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Abstract

Semantic segmentation is an important task in computer vision to help machines gain a high-level
understanding of the environment, similar to the human vision system. For example it is used in
self-driving cars which are equipped with various sensors such as cameras and 3D laser scanners to
gain a complete understanding of their environment. In recent years the field has been dominated
by Deep Neural Networks (DNNs), which are notorious for requiring large amounts of training
data. Creating these datasets is very time consuming and costly. Moreover, the datasets can only
be applied to a specific type of sensor. The present work addresses this problem. It will be shown
that knowledge from publicly available image datasets can be reused to minimize the labeling
costs for 3D point clouds. For this purpose, the labels from classified images are transferred to
3D point clouds. To bridge the gap between sensor modalities, the geometric relationship of the
sensors in a fully calibrated system is used. Due to various errors the naive label transfer can lead
to a significant amount of incorrect class label assignments in 3D. Within the work the different
reasons and possible solutions are shown in order to improve the label transfer.

First, Scanstrip Network (SNet) is presented. The network learns to correct wrong class assignments
in 3D point clouds and implicitly considers different sources of errors. It is trained in a supervised
manner and only on a small amount of data. The simple but effective network design achieves an
mean Intersection over Union (mIoU) of 0.67 as opposed to the baseline value of 0.48, outperforming
similar and even state-of-the-art networks. These results are further improved by training SNet in
a semi-supervised manner. For this, large amounts of automatically generated labels are used for
pretraining, allowing the network to achieve a mIoU of 0.71.

One problem at the beginning of the label transfer is classification errors in images and wrong
2D pixels to 3D point assignments. To address this, Multi-View Network (MVNet) is introduced.
This network learns to relate multi-view 2D predictions for single 3D points. The network is able
to reduce classification errors in 2D with very little training data and outperforms other semi-
supervised methods. By combining SNet and MVNet into Label Transfer Network (LTNet), the
complete label transfer from 2D to 3D can be learned. LTNet works in both domains simultaneously
and achieves a mIoU of 0.75 in 3D, which outperforms all previous models.

Moreover it is shown that it is possible to handle dynamic occlusions and self-occlusions in 3D
through a self-supervised manner, i.e. without ground truth. Dynamic occlusions occur when mov-
ing objects appear in one domain but not in the other leading to incorrect object assignments.
Here a Conditional Generative Adversarial Network (CGAN) is introduced that learns to map from
3D point clouds to 2D photorealistic images. Since the synthesized images and the point clouds
match very well, this approach leads to much better results when mapping image labels belonging
to dynamic classes such as cars to 3D point clouds. For self occlusions a GAN is introduced that
learns to complete a range of 3D objects from incomplete observations only. The results show that
the GAN performs almost similar to semi-supervised or fully-supervised methods, which helps in
identifying occupied regions in 3D and could potentially lead to fewer errors in the label transfer
process.

Keywords: Deep Learning, Label Transfer, Semantic Segmentation



ii

Kurzfassung

Die Semantische Segmentierung ist ein wissenschaftliches Teilgebiet der Computer Vision. Mit
ihr sollen Maschinen das Verständnis von einer Umgebung erlangen, das ähnlich zur visuellen
Wahrnehmung des Menschen ist. Eines ihrer Einsatzbereiche ist die autonome Mobilität. Dabei
werden z.B. Autos mit verschiedenen Sensoren, wie Kameras und 3D-Laserscannern, ausgestat-
tet, um ein vollständiges Verständnis von der Umgebung, in der sie fahren, zu erlangen. In den
letzten Jahren wurde das Thema von tiefen neuronalen Netzwerken dominiert, die große Mengen
an Trainingsdaten benötigen. Die Erstellung dieser Datensätze ist sehr zeit- und kostenaufwendig.
Die Datensätze können zudem nur für einen bestimmten Sensortypen angewendet werden. Die
vorliegende Arbeit behandelt dieses Problem. Es soll gezeigt werden, dass das Wissen aus öf-
fentlich verfügbaren Bilddatensätzen wiederverwendet werden kann, sodass der Aufwand für das
Annotieren (Labeln) von 3D-Punktwolken minimiert wird. Dafür werden die Label aus klassi-
fizierten Bildern in 3D-Punktwolken übertragen. Um die Unterschiede zwischen den Sensormodal-
itäten zu überbrücken, wird der geometrische Zusammenhang der Sensoren in einem vollständig
kalibrierten System verwendet. Es gibt unterschiedliche Fehlerquellen, die bewirken, dass die ein-
fache Übertragung der Label zu einer erheblichen Menge an falschen Klassenzuordnungen in den
3D-Punktwolken führen. Im Rahmen dieser Arbeit werden die verschiedenen Ursachen und Lö-
sungsmöglichkeiten aufgezeigt, um die Übertragung der Label zu verbessern.

Als erstes wird Scanstrip Network (SNet) präsentiert. Das Netzwerk lernt, falsche Klassenzuord-
nungen in 3D-Punktwolken zu korrigieren und berücksichtigt dabei implizit verschiedene Fehlerquel-
len. Hierbei wird es mittels Überwachten Lernens und anhand von wenigen Daten trainiert. Das ein-
fache aber effektive Netzwerkdesign erreicht einen mIoU von 0.67 im Gegensatz zum Ausgangswert
von 0.48 und übertrifft damit ähnliche und sogar modernste Netzwerke. Diese Ergebnisse werden
weiter verbessert, indem SNet auf eine halb-überwachte Weise trainiert wird. Hierfür werden große
Mengen automatisch generierter Labels für das Vortraining verwendet, wodurch das Netzwerk
einen mIoU von 0.71 erreicht.

Ein Problem zu Beginn der Label-Übertragung sind Klassifikationsfehler in Bildern und falsche
Zuordnungen von 2D-Pixeln zu 3D-Punkten. Um dies zu berücksichtigen, wird das Multi-View
Network (MVNet) eingeführt. Dieses Netzwerk lernt, Vorhersagen von 2D-Mehrfachansichten für
einzelne 3D-Punkte in Beziehung zueinander setzen. Das Netzwerk ist in der Lage, Klassifizierungs-
fehler in 2D mit nur sehr wenigen Trainingsdaten zu reduzieren und übertrifft andere halb-
überwachte Methoden. Durch das Kombinieren von SNet und MVNet zu Label Transfer Net-
work (LTNet) kann die komplette Label-Übertragung von 2D zu 3D gelernt werden. LTNet ar-
beitet in beiden Domänen gleichzeitig und erreicht ein mIoU von 0.75 in 3D, was alle bisherigen
Modelle übertrifft.

Darüber hinaus wird in der vorliegenden Arbeit gezeigt, dass es möglich ist, dynamische Verdeckun-
gen und Selbstverdeckungen in 3D auf selbstüberwachte Weise und somit ohne Label zu behandeln.
Dynamische Verdeckungen treten auf, wenn Objekte in einer Domäne erscheinen, aber nicht in der
anderen. Dies führt zu falschen Objekt-Zuordnungen. Hier wird ein Conditional Generative Adver-
sarial Network (CGAN) eingeführt, das lernt, fotorealistische Bilder aus 3D-Punktwolken zu erzeu-
gen. Da die synthetisierten Bilder und die Punktwolken übereinstimmen, führt dieser Ansatz zu
wesentlich besseren Ergebnissen bei der Zuweisung von Labels im Falle von dynamischen Verdeck-
ungen. Für Selbstverdeckungen wird ein GAN eingeführt, das selbständig lernt, 3D-Objekte zu
vervollständigen. Die Ergebnisse zeigen, dass das GAN ähnliche Leistungen erbringt wie halb-
oder vollüberwachte Methoden. Dies hilft bei der Identifizierung besetzter Regionen in 3D, was
möglicherweise zu weniger Fehlern im Übertragungsprozess führen könnte.

Schlagworte: Tiefes Lernen, Label Transfer, semantische Segmentierung
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1 Introduction

Motivation and Research Goals

For tasks such as mobile mapping or autonomous driving, cars are equipped with various sensors
such as Global Navigation Satellite Systems (GNSSs), Inertial Measurement Units (IMUs), cameras
and laser scanners. These sensors collect data that can be used for everything from mapping or
localization to completely replacing a human driver. In some cases, the sensor data is preprocessed
and then interpreted by machine learning algorithms such as Artificial Neural Networks (ANNs)
to semantically understand the environment. A very common problem is that training such an
algorithm is very expensive due to human supervision. Often a company has to be hired to create
enough annotated data for training purposes. This increases costs and effort and can further
complicate a project. Furthermore, these annotations can quickly become outdated or obsolete
due to the introduction of newer sensor models or changing system requirements. To avoid the
high costs of annotating data, much effort is put into reusing information or adapting already
pretrained ANNs to new problems. In computer vision, this is often accomplished by training an
Deep Convolutional Neural Network (DCNN) on publicly accessible datasets and then fine-tuning
it to solve a similar task on the target dataset. It is desirable to use few or even no annotations in
the target dataset, which is called semi-supervised or even unsupervised Domain Adaptation.

The goal of this work is to introduce a framework for minimizing the need for annotations
for 3D point clouds and also 2D image data. The general idea is to take the information collected
in publicly available (annotated) 2D image datasets and learn how to map the annotations to
an unlabelled 3D dataset. A prerequisite for this framework is that the camera and laser scanner
are fully calibrated, which is almost always the case in this setting. This means that the relative
orientation between all sensors as well as the intrinsic sensor parameters are known and all recorded
data is time-stamped. To illustrate the core idea of this framework Figure 1.1, shows three images
of the same scene taken at different times from a moving vehicle. The red star should resemble
a single 3D point that is detected by a laser scanner and projected into all images using the
known calibration of the sensors, so that it marks the same location in all three images. The
line below the images shows a possible prediction for each pixel located on the red star made
by a DCNN pretrained on a publicly available dataset. In the first and third images, the DCNN
correctly identifies the class wall at the marked pixels. However the pixel in the middle image was
incorrectly labelled as car. With this information two problems can be addressed: (1) The incorrect
prediction car can be corrected by assigning it the majority class wall. (2) All three predictions
belong to the same point in 3D, so that a label can be assigned from these three predictions, i.e.
the majority vote wall. This label transfer preserves knowledge from the 2D domain by labeling
3D point clouds with 2D image predictions, thus reducing or even eliminating expensive labeling
costs of 3D point clouds.

However in the above example some simplifications and assumptions were made. In reality the
naive label transfer will assign a lot of wrong labels to each 3D point (label noise) and can make
the predictions in 2D even worse if the majority vote is assigned to each of them. A correct label is
assigned to a 3D point if the majority among all predictions belongs to the actual class of the 3D
point. However there are many reasons why this is often not the case. First the initial predictions
of the DCNN can be wrong or too bad, which occurs when either the model predictions are too
poor or it does not generalize well enough to the new camera sensor type or environment, a problem

1



2 1 Introduction

"Wall" "Car" "Wall"

Multi-View Observations

Predictions

Figure 1.1: An example showing three different images of the same scene. The red star marks the same spot
in these images for which a prediction was made by 2D DCNN. Although all three pixels are in different
positions in different images, they belong to the same object (wall). By linking the three predictions, the
wrong car prediction can be detected and corrected to wall.

often referred to as domain gap. This means that if the domain gap is too large, wrong predictions
are no longer outliers and cannot be compensated by majority voting. Second, the assignment
between 3D points and 2D pixels in the images can be wrong, which will group different objects in
2D together. This problem is even more severe because even if an object is correctly identified in
the images, an incorrect label would be assigned to a 3D point and the 2D pixels if the pixels are
incorrectly linked. The reason for incorrect linkage can be calibration and occlusion errors.
As the calibration error increases, the 3D point is projected to the wrong location in the respective
image. Even with a small offset, this error has an effect on small or thin objects such as poles,
which are then incorrectly assigned to surrounding objects. Occlusion errors on the other hand,
are divided into regular, self-occlusions and dynamic occlusions. Regular and self-occlusions occur
when a 3D object is either measured too sparsely (regular occlusion) or parts of the object are
not measured because the laser beams are blocked by the object itself (self-occlusion). In both
cases this leads to problems when projecting the corresponding 3D points into an image, because
occluded points in 3D that are not visible in the camera can still appear in the image. The reason
for this is that the beam between the 3D point and the camera center is not blocked by any other
point due to sparsity. This will lead to a wrong assignment in multi-view images and introduces
label-noise. On the other hand dynamic occlusions occur because camera and laser beams often do
not match. This means that moving objects can appear in an image but not in the point cloud or
vice versa or the objects can appear at completely different locations. This often leads to confusion
between static and dynamic object classes, which is especially common in urban environments.
Finally incompatible labeling policies between the two domains can lead to label noise. In the case
of the Cityscapes dataset made by Cordts et al. (2016) tree canopies are labelled as vegetation,
including partially hidden background pixels belonging to different objects behind the tree. This
leads to incorrect mapping of vegetation labels to 3D points located behind the tree such as facades
and buildings.

In order to successfully use label transfer to minimise annotation costs, the previously described
problems must be taken into account. Possible solutions should avoid requiring high volumes of
ground truth labels, as this would render the label transfer useless. This is why the following
research hypotheses are investigated in this thesis:
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Research Hypothesis 1 Wrong classification, domain gaps, calibration errors, incompatible label
policy and self-, regular and dynamic occlusions are causes of label noise in 2D → 3D label transfer.

This hypothesis forms the baseline for this work. The use of naive label transfer is based on the
work of Peters and Brenner (2019). Here the label transfer is done without using learning based
algorithms, by mapping 2D pixel predictions to 3D point clouds with majority voting which leads
to a significant increase in label noise in 3D. To show this, two human annotated reference sets are
introduced in this thesis. One contains 23 2D images and the other contains 14 different 3D scenes.
By comparing the predicted labels in 2D and the transferred labels in 3D with the respective
reference sets it is possible to measure the amount of label noise. Furthermore, by measuring the
label confusion (in 2D) before and after the label transfer (in 3D), many of these errors and their
impact can be illustrated. Finally, features are introduced to detect certain causes of label noise.

Research Hypothesis 2 Label noise caused by geometrically transferred labels can be corrected
in 3D using a small reference set.

This hypothesis states that it is possible to implement a late correction step after labels have
already been assigned to 3D points. For this purpose, a 2.5D neural network is introduced in this
thesis called Scanstrip Network (SNet) that is capable of correcting incorrectly assigned labels
through supervised learning. The network is roughly based on the architecture by Ronneberger
et al. (2015). Furthermore, it is shown that and to what extent the introduced features help to
detect different types of errors in order to correct them. Finally, Scanstrip Network is compared
to various state-of-the-art methods to show its superiority in correcting label noise.

Research Hypothesis 3 Naively transferred labels are useful as a supervision signal, even if they
contain label noise. They can be used to learn initial representations resulting in better classification
models compared to training supervised models with random weight initialization.

This is an extension of the previous hypothesis. Instead of training Scanstrip Network in a su-
pervised manner, a similar network will be trained in semi-supervised fashion in order to create
a classifier that is better at label noise correction. For this purpose, a two step approach will be
introduced: First the network is trained on all data learning to classify 3D points by using the
transferred labels as pseudo-labels. In the second step, parts of the network will be frozen and the
rest will be fine-tuned to the reference set to learn label noise correction. It will be shown that this
approach outperforms the previous approaches.

Research Hypothesis 4 First: Multi-view images can help to increase the classification perfor-
mance in 2D using a suitable multi-view network architecture. Second: The use of Multi-View
Network (MVNet) for knowledge distillation, i.e., fine-tuning a normal 2D DCNN on pseudo la-
bels created by MVNet in the target domain, outperforms standard supervised training of a DCNN
on the targets.

The hypothesis is based on the work of Peters et al. (2020). They showed that errors in 2D
semantic segmentation can be addressed by combining multiple predictions from the same network
but from multiple views. Based on this, Multi-View Network is introduced, which is a significant
improvement of the network of Peters et al. (2020). Similar to the example in Fig. 1.1, the Multi-
View Network receives a list of multi-view images and corresponding class predictions made by
a pretrained network. All multi-view images are cropped so that the central pixel belongs to the
same object in 3D (red stars). The output of the network is a class prediction for each central pixel
of each image (red stars). It will be shown that the MVNet achieves a higher mIoU than a similar
network that only has access to single images. Moreover, the predictions made by the MVNet can
be used to fine-tune a pretrained DCNN on the target domain, which outperforms fine-tuning of
the same DCNN directly on the targets.
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Research Hypothesis 5 Naive label transfer can be replaced by learning to transfer labels from
2D to 3D end-to-end, resulting in much less label noise while requiring only a few reference labels.

So far all methods have dealt with label noise after the labels have been aggregated in 3D. Here
the Label Transfer Network (LTNet) is introduced, which is able to transfer the initial predictions
of the DCNN from multi-view images to the 3D point cloud by using a combination of the Multi-
View and Scanstrip Networks. More specifically, the network receives a list of multi-view images
with the initial predictions of a pretrained DCNN, along with features extracted by the Scanstrip
Network in 3D. The output of the network is a class prediction for the corresponding 3D point.
This network is shown to outperform all approaches that attempt to correct label noise in 3D after
the transfer.

Research Hypothesis 6 Synthesized multi-view images created from point cloud data can replace
real camera images for label transfer and also mitigate errors by dynamic occlusions.

This hypothesis is based on the work by Peters and Brenner (2020). Here, a Conditional Gen-
erative Adversarial Network (CGAN) is used to generate photorealistic images from point cloud
data. The input of the CGAN is a projected point cloud image and the output is a generated
RGB camera image. The network is evaluated in various ablation studies for its performance in
generating realistic looking images and its generalization ability. Additionally, the CGAN will be
fully integrated into the label transfer process: Once trained, the CGAN can replace the camera in
a fully calibrated system. Moreover the synthesized images are realistic enough to be interpreted
by a pretrained DCNN so that they can be used for label transfer. As the CGAN makes its predic-
tions based on point cloud images, there is less dynamic occlusion, because dynamic objects such
as cars appear in the same location in both domains. It is shown that this approach significantly
reduces the label noise for dynamic objects in naive label transfer.

Research Hypothesis 7 It is possible to learn to complete self-occluded 3D objects in a self-
supervised manner from incomplete data.

Since self-occlusions are a cause of label noise in the label transfer process, it is shown that it
is possible to learn to complete self-occluded objects without supervision. The presented CGAN
is trained on a dataset of roughly aligned objects of one class, all suffering from self-occlusion.
The input to the generator will be an incomplete 3D object surface in a voxelized representation
and the output will be the corresponding complete object. To demonstrate that the CGAN can
operate on real data in an unsupervised manner, the naive label transfer method will be used to
automatically extract nearly 9000 roughly aligned car-scans. It is shown that the CGAN is able to
complete these scans and furthermore is able to generalize to car scans with different characteristics
from the KITTI dataset by Geiger et al. (2013). To demonstrate that the CGAN works on other
object types such as planes or even chairs, several ablation studies are performed on synthetic
shapes obtained from the Shapenet and Modelnet databases by Chang et al. (2015) and Wu et al.
(2015).
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Outline

The thesis will be organized as follows:

– In Chapter 2 an introduction to the theoretical background related to this thesis is given.
First, the sensors used (LiDAR and camera) are discussed. Subsequently, the basics of ma-
chine learning as well as deep learning are covered here.

– Chapter 3 provides a detailed introduction to related work including state-of-the-art ap-
proaches. First, semantic segmentation in 2D and 3D is discussed. Then, semi-supervised
and self-supervised learning, conditional adversarial networks, multi-view-based models, and
shape completion are covered.

– Chapter 4 and 5 discusses the general methodology. These chapters form two blocks. The
first one covers fully and semi-supervised methods for label noise correction. The second one
covers self-supervised methods.

– Chapter 6 describes the data used and the reference set. It is shown in detail how the datasets
for the experiments were created.

– Chapters 7 and 8 show the results for the methods, described in Chapters 4 and 5, forming
two blocks that validate the proposed research hypotheses.

– Chapter 9 concludes the entire thesis and summarizes the findings. Finally, further research
is discussed.





2 Theoretical Background

2.1 Cameras and Laserscanning

2.1.1 Cameras

Cameras are of particular interest for autonomous driving because they offer high resolution data
at relatively low cost. They can be mounted on multiple sides of an autonomous car, which can be
combined to form a wide field of view. These sensors help the car navigate through urban environ-
ments and avoid accidents. Popular use cases include object recognition, semantic segmentation,
3D reconstruction from multiple images, mapping, and localization. However, cameras also have
their limitations, as they do not provide distance information that must be reconstructed using,
for example, stereo matching or structure from motion. They are also passive sensors, which makes
it difficult to detect objects in poor visibility conditions such as night, rain, or fog.

Fundamentals and Perspective Projection
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Figure 2.1: A camera sensor measures the RGB values using a Bayer pattern (left). The values are stored
in the pixel coordinate system (middle). The projected image on the sensor is given in the image coordinate
system (right)

Cameras project 3D objects through lenses onto light-sensitive sensors, from which a 2D image
is derived. Common sensors are Charge Coupled Device (CCD) or Complementary MetalOxide
Semiconductor (CMOS) sensors that capture light on a rectangular sensor grid, where each cell is
a photoelectric cell. To derive color information, the light is filtered by filters arranged in a Bayer
pattern (Förstner and Wrobel, 2016, p. 444) (Fig. 2.1a), where each filter only allows a specific
color to pass through to a single light sensor. Typically, this filter is arranged to measure the red,
green and blue values from adjacent sensors. This Bayer pattern image can be converted into an
RGB image, which is called demosaicking. This is usually done by interpolating the neighboring
measured red, green and blue values for each pixel in the RGB image.

7
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camera
coordinate
system

image
plane

Figure 2.2: Schematic relationship between a point in camera coordinates and the image plane

The very basic principle of projecting objects to a plane has been known for a few centuries. The
pinhole camera captures the reflected light of the environment on a plane through a very small
opening. The image of the object is created by the intersection of the light rays with the image
plane. Such a mapping from three dimensions onto two is called perspective projection as described
in (Förstner and Wrobel, 2016, p. 253-257). This simple device already defines some aspects of
digital cameras in photogrammetry and computer vision. The pinhole defines the camera center
and the distance between projection center and image plane is the focal length f , also referred
to as camera constant (Fig. 2.2). As the actual image on the surface is horizontally flipped most
visualizations are showing the image plane in front of the projection center.

The values on a digital sensor are measured in the pixel coordinate system (Fig. 2.1b), the
axes of which are given in column u and row v. The origin of the pixel coordinate system is in the
middle of the upper left pixel, see Figure 2.1b. However the y-axis points downwards, parallel to
the image row direction.

The image coordinate system is shown in Fig. 2.1c. Unlike the pixel coordinate system, the
image coordinate system can be specified in a metric system and has its origin in the center of the
image. The axes can be defined differently, here the x-axis is parallel to the image columns and
points in the same direction as the x-axis in the pixel coordinate system. Similarly, the y-axis is
parallel to the rows and points also in the same direction. There are also other definitions where
one or more coordinate axes are flipped, e.g. (Förstner and Wrobel, 2016, p. 471). The optical axis
O is perpendicular to the image plane. The distance between the lens and the sensor array is f .
The intersection of the optical axis with the image plane is called principal point cx,cy, which is
given in the image coordinate system, s. Fig. 2.1c. The principal point lies approximately in the
center of the image. Additionally there might be a skewness coefficient s, which might be non-zero
if the pixel axes are not perpendicular.

The following equation shows how to transform a point [Xc,Yc,Zc] from the camera coordinate
system (defined below) into the pixel coordinate system.

ui = (f Xc

Zc
+ cx)

vi = (f Yc

Zc
+ cy),

(2.1)

where ui and vi are the column and row index of the pixel in the 2D array, respectively.
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However, cameras in the real world use optical lenses to collect and focus light, which can cause
distortion. The most important type is radial distortion, in which the incoming light rays are
bent toward or away from the center. The effect is radially symmetric and is often modelled as a
polynomial of the distance to the optical centre (Förstner and Wrobel, 2016, p. 508-510).

All these parameters are called the interior orientation (also intrinsic parameters) of the camera
and are usually estimated during a camera calibration. They model the geometry of the camera
in order to infer the direction of the projection beam to an object point from an image point and
the external orientation. Besides the interior orientation with non linear distortions six additional
parameters are needed for the exterior orientation in order to approximate a real camera (Förstner
and Wrobel, 2016, p. 464).

The objects are defined in the world coordinate frame which is in 3D (Xw,Yw,Zw). The camera
pose in the world coordinate frame is given by the camera position tx,ty,tz and orientation ϕ,θ,ψ.
To relate the 3D world coordinates to the 2D image plane, i.e. to map from world coordinates to
the camera coordinate system, a homogeneous transformation can be used as a mechanism to form
a compound transformation. Homogeneous coordinates extend the dimensionality of the domain
space so that classical transformations can be expressed linearly (Förstner and Wrobel, 2016, p.
250f.). Vectors in homogeneous space add a new parameter ω that defines the scale along the new
axis. For example, a point in homogeneous coordinates is p = [u,v,ω]T . Let R(ϕ,θ,ψ) ∈ R3×3 be a
rotation matrix that gives the orientation of the camera and t = [tx,ty,tz]T be a translation vector
that defines the position of the camera in the world coordinate frame. The transformation from the
world coordinate frame w into the camera coordinate frame c can be expressed in a single matrix
T ∈ R3×4 of the following form

T =
[
R t

]
(2.2)

In the same way the intrinsic parameters can be used to formulate a matrix that projects a point
from the camera frame into the image frame with K ∈ R3×3. As this matrix uses the intrinsic
parameters it is also referred to as calibration matrix.

K =


fx 0 cx

0 fy cy

0 0 1

 (2.3)

In order to project a 3D point pw = [Xw,Yw,Zw]T from the world coordinate frame into the image
plane the exterior and interior orientation is used together.


u′

v′

w′

 = K · T ·



Xw

Yw

Zw

1


(2.4)

Since the matrices are expressed in homogeneous coordinates the point pw needs to be expanded
by one dimension before it can be projected, Equation 2.4. After all transformations have been
applied the point [u′,v′,w′]T needs to be normalized to yield an Euclidean representation:

u = u′

v′ , v = v′

w′ , (2.5)
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where (u,v) are the image coordinates.

With a virtual camera, 3D points behind the camera could be projected onto the camera plane.
To prevent this, a visibility check can be performed. For this purpose, the viewing direction vector
d⃗ is used, which is perpendicular to the image plane and points in the viewing direction, s. Fig
2.2. Since the dot product between two vectors is zero when both vectors are perpendicular to
each other and increases the further both vectors point in the same direction, the view frustum
frustum(d⃗,pw) between d⃗ and the 3D point pw should be greater than zero:

frustum(d⃗,pw) =

True, if d⃗pT
w > 0

False, otherwise
(2.6)

If the function returns True, the 3D point lies within the camera’s viewing frustum and can be
projected onto the camera plane.

2.1.2 Laserscanning

(a) The RIEGL VMX-250 Mobile
Mapping System equipped with two
line scanners

Transmitted Pulse

Reflected Pulse

Vertical
rotation

Horizontal
(azimuth)
rotation

Scanhead

Range

Object
A B

(b) Schematic view of an time-of-flight laser scanner with two
degrees of freedom

Figure 2.3: Two images showing a pair of real laser scanners (left) and a schematic drawing of a time-of-
flight (ToF) laser scanner (right)

Introduction

A laser scanner or Light Detection And Ranging (LiDAR) sensor is an active sensor for measuring
distances. Laser scanners are operated from airborne, terrestrial or mobile platforms (Vosselman
and Maas, 2010). The laser scanner emits a beam of light that is reflected from the measured object
surface. By measuring the time that elapses between the emission and the reception of the pulse,
the distance between the laser scanner and the surface is calculated by multiplying the travel time
by the speed of light. By combining the measured distance with the orientation of the scanner
head, the exact 3D position of the measured point can be calculated in the scanner coordinate
frame. The dimension of the measurement of the device, depends on the total number of degrees
of freedom. In reality, the horizontal measurement is realized by a rotating mirror that reflects the
laser beam and encodes the current angle; the vertical rotation is then realized by moving the entire
scanner head, Fig. 2.3b. Laser scanners are usually equipped with infrared lasers with a typical
wavelength between 800 and 1550 nm (Vosselman and Maas, 2010, p.25.). The measurement of
distance or range is always based on the accurate measurement of time and is performed using
one of the two main methods, which are based on time-of-flight or phase. In the following, the
time-of-flight method is described, since it is also used in this work.
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Time-of-Flight-Based

time-of-flight (ToF) is a method for distance measurement. It involves the precise measurement of
the travel time of a very short laser pulse. In this way, the instrument measures the exact time
interval that elapses between the emission of the pulse at point A, the reflection at point B and
the re-reception at point A, see Figure 2.3b. The slant distance or range r is calculated using the
known speed of light c = 299792458 m

s and the measured time interval t.

r = c · t
2 (2.7)

If the light travels through air then a small correction factor 1
n is multiplied to the velocity c. The

value depends on air temperature, humidity and pressure (Vosselman and Maas, 2010, p.3). Since
the speed of light is known very accurately, in practice the accuracy or resolution of the distance
is determined by the accuracy of the time measurement. However, a pulse may return more than
one echo due to location characteristics such as irregularly shaped ground or the fact that the laser
spot increases in diameter with distance and hits different targets (Vosselman and Maas, 2010,
p.3). This for example happens when airborne laser scanners capture a forest. They scan through
the canopy of leaves and also measure ground points. According to Vosselman and Maas (2010,
p.4) a typical laser pulse has a rise time tp = 5 ns, which corresponds to a total length of 1.5 m.
If a laser beam returns two echoes, they can only be distinguished if their distance is greater than
half the pulse width. This means that with a pulse length of tp = 5 ns objects can be detected as
separated if their distance is greater than 0.75 m (Vosselman and Maas, 2010, p.5).

As described by Vosselman and Maas (2010, p.5), there are three types of pulse detection: (I) Peak
detection sets the trigger pulse to the maximum amplitude of the echo. The ToF is measured
between the highest transmitted and received laser amplitude. This method can be problematic
if the reflected light provides more than one peak. (II) Thresholding sets the trigger when the
rising edge exceeds a fixed threshold, which has the disadvantage that weak echoes are not detected
by the laser scanner. (III) By Constant Fraction Detection, which sets a trigger when a preset
fraction of the maximum amplitude is reached. This has the advantage of being more independent
of the echo amplitude.

The amplitude of an echo is proportional to the reflectivity of the scanned surface. Weakly reflective
targets provide a lower amplitude and highly reflective targets such as retroreflective road markings
or traffic signs provide a higher amplitude. Due to this fact, very simple pulse detectors tend to
calculate larger ranges for less reflective targets, which can lead to effects such as road markings
floating above the ground. This effect must be corrected, especially for Type I and Type II pulse
detectors; constant fraction detection is less affected by this effect (Vosselman and Maas, 2010,
p.15). Apart from that, the reflectivity provides useful information, it can be used, for example, to
visualize the measurements in order to distinguish different surfaces.

Scanning and Projection Mechanisms

There are many different types of laser scanners, depending on the environment and specific re-
quirements such as field of view, distance and density. For example, in urban environments, where
surrounding traffic can get quite close to the scanner, there is certainly a different requirement
for the type of scanner than for an airborne laser scanner, which has to cover the ground from
a great height. According to Vosselman and Maas (2010), there are at least five different laser
scanning mechanisms, which can be an oscillating mirror, a rotating polygon, a Palmer scanner,
a fiber scanner or a flash LiDAR (Vosselman and Maas, 2010, p. 17). In all cases, they usually
have different scanning patterns and different properties w.r.t. density or distribution. Oscillating
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Figure 2.4: The LiDAR measures the range, horizontal and angular rotation given directly in a spherical
coordinate system

Mirrors are perhaps the simplest form of scanning mechanism. Here the laser beam is shot onto
a rotating mirror that reflects the emitted pulse and also captures the reflected pulse. Oscillat-
ing mirrors are commonly used in commercial airborne systems where the laser beam is swept
across the trajectory, resulting in a unique sinusoidal zigzag pattern on the ground. Rotating
polygons are very similar, here instead of a flat mirror the surface of the mirror is formed by a
polygon, resulting in more uniform patterns on the ground where the lines are almost parallel. In
the Palmer scanner, the mirror surface is mounted at an angle of less than 90◦ to the rotation
axis. This results in elliptical patterns on the ground with a rather small field of view. The fiber
optic scanner sequentially passes laser pulses to a linear array of optical fibers via a rotating
mirror. Since the fibers are fixed, this mechanism is very stable and has a fixed scan angle. Finally
the flash LiDAR projects laser beams from a fixed array of diodes. They capture the reflected
light with another light sensor like CMOS (Vosselman and Maas, 2010, see p. 19), resulting in a
3D image without mechanical parts.

In all cases, LiDAR requires not only the distance information, but also the direction in which the
laser is directed to calculate the 3D point. In terrestrial systems this is typically done by measuring
the polar angles ϕ and θ of the scanner head (Vosselman and Maas, 2010, p.16 3.2).

Figure 2.4a illustrates the vertical and horizontal angles of the laser scanner. Technically, these are
measured using wheel encoders. The angle measurements are typically evenly distributed across the
LiDAR’s field of view. Of course, the precision and angular resolution of the encoder contributes to
the accuracy of the laser scanner. The spherical coordinate system of a LiDAR is shown in Figure
2.4b with a LiDAR with two degrees of freedom θ and ϕ and the measured distance r in red. With
these angles, the Cartesian point coordinates p = [x,y,z] can be calculated as follows:

x = r · sin θ · cos ϕ
y = r · sin θ · sin ϕ
z = r · cos θ

(2.8)

There are also devices such as the RIEGL VQ-250 shown in Figure 2.3a that have only one degree
of freedom. They measure only distance and horizontal rotation, which is why they are called line
scanners. A line scanner that scans parallel to the ground plane only outputs a 2D map of the
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Figure 2.5: Helical line scanner pattern (points) with scanner continuously rotating 360◦ along ϕ (Eq. 2.8)
while moving in z direction. The image corresponds to the coordinate system in Figure 2.4b with fixed
θ = 90◦. Each red line shows a laser beam after the scanner has been rotated 396◦ and moved along the z
axis. In total, the scanner head is rotated 5.5 times in this plot.

environment, which looks like a floor plan. However, if the line scanner is mounted on a rigid
and calibrated system that provides access to a 3D position and heading in a global coordinate
system, it is possible to calculate a 3D coordinate in the same system. This is usually realized via
a combination of a GNSS receiver and an IMU.

Mobile Mapping

Similar to airborne laser scanning, Mobile Mapping describes a measurement process performed
on a moving vehicle. Typically, a measurement platform equipped with a variety of sensors such
as GNSS, IMU, Distance Measuring Instruments (DMI), camera, and LiDAR is attached to the
vehicle to survey its environment. Often, the combination of IMU, DMI, and GPS is used for a
tightly coupled Kalman filter that estimates position, velocity, roll-, pitch-, and heading-angles of
the sensor platform. Additionally, Simultaneous Localization and Mapping (SLAM) can be used
to integrate LiDAR and camera observations into the filter steps (Puente et al., 2013). Other
requirements include precise real-time synchronization and calibration between all sensors (Vos-
selman and Maas, 2010, p.301). The result of the mapping process are georeferenced 3D point
clouds, often in a common global world system such as World Geodetic System 1984 (WGS 84)
(Vosselman and Maas, 2010, p.294). In this context, mobile mapping is often associated with cars
equipped with a Mobile Mapping System (MMS) such as RIEGL’s VMX-250, but there are also a
variety of complete systems for railroads (RIEGL VMX-RAIL), Unmanned Aerial Vehicles (UAVs)
(YellowScan Fly & Drive or Li et al. (2017)), boats (Puente et al., 2013), human backpack systems
(Leica Pegasus), or even indoor applications (Vosselman and Maas, 2010, p.301). Although image-
based mobile mapping exists, as shown by Cavegn and Haala (2016), only LiDAR-based systems
are discussed in this section.

According to Vosselman and Maas (2010, p.295ff.), Mobile Mapping is divided in “stop-and-go”
and “on-the-fly” modes . The former describes many sequential static mapping processes using a
vehicle-mounted mapping platform that is not moved during the mapping process. Ideally, each
mapping step overlaps with the others so that the resulting point cloud can be registered using,
e.g. the Iterative Closest Point (ICP). In “on-the-fly” mode, the vehicle continuously records data
and does not have to stop. This process is much more efficient and captures larger areas in less
time. As shown in Fig. 2.5, the line scanner is oriented with respect to the vehicle coordinate
system so that it continuously scans inclined to the trajectory of the mapping platform. In this
way, the scanner captures many consecutive 2D scan profiles that can be mapped into 3D using
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Figure 2.6: 3D point cloud visualization of a car scanned with the RIEGL VQ-250 using the VMX-250
mobile mapping system.

the estimated 3D pose of the mapping platform. The fixed inclination of the line scanner serves
two main purposes. First it has the advantage that the scanner can reach very low objects like a
road as well as high objects like facades, tree tops or even ceilings. Secondly, the scanner does not
need to change the vertical orientation, which simplifies the whole system.

2.1.2.1 3D Data Representations

There are a variety of different 3D data representations. The representation of 3D data is adapted
to the requirements of the application. In this section, some standard representations and their
applications are presented, which are necessary for the understanding of this work.

Point Clouds

An example of a 3D point cloud representation of a car acquired with the RIEGL VMX-250
MMS can be seen in Figure 2.6. Typical 3D sensors measure surfaces point by point in the sensor
coordinate system. The 3D coordinates in the sensor coordinate system are calculated with the
Equation 2.8. The relationship between the point in the sensor coordinate system Plaser and the
point in the global coordinate system Pobj is described in Equation 2.9.

r


cos(ϕ)

sin(θ)

0

 = Plaser = RT
mount

[
RT

plat(t)
[
Pobj − Pplat(t)

]
− Pmount

]
(2.9)

Here the trajectory of the MMS at time-step t is given by Pplat(t) and Rplat(t). The fixed calibration
for the mounting is given by the fixed transformation Rmount and Pmount. To store these values,
each 3D coordinate is appended to a list as a floating point number, supplemented with additional
information such as RGB colors, reflectance, or labels. Thus, a point cloud can be stored in an
unsorted vector Pn×m, where each row consists of an observation of length m, e.g. {xi,yi,yi,ri,gi,bi}
with i ∈ {1, . . . ,n}. A drawback of this representation is that the entries of the vector are in no
particular order, so finding a neighboring point requires O(n)1 operations, which is significantly

1O(·) is used to described algorithms according to how their runtime or space requirements grow with the size of
the input
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Figure 2.7: Different voxelizations of the point cloud of the car shown in Figure 2.6. The volume size is
given by r, the density by ρ, and the edge length by e.

more than the number of operations required in a grid-like structure with O(1). To improve this,
a point cloud can be stored in a k-dimensional tree (kd-tree) introduced by Bentley (1975). This
data structure stores k-dimensional points in a tree-like structure and allows more efficient nearest
neighbor search with a time complexity of O(log n). The kd-tree has a space requirement of O(n),
which is equivalent to one of a point cloud vector. However, depending on the algorithm used, the
construction of the tree is more complex and has a worst-case complexity of O(kn log n) (Brown,
2015). The dimensionality k of the tree is defined by the dimensionality of the data, i.e., in the case
of a point cloud k = 3. In a kd-tree with m levels, each level i is assigned a particular dimension
d = i mod k. The tree is constructed by cycling through each axis d and choosing a pivot value,
for example the median. Points with a value higher than the median are then added to the nodes
to the right of the pivot, and smaller values to the left. This is repeated until all points are added
to the tree. To traverse a tree, the current node is compared to the query point q. If the query is
smaller, the tree is traversed to the left, otherwise to the right. This is done separately for each
dimension by traversing all k-dimensions.

Apart from the disadvantage that the search for neighbors is slower in point clouds than, for
example, in grid-like structures, they have several advantages. First point clouds preserve the
accuracy of the original data. Transformations can also be performed very quickly, as points can
be multiplied by linear transformation matrices and also all points can be accessed independently,
allowing programs to parallelize computing.

Voxel Grids

A point cloud can be represented by a three-dimensional grid, similar to a two-dimensional image.
Like pixels in a 2D image, the coordinates of a 3D voxel (volume element) are not explicitly encoded
with their values, but are indexed by a data structure, see (Kaufman et al., 1993) for a detailed
introduction. The major advantage of using voxel grids is that searching for neighboring points
takes only O(1) operations. Voxel grids are also useful for estimating occlusions by approximating
surfaces with box-shaped points. To voxelize a 3D point p the following function can be used:

Voxelize(p) =
⌊
p

e

⌋
, (2.10)

where e defines the edge length of the voxel in meters. The result of this function is a list of integer
3D points, which can then be sorted into a 3D data structure with binary values 0,1, where 1
represents the presence of a point and 0 the absence (Kaufman et al., 1993). An example result of
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the voxelization process is shown in Figure 2.7. Here, the scanned car from Figure 2.6 was voxelized
with different edge lengths. The volume size r was always chosen to closely fit the voxelized point
cloud. By comparing these results, it can be seen that voxel grids have two major drawbacks.
First, they have quantization errors that are larger for smaller voxel grids. This becomes clear
when comparing 2.7a, where the car is still easily recognizable, to 2.7d, where the car can no
longer be recognized. Second, they do not take advantage of sparsity, which means that memory
requirements increase cubically with grid volume size. To reduce memory requirements, octrees
can be used instead of regular grids as presented by Meagher (1982) or Laine and Karras (2010).
In octrees, each node has eight children, hence its name. The root node represents all the data
and each child node corresponds to an octant. This is repeated for each node until no further
subdivision is possible or necessary. There are many advantages of using octrees, other than more
efficient data representation. Each level of the octant system represents a different level of detail
of the point cloud. This feature can be used for faster ray tracing, as the search in the search space
for possible occupied grids is reduced, since child nodes that do not contain points are empty and
do not need to be traversed.

Projections

By projecting a 3D point into a (virtual) camera using Equation 2.4 the point can be mapped
into a 2D grid. Depending on the application the distance between the camera center and the 3D
point or the distance between a plane and the 3D point is calculated and mapped to the pixel,
resulting in a “2.5D” image or height-map. Other properties of the 3D point such as reflectance
or color can be stored in another channel of the image. A typical application of these images are
digital elevation models (DEM), which represent the height of a 3D terrain surface. This data is
often collected by airborne laser scanners and projected into a grid from which the height of the
surface can be derived. A very simple way of projecting a 3D surface can be done by orthographic
projection, where a 3D point v is mapped into a grid by Portho:

Porthov =


1 0 0

0 1 0

0 0 0




vx

vy

vz

 (2.11)

The value vz can be stored in the grid cell itself. If the 2.5D image has a sufficiently high grid
resolution, it is less likely that more than one 3D point will be mapped in the same grid cell. This
is usually not the case with other projections, such as perspective projection, where overlapping
surfaces can be occluded.

Line scanners can also be projected without this type of occlusions by a spherical projection. In
this case every revolution of the scanner head is appended along the x-axis of the image, Fig. 2.8a.
Therefore, the y-axis is indexed by the angular increments of the scanner head ∆ϕ, each line being
mapped to a specific azimuth angle. If the scanner is moved e.g. by a Mobile Mapping System, the
scanstrip can produce a strongly morphed but still recognizable image, Fig. 2.8b. In this case, the
objects are distorted by the ego motion of the car, which can result in elongated objects if the car is
moving slowly, and shrunken objects if the car is moving fast. This type of data representation has
the advantage over voxel grids that they are very dense and have almost no quantization errors. In
contrast to a raw point cloud, the neighborhood information is roughly preserved in a scanstrip.
However, it is not guaranteed that neighboring pixels are the closest points to each other.



2.1 Cameras and Laserscanning 17

(1,3)

(3,3)

(2,3)

(1,2)

(3,2)

(2,2)

(1,1)

(3,1)

(2,1)

(m-1,2) (m-1,3)(m-1,0) (m-1,1) (m-1,
n-1)

(1,0)

(0,0) (0,1)

(3,0)

(2,0)

(0,2) (0,3)

(1,n-1)

(0,n-1)

(3,n-1)

(2,n-1)

revolution number

an
gl

e

 

 

sensor
measurement

(a) Scanstrip coordinate system (b) Scanstrip colored by reflectance

Figure 2.8: Example scanstrip captured with a line scanner mounted on a Mobile Mapping System (right)
and the corresponding coordinate system (left)

2.1.2.2 Ray Tracing for Occlusion Determination

Rendering point clouds can be difficult because they are sparse and it is not clear how to fill empty
areas and exclude occluded points, such as points behind walls and buildings. When individual
3D points on a surface are projected into an image, points behind the object may not be masked,
resulting in a “transparent” looking object surface. It is often sufficient to enlarge the points to
create the impression of a continuous surface. Splats can be rendered instead of points for this
purpose. A splat is defined as an elliptical surface with a size determined by the local point density
(Zwicker et al., 2001). Another way is to trace the ray between the camera center and the 3D
point through space and estimate whether it hits a surface or not, which is therefore called ray
tracing. Ray tracing is often used for very realistic image rendering, but in the case of point cloud
visualization it can also be used to simulate occlusions. To estimate whether the ray will hit a
surface, each point is magnified. Since ray tracing is computationally expensive because each ray
must be traced through the space containing the point cloud, a voxel grid can be superimposed
because finding a neighboring voxel only has a time complexity of O(1) and is therefore much faster
than searching through the entire point cloud. The voxel also serves as a rough approximation to
object surfaces by wrapping each point with a box volume. So the real test is not whether the ray
intersects the point or surface, but only whether it hits the wrapping volume. To traverse the voxel
grid, Bresenham’s line algorithm can be used (Bresenham, 1965). This is a line drawing algorithm
for determining grid cells that should be chosen to form a straight line between two points in the
grid.

Occlusions can be detected as follows: All points of a point cloud are sorted into a voxel grid. The
ray is then traced to each camera center in this grid, and if an occupied cell is found along the ray,
the point is considered as occluded. In order to speed up the calculation, a voxel pyramid can be
implemented that uses voxel grids with different resolutions to avoid excessive traversal of empty
regions. The ray is first drawn through the voxel grid with the largest box sizes to check whether
it might hit an occupied cell. As soon as it finds an occupied voxel, the voxel grid with the next
higher resolution are added to the queue. This is repeated until the voxel grid with the highest
resolution is reached or no more occupied voxels are found.
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2.1.2.3 Region Growing

Region growing is used to find segments in images. If neighboring points in an image meet certain
homogeneity criteria, they belong together and form a segment. In contrast to e.g. thresholding,
region growing uses the spatial information of an image. The seeded region growing by Adams and
Bischof (1994) can in general be described by the following three steps:

1. Choose a seed pixel.
2. Check the neighboring pixels and add them to the region if they meet the homogeneity

criterion.
3. Repeat the second step for each newly added pixels; stop if no more new pixels can be added.

The initial regions start at the positions of the seed pixels. Therefore, the choice of the seed pixels
is very important, since they significantly influence the result. Depending on the problem, the seed
regions can be selected manually, within a certain gray level range, e.g. if light or dark segments
are to be found, they can also be selected randomly or placed uniformly on a grid. The choice of
the homogeneity criterion is also crucial for moderate success. It can be based on any properties
of the regions in the image, such as color, intensity, grayscale, or variance.

The algorithm can be easily extended to 3D point clouds. In this case adjacent points are found
by a function, e.g. the Euclidean distance. The homogeneity criterion must also be adapted to the
problem. The method developed by Rabbani et al. (2006) uses a smoothness constraint to find
neighboring regions. The following pseudocode describes the algorithm in detail, it is presented as
implemented in the Point Cloud Library2 (PCL) of Rusu and Cousins (2011):

Algorithm 1 3D region growing segmentation
Require: Point cloud P , Point normals N , Point curvatures cur, neighbour finding function ω(.),

curvature threshold cth, angle threshold θth

1: R = [ ]: Empty region list
2: A = [1, · · · ,|P |]: List of available points
3: procedure RegionGrow3d
4: while A is not empty do
5: Rc = [ ] #current region
6: Sc = [ ] #current seeds
7: Pmin = min(P [A].cur) # point with min curvature in A
8: Sc.append(Pmin)
9: Rc.append(Pmin)

10: A.remove(Pmin)
11: for i=0 to size(Sc) do
12: Bc = ω(Sc[i])# Find nearest neighbours of current seed point
13: for j=0 to size(Bc) do
14: if A.contains(Bc[j]) and cos−1(|Sc[i].N, Sc[j].N |) < θth then
15: Rc.append(Bc[j])
16: A.remove(Bc[j])
17: if Bc[j].cur < cth then
18: Sc.append(Bc[j])
19: R.append(Rc) # Add current region to global region list
20: return R

2https://pointclouds.org/

https://pointclouds.org/
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The algorithm first sorts the points by their estimated curvature value to find the seed points
which are the points with the smallest curvature (line 7). The curvature value is a local feature
that can be calculated by computing the eigenvalues λ of the covariance matrix built from a
point and its k-nearest neighbors. According to Rusu and Cousins (2011) the curvature can be
estimated by the relationship between the eigenvalues of the covariance matrix as follows λ1

λ1+λ2+λ3
with λ1 < λ2 < λ3. Points with low curvature are located in flat regions. As stated by Rusu and
Cousins (2011), it is preferable to grow regions from these points, as this reduces the total number
of segments.

For every seed point the nearest neighbours Bc are looked up (line 12). The algorithm then checks
for each neighbor the angle between its normal and the normal of the current seed point (line
14). If the angle is less than the threshold θth, it is added to the current region (line 15). If the
curvature cur of the current neighboring point Bc[j] is below the curvature threshold cth it is added
to the current seeds and thus extends the for loop (line 17-18). After all current seeds have been
consumed the current region is added to the global region list (line 19). Then the same process is
repeated until A contains no more points. Finally the algorithm returns a list of regions in line 20.

2.2 Machine Learning Fundamentals

In this section, some basics of machine learning are briefly introduced, i.e. some types of learning
are covered, basics of gradient-based learning and in particular, gradient-boosting decision trees
are covered, which are later also used in experiments. A very comprehensive overview of machine
learning without a focus on deep learning is provided by Murphy (2012). Alternatively Goodfellow
et al. (2016) provided an overview especially for deep learning.

2.2.1 Types of Learning

There are a variety of learning types, but overall machine learning is usually divided into supervised
and unsupervised learning (Murphy, 2012, p. 2). In supervised learning, the goal is to learn a
function F that maps from an input x to an output y given a training dataset that contains
pairs of input and output (label or target) data. The input data can be of any type, such as a
row vector of numbers relating to specific events per column, or something more complex such
as an audio signal, image or point cloud. The key is that for every input in the dataset there is
an expected result, hence the name “supervised”, which is often also called a label, annotation
or ground truth. Labels can be created by humans (experts) or are collected automatically with
human supervision. To “learn” such a mapping, the trainable (changeable) parameters θ of the
function F are tuned. The general training protocol is to find good values for these parameters
so that a distance function Loss(yi,ŷi) between each prediction F (xi) = ŷi and ground truth
yi is minimal. Depending on whether the label data is numerical or categorical, one refers to a
regression or a classification problem.

The second type of learning is unsupervised learning. It describes the task of learning from
a set without labels to find patterns in the data (Murphy, 2012, p.2). According to Murphy
(2012, p.2), it is a less well-defined problem. However, popular unsupervised learning problems
include clustering, where the goal is to find subsets (clusters) in datasets where each data point
is associated with a cluster, similar to classification where subsets can be grouped by a class label
(Murphy, 2012, p.10). Another popular unsupervised learning task is learning how to compress
the data, i.e. reduce the dimensionality, by discovering latent factors that describe the data
(Murphy, 2012, p. 11). There exists also semi-supervised learning which is a task that lies
between a supervised and unsupervised setting. The goal is almost always to reduce expensive
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Figure 2.9: Example of a very simple decision tree with three levels and three attributes (Color, Shape and
Size). The tree is trained on a binary classification dataset and outputs either Yes (1) or No (0).

annotation costs. In most cases a model is trained by using a large number of unlabelled instances
to discover latent representations (unsupervised) in combination with a limited number of labelled
instances (Van Engelen and Hoos, 2020). This topic will be discussed in more detail in Chapter 3.

2.2.2 Supervised Learning - Illustrated by Decision Trees

Since decision trees are trained in a supervised manner and are also used in this thesis, the following
text does not only show briefly how to train a decision tree, but it also gives an introduction to
the general procedure of training a supervised method. A decision tree is a method that makes a
prediction by partitioning the input with simple decision rules based on thresholds or categories.
In the following, it is assumed that the input data is categorical only, i.e. each input xi contains
a list of attribute variables that can take one of a limited and fixed number of possible values. A
decision tree has a hierarchical structure and consists of nodes and edges, s. Fig 2.9. Each node
applies a test for the value of a certain attribute of the input. The edges of the node are connected
to child nodes and correspond to each possible outcome of the test. A decision tree is traversed
by starting at the root and comparing the attribute of an input sample with the attributes of
the nodes. Depending on the result of the comparison, the tree is traversed to the corresponding
sub-node, which tests another attribute, and so on. The final nodes of decision trees that have
no child nodes are the leaf nodes. They store the outcome of the decision tree, which can be, for
example, a histogram, a real value or a class number.

Kullback Leibler Divergence

As described in the introduction of this Section 2.2.1, in supervised learning a loss function is
defined, and the goal is to optimize it. The loss function is sometimes referred to as a cost
or objective function and measures the difference between predictions and labels. Similarly,
for decision trees, the primary objective is to determine which attributes of the input should be
considered in each node at each level. Depending on whether the decision tree is intended to solve a
regression or a classification problem, the loss function may be, for example, the root mean square
error (RMSE) or, in the latter case, the information gain (Murphy, 2012, p.547). The information
gain is based on the entropy H(X) in information theory, which measures the average level of
“information” for a random variable X with possible outcomes {x1, · · · ,xn}

H(X) =
n∑

i=1
−P (xi)log P (xi), (2.12)
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where P (xi) is the probability that xi occurs. This formula gives a measure of how uncertain the
distribution in X is. That is, H(X) is zero if the set contains only one peak and zeros otherwise, and
reaches the maximum value log(n) if all probabilities are equal. In this way, entropy can be used
to calculate how balanced the distribution of classes is in the dataset. An entropy of 0 indicates
that the set contains only one class and an entropy of log(n) suggest a balanced dataset.

Information gain IG(X,A) measures the entropy of the dataset before and after a transformation,
i.e., the reduction in entropy or surprise from splitting a dataset according to a particular value of
a random variable. Here the entropy is used to calculate how the change to the dataset impacts
the class distribution. A smaller entropy suggest less surprise and more purity. It is calculated by
the entropy of the original set H(X) minus the summation of the weighted entropy of each subset

IG(X,A) = H(X) −
∑
v∈A

|Xv|
|X|

H(Xv) = H(X) −H(X|A), (2.13)

where H(X|A) is the conditional entropy of X given the value of the categorical attribute A. It is
calculated by splitting the dataset into subsets for each possible value of A and calculating the sum
of the ratio multiplied by the the entropy of each subset. The ratio |Xv |

|X| is calculated by dividing
the number of the attributes A that have the value v, by the number of all examples in the dataset.
Moreover, H(Xv) is the entropy of the subset of samples where A has the value v.

The information gain is close to the Kullback-Leibler (KL) divergence which measures the “dis-
tance” between two probability distributions P and Q (Murphy, 2012, p.57f.). The KL-divergence
for discrete probability distributions is defined as follows:

DKL(P ||Q) =
n∑

i=1
P (xi)log

P (xi)
Q(xi)

, (2.14)

where P (xi) and Q(xi) define the probability for a specific event xi to occur in both distributions
and n is the number of possible events of the random variable X. To express the information gain
as KL-divergence one can use the joint distribution of both variables P (X,A) and the probability
distribution P (X) · P (A):

IG(X,A) = DKL(P (X,A)||P (X) · P (A)) (2.15)

Here, the joint probability is the probability of occurrence of the intersection of X and A. If
both variables are independent, P (X,A) is equal to P (X) · P (A) and the KL divergence between
both distributions is zero. Therefore, maximizing the information gain is equal to minimizing the
KL-divergence (Quinlan, 1986). It should be noted that the KL divergence is not a true distance
measure because the function is asymmetric. For a symmetric version of the KL divergence, the
Jensen-Shannon divergence can be used, which will not be discussed in this thesis (Lin, 1991).

Cross Entropy

The cross entropy H(P,Q) has the property that its minima have the same location as the minima
of the KL divergence DKL(P ||Q).

H(P,Q) =
n∑

i=1
−P (xi)log Q(xi) = H(P ) +DKL(P ||Q) (2.16)

In supervised learning, P refers to the (fixed) “true” distribution, which is given by the label y
and Q is the estimated distribution, which is predicted by a classifier. Minimizing H(P,Q) means
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that the predicted probability distribution Q has a peak at max(P ). Note that in a classification
problem, where there is usually only one class per instance, the labels are “one-hot coded”, which
means that the distribution has only one peak of 1 at the label and is 0 otherwise.

Building a Decision Tree

The following procedure shows how to build a tree using the ID3 algorithm presented by Quinlan
(1986). Training a decision tree starts with the root node only. A tree is usually trained from top
to bottom where the attributes that maximize the information gain are selected first.

Algorithm 2 method to grow a decision tree
1: procedure ID3(node, examples S)
2: maxGain,bestA = 0,null
3: for attribute a in S do # determine the attribute which leads to the largest IG
4: gain = IG(S,a)
5: if gain>maxGain then
6: maxGain,bestA = gain,a
7: for each value of bestA do
8: Create a new child node
9: subsets = Split(S,bestA) # split S into subsets for all possible values of bestA

10: for each child node/subset do
11: if not (subset is pure) then
12: ID3(child node, subset)

The algorithm greedily searches for a test (bestA) that has the highest information gain (lines
3-6). To do this, S is divided into subsets for the attribute bestA. Then, for each value that bestA
can have, a child node is created so that the tree forms a new branch (lines 7-8). For each value,
there is a subset containing the remaining attributes (line 9). The whole process is repeated (line
12) until the subset is pure (line 11), i.e. has no remaining attributes, or until the result is clearly
defined.

Apart from that, the decision tree can have several hyperparameters, such as the maximum tree
depth. These parameters can also be “tuned”, meaning that there are many possible models that
can be trained on the same data. The general problem this refers to is model selection (Murphy,
2012, p.22-24). To find the best possible model, the dataset is often split into training, validation,
and test sets. Each model is fit to the training set and tested on the validation set. The test set,
which was never part of the selection process, then serves as an unbiased estimate for the actual
model performance. Depending on the algorithm, the validation set is sometimes included after
the selection process and the best model is re-trained on both sets. In general, one wants a model
that has a good performance and generalizes well to unseen data, i.e., that has similar performance
on the training and test sets. This problem is known as the bias variance tradeoff.

The Bias Variance Tradeoff

The bias variance tradeoff is a central problem in supervised learning defined by Geman et al.
(1992). It is originally formulated for least squares regression, but similar decompositions have
been found for classification problems, see (Domingos, 2000). The bias variance tradeoff is based
on the fact that in supervised learning the mean square error (MSE) can be decomposed into
variance and bias error:

MSE = variance + bias2 (2.17)
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Ideally, a model is able to detect regularities in the training data while being able to generalise to
unseen data. In reality, this is usually not the case, as a model that fits the training data too well
or too poorly often does not generalise well to new data.

The bias error occurs when the model complexity is too low. It describes a wrong assumption in
the trained model. The model is not able to capture the true meaning of a feature and cannot
relate it to the result; the model is underfitting.

A large variance error, on the other hand, is related to a situation in which the model captures
the training data too well because the model complexity is too high. It is able to capture even
small fluctuations in the training set and fits the model to them almost perfectly. A high variance
is related to the situation in which the model will overfit to the training data because it almost
memorizes the training data and thus loses the possibility to generalize to new data.

Both errors are in conflict with each other, which means that a lower bias often increases the
variance and vice versa. There are many approaches to address the problem. For example, the
depth of a tree in decision trees or the number of neurons in an artificial neural network, which
will be introduced in the next chapter, is directly related to the complexity of the model, which
means that very deep trees or a high number of neurons leads to a high variance but low bias error.
It is therefore necessary to find the optimal model complexity so that the model can generalise
well.

2.2.3 Boosting

When many different decision trees are combined, they are called an ensemble or forest. Random
forests, such as those described by Ho (1995), are trained using bagging, which means that each
decision tree is trained in parallel on random subsamples or random features of the original training
data, resulting in different decision trees. Together, they form an ensemble that can classify an
input sample by summing or averaging the different predictions of multiple trees.

Boosting is another type of meta-learner that wraps a base learner algorithm to combine many
(weak) models into one strong model. The original boosting algorithm (AdaBoost) was invented
by Freund and Schapire (1996). Unlike, for example, random forests, the boosting algorithm works
iteratively by adding a new trainable classifier ft(x) at each iteration step t ∈ {1, . . . ,T}. All
classifiers are combined by summing their outputs to form the final prediction of the ensemble
FT (x):

FT (x) =
T∑

t=1
αtft(x) (2.18)

At each boosting step t a new weak classifier is added that outputs a weighted prediction αtft(x).
The new classifier is minimized together with the previously trained ensemble Ft−1

Lt =
∑

i

Loss(yi,Ft−1(xi) + αtft(xi)), (2.19)

where Loss(yi,ŷi)) is a function that calculates the error between the label yi and the prediction
ŷi with i ∈ {1, . . . ,N} training samples and the learning rate αt is step t. An important part of the
algorithm is that at each iteration t a weight wi,t is assigned to each training sample (xi,yi) which
is calculated based on the current error Loss(Ft−1(xi)) on that sample. The weights augment the
training examples at each training step in such a way that more attention is put on incorrect
predictions. This means that the new added weak learner attempts to correct the errors of its
predecessors.
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A more advanced version of Adaboost is gradient boosting invented by Breiman (1997) and Fried-
man (2002). This algorithm is later used in this thesis in the form of Gradient Boosted Decision
Trees (GBDT). Gradient boosting differs from Adaboost in the way the weights are calculated at
each training step. Instead of weighting the training samples, in gradient boosting the leaner ft is
fit to the residuals rt of Ft−1:

rt(xi) = ∂Loss(yi,Ft−1(xi))
∂Ft−1(xi)

(2.20)

which means that instead of fitting each new weak learner ft to the weighted dataset like in
Adaboost the learner is fitted to the gradient with respect to the current prediction Ft−1. The
motivation is that this procedure follows the residuals, i.e. mistakes made by the ensemble by
using steepest gradient descent.
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2.3 Deep Learning

In this section the basics of artificial neural networks are explained in detail, followed by an
introduction to deep learning including 2D and 3D data processing and generative adversarial
networks.

2.3.1 Basics

The Artificial Neural Network (ANN) is inspired by structure of the human nervous system. The
Perceptron developed by Frank Rosenblatt in 1958 can be seen as the first ANN and is represented
by a simple mathematical function (Rosenblatt, 1958). It consists of an input vector x, a fixed
nonlinear (activation) function ψ and a (trainable) parameter matrix W containing weights wi,j

and biases bi.
ŷ = ψ(Wx) (2.21)

The parameter matrix W and the input vector x are defined as follows

W =



b1 w1,1 · · · w1,n

b2 w2,1 · · · w2,n

...
... . . . ...

bm wm,1 · · · wm,n


,x =



1

x1
...

xn


(2.22)

Equation 2.21 is a compact notation for a function of type ŷ = f(
∑
wi · xi + bi).

Training, i.e., the determination of w is based on minimizing the distance between the output
ŷ and an observation y. In order to measure the distance there exists a wide range of different
functions which are chosen based on the problem at hand. An example for such a function is the
Euclidean distance, also referred to as L2-Norm:

L = ||y − ŷ||2 =
√∑

(y − ŷ)2 (2.23)

L can be minimized by calculating the partial derivative ∂L
∂w and following the gradient to a (local)

minimum. This method is called gradient descent. Gradient descent is an iterative procedure in
order to update the (randomly initialized) weights.

wi,j(t+ 1) = wi,j(t) − λ
∂L

∂wi,j(t) , (2.24)

where wi,j(t) denotes the weight at iteration step t and λ is the “learning rate” which defines the
distance the vector moves in each step. The number of steps depends on the selected criterion and
can be a fixed number, or until the updates become very small, or a more complex criterion.

Multilayer Perceptron

As early as 1969, Marvin Minski and Seymour Papert criticised the perceptron not to have the
ability to represent a logical XOR and that it was very complicated for the computers of the time
to train these networks (Papert and Minsky, 1969). The XOR problem can be solved by adding
further layers which is therefore called multilayer perceptron (MLP), but these layers could not be
trained before the development of the backpropagation algorithm.
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Input Hidden
layer

Output
layer

Figure 2.10: Example of a simple multilayer perceptron (MLP) with two fully connected layers and two
weight matrices W 1 and W 2.

A multilayer perceptron as visualized in Figure 2.10 can consist of several consecutive layers p ∈
{0, . . . ,P}. Each circle refers to a node or “neuron” and each line between the nodes corresponds
to a trainable parameters referred to as weight. As every node of one layer is connected to the
nodes of the neighboring layers, they are referred to as “dense” or “fully connected” layers. The
output ŷ(p) for one layer is calculated in the exactly same way as in Equation 2.21:

ŷ(p) = ψ(p)(W (p)ŷ(p−1))), (2.25)

where ŷ(p−1) denotes the output of the previous layer and ŷ(0) = x. By propagating the input
vector x through the consecutive layers, the final output ŷ(P ) can be obtained:

ŷ(P ) = ψ(P )(W (P )ψ(P −1)(. . .W (2)ψ(1)(W (1)x) . . .)) (2.26)

As soon as a large number of hidden layers are used, one can generally speak of a deep neural
networks and the learning procedure can be called deep learning.

Backpropagation

The backpropagation algorithm is used to calculate the gradient for every weight in every layer
(Rumelhart et al., 1986). Backpropagation starts with a loss function Loss calculating the error
between the label data y and the output of the last layer ŷ(P ):

L = Loss(y,ŷ(P )) (2.27)
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The goal is to calculate an update for every weight w(p)
i,j so that the error is minimized by using an

optimizer such as stochastic gradient descent. To do this, Equation 2.26 is rewritten as follows:

σ
(p)
i =

n(p)∑
j=1

w
(p)
ij ŷ

(p−1)
j =

n(p)∑
j=1

w
(p)
ij x

(p)
j (2.28a)

ŷ
(p)
i = ψ(σ(p)

i ) (2.28b)

It can be seen from the equations that the input of layer p is the output of layer p− 1, respectively
x(p) = ŷ(p−1). Furthermore, i ∈ {1, . . . ,m(p)} and j ∈ {1, . . . ,n(p)} are the row and column index
respectively, of the weight matrix W (p), with size m(p) ×n(p) of layer p. This means that the matrix
size can vary between the layers. However, for successive layers to be compatible, n(p) = m(p−1)

must hold.

For gradient descent the partial derivative of the error function with respect to the weight ∂L
∂w

(p)
ij

is calculated. By first applying the chain rule and then substituting Equation 2.28a, the partial
derivative is rewritten as follows:

∂L
∂w

(p)
ij

= ∂L
∂σ

(p)
i

∂σ
(p)
i

∂w
(p)
ij

= δ
(p)
i

∂

∂w
(p)
ij

n(p)∑
j=1

w
(p)
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j , (2.29)

where δ(p) is shorthand for the error at layer p. For the calculation of the δ(p) it must be distin-
guished whether δ(p) must be determined at the output layer of the network using ŷ(P ) (case 1.)
or in a hidden layer with p < P (case 2.): After the forward pass, the backpropagation starts by
calculating the gradient in the output layer, which is the first case where p = P (Goodfellow
et al., 2016, p.206). The update is here calculated as follows:

δ(P ) = ∂ŷ
(P )
i

∂σ
(P )
i

· Loss(y,ŷ(P ))
∂ŷ(P ) (2.30)

In the second case where p < P the gradient is calculated as follows:
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2.3.1.1 Training an MLP

To complete the basics of artificial neural networks, this section deals with the basic principle of
training an ANN. To train an ANN in a supervised way, the following requirements must be met
(Goodfellow et al., 2016, Chapter 5.10):

– The architecture of the network f(x; θ) must be defined, whereby θ is the set of trainable
variables and f(x) is a function that represents the full forward pass of the ANN.

– A dataset D must be available containing tuples of input data x and the corresponding
labels y.

– A loss function L must be defined that measures the distance between the prediction ŷ and
the label y.

– A optimizer must be chosen that calculates the updates for the trainable variables.
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These requirements are the same for most ANNs, also in deep learning. The general training
procedure for an ANN is as follows:

Algorithm 3 Training an MLP with gradient descent
Require: network f(x; θ) and dataset D

Initialise all weights θ with random values
procedure training

while not StopCriterion do
for every sample xi,yi in D do

ŷi = f(xi) # forward pass
δ(P ) = ψ′(σ(P )) · ∇ŷLoss(y,ŷ(P )) #backward pass first case
for p = P − 1, . . . ,1 do

for every Neuron i in layer p do
δ

(p)
i = ψ′(σ(p)

i )
∑n(p+1)

j=1 δ
(p+1)
j w

(p+1)
ji # backward pass second case

for every weight w(p)
ji do

w
(p)
ji = w

(p)
ji − ηδ

(p)
j y

(p−1)
i # optimizer

Possible termination criteria for this algorithm are, for example, to stop after a pre-defined number
of iterations, or when the loss is below a certain threshold. In reality, it is very common to measure
not only the training loss but also the validation loss. Often the weights are stored at each validation
step and the weights that reach the lowest validation loss are used for testing later.

In Algorithm 3 the model is trained with gradient descent. In this case, the training process is
deterministic, as the gradient step is always calculated on the entire dataset. Otherwise, when the
model is trained only on a smaller, randomly selected subset, it is called a stochastic gradient
descent (SGD). In real situations, there may be billions of trainable model parameters and train-
ing examples. For additive cost functions, gradient descent requires computing the sum over all
distances, which has a computational cost of O(m), where m is the size of the training set. As the
training set grows, the computation of a single gradient step may become too long for the model
to converge in a reasonable time. Stochastic minibatch gradient descent computes an approxima-
tion of the expected gradient step using a minibatch of uniformly sampled training samples. The
minibatch size k is often set to a small number between one and a few hundred samples. This
results in a slightly different equation than Equation 2.24 using the minibatch size k:

w(t+ 1) = w(t) − λ

k

k∑
i=1

∇wLi (2.32)

In classification problems, the network output and label vector and the loss function are usually
adapted (Goodfellow et al., 2016, p. 173-180). In this case, the output vector ŷi and the label
vector yi have the length C with is the size of all possible classes. Typically, yi is one-hot coded.
To represent the output as valid probability distribution it is usually normalised so that all values
in ŷi are between 0 and 1 and

∑C
j=1 ŷi,j = 1. For this purpose the softmax function can be used:

softmax(z)i,j = exp(zi,j)∑C
k=1 exp(zi,k)

= ŷi (2.33)

The vector zi is the output σ(P ) of the last layer P . It represents the unnormalized log probabilities
and is therefore often referred to as “logit”.
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Convolutional Layers

Image Kernel Output

Figure 2.11: An example for a 2D convolution without padding. The input is 3 × 6 × 1, the kernel size
2 × 2 × 1 × 1 and the stride is s1 = 1,s2 = 1. The output g has the size 2 × 3 × 1

According to the universal approximation theorem a network with one hidden “dense” layer is
sufficient to approximate arbitrary real-valued continuous functions (Hornik, 1991). The problem
is that these layers have high computational complexity, are fixed in size and are more prone to
overfit to the data.

A convolution layer (LeCun, 1989) drastically reduces the number of weights by sharing them
over the input (weight sharing) (Goodfellow et al., 2016, p.247, p.324f.). This is done by sliding a
filter matrix (kernel) over the input and convolving it with the data, as in Fig. 2.11. The kernel
contains the trainable weights of the neural network. Typical hyperparameters for a convolutional
layer are the number and size of the kernels per layer, whether zeros are padded at the border
of the input, the dilation that defines the distance between each kernel element, and the stride
that determines how many values are skipped at each step. The output of each layer is called the
feature map because it represents the detected features like a map at each specific input location
for each kernel. Increased striding has the advantage of reducing the size of the feature map, which
reduces computational complexity, but it also reduces the resolution of the location of the detected
features. Finally, zero padding is used to increase the input size by adding zeros at the border,
to control the output size of the convolution. Usually this is done so that the resulting feature map
has the same size as the input.

For a 2D image with one channel, a kernel is defined by a 2-dimensional matrix. Since a layer
often has more than one channel as input and uses many kernels, the filters K are defined by a
4-dimensional matrix. The dimensions are given by kw × kh × cin × cout, where kw and kh define
the width and height of the kernels, cin is the channel dimension of the previous layer and cout

the number of output features and kernels, respectively. The feature map g is then calculated as
follows:

gi,j,k =
∑

di,dj,q

xs1·i+di,s2·j+dj,q ·Kdi,dj,q,k, (2.34)

where x is the input matrix and s1 and s2 are the striding in the first and second dimensions,
respectively. Obviously the convolution of higher dimensional data follows the same procedure
but increases the number of trainable parameters significantly. As modern Graphics Processing
Units (GPUs) are optimized for matrix algebra, convolutions are implemented in cuDNN3 using
matrix multiplication (Chetlur et al., 2014). This can be done by reshaping the kernel into a matrix
Km with dimensions cout × cinkhkw and generating an input matrix by duplicating the data into a

3cuDNN is a common cuda library used in most deep learning frameworks
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matrix D with dimension cinkhkw ×NPQ, where N defines the minibatch size and P and Q the
output height and width which depend on the chosen hyperparameters such as striding or padding
for the convolution. The convolution can then be performed with a single matrix multiplication to
form an output matrix Gm with dimension cout ×NPQ

Gm = KmD (2.35)

The output of this multiplication has the size of the number of features cout times the output size,
which is equivalent to Equation 2.34. For further processing Gm is reshaped to the actual size of
the feature map N×P ×Q×cout. The actual training of a network using convolutions is equivalent
to an MLP that uses fully-connected layers (Goodfellow et al., 2016, p.345).

Convolutional layers are only capable of maintaining or reducing the spatial dimension of the
input, but in some cases it is desirable to map from a lower resolution to a higher one, for example
to reverse the effect of a strided convolution. For this purpose, transposed convolutions are
used, also called “fractional strided convolutions” or “deconvolutions”. Transposed convolutions
follow a principle similar to that expressed in Equation 2.35. However, unlike regular convolution,
transposed convolution broadcasts the input elements through the kernel by exchanging the forward
propagation function and the backward propagation function of the convolution layer.

2.3.2 Self-Attention

RNN

Hidden
states

Input 
Sequence 

Output 
Sequence

(a) Left: simple RNN (recurrent neural network)
corresponding to Equation 2.37. Right: Mapping
a sequence X to output R with RNN

Query, Key
and Value
Matrices

Softmax

Transpose

Attention map

Input 
Sequence 

Output 
Sequence

(b) Mapping a sequence X to output S with Self-Attention.

Figure 2.12: Mapping an input sequence X of length n to the output sequences R and S of size n × s. On
the left an RNN is shown that maps from an input to a hidden state with matrix U , from hidden to hidden
states with W , and from the hidden states to the output with matrix T . On the right, each element of the
sequence X is mapped independently to the matrices Q, K, and V using three MLPs. Q and K are used
to calculate an attention map A that relates all entries in V , resulting in the output S. Both methods are
similar in the way that they relate input sequences to each other. However, they do not produce the same
results and are not equivalent to each other

In the context of deep learning, attention refers to highlighting elements such as embeddings or
words (Sutskever et al., 2014) or image regions (Kosiorek et al., 2017). In a mathematical sense,
attention refers to the weighting of entities, e.g. calculating the weighted sum of a list of elements.
Here, high weights correspond to something more important, i.e. an entity receiving more attention.
There are many applications for attention mechanism. They were introduced in natural language
processing (NLP) to highlight words that are useful for translating a sentence, while other words
such as filler words or articles should receive less attention in this context (Sutskever et al., 2014).
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These models used recurrent layers which map an input sequence to an output sequence, which
can be expressed as follows:

h(t) = ϕ(b+Wh(t−1) + Ux(t)) (2.36)

r(t) = c+ Th(t) (2.37)

Here W ,U and T are the trainable parameter matrices and x(t) is the current input from a sequence
t ∈ {1, . . . ,n} and h(t−1) is the hidden state from a previous sequence element t − 1. The output
r(t) is formed from the hidden states for each input element r, see Fig. 2.12a. The advantage of
using a recurrent layer is that it can relate objects within a sequence by providing information
from previously seen elements. This property comes with many disadvantages, such as low training
stability due to vanishing or exploding gradients in training. The problem is that the hidden state
is a fixed-size vector that has a limited capacity. Sutskever et al. (2014); Bahdanau et al. (2015);
Luong et al. (2015) tried to address this problem by weighting the hidden states with attention
to remove unnecessary information. However, by design, Recurrent Neural Networks (RNNs) are
slower than, for example, CNNs because they must be processed sequentially, since subsequent
steps depend on previous steps. In comparison, in a convolutional layer, each convolution can
be processed completely independently. Vaswani et al. (2017) proposed a so-called Transformer
Network using self-attention to solve these problems. Self-attention was used to completely replace
RNNs with an element-by-element operation, similar to convolutions or MLPs.

Self-attention relates each entity to every other one in parallel by creating a global attention
map, see Fig. 2.12b. Given a collection of elements x(t) with t ∈ {1, . . . ,n} to relate all entities,
they are projected (linearly) to a l−dimensional query matrix Q(x) and a key matrix K(x). Thus,
the channel dimension (column) of Q(x) and K(x) is and the number of rows correspond to the
number of elements n of the sequence. The relevance of the individual elements with respect to
each other is measured by a matrix A, that can be obtained by applying the softmax function to
the prediction of Q(x) and K(x)T .

A = softmax(Q(x)K(x)T ) (2.38)

The matrix A has size (n × n) and is normalized row-wise by the softmax function, i.e. so that
each row sums up to 1. In most applications the attention scores are scaled by the square root
of the query and key dimension

√
l. The output of the self-attention layer S(x) is computed by

the dot product between A(x) and V (x). Here, V (x) is a function that controls the feature size of
the output by projecting each element in the sequence of x into an s-dimensional feature space,
yielding the matrix S of size (n× s).

S = softmax(Q(x)K(x)T

√
l

)V (x) = AV (x) (2.39)

In S, each row contains the weighted sum over all elements of V (x). By using the softmax function,
each row of A contains a distribution of weights, indicating how much each row of V (x) should
be considered to produce an element of the output sequence. During training, the weights in the
functions Q(x), K(x) and V (x) are adjusted. A network using such a layer is able to relate the
elements of the input sequence.

In summary, the self-attention layer obtains an uncorrelated list of feature vectors and generates a
correlated list of elements of the same length by calculating, for each feature vector, how strongly
to consider all other elements in order to aggregate them by using the weighted sum. The benefit
of doing this an improvement of the computational speed over RNNs and that no hidden-states
are needed.
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2.3.3 Generative Adversarial Networks

Dataset
True Sample
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Discriminator

True or
False

Figure 2.13: The general structure of generative adversarial networks. The generator learns the mapping
x = G(z) and the discriminator learns to classify whether G(z) and x are real or generated.

Generative Adversarial Network (GAN) were invented by Goodfellow et al. (2014). In its original
form, a GAN is trained in an unsupervised way and learns to estimate a function that maps
from one distribution to another. A GAN consists of a generator network that produce samples
x = G(z) and a discriminator network y = D(x) that classifies the samples if they were
drawn from the real distribution (class real) or if they were produced by the generator (class
fake), see Fig. 2.13. The two networks are trained together so that the discriminator acts as a loss
function for the generator, forcing it to produce samples that are indistinguishable from real data.
Therefore, the generated instances also become negative training examples for the discriminator
and the discriminator penalizes the generator for producing implausible data. Assuming that the
discriminator produces a probability between zero (fake) and one (real), the following function
describes the optimization problem:

max
D

min
G

V (D,G) = Ex∼pdata(x) [log(D(x)] + Ez∼pz(x)[log(1 −D(G(z))] (2.40)

Both networks are trained in a mini-max game in which the generator tries to minimize Equation
2.40 and the discriminator tries to maximize it. As the generator has no direct influence on the
term log(D(x)), Equation 2.40 can be expressed using the following two loss functions:

min
G

L(G) = 1
m

m∑
i=1

−log(D(G(zi))

min
D

L(D) = 1
m

m∑
i=1

−log(D(xi)) − log(1 −D(G(zi))
(2.41)

The discriminator should learn to classify whether the input is real or synthetically generated
by G(z). The function L(G) shows that the generator G(z) is optimised by generating samples
such that D(x) predicts values close to one. This means that the generator should produce data
that is considered real by the discriminator. The discriminator, on the other hand, is optimised
by generating values close to zero for D(G(zi)) while predicting values close to one for D(xi).
The picture in 2.13 shows the structure of the whole system. A typical GAN alternately trains
the discriminator and the generator. During generator training which is based on minG L(G),
the gradients propagate through the discriminator to the generator (although the discriminator
does not update its weights during generator training). Therefore the weights in the discriminator
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network influence the updates in the generator network, which also means that the discriminator
must be differentiable. The algorithm of training a GAN is shown in Algorithm 4.

Algorithm 4 General procedure to train a GAN
Require: generator G(z; θ(G)), discriminator D(x; θ(D)) and dataset X

Initialise all weights θ(G) and θ(D) with random values
procedure training

while not StopCriterion do
Sample minibatch of m noise samples {z1, . . . ,zm} from prior distribution
Sample minibatch of m samples {x1, . . . ,xm} from dataset
Generate minibatch of m fake samples from generator
Update the discriminator by minimizing L(D) using gradient descent
Update the generator by minimizing L(G) using gradient descent

In Algorithm 4 the GAN is trained by alternating between discriminator and generator update.
However, there are different versions, For instance, were one network can be trained more frequently
than the other Goodfellow et al. (2014). Apart from that the update of both networks is done using
Algorithm 3, the choice of architecture and optimizer are hyperparameters that affect the training
stability. As both networks compete with each other, training stability means that one network
does not tend to outperform the other, generating either examples that cannot be detected as fakes
or a discriminator that is always 100% accurate. A GAN converges when the discriminator and the
generator reach a Nash equilibrium. This means that neither the discriminator nor the generator
can locally improve their objectives. Since the invention of GANs, many different variants have been
proposed in an attempt to increase the training stability and the quality of the prediction (Mao
et al., 2017). Many different variants have also been introduced, such as conditional adversarial
generative networks (Isola et al., 2017), which are discussed in the next chapter.





3 Related Work

In this chapter, all work related to this thesis is presented. Since the thesis is mainly concerned
with semantic segmentation, the state-of-the-art models, especially those that will be used and
compared to later, are presented in more detail. Other related topics covered and referenced are
3D semantic segmentation networks, semi-supervised learning, transfer learning, multi-view data,
conditional adversarial networks and shape completion.

3.1 Classification and Semantic Segmentation (2D)

In 1989 Yann LeCun et al. trained a small convolutional neural network (CNN) with three hidden
layers using backpropagation to recognize handwritten postal codes (LeCun et al., 1989). The
input of the network is a normalized image with the size of 16 × 16 pixels and the output vector
consists of 10 units (one per class). In the first and second hidden layers, convolutions were used
instead of fully connected layers to reduce the number of trainable parameters, of which there are
1068 in the first layer and 2592 in the second layer. The third layer is fully connected to the second
convolution and has 5790 parameters. The last layer, which outputs the class weights, is also fully
connected and contains 310 trainable parameters, which results in a total of 9760 parameters of
the CNN. The non linear function in each layer is a hyperbolic tangent, which limits the output
range between -1 and 1. The network was trained using SGD, which took 3 days to converge on a
Sun 4/260 workstation.

This example was not only the first solution for using a CNN with SGD to classify images, it also
shows the general structure and procedure of how images are classified today in deep learning.
Popular CNNs like AlexNet by Krizhevsky et al. (2012) or VGG16 by Simonyan and Zisserman
(2015) are all similar in their structure. They first learn to encode image features using several
stacked convolutions in order to reduce the resolution of the featuremaps and therefore learn a
latent representation of the input. At the end, these features are fed to several dense layers which
finally output the class distribution.
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Figure 3.1: Number of occurrences for the search term “semantic segmentation deep learning” returned by
scholar. google. com for each year. The search excluded patents and citations.
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(a) FCN by Long et al. (2015). (Image source: Long et al.
(2015))

(b) A network proposed by Noh et al. (2015). (Image
source: Noh et al. (2015))

Figure 3.2: Schematic overview of two semantic segmentation networks

Nowadays in computer vision, semantic segmentation means the pixel-wise classification of an
image. Its origin can be seen in classification (assigning only one label to an image). The terms
origins from image segmentation, which is the general procedure of finding regions in images
that belong together (Haralick and Shapiro, 1985). Typical methods are thresholding, Watershed-
algorithm, Region Growing (Shih and Cheng, 2005), Graph-Cuts (Boykov and Funka-Lea, 2006)
or even spatial clustering like K-means or DBSCAN (Shen et al., 2016). Later approaches used
graphical models such as Markov- or Conditional-Random Fields (MRFs or CRFs). These methods
segment an image into regions and create hand-crafted features from the individual and neighbour-
ing image segments to predict a class for a given pixel or region (Xiao and Quan, 2009; Ladicky
et al., 2010; Farabet et al., 2012; Kumar and Singh, 2012; Lerma and Kosecka, 2014).

A milestone in the field of semantic segmentation was reached with the introduction of the first
fully convolutional neural network by Long et al. (2015) (Fig. 3.2a). It was introduced in 2015 after
which deep learning together with semantic segmentation became increasingly popular, see Fig. 3.1.
The basic idea of the Fully Convolutional Network (FCN) is that all its layers are convolutional.
Traditionally, in classification, at least the last layer that outputs a single class distribution vector
is fully connected, while FCN uses only convolutional layers to classify each pixel in the image.
In FCN, the fully connected layer was instead replaced with transposed convolutions to produce
a prediction with the same width and height of the input image. The authors had success in
converting networks such as AlexNet by Krizhevsky et al. (2012), VGG by Simonyan and Zisserman
(2015) or GoogLeNet by Szegedy et al. (2015) into FCNs by replacing their last layers by transposed
convolutions. However, they all had the problem that the upsampling of the last convolutional layers
seemed to be inaccurate. This happened because the spatial information was lost through multiple
downsampling layers. The authors solved this problem by adding links between the intermediate
and final layers to increase spatial accuracy, in other words, by transferring knowledge of “where”
a particular object is located in the image from an earlier stage of the network. After that, the
development of semantic neural segmentation networks became extremely popular, the field was
driven by many applications in a short period of time which are going to be explained in the
following.
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Figure 3.3: Schematic overview of the Deeplabv3+ architecture. Image source: Chen et al. (2018)

Often, the networks have common architectural structures, in particular each network can usually
be divided into an encoder part and a decoder part:

– The encoder, sometimes called the “backbone”, is the part that embeds the input into a
high-dimensional and low-resolution feature map. Like in FCN, these are often classification
networks such as AlexNet, VGG, GoogLeNet (Long et al., 2015; Noh et al., 2015).

– The task of the decoder is to map the high-level feature map from a lower resolution into
the higher resolution pixel space in such a way that it returns a pixel-wise class distribution.

The encoder-decoder structure is often abstracted by an hourglass shape as already seen in Figure
3.2b. The reasons for such a design are manifold. First, it is computationally more efficient to
progressively reduce the size of the feature map with each layer because it shortens the number
of operations to be performed. Second, by applying pooling layers or striding, the network gains a
higher receptive field and takes more context into account. Finally, the network tends to produce
higher-order abstractions of objects because it is forced to describe them in a high-dimensional
feature space but with lower resolution (Zeiler and Fergus, 2014). A rough analogy might be that
the layer at the end of the encoder describes the scene, rather than exact assignments of each
object to the pixels.

Recent semantic segmentation networks were often driven by newly discovered backends like
ResNet by He et al. (2016), Xception by Chollet (2017) and Mobilenet by Sandler et al. (2018).
A popular and widely adopted network is Deeplab in all its variants (Chen et al., 2018). Histor-
ically, the development of FCN and Deeplab can give an insight into the general direction other
researchers were heading, therefore, these networks are explained in more detail. A main compo-
nent of Deeplab is the dilated convolution, also referred to as atrous convolution. It was introduced
in the first version of Deeplab by Chen et al. (2017b). The atrous convolution can be thought of
as increasing the space between each convolutional kernel element. Mathematically it was already
defined in Equation 2.34 by the value di.

The first version of Deeplab contained several advancements over earlier FCN models. Like
FCN, the encoder is based on VGG and uses several max-pooling layers and striding to scale
down the resulting feature map. To improve performance, they removed the last two max-pooling
layers of the network and added dilated convolutions instead. The dilated convolutions increase
the receptive field of the network without increasing the computational cost. Bilinear interpolation
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Figure 3.4: Schematic overview of the connections in HRNet. Image source Sun et al. (2019).

obviously requires much less computational effort and does not need to be trained. Finally, to
improve the segmentation result, a fully connected Conditional Random Fields (CRF) layer was
used. This is a layer that contains a CRF to incorporate smoothing terms that removes outlier
predictions. This network later obtained an mIoU of 63.1 on Cityscapes dataset (Chen et al.,
2017b)

The second version of Deeplab introduced Atrous Spatial Pyramid Pooling (ASPP) (Chen
et al., 2017b). Since similar objects can appear in different sizes, the network should be invariant
to scaling. Instead of rescaling the image and feeding it into the network to implicitly train object
invariance, the authors created a network that has multiple parallel sub-branches that use atrous
convolutions, each with a different dilation rate to account for different object sizes. These branches
were later merged into a single feature map. This network achieved an mIoU of 70.4 on Cityscapes,
which corresponds to an improvement of ≈ 7% compared to Deeplabv1 (Chen et al., 2017b).

In the third version of Deeplab the authors mainly experimented with different ASPP modules
(Chen et al., 2017a). They took into account that with higher dilation rates the valid image region
becomes smaller (i.e. weights that are applied to non padded image regions). So instead of simply
applying the ASPP module at the end of the encoder, they added skip connections from earlier
layers to each output of the ASPP module branch. After that, the pyramid was fused in a way
similar to Deeplabv2 and the signal was passed through a final 1×1 convolution before it is finally
upsampled. The network achieved an mIoU of 81.3 on Cityscapes, which again is a considerable
improvement over the previous version.

The latest version, Deeplabv3+, extends the original network by replacing the ResNet backend
with a modified version of the Xception network and additionally increases the performance by
improving the object boundaries (Chen et al., 2018). This was done by implementing an encoder-
decoder structure instead of directly upsampling the class scores to the desired image size with
bilinear interpolation. For the decoder, the authors introduced a stepwise upsampling followed by
a skip-connection from an earlier layer of the same resolution, followed by two convolutions. The
idea of the skip connection is that it helps to recover the position of an object from an earlier
low-level layer. Often, this type of structure is referred to or compared with U-net by Ronneberger
et al. (2015). The network achieved an mIoU of 82.1 on Cityscapes.

The current state of the art in semantic segmentation on Cityscapes is HRNet (Sun et al., 2019).
Many researchers have realised that a pure encoder-decoder structure has its limits due to in-
accuracies in the last prediction layers because of the downsampling process in the encoder. To



3.2 Semantic Segmentation (3D) 39

overcome this problem, many models use skip connections between earlier layers of the encoder to
later layers of the decoder (Chen et al., 2018; Ronneberger et al., 2015). The authors of HRNet
argue that the interconnection between low and high level layers is a poor architectural choice,
as it only leads to rich low-resolution or poor high-resolution representations in the upsampling
process. Their proposed network (see Figure 3.4) does not follow an encoder-decoder structure, but
maintains the feature maps at the original image size from the beginning to the end of the network.
However, as it can be seen in Figure 3.4, the network implements downsampling and upsampling in
parallel with the high-resolution feature maps to produce high-level features at a lower resolution.
These lower-resolution feature maps are then upsampled in every other step and passed on to all
higher-resolution branches. This network achieved an mIoU of 84.5% in Cityscapes.

3.2 Semantic Segmentation (3D)

Contrary to the possible assumption that processing 3D spatial data is simply the extension of 2D
spatial data, it is actually more complicated. Hence, the 3D semantic segmentation is described
here separately. While 2D convolution has become a standard for image processing because images
are very dense, there is no obvious architectural choice for ANNs in 3D. There are many factors
to consider, such as efficiency, performance and the data structure provided. 3D convolutions may
be the first choice for processing 3D data, but they are probably the least efficient. Also, unlike
image-based processing, 3D data is often unstructured, can come in different representations and
varying densities. In this section some standard procedures are explained which will be used in the
further work. For a detailed overview of current 3D semantic segmentation networks, see the work
by (Zhang et al., 2019b).

Similar to 2D semantic segmentation, the origin lies in the segmentation of 3D point clouds with,
for example, edge-, region- ,model-, cluster- or graph-based methods (Nguyen and Le, 2013; Grilli
et al., 2017; Xie et al., 2020b). For semantic segmentation in 3D, many regular machine learning
methods have been proposed that are not based on deep learning, such as SVMs (Zhang et al.,
2013; Li et al., 2016; Mallet et al., 2008), Boosting (Wang et al., 2015; Lodha et al., 2007) or
Random Forests (Chehata et al., 2009). The general procedure for these machine learning based
methods was described by Weinmann et al. (2015), which consists of (i) neighbourhood selection,
(ii) feature extraction, (iii) feature selection and (iv) semantic segmentation. As Niemeyer et al.
(2014) argue, many of these models have not taken into account the context of each point and
processed them independently, leading to inhomogeneous results. Conditional random field-based
classifiers helped to overcome this problem by smoothing neighbouring predictions (Vosselman
et al., 2017; Niemeyer et al., 2014, 2012; Schmidt et al., 2012; Lim and Suter, 2009). In contrast,
deep learning based methods in 2D avoid this problem by using stacked convolutions in order
to increase their receptive field and take neighbouring pixels into account to make a prediction.
Araujo et al. (2019) showed that, depending on the backbone, the receptive field for the final
prediction layer can be as small as 195 × 195 pixels with AlexNetv2 up until 3039 × 3039 pixels
with InceptionResNetV2, which covers the entire input image. Deep learning based solutions for
3D semantic segmentations heavily depend on the choice of point cloud representation. In general,
they can be divided into methods that use grid-like structures, such as projection-, multi-view-
or voxel-based methods, and methods that work directly on the raw point cloud (Zhang et al.,
2019b). Next, each of these types is will be discussed individually.

Projection-Based Methods

Point clouds can be discretized into many different structures, which allows the application of
more classical approaches. For example, projection-based methods, also called multi-view-based
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Figure 3.5: Schematic overview of point net. Image Source (Qi et al., 2017a)

methods (Xie et al., 2020b), were used in early attempts to solve semantic segmentation in 3D by
applying 2D convolutional networks to projected 3D data. Wu et al. (2018) and Boulch et al. (2018)
projected a point cloud into 2.5D images using Equation 2.4 with a virtual camera. However, this
leads to occlusions, which have to be treated e.g. by ray tracing, which can be computationally
expensive. Additionally, the choice of intrinsic and extrinsic camera parameters will introduce
many new hyperparameters. As described by Wang et al. (2019), object detection in images can
be significantly worse in 3D because 2D kernels are not invariant to object size and depth. For
example, the same objects may appear in different sizes due to their distance to the camera center,
making distant objects smaller and more difficult to detect. Furthermore, due to the projection,
neighbouring pixels in 2D may not correspond to neighbours in 3D, which can lead to a wrong
context and introduce unnecessary or even wrong information.

In this work, scanstrips are used as a representation for point clouds. There are many works that
perform semantic segmentation specifically in scanstrips using 2D CNNs (Wu et al., 2018; Wang
et al., 2018b; Wu et al., 2019; Behley et al., 2019; Milioto et al., 2019; Qiu et al., 2019; Biasutti
et al., 2019b,a). Except for the work of Qiu et al. (2019), all the approaches use spherical projections
of the Velodyne HDL-64e LiDAR from the KITTI dataset by (Geiger et al., 2013), therefore, they
mainly differ in the network architecture and the selected features.

Voxel-Based Methods

Another possibility is the discretization of 3D data into a 3D grid, often called voxelization. This
representation is used in this work for shape completion of occluded surface points on objects.
Voxelization preserves the local relationship of points and is much easier to implement, because
2D architectures of neural networks only need to be extended by one dimension, which can be
achieved by expanding the sum in Equation 2.34 by a third dimension. However, the discretization
step leads to a loss of resolution and the convolution is very inefficient, because most of the volume
is typically empty, leading to both memory inefficiency and wasted computation. Popular voxel-
based networks are VoxNet by Maturana and Scherer (2015), SEGCloud by Tchapmi et al. (2017)
and PointGrid by Le and Duan (2018). Some methods like OctNet by Riegler et al. (2017a) tried to
avoid the problem by introducing tree-like structures. In OctNet the voxel size is adaptive, based
on the local density of the grid.
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Raw Point Clouds

The problem with point clouds is that, unlike grid structures, they are provided in no particular
order. The first ANN to perform classification and semantic segmentation on raw point clouds was
PointNet by Qi et al. (2017a). As shown in Figure 3.5, they encoded each point separately into
a higher order feature vector and reduced it to a global vector of fixed size using max pooling.
Max pooling is invariant to the order and length of the list of points, so it does not affect the
resulting fixed-size feature vector. The global vector can then be passed to a few dense layers that
output the class distribution. In the case of semantic segmentation, the global feature vector is
concatenated to each point in the latent space. Afterwards, the resulting list of points is transferred
to a few dense layers, which finally predict a point-wise class distribution. However, the problem
with PointNet is that it only has a receptive field of one before it is reduced by the maximum
pooling layer. Hence, local characteristics cannot be taken into account to classify a particular
point. To illustrate the problem, this is equivalent to asking for the class of a certain point, while
having only the information about the room size in which the point is located. For this reason,
PoinNet++ was developed by Qi et al. (2017c), which uses many local PointNets to create a
hierarchical structure, leading to a receptive field larger than one. This is done by grouping the
3D points into spheres. Each sphere is encoded into a local feature vector using PointNet with
max-pooling. This feature vector is then assigned to the points and passed to the next layer of
PointNet++, which then performs a query with larger spheres and so on. This method is used in
this work to create a feature representation of objects for shape completion.

A much more recent development is KPConv by Thomas et al. (2019). Here, the 3D points are
treated as discrete samples in a continuous convolution. They created a network that performs
the convolution directly in 3D space without discretizing the points into a grid-like structure. The
spatial relationship is taken into account by weighting each point by its distance from the kernel
center. In contrast to a grid, the kernel center is the central query point. The neighborhood of this
point is defined by all points within a spherical neighborhood of fixed size. The resulting feature
vector is then stored directly at this point. Successive KPConv layers can access the feature point
in the same way by querying surrounding feature points, resulting in a typical hierarchical neural
network structure. Until today, KPConv is the best performing method for most 3D benchmarks.

Other notable works for 3D semantic segmentation include PointCNN (Li et al., 2018b), SO-Net
(Li et al., 2018a) and RSNet (Huang et al., 2018). PointCNN emulates convolutional layers by
learning how to transform points in a local coordinate system to apply a traditional convolutional
operation directly to the points. To do this, they use an MLP that learns how to order the points
before applying the kernel. On the other hand, SO-Net uses self-organizing maps in order to learn
a permutation invariant representation of the point distribution. Finally, the authors of RSNet
developed a slice pooling layer that projects unordered point features into a regular order to which
an RNN is then applied. After that the point features are unpooled in order to assign them to each
point in 3D for further processing.

In general, all of these works are important for this thesis because they describe how 3D point
clouds can be segmented semantically and what types of representations are used, all of which
have different advantages and disadvantages. In particular, PointNet has shown how to deal with
unstructured data. This method is adapted in this work to deal with multi-view images, which in
this sense have similar characteristics.
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3.3 Semi-Supervised Learning

This subsection will introduce state-of-the-art semi-supervised learning methods that are related
to this thesis as well as topics which are only weakly related to semi-supervised learning but are
intersecting with this thesis. Semi-supervised learning describes a class of algorithms that learn
from a combination of unlabelled and labelled data. The unlabelled data is often obtained from
the same source as the labelled data. The reason for doing this is to increase model performance in
terms of precision and generalisation since often the amount of labelled data alone is not sufficient.
Semi-supervised learning can help as long as the distribution of unlabelled examples extends the
labelled information and does not mislead the model. To be more precise, according to Chapelle
et al. (2010) the following assumptions have to hold in order for semi-supervised learning to work:

– The Continuity Assumption also referred to as smoothness assumption describes that
if the input data x1,x2 are close to each other in a high density region, the corresponding
output y1,y2 should also be close to each other.

– The Cluster Assumption can be seen as an extension of the previous assumption. The
assumption holds if points that form a cluster also belong to the same class. In this case,
it is usually beneficial to use semi-supervised learning to help the model find the decision
boundary of each cluster more accurately.

– The Manifold Assumption as described by Chapelle et al., “the (high-dimensional) data
lie(s) (roughly) on a low-dimensional manifold” (Chapelle et al., 2010, p.6). The problem
described here relates to the curse of dimensionality. When high-dimensional data is generated
by a process with few degrees of freedom, it lies on a lower-dimensional manifold. If data
points on the same manifold have the same label, the class assignment of unlabelled points
can be made from labelled points on the same manifold

The taxonomy of semi-supervised learning describes many different types of approaches, which can
be divided into inductive and transductive methods (Van Engelen and Hoos, 2020). In inductive
methods, a classifier is trained to map from X to Y . In contrast, transductive methods do not
build a predictive model, here the entire dataset is used to simply derive labels for the given
unlabelled data. Closer to the topic of this thesis are inductive models called “wrapper methods”
and “unsupervised preprocessing” which are presented below.

Wrapper methods are “wrapped” around a supervised base classifier of any type in order to
utilize unlabelled data. According to (Chapelle et al., 2010, P. 3), one of the earliest semi-supervised
learning methods is self-training, which was proposed by Scudder (1965). The algorithm works by
first training a model on the supervised data. In the next iteration, the unlabelled data is annotated
by the model from the previous step. Next, the training is restarted on the entire dataset (true
labels and the own predictions). These steps are repeated until the best model is found. Due to the
nature of this algorithm, self-training has been applied to many different artificial neural networks
for classification (Xie et al., 2020a; Zoph et al., 2020) and very recently to semantic segmentation
(Zou et al., 2018; Zhu et al., 2020; Feng et al., 2020). Even though semantic segmentation using deep
neural networks is a relatively new topic, the basic principle of self-training stayed the same. For
example, Zhu et al. (2020) used self-training with Deeplabv3+ by first training a “teacher” network
on 5k finely annotated ground truth images from Cityscapes, and then training a “student” network
jointly on the ground truth and the teacher-generated pseudo-labels on another 20k unlabelled
Cityscapes images. A very similar approach was shown by Zoph et al. (2020) on different datasets
and by Xie et al. (2020a) for classification. Closely related to self-training is pseudo-labelling.
This approach was introduced by Lee et al. (2013) using neural networks. The algorithm differs
from self-training in the way that the network is not re-trained entirely in each iteration. Instead,
unlabelled data points are pseudo-labelled throughout the training process. Similar to self-training
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pseudo labelling has been used for classification (Wu and Prasad, 2017) and semantic segmentation
tasks (Zou et al., 2020; Yao et al., 2020; Chen et al., 2020b).

Unsupervised Preprocessing usually describes a two-step approach (Van Engelen and Hoos,
2020, p. 393). As the name “Unsupervised Preprocessing” suggests, the first step involves unsuper-
vised preprocessing followed by a semi-supervised or supervised learning step (Van Engelen and
Hoos, 2020, p. 393). There are some different types of preprocessing, such as clustering, but the ones
closest to the topic of this thesis are feature extraction and pretraining (Goodfellow et al., 2016,
p. 517 ff.), which are discussed below. A very prominent example is the autoencoder (Goodfellow
et al., 2016, p. 346f.). The autoencoder is a network that tries to minimize the distance between
its prediction and the input. To avoid trivial solutions, the autoencoder typically consists of an
encoder stage and a decoder stage, much like the semantic segmentation networks discussed earlier.
The centre of the network, often referred to as the “bottleneck”, has a much lower dimension than
the input and output, which forces the network to project the data onto a low-dimensional space
to find a latent representation of the data. It is worth noting that this idea is closely related to
the Manifold Assumption described earlier. Once the network is trained the encoder part can be
used to create a latent representation of any typical input data, which can be used in the second
training-step for supervised training using a much smaller neural network. It should be emphasized
that for these methods to succeed, the other two assumptions must also hold in order to map un-
labelled data from latent representations to the correct class label. Well-known autoencoders are
the denoising autoencoder by Vincent et al. (2008), contractive autoencoder by Rifai et al. (2011)
or generative models such as variational autoencoders by Kingma and Welling (2014).

Pretraining is related to feature extraction (Van Engelen and Hoos, 2020, p. 396) and transfer
learning and also domain adaptation (Goodfellow et al., 2016, p. 525). In (greedy layerwise) un-
supervised pretraining (Goodfellow et al., 2016, p. 519) a neural network is trained on its objective,
while gradually new layers are added and the others frozen (Goodfellow et al., 2016, p.314,p.520).
Historically, this has been done because some networks where to big or unstable to be trained end-
to-end, see Bengio et al. (2006) and (Goodfellow et al., 2016, p. 519). Another form of pretraining
that is more closely related to transfer learning (Goodfellow et al., 2016, p. 315) is when a network
is pretrained in a supervised manner on one dataset and later fine-tuned on similar dataset.

Transfer Learning and Domain Adaptation

Transfer learning and domain adaptation assumes that knowledge from one domain (source) can
be helpful in another domain (target) (Goodfellow et al., 2016, p. 526-527). In general, the goal is
to improve the classifier in the target domain by transferring knowledge from the source domain.
Like semi-supervised learning, it is also often done to reduce the cost of labelling. In transfer
learning, this can be achieved by transferring the weights of a network that has been fully trained
(pretrained) on the source dataset to the target dataset, where they are fine-tuned. Often the
target dataset is relatively small, so fine-tuning is done by freezing the first layers and adding a
regularization loss to avoid overfitting. The initial weights serve as a starting point to find a better
global optimum than with a randomly initialised network. As Yosinski et al. (2014) have shown,
the first layer often extracts features such as edges, corners or shapes that occur in many different
image domains, thus laying the foundation for transfer learning. It should be noted that the target
domain does not necessarily have to have the same classes as the source domain. Also, transfer
learning is not limited to semi-supervised learning, as it can also be helpful if the target dataset is
fully annotated. Extreme cases of transfer-learning are one-shot and zero-shot learning where
only one or no examples in the target domain are available for fine-tuning (Goodfellow et al.,
2016, p. 529). Nowadays, transfer learning is ubiquitous. As already described in Section 3.1,
most semantic segmentation networks use interchangeable backends that have almost always been
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pretrained on a classification dataset such as ImageNet (Krizhevsky et al., 2012). Other notable
publications are Huang et al. (2013); Long et al. (2016); Luo et al. (2017); Zhu et al. (2016); George
et al. (2017); Chang et al. (2018).

Domain adaptation is a special case of transfer learning. It is done when the classes of the
target and source domains as well as the sensor type coincide, but the input domain is different
(Goodfellow et al., 2016, p. 527). In this case, the goal is to adapt the feature detectors to the target
domain as such, so that the network predicts the correct classes in the new domain." Depending on
whether there are annotations in the target domain, it is referred to as supervised or unsupervised
Domain Adaptation (Wang and Deng, 2018, p.3). Many existing deep learning methods aim to
solve this problem by training a discriminator that learns to differentiate between the extracted
features of the source and target domains. The classifier, on the other hand, learns to fool the
discriminator and hence closes the domain gap (Tzeng et al., 2017; Hoffman et al., 2018; Cao
et al., 2018).

Transfer learning is an important part of this work. In this thesis, a network will be trained on
only few labels to semantically segment 3D point clouds. With transfer learning, a network would
be pretrained on 3D point clouds and then finetuned on the target dataset. However, unlike for
2D images, there are only few pretrained networks available for 3D point clouds. Therefore, it is
shown that it is possible to transfer features generated by a pretrained network on 2D images
to 3D point clouds to achieve better results in 3D semantic segmentation than using supervised
training directly. Domain adaptation also plays an important role in this process, as the pretrained
network may suffer from a domain gap that needs to be addressed.

Self-Supervised Learning

The term self-supervised learning describes a class of algorithms that generate a supervisory signal
from the data itself. Self-supervision is very close to semi-supervised learning but should not be
confused with self-training, which almost always solves a task labelled by a pretrained teacher.
In self-supervision, the reference is generated automatically, rather than by a teacher which was
trained on a reference dataset. Often self-supervision is divided into two steps (Jing and Tian,
2019). First, a base learner must solve a pretext task, which, as the name suggests, serves as an
auxiliary problem for representation learning to help solve the actual task in the second step. The
second step is called the downstream task, where the model from the pretext is trained to solve
the actual problem. According to Jing and Tian (2019), the downstream task often uses annotated
data. However in some cases the downstream task can be done without using any annotations. For
example, Sermanet et al. (2018) trained a robot to imitate videos without any direct supervision.
Here, the pretext task was to create representations of video frames by predicting the next frame
using a triplet loss (Chechik et al., 2010). The downstream task was to learn a policy using
reinforcement learning that attempted to create similar representations by having a robot imitate
the poses similar to the video. Another example for self-supervision by Vondrick et al. (2018) shows
how to track objects in videos (downstream task) by learning how to correctly copy color from one
frame into the following grayscale frame (pretext task). Image colorization can be trained in an
unsupervised way by removing the color information and training a model to predict color from
grayscale images. This is very similar to inpainting images, where parts of the image are removed
so that a neural network must learn to complete the missing part of the image (Yeh et al., 2017; Yu
et al., 2018; Demir and Ünal, 2018). Something related was done by Noroozi and Favaro (2016) by
training a network to solve puzzles from images to learn representations of the images. Similarly,
Doersch et al. (2015a) trained a neural network to predict the relative position between two random
patches from one image. Numerous other pretext tasks have been used in computer vision. Some of
them try to learn representations based on the distortion of the images (Dosovitskiy et al., 2015),
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or rotating images (Doersch et al., 2015b). Both created surrogate classes by distorting images and
trained a neural network to classify the real images within the distorted images.

In this work, self-supervision is used to complete 3D shapes. The goal is to predict a complete
shape from an incomplete input. The supervision signal for training the network is automatically
generated from areas of the object with high point density. The difficulty to overcome here is that
often complete shapes are not available, so the task is solved completely unsupervised.

3.4 Conditional Generative Adversarial Networks

The Conditional Generative Adversarial Network (CGAN) is a special type of GAN that learns to
produce an output based on a given input (condition) (Mirza and Osindero, 2014). In a normal
GAN, the generator learns a mapping from a distribution z to a distribution y, i.e., y = G(z).
In the conditional version, a condition x is introduced to the generator as such y = G(x,z). The
discriminator is trained in almost the same way as a GAN, but takes into account tuples of the
condition and the target distribution D(x,y). Because of this property, a CGAN can be viewed as
a supervised version of a GAN, since it is often (but not always) necessary to use fixed pairs of
input and output samples. As shown in the Auxiliary Classifier GAN (ACGAN) by Odena et al.
(2017), this can be improved by providing the discriminator with additional class labels that force
the generator to respond appropriately to the condition and not to ignore it.

Of particular interest for this thesis are the networks pix2pix by Isola et al. (2017) and the improved
version pix2pixhd by Wang et al. (2018a), which is able to predict high-resolution image-to-image
mappings. This means that these networks can learn to map between (paired) images, for example,
to predict realistic-looking images based only on labelled images or satellite images based on maps.
Similar to semantic segmentation, the generator networks follows the general encoder-decoder
architecture such as the U-net (Isola et al., 2017) or using residual connections (Wang et al., 2018a).
However, due to the discriminator network, the generator can learn to produce very realistic looking
images.

Multimodal Image-to-Image Translation defines the process of mapping from one input to
many outcomes. For example, Zhu et al. (2017) uses an additional latent space vector as input
to the generator, which helps to encode the possible distribution of results for an input image.
During test time, they can change the latent vector to produce different looking results for the
same input image. On the other hand, Wang et al. (2018a) used semantic and instance labels to
train an encoder for each object instance in images. The encodings were passed to the generator
during training. By exchanging the encodings during inference, they were able to manipulate the
appearance of each object in the generated images. Multimodal image-to-image translation is also
used in this work. Here, a network that has a similar structure to pix2pixhd is trained to map
point clouds to realistic looking images. It is shown that it is possible to control the appearance
of the synthetic images and thus map a point cloud to multiple possible outcomes.

3.5 Multi-View Fusion, Prediction and Labeling

Another central topic of this work is multi-view label transfer and semantic segmentation. The
term multi-view describes the observation of objects or a scene in multiple views, i.e. from different
camera positions. A well-known example from photogrammetry is 3D reconstruction from multiple
images using structure from motion or a calibrated stereo camera. Apart from that, multi-view
data has a very wide field of application and there are many publications and approaches to solve
different problems. For example, in machine learning, multiple observations are used to improve
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the prediction quality for classification (Su et al., 2015), semantic segmentation (Xiao and Quan,
2009), or object recognition (Nassar et al., 2019).

This work is related most closely to semantic segmentation and classification in multiple views with
CNNs. Several approaches have already been presented to tackle classification in multiple views.
They mostly differ in the strategy of how the information is fused between the multiple views.
Seeland and Mäder (2021) showed a comprehensive overview of feature fusion and presented three
general strategies. They categorized the fusion methods into early-, late-, and score-fusion. In
early fusion, feature maps from multiple views are stacked and passed to a common network. Late
fusion, on the other hand, has multiple branches that are aggregated just before or in the final
classification layer. Finally, score fusion uses voting on all individual predictions from multiple
views. They are aggregated by summing the softmax predictions to produce the final vote. In
general, most works fuse multiple views using functions such as the maximum of the features (Su
et al., 2015), the weighted sum (Feng et al., 2018), the sum (Dolata et al., 2017), the product (Do
et al., 2017), an RNN (Lee et al., 2018), a learned transformation (Wang et al., 2015) or feature
concatenation (Lin and Kumar, 2018; Setio et al., 2016; Barbosa et al., 2020; Geras et al., 2017).

In addition to classification, some approaches have been proposed in the past that use multi-
view consistency to improve predictions in general. For example, Floros and Leibe (2012) used a
Conditional Random Field (CRF) to enforce temporal consistency between video frames to perform
semantic segmentation. Another CRF-based method was proposed by Hermans et al. (2014). They
reconstructed a point cloud using sequences of classified RGB-D images and refined the predictions
using a CRF. For consistency across multiple views, Ma et al. (2017) presented a deep learning
based approach to make predictions consistent across multiple views. To do this, they warped
the feature maps of multi-view RGB-D images into a common reference frame. To improve the
predictions in an unsupervised manner, Zhou et al. (2018) forced 3D keypoint predictions to be
consistent in space. Finally, a recurrent neural network-based approach for 3D mesh segmentation
was presented by Le et al. (2017).

Label transfer describes the transfer of labels from one domain to another using a mapping
function, such as a the camera matrix that can map 3D point labels to 2D images. Three methods
are close to the topic of this work. First, Xie et al. (2016) uses annotated point clouds to transfer
labels from 3D to 2D. As it is relatively easy to capture new images in the same reference frame
as the annotated point cloud, for example using a mobile mapping system, they can generate an
arbitrary number of annotated images. The reverse direction of label transfer was performed by
Zhang et al. (2018) and Peters and Brenner (2019). They used semantically segmented 2D images
and projected them into point clouds. However, Zhang et al. (2018) did this specifically for static
scenes using a terrestrial laser scanner, due to the problem of dynamic occlusions. This means
that errors in the label transfer due to moving objects is not considered in the work by Zhang
et al. (2018). Peters and Brenner (2019), on the other hand, tried to solve this type of problem
by introducing two features to detect false mappings of 2D pixels to 3D points. It was shown
that using these features can help to correct incorrect labels in 3D. This thesis extends the work
of Peters and Brenner (2019) by learning to transfer labels from images to 3D point clouds in a
end-to-end fashion, resulting in far fewer errors and much better semantically segmented point
clouds.

In this thesis, several network architectures are built using 2D multi-view image observations in
combination with a PointNet-like architecture to estimate a consistent class label between all
corresponding multi-view image patches. As Peters et al. (2020) have shown, it is possible to re-
train or fine-tune segmentation networks using the multi-view predictions, see Fig. 3.6. In this
Figure each row shows an example from their work. The second column shows that HRNets initial
predictions are very poor for some classes. The third column shows that it was possible to recover
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RGB (input) HRNet HRNet (fine-tuned) GT

Figure 3.6: Examples for successfully corrected predictions after retraining of HRNet as presented by Peters
et al. (2020). The figure shows, from left to right, the input image, the uncorrected prediction, the corrected
prediction, and the manually labelled ground truth.

the lost classes by fine-tuning the network. Fine-tuning was done by first correcting the initial
predictions of HRNet with a multi-view network and then retrain HRNet using the corrected
predictions.

The assignments for the multi-view images were made by projecting a 3D point onto all associated
images. This creates a list of the corresponding image pixels. It was then assumed that all associated
2D pixels belong to the same object. The multi-view network was trained to predict a single class
based on the pixels of the multi-view images. The problem is that related pixels very rarely belong
to the same class. For example, moving objects, occlusions, or calibration errors can cause the
wrong pixels to be assigned to a 3D point. In this work, this problem is addressed by introducing
a multi-view network that receives a list of multi-view image pixels and outputs a prediction for
each multi-view observation instead of a single prediction for all of them. This leads to better
predictions on multi-view images and eventually to better results when a network is re-trained
using the corrected predictions.

3.6 Shape Completion

3D shape completion describes the completion of 3D objects that have only been partially observed.
It is a long-standing topic in computer vision and computer graphics (Pauly et al., 2005; Dai et al.,
2017). Classical approaches were often based on deforming a shape template to fit to the data
(Kraevoy and Sheffer, 2005) or fitting a generic deformable surface model (Fedkiw et al., 2001).
For regular, human made objects, many authors have also used symmetry to fill in missing parts
by finding ways to copy, extrude or mirror existing ones (Mitra et al., 2006; Podolak et al., 2006;
Pauly et al., 2008; Mitra et al., 2013; Sipiran et al., 2014; Sung et al., 2015).

Shape completion is also related to inpainting, which refers to completing partially observed images.
This can be achieved by for example pasting in a content that can be copied from the image
itself (Criminisi et al., 2004) or synthesised from a collection of training images (Yang et al., 2017).
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More recently, learning based approaches are favoured for shape completion. Many of them operate
in a fully supervised setting, assuming that paired training data with incomplete and complete
versions of the same shapes are available (Yuan et al., 2018; Firman et al., 2016; Han et al., 2017;
Rezende et al., 2016; Riegler et al., 2017b). Supervised learning has also been combined with
symmetry for the task of face Inpainting (Zhang et al., 2019a). While such strong supervision
simplifies the task from a machine learning point of view, a big effort is required to assemble a
sufficiently large training set. More importantly, it requires adapting the system to the specific
sensor characteristics and environment of the training data, which is difficult to translate to other
scenarios. Therefore, some works examine weakly supervised settings where only a small portion of
the data is labelled (Chen et al., 2019). For example, Stutz and Geiger (2018) trained a variational
auto-encoder (Kingma and Welling, 2014) for shape completion on synthetic 3D shapes in voxel
representation. To achieve shape completion on the target dataset, they then fine-tuned the encoder
using a small set of real 3D point cloud data extracted from KITTI. An issue with synthetic
training data is that it is difficult to simulate realistic scanning conditions, with, for example,
reflections and boundary effects. Another recent trend is to exploit unpaired input and output
shapes, which has been done by Lu and Dubbelman (2020) and Chen et al. (2020a). Other notable
approaches that were not explicitly designed for shape completion are (Yang et al., 2018) and
(Sharma et al., 2016), who created auto-encoders for 3D data. However, none of these works is
capable of completely unsupervised learning for shape completion, i.e., without ground truth, which
is addressed in Section 5.2 of this thesis.
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Figure 4.1: The diagram shows the general procedure of label transfer and correction process, described in
this chapter. (1) First the data is acquired using a fully calibrated MMS. (2) Secondly all matches between
3D points and 2D pixels are calculated by projecting the 3D points into the corresponding images. (3) These
images are pixelwise classified by a pretrained DCNN, where different colors indicate different predicted
classes and different shapes represent different object classes. Note the (magenta) cube in boxes 3 and 4
indicates a wrong assignment between pixel and 3D points. (4.I) By learning how to transfer the labels from
2D to 3D, the point cloud is correctly labelled. (4.II) By observing the predictions from several views in 2D,
it is learned how to correct the initial predictions.

The aim of this work is to minimise the annotation effort of 2D and 3D data by exploiting the
geometric correspondence in a fully calibrated mobile mapping system with IMU/GNSS, LiDAR
and cameras. Figure 4.1 shows the general procedure in four steps, which are explained in more
detail in this section.

In a fully calibrated MMS, both the extrinsic pose of each image and the intrinsic camera param-
eters are known. Furthermore, all camera poses and the point cloud coordinates are known in the
same global world coordinate system, see Figure 4.1 (box 1). This prerequisite makes it possible
to find the matching 2D image pixels for the 3D point cloud points, see Figure 4.1 (box 2). By
grouping all pixels for each 3D point, it is also possible to identify all images showing the same
3D point of an object, see Figure 4.1 (box 2). Here, the point cloud of a cylinder is shown, where
the red lines indicate the corresponding pixels in each image, showing all images of the cylinder.
However, due to various errors, such as wrong assignments due to occlusions or calibration errors,
this process may establish incorrect matches between 3D points and pixels in a 2D image, which
is represented by the image of the cube in Figure 4.1 (box 2).

The arrow between boxes 2 and 3 in Figure 4.1 shows the use of a pretrained DCNN that makes
a pixel-wise classification of all multi-view images, leading to box 3. This is the starting point for
the following methods and procedures in this chapter. The colors in box 3 indicate the classes
predicted by the DCNN. Here, the pixels of two cylinders were misclassified (blue) and two were

49
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classified correctly (green). This chapter addresses the following problems, which are indicated by
box 4 (I) and (II):

The first problem is (box 4.I): Is it possible to assign the correct labels to 3D point clouds
from multi-view images that contain various wrong assignments or wrong predictions?
Here, the geometric correspondence between LiDAR and camera can be used to transfer labels
classified by a pretrained DCNN into the 3D domain to annotate large amounts of 3D data (Peters
and Brenner, 2019). However, the direct mapping from 2D to 3D leads to incorrectly annotated
data in 3D (label noise). These errors are mainly due to calibration and classification errors,
incompatible label policy and occlusions. This chapter therefore addresses the reasons for these
errors, how they can be dealt with and how they are eventually corrected.

The second problem is (box 4.II): Is it possible to correct wrong classifications in 2D images
by viewing the same object multiple times from different perspectives? Here, the problem
is addressed that the pretrained DCNN performs worse on MMS images than on the publicly
available dataset on which it was trained (Peters et al., 2020). This is mainly due to different
camera models, different camera settings, new (unknown) viewpoints and a new environment.
This chapter shows that the correspondences between multi-view images (step 2) can also be used
to bridge the domain gap for the pretrained DCNN between the publicly available dataset and
the MMS images by forcing the 2D predictions of multiple views of the same objects to be more
consistent in 3D.

In both cases, the aim is to reduce the need for annotated data in 3D point clouds or 2D images by
introducing semi-supervised learning schemes that learn how to transfer information between both
domains. In Section 4.1, steps 1,2 and 3 are explained in detail as they are the same for method I
and II.

4.1 2D to 3D Label Transfer

Since all individual laser measurements and all captured images are time-stamped, the complete
geometry can be reconstructed using the IMU/GNSS data, so that each 3D point can be projected
into each image using the outer and inner orientation and lens distortion terms. As depicted
in Figure 4.1 (box 2) the general connection between a 2D pixel uk,vk in an Image Ik with k ∈
{1, . . . ,N} and a 3D point pj = (Xj ,Yj ,Zj) is established by projecting each 3D point j ∈ {1, . . . ,M}
into every image Ik by using Equation 2.4. This results in a one to many connection, which means
that one 3D point can be possibly projected into N images.

With the help of this mapping method it is possible to assign a list lj = {I1(u1,v1), . . . ,Ik(uk,vk)}
of 2D pixel coordinates to each 3D point pj . Note that the length of the list depends on the number
of available images and can vary from zero to N . Also, the list contains many incorrect mappings
that lead to errors in the label transfer process, such as regular, self- and dynamic occlusions,
label policy errors and calibration errors. In the following, the error causes are briefly presented.
The severity of the errors and their solution are examined in the experimental part.

4.1.1 Regular and Self-Occlusions

Since laser beams and the image beams do not coincide, occlusions are very common, resulting
in 3D points projected into images which are occluded by other objects. The assignment of RGB
values from images to 3D point clouds can be used to show this effect. Figure 4.2 shows two objects
that are colored incorrectly due to occlusion. The examples show a facade that is partly colored
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Figure 4.2: A point cloud with examples for regular and self-occlusions. The tree and car are once colored
using the nearest RGB value and once colored using ray tracing.

as tree and a car colors that leaks into the environment, which means that the street and sidewalk
are colored red.

To prevent this, a full ray tracing is used1 as described in 2.1.2.2. The results of the ray tracing
process is depicted in Figure 4.2 (boxes on the right). It shows that points on the facade were
correctly detected as being occluded so that no tree pixels were assigned to them. The same can be
seen in the example with the car, where neighbouring objects were successfully detected as occluded
so they received their color information from different views in which they were not occluded.

4.1.2 Dynamic Occlusions

(a) Point cloud colored by re-
flectance

(b) Point cloud colored by assigned
RGB value with ray tracing

(c) Point cloud colored by campaign
count ξ

Figure 4.3: A point cloud colored according to the point reflection (left), the RGB color (middle) and cam-
paign count ξ (right). Although the the color was assigned using ray tracing, the cyclist in the center of the
images is incorrectly colored.

Even if occlusions are detected using ray tracing, the mapping procedure only works for static
objects, as shown in the following example. Figure 4.3 shows three images of the same scene; the

1The ray tracing algorithm with occlusion culling was provided by Prof. Claus Brenner



52 4 Multi-View Label Transfer and Correction

left image 4.3a is colored by the point reflection and the middle image 4.3b is colored with the
corresponding RGB value from the image with the smallest distance between the 3D points and
the camera centre. The scene shows a cyclist in the centre of each image surrounded by three
parked cars. Because the cyclist was in motion when the laser scanner captured him, he appears
stretched in the direction of travel. Even more striking is that the assignment of the correct RGB
values for the cyclist has completely failed, as he does not appear in the corresponding camera
images. Therefore, the cyclist appears in Fig. 4.3b in the same color as the neighboring road and
the car. This example shows a severe error case where two scenes in both domains do not match.
So if the method does not color the point cloud well, it will also map an incorrect class prediction
onto the 3D point cloud, even if the class is predicted correctly in the 2D images. Therefore, the
points on the cyclist are likely to be labelled as road or car in 3D.

Figure 4.4: Aligned point clouds in which each color indicates a different mapping campaign. Image source
Schön et al. (2018)

To tackle this problem, a method introduced by Peters and Brenner (2019) is used to detect such
cases. A requirement for this method is that every scene is measured multiple times in different
mapping campaigns, see Fig 4.4. As described by Brenner (2016), the point clouds from different
dates can be aligned using a Hadoop computing cluster. It shows a scene colored by the capture
date r ∈ {1, . . . ,R}, where R is the number of all campaigns that are part of the dataset. Of course,
moving objects will not appear in the same place at different times. Therefore, the alignment can
give an indication of how static an object is, depending on how often it has been measured in the
same scene. However, at this stage of processing, there is no information about which 3D points
belong to the same object or class. The points from different epochs can be compared based on
their spatial relationship to each other. In this case, the entire aligned point cloud is voxelized to
group points from different mapping campaigns in space. Under the assumption that a voxel which
was occupied in all campaigns refers to a static object and a voxel occupied only once belongs to
a moving object, a feature can be generated to detect if a point is dynamic. Accordingly, the
campaign count ξ is defined as the number of mapping campaigns from which a point is assigned
to a voxel. This value is assigned to each point that is present in the corresponding voxel. After
normalization of ξ to [0,1] by the maximum number of mapping campaigns R a low value near
zero corresponds to very dynamic points and a high value near one corresponds to static objects.
Image 4.3c shows the campaign count ξ per 3D point for the according scene 4.3. In this image,
static points are colored bright red and dynamic points are gradually darker. On the one hand,
this feature helps to easily remove the (dynamic) cyclist that has received a ξ value near zero (dark
color). On the other hand, the parked cars are preserved in the background because they were hit
several times during different measurement campaigns.
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Figure 4.5: Schematic example of the point cloud annotation process. The labels on the point cloud are
assigned with majority vote.

4.1.3 Naive Label Transfer and Label Policy-Based Noise

Naive label transfer describes the annotation of a point cloud from a set of multi-view images
(Fig. 4.1 Box 4.I.) without using learning based methods to handle wrong assignments. In general,
as shown in the example in Fig. 4.5, each image Ik is semantically segmented by a pretrained
DCNN F (Ik) = ŷk, where ŷk is semantic segmented image. By projecting each 3D point pj into
each semantically segmented image ŷk, each point can be assigned to a list of classified pixels
l̂j = {ŷ1(u1,v1), . . . ,ŷk(uk,vk)},k ∈ {1, . . . ,Kj}. Because each 3D point pj can be projected into Kj

images, it is also possible that different labels are assigned to this point. To accumulate these labels
into a fixed sized vector, a histogram hj is defined. The number of bins for each histogram are the
classes that are predictable by the pretrained DCNN. When a class c = {1, . . . ,C} is observed, the
count inside the bin hj,c is increased by one. The resulting histogram may contain contradictory
information; for example, if a vehicle passes through the scene when the images were taken, the
histogram will contain non zero entries for car and road labels. To some degree, the ray tracer and
majority voting on the histogram will mitigate these types of error by choosing the class with the
greatest number of votes. However, this only applies if the errors belong to the minority classes.
Otherwise, they will introduce label noise, which describes the effect that 3D points will be assigned
a wrong class label. Another reason for such errors as those already mentioned is label noise due
to conflicting label policies

Figure 4.6: An example of label noise due to Cityscapes labeling policy. The left image shows a semantically
segmented MMS image. The right image shows a point cloud with classes assigned to the majority vote,
where the facade was incorrectly assigned to vegetation. Image source (Peters and Brenner, 2019).

The Cityscapes labeling policy states that areas in images that are visible behind tree canopies,
such as building facades, are assigned to the class vegetation. When projecting 3D points into the
images, points can appear in the image that are located behind the tree tops, assigning vegetation
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labels to the points on the facade. The example in Figure 4.6 shows how this effect results in
vegetation labels that are incorrectly assigned to the building behind them. However, since the
car drives through the scene and also captures multi-view images from other perspectives, the
histograms for these 3D points also collect class votes for building. Even if the majority decision
leads to the label vegetation, this creates a certain pattern in the histograms that can be used to
detect this type of error.

Figure 4.7: Histograms clustered with k-means clustering. Classes are randomly colored. The red points on
the building correspond to histograms containing vegetation and building labels. Image source (Peters and
Brenner, 2019).

The image in Fig. 4.7 shows the result of k-means clustering of histograms with k = 32 classes.
Each histogram was assigned to the nearest centroid and colored according to the cluster number.
The bright red points on the building show that it is possible to detect histograms with two or
more classes. This confirms that the histogram h can be used as a feature to find out whether the
majority decision is likely to be correct in order to remove or correct this type of error.

Conclusion

In this section, a framework for transferring labels from images to point clouds was presented. After
some origins of label noise were identified, new features were introduced to be used to correct or
remove incorrectly assigned labels at a later stage. The framework has the potential to generate
very large amounts of labelled point cloud data. This data can be used to train deep neural networks
to learn semantic segmentation of the point cloud or to detect objects in 3D.

4.2 Label Noise Correction

The previous sections described the general procedure for labelling 3D points and possible sources
for label noise. In addition, various methods were presented to detect or mitigate occlusion-related
problems in label transfer. This section presents the methods for correcting label noise in 3D. All
methods are learning based, i.e. the general procedure is to learn to correct or remove the wrong
class labels. For this purpose, small reference sets of human annotated data in 2D and 3D are
available.

4.2.1 Scanstrip-Based Noise Correction

In this scenario, 3D point clouds are represented as scanstrips, see Fig. 2.8a. One way to clean
the label noise after the transfer is to learn how to correct the assigned labels in a supervised
manner. In this case, a classifier F (x) → y must be trained to map from a scanstrip x to the
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correct label-map y. A process which is also called “correction” or “cleansing”. In the following all
methods will have the following features available for every 3D point:

– The histogram hj containing the accumulated labels after the transfer from the classified 2D
images. Please note that ray tracing will always be used to mitigate occlusions in the transfer
step.

– The campaign count ξj which gives an estimate of how dynamic the point is.

– The reflectance rj which was measured by the laser scanner. This value will be globally
normalized between zero and one.

– The measured distance δj by the laser scanner. This value will also be globally normalized
between zero and one.

– The estimated normal vector n⃗j .

Point-Wise Correction

In its simplest form label noise correction can be achieved by flattening each scanstrip and training
a simple machine learning model like Gradient-Boosted Decision Trees (GBDT) that treats every
point independently. This serves as a baseline for label noise correction, because the GBDT will
not take the context into account. It also can be trained well in a reasonable amount of time,
and is also relatively easy to tune. The results of the training will be discussed in Chapter 7.4.1.
The tree is trained with different combinations of the available features to assess the importance
and influence of each feature in the training result. This knowledge can then be applied to the
procedure in the next section. It also serves as a basis for the following methods to gain insight
into how great the benefits of deep learning based methods are.

CNN-Based Correction
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Figure 4.8: Scanstrip Network (SNet). The network follows a U-Net structure (Ronneberger et al., 2015)
with residual blocks. The kernel size is 3 × 3 in every convolutional layer. The dotted lines indicate the skip
connections between the layers. The size of the feature channel is B and the number of predicted classes is
C.

Unlike GBDT, the CNN-based correction will also contain the neighborings. The proposed network
in this section is called Scanstrip Network (SNet) because it is trained directly on the scanstrips,
similar to a traditional 2D CNN. SNet is based on the U-Net architecture by Ronneberger et al.
(2015) with a few modifications. The general idea of the proposed network architecture is that SNet
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should have lower model capacity in order to generalize well on only a few training examples2, and
that it should be very precise, since scanstrips have low resolution. The network receives as input xi

a cropped scanstrip image with size 64×64×B, where B is the number of features, see Figure 4.8.
To achieve high resolution, the network performs only two downsampling steps. The corresponding
output is a class map ŷi with a resolution of 64 × 64 ×C where C is the number of possible classes.
For higher input windows such as 128 × 128 or 256 × 256 no additional layer will be added but the
stride will be increased for layer 3 or for layers 3 and 4. By default, U-Net increases the number
of kernels incrementally, starting with 64 for the first layer, to extract low-level features at the
beginning of the input. Since here the input already contains high-level features, the number of
kernels in the encoder network is increased to 256 instead of 64 in U-Net. Also, each convolutional
block in U-Net is exchanged with a residual connection, as shown in Figure 4.8. This means that a
skip connection exists after each layer to deal with vanishing gradients and speed up training. Also,
the max-pooling layer of U-Net is replaced by strided downsampling at the end of each residual
block. The upsampling layers are reduced to contain only one transposed convolution, without any
additional convolution after it, so that the network has a smaller model complexity.

The ground truth yi is given by a manually annotated scanstrip with the same size as the input
64×64. The scanstrip network is trained by minimizing the cross-entropy H(yi,ŷi) (Equation 2.16).
Since not every pixel in the scanstrip is annotated, empty pixels will be removed from the loss
function. The loss function is minimized using the Adam optimizer by Kingma and Ba (2015).
As learning rate the the one by the authors of 0.001 is used. Additionally a dropout of 0.25 and
random image flipping is used. Due to the scanstrip properties, the input window can be upside
down when taken from the bottom half of the scanstrip, so it makes sense that the input is not
only randomly flipped from left to right, but also upside down.

4.2.2 Semi-Supervised Scanstrip-Based Noise Correction
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Figure 4.9: An image showing the Scanstrip network SNetSSL in the first training phase of the semi-
supervised learning approach. The input of the network are all features except the label histogram h. Here
the label histogram serves as ground truth. The classification head is later used in the second training phase
as seen in Fig. 4.10

The naive label transfer method, described in Section 4.1.3, is theoretically capable of annotating
an infinite amount of data with noisy labels. This property can be used to make the previous
method semi-supervised to increase the prediction quality and obtain better results. The general
training protocol is as follows: The training is done in two steps. First, the network in Figure
4.9 is trained using high volumes of noisy data that are automatically generated using naive label
transfer. Then the network will be adapted and fine-tuned on the small human annotated reference
set.

2SNet has only ≈ 4 million trainable parameters vs. for example a similar U-Net has ≈ 31 million
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The first step consists of training the network on the entire dataset using the following loss
function:

LSSL,1 = H(SNetSSL,1(ξ,r,δ,n⃗; θ1), arg max(h)) (4.1)

Here SNetSSL,1(ξ,r,δ,n⃗) is the network shown in Figure 4.9 with trainable parameters θ1. The
input for the network is a cropped scanstrip, the input of the network ξ,r,δ,n⃗ describes the used
features in the scanstrip. Accordingly, arg max(h) describes a scanstrip with majority voting. The
idea is that the network should learn features from all available data except from the histogram by
minimizing the cross entropy H(p,q) between the prediction and the noisy labels. The noisy labels
are given by the arg max(h) of the histogram h. Even if the labels are not correct, the task the
network has to solve is identical to the actual one, namely to perform the semantic segmentation.

In the previous section, the network had access to the histogram as an input feature. Here, this is
not possible because it would lead to a trivial solution, as the network would only need to create a
peak where the histogram is at its highest value. This would prevent the network from learning any
features. This is why h is removed from the input, as shown in Equation 4.1, to force the network
to learn feature extractors for campaign count ξ, reflection r, and normal vector n⃗. The overall
network architecture for this approach is shown in Figure 4.9. It shows that the architecture of the
network in Figure 4.8 has been changed to accommodate the new circumstances. As the network
has no access to the histogram and only to low-level data, the network is deeper and has more
downsampling and upsampling layers. In addition, the number of kernels per layer is gradually
increased from 32 to 512, as is the case in most networks such as the U-net. Also, an additional
layer has been added between the residual skip connections to make the network even deeper.
Finally, a classification head was added containing three convolutional layers. This part will be
used in the second step to obtain rich high resolution features for the final classification.
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Figure 4.10: In the second phase of the semi-supervised approach, all layers except the last three (dark green
and light red) are frozen. The input of the last layers are the scanstrip containing only the histograms and
the extracted features of the last four layers of the network from step one. All inputs are concatenated as
shown in the figure and then passed to three successive convolutional layers, each of which has kernels of
size 1 × 1

The second step is to fine-tune the network using the human-annotated reference set. The
difference to the procedure in the previous section is that the network SNetSSL,1 has already
learned feature extractors from the entire dataset, not just the training set. Fine-tuning is done
by “freezing” all weights θ1 and adding three new layers along with the histogram h as shown in
Figure 4.10. The network in the second step SNetSSL,2 will use the classification head along with
the histogram to learn how to obtain correct predictions. Let Ω(F,l) be a function that returns the
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feature map of layer l ∈ {1, . . . ,n} of a network F with n layers. Let ω,ψ,χ and ϕ be the feature
maps of the last four layers of SNetSSL,1 as follows:

ω = Ω(SNetSSL,1(ξ,r,δ,n⃗),n)
ψ = Ω(SNetSSL,1(ξ,r,δ,n⃗),n− 1)
χ = Ω(SNetSSL,1(ξ,r,δ,n⃗),n− 2)
ϕ = Ω(SNetSSL,1(ξ,r,δ,n⃗),n− 3)

(4.2)

As the histogram h may still contain valuable information, it is concatenated with the feature maps
ω,ψ,χ and ϕ. The concatenation is indicated by the symbol ⊕. This is then fed to three successive
convolutional layers SNetSSL,2 with the third output representing the final label distribution, s.
Fig. 4.10. The full equation for the new output ŷSSL is as follows:

ŷSSL = SNetSSL,2(h⊕ ω ⊕ ψ ⊕ χ⊕ ϕ; θ2), (4.3)

Where θ2 are the trainable weights of SNetSSL,2. In this step, only the parameters θ2 are optimized,
while θ1 remains untouched. The following equation is used for this training step:

LSSL,2 = L(y,ŷSSL) + αLℓ2 (4.4)

This loss computes the cross entropy between the prediction of SNetSSL,2 and the human annotated
ground truth label y. In addition, a regularization term Lℓ2 is added to prevent overfitting. The
regularization term, sometimes referred to weight decay, is given by the following equation:

Lℓ2 =
m∑

j=1
||wj ||2, (4.5)

whereby wj is one of the trainable weights in j ∈ 1, . . . ,m of SNetSSL,2 and α is a scalar which is
set to a fixed value of 0.00025. The updates are applied in both steps using Adam optimizer with
the suggested standard hyperparameters.

4.2.3 Conclusion

In this section, a method for (naive) label transfer was presented. Furthermore, several causes for
label noise were shown when pixels are naively assigned to a 3D point based on projection only.
Possible reasons for a misclassified 3D point can be classification errors, an inaccurate labeling
policy, regular or self-occlusions, and dynamic occlusions. To avoid simple occlusions, a filter based
on ray tracing was introduced. Furthermore, features were shown that could potentially detect
labeling policy problems and dynamic occlusions.

Furthermore, three learning based methods were shown that could be used to solve these problems.
The first method is GBDT, which treats each point independently. It is mainly used as a baseline
and to show which features are important. The next methods are fully convolutional neural net-
works that receive scanstrips as input. Both networks are roughly based on the U-net architecture,
but are highly customized to the problem at hand. The first network specializes in using features
in the form of class histograms in the scanstrip and has low model complexity. The method shown
at the end is an extension of the first network. It is designed to use large amounts of automatically
generated data to learn their representation and only small amounts of annotated data to learn
the correct classes.
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4.3 Multi-View Outlier Correction and Label Transfer

Looking at the previous approaches for classification of 3D data under label noise, they all deal
with label noise only implicitly by correcting it after the predictions in the histograms have been
aggregated. An early cause of label noise is incorrect classifications by the pretrained DCNN, see
Fig. 4.1, box 2 to 3. The general problem is that a DCNN tends to overfit to the training data.
For example, state-of-the-art networks can achieve up to 84.5% Intersection over Union (IoU) on
the test set of the Cityscapes dataset (Sun et al., 2019). However, as Recht et al. (2018) and Recht
et al. (2019) found, these benchmarks can result in highly specialized networks that even overfit to
the test data. They measured a performance drop between 4% and 10% when testing pretrained
networks on samples that were not present in the test set but were collected from the same domain
or source. It is likely that this effect is even stronger when the DCNN is confronted with unknown
data from a new domain. This case is sometimes referred to as domain gap, which describes the
performance gap between the original test set and a new dataset. The straightforward solution of
closing this gap by annotating a sufficient number of samples from the new domain is often too
costly, especially when the annotation process involves pixel-by-pixel classification of thousands of
images.

Peters et al. (2020) have shown that using multiple 2D images of the same object but from different
views (multi-view) can be used to correct wrong predictions by learning to assign a consistent class
to all observations. To do this, they used the procedure already presented in Section 4.1, to map
a 3D point to images and find a list of corresponding pixel predictions in images that relate to
that point in 3D. Their network architecture uses this list, along with other 2D and 3D features,
to learn how to assign a consistent class to all these 2D image pixels. The problem they faced
was mainly how to deal with this type of data structure, since the input is (1) unordered and of
arbitrary length, and (2) uses 2D and 3D features simultaneously. After training their network,
they were able to use the predictions of it as pseudo-labels to fine-tune the DCNN and close
the domain gap. Although they were able to show that the fine-tuned DCNN performed better,
their method mainly ignored (dynamic) occlusions and calibration errors because they assumed
that all 2D pixels actually belong to the same object. In the following section, the Multi-View
Network is proposed that can overcome this problem by accessing the same input data but making
independent predictions for each pixel, thus accounting for occlusions and calibration errors.

4.3.1 Multi-View Network

Multi-View Networks (MVNets) are able to learn how to correct semantically segmented 2D im-
ages by having access to multiple views. The use of multiple views has two major advantages: First
multi-view analysis increases the amount of training data and helps model general-
ization. Training a network using only very few ground truth images, may not be sufficient for
the classifier to generalize well. However, by linking pixels from the reference set to pixels from
other images within multiple views of the same point, the amount of data can be greatly increased,
which can reduce model variance. Thus, whenever the Multi-View Network makes a prediction for
a single 2D image pixel in the reference set, it simultaneously has access to all views of the same
patch from different angles, heights and distances. This, together with the network design, creates
a synergy because all the trainable parameters are shared in the Multi-View Network so that the
network is also trained on the unannotated multi-view image data and eventually generalises bet-
ter. Secondly the network can learn to propagate predictions through space. A classic
DCNN like Deeplab or HRNet only has access to one image at a time. The Multi-View Network,
on the other hand, can learn to transfer correct predictions from one image to another by using
self-attention. As shown by Peters et al. (2020) a simple majority decision over multiple views
can already impact the IoU of certain types of objects. With self-attention, the MVNet is able to
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Figure 4.11: Procedure for creating an input list for one 3D point. The input data are multi-view images
(Box 1). Different colors in Box 2 indicating different classes per pixel. In Box 3 one 3D point pj is mapped
to all images creating nj correspondences (corr). The resulting list zj for the 3D point pj with length nj

is the input of MVNet. The length of the list corresponds to the number of multi-view images. Each entry
contains the pixel wise prediction d̂n,j for each of the n images, as well as 2D image features and RGB
image patches cropped around each corresponding image pixel.

relate all predictions for a point and can make independent predictions for each image, resulting
in a higher IoU.

4.3.1.1 Problem Definition and Data Structure

For one 3D point pj in j ∈ {1, . . . ,J} one can assign a list of predicted class distributions d̂j from nj

corresponding semantically segmented multi-view images. The list d̂j is aggregated by projecting
a 3D point pj into nj images and combining the predicted class distributions at all back-projected
pixel locations. Therefore d̂j has a size of nj × C where C is the number of predictable classes.
The general problem statement is: Under the assumption that d̂j contains label noise, what is the
actual list of classes yj? Where yj has length nj . Because all entries in d̂j belong to the point pj ,
probably some entries will correspond to the same object. However, some of the predictions may
be wrong due to the domain gap or mismatched due to occlusions or calibration errors. For this a
classifier will be introduced that is able to learn to map from d̂j along with other features to the
actual classes yj .

Figure 4.11 shows how an input sample for the classifier is aggregated. Basically, it is a more
detailed version of Figure 4.1, boxes 1, 2 and 3. It shows that each 3D point pj is possibly mapped
to nj pixels Ik(uk,vk), where k ∈ {1, . . . ,nj} and uk,vk are the pixel coordinates. For each of these
pixels, a pretrained DCNN will predict a class distribution resulting in list d̂j . As shown in Figure
4.11 (Box 4.), the resulting list zj contains, per entry, a predicted class distribution, some other
features gj with size nj × G corresponding to the pixel coordinate, and an RGB image patch of
size s × s containing direct adjacent neighbours centrally cropped around each looked up image
pixel Ik(uk,vk).

Network Architecture

While most classification problems require a fixed input size and data which are ordered in some
way, the generated list zj is of variable length and in no particular order. Even worse, the data
contains no obvious spatial relationship that can be exploited with convolutional layers. The naive
solution to this problem was shown in 4.2.1. Here, the predictions were accumulated in a histogram
of fixed size. Another solution would be to reduce the input list zj to a fixed size by passing it to a
reduction function. If zj has a size of nj ×Z, where nj is the list length and Z is the feature length,
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Figure 4.12: The proposed network architecture for learning to predict a corrected list of labels with C classes
for a list of multi-view observations zj. The weights of the dense layers (yellow and green blocks) are shared.
However, they are applied to each list entry separately. The same is true for the ResNet networks (Blue
triangles), they are applied to each image patch individually, but all their weights are shared. The joint
output of all ResNet networks is an nj × 1 × 1 × 128 tensor with 1 × 1 × 128 per image, which is then
reshaped to nj × 128. All dense layers in the network use batch normalization and ReLU as activation.

then it would be reduced to a fixed size vector 1 × Z. A function for this purpose could be, in
the case of class distributions, the sum over all distributions. This would create a fixed-size vector
favoring the class with the largest peaks in all predictions, which is very similar to a majority vote
in the aggregated histograms in Section 4.2.1. The network presented by Peters et al. (2020) solved
the input problem similarly to PointNet (Qi et al., 2017b). The network first embedded each list
entry of zj in a high-dimensional latent space and then used a symmetric function along the first
axis to reduce the encoded input to a fixed-size feature vector. This could then be fed into multiple
dense layers to predict one final class distribution for all related multi-view image pixels. However,
as described earlier, this would mean that the input list could not contain any mismatched pixels,
because the predicted class distribution would also be assigned to those as well. Peters et al. (2020)
avoided this problem partially by not correcting classes that belong to moving objects, which are
very likely to include dynamic occlusions.

Another (naive) solution to correct the list d̂j would be to ignore the fact that all entries are
related and make an independent prediction for each entry. Because a network would only make
predictions based on individual viewpoints, the corresponding network will be called Single-View
Network (SVNet) in the following. To take advantage of the information that all predictions are
related, the solution presented here is based on a slightly different approach. Instead of making
independent predictions or reducing the input list to a fixed-size feature vector, here all features
are related using self-attention, see Fig. 4.12. This allows the following dense layer to consider all
multi-view observations together but still provide an individual prediction for each observation.
The multi-view observations of the input list zj are combined as shown in Fig. 4.12. The pixel-wise
predictions d̂j and 2D point features gj are fed into nj dense layers with 128 filters (yellow blocks)
that share their weights and process each entry individually. The corresponding image patches
are fed to nj ResNets (blue triangles), which also share their weights and process each patch
individually. The network structure for the ResNets is shown in Figure 4.13. Depending on the size
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Figure 4.13: The ResNet block from Figure 4.12. This subnet repeatedly uses residual blocks with a striding
of two until the input image patch is encoded in a feature vector of size 1 × 1 × 128. The residual blocks are
described in the right part of the image, where BN stands for batch normalization.

of the image patch, each ResNet repeatedly uses residual blocks until the final feature output size
is 1×1×128 for an image. Using all ResNets, this creates a feature vector of nj ×1×1×128, which
can be reshaped to nj × 128 (blue rectangle). Both blocks now contain separately encoded feature
vectors, one for each view. These vectors are concatenated into a tensor of size nj × 256 and fed to
the self-attention module. The self-attention module has a key and value size of k = 64 and v = 64,
see Equation 2.39. The output of the self-attention module now contains features that are related
to each other, meaning that a single observation can influence the outcome of another observation.
This list is then passed to two successive dense layers to output the final class distribution.

The training of the Multi-View Network MVNet(zj) can be done end-to-end using cross entropy:

Lj = H(MVNet(zj),yj), (4.6)

Where for each input list zj a list of ground truth labels yj exits. The labels can be created by
annotating real images and looking up the annotations at the same pixel coordinates pointed to
by each entry in the input list. The training hyperparameters are introduced in the experimental
chapter.

4.3.1.2 Fine-tune a DCNN Using Pseudo-Labels by MVNet

The problem with MVNet is that it can do only predictions for points associated with 3D points.
To fix this problem the predictions generated by MVNet can be used as pseudo-labels for fine-
tuning a pretrained DCNN on the MMS images. Later experiments will show that this method
gives better results than fine-tuning the DCNN directly on the labels on which the MVNet was
trained. The procedure is carried out in the following steps:

– Step 1 : The pretrained DCNN makes an initial prediction for all images.

– Step 2: The images and semantically segmented images are matched with a 3D point cloud
to create the multi-view data structure, as explained in Figure 4.11.

– Step 3: The MVNet is trained as described in the previous section using the input features
zj and corresponding labels yj .

– Step 4: The MVNet corrects all initial predictions associated with a 3D point. Note that due
to sparsity of the point cloud, only image pixels associated with a 3D point are corrected.
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– Step 5: The pretrained DCNN from Step 1 is fined-tuned on the corrected pseudo labels by
MVNet for static classes. For dynamic classes the original predictions will be used as pseudo
labels, because 2D to 3D point mappings suffer from dynamic occlusions.

This procedure is very similar to the one described by Peters et al. (2020). They created the
pseudo-labels by replacing all initial predictions that do not belong to a dynamic class with the
new corrected class prediction. The strategy here is adapted because MVNet(zj) estimates a list
of class distributions and not not only a single class for the whole input list. The new pseudo label
will be therefore crafted in the following way:

ŷj(k) =

d̂j(k) if arg max(d̂j)(k) ∈ dynamic
MVNet(zj(k)) otherwise.

(4.7)

Note that the notation is adopted from Section 4.3.1.1. Where ŷj(k) describes the k-th entry with
k ∈ {1, . . . ,nj} of the j-th input list. Furthermore d̂j(k) denotes the predicted class distribution of
the pretrained DCNN and MVNet(zj(k)) the predicted class distribution by MVNet for the same
entry as ŷj(k).

The procedure will be used and tested in Section 7.5.7 and 8.1.4.

4.3.2 Label Transfer Network
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Figure 4.14: A schematic overview of the Label Transfer Network (LTNet). The upper part of the network
corresponds to the MVNet shown in Figure 4.12 up to the penultimate layer. The difference here is that
MVNet receives also a list of 3D point features vj. The extracted features of the MVNet are reduced to a
fixed-size vector using average pooling. The lower part of the network is the same as in the semi-supervised
scanstrip network (SNetSSL), Figure 4.10. SNetSSL is pretrained and the weights are frozen during the
training of LTNet. The feature of the penultimate layer of the SNetSSL corresponding to the 3D point pj is
appended to the reduced multi-view feature vector. Both features are then used in conjunction to predict the
final class for pj

The Label Transfer Network (LTNet) is a combination of all previous networks mentioned in this
chapter. It is used to solve the problem defined in Figure 4.1. Box 4 I. It learns how to assign a
class to a 3D point given a list of observations from multiple views and a local 3D point cloud.
LTNet learns how to transfer labels given the multi-view observation using MVNet and the local
3D scanstrip neighborhood using SNet or SNetSSL as feature extractor, see Fig. 4.14. The network
requires only a small set of 3D reference labels, which are the same as for SNet and SNetSSL.
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Although LTNet also uses 2D image data as input, no reference is used here. The schematic
overview in Figure 4.14 shows that both networks are combined by concatenating the features of
the penultimate layers and passing them to two dense layers in order to classify a single 3D point.
The network can therefore learn how to explicitly account for each individual cause of label noise
errors early on, such as occlusions, calibration errors, or label policy issues.

The network LTNet(zj ,vj ,Ω(SNetSSL,n−1)j) has three distinct inputs. The first two inputs zj and
vj are two lists of length nj which are passed to the MVNet. Whereby zj was already described in
Section 4.3.1.1. The input list vj contains 3D features corresponding to the 3D point pj . The 3D
features used in vj are the campaign count ξj , the reflectance rj , and the normal vector n⃗j of the
3D point pj . Note that since there is only one 3D point that relates to nj images, the 3D features
are simply copied nj times so that they are available for each entry in vj . The third input feature
for LTNet is Ω(SNetSSL,n−1)j . It has a size of 1×64 and contains the feature vector corresponding
to the point pj extracted from the feature map of the penultimate layer of the pretrained SNetSSL.
In order to fuse both domains the output of size nj × 256 of the Multi-View Network is reduced
to a fixed size feature vector of 1 × 256 using average pooling. As can be seen in Figure 4.14 both
feature vectors are concatenated to a feature vector of size 1 × 320 which is then passed to two
dense layers to produce the final class probability distribution for point pj with C classes.

During training, only the weights of the Multi-View Network and the dense layers in the end are
updated, which has the advantage that the network is less prone to overfitting and training and
inference are much faster because the feature vector Ω(SNetSSL,n−1)j can be easily precomputed
and stored. The entire network is trained in the same way as the SNets, i.e., the same labels are
used.

4.3.3 Conclusion

In this section, a new network structure was presented that is capable of processing unordered
multi-view observations of arbitrary length that contain both 2D and 3D features. The goal of the
network is to correct incorrect predictions in 2D multi-view images made by a DCNN that suffers
from a domain gap. The network does this by learning to encode each observation individually
with two subnetworks and then relates them using self-attention.

In addition, the LTNet was introduced, which is a direct extension of the SNetSSL presented in
Section 4.2.2. Instead of learning how to correct the data after the transfer, it has access to the
complete label transfer pipeline by fusing the multi-view observations from MVNet with the 3D
observations of SNet. It can therefore learn to ignore predictions in 2D that do not match the local
3D object, such as in dynamical occlusions.
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Figure 5.1: This diagram shows an extension to Figure 4.1. In this Figure the MMS is mainly replaced by a
GAN which estimates multi-view and multi-modal images based on the measured point clouds by the LiDAR.
Additionally a step for resolving self-occlusions is added in the end.

Naive label transfer suffers from label noise in 3D due to various types of occlusions. In this chap-
ter calibration errors, dynamic occlusions and self-occlusions are treated with two self-supervised
methods in order to improve naive label transfer. First, in Section 5.1 a GAN is presented that,
once trained, is capable of estimating multi-view multi-modal photorealistic images only from point
cloud data replacing the camera and GNSS/IMU in the MMS. As these images can be semanti-
cally segmented by a pretrained DCNN, the GAN can serve as an “interface” for transferring the
2D labels into the 3D domain, s. Fig 5.1. Besides the advantage of replacing a fully calibrated
MMS with a GAN-based estimator, this GAN can also reduce label noise due to calibration errors
and dynamic occlusions. Remember that dynamic occlusions only occur because camera and laser
beams do not coincide. If an image is generated purely based on point cloud data, the images
are very accurate in terms of matching the real point cloud, reducing occlusion and calibration
problems.

Secondly, another GAN is presented in Section 5.2 that is able to learn the completion of object
instances only from incomplete observations. As one reason for errors in label transfer is self-
occlusion, this GAN can help to reduce label noise by providing an estimate of which unknown
areas may be occupied by objects. When a label is transferred using ray tracing, this estimate can
help to reduce “label bleeding” as it can block rays behind self-occluded objects. Both processes
are fully self-supervised, which means that no human annotated reference data will be used.

65
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5.1 Photo-Realistic Point Cloud Rendering

In this section a CGAN will be introduced that is able to create photo-realistic point cloud ren-
derings. Point cloud rendering or visualization can be done by projecting 3D point clouds into
virtual images. But this would not produce realistic images in such a way that they have similar
characteristics to real images taken with a real digital camera. The goal of this method is to create
images that are interpretable by a DCNN trained exclusively on a publicly available real image
dataset. The degree of realism is therefore given by how the images can be semantically segmented
by a pretrained state-of-the-art semantic segmentation network. A generative adversarial network
is perfect for this purpose, because it bypasses traditional rendering methods and generates images
that are realistic according to a discriminator, a DCNN that compares the feature composition in
the “real” and generated images.

Rendering photorealistic images from point clouds boils down to a CGAN learning to predict
camera images from projected point clouds. This requires a sufficiently large dataset. The trained
CGAN can then be used to generate images for point clouds that do not have access to a fully
calibrated MMS. As point clouds do not contain color information, the estimated images are colored
mainly according to the object shape and the intensity of the reflected laser beam. However, a real
image may look completely different if it was taken at different times of the day because the
illumination changes. Different weather conditions and seasons also change the appearance of the
images. If the generator cannot detect features for lighting or seasons in the point cloud, the
generated images have a higher degree of freedom because any possible outcome for the same
input is a valid representation for the discriminator. In order to produce consistent point cloud
renderings, a method is presented to make the look of the generated images controllable. This is
done by parameterizing the acquisition date of each image. The overall appearance of a rendering
can then be modified and controlled by adjusting the capture date. Mapping from one input to
many outputs is referred to as multimodality. This not only results in a uniform appearance, but
also allows control over the appearance of the generated images.

5.1.1 Network Architecture

A common conditional GAN (CGAN) is trained on tuples (xi,yi), where the generator G(xi) → yi

maps a sample xi from the source distribution X to a sample yi from the target distribution Y .
In this particular case, the CGAN should map from a point cloud xi to a corresponding image
yi which was recorded at a specific time si. As shown in Chapter 2.1.2.1, there are different ways
to represent a point cloud, e.g. volumetric, as coordinate list or projected. The problem with the
first two representations is that they do not encode the pose of the target image. This problem
is solved by projecting the point cloud into the camera plane that corresponds to the pose of the
target image, resulting in a 2.5D representation of the point cloud. The projected point cloud
image contains two channels. The first channel stores the distance between each 3D point and the
camera center and the second channel the reflectance. If more than one 3D point is mapped to the
same 2D pixel the one with the shortest distance is kept because the others are occluded. There is
no ray tracing implemented to take occlusions into account.

The generator network takes as input the projected point cloud image xi and a date si which
encodes the time when the target image yi was taken. The architecture of the generator as seen
in Fig. 5.2 is similar to that of Johnson et al. (2016). Instead of a typical U-Net structure like the
pix2pix presented in Isola et al. (2017), this network uses residual connections, which, according to
Johnson et al. (2016), have the property of learning an identity function; This is an advantageous
property for networks that have to transform between images, because they often share a similar
structure. Empirically this has been confirmed by Wang et al. (2018a). They based their work
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Figure 5.2: The generator network receives a projected point cloud image with two channels and creates a
photorealistic RGB-image. A one-hot encoded season vector of size S is passed to a fully connected layer
(red), whose output is reshaped to 1 × 1 × 1024 and concatenated to the bottleneck (blue).

on this architecture to outperform pix2pix in resolution and image quality. However, the network
in Fig. 5.2 is adapted to the respective problem: The generator takes an input image of size
512×512×2 and downsamples it four times with a strided convolution of two. The bottleneck (the
smallest feature map) reaches a size of 32 × 32 × 1023. Please note that the image in Figure 5.2
shows a bottleneck with 1024 features, the missing last channel will be described in the following.

Adding the date si as image with constant value to the input as third channel is ignored by the
generator. As shown by Peters and Brenner (2020), the date information si can be added with
a fully connected layer by concatenating it as feature to the bottleneck, s. Fig 5.2. The fully
connected layer (shown in red) has as input a one-hot coded vector of length S, where S indicates
the number of different capture days in the entire dataset. The output of the fully connected layer
has a size of 1024, which is resized to 32 × 32 × 1 and concatenated to the bottleneck so that the
combined feature map has a size of 32 × 32 × 1024. Unlike Johnson et al. (2016), this network has
four convolutions with stride two, followed by eight residual blocks with a feature size of 1024 each
and finally four transposed convolutions. The original architecture is smaller and uses only three
convolutions with stride two followed by five residual blocks (with a features size of 128) and three
transposed convolutions.

The discriminator shown in 5.3 is based on the multi-scale discriminator introduced by Wang et al.
(2018a). Each discriminator {D1,D2} works on a different image scale, D1 on the original image
scale 512×512×5 and D2 on 256×256×5 which is created by bilinear interpolation. The complete
input to the discriminators is created by concatenating an RGB image (the real or fake one) and
the corresponding projected point cloud. This is done to make the GAN conditional so that the
generator is forced to react appropriately to the input image. Instead of a single scalar, the result
of the discriminators is a 64 × 64×1 and 32 × 32×1 map, respectively, a strategy introduced by
Isola et al. (2017) and referred to as patchGAN. The advantage of using a patchGAN is that the
individual predictions of the discriminator can only be propagated back the corresponding support
window (patches) of the input within the receptive field of the discriminator. Consequently the
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Figure 5.3: The multi-scale discriminator networks.

discriminator requires fewer parameters and runs faster. Empirically, this can also lead to a higher
quality in the synthesized images, because each generated image field is independently evaluated
by the discriminator.

It is noteworthy that the pix2pixhd GAN by Wang et al. (2018a) is similar to this GAN. However,
pix2pixhd allows human interaction in order to manipulate generated objects. This is done by
integrating ground truth data about instances and labels maps to know where an object is placed
in the image. This gives the network the ability to encode object properties and to change the
appearance of certain object instances. However, this is only possible with a fully annotated dataset
that has access to pixel and instance maps such as Cityscapes (Cordts et al., 2016). Since the GAN
presented in this section is self-supervised, the parts that encode the object appearance are removed
from the architecture and instead the fully connected layer is added to the bottleneck to encode the
acquisition date of each image. Additionally, due to hardware limitations, the generator network
is changed as shown in Figure 5.2, which limits the image resolution to 512 × 512 instead of the
original 2048 × 1024 of pix2pixhd. However, the image resolution is not so important in this case,
because the image size can be increased later by stitching different generated image patches. As
the CGAN can generate images for any camera position, this allows the various image patches to
be stitched together to form a high-resolution image, shown in Section 5.1.3

5.1.2 Loss Function

Instead of the classical GAN loss function as shown in Equation 2.40, this CGAN is trained using
the LSGAN loss introduced by Mao et al. (2017):

LGAN (G) = 1
2E[(D(G(x,s),x) − 1)2]

LGAN (D) = 1
2E[(D(y,x) − 1)2] + 1

2E[(D(G(x,s),x))2],
(5.1)

where G(·) and D(·) denote the generator and the discriminator networks and x denotes the pro-
jected point cloud image, s denotes the acquisition date and y denotes the target RGB-image. The
discriminator is trained by minimizing LGAN (D). As the CGAN uses more than one discriminator,
the actual loss will be defined for all discriminators Dk with k ∈ {1, . . . ,P} as follows:

LGAN (D1, . . . ,DP ) = 1
P

P∑
k=1

[12E[(Dk(y,x) − 1)2] + 1
2E[(Dk(G(x,s),x))2]] (5.2)
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For the generator it is very common to be guided by additional loss terms like for example the L1
or L2 loss between prediction and and real image so that the generator prefers predictions which
are similar to the actual image (Isola et al., 2017). Like pix2pixhd the generator uses a combination
of the following loss functions:

L(G) = LGAN (G) + Lvgg(G) + Lfeat(G), (5.3)

where LGAN (G) is the LSGAN function defined in Equation 5.1. The additional functions Lvgg(G)
and Lfeat(G) help to increase the quality of the generated images. As mentioned before, the
generator should produce images in which the features in the “real” and generated “fake” images
are very similar. In the Lvgg loss the distance between the generated “fake” image and the “real”
one is minimized in latent space. This is done by using a pretrained vgg classification network by
Simonyan and Zisserman (2015) and comparing the detected features between both images. In the
following V GG(i)(·) is a function that gives the output vector of the output of i-th layer with a
size of Mi of the pretrained VGG network.

Lvgg = α
N∑

i=1

1
Mi

||V GG(i)(y) − V GG(i)(G(x,s))||1 (5.4)

The value α is set to 10 as it has been done by Wang et al. (2018a). The feature matching loss
Lfeat(G) is used to minimize the distance between the real and fake images in latent space. This
is done extracting the features for the real and fake images from all discriminators and calculating
the L1-norm between them.

Lfeat = 1
P

P∑
k=1

T∑
i=1

1
Ni

||D(i)
k (y,x) −D

(i)
k (G(x,s))||1, (5.5)

where P denotes the number of discriminators and D
(i)
k returns the output of the i-th layer with

size Ni of the k-th discriminator. The loss function can generally be interpreted as such that the
generator should produce images that are very close to the real image as seen by the discriminator.

5.1.3 Image Stitching

Due to hardware limitations, the CGAN only allows predictions of 512 × 512 × 3 with a common
NVIDIA GPU that has 11 or 12 GB of memory. This issue needs to be addressed as the CGAN
should be able to fully replace the camera in an MMS as shown in 4.1 which has a higher resolution
of 2056 × 2452. When training the CGAN, image patches of size 1024 × 1024 are cut out of the
real images x and reduced to 512 × 512 and then passed to the CGAN. The method described
below attempts to reverse this process. To generate full resolution images without re-training or
modifying the CGAN architecture, a sliding window approach is used that generates many 512×512
sized image patches that are stitched together. The generator G(·) of the CGAN is moved over
the original image x having size U × V using a sliding window approach with step size of k and a
weight matrix W with the size 1024×1024. Additionally there are two empty arrays O and N with
size U ×V (the original image size). The first one will contain the output image and the latter the
weights in order to merge the patches. Also there exists a function F (·) that receives an image of
size 1024 × 1024 and reduces it to 512 × 512. Conversely, F−1(·) will do the opposite. Algorithm
5 shows how the CGAN can be used to create large images.
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Algorithm 5 Procedure to create a high resolution image
Require: Generator G(·), projected point cloud image x

1: procedure StichImage(x)

2: Initialise weight matrix W with W (n,m) = 1
2πσ2 e

− n2+m2
2·σ2

3: O = array(U,V )
4: N = array(U,V )
5: for i in range(0,U,k) do
6: for j in range(0,V,k) do
7: O[i : i+ 1024,j : j + 1024] += F−1(G(F (x[i : i+ 1024,j : j + 1024])))
8: N [i : i+ 1024,j : j + 1024] += W

9: stitched_image = O
N

10: return stitched_image

The algorithm first initializes a weight matrix W with a Gaussian distribution, with its peak in
the center of the matrix. Then the generator in line 7 is moved over the original image x and the
results are added to the matrix O at the same position. In the same way the weight mask W is
added at the same position to matrix N . After both for loops are finished the full resolution image
is obtained by calculating O

N .

5.2 Self-Supervised Shape Completion

The problem of self-occlusion in connection with this work occurs when an object is captured by
a laser scanner and parts of the object block the view on the object itself. The problem has been
described in Figure 4.2 where parts of the red car were not captured by the laser scanner. The
problem is that ray tracing may not be able to cope with such occlusions if the camera and laser
beams do not coincide. In the case of label transfer, 3D points behind a self-occluded object may
be projected into the camera plane because they cannot be detected as occluded by the ray tracer.
This leads to the effect of “label bleeding”, where object labels are incorrectly assigned to points
in the neighborhood of an object.

In this chapter, a GAN is presented that is able to learn the completion of objects in a self-
supervised manner. A prerequisite for this method to work is a dataset of incomplete objects that
belong to the same class that are roughly aligned. To be more precise, the GAN will be trained on
a dataset of 3D point clouds containing incomplete shapes of the same class (e.g. cars). Because the
GAN works only on grid-like structures the individual 3D point clouds are voxelized. The general
approach is to divide each voxel grid containing an incomplete object sample into incomplete and
complete subregions. The complete subregions are then used as a supervision signal so that the
GAN can learn about completeness. The output of GAN is a voxel grid containing a complete
shape that matches the incomplete input.

5.2.1 Subregion-Based GAN model

To learn how to generate complete shapes from incomplete ones, a GAN would need samples from
the target distribution, i.e. complete shapes that define the positive “real” class of the discriminator.
However, the assumption is that only incomplete shape observations are available. To gain access
to a similar supervision signal, the discriminator is taught about completeness locally in a self-
supervised manner by labeling complete subregions as “real” and incomplete regions as “fake”
samples that should not belong to the target distribution.
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Figure 5.4: Methodology: Red/blue and green color indicate real and generated data, respectively. Orange
blocks are merged voxel-wise between real and synthesized, indicated by the “max” operation. The Encoder
Θ(·) will be described in the network architecture section. It encodes each subregion into a vector which are
then average pooled to a fixed size representation and passed to the discriminator.

This subregional GAN model is based on a binary voxel grid in which voxels on the 3D object
surface are labelled as 1 (occupied) and all other voxels are labelled zero (free). Each voxel grid
contains an object instance tiled into a fixed set of n = nx × ny × nz subvolumes called “blocks”,
see Fig. 5.4. These blocks are sorted by decreasing number of surface voxels in the real incomplete
input. Under the weak assumption that blocks with high point density contain complete object
parts, only a fixed number m of the most densely populated blocks are passed to the discriminator
as “real” examples, see red blocks in Fig. 5.4. The remaining k = n − m less densely populated
blocks from the real input are passed to the discriminator as “fake” examples, which are called
“incomplete”, see blue blocks in Fig. 5.4. This will ensure that regions with low point density are
treated as fake, forcing the generator to output shapes with high point count. With the supervision
provided so far, the discriminator can learn to ensure a sufficiently high point density, but it is
neither biased against implausible shapes with appropriate point count, nor conditioned to the
input.

The generator will be fed with the incomplete shape as voxel grid from which 3D points are
sampled. These are then encoded into a feature vector using PointNet (Qi et al., 2017c) to ensure
that the generator does not simply copy the input and learns to re-synthesise the incomplete shape.
The prediction by the generator will also be tiled in a similar fashion as the real sample before
and sorted by point density, see green blocks in Fig. 5.4. To ensure that the generated samples fits
to the input, the discriminator is normally fed with a tuple containing a condition and the real or
fake sample. Often the condition is the input of the generator which would also be given to the
discriminator. However this cannot be done here, because the input and the real sample would
be the same, which can be trivially detected by the discriminator. To solve this problem in each
block, the set union between the surface voxels of the original input and those of the generator
output is determined. Since 1 represents the surface labels and 0 the background, this corresponds
to an element-wise max of the voxel labels, see yellow blocks in Fig. 5.4. The merged blocks will
be passed to the discriminator as “fake” examples. By merging the input with the generated shape
the discriminator should be able to detect if both shapes do not match.

The last problem to solve is that the “real”, “incomplete”, and “fake” blocks should not be dis-
criminated individually, because this could prevent the individual parts in the blocks from not
fitting together. Therefore each block is encoded individually by a series of 3D convolutions (Fig-
ure 5.6) into a fixed size feature vector of 256 each. This way three lists of m× 256 “real”, k× 256
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Figure 5.5: First, a voxelized shape is taken as input (left image). Then, the input is divided into n =
nx × ny × nz blocks (middle image in BEV). Each block is labeled as “real” (red) or “incomplete” (blue)
based on the point density in each block.

Input

3D
convolution

Spectral
Norm Relu

Figure 5.6: This figure shows an example of network Θ(·). It encodes a block of size nx = 8×ny = 16×nz = 8
into a feature vector of size 1 × 1 × 1 × 256.

“incomplete” and n × 256 “fake” feature vectors are created, see Fig. 5.4 box “encoded blocks”.
Please note that the weights for the 3D convolutions are shared over all subregions. Now each list
of feature vectors is average pooled to a fixed size of 256, see Fig. 5.4 box “average pooling”. These
averaged blocks are then each passed to two successive fully connected layers, which output the
predictions of the discriminator for each subregion.

To sum up and to understand the intention behind the described model, consider a block that
has a low point density in the generator output. In that case it is treated by the discriminator
similar to an “incomplete” region, reinforcing the desired bias towards complete shapes. If the
generated block has sufficiently many points, there are three cases: (a) the point count is correct,
but the shape is implausible, leading the discriminator to assign a “fake” label and steering the
generator towards plausible shapes. (b) The second case, the shape is plausible in itself, but not
spatially aligned with the input, so that it will be assigned the “fake” label, which implements the
conditioning on the input. (c) Finally the block matches the input and has the right density. If
this case become frequent, the model has been successfully trained and the generator has learned
to generate complete shapes that are well aligned with the input.

5.2.2 Loss Function

The GAN loss function in this section is derived from the least squares GAN-loss (LSGAN),
Equation 5.1. Note that the subregion scheme can also be implemented using any other GAN-loss
function, but LSGAN has been shown empirically to give the best results.

To describe the loss function, the following notation will be used. The real sample x is split into
blocks qj with j ∈ {1 . . . n}. Moreover, the ensemble of blocks sorted in descending order of point
count is denoted by an asterisk ∗ so that the sorted discriminator input becomes q∗ and the sorted
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generator output becomes G∗(x). The operation of encoding a block into a 1D vector with a series
of 3D convolutions is denoted as Θ(·). This function will represent the first part of the discriminator
which is shown in 5.6. The same encoding for multiple blocks, followed by average pooling into
a single 1D vector, is written as Ξ(·). This function represents the average pooled subregions in
Figure 5.4 (box “average pooling”). tuples consisting

Discriminator Loss

The discriminator loss has three terms, related to the description in the previous section. The first
loss term is related to the m most complete input blocks Lreal(D). The second term Lincomp(D)
relates to the (n − m) remaining “incomplete” input blocks. The last term Lfake(D) is related to
generated output blocks:

L(D) = Lreal(D) + Lincomp(D) + Lfake(D) (5.6)

As the target distribution should only contain complete shapes, the first term is simply the LSGAN
loss for the “real” class,

Lreal =
(
D(Ξm

j=1(q∗
j )) − 1

)2
, (5.7)

where D(·) describes the discriminator network. To reject incomplete shape parts, the low-density
blocks are assigned to the “fake” class, although they were not produced by the generator:

Lincomp =
(
D(Ξn

j=m+1(q∗
j ))
)2

(5.8)

The third loss term is responsible for conditioning the CGAN on the input x. Unlike in classical
CGANs such as pix2pix (Isola et al., 2017), there is no access to complete samples of the target
distribution in this scheme. Usually, tuples consisting of an input and a generated sample or an
input and a real sample would be passed to the discriminator to force the generator to respond
appropriately to the input. To achieve a similar effect here, the generator output and the input
shape are merged with the set union, see Section 5.2.1 and Fig. 5.4. By using 1 as the surface label
and 0 as the background label, the set union can be written as an element-wise max operation as
follows:

Lfake(D) = D
(
Ξn

j=1(max(G∗
j (x),q∗

j ))
)2

(5.9)

By using the set union, the discriminator is able to detect whether the generated sample matches
the input or not and thus forces the generator to react appropriately for the input.

Generator Loss

The loss LGAN (G) is derived from Equation 5.1. The generator will be penalised for producing
samples that are detected as fakes by the discriminator:

LGAN (G) =
(
D(Ξ(max(G∗

k(x),q∗
k)) − 1)2 (5.10)

Here all blocks G∗
k(x) and q∗

k are merged using the element wise max and the result is passed to
the discriminator. Note that this loss also includes the “incomplete” blocks so that the generator
is forced to produce subregions that have the correct point density and are plausible. The function
Ξ(·) returns the averaged encoded subregions and passes them to the discriminator, which uses
two fully-connected layers to output the estimate of whether the input is “fake” or “real”.
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Figure 5.7: The generator network receives an incomplete shape (red) as input and completes it. The network
receives a voxel grid of size 32 × 64 × 32 which is passed to a sampling layer (violet) that converts the grids
to a point cloud. This point cloud is then passed to three PointNet++ set abstraction layers (green) that
follow exactly the original implementation by Qi et al. (2017c) with the same hyperparameters. The encoded
shape is then reshaped and passed to a series of 3D transposed convolutions (yellow) until the original size
of 32 × 64 × 32 is reached. The kernel size is 3 × 3 for the convolutional layer.

Similar to pix2pix, the generator is guided by a least squares loss so that it favors surface points
near the input points.

Lℓ2(G) = 1
m

m∑
j=1

||G∗
k(x) − q∗

k||2 (5.11)

Please note that the regularisation term is only applied to the first m “complete” blocks so that
the generator is not forced to produce subregions with low point density or incomplete subregions.
Finally, a feature matching term is added that minimizes the difference between the encodings
Θ(G∗

k(x)) of the generated blocks with the encoding of the real blocks Θ(q∗
k).

Lfeat(G) = 1
m

m∑
j=1

||Θ(q∗
k) − Θ(G∗

k(x))||2 (5.12)

Similar to Lℓ2(G) the L2-norm is calculated for the first m “complete” blocks, again preventing
the generator from being forced to produce incomplete or low density subregions. The complete
loss function for the generator is created by minimizing the weighted sum of all three terms:

L(G) = LGAN (G) + αLℓ2(G) + βLfeat(G), (5.13)

where α and β are scalars to weight Lℓ2(G) and Lfeat(G).

5.2.3 Network Architecture

In the following, the architectures for the generator (Fig. 5.7) and the discriminator (Fig. 5.6) are
defined. An obvious idea for the generator would be a straight-forward encoder-decoder structure
with 3D convolutions and 3D transposed convolutions, as in 3D-GAN (Wu et al., 2016). Empirically,
however, there are difficulties with such a design. It has been observed that skip connections can
lead to local minima, where the generator just copies the incomplete input, rendering the whole
GAN useless. To prevent the generator from doing that, not only the skip connections are removed,
but the encoder part will use a completely different representation than the decoder. As can be seen
in Figure 5.7 the encoder part of the network uses a point cloud representation and the decoder
part is based on a voxel grid. Therefore, the generator uses PointNet++ set abstraction layers
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(Qi et al., 2017c) to encode the input. The set abstraction layers were introduced briefly in Section
3.2 but are described in more detail in the following paragraph .

In order to encode the input shape, the voxel grid is first passed to a sampling layer that randomly
selects a fixed number of 3D surface points, 1024 in this implementation. Note that the sampling
layer has no trainable weights. The surface points are then passed through a series of PointNet++
set abstraction layers to finally obtain a feature vector of size 1×1024. Each set abstraction layer
consists of three layers: (1) The sampling layer, which uses iterative farthest-point sampling to
select a set of points which define the centroids of local regions for the following layer. (2) The
grouping layer that constructs local sets by selecting neighboring points around the centroids of
the local regions using a spherical query. (3) The PointNet layer, which uses a mini-PointNet on
each group to learn local patterns and encode them into feature vectors. The generator uses a
total of three set abstraction layers, see the green blocks in Fig. 5.7. The implementation and
hyperparameters1 are exactly the same as proposed by Qi et al. (2017c). The first set abstraction
layer samples 512 out of 1024 points and outputs a feature vector of size 320 for each of these
points, resulting in a 512 × 320 matrix where each row is associated with the original 3D point
coordinates. The second set abstraction layer samples 128 points from this matrix and outputs a
feature size of 640 for each of them, resulting in a 128 × 640 matrix. And finally, the third layer
takes all the points and passes them to three fully connected layers with 256, 512, and 1024 units,
respectively, resulting in a 128 × 1024 matrix. This matrix is then max pooled and reduced to
output a 1 × 1024 feature vector describing the input. This vector is transformed into a 1×1×1024
tensor and passed through the decoder of 3D transposed convolutions to obtain the prediction.
To make the training more stable, batch-normalisation by Ioffe and Szegedy (2015) and spectral
normalisation by Miyato et al. (2018) are applied at every layer. The activation function for all
layers except the last one are ReLU functions. The output of the last layer is a sigmoid in order
to give an estimate between zero and one whether an voxel should be marked as occupied or not.

The discriminator network is shown in Fig. 5.6. It consists of two parts: (1) The encoder Θ(·)
is a traditional sequence of 3D convolutions, again with spectral normalization in each layer. (2)
The actual discriminator D, which receives a list of encoded blocks, calculates the average feature
and classifies them as “real” or “fake”. For this two fully connected layers are used. The first with
64 output features and ReLU activation, the second with an output of one and no activation. In
addition, no normalization is applied to the fully connected layers. During training, the encoder
Θ is applied across all subregions and its weights are shared. The encoder and the fully-connected
layers are trained end-to-end as part of the discriminator update.

1https://github.com/charlesq34/pointnet2/blob/master/models/pointnet2_cls_msg.py

https://github.com/charlesq34/pointnet2/blob/master/models/pointnet2_cls_msg.py




6 Preparation of MMS data

In the previous chapters, the general methodology for label transfer was shown, including various
extensions such as a correction scheme based on scanstrips and multi-view observations, and/or
self-supervised methods to handle self- and dynamic occlusions.

In this section, the preprocessing steps and the description about the MMS database are presented,
which is necessary to perform and understand the experiments in the next chapter.

6.1 Preprocessing of the Mobile Mapping Dataset

Figure 6.1: Route of the MMS vehicle for the mapping campaign. The city center of Hannover is in the
lower right corner and the Leibniz University is in the middle of the image.

A fully calibrated VMX-250 mobile mapping system was used to acquire the data used in this thesis,
s. Fig 2.3a. The MMS is equipped with two Riegl VQ-250 laser scanners, which have a maximum
scan rate of 300 000 points per second with a range accuracy of ten millimeters each. In addition,
two industrial cameras with a sensor size of 2056 × 2452 pixels each are used. For localization,
the MMS has a high-precision GNSS/IMU system combined with a DMI. All trajectories are
obtained by post-processing using reference data from the Satellite Positioning Service (SAPOS).
The accuracy is within a lower decimeter range 1

As shown in Chapter 4, the transfer process requires the generation of multi-temporal features such
as the campaign count (Chapter 4.1.2) or photorealistic images (Chapter 5.1). Therefore, this work

1Riegl VMX-250 datasheet http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_VMX-250_
20-09-2012.pdf
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uses data created by Schachtschneider and Brenner (2020) from a bi-weekly long-term measurement
campaign recorded in Hannover Germany, covering the same ∼20 km route over one year. The
route includes areas of the city center as well as suburbs, multi-lane roads, parking lots and areas
with heavy bicycle and pedestrian traffic. In total, the dataset contains 26 measurement campaigns
covering different seasons with different weather and light conditions, as shown in Fig. 6.1.

Table 6.1: Table with the dates of the individual measurement campaigns. The time of day shows that some
started in the morning, others at noon or at dawn.

Year 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2018 2018

Date 03/31 04/05 04/28 05/09 06/06 06/20 08/08 09/05 10/04 10/19 11/07 11/14 12/07 02/01 03/01

From 08:22 09:27 12:44 11:39 10:24 13:29 12:33 10:08 10:13 08:08 13:50 13:44 14:17 10:54 12:47

To 09:28 10:47 13:57 12:54 11:26 14:28 13:32 11:28 11:10 09:09 15:32 14:44 15:39 12:12 14:01

For this work, a subset of 15 of these measurement campaigns was used, see Table 6.1. This subset
contains a total of 15 017 586 980 3D points and 236 380 images. In addition, the subset is fully
aligned using the method described in (Brenner, 2016).

6.1.1 Semantic Segmentation of the MMS-Dataset

Figure 6.2: Examples of semantically segmented MMS images of the same scene with two different viewing
angles. The images on the left show the original MMS image. The images on the right show the corresponding
predictions from Deeplabv3+. The MMS captures images pointing to the rear of the vehicle. The rows show
the two available viewing angles.

For the semantic segmentation of the MMS-images a DCNN is used that was pretrained on the
Cityscapes dataset by (Cordts et al., 2016). The Cityscapes dataset offers 5000 highly accurate
and additionally 20 000 coarsely annotated images from 50 different cities all over Germany. All
images were taken in an urban environment by cameras mounted on a car and are pointing in
the direction of travel. Each image is annotated pixelwise. There are 19 different classes, including
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static objects such as buildings, streets, vegetation, street-signs and poles, and dynamic objects
such as road users (cars, trucks, people, etc.). Each image has a size of 1024 × 2048 pixels.

The network used for semantic segmentation is Deeplabv3+ by Chen et al. (2018). At the time of
publication, the network achieved an mIoU of 82.1% on the Cityscapes benchmark. The weights
and source code were taken from the publicly available repository2. Since the images captured with
the VMX-250 MMS have a size of 2056×2452 pixels, the network had to be adjusted accordingly to
be able to make predictions on the higher-resolution images. Deeplabv3+ only takes whole images
at once, therefore each image was resized to 1024 × 1222 before inference; a higher image size is
not possible due to GPU-memory limitations. The Figure 6.2 shows two examples of semantically
segmented images from the same scene with different viewing angles. It should become apparent
that in both cases the network predictions delivers wrong predictions that will contribute to the
label noise after the label transfer.

The pretrained network was used to semantically segment a total of 236 380 MMS images. As
storing the full class distribution of the network would result in more than 1.18 terabytes of
predictions for all images, these predictions are calculated on demand before each image is used
for processing.

6.1.2 Human annotated MMS-Dataset

Figure 6.3: 23 human annotated images. The original images are a subset of the MMS dataset. All images
are labelled according to the official Cityscapes guidelines.

To measure the performance of the pretrained Deeplabv3+ and for semi-supervised correction, a
subset of 23 images was annotated according to the official Cityscapes label policy (Fig. 6.3). The
images show three different scenes from different locations, they were selected such that they cover
all classes that are used in this thesis. In addition, a small dataset of 10 images was created in
which only bicycles were annotated.

2https://github.com/tensorflow/models/tree/master/research/deeplab

https://github.com/tensorflow/models/tree/master/research/deeplab
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Figure 6.4: Examples of different visualizations of the same scanstrip (images are cropped). Left: Results of
the segmentation using the method described by Brenner (2016) (each segment randomly colored). Middle:
Distance measured by the laserscanner. Right: Intensity measured by the laserscanner.

To evaluate label transfer and learn how to correct wrong transferred labels, 14 scanstrips were
manually annotated, resulting in 88 099 474 fully annotated 3D points. As this process is not
straightforward, it is briefly described here:

First, each scanstrip is segmented using the method developed by Brenner (2016). In addition
to segmentation, a layer of reflectance and range is added. All 3D points were annotated in the
scanstrip representation using GIMP3, an open source image editing program. Although the an-
notation process as described is faster and easier this way than direct annotation in 3D, it does
add some label noise, especially due to “label bleeding”. The reason for “label bleeding” is that it
is difficult to hit the right pixels when painting in GIMP, especially with smaller objects, which
can cause the label to bleed into the neighboring pixels of an object. To mitigate the problem, all
scanstrips were edited three times by different persons. The first person created the initial labels,
while the next two persons had to check and correct each annotation pixel by pixel. Some results
are presented in Figure 6.5, which shows the final version of one of the annotated scanstrip and
the corresponding visualization in 3D.

(a) Scene 1: Scanstrip (b) Scene 1: Point cloud (c) Scene 2: Scanstrip (d) Scene 2: Point cloud

Figure 6.5: The images show examples of two labeled scenes. Each scene is shown once as annotated in the
scanstrip (a and c) and as a 3D point cloud (b and d).

3www.gimp.org

www.gimp.org
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Table 6.2 shows the label distribution of all manually annotated data. The table is divided into two
blocks, with the upper block containing all static classes and the lower block containing all dynamic
classes. Also, the table shows that certain classes are not available, so the following simplification
of Cityscapes class nomenclature is applied: (i) Class “sky” is excluded because there are no
observations for it in the scanned 3D point cloud; and (ii) The classes “train”, “rider”, “cyclist”,
and “motorcycle” are excluded from training and testing because they are exceedingly rare in the
annotated data.

Name Road Sidewalk Building Wall Fence Pole T.Light T.Sign Veg. Terrain

Support 2D[%] 32.7 8.5 16.7 0.3 0.3 1.3 0.3 0.08 13.6 1.4

Support 3D[%] 51.4 8.7 24.0 0.3 0.1 0.3 0.05 0.05 8.5 2.2

Color

Name Sky Person Rider Car Truck Bus Train M.cycle Bicycle Total

Support 2D[%] 19.1 0.05 - 4.1 1.6 - - - 0.003 102M

Support 3D[%] - 0.07 0.005 3.2 0.5 - 0.3 - 0.2 88M

Color -
Table 6.2: The table shows the distribution of annotated classes in the images (Support 2D) and point clouds
(Support 3D) of the MMS-dataset together with their corresponding color.

6.2 Massively Parallel Point Cloud Rendering Using Hadoop

The CGAN presented in Section 5.1 must be trained with corresponding pairs of images from
the source and target domains. As shown previously, the source domain contains projected point
cloud images corresponding to the respective target image in the MMS dataset. The subset of the
data used for training contains 15 billion (15 017 586 980) 3D points and 123 047 images. Due to
pre-calibration, the intrinsic parameters of each camera are known. In addition, for each image,
the position in the Universal Transversal Mercator (UTM), the orientation in roll, pitch, and yaw
angles are given by the Riegl system.

To illustrate the amount of processing required to render all the images, naively, any of the 15 billion
3D points can potentially be projected into any of the 123 047 images, making the computational
complexity problem bilinear, O(nm). If we assume for simplicity that both the number of 3D
points and the number of images increase linearly with the size of the captured scene, it follows

Figure 6.6: The Scheme shows the MapReduce approach for rendering large point clouds. Image source
(Peters and Brenner, 2020).
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that the computational effort is quadratic in the size of the scene. As each 3D point coordinate is
stored as a 64-bit float in WGS 84 with the corresponding 32-bit intensity value, this means that
about half a terabyte has to be processed, which is too much to keep all data in main memory. To
solve this task, a massively parallel point cloud renderer was created on an Apache Hadoop cluster
using the MapReduce framework, as shown in Fig. 6.6.

MapReduce is a framework for processing large datasets with parallel and distributed algorithms
on a Hadoop cluster. In general, a mapper M(k1,v1) receives a single key-value pair (k1,v1) which
will be processed. The mapper is applied in parallel to each pair in the input dataset. Each mapper
may generate a list of new keys and values list(k2,v2). After that the framework collects all pairs
in the “shuffle” process with the same key k2 from all lists and groups them by the key, resulting in
the following key-value pair (k2,list(v2)). The reduce function Reduce(k2,list(v2)) is then applied
in parallel to each key k2, which in turn creates the final result.

The MapReduce principle is applied to the problem as shown in Fig. 6.6. In the first step, each
mapper gets a single 3D point and its reflectance value. As each mapper has a list of all camera
poses, a single point can be projected into each camera plane to check if the point is visible in
a certain image. To avoid excessive calculations, the poses are filtered by the distance to the 3D
point. Only poses that are within 300 m of a 3D point are retained for projection of that point.
Additionally, as shown in the frustum check (Equation 2.6), poses where the point lies behind
the camera are excluded. If the point passes both checks, it is projected into a camera plane. If
the point lies inside the image, it will be included in the emitted key value list. Each mapping
process possibly outputs up to one key value list(k2,v2) pair per incoming 3D point for each image,
depending on the number of images in which the point appears. The key k2 is defined by the image
name, the value v2 contains the position of the projected point in the pixel coordinate system of
the image k2, the reflectance value and the distance between the camera center and the 3D point.

Figure 6.7: Each row shows the same scene. The images on the left show the real camera images. The images
in the middle show the projected point cloud colored by reflectance and the images on the right are colored
by the distance.
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After all points are mapped, they are grouped per key k2, resulting in a key-value pair (k2,list(v2)),
see Figure. 6.6 “Shuffle”. Each reducer receives one of these key-value pairs and loops over the list
of values. As each value contains all necessary information to create the images, the reducer can
insert the reflectance and distance values each into an image array. This produces two 16-bit gray
value images per key, the first of which contains the distance and the second the reflectance values.
However, if more than one point falls into the same 2D pixel, only value closest to the projection
center is retained. Apart from that, occlusions are not considered. This means that objects in
the front appear to be “transparent”. Dynamic occlusions also occur regularly, which means that
dynamic objects in the image may not match the objects in the projected images or vice versa. The
process of rendering images for each mapping campaign needs about 8hrs to compute on a 6 server
cluster with a total of 96 physical cores (each server has 16 physical and 16 virtual cores), which
results in a total computation time of about 5 days. In addition to these images, an independent
test dataset is created. It was recorded during a campaign in the city of Karlsruhe in February. The
examples in Fig. 6.7, taken from Hannover, Germany, are intended to demonstrate some common
problems due to neglecting occlusions.

Figure 6.8: Examples for dynamic occlusions. The red car and the bicycle rider appears in the camera image
(left) but not in the point cloud (right).

The upper scene in Fig. 6.7 shows a street with parked cars in front of buildings, the other scene
shows a church. The rendered images appear very sparse the closer the 3D points are to the camera.
In these areas, regular occlusions become more obvious. An example of this can be seen in the
upper row, where the facades on the right side of the street appear transparent so that the buildings
behind them are clearly visible. Dynamic occlusions also occur regularly. For example, the red car
and the bicycle in Figure 6.8 are visible in the camera image, but not in the point cloud.

6.3 Datasets of Self-Occluded Objects

This section shows how the datasets for the method in Chapter 5.2 were created. The goal is
to create databases with self-occluded objects that are globally aligned. One object in the MMS
dataset that suffers frequently from self-occlusion is the class car. Due to the low angle of view from
the road, cars are typically occluded 40-80% of the time in the scanned point cloud, with at least
one side missing completely in most cases. Since no real dataset with occluded cars is available, the
cars were extracted from the mobile mapping system data shown in the previous section. However,
for these extracted cars, there are no reference point clouds of complete cars, which makes it
difficult to measure whether they were successfully completed. Therefore, the Section 6.3.2 shows
how to create synthetic datasets of occluded objects for which a complete shape (ground truth)
exists.
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Figure 6.9: The same scanstrip scene colored by reflectance (left), class labels (center) and segment ID
(right).

6.3.1 Real Dataset

The aim of the following procedure is to instantiate and align cars from the scanned MMS point
clouds. In general, the procedure works by removing all non-car points from the dataset, followed
by an instantiation step, a filter step to remove outliers, and finally a global alignment of all cars.
In the first step all 3D points are semantically segmented. For this the naive label transfer as
shown in Chapter 4.1.3 is used. In the second step, all points that are not assigned to the car class
are removed. Due to the presented problems of naive label transfer, the environments of the cars
are frequently assigned to the class car. Such points must be eliminated in a filtering step. The
problem can be visualized very well in the scanstrip representation of the point cloud as shown in
Figure 6.9b (middle). The image clearly shows that the car labels (blue) are sometimes wrongly
assigned to surrounding areas. The scanstrip on the left (6.9a) can be used for comparison. In order
to differentiate between surrounding areas and car areas, the scanstrips were segmented using the
graph-based image segmentation by Brenner (2016), Fig. 6.9c (right). As surrounding areas of
cars are often sidewalks, facades or streets, they often form very big segments in the segmented
scanstrip. In order to remove points which are wrongly assigned to the car class, the number of
points per segment are counted. If the minority of points per segment belong to the car class, they
are removed, otherwise they are kept.

(a) extracted cars containing noisy
labels

(b) extracted cars after filtering (c) prototype car

Figure 6.10: 3D street scene which shows only points classified as car, colored randomly by instance (before
and after filtering of outliers) and a prototype car used for orienting incomplete scans (right).

The final step is to instantiate all cars in the filtered point cloud to form the dataset of individual
car samples. In order to do this, region growing based on the estimated surface normals is used.
As described in 2.1.2.3, region growing uses seed areas which are expanded to their neighbouring
points. Because region growing is susceptible to leakage, which means that a region can bleed into
surrounding cars (Fig. 6.10a), an additional filter step was added. First the the minimum enclosing
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Figure 6.11: Example of an extracted car before (left) and after voxelization (right). The voxelized point
cloud shows only the center of each voxel

rectangle for each car instance was calculated using the convex hull of proposed car instance. Then
a car candidate was kept if the area of the rectangle was between 5 and 16 m2 and if the main axis
was shorter than 6 m. The overall result can be seen in Figure 6.10b. Next all cars are aligned as
such that they have all roughly the same orientation and position. First, the front of the vehicle is
determined by comparing the height differences along the main axis. From experience, the highest
points belong to the rear part of the vehicle. Due to the scan geometry, most cars are scanned
from the side, making this method more successful. Afterwards, all incomplete scans are aligned
to a generic car template (Fig. 6.10c) using ICP.

After the alignment all cars are voxelized. For this a grid with volume of size 32 × 64 × 32 is
used. Each car is placed so that the major and minor axis of the car are parallel to the y and
x axis of the voxel grid. The barycenter of the car lies roughly in the middle of the volume at
x = 15, y = 32, z = 8. In order to fit each car to the grid, they are scaled by a factor of 0.75.
Due to the relatively low voxelgrid size the cars have a low resolution, but are still recognizable, s.
Fig. 6.11. For comparison, a dataset with different cars and different characteristics was created.
The KITTI dataset from (Geiger et al., 2013) was used for this purpose. It contains labeled point
clouds of Velodyne HDL-64E scans. Each car in this dataset is annotated with a 3D bounding box.
Based on these labels, all cars could be extracted from the dataset. Finally, all cars were aligned
and voxelized in the same way as the extracted cars from the MMS dataset.

6.3.2 Synthetic Datasets

The aim of the following procedure is to create synthetic datasets of occluded objects for which a
complete shape is available as reference. These synthetic datasets are based on Shapenet by (Chang
et al., 2015) and Modelnet by (Wu et al., 2015). Both datasets consist of several object categories
like airplanes, cars or even furniture. All objects are aligned and stored as polygon meshes, which
are collections of vertices, edges and faces that define the polyhedral object surfaces. The task is to
create self-occluded samples of each object to test how well the missing surface can be recovered.
The reference will be given by the complete watertight objects in the dataset itself. To create
occluded samples, a similar procedure as described by Stutz and Geiger (2018) is used.

Self-occlusion could be simulated by randomly cutting off parts of each object, thus fulfilling the
requirement that each object is “incomplete”. However, to simulate realistic self-occlusions, the
objects should be incomplete wherever they are occluded by themselves when measured with a
sensor. This is done by randomly rotating the meshes to sample different viewing angles and then
projecting them onto a 2D grid to obtain points using Equation 2.4. Since the 2D grid can only
store non-occluded surface points, self-occlusion is simulated by back-projecting the points into a
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Figure 6.12: Examples of self-occluded and voxelized objects from the Shapenet dataset. Left: A complete car
and the result of the simulated self-occlusion. Right: A plane and its self-occluded counterpart. All voxels are
colored by height, where green is low and red is high.

3D voxel grid. In order to create the synthetic datasets from ShapeNet and ModelNet the intrinsic
camera matrix is defined as:

Pmodelnet =


96 0 32

0 96 32

0 0 1

 (6.1)

For ModelNet an image size of 64 × 64 is used. The objects are voxelized into a 32 × 32 × 32 grid.
By adjusting the virtual camera parameters the sampling density can be controlled. The density is
measured by the mIoU between the incomplete and the complete shape in the voxel grid. To test
densities in ShapeNet two different camera matrices are defined, one for high resolution (PHigh)
and one for the low resolution samples (PLow). The image size for the high resolution dataset is
640 × 640 pixels, and for the low resolution it is 64 × 48 pixels. Both datasets were voxelized into
a 32 × 64 × 64 grid.

PLow =


96 0 32

0 120 24

0 0 1

 PHigh =


860 0 320

0 860 320

0 0 1

 (6.2)

For planes the densities4 are ≈ 0.49 mIoU (PHigh) and ≈ 0.12 mIoU (PLow). For Shapenet cars
they are ≈ 0.09 mIoU (PHigh) and ≈ 0.024 mIoU (PLow).

The extrinsic camera parameters for the ModelNet shapes are defined as follows: The mesh is
first rotated using a rotation matrix Rm = Rx(αm)Ry(βm), where αm ∈ [−60◦,0◦] and βm ∈
[−180◦,180◦] are randomly chosen, they define the amount of rotation about the x and y-axes,
respectively. The mesh is then translated by a fixed translation vector Tm = [0,0,2]T . For ShapeNet
the meshes are rotated using the rotation matrix Rs = Rx(αs)Ry(βs)Rz(γs) with αs ∈ [−45◦,45◦]
and βs ∈ [−180◦,180◦] and γs ∈ [−45◦,45◦]. The translation of the mesh is done with the fixed
translation vector Ts = [0,0,2]T . From every object, a number of 10 self-occluded voxel-grids are
sampled. Exemplary results for Shapenet are shown in Figure 6.12.

4The density was measured against the plane hull and not the filled shape
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7.1 Introduction

The chapter is structured as follows: First a baseline for label transfer is presented. The baseline
is examined in detail with regard to the introduction of label noise in 3D. Furthermore, different
noise sources are identified using 2D and 3D reference data. Next the training, validation and test
data is introduced that is used in most experiments. If experiments use a different dataset it will
be shown in the corresponding chapter. The experiments in the following chapters will show that
handling these errors reduces the label noise compared to the baseline. Each method presented in
Chapters 4 and 5 will be examined in detail using the data presented in Chapter 6.

Table 7.1 gives an overview of the presented methods and the identified errors that affect the
label noise. It is indented to show qualitatively the strengths and weaknesses of the methods. The
baseline is given by the naive label transfer presented in Chapter 4.1.

Table 7.1: The table shows the identified types of errors (rows) and the introduced methods (columns) for
label transfer. It gives a qualitative overview of which method treats which type of error. The symbols in the
table are as follows: “-” is not considered, “o” is treated implicitly and “+” is considered explicitly.

Error

Method
Naive (4.1) Point-wise (4.2.1) SNet (4.2.1) MVNet (4.3) LTNet (4.3.2)

Point Cloud

Rendering (5.1)

Shape

Completion (5.2)

Regular Occlusion + + + - + + -

Label-Policy Errors - o o - + - -

Calibration Errors - o o - + + -

Prediction Errors o o o + + - -

Dynamic Occlusion - o o - + + -

Self-Occlusions - o o - + o +

Regarding the training, testing and validation data for the experiments: In the following section,
the baseline is measured using the entire dataset presented in Section 6.1.2. Based on these results,
a training set, a validation set, and a test set are presented in Section 7.3. These datasets are used
for all methods except MVNet, which uses a different dataset presented in the respective chapter.

7.2 Baseline

The (naive) baseline is given by the label transfer from a 2D image classified by a pretrained DCNN
to a 3D point by exploiting the geometric correspondence between camera and laser beam in a
fully calibrated system. The best case would be that the DCNN makes no mistakes and that the
2D pixels and 3D point cloud points are perfectly matched and point to exactly the same point in
the real world. As this is not always the case, some points in 3D are assigned a wrong class label
that does not match the real object they represent. To mitigate these problems, two methods have
been introduced. First, ray tracing is used to find occluded 3D points that do not coincide with
the camera rays – these points are discarded during the label transfer. Secondly, the label transfer
is done using multi-view predictions, which are aggregated in a histogram h for a single 3D point.
If the DCNN makes few wrong predictions, they can be removed by assigning the class label to
the 3D point that has received the most votes in the histogram (majority vote).

87
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(a) Input (b) Deeplabv3+ (c) Ground Truth

Figure 7.1: An example which shows the prediction quality of Deeplabv3+ on the MMS-images. The Figure
shows the input (left), the semantically segmented image (middle) and the corresponding ground truth image
(right).

The baseline performance is measured by comparing the predictions of a DCNN pretrained on
Cityscapes to the human annotated MMS images (see Section 6.1.2). Since the pretrained network
was never trained on this dataset, it is likely that the performance will deteriorate compared to the
Cityscapes test set; this is called domain gap. In a second step, the predictions are applied to the
3D points using the naive approach, as shown in Chapter 5. Here all 3D points are labelled by the
majority vote from the multi-view predictions. Finally, the transferred labels are compared with
the human-annotated 3D reference set (see Section 6.1.2), which yields the amount of wrong class
assignments in 3D. By comparing the quality before the label transfer (in 2D) and after the label
transfer (in 3D) and by investigating the confusion matrices, different noise sources and types are
identified.

Results and Evaluation

To assess the performance of the pretrained DCNN on the MMS-dataset the Jaccard Index is used
which is also known as the Intersection over Union (IoU).

IoU = TPi

TPi + FPi + FNi
(7.1)

TPi FPi and FNi are the numbers of true positive, false positive, and false negative pixels, re-
spectively, determined over the whole test set for each class i. The mIoU is then calculated by
the unweighted mean over all classes. For the MMS-dataset the intersection over union IoU2D is
calculated between the 23 annotated ground truth images y2d and the corresponding predicted
images ŷ2d, see Fig. 6.3. The estimated domain gap ϵ2d(i) per class i is then defined as the distance
between IoU2D(i) and the intersection over union IoUcity(i) on the original Cityscapes test-set the
DCNN was trained on.

ϵ2d(i) = IoUcity(i) − IoU2d(i) (7.2)

The quality of the prediction can be seen in the images in Figure 7.1. The example shows that
Deeplabv3+ performs well for the classes pole and terrain, which are detected accurately. However,
the sidewalk is recognized very poorly, which can be seen in the lower left part of the image. The
results for Deeplabv3+ (Fig. 7.2) are only shown for classes which annotations are present in both
the 2D images and the 3D point cloud. The blue bars show the IoU per class on the Cityscapes
dataset, the orange bars show the result for the same model on the MMS dataset. Deeplabv3+
has a significant performance degradation on the MMS data. The total mIoU decreased from
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Figure 7.2: Deeplabv3+ baseline: The figure shows the IoU per class on Cityscapes (Deeplabv3+Orig), on
the MMS-images (Deeplabv3+2D) and after the naive label transfer into 3D (Deeplabv3+3D).

0.818 to 0.661. The largest performance degradation is seen in the sidewalk, wall, truck and traffic
sign classes, which decreased by an ϵ2d of 0.53, 0.38, 0.38 and 0.35. On the other hand, classes
such as pole and terrain only suffer from an error of ϵ2d(pole) = 0.014 and ϵ2d(terrain) = 0.015.
Interestingly IoU for bicycle even increased on the MMS-dataset by ϵ2d(bicycle) = −0.19. One
possible reason is that the annotation process differs in the two reference datasets. For example,
due to the efficient labeling, only bicycles in the foreground of the images are annotated, which
may ease their detection by the DCNN.

Next, all predictions from the MMS images were mapped to the corresponding 3D points using the
method described in Section 4.1. For the mapping, regular and self-occlusions are compensated by
ray tracing as described in 4.1. Other types of errors, such as dynamic occlusions, prediction errors
and calibration errors are not considered. Since there can be any number of 2D predictions for a
3D point, the final class is decided by majority vote over all 2D predictions. If there is no majority,
the 3D point is removed from evaluation. Finally, the 3D points which are annotated this way, are
evaluated using the human annotated reference set (Chapter 6.1.1).

The performance of the naive label transfer is estimated by calculating the IoU between the
transferred labels ŷ3d and the reference set y3d, see Table 6.2. The green bars in Figure 7.2 show the
IoU per class. By mapping the labels into the 3D point cloud the mean IoU decreased significantly
from 0.638 (orange) to 0.481 (green). A closer inspection shows that not all classes decreased
in performance after the mapping. The classes sidewalk, wall, road, building and terrain have
improved. A likely reason for this is that some wrong predictions could have been removed by the
majority vote. To get a better understanding of what kind of error is introduced by label transfer,
two confusion matrices are shown in Figure 7.3. The matrix on the left shows the results for
Deeplabv3+ on the 2D MMS dataset, i.e. before the labels are transferred. The other matrix shows
the results after the mapping process in 3D. Theoretically, there should be no difference between
the two confusion matrices if the camera- and laser-beams are perfectly coincident and always point
to the same object. As this is not the case, the differences between the two matrices include mostly
the errors that arise from the transfer of the labels (errors that arise from human annotation are
neglected). As a side note the matrices are normalized by row, because the annotations are very
imbalanced they don’t show to which extend the classification suffers by a wrong prediction.
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Figure 7.3: Confusion matrices for Deeplabv3+ before (left) and after mapping into 3D (right). Both matrices
are normalized per row.

The left matrix shows the confusion matrix derived using the 2D images: At a first glance it
should become clear that the classes sidewalk, wall, truck are the weakest, but for different reasons.
Looking at the second row, the class sidewalk is strongly confused with the class road, which can
be considered a “semantic problem”, similar to the penultimate row, where truck is very often
predicted as car. This means that both classes are semantically very close to each other. The class
wall is different, it is confused with almost all other classes.

1

2

3

Figure 7.4: Examples for different types of labelling errors: The first image shows dynamic occlusions (Ellipse
1). The Second image shows calibration errors (Ellipse 2) and Label-Policy errors (Ellipse 3)

The confusion matrix on the right shows very different errors. The following reasons are sus-
pected as causes:

– Calibration Errors: This problem may occur with class types that have a small or thin
physical size, such as pole, traffic light or traffic sign. Although these classes were well pre-
dicted in 2D, they are very noisy after label transfer. For example, they are all regularly
confused with classes that surround these objects in images, such as building, sidewalk, pole
and vegetation. Figure 7.4 ellipse 2 shows an example where parts of the building (gray) are
assigned sky labels (light blue), which is clearly a calibration error since it is impossible to
measure the sky with a LiDAR.
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Figure 7.5: An Example for self-occluded cars (blue), as seen from above.

– Dynamic occlusions: All dynamic classes such as person, car, truck and bicycle could fall
into this category as long as they are moving during the recording of the data. As seen in the
right confusion matrix these classes are regularly confused with road, sidewalk and building.
Figure 7.4 shows an example where a road (violet) is wrongly assigned to class car (blue).
The reason for this should be that the annotated images captured a moving car that was not
captured by the laser scanner thus leading to a wrong label transfer.

– Label-Policy Errors: Labeling-policy errors as already described in 4.6 can be seen in the
third row of the right matrix. After the transfer, the class building is more often confused
with vegetation. Fig. 7.4 ellipse 3 shows an example where the building (gray) is sometimes
assigned to the class vegetation (green).

– Regular occlusions and self-occlusions: These types of errors are difficult to separate
from the others, especially from calibration errors. Even if they are mitigated by ray tracing,
they still occur. Regular occlusions can be seen in objects that are in the background in
a typical image, such as buildings. In the third row of the right matrix, some classes are
more often confused with building than before label transfer. Self-occlusion occurs when, for
example, a car occludes parts of itself to the laser scanner, while these parts are visible in
the images. The result is that the car labels are mapped onto the sidewalk, which can be
seen in the second row of the right confusion matrix, see Fig. 7.3. Figure 7.5 shows a street
scene in which the car labels (blue) bleed into the sidewalk (bright pink). As these cars are
parked this error is not due to dynamic occlusion.
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7.3 Training, Validation and Test Set

In total, there are 14 human annotated scanstrips, see Section 6.1.2. The mIoU for the baseline was
estimated using the entire reference set. However to train a classifier for label error correction, the
reference set must be divided into a training, validation and testing subset. As the reference set is
highly imbalanced and relatively small, a division is not trivial and must be done very carefully.
First, three requirements are defined that should be met by each subset so that a meaningful
evaluation can be made and both underfitting and overfitting is prevented.

1. The subsets should be separated spatially. Empirically, a classifier trained on 3D data tends
to overfit to the test set if it is selected randomly. This is because nearby 3D points often
contain very similar features and labels.

2. All subsets should cover all supported classes.

3. Each subset should contain mostly “representative samples” so that they have a very similar
label error distribution as the entire dataset. At best, the training, validation, and testing set
each have the same IoU per class as the entire dataset in Figure 7.2. If a classifier performs
well, it should be easy to compare the performance on the test set with the estimated noise
level on the whole reference set.

To satisfy the first requirement, the subsets are divided by the scanstrips, each of which contains
a locally separated scene and does not overlap. The next task is to find two subsets, one of which
should contain the training data and the other the testing data. The first subset is later divided
into training and validation data.

In order to find representative subsets, the IoU per class i ∈ {1, · · · ,19} for the training set
IoUtraink

(i) and test set IoUtestk
(i) is estimated. There are k ∈ {1, · · · ,5887} combinations for the

14 scanstrips as such, so training set and the testing set support all classes. To fulfill the second
and third requirement, the mean distance δϵ(k) between the IoU for subset k and the estimated
IoU for IoU3D in Chapter 7.2 should be minimal:

δϵ(k) = 1
2n

(
n∑

i=1
|IoUtraink

(i) − IoU3D(i)|

+
n∑

i=1
|IoUtestk

(i) − IoU3D(i)|
) (7.3)

The minimal value of δϵ(k) is found by iterating over all combinations. The best split has a distance
of 0.027 which means that the mean difference between the estimated amount of label error in the
training set and testing set deviate only by 2.7% from the one of the entire reference set. Based on
the total number of points the reference set is divided into 74% training (9 scanstrips) and 26%
test set (5 scanstrips) which is a typical split. Depending on the type of correction (point-wise or
scanstrip-based), the validation set is determined differently. The test set will be always the same
in the following subsections, so that all methods can be compared with each other.
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7.4 Scanstrip-Based Correction

In this section the methods for point-wise correction (Section 4.2.1) and scanstrip-based correction
(Section 4.2.1) are evaluated. They try to correct the labels on the 3D points, after the label
transfer. The methods are therefore evaluated on the 3D point cloud reference set (Chapter 7.3).

7.4.1 Point-Wise Correction

This section introduces the baseline for label noise correction. The correction is based on point-wise
features to show how these features affect the correction process and what a fine-tuned (classical)
classifier is able to achieve. A gradient boosted decision tree is used for this purpose. For a more
efficient use of the data, the classifier is trained with 3-fold stratified cross-validation. In contrast to
normal cross-validation, where random subsamples are taken, stratified cross-validation maintains
the percentage of samples for each class. The best parameters are found by maximizing the mIoU
using a two-step grid search.

In the first step, the learning rate is set to 0.3. In addition, a sub-sample (or bagging fraction) of
0.8 is used. This means that only 80% of the rows from the training set are used to fit each tree.
The number of leaves is fixed to 80. The number of boosting iterations is also fixed to 50, which
means that the boosted tree contains 50 × 14 trees, where 14 is the number of supported classes in
the reference set. The following hyperparameters for regularisation are searched in the first step:

– max_depth ∈ {8,10}. The parameter defines the maximum tree depth. Deeper trees are
more complex, therefore shorter trees are preferred because they reduce the probability of
overfitting to the data.

– min_child_weight ∈ {5,10,30,50,60,80,100} is defined to limit the tree depth. It is a threshold
for the number of samples required to form a leaf node. A smaller min_child_weight value
allows the algorithm to create children that correspond to fewer samples, making it more
likely that more complex trees are created, which might overfit to the data.

– feature_fraction ∈ {0.6,0.7} defines the fraction of features that are randomly selected to
train each tree.

In the second step the learning rate and the number of trees are searched using the best hyperpa-
rameters from the first step:

– learning_rate ∈ {0.03,0.045,0.06,0.075,0.85,0.95,0.105,0.12}. The learning rate (sometimes
called shrinkage factor) is a scalar that defines how fast the error is corrected from one tree
to the next. The learning rate v is inversely related to the number of trees t: When the
learning rate v is reduced to v

n , a number of n · t trees is required to maintain the same
performance or capacity. However, high capacity makes overfitting more likely.

– n_estimators ∈ {100,150,200}. The parameter defines the number of boosted trees per class.
The number of trees in GBDT is very critical with respect to overfitting: Adding too many
trees leads probably to overfitting, it is therefore important to stop adding trees at a certain
point.

For the rest of the parameters the default values are used1.

1Lightgbm 3.0.0.99 documentation, https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.
LGBMModel.html Accessed: 2020-10-07

https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMModel.html
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMModel.html
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7.4.1.1 Results
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Figure 7.6: Detailed results for the different variants of the gradient boosted decision trees in comparison to
the baseline Deeplabv3+3D

The GBDT T was trained for several trials, each using a different combination of features. Where
k ⊆ {h,ξ,r,δ,n⃗} indicates the used features introduced in the Section 4.2.1.

Table 7.2: Results on the test set for all trials using different feature combinations.

Method Th Th,ξ Th,ξ,r Th,ξ,r,δ Th,ξ,r,δ,n

mIoU (Test set) 0.475 0.487 0.539 0.509 0.557

Table 7.2 gives the mIoU for all different variants on the test set. The first tree Th was trained
using the histogram only. The resulting mIoU of 0.475 might be misleading because it is very close
to the original label noise of 0.481. Taking a closer look on the plot in Figure 7.6 the classifier
indeed improved the IoU for several classes, e.g. road, sidewalk, pole, traffic light, terrain, car and
truck. The second tree (green), which includes ξ as a feature increased the IoU for all dynamic
classes (person, car, truck and bicycle), which makes sense because the classifier is now able to
recognize whether a histogram belongs to a point of a dynamic or a static object. A significant
increase happens after adding the reflectance feature (red), especially for traffic sign, which is
reasonable because traffic signs are coated with a retroreflective surface and therefore have a very
high reflectance value.

The range feature (violet bars) probably leads to overfitting or mislead the classifier and decreases
the performance. The reason for this might be that the measured distance is not sufficient to
identify a single point class and is very scene dependent. The distance to a single point does not
give any indication which class is present. However, some classes might be more likely within the
same distance from the MMS in different scenes, for example, road and sidewalk points which are
always close to the MMS. For these classes the IoU for Th,ξ,r,δ actually increased. However, the
range can be very useful in a scanstrip that provides access to successive range measurements. For
example, poles can be detected very well by a sudden jump in distance that might otherwise not
be detected.

Finally, after adding the normal vector (brown), the decision tree achieved the highest mIoU.
The normal vector is the only feature that contains information about surrounding areas, since
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it is estimated using surrounding points. The normal vector can be very useful to detect certain
classes like building, road or vegetation. This is because it almost always points to the z-direction
(upwards) on a road and is very often perpendicular to the road on a facade. In vegetation, the
normal vectors point in all directions and are more irregular, which may also a helpful feature.

Using a GBDT with all features, the mIoU increased from 0.481 to 0.557 with pointwise correction,
which leaves room for improvement. In the next sections, deep learning based approaches are
presented, which compete with this learning based baseline.

7.4.2 Supervised Scanstrip-Based Correction

Unlike point-wise 3D label noise correction, the method evaluated in this section takes the 3D
point context into account which may contain useful features. For this purpose the 3D points are
represented in scanstrips. This representation allows classical 2D image processing methods. The
aim is therefore to train a 2D image classifier on scanstrips containing noisy labels to predict the
(correct) labels. In this section the classifier Scanstrip Network (SNet) which was introduced in
Section 4.2.1 is used.

7.4.2.1 Training Parameters

The hyperparameters of SNet are the input size s and depth b. Where s defines the windows width
and height and b the number of channels which are used for the input x. The training is done in
two steps: In the first step, the size s is fixed to 64 (pixels) and the Scanstrip Network (SNet) is
trained for several trials using different input features. In the second step the configuration with
the highest performance on the validation set is used in order to tune s.

All features were introduced in detail in Chapter 4.2.1. The training is first done using only the
histogram information h. As there are 19 different classes the input size is [s× s× 19] for SNeth,
where the index in SNet indicates the used features. In the following trials, the campaign count ξ,
the reflectance r, the range δ and the normal vector n⃗ are added one after another in order to judge
the different performances. Consequently the network SNeth,ξ,r,δ,n⃗ has an input size of [s× s× 25].

In the second step the network is trained and evaluated on different input sizes s ∈ {32,128,256}.
In all trials, a fixed batch size of 32 is used. Each minibatch sample is gathered by randomly
cropping a window from one of the scanstrips in the training set. Obviously, windows that do not
contain label information are discarded. In every trial the training is done for 40k iterations. Early
stopping is achieved by storing the weights achieving the highest performance on the validation
set.

7.4.2.2 Validation set

The training and test set split from Chapter 7.3 is used, which makes it possible to compare this
method with the point-wise label correction. However, since the training of a DCNN is compu-
tationally very expensive, this method is not trained using cross-validation. Instead, the training
set is divided once into a training set and a validation set. To ensure that the validation set in
the ablation study is always the same regardless of the input size, the training dataset is cropped
into windows of size [n × 256 × 256 × b], which is the maximum window size that is used in step
two of the training. If a window at the edge of the scanstrip is smaller, it is padded by zeros. The
training and validation sets are then created by splitting the windows into two subsets such that
the validation set supports each class by 10% - 20%. This results in a split of 58% for the training
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Figure 7.7: Loss on training set (left) and mIoU on the validation set (right). The arrows in the right plot
indicate the global maximum. All plots were smoothed with moving average for better visibility.

set, 16% for the validation set, and 26% for the test set. When a model is trained with a smaller
window size s ∈ {32,64,128,256}, the validation set is simply cropped to the corresponding size.

7.4.2.3 Results

The diagrams in Figure 7.7 show that the use of all features leads to the highest mIoU on the
validation sets. This is not an obvious result, because additional features may lead to a higher
degree of overfitting, especially if the training set is very small. The left diagram in Figure 7.7
shows that each time a feature is added, the loss on the training set decreases more rapidly.
Interestingly, the largest decrease happens after adding the reflectivity feature (green curve). This
was also observed in the point-wise correction in the previous section. A possible reason for this
is that the histograms and campaign count may not describe the objects and their context well
enough.

As can be seen from the diagram on the right, the performance on the training set can be transferred
to the generalization capability of the networks on the validation set. The results on the test set
are shown in Table 7.3. The observations from the diagrams can also be transferred to the test
set. Interestingly, adding the range feature did not decrease the performance as it did in the point-
wise correction. This may be due to the fact that the range makes it easier to identify poles and
trees due to sudden changes in the measured distance. Table 7.3 contains an additional test (see
SNetξ,r,δ) with all features except the histogram. It shows the worst performance on the test set
and makes it clear that the transferred labels contain very valuable information.

Table 7.3: Ablation study for the correction of label noise with scanstrip network (SNet). The indices indicate
the used features.

Method SNeth SNeth,ξ SNeth,ξ,r SNeth,ξ,r,δ SNetξ,r,δ SNeth,ξ,r,δ,n

Training mIoU 0.669 0.711 0.798 0.850 0.811 0.918

Validation mIoU 0.516 0.526 0.575 0.609 0.555 0.654

Testing mIoU 0.528 0.562 0.619 0.631 0.51 0.659

As the network SNeth,ξ,r,δ,n scored best on the validation set, it is selected to evaluate different
input window sizes. Note that the test mIoU has not been considered for selecting the model to
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Table 7.4: Ablation study for finding a good input window size for network SNeth,ξ,r,δ,n. For better readability
the indices are omitted.

Method SNet(32) SNet(64) SNet(128) SNet(256)

Training mIoU 0.871 0.891 0.955 0.907

Validation mIoU 0.633 0.654 0.665 0.641

Testing mIoU 0.665 0.659 0.667 0.667

avoid overfitting. The results for SNeth,ξ,r,δ,n are shown in Table 7.4. For better readability the
network that uses all features will be named SNet without indices from now on unless otherwise
stated. The used input window size s is indicated by SNet(s). The symbol of SNet(32) reads therefore
as Scanstrip Network (SNet) with an input size of [32 × 32 × 25].

Overall, the networks performed very similarly for different window sizes. Large differences can
be seen between training mIoU and validation mIoU. A high training mIoU as opposed to a low
validation or testing mIoU indicates overfitting. The best performing model is SNet(128) with a
very small margin. As it is undecided which model performs best, both SNet(128) and SNet(256) are
used in the following experiments. However, it should be emphasized that the mIoU is significantly
higher than the point-wise correction using GBDT. The pointwise correction reached a value of
0.557 and the scanstrip-based one reached a value of 0.667. This means that the proposed method
was able to predict the classes in 3D at a similar level as estimated in 2D before label transfer
(0.661).

7.4.2.4 Comparison

To show how well SNet performs compared to other architectures, it is compared to four different
semantic segmentation networks. The first is HRNet (Sun et al., 2019) and the second one is
Deeplabv3+ (Chen et al., 2018). Deeplabv3+ was trained using the Xception network as feature
extractor (Chollet, 2017). Finally, SNet is compared to FCN (Long et al., 2015), which is one of
the oldest models for semantic segmentation, and the U-Net (Ronneberger et al., 2015), which is
very similar to SNet. Note that originally U-Net does not use padding in the convolution, resulting
in a prediction that is smaller than the input. Therefore, the network has been slightly modified
by using zero padding in the convolutional layers to increase the output size to the original input
size.

All networks are trained with the same hyperparameters as SNet. Since it is undecided which
window size s ∈ {128,256} is the best, they are trained in two variants. One with a randomly
cropped window of size [128×128] and the other with a size of [256×256]. All networks are trained
using the same training, validation and testing data as SNet. All networks are also optimized using
Adam, with the same learning rate of 0.001 for 40k iterations with a batch size of 32 and the cross
entropy as loss function (see Equation 2.16). The training is augmented by random horizontal or
vertical mirroring of the input. As the models are larger than SNet with respect to the numbers of
trainable parameters, two strategies for early stopping were used to mitigate overfitting: The first
strategy, which was also used for SNet, is to train each network during the entire 40k iterations.
The weights that achieved the highest validation mIoU are used for testing. The second strategy
stops the training process if the network does not increase the mIoU on the validation set for 4000
iterations. This should make it more likely that weights from an early stage of the training process
are used. The strategy that achieves the best results on the test set is shown in the results, with
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Table 7.5: The performance of SNet compared to other network architectures. Results marked by an asterisk
indicate that the best performance on the test set was achieved due to early stopping with the second strategy

Resolution 256 × 256

Method SNet HRNet FCN U-Net Deeplabv3+

Training mIoU 0.907 0.886 0.631 0.780 0.852

Validation mIoU 0.633 0.624 0.631 0.579 0.617

Testing mIoU 0.665 0.628 0.549 0.630 0.620

Resolution 128 × 128

Training mIoU 0.955 0.892∗ 0.902 0.797 0.850∗

Validation mIoU 0.655 0.624∗ 0.588 0.591 0.589∗

Testing mIoU 0.667 0.612∗ 0.606 0.614 0.583∗

parameters 4M 9.5M 34M 31M 41M

an “*” indicating the second strategy. The combined results for both windows sizes are shown in
Table 7.5.

Table 7.5 shows that SNet achieved the highest performance among all networks, regardless of the
window size. There could be several reasons for the poor performance of the other networks on the
scanstrip dataset. The first is that scanstrips have a very low resolution, which means that some
classes like pole are only 1-2 pixels wide. Deeplabv3+ is designed to segment larger areas than that,
which can be too inaccurate for the scanstrips. The low resolution feature map in the last layers
of Deeplabv3+ is only interpolated to create the predictions. Networks such as U-Net or SNet
are better suited for such a task, because they use transposed convolutions with skip connections,
which can contribute to a higher pixel accuracy. The last reason might be that the other networks
have too many trainable parameters. The last line in Table 7.5 shows that SNet has the smallest
number of trainable parameters, which is good if the network is trained on a small dataset as it
prevents overfitting. For example, SNet has almost the same depth in terms of hidden layers as
U-Net, but 7.75 times fewer parameters. Overall, all compared networks performed better using
the larger window size. The test shows that the proposed network architecture is well suited for
this task.

7.4.3 Semi-Supervised Scanstrip-Based Correction

In the previous sections it was shown that it is possible to correct labelling errors by supervised
learning. This section shows how even better performance can be achieved when the scanstrips are
corrected using Semi-Supervised Learning (SSL).

7.4.3.1 Training and Results

The training strategy for SNetSSL network was already explained in detail in Section 4.2.2. The
first step is very similar to the supervised methods. As the entire dataset is used here and is
sufficiently large, the validation set is selected by simply removing 8 randomly selected scanstrips
from the training set, which have sufficient support for each class. Otherwise, no test set is needed
in this step, because the weights with the best performance are selected only based on the highest
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Figure 7.8: The Loss of SNet256
SSL in the second training phase (left) and mIoU on the validation set (right).

mIoU of the validation set. The training is performed for 100k iterations with a batch size of 32
and a learning rate of 0.001 using the Adam optimizer. The selected size of the input windows is
[256×256×6], which are randomly cut out of a randomly selected scanstrips. The data is augmented
by randomly mirroring along the vertical or horizontal axis. In addition, a 25% drop-out is used
after each transposed convolution.

In the second step the weights which achieved the highest mIoU on the validation set in the
first step are used. Apart from that, the network is altered as described in Section 4.2.2 in order
to retrain it on the human annotated reference set. The training is done for 10k iterations with
the same training, validation and testing split used in in the Section 7.3 before. The training is
visualized in Figure 7.8. Comparing Fig. 7.8 to Fig. 7.7, one sees that the loss of the SSL version
is about an order of magnitude lower than that of the supervised version. The validation plot in
Fig. 7.8 shows that the network reaches a validation mIoU of 0.686 after 4500 iterations. These
weights are used for testing. The results in Figure 7.9 show that the semi-supervised network
SNet(256)

SSL performs better for almost every class than the supervised version SNet256. It is able
to achieve a mIoU of 0.709 on the test set, compared to 0.667 for the supervised version. It
is particularly noticeable here that the SSL variant performance much better for the fence class
and even outperforms Deeplablv3+3D, which is predicted very poorly by the methods tested so
far. The reason for this could be that SNet(256) overfits to a particular fence type in the training
and validation sets that does not appear in the test set. This shows that SNet(256)

SSL is capable of
extracting new information from the first training step and generalizes significantly better than
the supervised version after the second training step.

7.4.4 Qualitative Evaluation

Three models for correcting labeling errors were presented, which were either based on point-wise
predictions or scanstrip based. For the latter, it was shown how a semi-supervised strategy can be
implemented using the entire “noisy” dataset. In this section, all results are qualitatively evaluated
by comparing them on the same test data.

The images in 7.10 show three different scenes, one for each column. The first row shows the input
point cloud for each scene, colored by the height of the point cloud. The following rows show
the result for each method presented in Chapter 4 for each point cloud. The first scene shows a
narrow street surrounded by buildings. On the right side there are some parked cars. The scene
contains only static objects. The second scene shows an open area with an intersection, controlled
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Figure 7.9: A comparison of the IoU on the test set for every class between the naive label transfer (blue),
supervised correction (orange) and semi-supervised correction (green)

by traffic lights, and buildings in the background. There are also streets, trees and cars in the
background. In the foreground, a person is walking on the sidewalk. This scene contains more
dynamic objects because the cars are not parked in a parking lot and the pedestrian is moving.
The third scene shows a building with a sidewalk and some parked cars and trees in front of it.
This scene is intended to show the effects of errors related to the labelling policy, as the trees
occlude the building facades.

The first column shows a static scene, which is well suited for the baseline method, because
the label transfer does not suffer from dynamic occlusions. Looking at the naive result showing
the baseline, most objects are recognized. However, the traffic sign in the left part of the image
remains undetected and is labelled as a building. Cars and bicycles also suffer from label bleeding.
The gradient boosted decision tree was able to restore the traffic sign in the left part of the image
and remove the label bleeding of the cars. However, it introduced several new errors, such as
sidewalk labels in front of the cars and many misclassifications on the facades, poles and traffic
signs. The supervised scanstrip net (SNet(256)) looks a bit better, it makes fewer misclassifications
than the GBDT. However, road is very often misclassified as a sidewalk. The semi-supervised
trained scanstrip network (SNet(256)

SSL ) achieved visually the best results. The cars do not suffer
from bleeding labels, and the sidewalks looks cleaner. However, the network could not identify the
terrain below the tree in the center of the image, and some objects in the middle left part of the
image are “speckled” with sidewalk labels.

The second column shows a more dynamic scene. As expected, the baseline fails completely in
these cases due to dynamic occlusions. For example, the person in the front is not detected at all.
The intersection is covered with car labels and some waiting cars in the background are labelled as
building, road and sidewalk. Also the sidewalk in the foreground is not detected, and many parts
of the scene in the background are not classified due to regular occlusion. Overall, the result is
really bad. The GBDT shows that the classifier can correct most of the errors, but as in the first
scene, it suffers from misclassifications for almost all objects. Interestingly, the tops of many cars
are classified as person in the background. A possible reason for this is that in the 2D images
a person crossed the street, which accumulated person votes in these histograms. The supervised
SNet in the fourth row suffers from similar errors, but the overall result looks much more consistent.
However, the network introduces a certain degree of label bleeding, i.e. the building is covered with
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person labels and the trees on the right side are labelled as traffic sign (orange). Finally, the SSL
network provides the cleanest results. The building facade is free of label bleeding and most cars
are correctly detected. However, SNet(256)

SSL has misclassified some parts of the sidewalk and the
pole.

The third column shows an example of a building occluded by trees. The baseline shows the
typical errors of having the facade covered with vegetation labels. Also, many parts of the building
could not be classified due to regular occlusions and are therefore removed from the result. The
presented methods show better results. While the GBDT and SNet(256) were not able to remove all
vegetation labels from the facade, the semi-supervised method gives a really clean result. Visually,
SNet(256)

SSL is able to remove errors, all of which are likely to be policy-based, since the facades in
the last row have no misclassifications.

Figures 7.11, 7.12 and 7.13 show the final results of SNet(256)
SSL for the scenes depicted Fig. .7.4 and

Fig. 7.5. The image in Fig. 7.11a shows very severe case of dynamic occlusion where a road edge
that is covered with grass (terrain) was labelled as car. The result after the label noise cleaning
shows no signs of dynamic occlusion. The network removed the errors successfully from the data
and even recovered the sidewalks in the background.

The image in the second example (Fig. 7.12a) shows a scene with typical calibration and labelling-
policy errors. The upper edges of the building are labelled as sky (calibration error) and the facade
is sprinkled with vegetation labels (label-policy error). The picture on the right shows the same
facade after the cleaning process. The correction of the sky labels from the data is not necessarily
as trivial as their removal. As can be seen, the network has assigned the correct class to the edges
of the facade and completely removed the label policy errors. Overall, the facade looks clean and
does not show any errors.

SNet(256)
SSL shows a similar performance when it comes to regular and self-occlusions. The scene in

7.13a is rendered from a bird’s eye view. It shows a sidewalk with heavy label bleeding around
cars (blue), bicycles (dark red) and pedestrians (red). Although the cars and bicycles are parked
and do not suffer from dynamic occlusions, they are very difficult to detect due to the amount of
label bleeding. A more detailed example is shown in Figure 7.14. It shows a number of extracted
bicycles and cars from this scene. In the left image the bicycles are hard to recognize. The result
of SNet(256)

SSL on the right shows that they can be recognized much better in the point cloud. This
type of error is very critical for further processing, e.g. for object instantiation.
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Method Scene 1 Scene 2 Scene 3

Input

Naive

GBDT

SNet(256)

SNet(256)
SSL

Figure 7.10: Qualitative comparison of the presented methods for three different scenes. Each column rep-
resents a scene, which is colored differently per row according to the results of the individual methods.
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(a) Naive (b) SNet(256)
SSL

Figure 7.11: Comparison of the naive result to SNet(256)
SSL in a scene shown in Fig. 7.4 containing errors due

to dynamic occlusions.

(a) Naive (b) SNet(256)
SSL

Figure 7.12: Comparison of the naive result to SNet(256)
SSL in a scene shown in Fig. 7.4 containing label policy

and calibration errors.

(a) Naive (b) SNet(256)
SSL

Figure 7.13: Comparison of the naive result to SNet(256)
SSL in a scene containing regular- and self-occlusions.
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(a) Naive (b) SNet(256)
SSL

Figure 7.14: Cars and bicycles extracted in the scene shown in Figure 7.13.

7.4.5 Conclusion and Discussion

In the previous sections it was shown how to transfer labels in images classified with a pretrained
DCNN into the 3D domain by exploiting the geometric correspondence between image and laser
rays in a fully calibrated system. However, due to various errors, the transfer resulted in labelling
errors in the 3D point cloud, which means that many 3D points are assigned to the wrong class. By
using two reference sets, one in 2D and one in 3D, various sources of error could be identified by
comparing the label confusion before and after the transfer. Furthermore, the amount of labelling
errors was estimated by comparing the transferred labels to the human annotated reference set in
3D. This served as a baseline for the methods that were tested afterwards.

As the number of 3D reference points is very limited, an optimal way to split the annotated
data into training and test sets was shown. This method splitted the dataset by searching for
“representative” subsets, keeping both sets locally separated. A “representative” subset means
that the labelling errors in each subset is very similar to the estimated total labelling errors.

Three methods were introduced for label error correction, all of which had to cope with a very small
annotated dataset. First, a relatively simple point-by-point correction based on gradient boosted
decision trees was introduced. Since this method is only point-wise, it helped to understand the
information gained from the different features introduced to correct labelling errors. For example,
it was shown that the measured distance itself does not contribute to the identification of a class
unless the distances are considered in context with those of other nearby points. This problem
is solved by the scanstrip-based representation used to train a DCNN to learn how to correct
the wrong labels. The introduced network was fine-tuned and later compared to other semantic
segmentation networks, which were also fine-tuned to the scanstrip dataset. It was shown that the
presented SNet achieved the highest scores on the test set compared to all other methods.

Finally, a strategy for semi-supervised semantic segmentation was introduced. This method achieved
significantly better results than all other networks by learning how to semantically segment scan-
strips from the entire (noisy) dataset. The reference dataset was only used for fine-tuning. To
illustrate the size of the training set, these 51M annotated points correspond to about 24 finely
annotated images from Cityscapes. While Cityscapes contains 25k annotated images that are nec-
essary to train a DCNN.
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7.5 Multi-View Error Correction

The methods described in the previous sections have dealt with different types of label noise
with reasonable success. However, as can be seen from Table 7.1, all of these methods have only
indirectly dealt with the cause of label noise after the labels have already been aggregated in
3D. In this section, Multi-View Networks (MVNets) are used to directly treat the cause of of
wrong classifications in 2D images. The advantages are manifold: first, it is shown that pixels
misclassified in the MMS images can be corrected. Second, a pretrained DCNN can be fine-tuned
on the corrected data, reducing the domain gap in the 2D MMS images. Finally, in the next
section, it is shown that this method extends the existing version of label transfer, where classified
pixels are simply mapped from 2D to 3D points by naive majority voting. Instead, the network
can learn to detect errors in the 2D predictions and correct them during the transfer, resulting in
less misclassification in the 3D data.

The structure of this section is similar to the previous one. First, a baseline is presented along
with the training and a test set. For training, validation and testing only the 2D reference images
shown in Figure 6.3 are used and no 3D labels. After the introduction of the baseline this section
follows the steps defined in Section 4.3.1.2:

1. First, a set of initial predictions are generated with a pretrained DCNN for the MMS dataset.

2. Then, the MVNet is trained using only sparse labels.

3. The trained MVNet is used to correct all initial predictions.

4. Finally, the pretrained DCNN is fine-tuned using the corrected predictions.

To show the superiority of the Multi-View Network approach, an ablation study is conducted com-
paring Multi-View Networks to Single-View Networks (SVNets). Here, an SVNet can be defined, as
any network that has only access to one image at a time. All steps are concluded with quantitative
and, where available, qualitative results. Finally, the conclusion of this section shows a comparison
of all methods evaluated up to that point.

7.5.1 Baseline

In Section 7.2 it was shown that Deeplabv3+ suffered from a moderate domain gap when the
pretrained network was applied on the MMS images. The estimated mIoU on the MMS images was
about 0.68, which is worse than on the original Cityscapes test set with an mIoU of 0.81. However,
Deeplabv3+ is available in different variants, which means that the backbone (encoder part) is
interchangeable. To obtain the results in Section 7.2, Deeplabv3+ was used with an xception-71
backbone, which is relatively large and consumes a lot of GPU memory. Since the networks need to
be re-trained in the following procedure, the xception-71 backbone is too large for a single Nvidia
Titan X GPU to fine-tune it, even on rescaled MMS images. To make the results as comparable as
possible, Deeplabv3+ with an xception-65 backbone is used here, meaning it has only 65 xception
layers instead of 71. The weights2 are available in the tensorflow repository. On the MMS image
dataset, it achieves a mIoU of 0.62 compared to 0.68 with xception-71. The following results are
compared to the mIoU of 0.62 obtained with Deeplabv3+2D which used xception-65 as backbone.
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(a) Scene 1 (b) Scene 2 (c) Scene 3

Figure 7.15: Three point clouds show the scenes in which the MMS images were acquired for training and
testing. The images from scene 1 are used for training. The images from scene 3 are used for validation and
testing. All point clouds are colored according to reflectance values.

7.5.2 Training, Validation and Test Sets

To meet the requirements for training and test sets, as introduced in Section 7.4.2.2, the training
and test sets are spatially divided, i.e., the data for the training set is collected at a different
location than the on of the test set. The 23 human annotated images are collected at three different
locations belonging to at least three different scanstrips, see Fig. 7.15. Scenes one and two are
used for training. The training set contains all static classes. Scene one is a wide and open area
containing mainly building, road, car, pole, traffic sign and traffic light classes. Scene two shows
a narrow urban street. In this scene, all other classes, such as wall, fence, bicycle and person, are
available. Scene three is used for validation and testing (note this scene also intersects with the
test set from Section 7.4.2.2). It is also shown in Figure 7.10 (column two) and Figure 7.11 and
contains all classes, consisting an open area and a narrow road.

In the first phase of this method, a MVNet must be trained to correct erroneous predictions of the
pretrained Deeplabv3+2D due to domain shifts. The MVNet is trained, validated, and tested only
on image pixels associated with a 3D point from the point clouds in Figure 7.15. In the second
phase, the DCNN is fine-tuned with the corrected data. As all 23 labelled images are used to train
and test the MVNet, fine-tuning the DCNN would require additional labelled data for validation
and testing. As not every 2D pixel is associated to a 3D point, there are remaining (leftover) pixels
that can be used to validate and test the fine-tuning of Deeplabv3+. To illustrate the different
training, validation and test sets and all leftover labels, the Table 7.6 shows the support for each
class for each subset

Figure 7.16 summarises and visualizes the process of creating all sets. It shows that the entire
reference set containing all 23 images is first divided into the training and test sets based on their
location. To create a validation set for training the Multi-View Networks, a portion of 50% of the
samples of each class was randomly selected from the testing set. All points associated with a 3D
point (“Associated” boxes) are used for training, validation and testing the Multi-View Network.
The remaining (“leftover”) annotations are later used for the fine-tuning step of the DCNN. In
this way, no label is used more than once and there is no overlap between the different subsets.

Because of dynamic occlusions, only classes belonging to static objects are used for training and
testing the Multi-View Networks. Table 7.6 shows that about 16.16% of the labels are used for
training and testing. This is roughly equivalent to only 3-4 labelled ground truth images. The
training and test sets contain a total amount of 12.4 M annotated examples. The reason for the
relatively small size of the training and test sets is the sparseness of the point cloud. Additionally,

2http://download.tensorflow.org/models/deeplabv3_cityscapes_train_2018_02_06.tar.gz

http://download.tensorflow.org/models/deeplabv3_cityscapes_train_2018_02_06.tar.gz
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Reference-set

Annotated
images 

Scenes 1+2

Location
based
split

Scene 3

Associated  
(train set) 

Leftover
(validation set) 

Associated 
(validation and test set)

Division into points that are associated to 3D
points and those that are the letfover set.

Division into points that are associated to 3D
points and those that are in the letfover set..

Leftover
(test set) 

Figure 7.16: Schematic overview visualizing the creation of the train, validation and test set for the Multi-
View Network (Associated). The remaining annotations are later used in the fine-tuning step of the DCNN
(leftover).

Name Road Sidewalk Building Wall Fence Pole T.Light T.Sign Veg. Terrain Used

GT Set [k] 33261 8650 16959 324 293 1344 323 81 13840 1460 76536

Train Set [k] 3405 1179 3632 82 29 244 85 6 823 150 9635

Train Set[%] 10.24 13.64 21.42 25.2 10.01 18.15 26.21 7.95 5.95 10.25 12.59

Test Set[k] 1331 381 344 4 10 26 10 4 546 74 2730

Test Set[%] 4.0 4.4 2.03 1.3 3.33 1.91 3.19 5.14 3.95 5.08 3.57

Leftover [k] 28525 7090 12983 238 254 1075 228 70 12471 1236 64170

Leftover [%] 85.76 81.96 76.55 73.5 86.66 79.93 70.6 86.91 90.11 84.67 83.84
Table 7.6: The table shows the support for the training and test subsets. The first row shows the total amount
of labelled pixels for each class. The following rows show the support for each subset in thousands (k) and
percent of the total. The last set (leftover) shows the amount of data that is not used for training or testing
because it is not associated with any 3D point.

some regions of the ground truth images are not covered at all. Also, a 3D point was only mapped
into a 2D image if it is within 60 m of the projection centre. Otherwise, calibration errors may
become too dominant. However the benefit of doing this is that the leftover set still contains 83.84%
of the ground truth labels, which can be used for the evaluation of the fine-tuned DCNN model
after the correction process. As an additional note, 17 of the total 23 ground truth images are part
of the training set and 5 images are part of the test set.

The last step is to fine-tune Deeplab on the corrected data. For this the leftover set is split into a
validation and a test set. Here, leftover labels from scenes 1 and 2 are used for validation and the
leftover from Scene 3 are used for testing the final model, see Fig. 7.16. In this way the DCNN is
validated on pixels that were never used in the multi-view training and testing steps. Additionally
it is made sure that the DCNN does not overfit because the test set contains images from a different
location as the validation set.
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7.5.3 Training Procedure

This section describes the training procedure for the Multi-View Networks. The correction net-
work MVNetDL(zi) = ỹi is trained to correct the predictions of Deeplabv3+ on the MMS image
dataset. Here zj , as described in Section 4.3.1.1 contains the multi-view RGB image patches for the
corresponding 3D point xi and the lists of image features d̂j and gj . Where d̂j are the softmaxed
scores made by the pretrained Deeplabv3+ and gi is a list containing the distances between the
3D point and the projection center corresponding to each image. The network MVNetDL(zi) = ỹi

must learn to map the observations zi to a list of ground truth labels yi. Here, yi is a list containing
a ground truth label for each multi-view observation, and ỹi is a list containing the corresponding
predictions. Since yi is sparse due to the lack of ground truth labels in all associated multi-view
images, the missing values are filled with placeholders so that yi and ỹi both have the same length.

The network is trained for 100,000 iterations and evaluated against the validation set. A small
dropout rate of 10% is chosen for training. Empirically, it could be observed that the random
deletion of list entries in zi during training is very helpful to augment the data. Therefore, a
random number of list entries were deleted at each training step as long as at least two entries
were still present. The network is optimised with Adam optimizer using default parameters with
a learning rate of λ = 0.001 and β1 = 0.9 and β2 = 0.999. The window and mini-batch size w and
b are tuned by grid search with w ∈ {0,2,4,32} and b ∈ {8,16,32,64}, where w = 0 means that
the networks do not have access to any RGB information. In all scenarios, the evaluation step is
performed every 1000 iterations on the entire validation set. Loss functions that have proven useful
in this scenario are the Generalised Dice Loss (GDL) by Sudre et al. (2017) and the Tversky loss
(T) by Salehi et al. (2017), as they are made for highly imbalanced data with multiple classes.

The Dice score is a metric which is defined as follows:

DICE = 2TP
(TP + FP ) + (TP + FN) (7.4)

Since this metric is not differentiable the GDL is used instead:

GDLi = 1 − 2
∑

c

∑
n ỹ(c,n)iy(c,n)i∑

c

∑
n ỹ(c,n)i + y(c,n)i

, (7.5)

where ỹ(c,n)i is the predicted probability for the c-th class at the n-th entry of the the list ỹi. The
ground truth is given by y as a one-hot encoded vector of length c with a one for the reference
class at the entry n. The sums are taken over all classes c ∈ C and all list entries n ∈ N . The
Tversky loss T (α,β), on the other hand, sets different weights (α,β) for false negatives (FN) and
false positives (FP).

T(α,β) = TP

TP + αFN + βFP
, (7.6)

where each term can be calculated analogously to Equation 7.5 as follows:

TP =
∑

c

∑
n

ỹ(c,n)iy(c,n)i (7.7)

FN =
∑

c

∑
n

ỹ(c,n)i(−y(c,n)i + 1) (7.8)

FP =
∑

c

∑
n

(−ỹ(c,n)i + 1)y(c,n)i (7.9)

A very important part of the Multi-View Network is the self-attention mechanism, which allows
the network to relate corresponding multi-view observations to each other, so that the information
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from one observation can be propagated to all others, helping the network to correct the predic-
tions. Recall that the network MVNetDL(zi) receives a list of multi-view observations and makes
a prediction for each list item in ỹi. Without the self-attention mechanism, the network will treat
each list element independently of the other elements. Thus, if the self-attention mechanism is
removed, the network collapses into a Single-View Network (SVNet) which has exactly the same
number of layers and trainable parameters as the original network, except for the trainable self-
attention parameters. The networks without self-attention are therefore referred to as SVNetDL(zi).
To show the superiority of the MVNet over SVNet, the MVNet is trained once with self-attention
(MVNetDL(zi)) and once without self-attention (SVNetDL(zi)).

Additionally, to show that the use of self-attention is superior to multi-view consistency (Peters
et al., 2020), another ablation study is performed in which SVNet is trained on a consistent label
list y∗

i instead of yi. To create y∗
i the majority label in yi is propagated to all unlabelled entries

in yi. This means that here, instead of correlating the input using self-attention, a single-view
network is trained on all images, but the labels are propagated to all unlabelled multi-view images.
In this way, the most frequent label is assigned to all related image pixels without replacing ground
truth labels that do not match the majority decision. A single-view network trained on y∗

i could
learn a similar representation as a Multi-View Network trained on yi, because y∗

i is dense and all
multi-view images are labelled.

In summary, three trials are performed: First, the MVNet that learns to relate the multi-view
data using self-attention. Second, training a single-view network on the same data were nothing
is related, and finally, training a single-view network were the majority label is propagated to all
unlabelled list entries. In this step the single-view network has more ground truth data as in the
second step and therefore also more training data.

Finally, note that each training procedure is deterministic, meaning that regardless of the
loss functions, the presence of the attention mechanism or label propagation, the networks are
always initialized with the same weights and always receive the same mini-batch examples in the
same iteration step. Dropout or Augmentations such image flipping are also deterministic, so the
only difference between the different outcomes are the selected hyperparameters and the presence
or absence of the self-attention mechanism.

7.5.4 Ablation Studies and Results

The grids in Figure 7.17 and 7.18 show the mIoU values for all ablation results using self-attention
vs. no self-attention. Each grid contains the mIoU for different window sizes w ∈ {0,2,4,32} and
batch sizes b ∈ {8,16,32,64}. Figure 7.17 shows the results using the Tversky loss and Figure 7.18
shows the same tests but with Dice Loss. Each training was performed once using the single-view
network SVNetDL (No Attention) shown in the grids on the left and once using the Multi-View
Network MVNetDL (Self-Attention) shown in the grids on the right. The color map shows higher
mIoU values in dark red and lower mIoU values in light red or white. For easier comparison, all
colors in the grids in this section are globally scaled, i.e. the white color corresponds to the global
minimum and the dark red color to the global maximum.

At first glance, it should be clear that the networks benefit greatly from the multi-view observations.
The MVNet performed here better in every single trial. The highest mIoU of 0.785 was obtained by
MVNetDL using the Dice Loss with b = 16 and w = 2. In contrast, the highest mIoU of SVNetDL
is 0.735 using Dice Loss and hyperparameters b = 8 and w = 4. In terms of hyperparameters,
the single-view networks suffer more from using higher batch sizes. The Multi-View Networks are
stronger regardless of batch size. This shows that MVNetDL should be easier to tune as it does not
react as strongly to different hyperparameters.
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Figure 7.17: Two grids showing the mIoU for the models using self-attention vs. no self-attention. The
networks were trained using the Tversky loss with α = 0.5 and β = 0.5 with different batch (rows) and
window sizes (columns).
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Figure 7.18: Two grids showing the mIoU for the models using self-attention vs. no self-attention. The
networks were trained using the Dice loss with different batch (rows) and window sizes (columns).
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Figure 7.19: Two grids showing the mIoU for SNet trained on the propagated labels (trial three). These
models did not use self-attention. All ablations were done once for Dice and once for Tversky loss.
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A special case in the ablation study is when the window size is w = 0, which means that each
network only has access to the predictions from Deeplabv3+. The results for the single-view net-
works all show that the predicted class distribution does not contain enough information to make
predictions better than the Deeplabv3+ baseline. This would only be possible if there was any
systematic effect in the class distributions, which apparently is not the case. On the other hand,
MVNets are clearly superior in this respect, suggesting that linking multiple predictions for the
same object is helpful for correcting errors. Looking at the columns where w ̸= 0, it can be seen
that the RGB data does increase the IoU for the single-view networks. However, the increase is still
below the performance of the MVNet without RGB data. This is best seen in Figure 7.18, where
most single-view networks that have access to RGB information lag behind Multi-View Networks
without RGB information. The fact the RGB information in itself improves performance becomes
clear when comparing w = 0 with w > 0.

Finally, the grids in Figure 7.19 show the results when the single view networks are trained on the
labels propagated through all the multi-view-images. These results are interesting as they complete
the validation of the whole approach. It can be seen that no significant advantage is obtained over
the pretrained model, neither by using the naive approach nor by linking the labels. It is only by
relating the inputs using self-attention that a significant improvement can be measured that did
not appear anywhere else in all the ablation studies. Apart from this, the grids in Figure 7.19 show
that with larger window size and batch size the results tend to be slightly worse. One reason for this
could be that the propagated labels generate label noise due to occlusions and calibration errors.
Using only the geometric correspondence between camera poses and 3D points cannot account for
these issues, and could affect the overall performance of the network.

7.5.4.1 Analysis of the Effect on Predictions Using Multiple Views

Road

Sidewalk

Build
ing

Wall
Fence

Pole

Traffic Light

Traffic Sign

Vegetatio
n

Terra
in

Classes

0.0

0.2

0.4

0.6

0.8

1.0

Io
U

Deeplabv3+Orig

Deeplabv3+2D

Deeplabv3+3D

MVNetDL

SVNetDL

Figure 7.20: Comparison of MVNetDL and SVNetDL with the baseline shown in Figure 7.2. The height of
each bar for each class is given by the mean across all experiments shown in Figure 7.18 and 7.17. The
black error bars show the standard deviation for each class within all ablation experiments. Please note the
results for Deeplabv3+2D are obtained using the total reference set and are therefore not directly comparable
to the ones of MVNetDL and SVNetDL. They are intended to show in which cases label transfer from 2D to
3D lead to an increase or decrease of IoU. The actual improvement to the Deeplabv3+ baseline is shown in
the next subsection.

At the beginning of Chapter 7.1, the baseline for label transfer from segmented images to 3D points
with Deeplabv3+ was presented. In Fig. 7.2, it was shown that Deeplabv3+ suffered from a domain
gap in the MMS images, especially for the sidewalk and wall classes. Interestingly, in these cases,
the aggregation of labels by multiple 2D observations for a single 3D point resulted in a higher mIoU
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in the 3D dataset than in the 2D MMS-dataset, suggesting that multiple observations were helpful
in mitigating label noise by majority voting over multiple predictions. Here, the network does not
propagate a label to a 3D point, but has access to exactly the same multi-view observations. It
would therefore be useful for the MVNetDL network to be able to use the multi-view observations in
the same way, by learning to propagate individual predictions through space and assigning correct
labels to pixels where Deeplabv3+ suffered from the domain gap. In the best case, MVNetDL can
learn to correct wrong predictions for, say, sidewalk and wall by using the (correct) predictions
from other views, while keeping the correct predictions in all other cases. Additionally MVNetDL
can make use of the provided features like RGB data and the initial Deeplabv3+ predictions to
learn how to correct single-view predictions.

The barplot in Figure 7.20 shows that this is the case. The blue bars show the class-wise IoU on
the original dataset (Cityscapes). The orange bars show the estimated IoU for the MMS-dataset,
where the difference between then indicates the domain gap. The green bars show the estimated
mIoU on the 3D dataset, i.e. after the label transfer. Finally, the red and violet bars show the
result for each class for the multi-view and single-view networks. These results were created by
averaging all results that where conducted in the ablation studies, therefore the black bars indicate
the variance of each result. At first glance, it can be seen that MVNetDL performs significantly
better than the single-view model in many cases, especially for the sidewalk, wall, fence, traffic
sign and terrain.

7.5.4.2 Improvement Compared to the Baseline
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Figure 7.21: Comparison of the baseline result for Deeplabv3+ before and after correction by SVNet or
MVNet, both using the same hyperparameters. All results were obtained using the same test set.

To show the actual improvement on the MMS dataset, the results for MVNetDL are compared to
the baseline predictions of Deeplabv3+ on the MMS dataset. For the Multi-View Network, the
best performing model was selected (w = 2, b = 16 with Dice loss). For reference, the single-view
network trained with the same hyperparameters is also shown. In all cases, the mIoU was calculated
using the test set presented in Section 7.5.1. Note that the performance for Deeplabv3+2D was also
calculated using the same subset to allow a fair comparison. The Figure 7.21 show that the Multi-
View Network improved the IoU in almost all classes. In terms of numbers, the mIoU increased
from 0.709 (baseline) to 0.785 (MVNetDL). In contrast, the single-view counterpart only achieved
an mIoU of 0.709 and 0.735 in the best case, showing the significant improvement due to the
Multi-View Networks. Interestingly, the Multi-View Network did not perform better in all classes
compared to the Deeplabv3+ baseline, see Fig. 7.21. It can be seen that for the class wall the
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baseline is slightly better. To compensate for this, the solution is quite simple. For classes where
the original predictions are better, a set of classes K is defined where the baseline predictions
are kept and are not replaced by the Multi-View Network. The following function M(ŷDL,ỹMV)
uses two corresponding predictions as input, one by the baseline (ŷDL) and one by the multi-view
correction network (ỹMV) and merges them in the following way:

M(ŷDL,ỹMV) =

ŷDL, if ỹMV ∈ K ∧ ŷDL ∈ static .
ỹMV, otherwise.

(7.10)

Here static defines the set of all static classes, see Table 6.2. This means that the function M returns
the base model prediction wherever the multi-view model is known to be worse, as long as the base
model prediction is part of the supported set S. By using the Equation 7.10 with K = {wall}, the
mIoU increases to 0.802, which is a good improvement over the original MVNetDL, which reached
0.785.

7.5.5 Qualitative Evaluation

RGB Deeplabv3+ MVNetDL

Figure 7.22: Qualitative comparison of the original predictions by Deeplabv3+ (middle) and the predictions
by MVNetDL. The left column shows the original images. The column in the middle shows the predictions
from Deeplabv3+ if a 3D point is available. The right column shows the corrected predictions by MVNetDL
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For qualitative evaluation, the prediction ỹi by MVNetDL(zi) are shown in the respective image.
For better visibility, the drawing size of each pixel was increased depending on the distance between
the 3D point and the camera center.

The images in Fig. 7.22 show some examples before and after correction in 2D by MVNetDL

without using Equation 7.10 to merge the results. The images are generated by drawing only
pixels in which a 3D point is associated with the corresponding 2D pixel, or in other words, if the
point cloud were projected into the respective image, the 2D predictions are shown only if a 3D
point would also be visible. However, as the Multi-View Networks can only correct static classes
in the MMS image dataset, it is unclear what to do with pixels that belong to a dynamic class
according to Deeplabv3+. If a pixel is associated with a 3D point and Deeplabv3+ has predicted a
dynamic class, the dynamic class simply replaces the prediction with MVNetDL(zi) and is drawn
into the image instead. This is the reason why cars or pedestrians can be seen to some extent in
the images shown.

The first thing to notice in the pictures is that the missing sidewalk (pink) could be restored in
most of the pictures. On the other hand, correct predictions were not changed. Fig. 7.22 shows
that in the first row in the background the detected fence was correctly changed to wall. Similarly
the wrongly detected vegetation on the ground is altered to terrain (light green). The second and
third rows are showing two restored sidewalks which were not available in the original Deeplab
predictions. Additionally in the second row the fence and terrain in the background around the
church are correctly predicted by MVNetDL.

RGB Deeplabv3+ MVNetDL

Figure 7.23: An example of an error case for MVNet. The first image shows a traffic-calmed road (red
ellipse), correctly classified by Deeplabv3+ (middle image) as road (purple) and by MVNetDL (right image)
predominantly as sidewalk (pink).

In some rare cases the Multi-View Network fails to predict the correct class as shown in Fig. 7.23.
in this example, MVNet classified most of the road as a sidewalk, which is obviously wrong.

7.5.6 Retraining Semantic Segmentation Networks

In this section, several studies are performed to measure and compare the fine-tuning of Deeplabv3+
on the MMS data. In the main study, Deeplabv3+ is fine-tuned on a dataset with 2636 image
pairs and labeled images by MVNetDL. The labels are created by using the merge strategy ac-
cording to Equation 7.10. Figure 7.24 shows some randomly selected examples from this dataset.
Fine-tuning is done by training Deeplabv3+ for 20 epochs using the Adam optimizer with the
default parameters, i.e., a learning rate of λ = 0.001 and β1 = 0.9 and β2 = 0.999. However, the
learning rate halves every 5 epochs if the validation mIoU has not increased. Since the xception
backbone is computationally very expensive, the batch size is set to 4 and the image size is reduced
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Figure 7.24: Randomly sampled pairs of images and labelled images created by MVNet using the merge
strategy from Equation 7.10. The RGB images show the input data and the images to the right shows the
predictions by MVNet which are used as pseudo labels for fine-tuning of Deeplabv3+.

by 0.6, i.e., it is set to 1233 × 1471 pixels which are the maximum values a single Nvidia Titan
X with 12GB can handle for training. To prevent overfitting of the network, the backbone of the
network is frozen and only the decoder part of Deeplabv3+ is trained. This is also done in the
ablation studies. This trial will be referred to as DLMV in the following.

To evaluate and rank the fine-tuning results, three ablation studies are performed. First, the
pretrained Deeplabv3+ network is fine-tuned directly on the training data that was available for
MVNet using almost the same hyperparameters as above. It is expected that the network will
overfit as the training set contains very few reference labels. Therefore, the learning rate is reduced
to 0.0004 and an additional weight decay is added with a factor of 10−6. Since this study relies
only on supervised fine-tuning, it is referred to in the results as the Naive Approach.

The second ablation study will use a self-training approach. Similar to the work of Zhu et al.
(2020), Deeplabv3+ will be jointly fine-tuned to pseudo-labels and the training set used for training
MVNet using a student-teacher approach. The pseudo-labels are generated using the pretrained
“teacher” DCNN on the same 2636 images as in the main study. For a fair comparison, the approach
by Zhu et al. (2020) is slightly adjusted, but still follows the general strategy. The “student”
network is the same network as in first trial and uses a frozen encoder. Instead of stochastic
gradient descent, the same optimizer with the same hyperparameters in the main study is used.
Also instead of training on cropped images, the student is trained on the same images as in the
main experiment. In the original implementation, Zhu et al. (2020) merged the sets of reference
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images and pseudo-labelled images into one training set from which random samples are drawn.
A similar approach is taken here, but since the training set contains only 17 images, the ground
truth images are shown twice per epoch, once in their original form and once flipped horizontally
(left-right flipped). This study is referred to as self-trained in the following results.

In the third ablation, DLMV is extended to include the self-training paradigm from the previous
ablation study. Here Deeplabv3+ is jointly fine-tuned on the corrected images from MVNet and on
the sparse ground truth data. Apart from this, nothing is changed to the main study. This study
is referred to as DLMV,ST .

To make the studies fair, all ablation studies containing human-annotated ground truth data
(naive, self-trained, DLMV and DLMV,ST ) are trained on exactly the same labels that MVNet was
trained on (see Figure 7.16 “Associated train set”). Please note that the validation and test sets
are the same in all studies (see Figure 7.16 “Associated validation and test set”). As no labels for
dynamic objects were used in the training process of MVNet, the labels for dynamic objects from
the “leftover validation set” (see Figure 7.16) are also included in the validation set, which were
not previously used in any other study or trial. Finally, testing is done on the “leftover test set”(see
Figure 7.16) which contains labels that neither MVNet nor any other network has previously seen
or been trained.

7.5.7 Results of the Retraining Process

Qualitative results before and after fine-tuning are shown in Figure 7.25. The pretrained network
without any fine-tuning shows relatively good results. The most striking error is that sidewalk is
often confused with road. For example in the last row of Figure 7.25, Deeplabv3+ merely recognized
the sidewalk on the left and the island in the left center of the image. Similar cases can be seen
in the third row and fourth row on the left of the images. The same applies for the class terrain
that was sometimes confused with vegetation, for example in the fourth row on the right. Using
self-training labels only improved this problem slightly and even when the network was trained
directly on the ground truth the sidewalks still has some gaps in the predictions. The network that
was fine-tuned on the corrected dataset by MVNet has almost none of these errors.

Method

mIoU
Val mIoU

Test mIoU

(static classes)

Test mIoU

(dynamic classes)
Test mIoU

Deeplabv3+

(pretrained)
0.611 0.674 0.492 0.632

Naive 0.767 0.705 0.374 0.628

Self-Trained

(Zhu et al., 2020)
0.638 0.691 0.533 0.663

DLMV 0.701 0.749 0.516 0.696

DLMV,ST 0.719 0.753 0.492 0.692
Table 7.7: Table with all the results for the individual ablation studies. The mIoU is given for the validation
(Val mIoU) and testing sets (Test mIoU). In addition, the test MIoU is also shown separately for static
classes (third column) and dynamic classes (fourth column).



7.5 Multi-View Error Correction 117

Input Deeplabv3+ Self-trained Naive DLMV GT

Figure 7.25: Results on the “leftover test set” (see Figure 7.16). The first column shows the input and the last
column shows the ground truth data. The columns Deeplabv3+ show the pretrained model, Pseudo shows the
model after training with pseudo-labelling and fine-tuned shows the pretrained model after training directly
on the train-set. DLMV shows the fine-tuned model on the corrected dataset by MVNet.

Table 7.7 shows the results on the training, validation and test sets for all studies. The evaluation
was performed separately for dynamic and static classes. As no labels for dynamic objects were
used in the training process, it is expected that the fine-tuned DCNN will mainly improve the
classification performance for static classes. The performance for dynamic classes is nevertheless
interesting, as the network should not deteriorate here after fine-tuning. As Baseline the pretrained
Deepblav3+ achieves an mIoU of 0.63 for all classes and 0.67 for static classes. With naive fine-
tuning on the training set, the network performance is slightly better (second row) for static
classes. However as the dynamic classes deteriorated with naive fine-tuning the test mIoU actually
got worse. Using self-training (third row) significantly improved the performance for dynamic and
slightly for static classes. When comparing the validation mIoUs with the test mIoUs it can be
seen that by far the biggest gap occurs when the network was naively fine-tuned on the reference
set, suggesting that this network overfitted to the data. Overall, self-training improved the test
mIoU from 0.63 to 0.66 using only very few labels. The best results are achieved by the DCNN
fine-tuned on the pseudo-labels from MVNet. Here the mIoU increased significantly for all static
classes from 0.67 to 0.75.

In Figure 7.26 all IoU values per class are visually compared. It can be seen that the network
trained on the corrected MVNet dataset achieves a very good result almost everywhere. The bar
chart also supports the findings from the qualitative evaluation that Deeplabv3+ performs best
on the classes sidewalk and terrain when trained on the corrected dataset. Finally, Figure 7.27
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Figure 7.26: Comparison of the IoU per class for all ablation studies. Note that class person is not included
in the test set.

shows some randomly drawn results from the MMS image dataset that were not part anywhere in
training, validation or testing subsets. It compares the predictions of all experiments from different
locations that have not yet been used in the training processes. These image should further support
that the predictions of the fine-tuned Deeplabv3+ network are very consistent and that the network
has improved its overall performance compared to the others.

7.5.8 Conclusion and Discussion

This chapter had two objectives, the first was to evaluate the Multi-View Network as a tool for
dealing with unordered, multi-view observations of variable length. These networks are able to
relate and extract clues from corresponding multi-view images. It was shown that using the Multi-
View Network significantly outperformed the corresponding Single-View Network. Even when the
network only had access to the prediction of each central pixel, it was able to use the relationship
between all of them to achieve a higher mIoU than most other Single-View Networks that had
access to even more features. It is assumed that the reason for the higher performance lies in the
ability to relate different predictions.

The second goal was to show that the Multi-View Network generalises well enough that its
prediction can be used to fine-tune a DCNN in the new target domain. Of course, the DCNN can
be fine-tuned directly using the target reference data. But as studies have shown, the DCNN easily
overfits to the training set since it only contains the amount of labels of three to four images. Even
though the pretrained DCNN performed relatively well on the MMS-dataset the network increased
its performance by 8 % for static classes.

Further improvements of the Multi-View Network are up to discussion. The network might benefit
from semi-supervision, as the Scanstrip Network did in Section 7.4.3. By pretraining the Multi-
View Network with the predictions of the DCNN as pseudo-labels and later exchanging them with
the reference labels in the fine-tuning step. It is also conceivable to convert a pretrained DCNN into
a Multi-View Network and thus use transfer learning to achieve better performance. Finally since
deep learning methods are known to require a lot of training data, it would be interesting to see
how the network performs on a much larger multi-view dataset. Here it would be interesting to see
if the Multi-View Network is able to reduce the known error cases and maintain the performance
gap to corresponding single-view networks.
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Input Deeplabv3+ Self-Trained Naive DLMV

Figure 7.27: Randomly selected images from the MMS dataset except for the training, validation and test
set. The first column shows the input for the networks. The columns Deeplabv3+, Self-Trained, Naive, and
DLMV show the respective experiments.
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7.6 Multi-View Label Transfer Learning

As seen in Table 5.2, the previous sections have shown how to deal implicitly or explicitly with error
causes in label transfer. Each of the sections has shown how to improve over the previously shown
baseline by filling the domain gap in the target dataset or dealing with different types of occlusions
in the mapping process. In this section, all the methods shown so far are combined to learn label
transfer end-to-end. As explained in Section 4.3.2, the Label Transfer Network (LTNet) works by
combining the MVNet from the previous section with the Scanstrip Network from the first section
so that it has access to 3D and multiple 2D observations simultaneously. The 2D observations
allow the LTNet to learn how to suppress wrong predictions by the pretrained DCNN in order to
assign a correct label to the corresponding 3D point. By observing local 3D structures using the
SNet generated features, the network can learn about different types of occlusions, calibration or
label errors.

As shown in Fig. 4.14, LTNet is trained using the 3D reference set. In this section, the creation of
the training ,validation set is skipped as this approach uses exactly the same sets as presented in
Section 7.3 to make it directly comparable to the previous results obtained for SNet and SNetSSL.

7.6.1 Training Procedure

First, the notation of LTNet(zj ,vj ,Ω(SNetSSL(Sj),n − 1)j) from Section 4.3.2 is briefly repeated.
The network LTNet consists of two subnetworks, a 2D multi-view branch and a scanstrip branch,
see Fig. 4.14. The multi-view branch receives the lists zj and vj which contain the multi-view
image features and the 3D point features corresponding to the 3D point pj . The 3D branch is
given by the the feature vector Ω(SNetSSL(Sj),n − 1)j) which is extracted from a scanstrip Sj

using the pretrained network SNetSSL from Section 7.4.3. For tuning the LTNet a grid search
was performed with the following hyperparameters: Similar to Section 7.5, the batch size b ∈
{8,16,32} and the window size w ∈ {0,8,32} were tuned. In addition, each trial was conducted
with and without the attention mechanism. To compare the influence of both parts (the multi-
view part and the scanstrip network), each trial was also run with only the Multi-View Network
LTNet(zj ,vj) and only the scanstrip features LTNet(Ω(SNetSSL(Sj),n− 1)j). To be more precise,
both subnetworks, the Multi-View Network part and the scanstrip part, extract a fixed size feature
vector, which are concatenated and passed together to two successive fully-connected layers that
return the final prediction, see Fig. 4.14. In the first case, where the 3D features are not available,
the scanstrip feature vector is not passed to the fully-connected layers. In the other case, where
only the scanstrip feature vector Ω(SNetSSL(Sj),n−1)j is available, the Multi-View Network is not
concatenated to the fully-connected layers. Finally, all trials were performed with cross-entropy as
loss function, resulting in a total of 30 different trials. In all cases the features Ω(SNetSSL(Sj),n−1)j

were extracted from SNet(256)
SSL , which is described in Section 4.2.2. Every model was trained for

50k iteration using Adam optimizer with standard parameters (λ = 0.001,β1 = 0.9β2 = 0.999).
For multi-view observations only camera images within a range of 40m from the 3D point were
considered. Similar to the previous ablation studies, care was taken to ensure that all trials were
deterministic, meaning that the weights were initialised with the same values in all cases and the
networks received the same mini-batch samples as long as they had the same hyperparameters.
Aspects such as augmentation (random image flipping) and dropout were also deterministic.

A Problem that has not yet been addressed is the complexity of the input data structure.
Due to the multi-view inputs, the network needs to have access to different image patches, image
predictions and 3D features at the same time. For training the LTNet, this means that the network
needs access to 1519 different images and another 686 images for testing. The training images alone
consume about 23 GB of memory and the corresponding predicted class distributions (a vector
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of length 19 for each pixel) from Deeplabv3+, stored as 32bit floats, require about 582 GB of
memory. In addition, the features for each point in 3D are collected in a vector of length 64, stored
as 32-bit floats and requiring around 45 GB of memory. Traditionally, in most frameworks, the
images are preprocessed in parallel as mini-batches and added to a queue from which the main
loop retrieves the batches for training. In this case, that means that for a single sample for LTNet,
these data generators would have to load multiple corresponding images, make predictions for the
central pixels, and load the corresponding 3D feature for the 3D point. As it is difficult to estimate
in advance which images will be loaded, because mini-batches should be sampled randomly, this
process is very time consuming. There are many ways to solve this problem. First, all the data
can be preprocessed once and stored on disk, which (1) consumes a lot of HDD memory because
some data is stored redundantly, and (2) the data must be processed each time for different
hyperparameters such as the size of the input window. The second solution stores only the pointer
to the data and the raw input data, so the batches are created on the fly. This solution is the
slowest, but uses the least memory. Here, a hybrid solution was chosen, where the data that does
not change depending on the hyperparameters is preprocessed and stored in a hierarchical data
format (HDF5), and other data such as the input images are stored as pointers, so that the image
patches can be looked up on the fly. To be sufficiently fast, this means that all images were kept
in memory. Still, the training and overall inference speed is something that should be addressed
in future work and will be discussed in the conclusion.

7.6.2 Ablation Studies and Results

Figures 7.28 and 7.29 show the results of the grid search for hyperparameter tuning of LTNet. In
Section 7.4.3 SNet(256)

SSL achieved an mIoU of 0.71. A look at the 7.28 Figure shows that the LTNet
performed better in almost all cases than SNet(256)

SSL . The general result and the influence of the
self-attention mechanism are discussed in the following subsection. The influence on those results
with respect to the individual branches of the network, i.e., the impact of the 2D and 3D features,
is discussed in the section after that.
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Figure 7.28: mIoU on the test set for LTNet using no attention (left) or self-attention (right) in the multi-
view branch. The networks were trained using cross-entropy with different batch (rows) and window sizes
(columns).

Comparing both grids in Figure 7.28 shows the impact of the self-attention mechanism in the
multi-view subnetwork. The network with no attention, a batch size of 32, and a window size of 0
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performed best by a very small margin. However, comparing the two grids, the best performance is
very similar. This raises the question of whether self-attention is necessary in this network design,
since it did not significantly increase the mIoU. It is important to note that this finding does not
contradict the previous results from the Multi-View Networks. Although both models, MVNet and
LTNet, have similarities in their network design, the main difference in LTNet is that all multi-view
feature vectors are aggregated into one fixed-size feature vector using average pooling. Apparently,
the use of self-attention and thus the linking of all observations before aggregation does not provide
an advantage as significant as in Multi-View Networks.

Impact of 2D and 3D Features
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Figure 7.29: Two grids showing the test-mIoU for the models using only multi-view (2D) features vs using
only the scanstrip feature vector (3D). The networks were trained using cross-entropy with different batch
(rows) and window sizes (columns).

The grids in Figure 7.29 compares results for subnetworks having only access to either the multi-
view data (2D) or to the feature vector extracted from SNet(256)

SSL (3D). As expected, the network
that only has access to the scanstrip feature vector performs very much like the original SNet(256)

SSL .
The reason for this is that no additional information has been added and therefore the performance
depends on the loss that move around the local optimum. More interesting is the grid on the left
side of Fig. 7.29. This grid shows that if the network relies almost entirely on 2D features for label
transfer, it will not be able to obtain an mIoU above 0.655 (LTNet(li,ŷi,ri)w=32,bs=8).

To analyze this further, two confusion matrices are shown in Fig. 7.30. The matrix on the left
shows the confusion when the network has no access to the 3D features by SN(256)

SSL and the
matrix on the right shows when the same network has access to those 3D features. The matrices
are normalized per row, similar to the confusion matrix shown in the baseline. For Figure 7.30
the matrix on the left shows a very similar pattern to the one shown in the baseline, see Fig. 7.3
(right matrix). It is reasonable that LTNet without the 3D scanstrip features would create similar
errors because it is hard to map the corresponding 2D image labels to a 3D point without having
much information about the 3D point and its neighbors. Therefore, these errors can also be seen
here, such as calibration errors with classes that have a small or thin physical size, such as pole,
traffic light and traffic sign. These classes are often confused with surrounding objects such as
street, sidewalk and building that are not semantically similar. Similarly, dynamic objects such as
person, car, truck, and bicycles are confused with surrounding classes due to dynamic occlusions.
However, as can be seen in the right confusion matrix, these problems become less severe when the
3D features from SNet(256)

SSL are also added (especially for dynamic classes) Not only is the overall
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Figure 7.30: Two confusion matrices for LTNetw=0,bs=32. The left shows the confusion when only multi-view
features (without 3D scanstrip information) are used. The right side shows the results when all features are
used. The matrices are normalized per row.

accuracy higher here, but there is also often less confusion with surrounding objects. This suggests
that LTNet can directly account for these problem to map the correct label from 2D to 3D.

Comparing the Results to Previous Methods
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Figure 7.31: Comparison of IoU per class between naive baseline (blue), semi-supervised scanstrip network
(orange) and LTNet (green).

Of all the ablation studies, LTNet achieved a best-case mIoU of 0.75. Compared to the other
networks (see Table 7.5), this is significantly higher than all competitors. As this network used no
additional reference data and exactly the same training, validation and test splits as the others,
this is a fair comparison. The IoU per class is shown in Figure 7.31, comparing LTNet to the naive
baseline and the former best network SNet(256)

SSL . The Figure shows that LTNet outperforms its
competitors for most classes. In particular, for the classes wall, traffic light, person, car and truck,
the IoU is significantly higher.
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Table 7.8: Comparison of methods applied directly to the scanstrip and LTNet. All networks were trained,
validated and tested on the same sets. The input patch size is 256 × 256 in all cases.

Method SNet SNet(256)
SSL HRNet FCN U-Net Deeplabv3+ LTNet

mIoU 0.665 0.709 0.628 0.549 0.630 0.620 0.750

7.6.3 Qualitative Evaluation

For qualitative assessment, the results of LTNet are compared with the best method so far,
SNet(256)

SSL for six scenes in Fig. 7.32. The scenes were chosen so that some show the differences
in detail and others as an overall view. At a first glance, the predictions look relatively similar.
Recalling the results from Figure 7.31, it can be seen that LTNet achieved generally a higher IoU
for the classes person, wall and traffic light.

Row 1 and 2 show examples where LTNet was able to successfully detect people, unlike SNet.
Row 2 shows a scene where a person is standing in the entrance of a small shop. Unlike LTNet,
SNet(256)

SSL was not able to segment the person in the entrance correctly. The pole in the foreground
is also not as well segmented by SNet as by LTNet. On the other hand, LTNet classifies the bicycle
trailer as a person and also suffers more from label-bleeding (seen in the red speckles around the
trailer and the person). Label bleeding especially around pedestrians occurs very frequently by
LTNet in the results of LTNet shown in Fig. 7.32.

Row 3 is a representative scene showing almost all cases where LTNet performs better as SNet.
First, LTNet successfully detected the people on the sidewalk, while SNet failed to do so. Secondly,
the wall (blue-grey) and the fence (light-brown) along the pavement were also not detected by
SNet, but almost completely detected by LTNet. Thirdly, the traffic signs (yellow) and traffic
lights (orange) were slightly better detected by LTNet. Finally, on the right, one can see some
poles that were partially classified as vegetation by SNet but were correctly detected by LTNet.

Row 4 and 5 show two scenes from the same scanstrip. LTNet was able to recognize the people
better in almost all cases. However, LTNet also suffers more from label bleeding and gives more
inhomogeneous results than SNet. This can be seen, for example, on the facades in row 4, where
many points were classified as person. A likely reason for this is that LTNet, unlike SNet, makes
a point-by-point prediction. This is a problem that needs to be addressed in further research. A
possible solution could be to adapt LTNet to make predictions for all 3D points within the input
scanstrip patch.

7.6.4 Conclusion and Discussion

In this section LTNet from Chapter 4.3.2 was evaluated. In various ablation studies, LTNet has
shown to outperform the previously presented methods for almost all classes. However, the use of
self-attention in the multi-view subnet gave generally worse results, especially for smaller batch
sizes. The possible reason for this is that after applying self-attention, the encoded multi-view
observations are combined into a fixed-size vector, potentially rendering the relation of all obser-
vations useless. In a second ablation study, both sub-networks were tested and it was confirmed
that LTNet can only achieve this quality by combining 2D and 3D observations. By comparing
the confusion matrices created with and without the use of 3D features, it was shown that very
similar patterns to naive label transfer emerge when no 3D features are used (Fig. 7.3). Finally,
in the qualitative evaluation, LTNet was shown to be able to produce high quality semantic la-
bels. However, as discussed earlier, this approach suffers from label bleeding and inhomogeneous
predictions in some cases, which leaves room for improvement and further research



7.6 Multi-View Label Transfer Learning 125

Reflectance SN(256)
SSL LTNet

Figure 7.32: Qualitative comparison of the semi-supervised scanstrip network SNSSL presented in Chapter
4.2.2 with LTnet for 5 different scenes (rows). The left column shows the reflectance values, the middle
column the predictions by SNSSL and the right column the predictions from LTNet. In total, four different
scanstrips from the test set are shown, with rows two and three as well as five and six belonging to the same
scanstrip.
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7.7 Summary and Conclusion

This chapter systematically analysed problems and demonstrated solutions for label transfer from
2D to 3D data in a fully calibrated mobile mapping system. Using two reference sets, one in 2D and
one in 3D, it was first analysed how good labels can be naively assigned to 3D points using majority
voting over multiple 2D image pixel predictions. Figure 7.2 shows the influence of the domain gap
between the Cityscapes and the MMS image data, as well as the amount of label errors in the
image datasets and after label transfer in the 3D point cloud. The two confusion matrices (Fig. 7.3)
revealed different error types, which are shown in the Table 7.1. In the subsequent sections of this
chapter, this knowledge was used as a starting point.

In the second part, two “indirect” solutions were presented: The first solution used a gradient
boosted decision tree trained on the 3D reference set for a pointwise label-noise correction. Even
though this solution was the worst of all the trained models, it helped to gain insights into the
features introduced. By using scanstrips, it was possible to apply classical 2D convolutional neural
networks to the 3D data that are able to take the context of each 3D point into account. The
introduced scanstrip network was able to beat state-of-the-art networks as well as two similar
networks in the task of 3D semantic segmentation. Finally by additionally using unlabelled data
the network could be trained in a semi-supervised fashion, which achieved even better results.

In Section 7.5 the Multi-View Networks were analysed that helped to bridge the domain gap be-
tween Cityscapes and MMS image datasets. Various ablation studies demonstrated the significant
improvements achieved by Multi-View Networks as opposed to simple single-image networks. A
possible reason for that could be that multi-view images help to increase the generalisation abil-
ity of the network by linking the reference data with other multi-view observations. Through the
mechanism of self-attention, the MVNet also gained the ability to propagate information through
all multi-view images to learn how to correct errors in the predictions. By using the predictions by
MVNet as pseudo-labels to fine-tune a pretrained Deeplabv3+, it was shown that the domain gap
can be reduced to a level very close to the original model with only 3-4 frames of training data.

In Section 7.6, the previously presented models were combined to create LTNet, a network that
is able to learn the label transfer “directly” in an end-to-end manner. Consequently, this model
achieved the best performance among all the competitors because it is able to parse multi-view
image information and directly learns how to map the predictions into 3D space. Various ablation
studies have shown the importance of all network parts and design choices.
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In this section, the methods evaluated in Chapter 7.1 are combined with self-supervised learning.
First, the conditional GAN from Section 5.1 is tested. It learns to map from projected 3D point
clouds to realistic-looking 2D RGB images. By applying a pretrained DCNNs to the synthesized
images, the CGAN can act as an interface to map the 2D image predictions into a 3D point cloud
without requiring access to a fully calibrated mapping system or even a camera.

In Section 8.2 the GAN from Section 5.2 will be tested. It is trained in a self-supervised manner to
complete self-occluded 3D objects in voxel grids. Self-occlusion can lead to label transfer problems,
resulting in label bleeding or blending between object edges. It is shown that the GAN is capable
of completing different types of distinct object classes from only incomplete observations. By
causing the discriminator to discard points with insufficient point density, the generator is forced
to produce complete point clouds with high point density. Finally, it is shown that the GAN is
capable of completing different types of synthetic data as well as from real car scans automatically
collected from the MMS dataset and from KITTI.

8.1 Photorealistic Point Cloud Rendering

Photorealistic point cloud rendering requires the training of the CGAN presented in Section 5.1 on
pairs of projected point clouds and RGB images. An additional input to the generator is the date
of the captured image, which is mapped from a one-hot encoded vector onto the bottleneck of the
generator. Using the month of acquisition as a parameter, it is shown that it is possible to map
the same point cloud to many different possible outcomes, each resembling a different season. It is
shown that the CGAN is capable of capturing different seasonal characteristics, such as snow in
winter or green trees in summer, which it can predict for the same input point cloud. The prediction
quality and generalization ability are evaluated using various metrics such as Multi Scale Structural
Similarity (MS-SSIM) or Fréchet Inception Distance (FID). By semantically segmenting 2D real
images and computing the mIoU to the corresponding classified generated 2D image, it can be
shown that the synthesized images are realistic enough to be correctly interpreted by a pretrained
DCNN. As the GAN can make predictions for almost any perspective, it will be shown that it is
possible to combine different predictions to generate HD images. Finally the synthesized images
will replace the MMS-images in the naive label transfer. It will be shown that this method suffers
less from dynamic occlusions, even though no ground truth data was used.

8.1.1 Training Procedure

The CGAN was trained for 20 epochs with a batch size of one using the data presented in Section
6.2 using the hadoop rendering algorithm. As the CGAN only allows an input size of 512 × 512
pixels every input output pair was centrally cropped to a size of 1024×1024 pixels and then resized
to 512 × 512 pixels using bilinear interpolation. Please note that only the central area has been
cropped, as these areas are denser in the projected images than on the edges. For training the
loss functions defined in Section 5.1 was optimized using Adam optimizer with a learning rate of
λ = 0.0002 and β1 = 0.5 for the discriminator and the generator.

127
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8.1.2 Quantitative Evaluation

Evaluating a GAN is often not as straightforward as evaluating a classifier, s. (Shmelkov et al., 2018)
or (Heusel et al., 2017). For quantitative evaluation, the Fréchet Inception Distance (FID) by Heusel
et al. (2017) and the Multi Scale Structural Similarity (MS-SSIM) by Wang et al. (2004) and Wang
et al. (2003) between the synthesized and the target images were calculated. The FID measures
the Fréchet distance between the embedding distributions of the real and synthesized images. Both
distributions are generated by extracting the features from the penultimate layer of a pretrained
inception-v3 network. The synthesized distribution Xg = N (µg,Σg) and the target distributions
Xt = N (µt,Σt) are modeled as multidimensional Gaussian distributions parameterized by their
mean µt,µg and covariance Σt,Σg. The FID score is calculated using the following equation:

FID = ||µt − µg||2 + Tr(Σt + Σg − 2(ΣtΣg)1/2) (8.1)

An FID score of zero corresponds to a perfect match between both distributions. The FID treats
each image as a high-dimensional sample of a distribution that the generator must approximate.
Multi Scale Structural Similarity, on the other hand, extracts metrics directly from the images
and compares them. This involves calculating the distances between the luminance, contrast, and
texture of the images at different scales (Wang et al., 2004). The score is then computed by the
weighted product of all three terms. Both scores are calculated once for all training images to
measure the overall performance and once per measurement campaign to see if the generator is
able to capture the different seasonal characteristics of each campaign. In both cases, the images
are generated in the same pose as the camera and according to the date of capture.

Table 8.1: FID and MS-SSIM scores computed for every campaign. The closer FID is to zero the better.
MS-SSIM is bound between -1 and 1, where 1 indicates a perfect match between real and generated images.

Campaign 0 1 2 3 4 5 6

FID ↓ 13.1 15.5 12.9 12.4 11.9 14.3 14.8
MS-SSIM ↑ 0.54 0.47 0.54 0.59 0.56 0.5 0.55

Campaign 7 8 9 10 11 12 13

FID ↓ 15.4 13.3 12.7 12.7 14.0 31.0 34.2
MS-SSIM ↑ 0.51 0.55 0.54 0.54 0.49 0.43 0.43

Campaign All

FID ↓ 9.6
MS-SSIM ↑ 0.51

Table 8.1 shows how well the CGAN is able to capture the characteristics of the individual mapping
campaigns (Campaign 0-13) and the entire dataset (All). It was calculated on the data presented
in Section 6.2. The results for FID and MS-SSIM show that the quality of the generated images
is quite similar in all campaigns, except in campaigns 12 and 13. In campaign 12 and 13 the level
of agreement between the generated and the real images is lower. A possible explanation could be
that these campaigns took place in winter and were partly captured at night. As a result, many
dark images with image noise were captured. In contrast, all other campaigns contain images takes
in daylight. Therefore it could be assumed that the CGAN prefers to produce brighter images. To
tackle this problem, the brightness of the images or time of the day could be used as parameters
too, so that the CGAN can learn whether the target image should be bright or not. For comparison
Atienza (2019) rendered point clouds from ShapeNet data. As a rough guide for the values in Table
8.1 and to show how well the CGAN performs, Atienza (2019) calculated a FID score of 31.5 and
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a best-case MS-SSIM score of 0.64. The FID score by Atienza (2019) was also calculated using
an inception-v3 network pretrained on ImageNet, which should make the two values comparable.
However, it should be noted that both scores are difficult to compare because the methods were
trained on different datasets. The FID score is also dependent on the number of samples, which
should not be a problem in this case, because every campaign has roughly the same number of
images.

The next experiment aims to provide information on how close the CGAN is to the real image
according to a DCNN trained only on real images. For this purpose, the real images and the cor-
responding synthetically generated images were semantically segmented using Deeplabv3+. The
semantically segmented real images are used as reference set and are compared with the syntheti-
cally segmented images. By measuring the mIoU between the two sets, it becomes clear how close
the two sets are, because the DCNN should predict the same classes per pixel if the images are
the same or at least very close. For this experiment two pretrained Deeplabv3+ models were used.
One was trained on Cityscapes and the other one on PASCAL VOC 2012 (Cordts et al., 2016;
Everingham et al., 2010). In contrast to Cityscapes the PASCAL VOC 2012 dataset has a class
called background which can be useful in some tests. As test set a new and independent dataset
was created, taken in February 2017 in Karlsruhe. This city was never part of the training set and
will therefore be a good indicator whether the CGAN is able to synthesize RGB images for a un-
seen location. Apart from that, the Data was acquired with the same mobile mapping system and
processed in the same way as presented in Section 6.2. Additionally, the CGAN is tested against
the reference set for the MMS images presented in 6.1.1. Here, the GAN generates RGB images
for each ground truth image, which are then passed to Deeplabv3+ (trained on Cityscapes). The
predictions can then be compared to the reference set. However, due to dynamic occlusions, it is
not possible to evaluate dynamic objects in any experiment. Table 8.2 therefore contains only IoU
for static classes.

Table 8.2: IoU between real and synthesized images (Karlsruhe) and also between synthesized images and
the reference set 6.1.1 (Reference Set). As Baseline the IoU is also given between the original MMS-images
and the reference set (MMS-Set). Predictions were made with Deeplabv3+ pretrained on Cityscapes

classes Karlsruhe [IoU] Reference Set [IoU] MMS-Set [IoU]
road 0.845 0.797 0.838
sidewalk 0.289 0.152 0.335
building 0.561 0.695 0.900
wall 0.186 0.013 0.215
fence 0.218 0.056 0.590
pole 0.177 0.144 0.700
traffic light 0.013 0.027 0.592
traffic sign 0.150 0.255 0.472
vegetation 0.806 0.687 0.870
terrain 0.330 0.208 0.716
sky 0.813 0.818 0.935
mIoU 0.399 0.350 0.651

Three columns are given in the Table 8.2. In the first two columns, the CGAN predicted RGB
images, which were then semantically segmented by Deeplabv3+. For the first column, the IoU
was calculated between the predictions by Deeplabv3+ on the original (real) Karlsruhe images and
the synthesized ones. In the second column, the IoU was calculated between the predictions for
the synthetically generated images and the corresponding human annotated reference set shown
in Figure 6.3. For reference the third column shows the baseline prediction of Deeplabv3+ on the
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real images with respect to the same reference set as in column two. These results have already
been shown in Chapter 7.2.

The Table shows that Deepblabv3+ can recognize some of the synthesized classes quite well and
others, such as. traffic light, barely at all. It should be emphasized that Deepblabv3+ suffers from
a domain gap, as described in 7.2, which increases the error rate. For comparison: (Wang et al.,
2018a) achieved an mIoU of 0.639 using a very similar approach. They semantically segmented
synthetically generated Cityscapes images and compared them to the test set in Cityscapes. Apart
from this, it can be seen that predictions on objects with a larger physical size such as roads,
buildings, vegetation and sky achieve a higher IoU. The only exception here is the sidewalk; it is
already known that Deepblabv3+ performs poorly on the MMS dataset (column MMS-Set row
sidewalk), which could be the reason why it cannot detect this class in the synthesized images
either. Finally, other errors such as calibration errors or occlusions may also affect the result.
Regarding the “season” parameter, it should be noted that the CGAN has been set to generate
images for the same date in which they were acquired in the mapping campaign. Overall the mIoU
decreased by roughly 0.3 from the real MMS-images to the synthesized images. Later experiments
will show that this can be compensated by using the procedure presented in Chapter 4.3

8.1.3 Qualitative Evaluation

Figure 8.1: Input image (reflectance, left), synthesized image (middle) and real image (right)

For the qualitative evaluation various Figures are presented. The first two show the general quality
of the prediction and the ability to predict images corresponding to different seasons, s. Fig. 8.1
and 8.2. Figure 8.1 compares the input and the corresponding real image with the image generated
by the CGAN. The predictions are relatively close to the original, but the colors are different in
some cases. For example, in the real image there is a turquoise van in the background, which is
silver in the generated image. Even more interesting is that the generated house has white walls
and a red roof, which is very common in this area. The real image, on the other hand, shows red
walls and a black roof. This suggests that the color information could be derived mainly from the
shape of the object. However, later experiments will show that the reflectance value also encodes
textures.
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Figure 8.2: Summer (middle) and winter (right) representation of the same input point cloud (left)

The image pairs in Figure 8.2 show images predicted for different seasons side by side. One image
shows the result for a month in summer and the other for winter, both with typical-looking features.
The summer image more leaves on the trees and a different colour scheme, while the winter image
has fewer leaves on the trees, snow on the roads, and more wet-looking roads. But the trees in
the summer image have relatively few leaves. A possible reason for this could be that the point
cloud was recorded in winter, which means that the trees have fewer leaves in the input, making
it harder to map from winter to summer. However, later experiments show that in addition to the
parameterized month, the reflectance values of the input encode mostly how full a tree looks.

Campaign 1 Campaign 2 Campaign 3 Campaign 4
Synthetic Real Synthetic Real Synthetic Real Synthetic Real

Campaign 5 Campaign 6 Campaign 7 Campaign 8
Synthetic Real Synthetic Real Synthetic Real Synthetic Real

Campaign 9 Campaign 10 campaign 11 Campaign 12
Synthetic Real Synthetic Real Synthetic Real Synthetic Real

Campaign 13 campaign 14
Synthetic Real Synthetic Real

Figure 8.3: Randomly sampled pairs of predictions (left) and ground truth images (right) for every campaign.
The pairs are sorted by campaign number (campaign 0 is top left and 13 bottom right).
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Campaign Input 1 3 5 7 9 11 13 Real

1

3

5

7

9

11

13

Figure 8.4: Different representations for the same input point clouds. Each row shows an example from one
campaign. The columns show the input (left), the different predicted Campaign (1-13) and the corresponding
real image (right).

Figure 8.3 and Figure 8.4 show an overview of the mapping campaigns and their different charac-
teristics. Figure 8.3 shows randomly selected pairs of synthesised and real images for each mapping
campaign (14 pairs in total). The mapping campaigns were taken over a whole year and all show
different seasonal features, colors and times of day. One can see that the network produces images
that are very similar to the real image: The last campaign, for example, contains dark images with
a lot of image noise, which is also present in the generated image by the CGAN. It is noticeable
that when the camera has lens flares, they do not appear in the predictions.

The grid in Figure 8.4, on the other hand, shows randomly selected input images mapped to
the style of other campaigns to show the different possible outcomes for the same input. At first
glance, it is clear that each column looks roughly the same in terms of color, time of day and
season. For example, the second column (campaign 1) shows sparse tree canopies and snow on the
roads regardless of the campaign. The following columns show that the color changes depending
on the seasonal characteristics. Finally, the last predicted column shows a campaign taken mainly
at dawn. Here the predicted images show dark colours and the typical image noise patterns due
to low light.
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(a) Winter (Real) (b) Summer (Synthetic) (c) Winter (Real) (d) Summer (Synthetic)

Figure 8.5: Image pairs of Karlsruhe in winter and the corresponding synthesized summer images.

Figure 8.6: Cars successfully classified in synthetic images (bright grey) using Deepblabv3+ pretrained on
PASCAL VOC.

To qualitatively show the predictive and generalisation capabilities of the CGAN, the figures in
8.5 and 8.6 present some results for the Karlsruhe dataset. Figure 8.5 shows images of two scenes
from Karlsruhe, both taken in February. The predictions by the CGAN are made for a month
in summer to increase the difficulty. The results show that the CGAN predicts realistic looking
images that are very close to the original ones. Obviously, dynamic objects do not appear in the
same place due to dynamic occlusions. To show that the CGAN can also generate realistic cars,
the images in Fig. 8.6 (first row) were semantically segmented using a pretrained Deepblabv3+
Fig. 8.6 (second row). In almost all cases, the cars are correctly detected, showing the ability of
the CGAN to predict realistic looking cars.

Finally in order to create images, that have the same size as the original MMS-Images a method
for image stitching was presented in Algorithm 5 in Section 5.1.3. The result of this algorithm can
be seen in Figure 8.7. The image on the left shows the centrally cropped prediction. The images in
the middle and on the right shows the stitched high resolution images, both using different weight
matrices W . The choice of W controls how the predictions merge into each other. If W is filled
with ones, the mean value of the RGB values in the overlapping windows is calculated, resulting in
“block-like” artifacts, see Fig. 8.7 middle. The predictions will blend more smoothly if a Gaussian
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(a) Single prediction (b) Mean stitching (c) Smooth stitching

Figure 8.7: The example shows two ways of stitching different synthetic images into one large image. The
left image shows a single synthetic image with 512 × 512 pixels. The middle and right images show the same
scene, but with a resolution of 2056×2452, created by stitching many synthetic images together. Image b was
created by calculating the average RGB value of the overlapping windows, and for image c the overlapping
windows were weighted with a Gaussian mask to achieve a smoother result.

weighting mask W (n,m) = 1
2πσ2 e

− n2+m2
2·σ2 with its peak in the center of the matrix is used, see

Fig. 8.7 right image.

8.1.4 Multi-View Error Correction in GAN Images

The experiments in Section 7.5.7 have shown that multi-view outlier corrections can be used to
close the domain gap for a pretrained DCNN. By combining this method with the CGAN it is
possible to achieve reasonable prediction quality on the synthesised GAN images to detect most
of the static objects and transfer labels into 3D. For this purpose, the stitched synthetic images of
the CGAN are passed to Deeplabv3+ and the MVNet is trained on the semantically segmented
images to improve the predictions Deeplabv3+. Predictions made with Deeplabv3+ on the stitched
synthetic images reach an mIoU of 0.41 on the reference set shown in Fig. 6.3, which needs to be
improved in this section.
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Figure 8.8: Resulting mIoU for ablation studies conducted with and without self-attention on the semantically
segmented synthesized CGAN images. The average mIoU using no attention is 0.407 and with self-attention
the average mIoU is 0.457.
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Using exactly the same training, validation and test sets, almost the same hyperparameters and
the training strategy presented in Section 7.5, the multi-view network was trained on predictions
made by Deeplabv3+ on the synthetic images. First, a grid search was performed to find the
optimal batch size b ∈ {8,16,32} and window size w ∈ {0,4,32}. Instead of Dice Loss, the network
was trained with cross entropy, which gave slightly better results. Apart from this, nothing was
changed from the original training procedure. Figure 8.8 shows the performance on the test set
using self-attention. The results show that the use of self-attention outperforms the simple single-
view networks, achieving a maximum mIoU of 0.481 on the test set.
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Figure 8.9: Comparison of the IoU values for predictions with Deeplabv3+ on the fake images and the same
predictions corrected by MVNet trained with parameters w = 32,b = 32. The mIoU for Deeplabv3+ is 0.41
and the mIoU of MVNet is 0.481

A look at Figure 8.9 shows that all classes have improved compared to the original predictions
of Deeplabv3+. The mIoU of Deeplabv3+ before correction is 0.41. Comparing this result with
the left-hand side of Figure 8.8 shows that the network without attention did not increase the
mIoU at all. The average mIoU for all ablation trials without attention is 0.407, which means
that using no attention leads to worse results on average than the naive (uncorrected) baseline.
In the following, the best Multi-View Network that has achieved the highest mIoU is used for all
subsequent evaluation and fine-tuning steps.

8.1.4.1 Finetuning Deeplabv3+

The procedure for fine-tuning Deeplabv3+ on the CGAN images is exactly the same as in Section
7.5. In that section, a training set of 2636 image pairs of MMS-RGB and label images was created
by correcting the original Deeplabv3+ predictions using MVNet. Here, the CGAN is used instead
to generate MMS-RGB images for exactly the same images as in Chapter 7.5. For each image,
the pretrained Deeplabv3+ makes predictions that are corrected by MVNet. As MVNet performs
better than Deeplabv3+ in each class, all predictions for static classes are kept by MVNet. Only
the predictions for class sky and dynamic classes are retained in label images. Deeplabv3+ is then
fine-tuned using the same hyperparameters as in Chapter 7.5. Since this step has already been
extensively tested on the MMS images, no further ablation studies are performed in this step.
Please note that due to hardware limitations the fine-tuning step is again done for Deeplabv3+
with xception-65 backbone, in contrast to the network presented in the baseline using xception-71.

Figure 8.10 shows examples of the dataset before and after correction. The left side shows the
synthesised RGB images. The second column shows the original (uncorrected) predictions from
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Synthetic Before
Correction

After
Correction Synthetic Before

Correction
After
Correction

Figure 8.10: Examples showing randomly sampled Deeplabv3+ predictions on synthesized stitched RGB im-
ages (Synthetic) before correction and after correction with MVNet.
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Deeplabv3+. The third column shows the corrected predictions, which serve as labels in the fine-
tuning step. Comparing the results before and after correction, one can see that MVNet has
recovered many classes that were not present before. This is particularly clear for the classes traffic
light and traffic sign, which were not present in most of the original predictions. The prediction for
sidewalk and building has also been qualitatively improved. For example, buildings are less likely
to be confused with trees and the typical problems with the sidewalk class have been alleviated.

8.1.4.2 Transfer Classified CGAN Images to 3D

In this section, label transfer from synthesized RGB images to 3D point clouds is demonstrated.
This is done to see if it is possible to perform a naive label transfer without the use of a mobile
mapping system, using only synthesized RGB images as an interface, so that predictions for synthe-
sized images can be mapped onto 3D point clouds. As a reminder, in Chapter 7.2, the Deeplabv3+
(Xception-71) predictions on MMS images were mapped to 3D point clouds. Each 3D point was
assigned to the majority label among all corresponding 2D image pixel predictions. The quality of
the result was then measured by computing the IoU between the mapped labels and the human
annotated reference set presented in Chapter 6. To make the following experiment comparable,
nothing is changed except that the MMS images are replaced by the synthesized CGAN images.
The RGB images are generated for exactly the same camera positions as the real RGB images in
the original baseline. The procedure is as follows:

1. The point cloud is projected into images. This is done for all scenes where annotated 3D
point clouds are available.

2. The stitched RGB images are generated using Algorithm 5 for each projected image.

3. All synthesised images are semantically segmented using the either the pretrained Deeplabv3+
with Xception-65 or 71 backbone or the Deeplabv3+ that is finetuned on the CGAN images
in Section 8.1.4.1.

4. The predictions are mapped back to the point cloud using the naive label transfer with
majority voting.

This process leads to three different results: 1.) Predictions mapped from 2D to 3D based on
the CGAN images from Deeplabv3+ with xception-65 backbone trained on Cityscapes, denoted
as X65(GAN). 2.) The predictions mapped from 2D to 3D of the same network which was
additionally fine-tuned to the corrected labels, denoted as X65(GAN)fine and 3.) the mapped
predictions based on the CGAN images of the Deeplabv3+ network with xception-71 backbone
used in the baseline in Section 7.2, denoted asX71(GAN). All this is compared to the original
baseline results obtained by using Deepblabv3+ with xception-71 backbone on the real MMS
images shown in Figure 7.2 denoted as Deeplabv3+3D.

Image Source Real Images Synthetic Images
Method Deeplabv3+3D X71(GAN) X65(GAN) X65(GAN)fine

mIoU 0.481 0.35 0.329 0.384
Table 8.3: Comparison of achieved mIoU for all label transfer experiments. Deeplabv3+3D is displayed as
reference when real MMS images are used as source for the label transfer. The others are using synthetic
images with different pretrained DCNNs for semantic segmentation.

Figure 8.11 show the IoU per class for all different experiments. The results are very interesting
because although Deeplabv3+ performs worse on the synthetic images than on the real images,
the results show that in some cases the IoU in 3D is higher when using the synthesized images.
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Figure 8.11: Comparison of the results obtained when using naive label transfer from images to 3D for
different image sources. Deeplabv3+3D is a reference that shows the results when real MMS-images were
used as source, see Section 7.2. For synthetic images Deeplabv3+ with Xception-65 or 71 backbones is
denoted by X65 or X71. When predictions are based on the synthesized images, this is denoted by (GAN).
When Deeplabv3+ was fine-tuned with MVNet this is denoted by fine.

The most prominent case here is the class of car. Cars suffer greatly from the problem of dynamic
occlusion, since laser and camera beams often do not point to the same object when the object
is moving. In Section 7.2 cars have been shown to be well detected in generated images. The
Figure 8.11 shows that the CGAN tends to generate cars that match the point cloud, resulting
in a significantly higher IoU. However, the CGAN still fails to generate people, trucks or bikes
well enough to match the performance for cars. The reason for this could simply be that these
classes are less frequent in the images or are smaller in physical size, so they are neglected by
the CGAN. Nevertheless, it shows that this could be a promising direction for the treatment of
dynamic occlusions and can be part of further research. Except for the class car, the synthesized
images match the performance of the real images for many other classes. The results in Figure 8.11
show that classes with large physical size such as roads, buildings or vegetation are very similar to
the IoU obtained when using real images.

Figure 8.12 shows exemplary results of label transfer with naive label transfer. The left column
shows the scene colored by reflectance as a reference. The point clouds in the middle and right
columns were both classified using the naive label transfer method. The difference in both results
is only that real images were used for the middle column and the synthesized images for the right
column. It should be clear to see that Deeplav3+3D suffers from dynamic occlusion, as shown by
the blue labels on the road (first and second row, center). The X65(GAN)fine, on the other hand,
shows no signs of dynamic occlusion. The last row shows that the X65(GAN)fine detects parked
cars well. The cars appear in the correct place in the generated images, so there are fewer errors
when transferring the labels to 3D than when using real images as a source.
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Reflectance Deeplabv3+3D X65(GAN)fine

Figure 8.12: Three example point clouds (left) showing the effect of naive label transfer using MMS-Images
(middle) or synthesized GAN images (right)

8.1.5 Conclusion and Discussion

In Section 8.1, the CGAN for photorealistic point cloud rendering presented in Chapter 5.1 was
extensively tested. The GAN was trained on a subset of the MMS dataset containing over 250k
pairs of projected point cloud images and real RGB images. The quality of the prediction was
shown by first calculating the FID and MS-SSIM values for each measurement campaign and then
for all data. This test showed that the GAN was able to detect seasonal features of each month in
which a measurement campaigns was recorded. It also showed that the GAN is able to replicate
similar lighting, time of day and colour features as in real camera images. To further test how well
the CGAN generalises to new, previously unknown locations, a second dataset was created. Here,
the similarity between the predictions of a pretrained Deeplabv3+ between the synthesised images
and the real MMS images was measured. This experiment showed that static classes of objects
with large physical size could be generated quite well, whereas other object classes corresponding to
thin or smaller objects were not generated as well. By comparing the mIoU with the corresponding
real image predictions on the same reference set, the performance of the GAN could be evaluated.
After the quantitative evaluation, the CGAN was evaluated qualitatively. It was shown that the
GAN images can be sequentially merged to produce an image of any resolution, producing very
high resolution images. It was also shown that the CGAN was qualitatively able to predict cars
that could be successfully detected and semantically segmented by Deeplabv3+.
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In the final part of the experiments, the synthesised GAN images were used to map predictions of
a pretrained DCNN from 2D images onto 3D point clouds without the need for a fully calibrated
mobile mapping system or even a camera. In this process, the camera images were replaced by
the synthesised GAN images, which serve as interface between the pretrained DCNN and the 3D
point cloud. By training the MVNet on a very sparse reference set, equivalent to about 3-4 MMS
images, to learn how to correct the DCNN predictions on the generated images, the quality of
the label transfer was significantly improved. It was shown that naive label transfer using the
synthesised images successfully removes labelling errors caused by dynamic occlusions in cars.
This is particularly interesting as these results can also be obtained without any reference data
(X65(GAN) and X71(GAN)).

further improvements are under discussion for this method. It would be interesting to increase
the overall prediction quality by using more GPU memory, which would allow the use of a larger
CGAN model. To further improve the FID and MS-SSIM to make the CGAN better reflect seasonal
characteristics, the discriminator could be given the current season as an additional input, as in
ACGAN by Odena et al. (2017), forcing the generator to take the season into account, as it would
otherwise be exposed to the discriminator. Training of the MVNet on the synthesised images
could be vastly improved by augmenting MVNet using the properties of the CGAN. First, one
could generate images with all possible seasons for each point of view, increasing the training
dataset by the amount of mapping campaigns. Second, as shown, the Multi-View Network benefits
significantly from multiple views and predictions of the same object. Because the CGAN can
generate any number of multi-view images with potentially very low calibration errors, the Multi-
View Network can access any other view of the same object without having to record the data on
site, simply by generating it. For example, trajectories could be created where the virtual camera
orbits an object for which the CGAN generates images to create all possible views of the same
object. Finally, the same property could be used to generate any number of training examples to
train a 2D DCNN, provided the input point cloud is labelled.
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8.2 Self-Supervised Shape Completion

Figure 8.13: The GAN learned to complete shapes (green voxels) from sparse observations only (red voxels)

As mentioned in Section 5, self-occlusions are an inherent problem in label transfer. Occluded voxel
regions have an unknown state, because they can be either occupied or free. Ray tracing can fail
in these regions as the voxels have not been measured and are shown as unoccupied. If camera and
laser beams do not match, this can result in label bleeding around these objects. Using learning
based approaches to estimate these regions often requires large amounts of training data, which is
difficult or even impossible to obtain in real urban environments due to the high variety of different
object classes. In this section, the approach described in 5.2 is tested on the synthetic and real
data presented in Section 6.3. It is shown qualitatively and quantitatively that the method is able
to learn to estimate occupied voxel cells of the occluded part of an object class in a self-supervised
fashion without any label data.

8.2.1 Training Procedure

For training, the complete architecture, as shown in Fig. 5.4, was implemented in Tensorflow
and trained end-to-end. The GAN is trained on the dataset with incomplete cars from the MMS
presented in Section 6.3. Additionally the GAN is trained and tested on the synthetic datasets
presented in Section 6.3.2 for which a complete reference is available. Because the GAN is trained
unsupervised, it is trained on all available data and tested on the complete reference shapes.
For all results shown, one GAN was trained per class respectively per dataset. Training is run
with batch size 5 for 5 epochs. The generator is trained with 50% drop-out, see Fig. 5.7, the
discriminator without drop-out. As optimiser Adam is used with different learning rates of 0.0001
for the discriminator and 0.001 generator (a strategy sometimes referred to as TTUR, (Heusel
et al., 2017)). During the training the same number of subregions is used in all experiments, so
that each subregion has a size of 163 voxels. This means that for a voxel grid of 32×64×32 voxels,
the subregion size is nx × ny × nz = 2 × 4 × 2 regions. Empirically, the training is stable across a
range of different subregion sizes, and also leads to similar results. The hyper-parameter m that
selects the complete subregions is set conservatively, in this implementation to 25% of all blocks.

8.2.2 Quantitative Evaluation

The evaluation is done on two types of datasets. First, there is a synthetic dataset for which ground
truth is available because the occluded samples are created from watertight meshes that serve as
ground truth (see Section 6.3.2). The second dataset uses real point cloud data for which ground
truth is not available (see Section 6.3). It serves to show that the GAN can be applied to real data
and that it generalizes to different laser scanners with different characteristics.
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Figure 8.14: Prior shapes that were used for the quantitative evaluation process. The pictures show from left
to right: car, plane, chair and bathtub gathered from Shapenet and Modelnet.

Table 8.4: Quantitative Results for the proposed method, listed her as GAN. Numbers marked with † are
taken from Stutz and Geiger (2018). Note that they use a slightly different voxel grid for the ShapeNet
classes.

ShapeNet Cars ShapeNet Planes
Method Complete Resolution mIoU↑ Acc↓ Comp↓ mIoU↑ Acc↓ Comp↓

supervision [vx] [vx] [vx] [vx]
Dai et al. (2017) 100% 32×72×32 0.87† 0.32† 0.56† – – –
Stutz and Geiger (2018) ≤7.7% 0.78† 0.54† 0.74† – – –
Dataset

0% 32×64×32
0.09 – 2.9 0.49 – 1.75

Prior Shape 0.64 1.07 0.96 0.36 1.49 1.49
GAN 0.70 0.78 0.59 0.54 0.25 0.65

ModelNet Bathtubs ModelNet Chairs
Method Complete Resolution mIoU↑ Acc↓ Comp↓ mIoU↑ Acc↓ Comp↓

supervision [vx] [vx] [vx] [vx]
Dai et al. (2017) 100%

32×32×32

0.59† – – 0.61† 0.66† 0.67†

Stutz and Geiger (2018) ≤10% 0.50† – – 0.41† 1.49† 1.07†

Dataset
0%

0.19 – 2.75 0.21 – 1.85
Prior Shape 0.17 1.06 1.68 0.15 1.70 2.20
GAN 0.34 0.90 0.99 0.33 0.88 1.58

MMS Dataset KITTI (trained on MMS)
Method Complete Resolution Acc↓ Comp↓ Acc↓ Comp↓

supervision [m] [m] [m] [m]
Prototype Car 0% 32×64×32 – – 0.12 – – 0.09
GAN – – 0.03 – – 0.08

Please note for the synthetic datasets Stutz and Geiger (2018) predicted only filled shapes. To
make the results comparable, all synthetic car predictions were post-processed, by flood-filling
them using a graph cut algorithm, where the graph source and sink nodes are the barycenter and
the boundary of the voxel volume, and an exemplar car (see Fig. 8.14 on the left) serves as prior
to determine the edge weights. As the other shape categories are not as compact as cars, they were
not post-processed.

The quality of shape completion is measured by calculating, for every category, the mean inter-
section over union (mIoU), accuracy (Acc) and completeness (Comp) of the predictions w.r.t. the
ground truth shape. Accuracy is defined as the average distance from the predicted shape to the
ground truth target. This is done by calculating the euclidean distance for every point of the
prediction to the nearest point on the reference shape. Completeness is the average distance in
the opposite direction, i.e., the distance from the target to the predicted shape. The results are
compared to those obtained by Stutz and Geiger (2018) and Dai et al. (2017), both using (semi-)
supervised approaches. For synthetic data, the accuracy and completion is reported in multiples
of the voxel grid size [vx] and for KITTI and MMS in meters.
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As a simple baselines for the unsupervised setting, a fixed template is also used as “completion
result” instead of the generated output. The results are shown in Table 8.4 in the rows called
“Prior Shape”. For evaluation of Modelnet and Shapenet the first sample from the ground truth
was picked as completion result. The images in 8.14 show the shape for every category. It should
become clear that these shapes do not look unusual or particularly rare. For the MMS dataset
and KITTI this “prior shape” is the prototype car, see Fig. 6.10c. Additionally the rows called
“Dataset” in Table 8.4 show the effect of the occlusion. Here all generated incomplete samples were
compared to the ground truth.

Table 8.4 shows the quantitative results obtained on the synthetic and real datasets. The first
column shows the different methods. The second column (Complete supervision) gives an estimate
of how much these methods rely on the use of reference data for training. The size of the voxel
volume is given in the third column (Resolution). Results are not available for some methods
because they were not presented in the work of Stutz and Geiger (2018) or because there is no
reference data available for the MMS dataset and KITTI.

A look at Table 8.4 shows that the GAN increases the mIoU compared to the fixed prior shapes,
which confirms that the generator does condition its predictions on the data. Please note that
testing the shape completion outputs of the GAN against ground truth is somewhat problematic,
for two reasons. First, there are many plausible completions of a partial shape, if a predicted
shape does not match the ground truth that does not imply that it does not match another real
instance of the target category. Second, for every soft prediction a threshold is applied to decide
whether a cell is occupied or not. Differences to the ground truth can therefore also be due to
aliasing and noise, in situations where the soft posterior is well estimated. For some applications,
e.g. localisation or shape comparison, it is not necessary to threshold the probabilistic occupancy
grid, but it is advantageous to work with soft occupancy, which is more forgiving when processing
voxels. In the case of label transfer, the predicted probability that a cell is occupied could also be
used for a “soft occlusion filter”. This could be implemented by weighting the rays passing through
soft grid cells by the predicted probability. So instead of increasing the label histogram by one, it
would be increased by one minus the probability that a cell is occupied. However, the development
and implementation is still the subject of further research.

8.2.3 Qualitative Evaluation

Figures 8.15 and 8.16 show example predictions of the GAN. Figure 8.15 shows the results for all
synthetic datasets that had low point density. Figure 8.16a shows the results for the high density
datasets and Figure 8.16b shows the result for the real datasets.

Overall, the results show that the generator is able to successfully complete shapes with a mean-
ingful prediction. It produces a variety of subtypes that differ in size and shape. For example,
Shapenets plane dataset contains different types of aircrafts, such as passenger planes, helicopters
and even spaceships. It can be seen that the GAN responds appropriately to the input. While some
predictions are certainly more plausible than others, there were no error cases observed where the
shape was rendered completely unrecognisable. Please note that the results presented have not
been cleaned or post-processed in any way.

In Figure 8.15 the results for the category car, plane, chair and bathtub with lower scan resolution
are presented. As can be seen, the GAN is able to complete shapes even from very sparse data.
The results show that it is able to fill most of the incomplete shapes. In particular, the category
chair can be considered a hard problem due to the high class variability. The dataset contains
chairs with different types and numbers of legs, as well as with different chair backs and armrests.
It can be seen that the generator predicts the correct type of legs and generates armrests when it is
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Figure 8.15: Predicted shapes for ModelNet chairs (top left), bathtubs (bottom left), ShapeNet cars (top
right), and ShapeNet airplanes (bottom right). All networks were trained on very sparse samples. Red voxels
denote the input and green voxels the predictions.

indicated by the occluded input example. Figure 8.16a shows additional results for high-resolution
cars and planes from ShapeNet. These results are illustrate the variability of the dataset, and the
ability of the GAN to complete various instances with very different shapes.

Shapenet Cars

Shapenet Planes

(a) Completion examples for cars and planes.

KITTI Dataset

MMS Dataset

(b) GAN trained on MMS (top), applied to KITTI without
retraining.

Figure 8.16: Examples for synthetic data (a) and real data (b)

To show that the model works also on real-world 3D data, cars from the MMS dataset were
extracted. As described in 6.3, a set of 8941 fairly clean cars was obtained. The cars are heavily
occluded, with at least one side entirely missing in most cases. In this case, the GAN has to cope
with the fact that the shapes are only very roughly aligned and that the unsupervised extraction
of the data also results in wrong samples. Figure 8.16b (upper row) shows the result on the MMS
Dataset. It can be seen that the GAN is able to complete the shapes just as well as in the synthetic
experiments.

Figure 8.16b (lower row) shows predictions for the KITTI dataset, generated with the GAN trained
on the MMS dataset, which features a completely different type of laser scanner with a much higher
point density. The model generalises very well, one can see that also for KITTI data, the predictions
are mostly complete and match the input observations (i.e., the model does more than returning a
mean car shape). Failures, where the generator predicts a severely incomplete shape or one that is
in significant disagreement with the input, occur mostly on rare, big shapes, like trucks or buses.
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The Results in Figure 8.17 and 8.18 show outcomes from a model that was trained on the MMS
dataset. The images were created by applying different thresholds to the occupancy grid. If G(x) <
t, a voxel is considered as being occupied, else it is considered being free, where t is the threshold.
The threshold was normalized to between 0 and 1 by the minimum and maximum value the
generator is predicting. Figure 8.17 shows the outcomes for a typical car in the mobile mapping
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Figure 8.17: Example that shows how the threshold value for deciding whether a voxel is occupied or not
affects the result. The corresponding threshold t is shown below each car.

dataset. Using a low threshold the car is very sparse and has holes in the window. When the
threshold is increased, the car size grows and the holes in the windows become closed.
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Figure 8.18: Example that shows how the threshold value for deciding whether a voxel is occupied or not
affects the result. The corresponding threshold t is shown below each car.

As can be seen in Figure 8.18, the generator has sometimes problems to complete larger cars. The
reason for this might be that there are not enough large cars in the dataset. If the threshold is
below 0.5, the generator prediction seems to contain a mixture of two cars, one in the middle and
one on the outside. If the threshold rises above 0.5, the cars are connected and form a larger car.

8.2.4 Conclusion and Discussion

In this section, the method for self-supervised adversarial completion of partially observed 3D
shapes was tested. The prerequisite is that the object class is known and has moderate shape
variability so that it can be roughly aligned within a bounding box.

It was shown qualitatively and quantitatively that the proposed GAN is able to complete objects
from incomplete observations only. The quantitative results show that the GAN is positioned
approximately between the baseline and the fully supervised method and is sometimes close to the
semi-supervised method. An interesting direction for future work is to include attributes of the
surface points beyond their location, such as color or normal vectors, perhaps even certain material
properties. It might also be useful to move away from voxel representation and predict complete
shapes in the form of point clouds or surface meshes.

Finally, it is important to test the extent to which shape completion affects label transfer. This is an
important open question for further research. It is conceivable that estimating occupied voxels in
unknown regions positively influences label transfer when using ray tracing. However, integrating
this method into the overall system presented is not trivial and requires further research and
development.
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The goal of this work is to minimize the time-consuming labeling of 3D point clouds by learning to
transfer labels from images classified by DCNNs which are pretrained on publicly available datasets.
To this end, this thesis presents a method to transfer labels from 2D multi-view images into 3D.
To transfer labels from images to 3D point clouds a dataset consisting of more than 15 billion laser
scan points and 250 thousand 2D camera images were acquired using a fully calibrated mobile
mapping system. All images were semantically segmented using a publicly available pretrained
DCNN. By projecting each 3D point into the associated camera images, the 2D pixel predictions
could be mapped to the corresponding 3D points. The problem with naive mapping is that it
ignores various errors, such as calibration errors, occlusions, prediction errors and incompatible
label policies. The incorrect 3D-to-2D association leads to a wrong class label assignment in 3D
(label noise). Within this dissertation various error sources were discovered, analyzed and tried to
be compensated. In the following the proposed methods to tackle these problems are summarized
and compared to each other.

9.1 Summary and Discussion

First, all MMS images were semantically segmented using Deeplabv3+ pretrained on Cityscapes.
The naive baseline was investigated in Chapter 7.2. By comparing the results on the MMS images
to a manually annotated reference set, it was shown that Deeplabv3+ only achieved a mIoU of 0.661
on the MMS image dataset (see Section 6.1.1) compared to the mIoU of 0.818 on the Cityscapes
test set. This domain gap is assumed to be due to the different camera position, sensor model,
and an unknown environment. Then, all classified images were mapped to the corresponding point
clouds using the naive label transfer with majority voting. By comparing the transferred labels
in 3D with another manually annotated reference set, it was shown that this resulted in further
degradation of label quality, leading to the baseline result with a mIoU of 0.481. By comparing
the confusion matrix before and after label transfer, several types of noise were identified, namely
calibration errors, dynamic occlusions, label policy errors, and regular and self-occlusions.

9.1.1 Scanstrip-Based Label Error Correction

To improve the mIoU several scanstrip-based methods were proposed. First a GBDT was trained
that learns to map from single 3D point features to the reference set. By using all available point
features, including the proposed campaign count ξ and the class histogram h, the GBDT achieved
an mIoU of 0.557. Subsequently, the Scanstrip Network (SNet) was introduced which significantly
increased this result by achieving an mIoU on the same testset of 0.667. The network was compared
to different state-of-the-art semantic segmentation networks such as HRNet (0.612-0.628 mIoU)
or Deeplabv3+ (0.583-0.620 mIoU) and also to similar network architectures like FCN (0.549-
0.606 mIoU) and U-Net (0.614-0.63 mIoU). Regardless of the training strategy or the chosen
hyperparameters SNet achieved the highest mIoU among them.

To further improve the results, a semi-supervised scanstrip-based correction was introduced. The
basic idea was to pretrain SNet firstly on large sets of scanstrips, using automatically generated
noisy labels as reference. Secondly the network is fine-tuned on the actual reference dataset. As the
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normal SNet already uses the noisy labels as input, the pretraining would lead to a trivial solution
where SNet simply learns the identity function. Therefore, SNet has been heavily modified so that
it learns the representation of all remaining features except the histograms, and also extracts a
high-level feature representation that can be used in the second training phase. This approach
reached so far the best results with an overall mIoU of 0.709.

9.1.2 End-To-End Multi-View Label Transfer

To solve the complete label transfer from 2D to 3D, the Multi-View Network (MVNet) and Label
Transfer Network (LTNet) were introduced. The first network works exclusively in 2D, before the
transfer. It will be summarized in the first part of this section. The second part summarizes LTNet,
which is able to solve the label transfer end-to-end.

Multi-View Network (MVNet)

In order to be able to correct the labels at an early stage, a network was developed that can be
trained on multi-view images. The problem is that, especially in computer vision, grid-like data
structures are preferred, which makes it difficult to learn from multi-view image data that can occur
in any quantity and order. For this purpose, Multi-View Network (MVNet) was introduced, which
is capable of linking an arbitrary length of multi-view image predictions. The network was trained
to map a list of noisy 2D image labels to the 2D reference set. Here, the noisy predictions form the
baseline with an mIoU of 0.709. The multi-view network was compared to Single-View Networks
(SVNets). This network is the same as MVNet, but without the ability to relate predictions.
Regardless of the hyperparameters or trials chosen, MVNet outperformed SVNet in almost every
case, confirming that this could only be achieved by the ability to relate predictions for multiple
images. Although the networks only had access to an equivalent of 3-4 labelled images, MVNet
achieved a mIoU of 0.784 compared to SVNet with a maximum mIoU of 0.735 without label
propagation and a mIoU of 0.734 with label propagation. Note that these results are for 2D images,
so the mIoU is calculated before the label transfer into 3D. The results are not directly comparable
to those in Subsection 9.1.1, because the two reference sets belong to different domains.

Since early predictions errors by Deeplabv3+ contribute to the label noise in the 2D-to-3D transfer,
it was tested if the predictions of MVNet can be used as pseudo-labels to fine-tune Deeplabv3+
on the MMS-images. The approach was tested against different other approaches, all of which
have access to the same MMS-image subset and the same ground truth labels as MVNet. Also
the validation and testing sets were chosen so that all results are comparable to each other and
that they do not intersect with the training of MVNet. Finally Deeplabv3+ fine-tuned on the
MVNet pseudo-labels increased the mIoU from 0.632 to 0.696. Using naive fine-tuning or the
approach described by Zhu et al. (2020) yielded only an mIoU of 0.628 and 0.663. Please note that
these results are not directly comparable to the ones achieved by MVNet in the in the preceding
paragraph since both test sets are different.

2D-to-3D Label Transfer

Finally, it was shown that by combining MVNet with the pretrained SNet to form Label Transfer
Network (LTNet), the full label transfer from 2D to 3D can be learned. This network achieved
a mIoU of 0.749 compared to the previous best performing model SNet with a mIoU of 0.709.
The network improved the IoU in almost all classes. Additional ablation studies showed that each
subnetwork alone is unable to achieve similar performance, and that they could only achieve their
full potential when the two networks were combined, confirming the observations made in the
previous sections for MVNet and SNet. Note that care was taken to ensure that both LTNet



9.1 Summary and Discussion 149

and Scanstrip Network (SNet) are directly comparable, as both networks have exactly the same
training, validation, and testing sets.

9.1.3 Self-Supervised Completion

In Sections 8.1 and 8.2, two GANs capable of predicting photorealistic images and complete shapes
were tested. In the scope of this thesis they can be used to handle dynamic occlusions and self-
occlusions during the label transfer. First, the CGAN from the Section 5.1 was tested in several
ablation studies. The network is able to predict photorealistic images from point clouds only. By
using the date of acquisition as input, the seasonal characteristics of the output became controllable.
This means that for each point cloud a photorealistic image can be predicted for each season. This
was also confirmed quantitatively by calculating FID and MS-SSIM scores for each campaign. The
ability to generalise could be demonstrated on point clouds from another city (Karlsruhe) that were
never part of the training set (Hannover). Most importantly, it was shown that the synthesised
images can be successfully semantically segmented by a pretrained Deeplabv3+. However, some
classes, especially those with small physical size or rare classes, were not recognised as well. More
interestingly, the synthesised cars were qualitatively all successfully recognised in their correct
locations, which was also quantitatively confirmed in later studies. Finally, the synthesised images
were tested for 2D-to-3D label transfer. To do this, they were stitched together to have the same
resolution as the original MMS images. Then the naive label transfer was compared once with a
set of real images and once with a corresponding set of fake images, all generated for the same
camera positions as the real images. Figure 8.11 showed the results after the label transfer by
comparing the mapped labels with the 3D reference set. For the most prominent classes, such as
road, building, sidewalk and even pole, both approaches were quite similar. But more importantly,
using the CGAN images gave a significant increase in the car class, which otherwise suffers from
typical dynamic occlusion errors. The images in Fig. 8.12 quantitatively confirmed that when the
synthetic images were used, typical problems such as roads being assigned to the car class did
not occur. However, parked cars were still well detected, showing that the CGAN was able to
synthesise cars matching the point cloud.

The final experiments in Section 8.2 showed that it is also possible to learn to complete shapes
in a self-supervised way. For this, several datasets with incomplete 3D shapes were created. First,
naive label transfer was used together with region-growing to extract > 9,000 3D car scans that
were roughly aligned to a car template using ICP. In addition, incomplete cars were extracted
from KITTI using the annotations of the dataset. As the real (incomplete) 3D scans do not
contain a corresponding ground truth or a complete scan, several other datasets were created
for which ground truth is available. For this purpose, car, chair, plane and even bathtub meshes
were extracted from the synthetic datasets Shapenet and Modelnet. By simulating self-occlusions
with the same procedure as presented by Stutz and Geiger (2018), realistic incomplete 3D scans
could be created. In these datasets, the ground truth is given by the mesh itself, which is not
available to the GAN during training and testing. The qualitative evaluation showed that the
GAN is indeed able to complete the incomplete scans in a meaningful way. This means that the
GAN reacts correctly to the (incomplete) input by predicting a suitable shape and that the gaps are
filled in a meaningful way. By applying the pretrained GAN to the KITTI scans, it was also shown
that it generalises to a different dataset of scans acquired by a different laser scanner model. The
quantitative evaluation in Table 8.4 confirmed this observation. Here, the network was compared
to the approaches of Dai et al. (2017) and Stutz and Geiger (2018), which used (semi-) supervised
approaches. A prior shape was qualitatively selected as the baseline for each dataset as a typical
complete example. This was compared to all other examples in the dataset, simulating a GAN that
does not respond well to the input and simply outputs the same shape. As all shapes were voxelized
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the mIoU between ground truth and generated shape could be compared. The results showed that
the GAN performed significantly better than the baseline and almost as good as the approaches
using supervision. For example, using the synthetic car scans the baseline achieved an mIoU of 0.64
and the GAN an mIoU of 0.7, see Table 8.4. The (semi-) supervised methods achieved an mIoU of
0.78 (Stutz and Geiger, 2018) and 0.87 (Dai et al., 2017). Another example with ModelNet chairs
illustrates the performance of the GAN, because these shapes are much thinner and a deviation
is therefore punished more severely. Here the prior shape achieved an mIoU of 0.15 which is even
worse than using just the incomplete sample with an mIoU of 0.21. The GAN however was able
to get an mIoU of 0.33 against the mIoU of 0.41 (Stutz and Geiger, 2018) with ≤ 10% supervision
and 0.61 (Dai et al., 2017) with 100% supervision.

9.1.4 Conclusion

Seven research hypothesis were presented in the introduction, all of which describe statements
that outline the entire thesis regarding 2D-to-3D label transfer. In the baseline, the causes of label
noise in 2D-to-3D label transfer were identified and analysed in detail (hypothesis 1). With GBDT
and SNet the label noise can be corrected after aggregation. It was shown that SNet outperforms
several other state-of-the-art networks even with only a few reference labels available (hypothesis
2). Subsequently, SNet was adapted for semi-supervised training by using large amounts of noisy
labels for pretraining and only a small amount for fine-tuning (hypothesis 3). By linking multi-
view images, the prediction performance can be increased in 2D compared to single-view images. In
addition, by using the pseudo labels generated by MVNet, the domain gap on the MMS images for
Deeplabv3+ can be reduced (hypothesis 4). The highest mIoU in 3D was achieved by combining all
previously presented methods in LTNet. The network was able to learn a full multi-view 2D-to-3D
label transfer as described in the hypothesis 5. In the final experiments, it was shown that two
causes of label noise could be handled without any ground truth. First, the CGAN was able to
handle dynamic occlusion by synthesizing photorealistic images from point clouds that served as
an interface for the pretrained DCNN (hypothesis 6). The other GAN was able to predict complete
shapes from incomplete 3D scans without ever seeing a complete object (hypothesis 7). Since it is
difficult to treat areas behind self-occluded objects with ray tracing, the GANs predictions could
further reduce label noise in label transmission by blocking rays that would likely hit an occupied
voxel.

9.2 Outlook

Within the thesis many different methods were introduced in order to semantically segment 3D
point clouds with only very few ground truth labels available. All methods potentially opening
branches for further research. As the late correction was done on scanstrips using 2D convolutions
it would be interesting to analyze how 3D-based ANNs would perform. For example the mapping
from noisy label to the reference set could be learned in 3D using KPConv (Thomas et al., 2019)
instead of using a 2.5D representation. It would be interesting to see if in this way the whole
process including LTNet could be adapted.

In terms of MVNet, it would be very interesting to analyse how the network behaves and performs
with many more ground truth labels. The network could be compared to modern semantic segmen-
tation networks such as HRNet or Deeplabv3+ if more training data were available. The network
architecture could also be improved by modifying it to semantically segment entire patches instead
of only classifying the central pixel of each patch, which would probably lead to more homogeneous
results.
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LTNet uses two sub-branches, one for the 2D domain and one for the 3D domain, both of which
are interchangeable with any other architecture. For example the 3D sub-branch of LTNet could be
replaced by a state-of-the-art 3D semantic segmentation or classification architecture. The results
revealed that LTNet suffered from inhomogeneous predictions, because it predicted classes point-
by-point. Instead the network could make a prediction for a whole 2.5D patch or 3D region at
once. When creating the architecture of LTNet, it was noticed that the symmetric function for
aggregating the multi-view observations in the 2D subbranch is very important. In the current
implementation, average pooling is used for this purpose. It would be interesting to use methods
for example from the field of natural language processing, which often work with sequence-to-
sequence models (Vaswani et al., 2017). Finally, the 3D subbranch of LTNet was pretrained and
not tuned during training. Since the multi-view subbranch was initialised randomly, it would be
interesting to use a pretrained network using the 2D reference set here as well, which could further
improve the label transfer.

As already discussed, the CGAN could also be improved to generate better images. First the
architecture could be changed similar to ACGAN by (Odena et al., 2017). Here, the discriminator
would also have access to the information of the date of capture, which would force the generator to
react appropriately to seasonal characteristic, which could further improve the prediction quality.
It would also be very interesting to further combine the training of MVNet and the CGAN. As
the GAN can generate images for any viewpoint in any season, the MVNet would have access to
any multi-view viewpoint for training. This could be used to further improve the label transfer.
Finally, the real goal for the CGAN is to mitigate dynamic occlusions in label transfer. However, it
was never explicitly defined that the network should ignore dynamic objects. The campaign count
ξ provides information about how dynamic each point is. By using this metric, one could force
the CGAN to ignore dynamic 3D points, which could result in images that better match the point
cloud, thus improving 3D label transfer.

Finally, the treatment of self-occlusions could be further investigated. It would be interesting to
see to what extent the predicted complete shapes would help in the label transfer step. To do this,
the predictions need to be mapped into the global point cloud and the ray tracing needs to be
adjusted accordingly to account for the predictions by the GAN. This process will likely need to be
carefully tuned to account for the soft predictions for each voxel cell. Since the car scan extraction
process allows any other object to be extracted, it would be interesting to see how the GAN is
able to complete different types of real objects, such as pedestrians, bicycles, vegetation or even
buildings. However, for larger objects, the network architecture needs to be changed significantly,
as the current implementation only allows voxel grid representations, which are computationally
not very efficient. It would be interesting to see if it is possible to predict raw point clouds similar
to PU-GAN by Li et al. (2019).
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