4.20) is 

computed. 

e. A uniform random number 𝛿 ∈ [0, 1] is sampled. The proposed object configu-

ration 𝑋′ is accepted if 𝛿 < 𝛼, otherwise it is rejected, i.e. the current configura-

tion 𝑋 is maintained. 

The result of the MPP is the object configuration that best describes the bomb craters in the given 

data, considering the predefined model. 

4.2 Fusing the results from multiple images 

In the presence of multiple overlapping images, the MPP process is applied independently to all 

images (Section 4.1). In a subsequent step, the resulting detections are combined before generating 

an impact map (Section 4.3). This means that detections from multiple overlapping images that 

refer to the same object (e.g. a certain bomb crater) have to be matched. A particular problem is 

that the georeferencing information of the aerial wartime images is not very accurate. For instance, 

the images used in the experiments have a georeferencing accuracy of about 5 m - 40 m (see 

Section 5.2). Furthermore, as already indicated in Section 2.3, it should be exploited that several 

detections of the same object in different images are an indication for indeed having found a correct 

object (redundancy). 

In order to merge the detections of every image that refer to the same object, in this thesis, a 

local solution is opted for. First, a master image (the detections within this image will be referred 

to as master detections MDs) is selected and detections from the remaining images (non-MDs) are 

assigned to the respective MDs. However, due to the coarse georeferencing, the positions of iden-

tical objects in object space can differ by up to 40 m. For this reason, for each MD, a search radius 
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𝑑𝑖𝑠𝑡𝑎𝑠𝑠𝑖𝑔𝑛 is defined in order to be able to cover all possible detections that belong to the same 

object. For each MD, all detections from the remaining images within 𝑑𝑖𝑠𝑡𝑎𝑠𝑠𝑖𝑔𝑛 may form a point 

set 𝑃𝑆 with this MD. Note that when searching for neighbours, only the closest neighbour per 

image is considered, and each detection can only be used once. After all MDs have been used to 

define 𝑃𝑆, the remaining non-MDs are treated in the same way. It should be noted that due to the 

fact that the georeferencing is only coarse, incorrect assignments are possible in this local ap-

proach. This issue is briefly discussed in Section 4.4; an evaluation of the approach presented in 

this section, addressing the question to what extent the inaccurate georeferencing affects the qual-

ity of the generated impact map, can be found in Appendix A. 

Non-MDs are usually not located at the positions of the craters in the master image due to the 

inaccuracy of the georeferencing. To counteract this problem, the fact that detections from the 

same image will have (almost) identical offsets to the respective MDs in the local neighbourhood 

is exploited: Corresponding mean displacement vectors 𝑑𝑛⃗⃗ ⃗⃗  are determined for each detection 𝑛 of 

𝑃𝑆 without MD from 𝑃𝑆 containing a MD and being in a circular neighbourhood (600 m, based 

on empirical investigations). These vectors are then used to move the respective detections accord-

ing to the particular offset. If only a few 𝑃𝑆 with MD are available for the determination of the 

displacement vectors 𝑑𝑛⃗⃗ ⃗⃗ , this method is of course less reliable. 

Finally, for 𝑃𝑆 containing a MD, the MD coordinates are used for the subsequent generation of 

the impact map, while for the other 𝑃𝑆 the centre of gravity after translation is utilized. Despite 

the local translations, the centres of gravity from 𝑃𝑆 not including a MD are usually still not located 

at the exact centres of the craters in the master image, which has an impact on the evaluation of 

the results and should be counteracted (see Section 5.4). Given the fact that 𝑃𝑆 with one (e.g. 

image errors) or only a few (e.g. shadows) detections may be erroneous, 𝑃𝑆 not consisting of at 

least 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 detections are deleted. 

Figure 4.13 illustrates the procedure based on a subset of four overlapping aerial wartime im-

ages. Here, the centres of the respective detections are shown in red, orange, green and purple, 

respectively. First, one MD (red) is randomly selected (here the top left one) and all neighbouring 

detections within the radius 𝑑𝑖𝑠𝑡𝑎𝑠𝑠𝑖𝑔𝑛 (dashed yellow circle) may form 𝑃𝑆𝑖 with this MD. Ac-

cording to the previously mentioned rules, the purple detection in the upper left corner is assigned 

to this 𝑃𝑆 (next to the orange and green one), forming 𝑃𝑆1 (delineated in black). In analogy, 𝑃𝑆2 

is formed by the red, orange and purple detections. All MDs having been used to define 𝑃𝑆, the 

detections from the remaining images are considered. It is proceeded with the detections of a ran-

domly selected image, in this example the orange ones; the remaining orange detection forms 𝑃𝑆3, 

to which the green detection is assigned. Only the purple detection in the upper right corner has 

not yet been considered; it forms 𝑃𝑆4. Subsequently, 𝑃𝑆 with a MD (here 𝑃𝑆1 and 𝑃𝑆2) are used 

to determine the respective displacement vectors 𝑑𝑛⃗⃗ ⃗⃗  (light blue) to move all detections from 𝑃𝑆 

without MD (here 𝑃𝑆3 and 𝑃𝑆4) accordingly. After computing the new centres of gravity for 𝑃𝑆3 



 

 4.3  Impact map 57 

and 𝑃𝑆4, 𝑃𝑆 with too few detections are deleted (for instance, for 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 2, this is the 

case for 𝑃𝑆4). 

 

 

Figure 4.13: Subset of an aerial wartime image covered by a total of four images with the detection 

results in red, orange, green and purple, respectively; these detections are assigned to point sets 

𝑃𝑆𝑖 (outlined in black) according to criteria described in the main text. After the assignment pro-

cess, certain detections are translated (light blue arrows) and 𝑃𝑆 have to fulfil a certain criterion 

(see main text). 

4.3 Impact map 

The detections, obtained from either combined (Section 4.2) or single image (Section 4.1) detec-

tion results, are used to derive a probability for each location that there are duds nearby. The asso-

ciated probability map is generated from the centres of the detections by means of kernel density 

estimation with the conic kernel function 𝐾(𝑘) =  (1 − |𝑘|). In this context, the bandwidth ℎ in 

Equation 3.12 indicates how large the area of influence of a detection is. Using the probability 

map, the entire scene is classified into potentially contaminated and uncontaminated areas. For 

that purpose, a threshold 𝑝 is applied to the probabilities, resulting in an impact map that indicates 

areas with a high probability of containing duds. Figure 4.14 illustrates the overall process based 

on a subset of an aerial wartime image (Figure 4.14 left), including the probability map generation 

from the detections by kernel density estimation (Figure 4.14 middle) and the subsequent deriva-

tion of the impact map by setting a threshold for the probabilities (Figure 4.14 right). 
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Figure 4.14: Subset of an aerial wartime image (left). Superimposition of the subset of the aerial 

wartime image and a probability map derived from the centres of detected bomb craters shown in 

blue, where brighter colours represent higher probabilities for the occurrence of duds and vice 

versa; the area of influence of a detection is controlled via the bandwidth-parameter, here set to 

50 m (middle). Superimpositions of the subset of the aerial wartime image, the probability map 

and an impact map, obtained by setting a threshold for the probabilities, with potentially contam-

inated and uncontaminated areas shown in red and green, respectively (right). 

4.4 Discussion 

In this section, some aspects of the proposed method are discussed; these mainly include limita-

tions related to the detection of craters by means of the MPP procedure and its transferability to a 

different object detection task. By selecting appropriate parameters (Section 5.3), the MPP method 

can be adapted accordingly. 

The proposed model for the MPPs only allows the detection of dark bomb craters, i.e. craters 

that are characterized by locally darker grey values in comparison to the surrounding area. Alt-

hough craters typically appear dark in the images, this does not always hold true. For instance, if 

craters have been filled with earth before the image was taken, or if sandy soil is present, they 

usually appear brighter than their surroundings. To detect this type of craters, it would be possible 

to use the complementary image as input (implying that only bright craters exist) or to reverse the 

direction of the gradients calculated based on Equation 4.2. However, experiments have shown 

100 m 100 m 100 m 
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that while bright craters can be found, the number of false detections is significantly increased and 

therefore – especially with regard to the proposed application scenario – the detection of bright 

craters is not pursued further. 

 For certain applications, such as counting trees (e.g. Perrin et al., 2004) or birds (e.g. Descamps 

et al., 2008), the detection of each object is important, e.g. to derive information about the number 

and density of objects. In connection with the impact map generation, however, especially in 

highly bombed areas, the separate detection of each crater is of secondary importance, as this area 

has to be probed anyway (see discussion in Section 1.1). In this context, it should be noted that, 

obviously, bomb craters can overlap to any extent. Particularly when they cover each other (al-

most) completely or only fragments are visible, the separate detection of all craters becomes im-

possible for the proposed bomb crater detection method. However, in order not to completely pro-

hibit the detection of overlapping objects, such configurations are penalized as specified in Equa-

tion 4.8. In this way, one object in the image will not be represented by several circles, but the 

detection of overlapping craters is still possible in principle, although in practice usually only for 

craters that overlap slightly. 

In the presence of multiple overlapping aerial wartime images, the MPP procedure is applied 

independently to all images (Section 4.1). Subsequently, the results are combined locally (Section 

4.2). However, due to the coarse georeferencing accuracy of the images, incorrect assignments, 

especially is densely bombed areas, are possible in this local approach. As already pointed out in 

the motivation of this work (Section 1.1), to overcome this problem, it would be possible to first 

improve the co-registration of the respective images based on global approaches such as automatic 

aerial triangulation. However, this may become challenging, particularly due to the different ap-

pearances (e.g. caused by seasonal changes or noise) and missing camera information. Given these 

problems, the approach presented in Section 4.2 has been developed. It has been evaluated and 

found to work satisfactorily, although, not surprisingly, the quality of the impact maps would be 

improved – at least to a small extent – if there was a more accurate co-registration of the respective 

images (see Appendix A). 

Although the proposed MPP method is designed for the detection of bomb craters in aerial 

wartime images, it can be used on other images as well, as long as the objects to be detected 

basically follow the MPP model and the parameters of the method are adapted to the new data. 

Certain objects in microscopic images, such as cells, show crater-like characteristics. More pre-

cisely, cells possibly overlap and appear circular as well as have a homogeneous area. This basi-

cally also applies to stomata (pores on the bottom side of a leaf) in microscopic images and birds 

or tree crowns in aerial images. Usually, such imagery is used for population counting purposes. 

If the objects appear brighter than their surroundings, the complementary image can be used as 

input, as discussed at the beginning of this section. 
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5 Experimental setup 

This chapter presents the experimental setup used to evaluate the methodology proposed in the 

previous chapter. For this purpose, the evaluation objectives are introduced in Section 5.1, before 

describing the data used for testing (Section 5.2). Section 5.3 reports the parameter settings for the 

experiments, while the evaluation procedure and criteria, allowing for a quantitative assessment 

of the results, are presented in Section 5.4. This chapter closes with a description of the test setup, 

including methodological aspects, regarding a comparison with a deep learning based object de-

tector (Section 5.5). 

5.1 Objectives 

The overall objective of this work is to develop a procedure that generates an impact map from 

bomb craters automatically detected in aerial wartime images; the crater detection task is addressed 

by marked point processes (MPPs). The quality of such an impact map and that of the bomb crater 

detection itself can be evaluated using reference data. For this purpose, the results are evaluated 

quantitatively based on the criteria presented in Section 5.4. The experiments are designed as fol-

lows: First, the proposed MPP model is examined by evaluating the influence of different aspects 

on the results. Moreover, the applicability of the overall approach to differing aerial wartime im-

ages is investigated and results are compared with a state-of-the-art object detector based on CNNs. 

Additionally, the influence of using redundant image information on the results and its contribution 

with respect to the generation of an improved impact map in terms of its precision, is investigated. 

Finally, the extent to which the MPP model is suitable for population counting purposes is exam-

ined. The following questions are addressed by the experiments: 

(1) How stable are the results in the proposed MPP method for the detection of bomb craters 

despite the use of random numbers? How does the circle as default object model compare to an 

ellipse? How do the energy terms affect the quality of the results? 

In order to verify whether and how well the MPP model used is suitable for the detection of bomb 

craters in aerial wartime images, individual parts of the model are examined in more detail. By 

repeating the same experiments several times with identical parameter settings, the influence of 

the random numbers generated during sampling on the results is investigated. Furthermore, the 
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influence of the chosen object model as well as that of the proposed energy terms on the quality 

measures of the results is analysed. 

(2) How well does the proposed approach perform on different aerial wartime imagery? To 

what extent does redundant image information help to improve the quality of the impact map? Can 

the method produce useful results with respect to the proposed application scenario? What would 

be the general benefit of height information? How does the MPP-based method for detecting bomb 

craters compare to a state-of-the-art object detector for this task? 

The proposed method is tested on a variety of aerial wartime images acquired by the Allied forces 

during the Second World War and taken over Lower Saxony, Salzburg and Italy. In this way, the 

general validity of the approach is assessed and potential limitations are identified. As there are 

typically multiple images of the same area, in another set of experiments, the influence of using 

redundant image information, in this case of combining the MPP results of coarsely georeferenced 

panchromatic images of Lower Saxony, on the quality of the results is studied. Lastly, it is inves-

tigated whether the generated impact map can be used in an appropriate way with respect to the 

proposed application scenario. For this purpose, while in the experiments discussed so far, the 

focus is on achieving results with a high F1-score, in these experiments the procedure is tuned to 

achieve a high precision, i.e. the areas falsely classified as contaminated should be as small as 

possible, which is important for the application scenario. Furthermore, to simulate the existence 

of 3D and/or further information, such as historical maps and GIS data, a manual masking of high 

static objects plus their shadows has been carried out (cf. Section 4.1.5). By applying the proposed 

method to the masked data as well, the overall benefit of such additional information can be as-

sessed for both the single (Section 6.2.1) and the multi-image case (Sections 6.2.2 and 6.2.3). 

Finally, the results of the MPP for the detection of bomb craters are compared with those of a state-

of-the-art object detector based on CNNs. 

(3) To what extent is the MPP method suitable for the purpose of population counting in im-

ages? How does it perform compared to other algorithms for this task? 

The proposed MPP method is designed for the detection of bomb craters in aerial wartime imagery. 

At the same time, obviously, the MPP model can in principle also be used for other applications 

(cf. discussion in Section 4.4 regarding the transferability of the approach). With the objective of 

population counting, this work examines the applicability of the model to panchromatic micro-

scopic images for the detection of cells or stomata, and to a panchromatic aerial image for the 

detection of flamingos. For the selected scenes, the results of other methods from the literature are 

available, with which a quantitative and qualitative comparison is made. 



 

 5.2  Test data 63 

5.2 Test data 

To allow for a comprehensive assessment, the proposed method is evaluated on different data and 

with respect to different applications; the particular test data is described in the following. 

Regarding the generation of impact maps from bomb craters automatically detected in aerial 

wartime images, the provided data (Table 5.1) stem from three different sources, namely the Ex-

plosive Ordnance Disposal Service of Lower Saxony, Germany, the 3D Optical Metrology re-

search unit of the Bruno Kessler Foundation (FBK) in Trento, Italy, and the Salzburger Geogra-

phisches Informationssystem (SAGIS) of the Federal State of Salzburg, Austria, showing images 

of the respective territories. Reference information (position and radius for each bomb crater) for 

all three sources was generated by Lower Saxony’s Explosive Ordnance Disposal Service by man-

ual annotation. The number of images (nI) per source with respective ranges of ground sampling 

distance (GSD), covered area per image (A) and number of pixels (nP) are also given in Table 5.1. 

Note that for the data of Lower Saxony, a reference only exists for 55 images (Ref). Furthermore, 

all images have a radiometric resolution of 8 bit and their degree of impact, i.e. the number of 

bomb craters per image, varies between zero and more than 1000. In general, the focus of the 

investigations is more on rural sites. In densely built-up areas, it is not possible to clearly identify 

craters in the images because they are largely covered by the debris of destroyed buildings. More-

over, the images are representative for certain cases, e.g. different lighting situations exist and the 

image content varies. Overall, the content is less challenging for images of Lower Saxony than for 

those of Italy and, in particular, of Salzburg (Figure 5.1): while the former images include com-

paratively few disturbing objects (e.g. forests, trees, buildings and their shadows or craters not 

representative for the MPP model; Figure 5.1 top row), this is different for images from Italy. Here, 

in addition, single trees and craters deviating from the model (e.g. bright craters due to sandy soils) 

are more often present (Figure 5.1 middle row). The last set of images shows the city of Salzburg 

and its immediate surroundings, where apart from non-representative craters there are more crater-

like objects (e.g. numerous detached buildings with striking shadows; Figure 5.1 bottom row). 

Note that the images from Salzburg – in contrast to all other wartime images used in the experi-

ments – already have homogeneous exposure conditions, which is why Contrast Limited Adaptive 

Histogram Equalization (CLAHE; Section 4.1.5) is not applied. 

The images from Lower Saxony are coarsely georeferenced (approx. 5 m - 40 m), often affected 

by a considerable amount of image distortion, and were scanned at a resolution of 1200 dpi. In 

connection with the analysis of the MPP model, all 55 images from Lower Saxony having a refer-

ence are used, except for the experiments to assess the impact of the random components of the 

method, in which a representative selection of 10 images is used instead. 

For the investigations regarding the general applicability of the approach, besides the data from 

Lower Saxony, 10 images from Italy and 9 images from Salzburg are considered. The images of 
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Table 5.1: Characteristics of the data used for the evaluation. For more information and an expla-

nation of the abbreviations, see main text. 

Source nI GSD [m] A [km²] nP ∙ 108 [px] 

Lower 

Saxony 

Ref 55 0.13 - 0.36 1.8 - 19.3 0.8 - 1.6 

noRef 272 0.11 - 0.84 1.7 - 21.3 0.3 - 1.9 

DS A 

52 (RG 1) 

0.16 - 0.52 2.5 - 21.0 0.4 - 1.9 48 (RG 2) 

23 (RG 3) 

DS B 

51 (RG 1) 

0.11 - 0.84 1.7 - 21.3 0.3 - 1.6 67 (RG 2) 

58 (RG 3) 

Italy 10 0.28 - 0.64 4.7 - 9.8 0.2 - 1.2 

Salzburg 9 0.20 6.25 1.56 

 

Italy are not georeferenced, but a rough image scale, in combination with the known scanning 

resolution, allows to determine the approximate GSDs. The Salzburg images are part of a digital 

orthophoto mosaic with known GSD. 

For the investigations on the influence of the use of the redundant image information, 272 im-

ages (noRef) of three different regions (RG) of Lower Saxony are available in addition to 27 of 

the 55 images with reference. Thus, in total, 27 + 272 = 299 images are used for this set of exper-

iments, with 103, 115 and 81 of the images showing parts of one of the three regions, respectively; 

the three regions are Emden, Lehrte and Osnabrück. The remaining 28 images with reference have 

no overlap with these three test regions and thus cannot be used for these experiments. The image 

content gets more complex from region 1 to region 3, because of an increasing number of disturb-

ing objects, while the number of craters decreases. For every region, the images are separated into 

two data sets (DS) acquired at different time periods, called DS A and DS B. Note that the images 

within one time period stem from several separate surveillance flights that have been carried out, 

for instance, between March and November 1944. The reason for the split is that the numbers of 

bomb craters per image between the two time periods per region differ significantly, because there 

had been bomb raids in between. Hence, the images in DS B usually have more craters. The split 

of the image set into DS A and DS B is based on a visual inspection. A joint evaluation faces the 

problem that some bomb craters correctly detected in DS B would correspond to false positive 

detections when evaluated using the reference of DS A, which would lead to a bias in the evalua-

tion metrics. The investigations are carried out as follows: For each of the three regions, 6 images 

with a reference serve as master images for DS A and 3 images with a reference are selected as 

master images for DS B, hence 3 ∙ 6 + 3 ∙ 3  = 27 images with a reference are used for evaluation, 

as mentioned earlier. These 27 images are selected in such a way that in each region and each data 
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Figure 5.1: Exemplary subsets of aerial wartime images from Lower Saxony (top row), Italy (mid-

dle row) and Salzburg (bottom row). 
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set, there is an equal number of images of what is considered to correspond to a difficult, a mod-

erate and an easy situation for the algorithm, respectively. When combining the detection results 

(Section 4.2), all the images from the same DS having an overlap with the respective master image 

are additionally considered. The amount of coverage varies locally, because the footprints of the 

images inside a region are not aligned. Hence, each 𝑃𝑆 (Section 4.2) of a master image is covered 

by a different number of images (the respective mean number of images considered as well as the 

number of bomb craters of each master image are listed in Table 6.4). 

For the investigations concerning the proposed application scenario in which the parameters of 

the algorithm are varied to achieve a higher precision at the cost of a lower recall, the thesis con-

centrates on the multiple image case. Thus, the same data is considered as with the experiments 

regarding the influence of the use of redundant image information on the results (see previous 

paragraph). 

In addition to generating impact maps, the suitability of the MPP method for the problem of 

counting and locating specific objects from images is examined (see Figure 5.2). In the scenes 

being considered, the shape of the objects is relatively simple, whereas the objects partially occlude 

each other. More specifically, there is one aerial image showing flamingos and two microscopic 

images showing cells as well as stomata (all images are panchromatic); the three scenes are here-

after referred to as flamingos, cells and stomata. The first scene, flamingos, is a sample of an aerial 

image representing a colony of migrating flamingos (Figure 5.2 top). In the second scene, cells, a 

simulated microscopic image of cells is given (Figure 5.2 bottom left), while the last scene, sto-

mata, shows a real microscopic image of a leaf with stomata (Figure 5.2 bottom right). Further 

information about the images, such as their size and the number of objects they contain, can be 

found in Table 5.2. Moreover, reference data is available for all three scenes in the form of binary 

images, where for each object its position and radius (identical for all objects of a scene) in the 

image are given. The images and reference data just described are part of an online data set (Bench-

mark, 2013) provided by Verdié and Lafarge (2014), where results of methods from the literature 

can also be found. More precisely, besides numerical results, images showing the boundaries of 

the detected objects superimposed on the respective image of a scene are given. 

5.3 Parameter settings 

The developed method contains a number of free parameters to be selected (see Table 5.3). Fol-

lowing own work (Kruse et al., 2022), the parameters in the experiments are set to values that have 

been determined empirically. If not specifically indicated, they are set to identical values for all 

images and tests, making the procedure more relevant for a potential use case. An explanation and 

justification of the parameters is given in the following. 
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Figure 5.2: The marked point process procedure is also evaluated on other panchromatic data, 

namely the scenes flamingos (top), cells (bottom left) and stomata (bottom right). 

Table 5.2: The transferability of the marked point process approach to the application of counting 

populations based on images is examined by using different images from (Benchmark, 2013). 

Scene Size [px] Number of objects 

Flamingos 160 x 120 148 

Cells 1000 x 1000 500 

Stomata 657 x 617 676 

 

For CLAHE (Section 4.1.5), the parameter selection for the block size 𝐶𝑏 and the contrast limit 

𝐶𝑙 is performed based on visual inspection in a way that underexposed and overexposed images, 

respectively, are enhanced appropriately. Moreover, experiments have shown that this choice of 

parameters leads to better results than the default values. 
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The parameters of the blob detector (Section 4.1.4) are selected as follows: The thresholds in 

connection with the binary image creation 𝐵𝑇_𝑚𝑖𝑛 and 𝐵𝑇_𝑚𝑎𝑥 are set in a way that in each case at 

least all grey values in the images being related to bomb craters are considered, i.e. there are (al-

most) no images where craters exhibit grey values lower than 𝐵𝑇_𝑚𝑖𝑛. The step size 𝐵𝑇_𝑠𝑡𝑒𝑝 for the 

binary image creation is set to 𝐵𝑇_𝑠𝑡𝑒𝑝 = 2. Even though a value of one would marginally increase 

the number of detected craters, this also leads to comparatively many more detections of non-crater 

objects. Blobs may be merged if they are closer than 𝐵𝐷; this parameter is set to a low value 

ensuring that blobs are basically not merged. This is important because for high values of 𝐵𝐷, for 

instance, two craters close to each other are no longer represented individually, but only by one 

blob centred between them. Given the facts that the additional detection of bright craters leads to 

many false detections and bomb craters or their shadows, respectively, are generally characterized 

by darker grey values than those in their surroundings (see discussion in Section 4.4), the proce-

dure should only detect dark blobs. In connection with the filter parameters, the lower boundaries 

𝐵𝐶𝑖𝑟𝑐_𝑚𝑖𝑛, 𝐵𝐶𝑜𝑛𝑣_𝑚𝑖𝑛 and 𝐵𝐼𝑛𝑅𝑎𝑡_𝑚𝑖𝑛 are set in a loose way and the upper ones are not considered 

(i.e. set to one). This allows craters to deviate from a circle by a large extent. The selection of 𝐵𝑆 

in the interval [𝐵𝑆_𝑚𝑖𝑛, 𝐵𝑆_𝑚𝑎𝑥] makes it possible to detect objects and thus bomb craters with 

different sizes. Depending on the GSD of the respective image, 𝐵𝑆_𝑚𝑖𝑛 and 𝐵𝑆_𝑚𝑎𝑥 are set in a way 

that blobs with a diameter between 6 m and 18 m can be detected (note that the GSDs are only 

roughly known), which corresponds to the diameters of craters appearing in the data. Although 

selecting such loose filter restrictions results in many false detections, experiments have shown 

that a more restrictive choice can exclude the detection of many bomb craters in advance. 

Regarding the object model used by the MPP, the lower and upper limits of the radius (circle) 

or semi-major (𝑎𝑚, 𝑎𝑀) and semi-minor (𝑏𝑚, 𝑏𝑀) axes (ellipse; only used for the comparative 

experiments in Section 6.1.2), respectively (Section 4.1.1), are derived from the minimum and 

maximum blob radius 𝐵𝑟 ∈ {𝐵𝑟_𝑚𝑖𝑛,  𝐵𝑟_𝑚𝑎𝑥} occurring in the image after blob detection, i.e. 

𝐵𝑟_𝑚𝑖𝑛 = 𝑟𝑚 = 𝑎𝑚 = 𝑏𝑚 and 𝐵𝑟_𝑚𝑎𝑥 = 𝑟𝑀 = 𝑎𝑀 = 𝑏𝑀. 

In connection with the energy function (Section 4.1.2), the data and prior energy are equally 

weighted based on 𝛽 (Equation 3.2). The parameter 𝑐 of the first data term (𝑈𝐺(𝑋), Equation 4.2) 

is not set identical for the images of Lower Saxony, Italy and Salzburg, respectively. In general, 

the different values are due to the varying crater appearance in the images. Moreover, it is reason-

able to set the value of 𝑐 higher for images that contain a comparatively larger amount of disturbing 

objects, which is the case for the data set from Italy and especially for the one from Salzburg. Such 

objects lead to a potentially higher number of false detections and by increasing 𝑐, less objects 

with smaller gradients at the object border will be detected, i.e. the number of false detections is 

potentially decreased. Obviously, correct ones may also be affected, though usually not to the same 

extent. Besides 𝑐, the factor 𝑓𝐺 , weighting 𝑈𝐺(𝑋), and 𝑛𝑣, the number of vertices of the polygon 

used to approximate the border of an object, have to be selected. The parameters of the second 

term 𝑈𝐻(𝑋) of the data energy (Equation 4.3) are the factor 𝑓𝐻, weighting 𝑈𝐻(𝑋), 𝐻𝑡, the threshold 
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related to the grey value standard deviations within an object and 𝐻𝑒, the percentage of the border 

pixels of an object that are excluded from the computations. As craters are often not completely 

homogeneous inside, 𝐻𝑡 is set to 𝐻𝑡 = 10, meaning that there is no increase in energy for standard 

deviations lower than 𝐻𝑡. Similarly, as craters are not always exactly circular, 𝐻𝑒 is set to 𝐻𝑒 = 

20 %. For the last data term (𝑈𝐵(𝑋), Equation 4.5), there are three parameters to be selected: First, 

the factor 𝑓𝐵, weighting 𝑈𝐵(𝑋) and, second, the threshold 𝑑0 (Equation 4.6), controlling when the 

associated energy becomes negative (depending on the contrast between the object and its annu-

lus). Third, the parameter 𝑒𝑎𝑛𝑛𝑢 (Figure 4.6), describing the extent of the annulus considered with 

respect to the computation of the Bhattacharyya distance, which is set to 𝑒𝑎𝑛𝑛𝑢 = 2 m. As dis-

cussed, the annulus may differ from image to image, e.g. in terms of its width. In this context, even 

though the annulus can be larger, higher values for 𝑒𝑎𝑛𝑛𝑢 could lead to the fact that in addition to 

pixels of the annulus (often bright), other, often comparatively darker pixels of the immediate 

surroundings would also be considered for the computations. Finally, in connection with the prior 

energy (Equation 4.7), an overlap of objects is possible with 𝑓𝑂 = 104 (Equation 4.8). 

Regarding the changes in the object configuration (Section 4.1.3), the probability for choosing 

move type birth-and-death is set four times higher than the one for move type modification. This 

is reasonable, because often a circle no longer has to be shifted nor altered significantly due to the 

position and size information provided by the blob detector. The probability of selecting a partic-

ular movement and its inverse is considered to be equal, i.e. 𝑞𝐵 = 𝑞𝐷 = 𝑞𝑀𝑜 = 𝑞𝑀𝑜
𝑖𝑛𝑣 = 0.5 (Equations 

4.16, 4.17 and 4.20), and therefore the corresponding ratios in the equations are one. In order to 

avoid manual intervention, the intensity parameter 𝜆 in the Poisson point process (Equation 3.1), 

being involved in the calculation of the acceptance probabilities with respect to the birth- and 

death-events (Equations 4.16 and 4.17), is set automatically based on the number of blobs in the 

image. The initial configuration for the sampling process is an empty set of objects. Simulated 

annealing uses a geometric cooling scheme by reducing the temperature 𝑇𝑡 (Equation 3.10) using 

a start temperature 𝑇0 and a cooling coefficient 𝑐𝑐𝑇 (Equation 3.11); the latter is set to 𝑐𝑐𝑇 = 0.9994. 

Higher values for 𝑐𝑐𝑇 do not affect the quality of the results, but lead to an increased runtime. The 

optimization stops as soon as the number of objects has not changed for a certain number of itera-

tions, which is defined by 𝑠𝑡𝑜𝑝_𝑐𝑟𝑖𝑡. In this way, the choice of a maximum number of iterations 

as a stop criterion can be circumvented. Note that still a maximum number of iterations exists to 

ensure that the algorithm will eventually stop, but this number was never reached in the experi-

ments. 

With regard to the investigations concerning redundant image information (Section 4.2), the 

value of 𝑑𝑖𝑠𝑡𝑎𝑠𝑠𝑖𝑔𝑛 is adjusted to the given coarse georeferencing accuracy, ensuring that theoret-

ically all possible detections belonging to the same object can be found. Moreover, 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 

is set to 4, because a small number of detections for the same object indicates that detections are 

more likely to be incorrect. 
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Table 5.3: Parameters in the proposed approach for the generation of an impact map from detected 

bomb craters. *: The parameter 𝑐 of the first data term is set to 1000, 1200, and 1500 for the images 

of Lower Saxony, Italy and Salzburg, respectively (for a discussion, see main text). 

 Parameter Value Unit Description 

Bomb 

crater 

detec-

tion 

CLAHE  
𝐶𝑏 60 x 60 pixel block size 

𝐶𝑙  2.0 - contrast limit 

Blob 

detec-

tion 

𝐵𝑇_𝑚𝑖𝑛 10 - 
minimum threshold for binary image 

creation  

𝐵𝑇_𝑚𝑎𝑥 245 - 
maximum threshold for binary im-

age creation 

𝐵𝑇_𝑠𝑡𝑒𝑝 2 - step size for binary image creation 

𝐵𝐷 5 pixel 
blobs located closer than BD are 

merged 

𝐵𝐶𝑖𝑟𝑐_𝑚𝑖𝑛, 𝐵𝐶𝑖𝑟𝑐_𝑚𝑎𝑥 [0.1, 1.0] - 
min. resp. max. value for a blobs’  

circularity 

𝐵𝐶𝑜𝑛𝑣_𝑚𝑖𝑛, 𝐵𝐶𝑜𝑛𝑣_𝑚𝑎𝑥 [0.4, 1.0] - 
min. resp. max. value for a blobs’ 

convexity 

𝐵𝐼𝑛𝑅𝑎𝑡_𝑚𝑖𝑛, 𝐵𝐼𝑛𝑅𝑎𝑡_𝑚𝑎𝑥 [0.1, 1.0] - 
min. resp. max. value for a blobs’   

inertia ratio 

𝐵𝑆_𝑚𝑖𝑛, 𝐵𝑆_𝑚𝑎𝑥 [3.0, 9.0] metre 
min. resp. max. value for a blobs’   

radius 

Energy 

function 

𝛽 0.5 - 
weighting of the data energy relative 

to the prior energy 

𝑓𝐺 1 - factor weighting first data term 

𝑛𝑣 32 - 
number of vertices of the                

approximated object border 

𝑐 1000, 1200, 1500 - 

constant related to gradient          

magnitudes; set identical for each  

image source* 

𝑓𝐻 5 - factor weighting second data term 

𝐻𝑡 10 - 
threshold related to grey value   

standard deviations 

𝐻𝑒 20 percent 
percentage of border pixels excluded 

from the computations  

𝑓𝐵 2000 - factor weighting third data term 

𝑑0 25 - 
threshold related to the contrast      

between an object and its annulus 

𝑒𝑎𝑛𝑛𝑢 2 metre extent of the annulus 

𝑓𝑂 104 - factor weighting the prior term 

Changes 

in the 

object 

configu-

ration 

𝜆 #𝑏𝑙𝑜𝑏𝑠 / 20 - 
expected number of objects in the  

image; #𝑏𝑙𝑜𝑏𝑠: number of blobs 

𝑇0 100 - 
starting temperature for simulated   

annealing 

𝑐𝑐𝑇 0.9994 - 
cooling coefficient for simulated    

annealing 

𝑠𝑡𝑜𝑝_𝑐𝑟𝑖𝑡 104 - 

stop criterion: algorithm stops when 

number of objects has not changed 

for 𝑠𝑡𝑜𝑝_𝑐𝑟𝑖𝑡 iterations 

Fusing results 

from multiple 

images 

𝑑𝑖𝑠𝑡𝑎𝑠𝑠𝑖𝑔𝑛 40 metre 
search radius in the assignment     

process 

𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 4 - 
point sets not consisting of at least 

𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 detections are erased 

Impact map  

ℎ 40 metre 
bandwidth for kernel density           

estimation 

𝑝 0.5 - 
threshold related to the probabilities 

in the probability map 
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Associated with the impact map generation (Section 4.3), the bandwidth ℎ (Equation 3.12) for 

kernel density estimation is set to 40 m. In this context, the threshold 𝑝 for the probabilities in the 

probability map is set in a way that for single detections the area around the centre of an object 

within a radius of 20 m is classified as contaminated. This value, which is the result of discussions 

with experts in this field, is set relatively small in order to only flag those areas that should subse-

quently be probed. 

For the investigations regarding population counting in images, due to the different data con-

sidered, some parameters have to be adapted. In this context, for CLAHE, 𝐶𝑏 is set to 𝐶𝑏 = 8 x 8 

(default value) because the objects to be detected are smaller than the bomb craters in the aerial 

wartime images. The parameter 𝑛𝑚 related to the local normalization of grey values (see Section 

4.1.2) is adapted to the unit of pixel, i.e. 𝑛𝑚 = 5 pixels (instead of 5 m). Likewise, the parameter 

𝑒𝑎𝑛𝑛𝑢 describing the extent of the concentric annulus around the objects (see Figure 4.6) that is 

considered for the computation of the Bhattacharyya distance is adapted, here to 𝑒𝑎𝑛𝑛𝑢 = 2 pixels 

(instead of 2 m). For the scene flamingos, it turned out beneficial neither to perform CLAHE nor 

the local normalization; supposedly due to various reasons, such as the already comparatively good 

contrast, the small and fairly overlapping objects, and the noisy image content. The reference radii 

of the objects of the three scenes are used to adjust 𝐵𝑆_𝑚𝑎𝑥 accordingly. However, as not all objects 

of the same scene have identical sizes (Figure 5.2), 𝐵𝑆_𝑚𝑖𝑛 is simply set to 𝐵𝑆_𝑚𝑖𝑛 = 0.5 ∙ 𝐵𝑆_𝑚𝑎𝑥 

per scene in order to be able to also detect smaller objects (Table 5.4). In addition, the parameters 

𝑐 and 𝑑0 are varied due to the different gradient magnitudes and contrasts, respectively, occurring 

in the data. Finally, 𝑓𝑂 is modified to allow for partial overlap of objects, but at the same time 

prevent their accumulation. All other parameters are identical to those in Table 5.3 and, obviously, 

the parameters associated with the fusion of detections and the generation of the impact map are 

not involved here. 

 

Table 5.4: Parameter settings in the experiments with respect to population counting in images. 

Note that only those parameters whose values differ from those associated with the impact map 

generation (Table 5.3) are listed here. 

Parameter Flamingos Cells Stomata 

𝐵𝑆_𝑚𝑖𝑛, 𝐵𝑆_𝑚𝑎𝑥 [pixel] [1.5, 3.0] [6.0, 12.0] [3.5, 7.0] 

𝑐 50 300 600 

𝑑0 5 5 15 

𝑓𝑂 1500 4000 8000 

 

In summary, it should be noted that in the context of the impact map generation, almost identical 

parameter values are used for all experiments on the aerial wartime images. Only one parameter 
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has been adjusted for the different sources (Lower Saxony, Italy and Salzburg). More or less sim-

ilar parameter settings are also chosen for the three scenes concerning the population counting 

from images. The values for the parameters 𝑐, 𝑑0 and 𝑓𝑂 are to be chosen comparatively smallest 

for the scene flamingos due to not having performed CLAHE and local grey value normalization 

resulting in low gradient magnitudes and contrasts occurring in the image. Similarly, as can be 

concluded from the visual comparison of the scenes cells and stomata (Figure 5.2), the contrast is 

higher in the latter, which is why the three parameters are set to comparatively high values here. 

5.4 Evaluation procedure 

This section describes the strategy and criteria applied for the purpose of evaluating the proposed 

approach and its components. To obtain quantitative results in connection with both the detection 

of objects in images and the generation of an impact map, the evaluation process is carried out 

accordingly, i.e. in an object-based and a pixel-based way, respectively, and illustrated in Figure 

5.3. 

In the object-based evaluation (Sections 6.1, 6.2.1, 6.3 and 6.4), an automatically detected ob-

ject is defined to be correct (True Positive, TP) if the distance from the centre of the detected object 

to a reference centre is smaller than the reference radius of this crater, otherwise it is defined as 

being incorrect (False Positive, FP). The precision 𝑃 is the percentage of detected object centres 

fulfilling this criterion, i.e. 

 

𝑃 =  #𝑇𝑃 / (#𝑇𝑃 +  #𝐹𝑃) 

 

where #𝑇𝑃 and #𝐹𝑃 are the numbers of TPs and FPs, respectively. If there are several detections 

for one reference (e.g. this would be the case if there is an accumulation of objects on, for instance, 

a crater), obviously, only one of them is considered as a TP, the rest as FPs. If more than one 

reference is eligible for a detection, the reference is assigned for which the distance of its centre to 

the detection centre is the smallest. A crater not detected by the proposed procedure (identified as 

a reference object without a detection within a circle of the reference radius) is a False Negative 

(FN). The recall 𝑅 of the object configuration is the percentage of reference bomb craters found 

by the method, i.e. 

 

𝑅 =  #𝑇𝑃 / (#𝑇𝑃 +  #𝐹𝑁) 

 

with #𝐹𝑁 being the number of FNs. The F1-score 𝐹1 is the harmonic mean of 𝑃 and 𝑅, i.e. 

 

𝐹1 =  2 ∙  (𝑅 ∙  𝑃) / (𝑅 +  𝑃). 

(5.1) 
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(5.2) 
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Figure 5.3: The evaluation of the results, illustrated for a subset of an aerial wartime image (left), 

is carried out both in an object- and a pixel-based way. In the object-based evaluation, a detection 

is a TP if the distance from the centre of the detected object (purple) to a reference centre is smaller 

than the reference radius of this crater (reference objects are shown in cyan), otherwise it is a FP, 

and a crater not detected by the procedure (identified as a reference object without a detection 

within a circle of the reference radius) is a FN; one example for each case is indicated by yellow 

arrows (middle). In the pixel-based evaluation based on impact maps (generated from the centres 

of the reference and the detections, respectively), each pixel of the two impact maps is compared 

and classified as described in the main text; the corresponding impact map with TP areas in dark 

green, FP areas in pale blue, FN areas in red, and TN areas in lime green, superimposed on the 

subset of the aerial wartime image (right). 

The pixel-based evaluation of the results in Sections 6.2.1, 6.2.2 and 6.2.3 is based on impact 

maps. The reference centres of the bomb craters are used for the generation of the reference impact 

map (same parameter setting as for the generation of the impact map from the detection centres). 

In connection with redundancy (see Section 4.2), due to the inaccuracies of the georeferencing 

information, the centres of gravity of point sets not containing a master detection usually do not 

coincide with the centres of the respective reference, which would make the evaluation erroneous. 

To counteract this problem, these detections are moved to the closest reference of the master image 

within 40 m. Detections whose distance to a reference centre is larger than 40 m are not affected. 

The corresponding impact maps are then compared and each pixel is classified as being either a 

TP, FN, FP or TN. A TP is a pixel that has been correctly classified as contaminated in both, the 

reference and the automatic detection. FN pixels have been classified as uncontaminated by the 

automatic detection although they are in fact contaminated. FP pixels have been falsely classified 

as contaminated. Finally, a TN is a pixel that has been correctly classified as uncontaminated in 

both cases. The recall 𝑅 is the percentage of the actually contaminated area found by the proposed 

method, i.e. 

 

𝑅 =
area correctly classified as contaminated

overall contaminated area
 ; 

TP 

FN 

FP 

TP 

FN 

FP 

TN 

 

(5.4) 

) 
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the precision 𝑃 is the percentage of areas classified as contaminated in the automatic detection that 

lie in areas which are actually contaminated, i.e. 

 

𝑃 =
area correctly classified as contaminated

overall area classified as contaminated
 . 

 

The F1-score 𝐹1 is also determined via Equation 5.3.  

Of course, recall and precision depend on each other, meaning that it is always possible to tune 

one at the expense of the other. In the case presented in Section 6.2.3, the main concern is the 

precision of the results, because areas falsely classified as having to be probed would result in high 

costs. Nevertheless, in all other experiments, the more neutral case is illustrated, with the goal of 

achieving an optimal F1-score. 

5.5 Comparison with a deep learning based object detector 

Note that, to the best of the author’s knowledge, no labelled data set for bomb crater detection in 

aerial wartime imagery is currently publicly available. As a result, the data used by different au-

thors vary, making it difficult to perform meaningful comparisons. A comparison is further hin-

dered by the fact that the results are strongly dependent on the images used, as will been shown in 

this thesis, but has also been reported, for example, in (Brenner et al., 2018). Therefore, in this 

work, the comparison is based on data used in other experiments within this thesis. 

For a comparison with the proposed MPP approach for bomb crater detection, the author makes 

use of a state-of-the-art object detector from deep learning, namely the Faster R-CNN (Ren et al., 

2015; the implementation provided by Yuxin et al. (2019) is used). The respective architecture 

consists of a feature extraction network, which takes an image patch as input and generates a fea-

ture map, and a region proposal network that takes the feature map as input and predicts objectness 

scores for predefined anchor points relative to each pixel position. Unlike Ren et al. (2015), a 

classifier is not applied to the regions, because the aim is not to differentiate multiple object types. 

Instead, the sigmoid function is applied to the objectness score of each region 𝑟 to obtain a proba-

bilistic score 𝑝𝑟. Proposed regions are considered as craters if 𝑝𝑟 is larger than a threshold 𝑝𝑡. 

This work uses ResNet-50 (He et al., 2016) as feature extraction network, pre-trained on the 

ImageNet data set (Deng et al., 2009; the pre-trained parameters and hyper-parameters are pro-

vided by Yuxin et al., 2019). The region proposal network is trained from scratch on image patches 

of size 640 x 640 pixels which are randomly cropped from the images of the training set used in 

this thesis. For data augmentation, random horizontal and vertical flipping and a random change 

of brightness within a range of ± 10 % are performed. In total, 90.000 iterations during training 

(5.5) 
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 5.5  Comparison with a deep learning based object detector 75 

are conducted and the model is evaluated on the validation set every 10.000 iterations; the param-

eter set with the best validation performance is used for the test set. 

In order to train, validate and test the model, the 55 images from Lower Saxony with known 

reference are used. More precisely, eight images are considered as test set; the respective test im-

ages are not used during training. Their selection is carried out in such a way that the content of 

the images differs, various crater manifestations are present and the number of craters varies be-

tween the images. The remaining 47 images are randomly split into 32 for training and 15 for 

validation. Note that four images having a spatial overlap with one of the test images and addi-

tionally stemming from the same surveillance flight are excluded, as the appearance of the objects 

in such overlapping images is (almost) identical. The experiment is carried out three times, each 

time with a different random split of training and validation data. To allow for a comparison re-

garding the performance stability, three runs of the MPP procedure on the eight test images men-

tioned above are also carried out. 

Regarding the probability threshold 𝑝𝑡, two approaches are reported. In the first one, 𝑝𝑡 is set 

to 0.5, which is the most intuitive choice. In the second approach, 𝑝𝑡 is optimized to maximise the 

F1-score on the validation set in a grid search. The evaluation criteria are identical to the ones 

described in Section 5.4, except that while for the MPP the object centre is used, for the CNN it is 

the centre of the bounding box. 
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6 Results and Discussion 

In this chapter, the experiments conducted in the context of this thesis are described and their 

results are presented and discussed. For this purpose, in accordance to the structure of the evalua-

tion objectives (Section 5.1), first, the proposed marked point process (MPP) model used for bomb 

crater detection is analysed (Section 6.1). Section 6.2 examines the applicability of the overall 

approach to different aerial wartime images and the influence of using redundant image infor-

mation on the results. In the final set of experiments described in this section, it is investigated 

whether the generated impact map can be appropriately used with respect to the proposed applica-

tion scenario. For this purpose, the method is tuned to achieve a high precision. In Section 6.3, the 

results of the MPP are compared with those of a state-of-the-art object detector based on convolu-

tional neural networks (CNNs). The chapter closes with investigations concerned with the question 

to what extent the MPP model is suitable for population counting purposes from images (Section 

6.4). 

6.1 Analysis of the model 

In this section, the developed MPP model for the detection of bomb craters in aerial wartime im-

ages is analysed. For this purpose, individual parts of the model are examined in more detail based 

on images from Lower Saxony. More precisely, the influence on the results of the generated ran-

dom numbers during sampling (Section 6.1.1), the choice of the object model, in particular com-

paring the circular and elliptical models (Section 6.1.2), and each term in the energy function 

(Section 6.1.3), are investigated. 

Before analysing the MPP model as described above, the sampling process in which an object 

configuration is iteratively created by adding objects to or removing them from the configuration 

or by modifying their parameters, is illustrated using Figure 6.1. Here, for a part of an image from 

Lower Saxony with comparatively very easy image content (e.g. craters can be clearly differenti-

ated from background objects and there are basically no disturbing objects such as trees and shad-

ows that could lead to false detections), it is shown how the object configuration evolves in the 

iteration process. After about 2 ∙ 103 iterations, the number of objects does not change anymore 

and every bomb crater is represented by one object. Moreover, there are no false detections and 

the object borders correspond well to the borders of the craters. 
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Figure 6.1: Results for a part of an image from Lower Saxony after 1 ∙ 102, 5 ∙ 102, 1 ∙ 103, 2 ∙ 103 

and ~1.2 ∙ 104 (stop criterion takes effect) iterations, with the respective object configuration rep-

resented by yellow circles. 

6.1.1 Random numbers 

A MPP relies on random numbers being drawn at different stages of the process, such as when 

deciding whether or not to accept a new state or which move should be selected to propose a new 

object configuration. Consequently, the results will vary between different runs. In order to analyse 

the overall influence of the random number generation on the results, the MPP procedure is run 50 

times with identical parameter settings on a representative selection of 10 images from Lower 

Saxony, meaning that in these images, for instance, different lighting situations and crater appear-

ances exist and the image content varies. In this context, the standard deviations of the number of 

objects in the final results are calculated, i.e. there is one standard deviation for each of the 10 

images stemming from the 50 runs on the same image. Moreover, the standard deviations of the 

F1-scores (object-based evaluation) are analysed. 

If different random numbers are generated in each run, the number of objects in the final object 

configuration is similar; the standard deviation varies by 3.9 % on average. An example is given 

in Figure 6.2, where the final object configuration in one test run consists of one object more 

iteration = 0 iteration = 1 ∙ 102 

iteration = 5 ∙ 102 iteration = 1 ∙ 103 

iteration = 2 ∙ 103 iteration = ~1.2 ∙ 104 
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(Figure 6.2 right) compared to another run (Figure 6.2 middle). Here, one crater is not detected. 

With regard to the position and size of the created objects, almost no differences can be observed 

for this example. The small differences in the number of objects are also reflected in the standard 

deviations of the F1-scores, which shows that the final F1-scores only vary slightly around their 

mean (± 0.2 %). 

The results show that the final object configuration between multiple runs differs only slightly, 

if at all, when the same experiment is carried out several times. Thus, in general, the performance 

can be considered as stable, as the influence of the random number generator on the quality of the 

results is marginal. 

 

   

Figure 6.2: The final object configuration may differ slightly due to the random components of 

the algorithm. Subset of an image from Lower Saxony with a bomb crater highlighted by an arrow 

(left). A result of the MPP in which that crater is not detected (middle). A result of the MPP in 

which that crater is detected (right). 

6.1.2 Object model 

To represent the objects to be detected in the data, various object models may be used. As bomb 

craters in aerial wartime images do not always appear as being circular, but sometimes as being 

slightly elliptical, an ellipse seems to be more obvious than a circle as an object model. In order to 

investigate whether this holds true, 55 images with a reference from Lower Saxony are considered 

and the results achieved are compared when using a circle vs. an ellipse as object model. For this 

purpose, the average values of recall, precision and F1-score are computed. 

The resulting quality measures are given in Table 6.1. It can be seen that the F1-score is almost 

the same for both object models. For the elliptical model, the recall is about 1 % higher than for 
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the circular model, whereas its precision is about 1 % lower than for the object model circle. This 

can be explained by the fact that some bomb craters with a more elliptical shape are detected to a 

larger extent, while additional false positive objects that appear similar to elliptical bomb craters 

are also found. A related example for a subset of an image from Lower Saxony is shown in Figure 

6.3. 

Even though using a circle as an object model slightly reduces the number of correct detections, 

compared to an ellipse, a circle keeps the search space in the optimization process smaller due to 

its lower number of parameters, making the model generally more stable. Furthermore, as can be 

concluded from the quality measures, there are comparatively few craters with a stronger elliptical 

shape, but at least as many objects that are not falsely detected when the circle is used as object 

model. Finally, in terms of the proposed application scenario, the precision of the results is of 

primary concern, which is higher for the circular model. Recall that the focus of the experiment 

here is on obtaining results with an optimal F1-score, which is similar for both models. Therefore, 

in all further experiments within this thesis, the circle is used as object model. 

 

Table 6.1: Evaluation results (recall 𝑅, precision 𝑃, F1-score 𝐹1) based on 55 images from Lower 

Saxony for two different object models, namely a circle and an ellipse. 

 
Circle Ellipse 

R [%] P [%] F1 [%] R [%] P [%] F1 [%] 

Results 47.0 64.3 54.3 47.6 63.7 54.5 

 

   

Figure 6.3: Comparison of the object models circle and ellipse based on a subset of an image from 

Lower Saxony (left). While for the circular model a bomb crater (red arrow) and a shadow cast by 

a building roof (cyan arrow) are not detected (middle), the opposite is true for the elliptical model 

(right). 

6.1.3 Energy terms 

Besides the object model to be chosen, for a MPP the energy function has to be defined as well. In 

this work, it consists of four energy terms (cf. Section 4.1.2); the analysis of the importance of 

each term is carried out by successively excluding one of them. For this set of experiments, all 55 
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images with a reference from Lower Saxony are used. In addition to determining the particular 

quality measures, the respective effects on the object configuration are illustrated qualitatively by 

means of one example each. 

The quantitative results as well as the qualitative examples can be found in Table 6.2 and Figure 

6.4, respectively. In Figure 6.4, the left column shows subsets of different aerial wartime images, 

the middle column the respective results of the MPP based on the proposed model and the right 

column the situation when one of the energy terms is not considered; Table 6.2 is structured in the 

same order. By applying the proposed model, all bomb craters on the subsets shown are detected 

and no false detections exist (Figure 6.4 middle column). When not considering the term of the 

data energy addressing high gradient magnitudes (𝑓𝐺  = 0, Equation 4.2), there are more false de-

tections and the number of detected craters is reduced; the average F1-score is decreased by about 

3 % (cf. Table 6.2). One reason for a lower recall is that not all bomb craters have a distinct contrast 

between their inside and the annulus, e.g. due to no ejecta or an ejecta containing besides brighter 

also darker pixels (Figure 6.4 right column, top). On the other hand, the consideration of 𝑈𝐺 (Equa-

tion 4.2) can help to eliminate false detections if there is a distinct contrast, but the gradient mag-

nitudes at the object border are rather low (e.g. to be found in forests). When not taking into ac-

count the homogeneity term (𝑓𝐻 = 0, Equation 4.3), the number of false detections usually in-

creases (Figure 6.4 right column, second from top). However, when applying the full model, some 

bomb craters might also not be detected. This may occur because bomb craters do not always have 

homogeneous dark grey values inside, or have an elliptic shape, which can also lead to higher 

standard deviations for the grey values. All these observations are reflected in the quantitative 

evaluation metrics: when the data term 𝑈𝐻 (Equation 4.3) is excluded, the average F1-score de-

creases only slightly, but the average precision is comparatively reduced more (approx. 4 %) than 

the average recall is increased (approx. 2 %; cf. Table 6.2). When excluding the data energy term 

related to the contrast between the objects and their annuli (𝑓𝐵 = 0, Equation 4.5), while the recall 

stays basically the same, there are considerably more false detections, resulting in a precision that 

is on average reduced by ca. 9 % (cf. Table 6.2). Consequently, as already expected, this term 

helps in distinguishing between bomb craters and other objects (Figure 6.4 right column, second 

from bottom). Finally, if the prior energy term that penalizes the overlap of objects is excluded (𝑓𝑜 

= 0, Equation 4.8), detections accumulate with their centres and radii being almost identical for 

the same object (Figure 6.4 right column, bottom; close-up view for the bomb crater on the right). 

As a result, the algorithm does not converge due to the constantly decreasing energy and stops 

only after reaching a specified maximum number of iterations (here 107). Therefore, reporting the 

precision is refrained from; the recall of 46.9 % is slightly lower in comparison to the full model 

(cf. Table 6.2). 

The results show that the proposed model is reasonable as it performs best among the alterna-

tives evaluated. If certain terms are not considered, the quality of the results decreases or an ap-

propriate detection of bomb crater in aerial wartime images is no longer possible. 
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Table 6.2: Evaluation results (recall 𝑅, precision 𝑃, F1-score 𝐹1) based on 55 images from Lower 

Saxony when excluding successively energy terms; (n/d: not defined; *: no convergence, for more 

details see main text). 

Method R [%] P [%] F1 [%] 

all terms 47.0 64.3 54.3 

without gradient term  (𝑓𝐺 = 0) 44.2 60.7 51.1 

without homogeneity term (𝑓𝐻 = 0) 48.9 60.4 54.0 

without contrast term (𝑓𝐵 = 0) 47.2 55.2 50.9 

without overlap term  (𝑓𝑂 = 0) 46.9* -* -* 

6.2 Detection of bomb craters and impact map generation 

The MPP model is designed for detecting bomb craters in aerial wartime imagery. In this context, 

the first set of experiments in this section contains investigations regarding the general applicabil-

ity of the approach to differing aerial wartime images from Lower Saxony, Italy and Salzburg 

(Section 6.2.1). In another set of experiments, the influence of using redundant image information 

on the quality of the results is examined (Section 6.2.2). Lastly, it is investigated whether the im-

pact map derived from the detection results can be appropriately used with respect to the proposed 

application scenario. For this purpose, the method is tuned to achieve a high precision (Section 

6.2.3). 

6.2.1 Performance for different aerial wartime images 

In the following, it is investigated how well the proposed approach performs on different aerial 

wartime images. For this purpose, images from Lower Saxony (LS), Italy (I) and Salzburg (S) are 

available. These images differ, for instance, in terms of their content, not only between the three 

sources, but also within a source (cf. Section 5.2), allowing to assess the general validity of the 

approach and to identify its potential limitations. In this context, the numerical values of recall, 

precision and the F1-score for the object- and pixel-based evaluation for each image, including the 

respective averages, are computed and differences in the quality measures of the two evaluation 

principles are also discussed. Finally, in addition to the average results per source, the averages 

for the masked images (Section 4.1.5) are also shown and the influence of the masking procedure 

on the results is discussed. Note that the images of LS are split into two subsets LS1 (28 images) 

and LS2 (27 images), because only the latter subset is used in the investigations reported in Sec-

tions 6.2.2 and 6.2.3. 

The numerical values for recall, precision and the F1-score can be found in Table 6.3. It can be 

seen that for the images from Lower Saxony an average recall and precision of 48 % and 64 %, 
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respectively, is achieved for the pixel-based evaluation (LS, columns 7-9), and 47 % and 64 % for 

the object-based evaluation (columns 4-6); the F1-score increases slightly from 54 % to 55 %. The 

higher recall for the pixel-based evaluation can be explained by the fact that in areas with more 

craters not every crater needs to be found, as the detection of surrounding craters already leads to  

 

   

   

   

   

Figure 6.4: Comparison of the final object configurations for subsets of images from Lower Sax-

ony (left column; bomb craters are indicated by yellow arrows) when successively excluding one 

of the terms of the energy function (right column); the respective results of the MPP based on the 

proposed model are also shown (middle column). Results achieved when excluding the term 𝑈𝐺 

(right column, top), 𝑈𝐻 (right column, second from top), 𝑈𝐵 (right column, second from bottom) 

and 𝑈𝑂 (right column, bottom; close-up view for the bomb crater on the right). 
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Table 6.3: Evaluation results (recall 𝑅, precision 𝑃, F1-score 𝐹1), sorted by the number of craters 

per image, for the images from Lower Saxony (LS), Italy (I) and Salzburg (S); (n/d: not defined). 

Besides the average results per source, the averages for the masked images (masked) are also 

shown. More details on the corresponding number of craters as well as the respective quality 

measures of the images marked with an asterisk can be found in Table 6.4. 

 Image ID 
Number of     

craters 

object-based pixel-based 

R [%] P [%] F1 [%] R [%] P [%] F1 [%] 

LS 

1LS1 0 n/d 0 n/d n/d 0 n/d 
2LS1 0 n/d 0 n/d n/d 0 n/d 
3LS1 0 n/d 0 n/d n/d 0 n/d 
4LS1 0 n/d 0 n/d n/d 0 n/d 
5LS1 9 11 11 11 10 11 10 
6LS1 14 43 16 23 57 18 27 
7LS1 16 13 40 19 12 40 19 
8LS1 17 12 5 7 12 5 7 
9LS1 18 39 44 41 35 40 38 

10LS1 24 13 12 12 12 11 12 
11LS1 26 19 36 25 18 35 24 
12LS1 37 49 75 59 47 73 57 
13LS1 53 47 81 60 45 80 57 
14LS1 57 44 47 45 46 51 48 
15LS1 114 25 31 27 31 33 32 
16LS1 132 26 61 36 29 60 39 
17LS1 140 45 62 52 48 64 55 
18LS1 140 44 21 29 41 20 27 
19LS1 172 33 51 40 33 50 40 
20LS1 239 59 67 63 58 67 62 
21LS1 300 35 47 40 39 46 42 
22LS1 301 53 73 62 58 73 64 
23LS1 345 30 76 43 29 76 42 
24LS1 425 68 98 80 74 98 84 
25LS1 495 61 64 62 67 66 66 
26LS1 589 71 95 81 74 94 83 
27LS1 813 29 96 45 32 96 48 
28LS1 938 70 76 73 78 75 76 

1 - 28LS1 5414 51 68 58 53 68 60 
1 - 27LS2* 3467 41 58 48 41 59 48 

Average results LS 47 64 54 48 64 55 

Average results LS masked 47 82 60 49 83 61 

I 

1I 60 2 2 2 2 2 2 
2I 105 22 49 30 23 48 31 
3I 119 23 41 29 29 52 37 
4I 146 36 56 44 39 57 46 
5I 250 10 19 13 11 22 15 
6I 321 50 61 55 54 64 59 
7I 411 11 49 18 11 49 18 
8I 434 16 11 13 24 14 18 
9I 753 49 92 64 59 94 73 
10I 1069 57 89 69 60 88 71 

Average results I 38 56 45 42 58 49 

Average results I masked 37 83 51 43 85 57 

S 

1S 5 0 0 n/d 0 0 n/d 
2S 15 20 27 23 17 24 20 
3S 19 0 0 n/d 0 0 n/d 
4S 51 2 2 2 2 2 2 
5S 75 31 20 24 31 20 24 
6S 80 6 12 8 6 13 8 
7S 220 25 39 31 26 39 32 
8S 236 31 52 39 33 54 41 
9S 244 25 59 35 25 60 35 

Average results S 23 34 28 24 35 29 

Average results S masked 23 95 37 24 95 39 
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the area being classified as contaminated (see also Figure 6.5 a-c). This can be observed particu-

larly in images with a high number of craters (e.g. 21LS1, 25LS1, 28LS1), as the probability of crater 

clusters is higher. The precision is similar in both cases. Compared to the object-based results, the 

slightly lower values in precision in the pixel-based case may be due to small geometrical differ-

ences between the centres of the detected craters and the centres of the reference; thus, areas clas-

sified as contaminated differ somewhat for reference and detection. This is possible, for instance, 

because the shadow in the crater is not always circular, so the detected centre is shifted towards 

the side of the shadow cast in the crater. Furthermore, it has been observed that the reference 

centres do not always coincide with the centre of the craters. On the other hand, slightly higher 

values in precision can be explained by FPs very close to crater centres, as then, by coincidence, a 

certain amount of the respective crater surroundings is correctly classified as contaminated. 

Regarding the comparison between object- and pixel-based results, these observations also hold 

true for the images of Italy and Salzburg. For the former, recall and precision are both moderately 

increased for the pixel-based evaluation, achieving 42 % and 58 % (columns 7-9) compared to 

38 % and 56 % for the object-based evaluation (columns 4-6), respectively. The two sets of quality 

measures for the Salzburg images are very similar also, with a recall and precision of 23 % and 

34 %, respectively, for the object-based evaluation and 24 % and 35 %, respectively, for the pixel-

based evaluation. 

Comparing the results related to the three different sources, clear differences can be observed: 

For the object-based evaluation, the mean F1-score for the images from Lower Saxony is 54 % 

while it is considerably lower for the data from Italy and Salzburg; this trend is similar for the 

pixel-based evaluation. Thus, the results confirm the observation made earlier that overall the im-

age content of Lower Saxony is not as challenging as the one of Italy and especially Salzburg. In 

this context, Figure 6.5 shows exemplary results for subsets of the images 25LS1, 2I and 8S (Figure 

6.5 a, d and g). The corresponding object configurations as well as the corresponding impact maps 

are given in Figure 6.5 b-c, Figure 6.5 e-f and Figure 6.5 h-i. For the example of Lower Saxony, 

there are only two FPs, while there are more FPs for the subsets of Italy and Salzburg (Figure 6.5 

b, e, h; cyan circles). In the examples, the detection of all craters becomes challenging due to low 

contrast and the occurrence of strong small elliptical shadows as well as bright craters (Figure 6.5 

b, e, h; red arrows). These observations are reflected in the superimposition of the two impact maps 

generated from the reference centres and the centres of the automatic detection (Figure 6.5 c, f, i). 

That means, for instance in the example of Lower Saxony, comparatively few areas are falsely 

classified as contaminated (Figure 6.5 c, pale blue) and uncontaminated (Figure 6.5 c, red), which 

is different for the example of Salzburg. Here, only a small area is correctly detected as contami-

nated (Figure 6.5 i, dark green), whereas the areas falsely classified as contaminated (Figure 6.5 i, 

pale blue) or uncontaminated (Figure 6.5 i, red) are larger. 

When choosing the same parameter setting for all three sources, i.e. the parameter 𝑐 of the first 

data term is not varied (Table 5.3) but set to 𝑐 = 1200 (optimal in terms of the F1-score) for each  
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Figure 6.5: (a, d, g) Subsets of images 25LS1, 2I and 8S, respectively. (b, e, h) The object configu-

rations with TPs in yellow and FPs in cyan; FNs are tagged by red arrows in (a), (d) and (g). (c, f, 

i) Superimpositions of the corresponding impact map and evaluation with TP areas in dark green, 

FN areas in red, FP areas in pale blue and TN areas in lime green. 
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source, the resultant average F1-score (pixel-based evaluation) over the total of 74 images is 50 %, 

compared to 51 % when the optimal values per source are chosen (not shown in Table 6.3). Thus, 

there are no major differences regarding the quality of the generated impact map, meaning that 

selecting an identical value for 𝑐 for the different sources would be conceivable. On the other hand, 

in general, the results for the individual images vary considerably. In some cases, such as for im-

ages 24LS1, 26LS1, 28LS1, 9I and 10I the F1-scores are acceptable with values larger than 70 %. 

However, the impact maps for other images (e.g. 5LS1 - 8LS1, 10LS1, 11LS1, 1I, 5I, 7I, 8I and basically 

all images from Salzburg) are far worse. It should be noted that if there is a small number of craters, 

the evaluation results should be considered with caution, as a small number of errors already has 

a significant impact on the quality measures. 

In connection with the masked data it can be seen from Table 6.3 that, as to be expected, the 

average recall stays almost the same for all three sources for both types of evaluation. Slightly 

lower values in the recall can be attributed to the stochastic behaviour of the method as well as to 

the fact that during the manual masking, one or the other crater was eventually masked after all, at 

least partially, so that the method can no longer detect them. On the other hand, it is evident that 

high static objects and especially their shadows are indeed responsible for numerous false detec-

tions. This is reflected in the average values of the precision, which are 82 %, 83 % and 95 % for 

LS, I and S, respectively, in the object-based evaluation. Thus, the average precision is increased 

by 18 %, 27 % and 61 %, respectively, compared to the non-masked images. This is very similar 

in the pixel-based evaluation where, due to the masking, the average precision is increased by 

19 %, 27 % and 60 %, respectively, resulting in average values of 83 %, 85 % and 95 %. The 

comparatively high increase in precision for the images from Salzburg can be attributed to the fact 

that the parameter 𝑐 is set to the highest value for these images (Table 5.3) and thus in total fewer 

objects are detected. If 𝑐 is set, for example, to 𝑐 = 1000, as for the images from Lower Saxony, 

the average values for recall and precision become more similar (29 % and 79 %, respectively), 

leading to an average F1-score of 43 % for the object-based evaluation. Obviously, the other F1-

scores (Table 6.3) are also improved due to the increased precision caused by the masking; the 

average values for the data from LS, I and S are 60 %, 51 % and 37 % for the object-based evalu-

ation and 61 %, 57 % and 39 % for the pixel-based evaluation. 

A qualitative example illustrating the effect of the masks on the results based on a subset of 

image 24LS2 is given in Figure 6.6. In the exemplary subset, for the masked data (Figure 6.6 top 

right), there are no false detections and, thus, the corresponding impact map basically does not 

show areas falsely classified as contaminated (Figure 6.6 bottom right). Note that there are usually 

minor areas falsely classified at certain boundaries of the classified areas due to the small locational 

deviations between the detection and reference centres; an example related to such an FP or FN 

area is indicated in the same figure by an orange and blue arrow, respectively. This is different for 

the non-masked data (Figure 6.6 top left), where in the example there is additionally a larger area 

falsely classified as contaminated stemming from one false detection (Figure 6.6 bottom left). 

Apart from that, the two impact maps are almost identical. Having a look to the quantitative results  



 

88 6  Results and Discussion  

  

  

Figure 6.6: Qualitative comparison of the results for non-masked (top left) and masked (black 

pixels; top right) data based on a subset from image 24LS2 (Table 6.4). Corresponding impact maps 

superimposed on the subset of the aerial wartime image and evaluation with TP areas in dark green, 

FN areas in red, FP areas in pale blue and TN areas in lime green. While there is an area falsely 

classified as contaminated (stemming from one false detection) in the left part of the image (pale 

blue, bottom left), it does not occur in the other case due to the masking of the static objects with 

a certain height including their shadows (bottom right). 

of the whole image, the recall is almost unchanged, but the precision increases from 11 % to 59 % 

when the method is run on the masked data. 

The results show that the presented MPP method can in principle be successfully applied for 

the detection of bomb craters in different aerial wartime images. However, the mean quality 

measures for all three sources (LS, I and S) are on a rather low level, especially for the images of 

Salzburg, and the quality of the impact maps derived from the detected objects is only slightly 

better. In this context, investigations on the masked data show that objects with a certain height 

(e.g. forests, trees and buildings) and especially their shadows are responsible for a large number 
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of false detections. Thus, if stereoscopic imagery is available, one way of counteracting these lim-

itations would be to integrate 3D information. Another one is to consider information from other 

sources, such as historical maps and GIS data, to find and subsequently exclude such areas from 

further processing. Note that in the remainder of this thesis the information just mentioned (3D 

information as well as information from other sources) will be referred to as additional infor-

mation. Furthermore, the height information could be embedded into the energy function of the 

MPP in order to improve the detection of bomb craters due to their characteristic surface shape. 

Finally, the results strongly depend on the images used, as has been also reported, for example, 

by Brenner et al. (2018). In principle, this does not only apply to images that show different scenes. 

For instance, it is also possible that images of different surveillance flights showing the same scene 

are of comparatively good and poor quality, respectively, resulting in varying outcomes. To ac-

count for these aspects in an automatic way, at least partly, and as there are usually multiple images 

covering the same area, the use of redundant image information seems to be beneficial. 

6.2.2 Redundant image information 

In this section, the influence of using redundant image information, i.e. of combining the MPP 

results of multiple coarsely georeferenced panchromatic images covering the investigated area, on 

the quality of the results is studied. In this context, the pixel-based quality measures for the com-

parison of the single and the multiple image approach based on the two data sets from Lower 

Saxony (Table 5.1) are computed and analysed. Similarly to the previous section, also the masked 

data is taken into account. 

The results of the investigations can be found in Table 6.4. Here, in addition to the quality 

measures for each of the 27 images from the three different regions, the average results for the two 

data sets (DS A and DS B) as well as for the combination of both data sets (DS A + DS B; non-

masked and masked data) are shown. Furthermore, the mean number of images considered in the 

case of the multiple image approach (NI) and the number of bomb craters (NC) are given. 

First, the results without masks are presented. They show that an average recall and precision 

of 64 % and 77 %, respectively, can be achieved for the multiple image approach (columns 9-11). 

Compared to the single image results (columns 6-8) with a recall and precision of 41 % and 59 %, 

respectively, the F1-score increases strongly from 48 % to 70 %. For DS A, the increase in F1-

score is 23 % (69 % compared to 46 %, average results DS A) whereas for DS B the increase is 

slightly lower with 18 % (71 % compared to 53 %, average results DS B). 

The F1-score of each image improves in 25 out of 27 cases, the only exceptions being images 

14LS2 and 23LS2, both from DS A (regions 2 and 3, respectively). Note that the loss in F1-score for 

these two images is small with 2 % and 3 %, respectively (cf. Table 6.4). Additionally, the im-

provement in F1-score within region 3 of DS A is small compared to the other two regions. This 

can be explained by the comparatively low number of images taken into account (about half as 
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many as in regions 1 and 2). Furthermore, some image areas are only covered by one or very few 

other images, which is also the case for image 23LS2, and/or the additional images contain lots of 

clouds (applies also to image 14LS2, i.e. some areas are mainly covered by images with clouds). In 

consequence, bomb craters found at first are removed again, which has a direct negative effect on 

the recall. This is due to the fact that the parameter 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 from Section 4.2 is set to 4; 

see also discussion at the end of this section. Similarly, when only a relatively small number of 

additional images is available, objects actually representing craters are also eliminated if they are 

not (or no longer) representative for the predefined MPP model (e.g. if craters have been filled up 

with soil in the meantime). Moreover, for DS B in region 2, the increase in the F1-score is relatively 

low. One reason for this is that the F1-scores are already comparatively high for the single image 

approach in this region. 

On the other hand, as already mentioned, the F1-score increases almost in all images, in many 

cases significantly (e.g. 1LS2, 7LS2, 10LS2, 11LS2, 13LS2, 21LS2, 26LS2) if redundant image information 

is taken into account. Figure 6.7 illustrates an example for which the recall of the results is in-

creased by exploiting redundant image information (Figure 6.7 a-c). In Figure 6.7 a, a subset of 

image 1LS2 with reference centres of the bomb craters (in turquoise) is shown. The shadow cast by 

clouds (mainly the lower and right part in Figure 6.7 a) leads to poor contrast and furthermore 

some craters do not appear dark, possibly due to a previous filling with soil (e.g. two of the three 

craters close together to the north of the river, Figure 6.7 a). The resulting impact maps (centres 

are shown in yellow) can be found in Figure 6.7 b and Figure 6.7 c. By combining the detection 

results, the areas falsely classified as uncontaminated almost completely vanish (Figure 6.7 b-c, 

red / dark green). The areas falsely classified as contaminated (Figure 6.7 b-c, pale blue) are mar-

ginal in both cases (such an area is indicated by a black arrow in Figure 6.7 b and Figure 6.7 c, 

respectively). Two exemplary cases showing an improvement in precision can be found in Figure 

6.7 d-i. Here, high-contrast shadows of trees (Figure 6.7 d) or buildings (Figure 6.7 g) lead to FPs, 

resulting in areas being falsely classified as contaminated in the impact maps (Figure 6.7e, h; pale 

blue). After the combination of the detection results, there are no FPs and, thus, no falsely classi-

fied areas, left (Figure 6.7 f, i). 

In connection with the masked data, a strong improvement in precision can be observed when 

considering multiple images (Table 6.4). More precisely, it increases from 77 % to 88 %, i.e. by 

11 %. The recall stays almost the same with 63 % compared to 64 % for the non-masked data, 

resulting in a F1-score of 74 % (70 % in the non-masked case). Compared to the single image 

approach, where the precision increases from 59 % to 81 % and, thus, by 22 %, the increase in 

precision is only half as large. This can be attributed to the fact that by combining the results in 

the multiple image approach, a large number of false detections caused by high objects and their 

shadows, such as those shown in Figure 6.5 b, e, h and Figure 6.7 e, h, could already be eliminated. 

Overall, the experimental results analysed in this section demonstrate the benefit of using re-

dundant image information. By combining the individual detection results, the quality of the  

  



 

 6.2  Detection of bomb craters and impact map generation 91 

Table 6.4: Evaluation results (recall 𝑅, precision 𝑃, F1-score 𝐹1) for the single (SIA) and multiple 

(MIA) image approach for the two data sets DS A and DS B from Lower Saxony (LS), each part 

of the three regions (RG). For each master image (Image ID), the mean number of images consid-

ered within the multiple image approach (NI) and the number of bomb craters (NC) is shown. 

RG DS Image ID NI NC 
SIA MIA 

R [%] P [%] F1 [%] R [%] P [%] F1 [%] 

1 

A 

1LS2 22 443 23 80 35 72 87 79 

2LS2 15 114 34 33 34 58 74 65 

3LS2 20 238 55 79 65 76 87 81 

4LS2 18 191 34 81 48 62 83 71 

5LS2 22 424 71 93 80 80 85 82 

6LS2 19 43 49 68 57 56 69 62 

B 

7LS2 19 220 12 82 21 61 87 71 

8LS2 18 522 46 80 59 64 86 73 

9LS2 16 129 40 87 55 59 97 74 

2 

A 

10LS2 16 137 17 27 21 61 58 59 

11LS2 15 33 11 30 16 43 50 47 

12LS2 17 17 48 54 51 78 41 54 

13LS2 17 19 54 9 15 66 84 74 

14LS2 17 26 77 34 47 35 64 45 

15LS2 15 248 50 56 53 56 70 63 

B 

16LS2 23 50 53 69 60 62 84 72 

17LS2 24 67 49 55 52 64 68 66 

18LS2 15 213 65 90 76 81 90 85 

3 

A 

19LS2 8 62 12 12 12 20 27 23 

20LS2 8 24 4 2 3 9 70 16 

21LS2 8 52 8 6 7 24 48 32 

22LS2 11 50 21 17 19 26 53 35 

23LS2 8 11 69 20 31 21 43 28 

24LS2 9 37 26 11 15 32 28 30 

B 

25LS2 14 24 20 26 23 28 47 35 

26LS2 20 10 18 9 12 58 20 30 

27LS2 20 63 45 29 35 59 41 48 

Average results DS A 41 53 46 64 76 69 

Average results DS B 42 70 53 64 80 71 

Average results DS A + DS B 41 59 48 64 77 70 

Average results DS A + DS B masked 42 81 55 63 88 74 

 

generated impact map is strongly improved for both precision and recall (cf. numerical values in 

Table 6.4). In this context, however, investigations on the masked data reveal that, despite the use 

of redundant image information, there still is a considerable number of high objects leading to 

false detections; this can be inferred from the higher values in precision for the masked data. Con-

sequently, a major benefit remains in integrating additional information. 

Regarding the local approach that combines the individual detection results, it does not seem 

reasonable at first glance that point sets (𝑃𝑆; Section 4.2) having fewer detections than 
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𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 are also eliminated if the number of overlapping images for the respective 𝑃𝑆 is 

less than 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆. In principle, this parameter could be reduced or omitted in such a case, 

but this would contradict the basic idea that the detections should support each other (cf. objectives 

in Section 1.2), i.e. that several detections of the same object in different images are an indication 

for indeed having found a correct object. Consequently, this would lead to more correct detections, 

but the number of false ones would also increase. 

As shown in the previous section, the results strongly depend on the images used. To reduce 

this impact, it would be feasible to conduct a visual selection of the images in advance to exclude 

those with an inappropriate appearance (e.g. due to blur, low contrast and uneven illumination) 

and severe cloud cover from the calculations. This concept is used by Lower Saxony's Explosive 

Ordnance Disposal Service for the manual analysis of aerial wartime images, e.g. when processing 

applications for building projects. Furthermore, the impact map could be improved by a more 

accurate co-registration of the overlapping images, though only marginally (cf. Appendix A). 

 

   
 

   
 

   

Figure 6.7: Subsets of images 1LS2, 13LS2 and 21LS2 with reference centres of the bomb craters in 

turquoise (only the subset of 1LS2 contains craters). Corresponding impact maps superimposed on 

the image subsets and their evaluation with TP areas in dark green, FN areas in red, FP areas in 

pale blue and TN areas in lime green for detection results based on (b, e, h) single and (c, f, i) 

multiple images. 
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6.2.3 Focus on precision 

Given the proposed application scenario, the precision of the results is most important, i.e. the 

areas falsely classified as contaminated should be as small as possible. Using an optimum F1-

score, the quality measures reported so far are too low to directly integrate the developed procedure 

into the workflow of the Explosive Ordnance Disposal Service, also when using redundant im-

agery. With a precision of 77 %, too many areas would still be unnecessarily probed, resulting in 

enormous costs. Thus, in order to achieve a higher precision at the cost of a lower recall, the pa-

rameters of the algorithm are varied. In the context of the MPP-based bomb crater detection on 

single images (Section 6.2.1), it is for instance possible to vary the parameter 𝑐 (Equation 4.2) of 

the first data term 𝑈𝐺. Increasing 𝑐 will result in more objects with smaller gradients at the object 

border being removed from the object configuration. In a similar way, the parameters of the second 

data term 𝑈𝐻 (Equation 4.3) or the third data term 𝑈𝐵 (Equation 4.5) could be adapted, but these 

terms have more free parameters. As there are usually multiple images covering the investigated 

area, the thesis concentrates on the multiple image case, i.e. only results related to such data are 

shown and analysed. In this context, to achieve a higher precision, the parameter 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 

is varied; increasing 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 leads to more 𝑃𝑆 with a smaller number of detections being 

removed. Hence, 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 is increased starting with 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 4. Again, the quality 

measures are based on the area-weighted averages of the respective images and the masked data 

is also considered within the experiments. 

Figure 6.8 shows the dependence of recall and precision on 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 for the non-masked 

and masked images of DS A + DS B. It can be seen that for cases, the recall decreases more or less 

linearly until about 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 9, and subsequently the decrease becomes slightly smaller. 

At the same time, there is an also linear increase in precision until 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 6 (for the 

masked data until 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 7) that becomes smaller afterwards, especially for the masked 

images. Furthermore, it should be noted that, as to be expected, both curves for recall overlap. 

Moreover, the curves for precision converge with increasing 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆, showing that addi-

tional information is particularly meaningful for smaller values of 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆. In the non-

masked case, from approx. 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 6 onward, the loss in recall is higher than the gain 

in precision; for the masked data this holds true for 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 4. However, for the non-

masked data, if 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 is set to 7, a precision of 90 % and a recall of approx. 45 % can 

still be achieved; for the masked data, the precision is increased by 5 %. For the non-masked 

images, the precision of about 95 % results for 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 10, where the remaining recall 

is 30 %. From about 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 16 onwards, in both cases, the precision is approx. 99 %, 

whereas the recall still decreases. 

There are different reasons why some falsely classified areas may remain despite the combina-

tion of the detection results. Substantial in this context are objects that very much follow the pro-

posed MPP model, i.e. round objects with high gradients at the border, homogeneous grey values  
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Figure 6.8: Recall and precision as a function of 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 based on the area-weighted av-

erage of DS A + DS B for the non-masked and masked images. 

inside and a high contrast with their annulus. This applies for example to round shadows on a 

bright background or also industrial chimneys (dark interior with a bright border, the brickwork, 

around it). Consequently, such objects will be preserved longer than bomb craters that show the 

above mentioned properties to a lesser extent. The discrepancies between reference and detection 

centres can also be mentioned here (see discussion in Section 6.2.1). Two examples, one in which 

higher values for 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 appropriately eliminate false detections and one in which this 

does not work, are illustrated in Figure 6.9, showing a subset of the image 17LS2. The derived 

impact maps from the detection results for 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 4, 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 6 and 

𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 8 are given in Figure 6.9 b, c and d, respectively. It can be seen that by increasing 

𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 from 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 4 (value that leads to the best F1-score for all the data 

considered) to 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 8, the areas that are wrongly classified as contaminated vanish 

(Figure 6.9 b-d, pale blue). However, the number of pixels falsely not classified as contaminated 

increases as well (Figure 6.9 b-d, red). Consequently, for the proposed application scenario, the 

procedure provides very good results for 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 8 in this example: all areas classified 

as contaminated (Figure 6.9 d, dark green) actually have to be probed. This is different for the 

results related to the Figure 6.9 e-h, where, similarly to Figure 6.9 a-d, Figure 6.9 e shows a subset 
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Figure 6.9: (a, e) Subsets of images 17LS2 and 27LS2, respectively. Corresponding impact maps 

superimposed on the image subsets and their evaluation with TP areas in dark green, FN areas in 

red, FP areas in pale blue and TN areas in lime green for detection results resulting from (b, f) 

𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 4, (c, g) 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 6 and (d, h) 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 8, respectively. 

200 m 

200 m 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

TP, FN, FP, TN 

 

TP, FN, FP, TN 

 

TP, FN, FP, TN 

 

TP, FN, FP, TN 

 

TP, FN, FP, TN 

 

TP, FN, FP, TN 

 



 

96 6  Results and Discussion  

of image 27LS2 and Figure 6.9 f-h shows the corresponding impact maps superimposed on the 

subset, again for 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 4, 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 6 and 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 8, respectively. 

In this example, a larger number of false detections and, thus, areas falsely classified as contami-

nated, remain longer than the two areas at first correctly classified as contaminated (Figure 6.9 f-

h). This can be explained by the fact that, as just noted, in all the images considered, the false 

positive objects follow the MPP model to a greater extent than the two bomb craters. Indeed, the 

crater on the left in the master image shown (Figure 6.9 e) exhibits a crescent-shaped shadow and 

the crater on the right in the same image is difficult to identify in-between the trees, whereas the 

roundish shadow casts in the centre of the image (presumably caused by hay bales and small huts) 

are striking. 

In summary, the results are useful with respect to the application scenario as a rather large 

percentage of the areas that actually need to be probed can be detected with a high degree of pre-

cision. In this context, experts of Lower Saxony's Explosive Ordnance Disposal Service have not 

made any concrete statements regarding a "suitable" value for precision – values of at least 90 % 

seem to be desirable. Anyway, the procedure can be adapted with respect to the achieved precision 

by means of just one parameter, whereby the higher the values for 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆, the more 

strongly the recall decreases in comparison to the increase in precision. Here, the fact of conver-

gence of the curves of the masked and non-masked data for higher values of 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 

should be pointed out again. This is of interest if it is not possible to automatically derive useful 

height information and no other information concerning objects with a certain height is available, 

as higher values for 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 would then be comparatively more preferable to lower values 

(cf. Figure 6.8). On the other hand, it has been shown that additional information is particularly 

useful for smaller values of 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆.  

Thus, especially in the case where additional information is available, it would be conceivable 

to select smaller values for 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆, e.g. 𝑀𝑖𝑛𝑁𝑢𝑚𝐷𝑒𝑡𝑃𝑆 = 5, which leads to a precision 

of more than 90 % and a recall of almost 60 %. Subsequently, the automatically generated impact 

map, being already correct to a large extent, could be manually checked and improved by human 

experts before usage. Hence, e.g. in the case of construction projects, the information regarding a 

contamination could be used such that images do not have to be inspected manually any longer in 

the areas flagged as to be probed, saving costs and resources. 

6.3 Comparison to a state-of-the-art object detector based on 

CNNs 

In this section, the results of the comparison of the MPP method for bomb crater detection with 

the Faster R-CNN object detector are reported. In this context, in addition to the average numerical 

values of recall, precision and the F1-score for the object-based evaluation for the MPP and the 
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CNN approach, the respective object-based means and standard deviations (each experiment is 

carried out three times) are computed. Examples allowing for a qualitative comparison of the re-

sults are also given. 

The quantitative results, sorted by the number of craters, can be found in Table 6.5, whereas 

the examples are illustrated in Figure 6.10. From Table 6.5, it can be seen that if the threshold 𝑝𝑡 

for the CNN (Section 5.5) is set to 0.5 (𝐶𝑁𝑁𝑝𝑡=0.5), the results are the worst, with a mean F1-score 

of 47.3 %. Although the mean recall of 72.2 % is the highest, there are many false detections, 

resulting in the lowest mean precision of 35.3 %. Thus, the choice of 𝑝𝑡 = 0.5, i.e. the natural 

choice for a binary classifier based on selecting the class having the highest class score, proves not 

to be most suitable regarding an optimal F1-score. However, if the value of 𝑝𝑡 is optimized during 

training (𝐶𝑁𝑁𝑝𝑡=0.9), the highest mean F1-score is achieved (63.8 %); with 61.2 % the one based 

on the MPP is worse by a margin of less than 3 %. Moreover, the MPP approach yields a higher 

mean precision than 𝐶𝑁𝑁𝑝𝑡=0.9 (71.7 % compared to 64.2 %), though, obviously, the recall is 

lower (53.4 % compared to 63.6 %). 

It can be seen from Table 6.5 that compared to 𝐶𝑁𝑁𝑝𝑡=0.9, the MPP only gives better results – 

in terms of the F1-score – for two images, namely 16LS2 and 22LS1. In the latter, where the differ-

ence with respect to the F1-scores is higher, a larger number of craters follow the model used in 

the MPP procedure to a very high extent. The CNN-based approach also detects many of these 

craters, but not to the same extent (Figure 6.10 a-c). Moreover, in image 22LS1 there are some 

craters with a quite small diameter, which are not detected by 𝐶𝑁𝑁𝑝𝑡=0.9, though some of them are 

detected by the MPP. The overall rather low value of recall for the MPP related to image 22LS1 can 

be explained by additional bright craters in the image and some regions with low contrast. As 

already discussed in Section 4.4, the proposed MPP procedure cannot detect such bright craters, 

whereas the CNN-based approach can. This is one reason why the mean recall for 𝐶𝑁𝑁𝑝𝑡=0.9 is 

considerably higher than the one for the MPP. Furthermore, in addition to the low-contrast craters 

already mentioned, the craters that deviate too much from the MPP model also lead to lower values 

in recall. For the other six images, the F1-scores for 𝐶𝑁𝑁𝑝𝑡=0.9 are higher than those based on the 

MPP method, in some cases by a large margin. In this context, for instance, the F1-score based on 

image 16LS1 is more than 20 % lower (approx. 36 % compared to 59 %). Within this image, there 

is a relatively large number of craters that appear bright and also craters that follow the MPP model 

only to a limited extent. Consequently, such craters are not detected at all or detected less fre-

quently by the MPP, resulting in a quite low recall of approx. 26 %. In contrast, the precision of 

about 61 % is slightly higher compared to the one based on 𝐶𝑁𝑁𝑝𝑡=0.9; for the MPP, false detec-

tions can be partly attributed to shadow cast from houses (Figure 6.10 d-f). Such false detections 

and others caused by shadows of, e.g., trees, trains or buildings without roofs, usually occur less 

frequently with the CNN-based approach. This is the case because it learned, at least partly, the 

context in the local surroundings from the training data and is thus able to differentiate between 

crater and background in a better way than the MPP. 
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Table 6.5: Evaluation results, sorted by the number of craters (NC), for the MPP and the CNN 

approach based on 8 images (IMG) from Lower Saxony; each experiment is carried out three 

times. Besides the average values of recall 𝑅, precision 𝑃 and the F1-score 𝐹1 for each image, the 

respective means and standard deviations over all images are given. 

IMG NC 
MPP 

CNN 

threshold 𝑝𝑡 = 0.5 threshold 𝑝𝑡 = 0.9 

R [%] P [%] F1 [%] R [%] P [%] F1 [%] R [%] P [%] F1 [%] 

23LS2 11 78.8 23.0 35.6 93.9 8.7 15.9 90.9 24.5 38.5 

12LS1 37 46.9 74.3 57.5 89.2 30.1 44.8 84.7 54.7 66.4 

16LS2 50 52.7 68.7 59.6 80.0 16.0 26.7 70.7 45.0 54.8 

14LS1 57 44.4 46.9 45.6 80.7 17.9 29.3 75.4 44.7 56.1 

15LS1 114 24.3 31.2 27.3 49.7 17.8 26.1 38.9 36.6 37.4 

16LS1 132 25.5 60.8 35.9 73.6 27.5 39.9 62.4 56.2 59.0 

22LS1 301 53.9 72.9 62.0 49.1 41.3 44.6 38.0 66.5 48.1 

5LS2 424 70.7 94.0 80.7 90.0 72.8 80.4 84.0 88.9 86.4 

Object-

based mean 

53.4 ± 

0.1 

71.7 ± 

0.2 

61.2 ± 

0.1 

72.2 ± 

2.9 

35.3 ± 

1.6 

47.3 ± 

0.8 

63.6 ± 

2.6 

64.2 ± 

1.8 
63.8 ± 

0.6 

 

In terms of performance stability, it can be seen in Table 6.5 that the standard deviations for the 

CNN-based approach are higher than those of the MPP for all three quality measures. As with the 

experiments on the influence of random numbers on MPP results in Section 6.1.1, again, the final 

results vary only slightly around the mean for the F1-score (here ± 0.1 %). This value is six 

(𝐶𝑁𝑁𝑝𝑡=0.9) and eight (𝐶𝑁𝑁𝑝𝑡=0.5) times higher for the CNN-based variants, respectively. The 

differences in recall and precision are even more distinct. While the performance of the MPP-

based approach is again stable (recall ± 0.1 %, precision ± 0.2 %), the values for 𝐶𝑁𝑁𝑝𝑡=0.9 vary 

considerably more with ± 2.6 % for the recall and ± 1.8 % for the precision; this is similar for 

𝐶𝑁𝑁𝑝𝑡=0.5. This finding may be an indication that the neural network has not yet fully learned the 

high appearance variation of both, bomb craters and disturbing objects. In this context, besides 

further training data, to circumvent the need for large amounts of manually labelled training data, 

semi-supervised and self-supervised methods, e.g. (Zhai et al., 2019), could be employed. 

Even though the results based on 𝐶𝑁𝑁𝑝𝑡=0.9 are better than those of the MPP, there are some 

important advantages of the model-based approach. This solution does not require any training 

data at all, thus avoiding the time-consuming generation of training samples. It has to be noted that 

the CNN-based method is only better than the MPP-based approach if the threshold for selecting 

the class label is included in the learning procedure, which further increases the number of labelled 

samples required for training; if the standard approach for a classifier, i.e., the selection of the most 

likely class label, is followed, the results of the CNN are considerably worse than those of the 

MPP. Furthermore, the high intra-class variability of bomb craters likely implies another increase  
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Figure 6.10: (a, d) Subsets of images 22LS1 and 16LS1, respectively. (b, e) Detection results of the 

MPP approach and (c, f) detection results of the CNN approach with 𝑝𝑡 = 0.9. The centres of TPs 

are shown in yellow (MPP) and red (CNN), respectively. Centres of FPs are shown in cyan (both 

in e and f there are two FPs, b and c do not contain any). FNs are tagged by black arrows in b, c 

and e; there are none in f. 

in the training data needed, which can be conjectured from the experiments regarding the perfor-

mance stability. Nevertheless, if the just mentioned limitations concerning a sufficient amount of 

representative training data are not present, i.e. in the long run, a CNN-based approach is consid-

ered to be more suitable, also because recent literature shows that such approaches then usually 

outperform model-based ones. 

(a) 

(b) 

(c) 

(d) 
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60 m 30 m 
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6.4 Object detection for counting purposes in images 

In this section, the transferability of the proposed MPP approach designed for bomb crater detec-

tion (Section 4.1) to the task of population counting from images is examined. For these experi-

ments, panchromatic microscopic images containing cells or stomata, and a panchromatic aerial 

image showing flamingos are considered. For the three scenes flamingos, cells and stomata (Figure 

5.2), using the given reference information, the numerical values of recall, precision and the F1-

score for the object-based evaluation are computed (Section 5.4) and compared with the corre-

sponding existing quality measures from the literature (which were calculated in the same way). 

Moreover, a qualitative comparison is made. 

The quantitative results of the proposed MPP and the methods of Descombes et al. (2009) as 

well as Verdié and Lafarge (2012) for the scenes flamingos, cells and stomata can be found in 

Table 6.6. Both approaches are also based on MPPs but use an ellipse as object model. Their 

energy is specified by only one data energy term that is based on the Bhattacharyya distance, and, 

similar to the proposed approach, a strong overlap of objects is penalized within the prior energy. 

A visual comparison of the results for the three scenes is possible based on the Figures 6.11, 6.12 

and 6.13, respectively. Note that for the method proposed in this thesis, for the scenes flamingos 

and cells, the calculations were performed on the complementary image, as in the original images 

the objects appear brighter than their surroundings; the original image is shown only for the better 

comparison of the individual detection results. 

Having a look to Figure 6.11, it can be seen that the proposed MPP detects almost all birds in 

the image despite the low image quality and the partial overlap of the flamingos (Figure 6.11 

bottom right). However, the borders of the detected objects do not always represent the actual 

object borders, especially in the case of flamingos that appear more elliptical in the image. This 

can be attributed to the use of a circle as an object model in the proposed MPP. Nevertheless, 

experiments have shown that the quality measures are very similar when an ellipse is used instead. 

Comparing the qualitative detection results with the ones of the methods from Descombes et al. 

(2009) and Verdié and Lafarge (2012), illustrated in Figure 6.11 top right and Figure 6.11 bottom 

left, no major differences are visible. One aspect with respect to the results of the proposed MPP 

is its comparatively higher number of false detections. Furthermore, as already mentioned, in the 

other methods the borders of the detected objects represent the actual object borders in a better 

way, especially in the case of Verdié and Lafarge (2012). However, on the other hand, a compar-

atively large number of birds is not detected, for example, due to the fact that only one of two 

overlapping flamingos is found. These findings are also reflected in the quantitative detection re-

sults (see Table 6.6), which are basically on a similar high level. In this context, the procedure of 

Descombes et al. (2009) performs comparatively best with a F1-score of 96.6 %, followed by 

95.1 % for the proposed MPP and 93.4 % for the method of Verdié and Lafarge (2012). Moreover, 

the proposed MPP achieves the highest recall (98.0 %), though the precision is the lowest with 

92.4 %.  
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Table 6.6: Quantitative comparison of the proposed MPP with the methods of Descombes et al. 

(2009) and Verdié and Lafarge (2012) for the scenes flamingos, cells and stomata based on the 

quality measures recall 𝑅, precision 𝑃 and the F1-score 𝐹1. Furthermore, the respective numbers 

of TPs #𝑇𝑃, FPs #𝐹𝑁 and FNs #𝐹𝑁 are given. Note that for the scene stomata, only results for 

the approach of Verdié and Lafarge (2012) are available. 

Scene Method  #TP #FP #FN P [%] R [%] F1 [%] 

Flamingos 

Descombes et al. (2009) 143 5 5 96.6 96.6 96.6 

Verdié and Lafarge (2012) 133 4 15 97.1 89.9 93.4 

Proposed MPP 145 12 3 92.4 98.0 95.1 

Cells 

Descombes et al. (2009) 447 0 53 100 89.4 94.4 

Verdié and Lafarge (2012) 480 2 20 99.6 96.0 97.8 

Proposed MPP 450 1 50 99.8 90.0 94.6 

Stomata 

Descombes et al. (2009) - - - - - - 

Verdié and Lafarge (2012) 560 156 116 78.2 82.4 80.2 

Proposed MPP 619 112 57 84.7 91.6 88.0 

 

   

   

Figure 6.11: Comparison of the results of the proposed MPP with the results of the MPP-based 

methods of Descombes et al. (2009) and Verdié and Lafarge (2012) for the scene flamingos; the 

boundaries of the detected objects are shown in red. 

Descombes et al. (2009) 

Verdié and Lafarge (2012) Proposed MPP 
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The quality measures for the scene cells are also in a similarly high range (see Table 6.6). With 

a F1-score of 97.8 %, the method of Verdié and Lafarge (2012) provides the best results; the F1-

scores for the proposed method and that of Descombes et al. (2009) are about 3 % lower, specifi-

cally 94.6 % and 94.4 %. The number of false detections is very low in all cases (< 3), although 

comparatively many cells are not detected, which can be attributed to the sometimes strong overlap 

of the objects and thus the more difficult detection. More precisely, in the case of Verdié and 

Lafarge (2012), the proposed MPP and Descombes et al. (2009), there are 20, 50 and 53 non-

detected cells, respectively. This can also be seen in Figure 6.12. The subset of the scene cells with  

 

   

   

Figure 6.12: Comparison of the results of the proposed MPP with the results of the MPP-based 

methods of Descombes et al. (2009) and Verdié and Lafarge (2012) for a subset of the scene cells; 

the boundaries of the detected objects are shown in red. 

Descombes et al. (2009) 

Verdié and Lafarge (2012) Proposed MPP 
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Figure 6.13: Comparison of the results of the proposed MPP with the results of the MPP-based 

method of Verdié and Lafarge (2012) for a subset of the scene stomata; the boundaries of the 

detected objects are shown in red. 

the superimposed detection results shows that the method of Verdié and Lafarge (2012) detects 

the highest number of cells, whereas this is lower in the other two cases. Unlike the flamingos, the 

cells can be well approximated by circles. Indeed, for the proposed MPP, most of the detected 

object borders represent the actual shape of the cells (Figure 6.12 bottom right), which is less the 

case for the other two results, especially for those of Descombes et al. (2009; Figure 6.12 top right). 

According to the results of the experiments analysed so far, it can be concluded that similar 

quality measures can be obtained with the three methods for the scenes flamingos and cells. This 

is not the case for the scene stomata, where the difference in F1-score for the proposed MPP and 

the method of Verdié and Lafarge (2012) is larger; the respective F1-scores are 88.0 % and 80.2 %, 

i.e. the increase in F1-score is about 8 % (see Table 6.6). In this context, with the procedure of 

Verdié and Lafarge (2012), the number of FNs is about twice as high (116 vs. 57) and the number 

Verdié and Lafarge (2012) Proposed MPP 
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of FPs is also increased (156 vs. 112). A possible reason for this result is the fact that in the pro-

posed MPP Contrast Limited Adaptive Histogram Equalization (CLAHE, Section 4.1.5) is carried 

out in advance, which should improve the detection in low-contrast areas (e.g. bottom left in Figure 

6.13 left) and reduce over-detection in already high-contrast areas. It can also be assumed that the 

additional data terms in the proposed MPP support the detection quality, because the stomata have 

high gradient magnitudes at the object border and homogeneous grey values in the interior. The 

better quality measures for the proposed MPP (Figure 6.13 right) compared to the method of Ver-

dié and Lafarge (2012; Figure 6.13 middle) can also be confirmed visually (note that Figure 6.13 

right shows the original image and not the image after applying CLAHE). For instance, the method 

of Verdié and Lafarge (2012) incorrectly detects comparatively more of the objects that are slightly 

smaller compared to stomata, are not as dark and usually exhibit a less homogeneous inside as 

well (e.g. top left in Figure 6.13 middle). In addition, it can be seen that in total fewer stomata are 

detected. 

Overall, the MPP proposed in this thesis, which has been originally designed for the detection 

of bomb craters in aerial wartime images, can be adapted and used very well for the objective of 

population counting from images. Furthermore, compared to other work dealing with this task, 

similar or even moderately better results can be achieved for different scenes. 
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7 Conclusions and Outlook 

In this final chapter, conclusions are drawn with respect to the presented approach including the 

experimental results, and remaining open issues are identified, providing an outlook on promising 

future research topics. 

Addressing the task of bomb crater detection in aerial wartime images and the subsequent gen-

eration of an impact map using the detected objects, in this thesis, a novel stochastic approach is 

proposed. It is based on the method of marked point processes (MPPs), in which object configu-

rations are iteratively created during the optimization process, each of which is evaluated with an 

energy function that describes the consistency with the predefined model; the bomb craters are 

modelled as circles. The detections are used to generate an impact map that provides a quick over-

view of contaminated areas to detect sectors that have a high likelihood of containing a dud, and 

therefore makes it necessary to have them probed on the ground. The approach is evaluated on a 

total of 74 panchromatic images, for which experts of Lower Saxony's Explosive Ordnance Dis-

posal Service generated reference information by manual annotation. 

In connection with the single image approach, the experiments show that the results based on 

the impact maps for the 55 coarsely georeferenced images from Lower Saxony yield a recall and 

a precision of about 48 % and 64 %, respectively. The impact maps derived from the images of 

Italy and particularly of Salzburg are less reliable due to the comparatively more complex image 

content. When considering additional information, which has been simulated by manually masking 

high static objects including their shadows, the average precision increases strongly, e.g. for the 

images from Lower Saxony from 64 % to 83 %, showing the overall benefit and reveals that, 

indeed, the just mentioned objects are responsible for a large number of false detections. 

Comparing the MPP method to a state-of-the-art convolutional neural network (CNN) ap-

proach, it is shown on 8 images from Lower Saxony that the performance of the CNN critically 

depends on selecting the threshold 𝑝𝑡 for a region to be considered as a crater. Particularly, the 

natural choice of 𝑝𝑡 = 0.5 leads to considerably worse results compared to the MPP (mean F1-

scores: 47.3 % vs. 61.2 %). However, when tuning 𝑝𝑡 using labelled validation data, the CNN 

outperforms the MPP approach for most images with respect to the F1-scores, though the differ-

ence in the mean F1-scores is less than 3 %. It can be concluded that the CNN has the potential to 

outperform the MPPs in a scenario where a sufficient amount of labelled training data is available. 

However, in a scenario where labelled training data is sparse or non-existent, the MPP delivers 

better results, which is seen as an important advantage of the model-based approach. 
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Typically, multiple images of the same area exist. To make use of this, an approach that com-

bines the individual detection results of the MPP procedure is proposed. In this context, based on 

a set of 27 images from Lower Saxony, it is shown that the F1-score of the pixel-based evaluation 

is increased considerably, namely from 48 % to 70 %. Despite the fact that errors can be compen-

sated to a great extent by using redundant image information, there still remains a considerable, 

albeit smaller, number of high objects or their shadows leading to false detections compared to the 

single image approach, which can be inferred from the higher average precision of 88 % for the 

masked data compared to 77 % for the non-masked data. 

Even if redundant image information is considered, however, the results are not good enough 

for a direct integration of the procedure into the workflow of the Explosive Ordnance Disposal 

Service if the aim is to have an optimal balance between precision and recall. Too many areas 

would have to be probed unnecessarily, resulting in high costs. In this context, the experiments 

show that the precision can be increased at the expense of the recall by varying only one parameter 

within the approach, rendering the procedure attractive for the proposed use case. Based on the 27 

images from Lower Saxony, for instance, a precision of 90 % with a recall of approx. 45 % can be 

achieved, showing the benefit for the discussed application scenario. Again, additional information 

increases the precision, especially for lower values of the parameter mentioned before. In this 

context, for a precision of 90 %, a significantly higher recall of approx. 60 % is achieved. Thus, 

the method proposed in this thesis allows in a suitable way to automatically flag probing areas, as, 

e.g. in the case of construction projects, the information regarding the contamination can be used, 

and consequently images of these areas (for precision values close to 100 %) no longer have to be 

inspected manually, saving cost and resources. 

The proposed MPP can be adapted to different scenes and for different applications by param-

eter variation. In this work, with the objective of population counting from images, its transfera-

bility to panchromatic microscopic images for the detection of cells or stomata, and to a panchro-

matic aerial image for the detection of flamingos, is demonstrated. The results of the experiments 

show that, compared to other work from the literature dealing with the same task, similar or even 

better results can be achieved. 

Although the procedure provides satisfying results, there is a number of limitations that offer 

promising starting points for possible future work: A problem in connection with false detections 

arises often from objects with a certain height (e.g. forests, trees and buildings) and especially their 

shadows, as they may appear similar to bomb craters in the image. As shown by simulations, one 

way to counteract these limitations is to integrate 3D information to find and subsequently exclude 

such areas from further processing. For the estimation of 3D information, stereo matching could 

be applied in the frequent case in which stereo information is available, though the poor quality of 

many aerial wartime images is a limiting factor. Indeed, large radiometric differences, different 

sensors and scenes as well as heterogeneous acquisition conditions, pose a considerable challenge 

in terms of finding dense and robust feature correspondences across such data. In this context, 

recently, Zhang et al. (2021) proposed a promising fully automatic approach to recover the 3D 
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land-cover information solely based on historical images. In their approach, first of all, digital 

surface models (DSMs) are derived within individual epochs (in the thesis case, an epoch contains 

all images of a particular surveillance flight) by means of a standard structure-from-motion pipe-

line. Afterwards, the DSMs are incorporated in a so-called rough-to-precise matching, basically 

consisting of a DSM matching between different epochs to roughly co-register the orientations and 

DSMs (in this step the authors exploit the fact that the 3D landscape usually stays globally constant 

over time), which is followed by a precise feature matching using the original RGB images, ena-

bled by narrowing down the search space using the co-registered data. Nevertheless, it remains to 

be examined whether this approach can also be applied to panchromatic aerial wartime images. 

Moreover, to reduce false detections without additional information, the surrounding area in 

the vicinity of a detection could be analysed beyond the Bhattacharyya distance. Within an image, 

the shadow of objects is always on the same side, which means, for example, that in connection 

with shadows cast by houses, a bright object (roof) is always found on the same side of the shadow 

(see e.g. Figure 6.7 g); for bomb craters, the typically differently appearing bright area is then on 

the other side due to their depth. However, it should be noted that it is of course not known which 

detections correspond to a crater or another object, so 3D information would also help here. Fi-

nally, another more general idea to increase the precision of the impact map would be to classify 

an area as contaminated only after several detections (and not already for individual ones). For this 

purpose, the threshold 𝑝 (Section 4.3) applied to the probability map created with kernel density 

estimation could be adapted. This, obviously, reduces the recall of the results as well (except in 

strongly bombed areas). 

Furthermore, an extension of the energy function of the MPP is conceivable. In this context, to 

improve the detection of bomb craters, an energy term could be considered that takes into account 

their characteristic surface shape, i.e. that craters are usually deepest in their centre and become 

shallower towards the rim. Craters fulfilling this characteristic would lead to a decrease of the 

energy. Of course, such an extension requires quite detailed height information, as craters, while 

occasionally up to 5 m deep, are usually more shallow (about 1 m to 3 m), and it must also be 

taken into account that the shadow cast within craters may not correspond to the actual crater 

profile. 

In connection with image pre-processing, Contrast Limited Adaptive Histogram Equalization 

(CLAHE) is applied to the aerial wartime images before further processing to address issues such 

as poor contrast and brightness levels. However, radiometric inconsistences can differ largely from 

image to image and, thus, the same parameter selection for all images, as applied in this thesis, 

does not seem to be ideal. Moreover, generally an improper selection of the parameters may heav-

ily decrease the image quality. In this context, Campos et al. (2019) have developed a learning-

based method to automatically determine the two essential parameters of CLAHE (cf. Section 

4.1.5). Although the results of their experiments based on different images from so-called image 

quality assessment data sets seem promising, the transferability of their method to aerial wartime 

imagery and the general benefit for the subsequent automatic detection of bomb craters need to be 
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examined. Of course, there are various other methods for the purpose of image enhancement be-

sides CLAHE. In this context, Maurya et al. (2022) compare a number of different approaches, 

with the method presented by the authors showing enhanced quality evaluation metrics compared 

to the other conventional techniques. Consequently, it seems reasonable to investigate the influ-

ence of this method on the quality of the detection results in future work. 

The results of the comparison of the MPP method for bomb crater detection with the Faster R-

CNN object detector show the moderate superiority of the latter approach based on CNNs. Given 

the only slightly worse mean F1-score and the higher mean precision of the MPP, a combination 

of the results of both approaches might be conceivable. Moreover, the probability predicted by the 

CNN for a region proposal to correspond to a crater could be integrated into another prior energy 

term of the MPP in such a way that lower probabilities lead to an increase in energy, which in turn 

should further improve the quality of the results. However, according to the more recent literature, 

CNN-based approaches usually outperform model-based ones, especially if a sufficient amount of 

representative training data is available. In that case, i.e. in the long run, CNNs are considered to 

be the more suitable choice. In this context and in view of the proposed application scenario, in-

stead of first applying a CNN for object detection and then deduce the impact map based on the 

detection results, a reasonable alternative would be a direct pixelwise classification with fully con-

volutional neural networks, such as U-Net (Ronneberger et al., 2015). U-Net and its variants have 

shown great success in related tasks of remote sensing such as the extraction of roads (Zhang et 

al., 2018) and, thus, it is supposed that they may perform well for the automated prediction of the 

impact maps, too. As this approach also requires a sufficient amount of labelled training data, 

future research should additionally investigate methods that try to reduce the amount of required 

labelled samples. One example of such methods is semi-supervised learning (e.g. Ling et al., 

2018), where one tries to incorporate unlabelled samples to the training process to improve the 

classifier. 

It can be concluded that with the procedure presented in this work, the stated objectives could 

be achieved. The developed concept for generating an impact map from bomb craters automati-

cally detected in aerial wartime images can be seen as a further step towards the thorough under-

standing of this topic and can serve as a solid basis for promising future research addressing the 

discussed possibilities. 
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A Evaluation of the assignment process in the 

context of redundant image information 

In the presence of multiple overlapping aerial wartime images, the MPP procedure is applied in-

dependently to all images (Section 4.1). Subsequently, the results are combined, i.e. detections 

from multiple overlapping images that refer to the same object (e.g. a certain bomb crater) have to 

be matched. Due to the coarse georeferencing accuracy of the images of about 5 m - 40 m, incorrect 

assignments are possible in the local approach employed in this thesis (cf. Section 4.2). Given the 

overall objective to generate impact maps from bomb craters automatically detected in such aerial 

images, this appendix is concerned with the question to what extent the inaccurate georeferencing 

affects the quality of the impact maps. For this purpose, a simulation has been performed based on 

18 aerial wartime images with a reference (master images; detections from a master image will be 

referred to as master detections MDs and detections from other images as non-MDs) from data set 

A (see Section 5.2), which is described below. 

For the simulation, two parameters are of relevance. First, 𝐺𝑒𝑜𝑟𝑒𝑓𝐴𝑐𝑐, representing the quality 

of the georeferencing, i.e. in the images the positions of the same object can differ by up to 

𝐺𝑒𝑜𝑟𝑒𝑓𝐴𝑐𝑐 metres, where 𝐺𝑒𝑜𝑟𝑒𝑓𝐴𝑐𝑐 = {1 m, 5 m, 10 m, 15 m, …, 40 m}. This parameter is grad-

ually increased to allow the simulation of different georeferencing accuracies that may appear in 

the data. Moreover, by increasing it until 40 m, the influence of the georeferencing accuracy on 

the results appearing in the data used in this thesis can be investigated. Second, the mean number 

of images 𝑀𝑒𝑎𝑛𝑁𝑢𝑚𝑏𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝐼𝑚𝑔𝑠 that overlap a master image. This parameter follows a nor-

mal distribution with 𝜇 = 10, 15, 20 and 𝜎 = 2.5 to consider the fact that each MD may be covered 

by a different number of images 𝑁𝑢𝑚𝑏𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝐼𝑚𝑔𝑠. The values for 𝜇 and 𝜎 are based on expe-

rience from own works (e.g. Kruse et al., 2022). 

The simulation is carried out as follows: First of all, a MD is generated at each centre of a crater 

in the master image, where the crater centres are known due to the provided reference. Then, ac-

cording to the normal distribution, the number of overlapping images 𝑁𝑢𝑚𝑏𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝐼𝑚𝑔𝑠 per 

MD is determined. Thus, there can be a maximum of 𝑁𝑢𝑚𝑏𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝐼𝑚𝑔𝑠 + 1 (MD) detections 

per crater. Subsequently, the respective number of non-MDs is randomly created within a radius 

of 𝐺𝑒𝑜𝑟𝑒𝑓𝐴𝑐𝑐 meters around the MDs. Here, it is considered that non-MDs from the same image 

will have (almost) identical offsets to the respective MDs in the local neighbourhood. Finally, it is 

simulated that the MPP procedure (Section 4.1) detects only a limited number of craters per image. 

For this purpose, a random number of detections is deleted in each image (this also applies to 
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MDs) according to a uniform distribution in the interval [0, 𝑁𝑢𝑚𝑏𝑂𝑓𝐶𝑟𝑎𝑡], where 𝑁𝑢𝑚𝑏𝑂𝑓𝐶𝑟𝑎𝑡 

corresponds to the number of craters in the image. 

For each possible parameter constellation, e.g. 𝑀𝑒𝑎𝑛𝑁𝑢𝑚𝑏𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝐼𝑚𝑔𝑠 = 15 and 𝐺𝑒𝑜𝑟𝑒𝑓𝐴𝑐𝑐 

= 30 m, the previously described simulation procedure plus the developed fusion process (Section 

4.2) is repeated 100 times on each of the 18 aerial wartime images, resulting in 3 ∙ 9 ∙ 1800 = 48600 

computations. Corresponding results with the mean F1-scores (object- and pixel-based; Section 

5.4) as a function of the georeferencing quality for different mean numbers of overlapping images 

are illustrated in Figure A.1. 

In Figure A.1, it can be seen for both the object- and pixel-based evaluation that for georefer-

encing accuracies up to 10 m the F1-score is (almost) 100 %, independent of the mean number of 

overlapping images. Then, in the object-based evaluation, the F1-score decreases slowly until a 

georeferencing accuracy of about 30 m and subsequently more or less linearly. This is similar for 

the evaluation results of the impact map (pixel-based evaluation), where the F1-score decreases 

slowly until about 𝐺𝑒𝑜𝑟𝑒𝑓𝐴𝑐𝑐 = 40 m and afterwards decreases linearly likewise (not shown). The 

curves for different values of 𝑀𝑒𝑎𝑛𝑁𝑢𝑚𝑏𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝐼𝑚𝑔𝑠 exhibit a very similar behaviour, with 

  

 

Figure A.1: Mean F1-scores (object- and pixel-based) as a function of the georeferencing quality 

for different mean numbers of overlapping images 𝑀𝑒𝑎𝑛𝑁𝑢𝑚𝑏𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝐼𝑚𝑔𝑠 based on 18 aerial 

wartime images. For each parameter constellation, the same experiment is repeated 100 times. 
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marginally higher F1-scores for larger values of 𝑀𝑒𝑎𝑛𝑁𝑢𝑚𝑏𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝐼𝑚𝑔𝑠. Having a look at 

𝐺𝑒𝑜𝑟𝑒𝑓𝐴𝑐𝑐 = 40 m, which basically reflects the georeferencing accuracy of the data used in this 

work, shows F1-scores of about 99.0 % and 99.5 % for the object- and pixel-based evaluations, 

respectively. 

Consequently, it can be summarized that, not surprisingly, there would be a benefit of a more 

accurate co-registration of the respective images. As Figure A.1 shows and as described earlier, 

the procedure presented in Section 4.2 would work completely correctly if the positions of corre-

sponding objects in the images are not more than approx. 10 m apart. On the other hand, the sim-

ulation has shown that the inaccurate georeferencing of the data used in this thesis leads to a very 

small quality loss of the generated impact maps (F1-score = 99.5 %). Also, considering that the 

quality of the results for the impact maps in connection with redundant image information (Section 

6.2.2) is in the range of 70 % for the F1-score, the discrepancies can be regarded as negligible. 

Moreover, it should be noted that generally it is not very critical whether the area designated as to 

be probed is marginally larger or smaller, which would be the case in clusters of detections. For 

detections that have a sufficient distance to other detections, there are no problems in the assign-

ment process. Finally, given that the assignment process operates locally, misclassified areas 

would occur exclusively in the proximity of areas designated as to be probed. 
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