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Abstract 

The estimation of image orientation (also called pose) has always played a crucial role in the 

field of photogrammetry since it is a fundamental prerequisite for the subsequent works of 

multi-view dense matching, generating DEM and DSM, etc. In the community of computer 

vision, the task is also well known as Structure-from-Motion (SfM), which reveals that image 

pose, while positions of object points are determined interdependently. Despite a lot of efforts 

over the last decades, it has recently gained the photogrammetrists’ interests again due to the 

fast-growing number of different resources of images. New challenges are posed for accurately 

and efficiently orienting various image datasets (e.g., unordered datasets with a large number 

of images, or images compromised of critical stereo pairs). 

In this thesis, the relevant ambition is to develop a new fast and robust method for the 

estimation of image orientation which is capable of coping with different types of datasets. To 

achieve this goal, the two most time-consuming steps of image orientation are in particular 

taken care of: (a) image matching and (b) the estimation process. To accelerate the image 

matching process, a new method employing a random k-d forest is proposed to quickly obtain 

pairs of overlapping images from an unordered image set. After that, image matching and the 

estimation of relative orientation parameters are performed only for pairs found to be very likely 

overlapping. On the other hand, to estimate the image poses in a time efficient manner, a global 

image orientation strategy is advocated. Its basic idea is to first simultaneously solve all 

available images’ poses, before a final bundle adjustment is carried out once for refinement. 

The conventional two-step global approach is pursued in this work, separating the 

determination of rotation matrices and translation parameters; the former is solved by an 

existing popular method of Chatterjee and Govindu [2013], and the latter are estimated globally 

using a newly developed method: translation estimation integrating both the relative 

translations and tie points. Tie points within triplets are adopted to firstly calculate global 

unified scale factors for each available pairwise relative translation. Then, analogous to rotation 

estimation, translations are determined by performing an averaging operation on the scaled 

relative translations. 

In order to improve the robustness of the solution, efforts in this thesis are also focused on 

coping with outliers in the relative orientations (ROs), which global image orientation 

approaches are particularly sensitive to. A general method based on triplet compatibility with 

respect to loop closure errors of relative rotations and translations is presented for detecting 

blunders in relative orientations. Although this procedure eliminated many gross errors in the 

input ROs, it typically cannot sort out blunders which are caused by repetitive structures and 
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critical configurations, such as inappropriate baselines (very short baseline or baselines parallel 

to the viewing direction).  Therefore, another new method is proposed to eliminate wrong ROs 

which have resulted from repetitive structures and very short baselines. Two corresponding 

criteria that indicate the quality of ROs are introduced. Repetitive structure is detected based on 

counts of conjugate points of the various image pairs, while very short baselines are found by 

inspecting the intersection angles of corresponding image rays. By analyzing these two criteria, 

incorrect ROs are detected and eliminated. As correct ROs of image pairs with a wider baseline 

nearly parallel to both viewing directions can be valuable, a method to identify and keep these 

ROs is also a part of this research. 

The validation and evaluation of the proposed method are thoroughly conducted on various 

benchmarks including ordered and unordered sets of images, images with repetitive structures 

and inappropriate baselines, etc. In particular, robustness is investigated by demonstrating the 

efficacy of the corresponding RO outlier detection methods. The performance and time 

efficiency of determining image orientation are evaluated and compared with several state-of-

the-art global image orientation approaches. 

In summary, based on the experimental results, the developed methods demonstrate to be 

able to accomplish the image orientation task fast and robustly on different kinds of datasets. 

 

Keywords   global image orientation, global rotation estimation, global translation estimation, 

image matching, relative orientation outliers, repetitive structures, very short baselines 
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Zusammenfassung 

Die Berechnung der Bildorientierung (auch als Bildposenschätzung bezeichnet) hat auf dem 

Gebiet der Photogrammetrie immer eine entscheidende Rolle gespielt, da sie eine 

Grundvoraussetzung für darauf aufbauende Arbeiten, wie die dichte Bildzuordnung oder die 

Generierung von DEMs und DSMs, bildet. Insbesondere im Bereich der Computer Vision ist 

die Bildorientierung auch unter dem Begriff Structure-from-Motion (SfM) bekannt, was 

deutlich macht, dass die Orientierung eines Bildes und die Positionen von Objektpunkten 

voneinander abhängig bestimmt werden. Obwohl bereits seit Jahrzehnten unterschiedlichste 

Anstrengungen in diesem Themengebiet unternommen werden, hat es in letzter Zeit, aufgrund 

der schnell wachsenden Anzahl unterschiedlicher Bildressourcen, wieder das Interesse der 

Photogrammeter geweckt. Es ergeben sich neue Herausforderungen für die genaue und 

effiziente Orientierung von Bildern aus verschieden Datensätzen (z.B. ungeordnete Datensätze 

mit einer großen Anzahl an Bildern oder Bilder, die durch kritische Stereopaare beeinträchtigt 

werden). 

Im Rahmen dieser Arbeit wird hierzu eine neue schnelle und robuste Methode zur 

Bildorientierung entwickelt, die mit verschiedenen Arten von Datensätzen umgehen kann. Um 

dieses Ziel zu erreichen, werden insbesondere die beiden zeitaufwändigsten Arbeitsschritte der 

Bildorientierung genauer betrachtet: (a) Bildzuordnung und (b) Bildposenschätzung. Zur 

Beschleunigung der Bildzuordnung wird ein neues Verfahren unter Verwendung eines so 

genannten random k-d forest vorgeschlagen, mit welchem Paare aus überlappenden Bildern 

schnell aus einer ungeordneten Menge an Bildern extrahiert werden können. Anschließend 

werden die Bildzuordnung und die Schätzung der relativen Orientierungsparameter nur für 

Paare durchgeführt, bei denen eine Überlappung sehr wahrscheinlich ist. Zur zeiteffizienten 

Schätzung der Bildposen wird ein globaler Bildorientierungsansatz verwendet. Die Grundidee 

besteht darin, zunächst alle verfügbaren Bildposen initial global zu bestimmen, bevor zum 

Abschluss einmalig eine Bündelausgleichung zur Verfeinerung der initialen Posen 

durchgeführt wird. In dieser Arbeit wird der herkömmliche zweistufige globale Ansatz genutzt, 

bei dem die Bestimmung von Rotationen und Translationsparametern getrennt voneinander 

betrachtet werden. Erstere werden durch eine existierende, häufig verwendete Methode von 

Chatterjee und Govindu [2013] bestimmt, während letztere global geschätzt werden. Dazu 

werden die Translationsparameter mit Hilfe von relativen Translationen und 

Verknüpfungspunkten bestimmt. Verknüpfungspunkte in Form von Tripletts werden 

verwendet, um zunächst global einheitliche Skalierungsfaktoren für jede verfügbare paarweise 



 

  5 

relative Translation zu berechnen. Anschließend werden, analog zur Rotationsschätzung, die 

Translationen bestimmt, indem das Mittel der skalierten relativen Translationen bestimmt wird. 

Um die Robustheit der Lösung zu erhöhen, befasst sich ein Teil dieser Arbeit mit dem 

Umgang von Ausreißern in den relativen Orientierungen (ROs), gegenüber welchen globale 

Bildorientierungsansätze besonders empfindlich sind. Es wird eine allgemeine Methode zur 

Erkennung von Fehlern in relativen Orientierungen vorgestellt, die auf der Triplett-

Kompatibilität (in Bezug auf Schleifenschlussfehler von relativen Rotationen und 

Translationen) basiert. Obwohl diese Methode in der Lage ist, die meisten der gegebenen ROs 

zu bereinigen, kann sie typischerweise keine Fehler erkennen, die auf sich wiederholende 

Strukturen und kritische Konfigurationen zurückzuführen sind, wie z.B. ungeeignete Basen 

(sehr kurze Basen oder Basen parallel zur Blickrichtung). Daher wird eine weitere neue 

Methode vorgeschlagen, um falsche ROs zu eliminieren, die durch sich wiederholende 

Strukturen und sehr kurze Basen entstehen. Es werden hierzu zwei Kriterien eingeführt, die die 

Qualität der ROs bewerten. Sich wiederholende Strukturen werden anhand der Anzahl an 

korrespondierenden Punkten der verschiedenen Bildpaare erkannt, während sehr kurze Basen 

durch die Schnittwinkel der entsprechenden Bildstrahlen identifiziert werden. Durch die 

Analyse dieser beiden Kriterien werden falsche ROs erkannt und eliminiert. Da korrekte ROs 

von Bildpaaren mit einer längeren Basis, die nahezu parallel zu beiden Blickrichtungen verläuft, 

vorteilhaft für die weitere Berechnung sein können, ist eine Methode zur Identifizierung und 

Beibehaltung solcher ROs ebenfalls Teil dieser Forschung. 

Die Validierung und Evaluierung der vorgeschlagenen Methode wird auf verschiedenen 

Benchmarks durchgeführt, darunter geordnete und ungeordnete Bildsätze, Bilder mit sich 

wiederholenden Strukturen und ungeeigneten Basen. Insbesondere die Robustheit der 

vorgestellten Methodik wird untersucht, indem die Wirksamkeit der Erkennung von ROs-

Ausreißern demonstriert wird. Abschließend werden Leistungsfähigkeit und Zeiteffizienz bei 

der Bestimmung der Bildorientierung evaluiert und mit mehreren State-of-the-Art-Ansätzen zur 

globalen Bildorientierung verglichen. 

Zusammenfassend zeigen die experimentellen Ergebnisse, dass die entwickelten Methoden 

in der Lage sind, die Aufgabe der Bildorientierung auf unterschiedlichen Arten von Datensätzen 

schnell und robust zu bewältigen. 

 

Schlagworte globaler Bildorientierungsansatz, globale Rotationsschätzung, globale 

Translationsschätzung, Bildzuordnung, Ausreißern in den relativen Orientierungen, 

wiederholende Strukturen, sehr kurze Basen   
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Acronyms and Table of Notations 

General Acronyms 

ANN Approximate Nearest Neighbor 

ADMM Alternating Direction Method of Multipliers 

DEM Digital Elevation Model 

DLT Direct Linear Transformation 

DoG Difference-of-Gaussian 

DSM Digital Surface Model 

EG Epipolar Geometry 

GNSS Global Navigation Satellite System 

GPS Global Position System 

GPU Graphics Processing Unit 

IMU Inertial Measurement Unit 

MST(s) Minimum Spanning Tree(s) 

PB Photogrammetric Block 

RANSAC Random Sample Consensus 

ROs Relative Orientations 

SfM Structure from Motion 

SLAM Simultaneous Localization and Mapping 

SDP Semidefinite Program 

SO(3) Lie group denoted as Special Orthogonal Group (3) 

𝔰𝔬(3) Li algebra of SO(3) 

SVD Singular Value Decomposition 

VO Visual Odometry 

 

General Notations 

Ci Projection Center of i-th image in a global unified coordinate system 

𝑰𝟑×𝟑 Identity Matrix of size of 3 × 3 

N Number of input images 

Ne  largest number of connected images in a photogrammetric block 

Rij Matrix of relative rotation between i-th image and j-th image 

Ri Rotation Matrix of i-th image in a global unified coordinate system 

𝒕𝒊𝒋 Vector of relative translation between i-th image and j-th image 

𝒙𝒊 Homogeneous image coordinates  

 

Preprocessing 
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Acronyms 

AM Adjacency Matrix 

BPVD Baseline nearly Parallel to Viewing Directions 

CDF Cumulative Distribution Function 

E Essential Matrix 

FP Matching Feature point set from all images 

F Fundamental Matrix 

H Homography Matrix 

PN Parent Node of a k-d tree  

𝑷𝑵𝒊
𝒋
 The j-th node from the i-th layer of a k-d tree 

Qxx Cofactor of an object point’s X coordinate 

Qyy Cofactor of an object point’s Y coordinate 

Qzz Cofactor of an object point’s Z coordinate 

RS Repetitive Structures 

VSB Very Short Baseline 

 

Notations 

a Free parameter for determining potential overlapping pairs  

𝑎𝑣𝑔𝜃 Measurement for distinguishing VSB and BPVD pairs 

b Minimum percentage of conjugate points after EG verification 

𝐵𝐿𝑖𝑗 Indicator for the degree of VSB or BPVD of image pair (i, j)  

cpmin 
Threshold for the minimum number of conjugate points for an 

overlapping pair 

dij Scalar Product of i-th target feature and j-th retrieved feature 

d Threshold for rejecting dij 

Dij Average of all available values of dij 

Nc Minimum Number of conjugate points after EG verification 

n_tr Number of random k-d trees 

Pij Number of retrieved nearest features for image pair (i, j) 

RSij Measurement for the degree of RS of the i-th and j-th images 

nRSij Normalized Measurement of RSij 

Sij Measurement for Image Similarity 

 

Global image orientation methods 

Acronyms 

IRLS Iteratively Reweighted Least Squares 

L1RA Lie-Algebraic global rotation estimation using L1 norm 

RBA Robust bundle adjustment 
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Notations 

𝒢 Viewgraph generated after preprocessing 

𝒱 Set of vertices in 𝒢  

ℰ Set of edges in 𝒢  

R 3D rotation matrix 

𝝔 Lie algebra vectorized representation of Lie group element SO(3) R 

Av Coefficient matrix of solving global rotation 

𝜖 Terminal criterion of solving global rotation 

𝜌(𝑥) Huber-like loss function of solving global rotation 

𝜙(𝑥) Function for iteratively reweighting global rotation 

𝑋0, 𝑌0, 𝑍0 3 dimensional translation parameters 

X, Y, Z 3 dimensional coordinates of object points 

𝜀𝑟   Maximum allowed value of triplet rotational compatibility 

𝜀𝑡 Maximum allowed value of triplet translational compatibility 

λij Global unified consistent scale factor for image pair (i, j) 

i

ij  
Consistent scale factor of each image pair (i, j) in the reference of image 

i 

i

jkr  
Consistent scale factor which is constant with respect to the 

corresponding triplet of images (i, j, k) 

AZ Coefficient matrix for solving all tuples with respect to a specific image 

i
γ  Scale factor for transfer tuples into global unified system 

AR Coefficient matrix for transferring all tuples into global unified system 

𝑨𝑃 
Coefficient matrix for global translation estimation using relative 

translations 

𝑿𝑃 Unknown global translation parameters 

𝑲𝒊 Intrinsic calibration matrix of image i 

𝜑(x) Back projection function of collinearity equation 

𝑓ℎ(𝑥) Huber loss function of RBA 

𝜖𝑏𝑎 Terminal criterion of RBA 

Trba Maximum number of iterations in RBA  

vr Threshold of residual for eliminating blunder observations in RBA 

da 
Threshold of minimum intersection angle for eliminating tie points in 

RBA 

Top Threshold of minimum number of tie points visible in an image in RBA 
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1 Introduction 

Over the centuries, 2D art have always played a particularly important role in human 

civilization. Artists like Raffaello Sanzio da Urbin (1483-1520) and Zhang Zeduan (1085-1145) 

left us many priceless 2D paintings, such as “The school of Athens” and “Along the River During 

the Qingming Festival”, which typically depict some realistic, but non-existent 3D scenarios. 

Putting a lot of effort on improving the artistry, geometric knowledge is often only gathered 

empirically in such earlier works. With the emergence of photography in the 1830s, naturalism 

in art, which was mainly supported since the sixteenth century by the knowledge of the 

perspective projection, was substituted by the technique of aligning perspective images as 

photographs in the nineteenth century. Images were then popularly used as an inspiration to 

perceive environment, and of course also for documentation, reconnaissance and surveillance. 

However, paintings and images are both 2D artifacts with uncertain depth information. With 

the development of methods for 2D image processing, photographs did not only initiate the 

transition to modernity in art, but were also applied to solve engineering problems, such as the 

3D mensuration of buildings for preserving cultural heritage [Albertz, 2001; Remondino et al., 

2016].  

The determination of 3D information (which additionally contains depth information) from 

2D images which observe the same scene from different viewpoints is a fundamental task in 

photogrammetry. An essential pre-required step of this task is to determine the image poses or 

image orientations, which describe where the images got exposed and the viewing direction, as 

well as the 3D coordinates of tie points, and thus a sparse 3D point cloud. This process is often 

called structure-from-motion (SfM) in computer vision and simultaneous localization and 

mapping (SLAM) in robotics. Measuring based on images dates back to the invention of 

photography and was further investigated by scientists from the field of optics (Ignazio Porro 

and Ernst Abbe), while, later on, stereo photogrammetry was used for terrestrial mapping 

applications on mountain areas. In the time of analogue and analytical photogrammetry, 

airborne and terrestrial images were processed with comparators and plotters for map 

generation.  

Following the development of digital sensor and electronic information technology, the 

application of photogrammetry was extended from professional photogrammetrists to common 

users, for example, making 3D models of complete cities as shown in Google Maps and 

allowing to virtually explore tourist sites in 3D when people are not able to go there physically 

(e.g. during a quarantine - the Große Kuppelhalle Bode Museum provided an online virtual site 
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during the Covid-19 period)1. Nowadays, digital images are omnipresent, as the cost for such 

an image is pretty low and even a user-level cellphone is capable of generating images of 

relatively high quality (for instance, one of the most popular cellphone, iPhone 11, has two 

cameras with 12 million pixels each). In addition, people often share their pictures on some 

open websites or social media applications, such as Flickr and Facebook, making it easy to 

access a wide range of pictures. Although these pictures were initially not taken for 

photogrammetric purposes, it is of great interest to carry out reconstruction or measuring tasks 

on these abundant pictures. A prominent use case for such tasks is the reconstruction of Notre 

Dame de Paris. Notre Dame de Paris, which is one of the most famous churches around the 

world, got damaged by an unexpected fire on April 16th, 2019. In consequence, the French 

government decided to rebuild it. One possibility to provide a geometric reference for the task 

of rebuilding is the usage of a point cloud together with the image poses determined based on 

touristic pictures from the Internet. Figure 1.1 shows such a reconstruction example of Notre 

Dame de Paris using pictures collected by Snavely et al. [2006] which is processed by the 

method presented in this thesis.  

In addition to the example of 3D scene reconstruction, images are also successfully applied 

in navigation and automatous driving. One strategy is to embed a camera system as an auxiliary 

sensor to allow for continuous navigation even when GPS and GNSS (Global Navigation 

Satellite System) signal deny case occurs, for example, when an automatous vehicle enters a 

tunnel where GPS and GNSS signals can no longer be received for navigation, the location of 

the vehicle can be obtained by computing the position of the mounted camera. 

While images are now much easier to access and capturing datasets is not a main issue 

anymore, the rapidly increasing computational power and resources resolve the limitation of 

working only with small datasets. Therefore, an efficient solution for being capable to deal with 

reconstructions from a large amount of images is in demand. In particular, such a solution 

should allow to orient a lot of images as well as reconstruct large areas by taking time efficiency, 

robustness and accuracy into account. 

                                                 
1 http://bode360.smb.museum/?from=timeline 

   
Figure 1.1.: Collection of pictures of Notre Dame de Paris [Snavely et al., 2006; Wilson and Snavely, 

2014] and the corresponding reconstruction of the sparse point cloud and image poses using the 

method proposed in this thesis which is denoted as the black box in this figure. 
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   Modern methods usually solve the image orientation problem via bundle adjustment 

techniques, which optimize a cost function known as the total reprojection error, where the 

reprojection error is calculated as the discrepancy of measured image feature point coordinates 

and the corresponding coordinates estimated using the well-known collinearity equations. The 

term “bundle adjustment” originates from the fact that optical rays from different viewpoints to 

the same objects are adjusted by iteratively fine-tuning the positions of object points and the 

image poses such that the total reprojection error is minimized under a certain statistical model. 

While the concept was developed more than 60 years ago Schmid [1958]. An excellent survey 

on bundle adjustment is provided by Triggs et al. [2000]. The complexity of this minimization 

approach originates from the nonlinearity of the collinearity equations and the non-convexity 

of the optimization function, making it impossible to obtain an optimal solution for bundle 

adjustment directly. Thus, initial values are an essential input for solving bundle adjustment 

and the quality of these initial values is normally of great significance to avoid local minima. 

   To solve the image orientation task, according to the procedure in which images are oriented, 

there are mainly three different strategies: incremental, hierarchical and global methods2. The 

incremental approach [Snavely et al., 2006; Agarwal et al., 2009; Schönberger and Frahm, 

2016; Wu, 2013; Wang et al, 2018 and 2019a] is the earliest and most intuitive idea. Two 

images or triplets are initially chosen according to some specific requirements; their relative 

orientation parameters are computed; new images are iteratively added to extend the 

photogrammetric block by space resection (also called PnP or perspective-n-point problem) 

and triangulation; a robust bundle adjustment is typically adopted to obtain refined results. 

Farenzena et al. [2009], Mayer [2014] and Toldo et al. [2015] present a so-called hierarchical 

method, which improves the incremental idea by first dividing the images into overlapping 

subsets, and then processing all subsets individually by incremental SfM. Finally, the subsets 

are merged in a hierarchical way with a number of bundle adjustments. Both strategies are 

relatively slow because of the repeated use of bundle adjustments. To overcome this problem, 

the global method [Govindu, 2001; Martinec & Pajdla, 2007; Jiang et al., 2013; Moulon et al., 

2013; Ozyesil et al., 2015; Arrigoni et al., 2016; Reich & Heipke 2016; Goldstein et al., 2016; 

Wang et al., 2019a and 2019b] considers this problem from a different perspective. Global 

methods build on the well-known idea that rotation and translation estimation (i.e. the 

computation of the 3D coordinates of the projection center) can be separated. Accordingly, 

these methods consist of two main steps: global rotation averaging and global translation 

estimation. Global rotation averaging simultaneously estimates the rotation matrices of all 

available images in a consistent (global) coordinate system [Hartley et al., 2013]. Given global 

rotations, global translation estimation aims at simultaneously solving the translation 

parameters of all available images. The advantage of global SfM is that it can solve both, 

rotations and translations, without intermediate bundle adjustments, only a final one is 

necessary. However, this method is more sensitive to outliers than the two others. 

                                                 
2 Global pose estimation methods consist of global translation and global rotation determination. In some cases, 

the term “global” is used in the context of optimization. In this thesis, the term “global” is applied to refer to 

approaches that take into account the information about relative poses of all overlapping image pairs 

simultaneously. 
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   In this thesis, efforts are concentrated on developing a time efficient and robust image 

orientation approach, which contains methods for detecting mutual overlapping image pairs, 

relative orientation (RO) outlier elimination and global image orientation. In the next 

subsection, the approach is motivated, the objective is formulated and the corresponding 

characteristics are outlined. 

1.1 Motivation and objective  

Thanks to the development of photogrammetry and multi-view geometry in computer vision, 

the estimation of image orientation parameters or SfM has been well studied in the last several 

decades, which can be demonstrated by some successful academic and commercial packages, 

such as VisualSFM, Colmap and Photoscan3. In consequence, one may doubt and ask is it still 

necessary to spend further time and effort on this topic? The answer is a clear Yes - research 

on image orientation is still an ongoing matter. This positive answer is given according to 

arguments which are presented in detail in the next paragraphs and are intuitively illustrated in 

Figure 1.2. 

As Figure 1.2 shows, the method proposed in this work is composed of three serial and 

interdependent stages. In the initial preprocessing stage, mainly two tasks are addressed: mutual 

overlapping image pairs are detected first to improve the time efficiency of image matching and 

the computation of relative orientation. Secondly, outliers of relative orientations are handled 

to improve the robustness. Based on these inliers pairs of relative orientation, the second stage 

is denoted as global image orientation which aims to estimate the exterior orientation 

parameters of all available images simultaneously. For this purpose, the steps of global rotation 

estimation and global translation estimation are implemented separately. The last stage is 

triangulation and bundle adjustment, in which the coordinates of tie points are obtained by 

triangulation and the results, including the image orientation parameters and coordinates of tie 

points, are refined by a robust bundle adjustment. Note that the triangulation & refinement stage 

                                                 
3 More information about VisualSFM, Colmap and Photoscan can be found by the links of http://ccwu.me/vsfm, 

https://colmap.github.io/ and https://www.agisoft.com. 

   
Figure 1.2.: Overview of the workflow presented in this thesis. 

http://ccwu.me/vsfm
https://colmap.github.io/
https://www.agisoft.com/
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is not part of the novelty of this thesis. However, it is an essential part of the whole work, 

because the calculated initial image pose parameters should not only guarantee the success of 

triangulation, but should also allow the bundle adjustment to converge. Any violation of these 

two requirements in turn indicates the failure of the solution of initial value computation. In 

addition, the refined accurate image poses and coordinates of object points are often used in 

subsequent multi-view stereo processing and DSM (Digital Surface Model) or DEM (Digital 

Elevation Model) generation. 

As feature extraction and feature matching are the standard preliminary works for almost 

every feature-based image orientation method, which is also true for this thesis, one bottleneck 

of such preliminary works is the effort needed, growing quadratically with the number of 

images to be solved. A conventional way is to carry out N(N-1)/2 exhaustive pairwise image 

matchings [Snavely et al., 2006; Olsson and Enqvist, 2011], where N is the number of images. 

In aerial photogrammetry or a pre-planned image capture project, things become much easier, 

because overlapping image pairs can be determined in advance, either by the position 

information from GPS/IMU (Inertial Measurement unit) or by prior knowledge on the pre-

planned pattern. In contrast, in close-range photogrammetry, untrained users typically do not 

capture images in a pre-planned pattern, and even experts often need significantly more time 

for data acquisition, when strict recording protocols must be followed. Moreover, as it has 

already been addressed, images taken without a pre-planned pattern can be obtained in a much 

cheaper way, e.g., when considering crowd-sourced data from the Internet. However, datasets 

acquired in such a way are usually unordered4 and the quadratic image matching effort must be 

taken into account. The differences between these various acquisition approaches are 

exemplarily shown in Figure 1.3: The overlap graph of the ordered dataset from a UAV 

platform in (a) shows regularly distributed dark pixels which reflect some basic rules of the 

flying routes, such as, there are 18 strips in which the last three strips are shorter than the others 

and every strip overlaps with at least two other strips. The black pixels in the overlap graph of 

                                                 
4 In this thesis, “Unordered” means that images are unorganized and the corresponding overlapping information is 

totally unknown, while “Ordered” indicates that the overlapping information is already known via some manners. 

   
                (a) UAV images                     (b) Unordered images              (c) Exhaustive matching 

Figure 1.3.: Overlap graph of ordered and unordered datasets, respectively. The vertical and 

horizontal axes are the image IDs from 1 to N, these overlap graphs are typically symmetric. Black 

pixels mean that the corresponding two images overlap, while white ones denote a non-overlapping 

relationship between image pairs. Yellow pixels are extra image pairs (beyond the determined black 

ones) that need to be matched using an exhaustive image matching strategy. 
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the unordered dataset (the images of Notre Dame shown in Figure 1.1 are investigated here) 

shown in (b) are just irregularly distributed, making it challenging to clarify which image pairs 

overlap if no prior knowledge is given. Ideally, the most efficient approach is to only run image 

matching on image pairs labelled as black pixels. One typical way to find these black pixels is 

to use exhaustive image matching. As Figure 1.3 (c) depicts, in this case a lot of additional 

effort is required on these non-overlapping image pairs denoted as yellow pixels. To free the 

experts from the bound of protocols and to allow common users to provide image datasets, an 

efficient method for detecting mutual overlap of large sets of unordered images is needed and 

thus presented in this work. Specifically, a random k-d forest is first built from the features 

extracted from all images and overlapping image pairs are detected by fast nearest neighbor 

search in this forest.  

Based on the determined overlap graph, the standard image matching process is conducted for 

conjugate points followed by epipolar geometric validation, in which the RANSAC technique 

[Fischler and Bolles, 1981] is applied to estimate the essential (or fundamental) matrix. The 

resulting relative orientation parameters 5  are only considered to be correct if a minimum 

number of point pairs agree with the model of central perspective. Although some blunders in 

                                                 
5 In computer vision literature, the term “Epipolar geometry” is often used to describe the relative geometric 

relationship of one image pair. In this thesis, the term “relative orientation” is instead used. In photogrammetry 

the result of relative orientation includes relative rotation and translation. These parameters can be derived from 

the essential (or fundamental) matrix [Longuet-Higgins, 1981; Hartley and Zisserman, 2003] which can be 

determined from the epipolar geometric constraint.  

 
    (a)                                                                          (b) 

 
   (c)                                                                             (d) 

   

Figure 1.4: An example scene with repetitive structure and image pairs with very short baselines. (a) 

Two example images with repetitive structure. (b) Ground truth of overlap graph with the image IDs 

on the horizontal and the vertical axes; green pixels denote overlapping image pairs, red pixels 

represent non-overlapping pairs with incorrect ROs due to RS, and blue pixels indicate the 

corresponding VSB image pairs. (c) incorrect reconstruction without eliminating incorrect ROs. (d) 

accurate reconstruction after eliminating incorrect ROs using the method suggested in this thesis. 
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the estimated ROs can be avoided using this RANSAC filtering step, there are still some 

incorrect ROs remaining undetected which are normally directly fed into subsequent global 

image orientation and can therefore stem the proposed global image orientation approach. In 

this thesis, care is taken of blunders in the ROs that result from problematic observations, 

repetitive structures and critical configurations such as inappropriate baselines. To obtain a 

reliable and robust solution, first all possible triplets are extracted where the three images are 

mutually connected to each other. Incorrect relative orientations are detected by checking the 

triplet loop closure constraint using both, relative rotation and relative translation. Repetitive 

structure is a characteristic of a single image and describes the fact that multiple regions of the 

image look similar. Typically, this is caused by a repetitive 3D structure in the scene (also 

explaining the naming repetitive structure instead of repetitive texture, as texture refers to the 

2D image space). As a consequence, the descriptors of extracted features are rather similar in 

this case. Matching images with repetitive structure leads to many ambiguous point pairs and 

outliers. In this context, an image pair due to repetitive structure (RS) is referred as non-

overlapping RS image pair, for which incorrect conjugate point pairs were extracted due to 

these ambiguities. Such non-overlapping RS image pairs with nevertheless similarly looking 

images can stem from, for example, a set of façade images, when the façade is somewhat 

symmetric. If too many such incorrect point pairs are extracted, it is possible that RANSAC is 

not be able to detect the error anymore and incorrect relative orientation parameters are derived. 

A critical configuration with a very short baseline (VSB) results from improper image 

acquisition planning, e.g. when images are taken in different directions, but from basically the 

same projection center. In addition, crowd sourced datasets, such as images available on the 

Internet, are widely used nowadays. These datasets may contain pairs with such critical 

configurations as well. In Figure 1.4, an example with both, RS and VSB image pairs, is shown. 

(a) shows repetitive structure of windows and walls, while these two photos are actually 

showing different walls. (b) depicts the ground truth of the overlap graph where green pixels 

denote the correct overlapping image pairs; (c) and (d) show the reconstruction result when 

applying the proposed global SfM method without and with employing the proposed method to 

eliminate outliers in ROs, respectively. It is obvious that the reconstruction is more reasonable 

after deleting the incorrect ROs. 

1.2 Problem statement and contributions  

To improve both, time efficiency and robustness of image orientation, the global strategy is 

applied in this thesis, as many works have been conducted already to demonstrate the capability 

of global strategies. In the context of this work, the global image orientation task starts with 

the remaining inliers of relative orientations. Similar to other global orientation approaches, 

two separate steps of global rotation estimation and global translation estimation are presented 

in this work. 
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Global rotation estimation addresses the problem of assigning a rotation matrix to every 

image in the photogrammetric block in a way that is most consistent with the calculated relative 

rotations from each remaining RO. In other words, relative rotations Rij are assigned to a set of 

images, while the global rotations of all available images are computed simultaneously, 

optimizing for the constraint RijRi = Rj, where Ri and Rj are the global rotations of i-th and j-th 

image. As ample research has been published on global rotation estimation and the problem can 

be considered to be largely solved, in this thesis an existing method (the one suggested by 

Chatterjee and Govindu [2013]) is used as a basis for the subsequent novel translation 

determination. This particular work is chosen for two reasons: first, their work is widely used 

in many state-of-the-art global image orientation works and is considered capable of providing 

reliable results for large numbers of images; second, in the experimental evaluation it is 

important to make a fair comparison of translation results from different methods, which 

requires to use the same rotation estimation method. 

Analogously to rotation estimation, global translation estimation is commonly formulated as 

computing global image translation parameters from the relative translations of all available 

image pairs. However, global translation estimation cannot be solved directly from relative 

translations, because relative translations only contain the normalized translation direction 

vector between the projection centers of two overlapping images, without providing any 

information on the length of these vectors. Thus, the problem of estimating global translations 

is not fully solved in general (in contrast to global rotation averaging), and this thesis develops 

a novel method for global translation estimation. 

In summary, to achieve the objective of solving the image orientation problem for various 

datasets (including datasets containing ordered and unordered images, or images with repetitive 

structures and critical configurations) in a time efficient and robust manner, this thesis contains 

the following main contributions (highlighted in green boxes in Figure 1.2): 

 A method to quickly identify mutual overlapping image pairs in large set of unordered 

images is developed. Without requiring any prior knowledge, time efficiency is 

increased by carrying out image matching and epipolar geometry computation on 

these determined overlapping image pairs only. 

 An approach to detect blunders in the relative orientations is proposed to improve the 

robustness of image orientation. RO outliers that are due to noisy observations, 

repetitive structures and inappropriate baselines are eliminated. 

 After deriving global rotation information with the approach of Chatterjee and 

Govindu [2013], this thesis contributes a new global translation estimation method, 

using information from tie points and relative translations. 

 The capability of the whole pipeline is demonstrated on various datasets (such as, 

UAV and terrestrial images, images from the Internet, benchmarks from the 

photogrammetry and computer vision community). All the above mentioned 

contributions is evaluated and compared to several state-of-art methods. 

Parts of this thesis have been published in journal articles as well as in peer-reviewed 

conference and workshop proceedings. The content of the following chapters is partly adapted 
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and improved from the author’s previous works: [Wang et al., 2017], [Wang et al, 2019b], 

[Wang et al, 2019c], [Wang and Heipke, 2020]. 

 

1.3 Reader’s guide 

The content of this thesis is structured as follows. Chapter 2 provides a comprehensive 

overview of related works. A brief review of the endeavors on increasing the efficiency of 

image matching and ROs outlier detection is followed by a study of existing methods for 

incremental, hierarchical and global image orientation. In Chapter 3, the preprocessing steps 

are introduced. The method for the fast identification of mutually overlapping images in large 

sets of unordered images is explained in detail and the strategy for detecting outliers in ROs is 

then justified. Chapter 4 addresses the proposed global image orientation method. First, the 

global rotation estimation method by Chatterjee and Govindu [2013] is briefly presented for the 

sakes of completeness. Then, a novel global translation estimation method is described in detail. 

The setup and the datasets used for the experiments are discussed in Chapter 5, before an 

exhaustive evaluation of the proposed methods is reported in Chapter 6. Results with a focus 

on time efficiency and robustness are discussed. Finally, Chapter 7 draws conclusions and 

prospects for future work.
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2 State of the art 

Over the last several decades, the topics relevant to this thesis have been extensively studied by 

various communities, gaining lots of achievements. Nowadays, the topic of image orientation 

faces some new challenges because images can be obtained at very low cost, or even for free, 

if they are just downloaded from the Internet (e.g., from social websites such as Facebook, 

Flickr or Instagram). This also implies that methods need to be investigated to process more 

images in a time efficient and robust manner. [Snavely etc., 2006] is one of the earliest works 

that deal with large sets of unordered images (especially from the Internet). They presented an 

incremental pipeline for SfM, demonstrating that it can generate accurate reconstructions in 

practical scenarios, where hundreds or even thousands of photos captured by different tourists 

are used as input. The results are refined by using bundle adjustment which is not a convex 

optimization problem due to the special structure of the exterior orientation parameters of the 

images. Consisting of SO(3) rotation matrices and ℝ3  translation vectors, the optimization 

scheme may converge to an undesired local minimum in realistic settings. It is therefore crucial 

to develop methods that produce results suitable to initialize the bundle adjustment, meaning 

that the exterior orientation parameters (and interior orientation parameters) as well as the 3D 

structures need to be initialized as close as possible to the ground truth. Approaches to estimate 

these initial values can be categorized into three classes: incremental, hierarchical and global 

methods. 

This chapter is dedicated to give an overview of the existing works that are relevant to this 

thesis. The following parts of this chapter are structured based on the workflow of the image 

orientation procedure, which starts with a coarse introduction of some widely used image 

features and relative orientation methods in Section 2.1 (these aspects are not covered in detail, 

as this thesis does not tend to make contributions to them). Section 2.2 presents an extensive 

description of some state-of-the-art methods for efficient image matching. This is followed by 

a review of relevant works on different classes of solutions to determine image orientation 

methods: Section 2.3 investigates incremental and hierarchical methods; Section 2.4 presents a 

comprehensive summary of global methods containing studies to cope with outliers of relative 

orientations, global rotation estimation, global translation estimation and more recent one-step 

global image orientation; Section 2.5 discusses some alternative image orientation methods. 

Finally, this chapter closes with a discussion of the current state of the art and open questions.
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2.1 Image features and relative orientation 

To derive the desired image orientation parameters, suitable observations need to be identified 

and extracted from the images and some corresponding preprocessing steps (eg., feature 

extracting and relative orientation) must be carried out. This section briefly reviews some state-

of-the-art studies on these preprocessing steps. By the end of the last century, quite a few 

researchers developed automatic methods for image feature extraction. In detail, Harris and 

Stephens [1988] proposed to use image patches with significant grey value variations in two 

orthogonal directions and Förstner [1986] presented a method using corner points or blobs 

where the image intensities show a large variation between adjacent regions in all directions. 

One of the most popular feature extraction techniques is the so-called Scale Invariant Feature 

Transform (SIFT) [Lowe, 2004]. SIFT can be considered as a blob detector in which an image 

pattern that differs from its immediate neighborhood with respect to intensity, color and texture, 

more specifically, features are detected by the maxima and minima of the result of DoG 

(Difference-of-Gaussian) function applied in scale space to a series of smoothed and resampled 

images, low-contrast candidate points are discarded, dominant orientations are assigned to 

localized keypoints. The main advantage of SIFT is its invariance (up to some degree) against 

rotation, scale, illumination and viewpoint changes. Yet another successful feature called 

Speeded Up Robust Features (SURF) [Bay et al., 2008], largely inspired by SIFT, employs a 

box filter to approximate the second order Gaussian and image integrals to compute an image 

convolution. More recently, many works were published on learning image features [Trzcinski 

et al., 2005; Chen et al., 2016]. In addition, Chen et al. [2020] have recently shown that in the 

context of image matching, learned image features are more robust than the conventional hand-

crafted features when facing large changes in the viewing angle or affine distortions.  

After observations are obtained from the images, the following step for deriving the desired 

image orientation parameters is to compute pairwise or triplet-wise relative orientations.  Ample 

studies have been carried out on this topic, e.g. dealing with the fundamental or essential matrix 

[Faugeras, 1992; Hartley,1992] for two views or the trifocal tensor for three views [Hartley, 

1997; Ressl, 2000]. Typically, linear estimation systems can be built for solving the 

corresponding matrix or tensor by using image correspondences and relative orientations can 

be determined from the entities of the matrix or tensor. However, such linear estimation systems 

are sensitive to outliers of image correspondences (e.g. spurious matches) and to the degeneracy 

of specific configurations (e.g., all correspondences are collinear). A common approach is to 

eliminate outliers by integrating a RANSAC scheme, where a minimal number of required 

observations are randomly selected to perform an epipolar geometry check. This is repeated for 

a specified number of iterations and the configuration with the largest set of inliers is denoted 

as the final solution. In the case of the essential matrix, which is the most relevant to this thesis, 

the interior orientation parameters of the cameras are known in advance, which reduces the risk 
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of facing a degenerated case. Currently, the most successful pipeline for estimating an essential 

matrix is the five-point algorithm proposed by Nistér [2004] and extended by Stewenius et al. 

[2006]. In the five-point algorithm, an algebraic optimization function is minimized, while 

outliers and inliers are distinguished based on the geometric reprojection error and an iterative 

RANSAC scheme is applied for seeking the most robust solution. 

2.2 Efficient image matching 

Finding correspondences in different images for the task of image orientation is a fundamental 

step in photogrammetric 3D reconstruction, also referred to as image matching. One way to 

obtain conjugate points in two or more images corresponding to the same 3D object point is the 

approximate nearest neighbor (ANN) method based on k-d trees or random k-d forest [Arya et 

l., 1998; Silpa-Anan, Hartley, 2008; Muja and Lowe, 2009, 2012, 2014]. However, image 

matching is one of the most time-consuming processes, because, given N images, N*(N-1)/2 

image pairs must be matched if no prior knowledge on the image orientations is available. A 

comprehensive review of the current state of the art, including a comparison of a number of 

methods is contained in [Hartmann et al., 2016]. Classically, photogrammetry has a preference 

to work with ordered images [Luhmann et al., 2014], where overlapping image pairs are known 

prior to the pose estimation. Consequently, only the overlapping image pairs need to be 

matched. This is typically achieved in one of two ways: either through carefully planned 

recording, or by measuring coarse image positions during image acquisition using external 

sensors (e.g. GPS and IMU). To broaden the scope of image-based 3D reconstruction, modern 

projects may work with crowd-sourced or thousands of unordered images. Therefore, image 

matching could become the bottleneck – even with today’s powerful machines. In this review, 

three main lines of strategies are inspected: first, the reduction of the number of feature points 

per image, by identifying those that are most suitable for matching, before the actual image 

matching is conducted; second, the reduction the number of image pairs, by finding out those 

which are most likely to overlap and match; third, other integrated methods. 

2.2.1 Reduction of the number of features per image 

To reduce the number of feature points which are extracted from a given image, the most 

intuitive way is to modify the underlying feature detector, e.g., by adapting corresponding 

inherent thresholds. In this review, the DoG is exemplary discussed, however, without loss of 

generality, the same principles are valid for other feature detectors as well. Two simple ways 

are naturally adopted: (i) Varying the DoG detection threshold used to decide whether an 

interest point is considered or not. The SIFT implementation of VLFeat [Vedaldi and Fulkerson, 

2008], for example, uses a rather generous value which generates nearly thousand feature points 

per image on a consumer camera. A stricter threshold will in general return fewer feature points, 

but with a higher contrast. However, these features are not guaranteed to be more suitable for 

matching and many useful feature points that have salient textures may be discarded. (ii) 
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Selecting features in a high scale level. [Wu, 2013], for example, employed the so-called 

“preemptive matching”, in which the extracted SIFT features are sorted in decreasing order 

with respect to the SIFT scale. Only features in high scales are used for matching.  

[Hartmann et al., 2014] approached this problem from another perspective by considering it 

as a classification problem. The extracted features can be trained to predict whether they are 

suitable for matching or not. Taking the feature descriptor as input, a binary classifier in form 

of a random decision forest was trained using a large set of features which have been 

exhaustively matched., More specifically, the positive training set was generated by the feature 

points that have at least one match and all the other feature points belonged to the negative set. 

2.2.2 Reduction of the number of image pairs 

The conventional exhaustive image matching strategy conducts matching for every potential 

pair of images. However, this strategy is typically contrary to the real conditions because many 

image pairs just do not overlap due to their viewing angles or their positions of exposure. 

Therefore, the efficiency of image matching can be significantly improved if the mutual overlap 

relationships are determined in advance. To approximate the set of actually overlapping image 

pairs, many works on computing image similarity were proposed: [Nistér and Stewenius, 2006] 

is one of the earliest studies on this topic. The key assumption of this study is that across all 

images homologous features should appear similar, which is exploited by quantizing the feature 

descriptors on a specific indexing structure. Tree structures are used for retrieval, while the k-

means algorithm is recursively employed to quantize all the features. This process can be 

carried out hierarchically until a pre-specified level of detail is reached; in this way a so-called 

vocabulary tree is created. Each cluster of the vocabulary tree is regarded as one word. It is 

intuitive that matchable points should be classified into the same word and unmatchable points 

should be located in different words. To measure image similarity, a weighting scheme is 

introduced. Using this scheme, an image is represented by a histogram of visual words weighted 

by tf-idf (term frequency – inverse document frequency). This kind of weighting ensures that 

words appearing seldom have a larger weight [Sivic and Zisserman, 2003], and image similarity 

can be efficiently computed with the Euclidean distance between the corresponding tf-idf 

vectors. This idea is often referred to as “Bag of Word” (BoW) and is widely used in the context 

of loop closure in SLAM [Mur-Artal et al., 2015]. To improve efficiency and robustness, [Zhan 

et al., 2015] extended this method by constructing multi-vocabulary trees implemented on 

graphic processing units (GPUs). For this purpose, different vocabulary trees are built and each 

word is evaluated using the average distance between every feature and its cluster center. Later, 

instead of using local image features, deep convolutional features from a pretrained VGG-16 

network [Simonyan and Zisserman, 2014] were used by [Wan et al., 2018]. A certain number 

of deep convolutional features are extracted from every image and the corresponding 

vocabulary tree and tf-idf vectors are generated using the ideas of Nistér and Stewenius [2006] 

and Sivic and Zisserman [2003]. The similarity of two images is obtained using the cosine of 

the angle between two corresponding tf-idf vectors. More recently, [Zhan et al., 2018] extracted 

global features for each image from AlexNet-FC7 (fully connected layers) [Krizhevsky et al., 
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2012] and ResNet101-Pool5 (pooling layers) [He et al., 2015], while the cosine similarity was 

computed using these global features. [Michelini and Mayer, 2020] estimated similarities 

between images using the Jaccard index as a relative score to rank the images. The Jaccard 

index is computed as the ratio between the number of matching features of two images and the 

number of unique features extracted from these two images. 

Knowing the image similarity scores only, it is still challenging to distinguish between 

overlapping and non-overlapping image pairs. Most of the above mentioned methods select a 

fixed number of pairs with highest similarity scores, which may result in either many 

redundancies or an insufficient number of image pairs. To overcome this limitation, [Jiang and 

Jiang, 2020] proposed a method which adapts the similarity threshold by analyzing statistical 

information of the similarity scores. As a consequence, more image pairs are selected by 

expanding minimum spanning trees (MST) to avoid the photogrammetric block breaking apart. 

2.2.3 Other integrated methods 

[Havlena and Schindler, 2014] proposed a method named VocMatch which is again inspired 

by the idea of vocabulary trees. A 2-level vocabulary tree was built in a way that the first level 

consists of 4096 clusters and the second level of 4096 * 4096 clusters. The basic idea is that all 

features of all images are indexed in the resulting set of about 16 million words, instead of 

matching them to each other in a pairwise fashion. It is assumed that features which are 

clustered into the same word in the second level represent matchable points, which means that 

if two cluster centers are located closely to each other, the results may be ambiguous. The 

authors demonstrated that the complexity reduces from quadratic to linear in the number of 

images. [Schönberger et al., 2015a] presented a pairwise image geometry encoding pipeline 

which takes into account the distribution of feature location and orientation and uses a 

randomforest classifier to predict potentially overlapping image pairs. Later, they further 

improved their pipeline by exploring the quality of relative geometric configurations and by 

using a similar random forest predictor to classify good and bad relative orientations 

[Schönberger et al., 2015b]. Instead of using SIFT features, [Frahm et al., 2010] used global 

appearance gist features [Oliva and Torralba, 2001] and the k-medoids algorithm with 

Hamming distance to generate clusters of images. Within each cluster, SIFT features are 

extracted and matched, then pairwise relationships between clusters are established to ensure 

the block is connected. [Heinly et al., 2015] improved the idea of [Frahm et al., 2010]. In their 

approach, clusters are represented by sets of visual words and overlapping image pairs are 

detected as k-nearest neighbors using a vocabulary tree. 

2.3 Incremental and hierarchical image orientation 

In this section, related works on two important strategies for the task of image orientation are 

reviewed: incremental and hierarchical image orientation. Incremental image orientation starts 

with an initial subset of images, e.g., initializing a small reconstruction, and iteratively adds 
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further images to the block, running repetitive intermediate bundle adjustment to refine the 

results. Hierarchical image orientation improves the incremental idea by first dividing the 

images into overlapping subsets, before processing all subsets individually by incremental 

image orientation. Finally, the subsets are merged in a hierarchical way with a number of bundle 

adjustments. In particular, the incremental approach can be indicated as common practice in 

photogrammetry, outlined in the relevant textbooks (e.g. Kraus [1997], pp.48, Hartley and 

Zisserman [2003], from pp.435). 

2.3.1 Incremental image orientation 

Over the last twenty years, various incremental methods were proposed, all following the 

workflow shown in Figure 2.1. One of the most well-known works was presented by Pollefeys 

et al. [2004], in which a hand-held camera was incrementally oriented using self-calibration. 

Similar to Figure 2.1, the set of images for initial reconstruction is selected by taking the number 

of correspondences and the length of the baseline into account. New images were added based 

on projective resection and intersection (triangulation). The results were refined by bundle 

adjustment, together with optimizing the focal length. Typically, the automatic orientation of 

uncalibrated images cannot guarantee to deliver results of high accuracy [Remondino and EI-

Hakim, 2006]. Thus, in practice, especially in the field of photogrammetry, cameras are 

typically well calibrated in advance in a controlled environment, e.g., using a planar chess board 

[Zhang, 2000], a 3D test field [Lumann et al., 2014] or a control field generated on a liquid 

crystal display (LCD) [Zhan, 2006].     

In the last two decades, many notable works have appeared in the computer vision 

community, among which four well-known studies are reviewed. To the best of the author’s 

knowledge, Snavely et al. [2006] was the first trial to cope with images from Internet sources. 

In their work they proposed the popular SfM system Photo Tourism which allows to reconstruct 

large scenes, such as famous tourist-spots, using an incremental image orientation approach. 

As Internet photos are typically characterized as unordered and highly redundant, Snavely et 

al. [2008] extended their previous work [Snavely et al., 2006] by conducting incremental image 

orientation along a skeletal graph. The basic assumption is that a small subset of images may 

already be sufficient to represent most of the information of a scene. Consequently, such subsets 

of images and their pairwise epipolar geometries are used to build the skeletal graph. Inspired 

by these two works, researchers further start to think about the feasibility of reconstructing city 

sized scenes. For this purpose, Agarwal et al. [2009] presented a system which utilizes multiple 

   
Figure 2.1.: Overview of the workflow of incremental image orientation methods 



 

28  State of the art 

 

computers as a computation cloud to deal with extremely large collections of photographs from 

the Internet, such as the city of Rome. In their work the distribution and parallelization of huge 

processing tasks including feature extraction, image matching, pairwise epipolar geometry 

verification and incremental image orientation were investigated and described in detail. Only 

one year later, Frahm et al. [2010] explored the possibility of reconstructing the city of Rome 

on just a single computer within one day, calling the approach “Building Rome on a Cloudless 

day”. They first classify images into clusters using appearance-based features which is carried 

out on the GPU to increase the computational efficiency. Incremental image orientation using 

skeletal graphs is then performed on each cluster individually. 

More recently, literature published on the task of incremental image orientation mainly 

concentrated on single steps of the workflow illustrated in Figure 2.1. Wu [2013], for example, 

improved incremental image orientation by proposing a Re-triangulation method to reduce the 

accumulated error. It is assumed that the initially estimated poses and also the poses obtained 

by bundle adjustment may not be accurate enough, while some correct feature matches may fail 

to be triangulated. Such failed feature matches were re-triangulated in the recursive scheme. 

Wang et al. [2018b], on the other hand, proposed a new image orientation method which 

belongs to the step “Addition of New Images”: For every newly added image, the corresponding 

rotation matrix was estimated by the relative rotations between the newly added image and the 

already oriented images. The translation was solved subsequently, using a linear equation 

system. The work by Schönberger and Frahm [2016] has received wide attentions because of 

its contributions to almost all steps of the workflow shown in Figure 2.1 and the corresponding 

released package1. In the first two steps, they estimate various stereo models via fundamental 

matrix, homography matrix or essential matrix (if the interior orientation parameters are 

provided). Based on the ratio of inliers using different models, valid image pairs are kept and 

used to compute an initial reconstruction. In order to add new images, the next best view is then 

chosen according to both, the number of visible tie points and their distribution in each 

candidate image. To achieve a robust and efficient triangulation, an adaptive RANSAC 

technique is adopted using the DLT method [Abdel-Aziz and Karaa, 1971; Hartley and 

Zisserman, 2003], while two constraints with respect to the triangulation angle and the 

positivity of the depth are checked. After the addition of images and triangulation, bundle 

adjustment is conducted using a strategy which perform local bundle adjustment on the set of 

most-connected images after each image registration and a global bundle adjustment only after 

a certain number of images has been added. It is also worth mentioning that SLAM [Mur-Artal 

et al., 2015] is actually a special case of incremental image orientation. The main differences 

are that only selected keyframes are used for generating tie points and loop closure is detected 

online. 

2.3.2 Hierarchical image orientation 

Almost at the same time as incremental image orientation was developed, the idea of 

hierarchical image orientation started to capture the attention of researchers. The basic idea is 

                                                 
1 More details can be found at https://colmap.github.io/ 

https://colmap.github.io/
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to split the images into smaller overlapping subsets, while each subset is solved individually 

before being ultimately merged into one complete block. Hierarchical sub-sampling is 

pioneered by Fitzgibbon and Zisserman [1998], using a balanced tree of triplets over a video 

sequence. The solved triplets are merged by minimizing a cost function with respect to either 

the error of aligning corresponding tie-points or the reprojection error in image space. This 

approach is subsequently improved by Nistér [2000], adding heuristics to suppress redundant 

frames and for triplet selection. 

    While the aforementioned hierarchical methods work under the assumption of sequential 

frames, Havlena et al. [2009] presented a new efficient technique for unordered datasets which 

includes three consecutive steps: First, an image similarity matrix was computed using the tf-

idf idea; Second, atomic 3D models reconstructed from triplets were used as seeds for a 

hierarchical merge to form a larger 3D model. Finally, in case that single images existed which 

were not connected, these were glued to the best partial reconstruction based on the number of 

visible tie points. Another hierarchical method using triplets was presented by Mayer [2014] 

and a corresponding extended version by Michelini and Mayer [2020]. Starting from triplets, 

the merging procedure was performed hierarchically with two images between shared two 

connected triplets. The efficiency of the merging procedure was improved by randomly deleting 

shares of tie points. Comparing different strategies of deleting tie points, the authors concluded 

that the random deletion of points typically generates reliable and precise results.  

The approach of Faranzena et al. [2009] is applicable to unordered sets of images as well. In 

this approach, the images are structured into a hierarchical cluster tree, while the computation 

of image orientation parameters is conducted by following this tree from the leaves to the root. 

Consequently, the task was split into smaller instances which were then separately solved and 

combined subsequently. The images were grouped by agglomerative clustering which produces 

a hierarchical, binary cluster tree. The simple linkage [Duda and Hart, 1973, pp 98-105], 

denoted as the distance between two clusters, is measured as the distance of the two closest 

objects within the corresponding clusters. One year later, Gherardi et al [2010] proposed an 

approach which considers several close clusters. A good compromise was achieved using the 

five closest clusters which, according to the authors, provides a good balance between the 

number of clusters and the tree height. Toldo et al. [2015] extended these two studies working 

with uncalibrated images and further demonstrated the effectiveness of the corresponding 

hierarchical strategy. 

2.4 Global image orientation 

In the previous section, some representative works of incremental and hierarchical image 

orientation have been reviewed. In this section, the focus is on global image orientation 

methods. Instead of sequentially solving the set of orientation parameters, based on the relative 

orientation information obtained from the establishment of epipolar geometry, global image 

orientation methods aim at computing all the available images’ exterior orientation parameters 
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simultaneously. This approach indicates the meaning of the term global in the context of global 

image orientation. Furthermore, the term global also refers to a concept in which the whole set 

of relative orientations is taken into account jointly, while rotations and translations are 

estimated separately. Consequently, on the one hand global image orientation ensures that 

errors are not accumulated but distributed more evenly over all orientation parameters (e.g., 

closed loops in a dataset are inherently taken care of, because all redundant relative orientations 

are used). On the other hand, global image orientation methods are more sensitive to outliers in 

relative orientations.  

In the following, some important contributions in the fields of outlier detection in relative 

orientations, global rotation estimation and global translation estimation are reviewed. 

2.4.1 Outlier detection in relative orientation 

Many related works have focused on detecting blunders in ROs, i.e., image pairs with incorrect 

relative orientation parameters. A conventional way based on RANSAC is to use the epipolar 

geometry constraint after image matching, in which the essential or the fundamental matrix is 

estimated using appropriate algorithms [Hartley and Zisserman, 2004; Nistér, 2004]. The ROs 

are only considered to be correct if a minimum number of point pairs conform with the model 

of central perspective. Although many wrong ROs can be eliminated in this way, non-

overlapping pairs may still exist resulting from repetitive structure (RS) and very short baselines 

(VSB). Many works try to detect these errors. Here, they are divided into three categories: 

missing correspondences analysis, loop consistency constraint analysis and other methods. 

Missing correspondences analysis. [Zach et al., 2008] first employed the so-called missing 

correspondences among an image triplet to infer incorrect ROs. The main idea is that if a 

substantial portion of correspondences between two images from the triplet cannot be observed 

by the third image, then the relative orientation between the two images is potentially incorrect. 

The authors used a Bayesian framework for all image triplets to check the correctness of the 

corresponding image pairs. [Roberts et al., 2011] improved this idea by verifying incorrect ROs 

via an expectation-minimization method which integrates the cues of missing correspondences 

and timestamp information. However, this information is not available in general, e.g., for 

unordered images the acquisition sequence is unknown. [Jiang et al., 2012] extended the 

missing correspondences idea by minimizing a target function which considers the number of 

missing correspondences across the entire reconstruction instead of the triplets. Specifically, a 

spanning tree is first built and then problematic ROs are iteratively detected in a greedy way. 

As a consequence, the method may get stuck in a local minimum. 

Loop consistency constraint analysis. [Zach et al, 2010] developed a method which adopts the 

loop consistency constraint to infer the validity of ROs. They first generate cycles in the overlap 

graph; the relative rotations are then concatenated within each cycle. If all ROs in the cycle are 

correct an identity mapping should be obtained as a result. Potential errors are identified using 

a Bayesian network. [Reich et al., 2017] presented a sequential graph optimization method to 

eliminate incorrect relative rotations. Both [Reich et al., 2017] and [Zach et al., 2010] need a 
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long processing time when dealing with a large image dataset where all the relative rotations 

need to be considered. [Shen et al., 2016] presented a graph-based method, where a minimum 

spanning tree is incrementally expanded by checking the loop consistency within a triplet until 

all available images are included in the minimum spanning tree. 

Other methods. [Wilson and Snavely, 2014] proposed a 1DSfM approach. Their basic idea is 

to project the 3D relative translations into different 1D direction vectors. They then used a 

kernel density estimator to sample these directions and showed that typically, wrong ROs 

clearly stand out in some directions of the 1D vectors. However, as the authors write, their 

method fails in the presence of repetitive structure. To address this issue, [Wang et al., 2018a] 

presented a hierarchical RO selection method for repetitive structure. They first built a 

minimum spanning tree (MST), and then used a hierarchical scheme for RO selection. The 

method only selects validated ROs along the MST and thus may break up a block of images, 

while image pairs with very short baselines are not dealt with. To solve for artefacts caused by 

repetitive structure, [Cohen et al., 2012] considered various symmetrical structures using 

geometric and appearance cues, to refine their bundle adjustment process. [Heinly et al., 2014] 

presented a post-processing step in the sense that the result of SfM is the input of their method. 

They split the overlap graph into subsets and use conflicting correspondences to identify 

repetitive structure. The subsets of the overlap graph which are free of conflicts are then merged 

into a correct reconstruction. 

2.4.2 Global rotation estimation 

Many approaches have been proposed to solve the problem of global rotation estimation from 

pairwise relative rotations. In general, they can be categorized into direct solutions and coarse 

to fine solutions. 

Direct solution. The basic idea is to estimate global rotation by using all available relative rotations. 

As one of the pioneered works, [Govindu, 2001] parameterized rotations as quaternions and 

determined the global rotation parameters by a constrained least-squares optimization. More 

specifically, the residuals between the measurements of relative rotations and the corresponding 

estimated global rotations were minimized under the assumption of a Gaussian distribution for 

the relative rotations’ uncertainty. However, the fact that a quaternion has unit length to 

unambiguously describe a rotation (up to the sign) and blunders in relative rotations are not 

taken care of. [Govindu, 2006] developed a robust rotation averaging method, where the Lie 

algebraic approach was exploited to provide a closed-form solution in a more flexible, fast, and 

accurate manner. In addition, outliers are handled robustly by applying a RANSAC technique: 

independent minimum spanning trees (MSTs) are used for extracting global rotations and the 

corresponding distances between the estimated global rotations to the relative rotations are 

determined along the MSTs. After a number of trials, the solution with the largest number of 

inliers is refined and optimized using Lie algebra. [Olsson and Enqvist, 2011] presented a 

strategy similar to [Govindu, 2006], however, the improvement lies in adding a weight to each 

relative rotation, which is proportional to the total number of matching points. Other methods 

suggest a linear solution by relaxing the constraints on rotation parameters: [Martinec and 
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Pajdla, 2007] and [Moulon et al., 2013] investigated a quaternion representation for solving 

image rotations and found that there was no satisfactory way to solve a linear system due to the 

required quadratic constraints of unit length quaternions. Thus, they alternatively first solved a 

homogeneous equation system using SVD (singular value decomposition) and then projected 

each approximate rotation estimation to the closest SO(3) space (in terms of Frobenius norm). 

While using SVD, they enforced the matrix to satisfy the orthonormality constraint required 

from rotation matrices. [Arie-Nachimson et al., 2012] presented a similar spectral 

decomposition method which typically performs better on datasets with large ratio of outliers 

compared to the method of [Martinec and Pajdla, 2007]. This superiority is attributed to their 

formulation of the rotation averaging problem in a form of semidefinite program (SDP) 

relaxation. In detail, the problem is cast into a trace maximization for a product of symmetric 

matrices composed of relative and global rotation matrices. A constraint causing a tighter 

convex relaxation of the optimization problem is integrated, thus, a solution which is less 

sensitive to noise and mismatches is explicitly promoted. 

Coarse to fine solution. Initial coarse rotations are estimated first using only a part of input 

relative rotations, before the following refinements are conducted by using all redundant 

relative rotations. Hartley et al. [2011] built a minimum spanning tree and computed the 

initialization by propagating relative rotations starting from the root of this tree. The estimated 

initial values were iteratively optimized using the Weiszfeld algorithm [Weiszfeld, 1937] (in 

French) or [Weiszfeld and Plastria, 2009]. They also compared the cost functions based on L1 

and L2 norm, and showed that the L1 norm was markedly better with respect to robustness. 

DISCO [Crandall et al., 2011] adopted a hybrid discrete-continuous optimization scheme. The 

authors treated the initialization problem as a classification task for which the SO(3) space is 

divided into 1000 independent labels. Based on a Markov random field formulation of 

constraints between relative rotations, discrete belief propagation was used to determine a 

specific label for each image. Finally, a non-linear least squares optimization is used to refine 

the initial rotations. It is demonstrated, in the experiments of Chatterjee and Govindu [2013], 

that both Crandall et al. [2011] and Hartley et al. [2011] are limited by the computational 

efficiency and the requirement of a scalable robust rotation estimation scheme. Therefore, a 

notable two-stage approach was proposed in Chatterjee and Govindu [2013]: They first 

calculated rather robust initial values by averaging the L1 norm on the Lie algebra (vector 

space). The solution was refined by iterative reweighted least squares, implemented by a Huber-

like loss function. In particular, the corresponding weights were dynamically determined based 

on the residuals on the Lie-algebraic vector space. [Reich and Heipke 2015, 2016; Reich et al. 

2017] improved the approach of Chatterjee and Govindu [2013] by employing a convex relaxed 

semidefinite program to obtain a more robust initial solution, before a refinement scheme is 

performed using a sigmoidal weighting function [Krarup et al., 1980]. 

A more comprehensive review of rotation averaging was published by Hartley et al. [2013] 

which can be understood as a tutorial, discussing, for example, different distances of rotation 

including geodesic distance, angular distance and quaternion distance as well as investigating 

different loss function such as L1 and L2 norm. Wilson et al. [2016] made a further contribution 
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on rotation averaging. In their study, two heuristics were suggested: First, the rotational gauge 

ambiguity is proposed. Typically, the first image’s rotation matrix is assumed to be an identity 

matrix. To achieve a higher local convexity, it is beneficial to choose a starting image that is 

connected to many other images instead of using one from the periphery of the block. Second, 

the analysis of the normalized graph Laplacian [Luxburg, 2007] is suggested to decide whether 

it is a well-connected graph (which is easier to solve) or a larger and noisier graph (which may 

be hard to solve). This motivates a multi-stage method to solve larger, less connected problems 

by first addressing smaller, simpler and well-connected subgraphs. 

2.4.3 Global translation estimation 

Analogous to global rotation estimation, global translation estimation is normally formulated 

as computing global translation parameters from the relative translations of all available image 

pairs. However, different from global rotation estimation, global translation estimation cannot 

be conducted directly from relative translations, because a relative translation only contains the 

normalized translation vector between the projection centers of two images. Without individual 

scale values relating all image pairs to a global unified scale, global translation parameters 

cannot be directly calculated. Two lines of research were developed to solve this issue, the first 

one has a focus on only using relative translations, the second one lies on taking both, relative 

translations and information of tie points, into consideration.  

Solution with relative translations only. The basic idea is inspired by the fact that the estimated 

relative translation should be parallel to the translation vector computed from the corresponding 

pairwise global translations (the discrepancy value is denoted as unparalleled error). Govindu 

[2001] proposed a linear framework based on every pairwise constraint indicated by the 

corresponding unparalleled error, in which the size of the error of each individual constraint 

varies a lot due to the various baseline lengths between different image pairs. To further refine 

the solution, they conducted an iterative weighted adjustment with the goal of unifying the 

weight of each individual constraint, in fact, after convergence these unified weights are the 

global unified scales related to corresponding image pairs. However, this method does not cope 

with gross errors, therefore, it is very sensitive to outliers. Brand et al. [2004] estimated the 

translations by minimizing the sum of all squared unparalleled errors. To fix the global scale 

and to prevent degeneracy, they add two additional constraints requiring the sum of translations 

and squared translations to be equal to zero and ones, respectively. Similar to these two 

methods, Wilson and Snavely [2014] used the sum of squared chordal distances which leads to 

a non-linear optimization problem. The relevant convergence properties were analyzed, and a 

good solution can consistently be found once the majority of outliers have been removed. 

Ozyesil et al. [2015] improved the method of Brand et al. [2004] by integrating a non-convex 

constraint that requires the estimated translations to satisfy a maximal proximity condition. This 

condition requires that two images should have a minimum distance from each other. Finally, 

a semidefinite relaxation formulation is used to remove the non-convex constraint. Moulon et 

al. [2013] modified the unparalleled error via embedding the unknown scale factors which 

reconcile different relative translations into a global coordinate frame. Their approach consists 
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of an optimization under the L norm which can be formalized in the form of a linear program. 

Arrigoni et al. [2016] extracted a number of so-called basis circuits, in which the local unified 

scales can be decomposed by utilizing the geometric characteristics of these circuits. Global 

unified scale factors can be estimated by propagating the scales of each basis circuit, before the 

global translations are estimated using the relative translations and the corresponding global 

scales. Zhuang et al. [2018] discussed the influence of the length of image baselines on 

estimating global translations. As the location precision is sensitive to baselines of different 

lengths, they advocated an objective function using an angular error which is independent of 

the baseline length. 

All the above-mentioned approaches are demonstrated to be able to generate accurate results if 

the locations of the image projection centers are evenly distributed in object space. 

Nevertheless, they are all invalid when dealing with images that are taken along a straight line. 

In other words, they fail to deal with images whose projection centers are collinear. To solve 

this degenerate case and to improve the robustness, approaches which include tie points have 

been investigated.  

Solution combining relative translations and tie points. Next to rotation estimation, Crandall et 

al. [2011] also described a hybrid discrete-continuous optimization scheme to estimate global 

translations. In this scheme, the 3D space was split into a certain number of subspaces denoted 

as labels and the number and the size of these labels were determined according to the 

information from the embedded geotags of the images. Based on a Markov random field 

formulation of constraints between relative translations and camera-point direction vectors, 

discrete belief propagation was used to determine a specific label for each image. A non-linear 

least square optimization is then performed to refine the initial translations and rotations. 

However, this approach is applicable only if some prior knowledge (e.g., geotags) is available. 

Arie-Nachimson et al. [2013] derived an expression for the essential matrix in terms of a global 

coordinate system. In particular, the essential matrix was rewritten using the already estimated 

global rotations and the global translations to be solved. A linear equation system was then set 

up, based on the epipolar geometric relationship between essential matrix and correspondences. 

Jiang et al. [2013] considered this problem from a different view. They used image triplets and 

the corresponding geometric relationship constrained by common object points to set up a linear 

equation system for determining the translation parameters. As a consequence of requiring 

triplets rather than pairs, some images may not be included in the resulting block, and their pose 

is then not recovered. Reich and Heipke [2016] improved the work of Jiang et al. [2013] by 

introducing multi-ray points, i.e. points visible in multiple images. Nevertheless, images may 

remain unconnected. Cui et al. [2015] chose multi-ray tie points, whose corresponding 2D 

image coordinates were refined as inliers by epipolar geometry verification. From the 

corresponding 2D image coordinates, a linear equation system was built to determine all 

translation parameters simultaneously using the L1 norm. Obviously, the results are affected by 

the choice of tie points. Another work from Cui and Tan [2015] also computed the global 

unified scales first, as Arrigoni et al. [2016], but the scales are unified using the depth 

information from each individual local spatial intersection. Afterwards, a linear equation system 
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determined by the solved global rotations, relative translations and their scale factors, is built 

to solve for the global translations. By using collinearity equations and the information of tie 

points, Wang et al. [2019a] propose a linear global method. Given the global rotation and tie 

point information, they first selected some robust tie points that can connect all available images 

into the same photogrammetric block. Then, the translation parameters and selected 3D tie point 

coordinates are solved simultaneously. But, as the number of images increases, so does the 

number of unknown tie points, which brings much more computational burden for the linear 

global method. 

2.5 Alternative solutions for image orientation 

Some ideas were published to avoid having to compute rotation and translation separately. 

Bourmaud et al. [2014] derived the image pose parameters as a Lie group SE(3). The authors 

proposed a generative model based on the formulation of a concentrated Gaussian distribution 

on the matrix Lie group and solved an iterated extended Kalman filter on that group to compute 

the elements of SE(3). Kasten et al. [2019a] proposed a method to globally recover the 

projection matrix of each image by using fundamental matrices of image pairs. However, as the 

projection matrix yields a projective reconstruction, information on interior orientation 

parameters cannot be introduced. Later, the authors extended their work: Exploring the 

algebraic characterizations of essential matrices, they introduced a method to simultaneously 

solve for rotation and translation of each image from essential matrices [Kasten et al., 2019b], 

a corresponding degenerate case occur if all images’ projection centers are (or nearly) collinear. 

Recently, Geifman et al. [2020] further characterized the algebraic characterization of essential 

and fundamental matrices in collinear image translations settings. They also suggested a 

practical solution for treating tie points as cameras to remove near-collinearity degenerations. 

However, this results in a much larger optimization problem that needs to be solved, leading to 

a large runtime. Furthermore, robustly choosing tie points for the optimization problem is a 

challenging task by itself. Cui et al. [2017] described a hybrid method consisting of a global 

and incremental strategy, in which rotations were determined by global rotation estimation 

[Chatterjee and Govindu, 2013] and translations were solved in an incremental manner. Later, 

Cui et al. [2019] improved this method with respect to robustness and time efficiency. Spurious 

image pairs are detected in the process of global rotation estimation, the corresponding image 

matches are eliminated and a subset of well-conditioned tie points are selected to accelerate the 

most time-consuming final procedure - bundle adjustment. To overcome the degenerate 

collinear case, Wang et al. [2021] proposed a hybrid global image orientation by extending the 

work of [Kasten et al., 2019b]. More specifically, an efficient method for extracting an optimal 

minimum cover connected image triplet set (OMCTS) is proposed, this OMCTS makes all 

available images included by a minimum number of connected triplets, as well as all of those 

selected triplets, satisfy the constraint that the three corresponding relative orientations are as 

compatible as possible to each other, after that, in the OMCTS the collinear triplet (invalid in 

[Kasten et al., 2019b]) and non-collinear triplet are solved separately, finally, all image 
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orientations in a common coordinate system are estimated by traversing solved connected 

triplets using a similarity transformation. 

2.6 Discussion 

The core steps of image orientation are reviewed and for each step, the corresponding state-of-

the-art works are studied. This section provides a brief insight of the limitations and open 

questions in the context of the research objectives of this work (namely, efficient image 

matching, outlier detection in relative orientations and estimation of image orientation 

parameters). Based on these open issues, corresponding methods are proposed in the following 

chapters to tackle the identified research gap.  

Image matching 

To reduce the effort that is required for image matching, three strategies are investigated: first, 

reducing the number of features per image for improving the time efficiency of image matching. 

One way for this reduction is to manually vary some inherent thresholds (e.g., DoG [Vedaldi 

and Fulkerson, 2008] or the scale value [Wu, 2013]) when generating features. Another way is 

via training [Hartmann et al., 2014], in which only the features that are predicted to be suitable 

for matching are kept. Although less feature can ease the computational burden, this can result 

in the undesired fact that less projection rays are constructed in the photogrammetric block 

which is not advantageous for the solution of image orientation (especially, for images with 

week connection to the block). Second, reducing the number of image pairs. Several studies 

[Nistér and Stewenius, 2006; Mur-Artal et al., 2015; Zhan et al., 2015;] are explained based on 

the idea of “Bag of Word”, which is widely used in image retrieval. In addition, to further 

reduce the computation of “Bag of Word”, some global features, e.g., deep convolution features 

[Wan et al., 2018; Zhan et al., 2018] and gist feature [Frahm et al., 2010], are employed instead 

of local hand-crafted feature (e.g., SIFT). Two limitations are found in this strategy: 1) 

ambiguous results can be generated if any two ‘words’ are similar to each other. 2) When using 

global features, some additional efforts have to be taken to generate local features that can be 

used for subsequent image orientation. 

To address the mentioned research gaps, this thesis develops a fast method for detecting 

mutually overlapping pairs, in which several random k-d trees are constructed based on partial 

extracted SIFT features per image, and correspondences are then generated only using the 

detected overlapping pairs with all extracted features. As a consequence, similar to the strategy 

of reducing the number of features per image, partial features are employed when building 

random k-d trees, whereas, the number of projection rays is supposed to be of sufficiently high 

redundancy, as all the extracted features are used for generating conjugate points. On the other 

hand, to avoid the ambiguity of the indexing structure, the random k-d trees are constructed in 

a way that makes them as independent to each other as possible. Lastly, SIFT features are 
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inherently used in this work, thus, no additional efforts are needed to dealing with image 

features. 

Image orientation 

To solve the problem of image orientation, three common strategies that frequently appear in 

related publications are reviewed: incremental, hierarchical and global image orientation 

methods. In the previous sections, some representative works of incremental and hierarchical 

image orientation have been summarized, however, both of these two strategies are limited by 

low time efficiency due to the repetitive usage of bundle adjustment. To cope with this problem, 

in this thesis, the global image orientation method which only needs the final bundle adjustment 

is employed. In addition, its process of estimating image orientation parameters ensures that 

random uncertainties are minimized with respect to all orientation parameters, and do not 

accumulate to systematic effects such as bias or drift. The disadvantage of global methods is, 

on the other hand, that outliers in relative orientation have larger negative effect on the results.  

To detect outliers in relative orientation, three categories of works are discussed, namely, 

missing correspondences analysis, loop consistency constraint analysis and other methods. 

According to the corresponding descriptions, they only show good performance on detecting 

specific type of RO outliers, in detail, missing correspondences analysis can deal with RO 

outlier due to repetitive structure (RS) but fail on RO outliers due to very short baseline (VSB). 

Loop consistency constraint analysis and some other methods [Wilson and Smavely, 2014] are 

able to detect the RO outliers due to inappropriate baseline and noisy observations but have 

difficulties on detecting RS RO outliers. To improve the robustness of the proposed global 

image orientation method and to overcome various RO outliers, in this thesis, a general method 

via checking the triplet compatibility is first presented to deal with RO outliers due to noise 

observations, and a combined ROs robustified method is then developed to deal with RO 

outliers due to RS and inappropriate baselines.  

Similar to most global methods, in this thesis, the two-step global image orientation 

consisting of global rotation estimation and global translation estimation is adopted. As ample 

research has been published on global rotation averaging in recent years and this problem can 

be considered to be nearly solved, an existing method is used in this thesis (the one suggested 

by Chatterjee and Govindu [2013] which can be seen as a state-of-the-art method for a robust, 

accurate and efficient computation of global rotations, used in several recent publications on 

global image orientation [Wilson and Snavely, 2014; Ozyesil and Singer, 2015; Cui et al., 

2015]).  

Global translation estimation, in contrast, is still receiving a lot of attention from researchers. 

Among them, two lines of works are studied: solution with relative translations only and 

solutions combining both relative translation and tie points.  In the first line, many relevant 

approaches are proposed by minimizing the unparalleled error between the relative translations 

and the translation vector calculated by the corresponding global translations. However, they 

are all invalid when all the input images’ projection centers are collinear. In the second line, 

to cope with the invalid case existing in the first line, tie points are integrated in some way, e.g., 
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the epipolar constraint was reformulated by using the tie point information [Nachimson et al., 

2013] or the same tie point viewed by different images should stay in the same position [Jiang 

et al., 2013; Cui et al., 2015; Reich and Heipke, 2016; Wang et al., 2019b]. All these methods 

suffer from the selection of tie points, specifically, a sufficient amount of tie points have to be 

selected to connect all images which results in a very large linear optimization problem and 

outliers exist in the selected tie points which leads to imprecise solution. Following the second 

line, a new global translation estimation method is presented, in which the invalid case of the 

first line does not exist anymore. In addition, unlike most of the investigated methods belonging 

to the second line, in this work, only robust tie points within triplets of images together with the 

relative translations are used to estimate the global translation parameters.
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3 Preprocessing 

3.1 Time efficient image matching based on a random k-d 
forest 

In this section, an approach is described for determining overlapping image pairs fast, i.e. image 

pairs forming a stereoscopic model, in a set of unordered images, cf. [Wang et al., 2017]. The 

suggested approach is feature-based, and relies on a random k-d forest made up of several 

independent k-d trees for nearest neighbor search. An algorithm is proposed to compute the degree 

of similarity of images based on these nearest neighbors. 

3.1.1 Construction of the random k-d forest 

(a) (b) 

K-dimensional or k-d trees are binary search trees and provide well-known solutions for 

conducting nearest neighbor search with both, high efficiency and precision, especially for low 

dimensional data [Robinson, 1984]. Given a k-d tree as shown in Figure 3.1(a), the nearest 

neighbor of a query feature q would be determined to be the one falling into the same cell, which, 

as can be seen from the figure, may be incorrect. One classical way to solve this problem is to 

backtrack to the parent nodes step by step and compare the distance between q and the features 

Figure. 3.1: Two different k-d tree structures [Muja and Lowe, 2014]. For the same dataset, two random 

k-d trees are shown, the splitting hyperplanes in (a) and (b) are different and independent from each 

other. The retrieved nearest neighbor of q by these two k-d trees is indicated by +, in (b) the nearest 

neighbor (with shortest distance to q) is correctly found, whereas for (a) the result is not correct. 
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from the parent nodes, until the correct nearest neighbor is found. However, in higher dimensional 

data, a large number of nodes may have to be traversed, and when faced with a large amount of 

data, finding the nearest neighbors in an exact sense requires much effort for backtracking, which 

reduces the retrieval efficiency. To solve this problem, approximate methods have been developed. 

As an example, Arya et al. [1998] proposed the so-called priority search algorithm. Another 

efficient method is to provide a set of different k-d trees; Figure 3.1(b) shows a second one. In this 

case, the true nearest neighbor does fall just into the cell of q. Thus, using a set of k-d-trees, called 

a random k-d forest, improves the probability that the query feature and the nearest neighbor fall 

into the same cell in at least one tree, and only this cell needs to be checked. 

In line with existing literatures (see section 2.2), based on a random k-d forest, a method for 

finding overlapping image pairs is presented. The input for each tree is the set of features extracted 

from all images. SIFT features are applied with the corresponding descriptor of 128 entries 

normalized to a length of 1 [Lowe, 2004], Only a subset of all extracted features is used (the other 

features are stored for later usage) to increase the time efficiency of the proposed method and to 

make the computational resources more feasible for larger datasets. In this thesis, 60 percent of 

the extracted features per image are used if the number of image is smaller than 500, whereas, the 

percentage is reduced to 50 if the number of image ranges from 500 to 1500, and it keeps 

decreasing to 40 percent if the number of images is higher than 1500. 

 To build the random k-d forest from the selected features, the following rule is suggested: the 

k-d trees of the forest should be as independent from each other as possible, i.e., each k-d tree 

should have a different tree structure.  The detailed construction procedure is illustrated in Figure 

3.2, the parent node PN of the tree is presented with the SIFT descriptors of all input images. The 

feature space is recursively split into two regions corresponding to child nodes by a hyperplane, 

until the child nodes contain at most one descriptor. When building k-d trees, one conventional 

way is that the entry of the feature vector with the largest variance is chosen for splitting. In order 

to make the trees more independent, the splitting plane is randomly selected from a range of entries 

 
Figure. 3.2: The generation of one k-d tree. 
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with relatively large variances, and the hyperplane selection is randomly conducted anew for every 

splitting operation. In this thesis, n_tr k-d trees are built using the same rule. 

After generating the random k-d forest, priority search according to Arya et al. [1998] is applied 

in each of these k-d trees. Therefore, for a query feature, each tree can contribute nearest neighbors. 

Among these nearest candidates, those fulfilling the following three constraints are selected for 

further processing:  

a) the candidate is from an image j different from the image i of the query feature;  

b) the scalar product dij of the query and the candidate feature vectors is above a threshold d 

(note that all features are normalized to unit length); 

c) if there are multiple candidates from the same image, the one having the largest scaler 

product dij is kept. 

3.1.2 Determination of overlapping image pairs 

According to the algorithm described in section 3.1.1, the random k-d forest is built. The ID of 

each SIFT descriptor is also recorded so that the information of which image the descriptor came 

from is preserved. In this way, it can be ensured that for a query feature only features from other 

images are considered. The nearest neighbors of each feature from the i-th image (i =1,2, 3, …, N) 

are retrieved by traversing the random k-d forest, where N is the number of images. The number 

of the resulting neighbors per image pair ij is called Pij, where j is the image ID of the j-th image. 

The larger the value of Pij, the more potential matches between the i-th and j-th image exist, and 

the more likely it is that the two images overlap.  

    Equation (3.1) is proposed to calculate the degree of similarity Sij between two images i and j 

as a function of Pij and Dij, where Dij is the average of all values dij involving correspondences of 

features from image i and j (note that to determine a relative orientation between two calibrated 

images, at least 5 corresponding features are necessary, i.e. Pij must be at least 5. Sij is set to -1, if 

Pij is less than 5). The more similar the i-th and j-th images are, the larger the value of Sij is. 

10logijD

ij ijS e P                                                          (3.1) 

    Equation (3.1) is a heuristic measure of image similarity. To motivate its construction, it is 

argued as follows: Pij and Dij should have relevant influences on the results, Dij is always smaller 

than 1, whereas Pij might take on a very large value depending on the number of feature 

correspondences (note that the value of Pij can vary considerably when dealing with images of 

different resolution). Pij can thus easily dominate a similarity measurement which is not desirable. 

Therefore, the influence of Pij should be decreased and that of Dij increased; this goal is achieved 

by using the logarithm for Pij and the exponential function for Dij. 

The similarity degree values Sij are calculated according to equation (3.1) for each pair of images 

i, j. For each image i, these similarity degree values are sorted by size in descending order, and 

image pairs that have the a% largest Sij scores are chosen as potential overlapping pairs for image 

i. 
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3.1.3 Clustering images and discarding single images 

Typically, large sets of unordered images, especially crowd-sourced images collected from 

websites, contain several smaller unconnected clusters, i.e. there are possibly no or not enough tie 

points between images from different clusters. Furthermore, sometimes single images exist which 

do not have any overlap with any of the other images. Based on the information from sections 

3.1.1 and 3.1.2, it is easy to count the number of putative conjugate points for each image pair and 

to store these values in a symmetric N*N matrix Q. In order to obtain stable relative image 

orientations, the requirement that each potentially overlapping pair has a minimum of cpmin 

conjugate points is set up. Subsequently, an adjacency matrix AM is derived, where the entry at 

position (i, j) is 1 if the corresponding image pair fulfils this criterion, otherwise this entry is 0. 

AM is then recursively traversed to determine which images belong to which cluster. In this work, 

it is assumed that most images are a part of one and the same photogrammetric block. 

Consequently, the cluster with the largest number of images is investigated further, and all single 

images and all smaller clusters are deleted (see Algorithm 3.1 for more details). 

3.1.4 Determination of relative orientation parameters 

Having determined overlapping image pairs, the relative orientation parameters of all these pairs 

are computed. In this step, all extracted features are employed, i.e., those used to build the k-d 

Algorithm 3.1 Clustering images and discarding single images 

Input Symmetric N*N matrix Q. 

Output p symmetric matrices Qi, where p is the number of clusters. 

I.  Initiate a new symmetric N*N matrix, called adjacency matrix AM. If Qij > cpmin, set          

AMij = 1, otherwise, AMij = 0. 

II. Initiate a new container V :={-1} of size N, an integer vt =0 and integer t = 0 

do 

{ 

1.  Create a new empty container ICt. If AMij = 1, add i and j into container  ICt , and set Vi  

        = 0, Vj  = 0. 

2.  Traverse the current container ICt, add the images’ ID into container ICt  whose     

     corresponding AM values are equal to 1. 

3.  Repeat 2 until the size of the current ICt does not change any more.  

4.  Set vt equal to the number of 0 element of  ICt; t = t+1. 

}  while(vt != N) 

6. Multiple containers (ICt) are generated according to the number of iterations. The images  

    which are classified into the same container ICt belong to the same cluster. 

III. From the containers ICt and AM, the image overlap Qi can be determined in each cluster. Qi 

represents the overlap result of the i-th cluster, only the largest Qi is kept for subsequent 

processing. 
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forest, together with the additional features not used in the overlap relationship determination. 

These additional features are matched based on the feature descriptors using pairwise image 

matching. 

Relative orientation is represented by the essential matrix E if the corresponding interior 

orientations of the images are known, and its elements are obtained by using the five-point 

algorithm [Nistér, 2004]; otherwise, the fundamental matrix F is used. In both cases RANSAC is 

employed for blunder detection. Relative rotation and translation are then derived from E or F. 

Image pairs, together with the correspondences and relative orientation parameters, with at least a 

pre-defined number (Nc) of conjugate points are kept, where this number must also account for 

more than b% of the number of correspondences used as input. From the relative orientation of 

remaining pairs, a viewgraph is constructed, in which images are indicated as nodes, while edges 

denote two images whose relative orientation is successfully derived. 

3.2 Robustifying the ROs for robust global image 
orientation 

Revisiting the objective of pursuing a robust way to solve image orientation, this section strives to 

improve the robustness of global image orientation and to deal with outliers in the input, e.g., 

relative orientations. While robust relative orientation estimation using the five-point algorithm 

combined with RANSAC [Fischler and Bolles, 1981; Nistér, 2004] can eliminate a certain number 

of outliers in the set of relative orientations, typically some wrong results remain after this step. In 

this section, a general method employing all triple-wise overlapping images is considered. 

Specifically, each triplet’s compatibility regarding the inherent relative rotations and relative 

translations is checked. The basic assumption is that RO outliers typically result in a lower 

compatibility of related triplets (see below for the meaning of ‘compatibility’). As Wang et al. 

[2019c] showed that some RO outliers stemming from repetitive structure (RS) and very short 

baseline (VSB) can pass the triplet compatibility check, methods to eliminate incorrect ROs which 

have resulted from RS and VSB are further investigated and two corresponding criteria that 

indicate the quality of ROs are presented. RS is detected based on counts of conjugate points of 

the various image pairs, while VSB is found by inspecting the intersection angles of the 

corresponding image rays. By investigating these two criteria, incorrect ROs are detected and 

eliminated using some empirical settings. As correct ROs of image pairs with a longer baseline 

nearly parallel to both viewing directions (BPVD) can be valuable, a method to identify and keep 

these BPVD ROs is also part of this section. In particular, the individual correspondences of BPVD 

ROs are analyzed via the cofactors of corresponding object points during triangulation, while 

deleting those with unreasonable values. 
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3.2.1 Detecting and eliminating RO outliers by checking 
compatibility of triplets 

A triplet is formed by three images that overlap each other. Two potential triplet closure 

discrepancies, in terms of relative rotations and translations as Figure 3.3 shows, are studied to 

specify the triplet compatibility, respectively. Note that all relevant triplets formed by three mutual 

overlapping images are investigated 

Rotation outlier detection 

Knowing one triplet’s three relative rotations (i.e. Rij, Rjk and Rki,, as Figure 3.3 (a) shows), the 

result of RijRjkRki should in principal be equal to I3×3. However, this condition is typically not 

perfectly fulfilled due to noise and outliers from relative rotations. Thus, it makes sense to indicate 

a triplet’s rotational compatibility by 𝑑∠(𝐷𝑅) = arccos ((𝑡𝑟(𝑹𝒊𝒋𝑹𝒋𝒌𝑹𝒌𝒊) − 1)/2) , where tr(.) 

returns the trace value. To detect RO outliers, the corresponding rotational compatibility is used 

as follows: If for a certain triplet the result of 𝑑∠(𝐷𝑅) is smaller than a threshold 𝜀𝑟 , all three 

relative orientations are regarded as inliers, otherwise, they are considered as potential outliers. In 

addition, if a relative rotation is an outlier, the corresponding relative translation is also considered 

to be incorrect, as relative rotation and translation are not determined independently.  This 

procedure is repeated for each triplet. Then, each relative rotation is examined separately: if all 

triplets the relative rotation of interest is part of show a value above the threshold, this relative 

orientation is considered to be an outlier, otherwise it is an inlier. 

Translation outlier detection 

Given the derived consistent scale factors within triplets (which are computed by equation (4.13) 

in section 4.3.2), similar to the spirit of using 𝑑∠(𝐷𝑅), RO outliers can be further eliminated using 

the constraint 𝜆𝑖𝑗𝑹𝒊
𝑻𝒕𝑖𝑗 + 𝜆𝑗𝑘𝑹𝒋

𝑻𝒕𝑗𝑘 + 𝜆𝑘𝑖𝑹𝒌
𝑻𝒕𝑘𝑖 = 𝟎, illustrated in Figure 3.3(b). In this context, tij, 

tjk and tki, are the relative translations within one triplet, λij, λjk and λki are the consistent scale factors 

and 0 is 3-dimensional zero vector, 𝑹𝒊
 , 𝑹𝒋

  and 𝑹𝒌
  are the corresponding computed global rotations 

of image i, j and k. This constraint can typically not be strictly fulfilled either, because of imprecise 

relative translations and scale factors. Here, the same idea is employed as before: If the triplet 

 
(a) triplet closure of relative rotations                 (b) triplet closure of relative translations 

Figure 3.3: A closed loop from an image triplet. 
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translation compatibility measure (computed using the L2 norm 𝑑∠(𝐷𝑡) =  ||𝜆𝑖𝑗𝑹𝒊
𝑻𝒕𝑖𝑗 +

𝜆𝑗𝑘𝑹𝒋
𝑻𝒕𝑗𝑘 + 𝜆𝑘𝑖𝑹𝒌

𝑻𝒕𝑘𝑖||2) is smaller than a threshold 𝜀𝑡, all three translations are regarded as inliers, 

otherwise, they are considered as potential outliers. Again, this procedure is repeated for each 

triplet. Then, the relative translation of each edge in the viewgraph is examined separately: if all 

triplets containing the investigated relative translations show a value above the threshold, this 

relative orientation is considered to be an outlier, otherwise it is an inlier. 

Summary 

After identifying outliers in the described way, the viewgraph is updated by deleting all edges 

which have been found to be outliers. While some outliers may still be present in the resulting 

viewgraph, the characteristic of the presented procedure is that most correct relative orientations 

will not be discarded, leading to a relatively dense connection of the graph. In addition, when 

eliminating RO outliers by checking triplet compatibility, it is worth to note that global rotation 

estimation is performed right after rotation outlier detection, whereas global translation estimation 

can only be performed after both rotation outlier detection and translation outlier detection have 

been carried out. This is due to the fact that for the proposed approach translation outlier detection 

requires that consistent scale factors within triplets are already derived. 

3.2.2 Detecting and eliminating RO outliers due to repetitive 
structure 

Repetitive structure is a characteristic of a single image and describes the fact that multiple regions 

of the image look similar. Typically, this is caused by a repetitive 3D structure in the scene (also 

explaining the naming repetitive structure instead of repetitive texture, as texture refers to the 2D 

image space). If two images depict a scene with 100% repetitive structure, even well-trained 

people cannot interactively distinguish real overlapping image pairs apart from non-overlapping 

ones due to RS. To distinguish identify RS ROs from all ROs, one normally takes advantage of 

non-repetitive structure in the images. Figure 3.4 shows an example with four image pairs. For 

these pairs, correspondences can be generated by image matching as the red, green and yellow 

points in Figure 3.4 show. Visually, it’s easy to tell that image pair 1 is a pair with real overlap 

since it contains non-repetitive structure (see the red boxes). In contrast, image pairs 2, 3 and 4, 

which are non-overlapping, do not have such non-repetitive structure. In order to determine 

repetitive structure between two images, the following assumptions are made in this work: 
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- assuming a constant image size (in pixels), the number of features per image is 

approximately constant (if the size varies, a normalisation needs to be carried out). 

- given a constant overlap between images, overlapping pairs have more conjugate points than 

non-overlapping pairs after epipolar geometry checking, because the latter do not have any 

inliers with respect to a central perspective model, as the pair does not overlap. 

- a real overlapping image pair has more common image partners with conjugate points, 

whereas for a non-overlapping pair the further partners of the two images tend to be different.  

These hypotheses are used to detect and subsequently eliminate non-overlapping image pairs 

which passed the 5-point epipolar geometry check. 

First, a set of feature points FP is constructed: FP = {FP1, FP2, FP3, …., FPN}, where N is the 

number of images, FPi is the set of feature points in the i-th image, each represented by an ID (for 

instance, in Figure 3.4, FP1 contains the red, green and yellow points). Then, 𝑄𝑖𝑗
𝑖  is the set of 

feature point IDs of the i-th image that have matches between the i-th and the j-th image, such as 

the red and green points in image pair 1 of Figure 3.4. Now, the difference sets between FP and Q 

are constructed by 𝐷𝑖
𝑗
=FPi\𝑄𝑖𝑗

𝑖  for image i and 𝐷𝑗
𝑖=FPj\𝑄𝑗𝑖

𝑗
 for image j. Since FPi is assumed to be 

approximately constant, and overlapping pairs are assumed to have more matches than non-

overlapping ones (see hypotheses above), the number of IDs in both, 𝐷𝑖
𝑗
 and 𝐷𝑗

𝑖  is small for 

overlapping pairs, and large otherwise. In addition, the IDs in 𝐷𝑖
𝑗
 with respect to the other images 

which have correspondences with the i-th image is considered as well by generating a vector 

𝒈𝑖𝑗
 =[𝑔𝑖

1, 𝑔𝑖
2, 𝑔𝑖

3, … , 𝑔𝑖
𝑛], where 𝑔𝑖

𝑗
=0 and 𝑔𝑖

𝑘=|{f ∈𝐷𝑖
𝑗
&& f is a feature matched to the k-th 

image}|, | | is the operator which returns the number of set elements. Taking Figure 3.4 as an 

example and studying the vector 𝒈𝑖𝑗
  of image pair 1, the entries of the corresponding vector are 

 
Figure 3.4: Image pairs of non-repetitive and repetitive structure, green boxes denote the RS and red 

boxed denote the non-RS. For image pair 1, red points are the correspondences from the non-RS, green 

ones are the correspondences from RS. For image pairs 2,3 and 4, yellow points are the correspondences 

from RS. 
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equal to the number of yellow points shown in images 2, 3 and 4. Finally, equation (3.2) computes 

the degree of repetitive structure RSij of the i-th and j-th images. 

 

As mentioned, real overlapping image pairs are assumed to have a small number of elements 

in the difference set, the value of 𝒈ij
T𝒈ji should be small as well, and the number of correspondences 

in the denominator of (3.2) should be large. Thus, the smaller RSij is, the more probable it is that 

the image pair does overlap and that the RO is correct, rather than being solely due to repetitive 

structure. 

Figure 3.5 illustrates an example for the degree of repetitive structure normalized to the interval 

[0,1] and shows two sample images of each dataset: some RS and non-RS ROs are randomly 

selected from the benchmark of Wang et al. [2019c] with lots of repetitive structure and their 

corresponding normalized RSij values are shown. The orange parts of the curve indicate 

overlapping image pairs, i.e. non-RS ROs, and the blue parts represent non-overlapping pairs due 

to RS. From this figure, it can be found that the ROs with a normalized RSij value lower than 0.03 

are all non-RS ones and ROs whose normalized RSij value is higher than 0.1 (the red horizontal 

line) are all RS ROs, whereas the ones between 0.03 and 0.1 stem from either non-RS or RS ROs. 

Under the assumption that these values hold in general (see section 6 for an experimental 

investigation), it can be postulated that equation (3.3) can be used to eliminate ROs resulting from 

repetitive structure: 

               ROs {

𝑛𝑜𝑛𝑅𝑆, 𝑖𝑓  𝑛𝑅𝑆𝑖𝑗 ≤ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑛𝑅𝑆𝑖𝑗 ∈ [0.03, 0.1]) 
 

𝑅𝑆,     𝑖𝑓  𝑛𝑅𝑆𝑖𝑗 > 𝑚𝑒𝑑𝑖𝑎𝑛(𝑛𝑅𝑆𝑖𝑗 ∈ [0.03, 0.1])
                       (3.3) 

 
                               B1                                                B2                                             B3 

Figure 3.5: Normalized RSij values of non-RS and RS ROs (upper row) and two corresponding sample 

images of the three investigated datasets from Wang et al. [2019c] (bottom row). The corresponding 

ROs are randomly selected from B1, B2 and B3 which contain a lot of repetitive structures. The vertical 

axis denotes the normalized RSij values and the horizontal axis is the serial number of ROs that are 

selected. The solid and dash curve are the non-RS and RS ROs, respectively. 

                     𝑅𝑆𝑖𝑗 = (|𝐷𝑖
𝑗
| + |𝐷𝑗

𝑖|)(𝒈ij
T𝒈ji)/(|𝑄𝑖𝑗

𝑖 | + |𝑄𝑗𝑖
𝑗
|)                                              (3.2) 



 

48  3.2 Robustifying the ROs for robust global image orientation 

 

where nRSij is the normalized RSij value, and median(·) is an operator to obtain the median value. 

ROs are non-RS if their corresponding nRSij is smaller or equal than 𝑚𝑒𝑑𝑖𝑎𝑛(𝑛𝑅𝑆𝑖𝑗 ∈

[0.03, 0.1]) , and ROs whose nRSij values are higher than 𝑚𝑒𝑑𝑖𝑎𝑛(𝑛𝑅𝑆𝑖𝑗 ∈ [0.03, 0.1])  are 

considered to be ROs of repetitive structure and are thus eliminated. 

The second hypothesis is violated if the image overlap varies; in particular, if the overlapping 

area is small. In this regard, it can be reasonably argued that in a standard photogrammetric 

process, ROs of such image pairs are not robust either. Thus, if there are enough images within a 

block having a proper overlap, it is reasonable to further eliminate pairs with small overlap. 

To further investigate this point, images of the benchmark of Wang et al. [2019c] are again 

used, and the overlap ratio of a certain image pair is estimated by dividing the size of the minimum 

bounding rectangle containing the correspondences, by the size of the smaller image of this pair. 

Figure 3.6 shows the distribution of nRSij values with respect to classes of image pairs categorized 

by the overlap ratio, where the pattern of a bar denotes an interval of the overlap ratio. From Figure 

3.6, image pairs with less than 20 percent of overlap (as bars with overlap ratio values smaller than 

0.1 and between 0.1 and 0.2 show) have a nRSij value higher than 0.05 and for approximately 80% 

of such image pairs the nRSij is larger than 0.1. Comparing image pairs of different overlap ratios, 

it can be seen that the corresponding nRSij values tend to become smaller as the overlap ratio 

increases, while most image pairs that overlap more than 30% have a nRSij value smaller than 0.03. 

   
Figure 3.6: Distribution of nRSij values of image pairs with different overlap ratio. 

 

 

 

 

 

 

 

 

 

  

 
Figure 3.7: The cumulative distribution function (CDF) of overlap ratios from image pairs of 

corresponding selected ROs. B1, B2 and B3 are the datasets from  Wang et al. [2019c], where two 

sample images of each dataset are shown in Figure 3.5. 
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Assuming the dataset used to be representative for images with repetitive structure, this 

investigation also indicates that equation (3.3) yields correct results in the large majority of cases. 

To demonstrate that most ROs selected according to equation (3.3) do have a reasonable 

overlap, Figure 3.7 illustrates the cumulative distribution function of overlap ratios for the selected 

ROs. Only very few image pairs with 10% overlap are selected, and more than 60% of the selected 

image pairs have an overlap higher than 50%. 

3.2.3 Detecting and eliminating RO outliers of very short 
baselines and baselines parallel to the viewing direction 

Critical configurations stemming from very short baselines or baselines parallel to the viewing 

direction decrease the robustness of global SfM methods in estimating both structure and motion, 

because the relative translations are no longer estimated with the required precision, which can 

negatively influence the translation averaging operation [Wang et al., 2019b; Cui and Tan, 2015]. 

In addition, both cases lead to small intersection angles and thus imprecise coordinates of the ray 

intersections during triangulation and global translation estimation. 

Figure 3.8 shows the standard case of two-view geometry with a relatively wide baseline 

(Figure 3.8a), a VSB case with a very short baseline approximately perpendicular to the viewing 

direction (Figure 3.8b), and a BPVD case with a long baseline nearly parallel to both viewing 

directions (Figure 3.8c). Dashed lines denote the image planes, P and P1 are object points, Ci and 

Cj are the projection centers of images i and j, t represents the baseline vector from Ci  to Cj, 𝑟𝑖 and 

𝑟𝑗 are two projection rays, 𝜃𝑖 is the intersection angle of t and 𝑟𝑖, 𝜃𝑗  is the intersection angle of t 

and 𝑟𝑗, 𝜃𝑝 and 𝜃𝑝1 are the intersection angles of corresponding projection rays of object points P 

and P1. In the standard case, a reasonable intersection angle 𝜃𝑝  can be obtained and thus the 

inequality 0 < 𝜃𝑖 < 𝜃𝑗 < 𝜋 holds, whereas, for the VSB and BPVD, 𝜃𝑝  is very small and the 

inequality 0 < 𝜃𝑖 ≈ 𝜃𝑗 < 𝜋  can be set up. In addition, in the case of BPVD the smaller the 

perpendicular distance between an object point and the (extended) baseline t is, the lower is the 

corresponding intersection angle, e.g., 𝜃𝑝1<𝜃p.  

            

              (a) Standard case                 (b) Very short baseline     (c) Baseline parallel to viewing direction    

Figure 3.8: Two-view geometry configurations. 
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 Two equations are presented to distinguish VSB and BPVD cases from standard cases. For a 

standard case, each pair of conjugate points can contribute as: 

 

where, Rij is the relative rotation and tij is the relative translation (note that in this case the 

normalized |𝒕𝒊𝒋| equals to 1). 𝒙𝒊 and 𝒙𝒋 are the image coordinates of conjugate points as predicted 

from image matching. These equations can then be simplified as 

(|𝒙𝒋|𝒙𝒊
𝑇 − |𝒙𝒊|(𝑹𝒊𝒋𝒙𝒋)

𝑇) 
𝒕𝒊𝒋

|𝒕𝒊𝒋|
 > 0                                                     (3.6) 

                𝑐𝑐𝑖𝑗(R) = | ( |𝒙𝒋|𝒙𝒊
𝑇 − |𝒙𝒊|(𝑹𝒊𝒋𝒙𝒋)

𝑇) 
𝒕𝒊𝒋

|𝒕𝒊𝒋|
 |                                                 (3.7) 

Since 0 < 𝜃𝑖 ≈ 𝜃𝑗 < 𝜋  for VSB and BPVD, it can be shown from equation (3.4) that 

𝑐𝑜𝑠−1
(𝑹𝒊𝒋𝒙𝒋)

𝑇𝒕𝒊𝒋

|𝒙𝒋||𝒕𝒊𝒋|
≈ 𝑐𝑜𝑠−1

𝒙𝒊
𝑻𝒕𝒊𝒋

|𝒙𝒊||𝒕𝒊𝒋|
, i.e., (|𝒙𝒋|𝒙𝒊

𝑇 − |𝒙𝒊|(𝑹𝒊𝒋𝒙𝒋)
𝑇 )  

𝒕𝒊𝒋

|𝒕𝒊𝒋|
 ≈ 0. Thus, 𝑐𝑐𝑖𝑗 (R) should be 

very close to 0. However, 𝑐𝑐𝑖𝑗(R) is far away from 0 when dealing with ROs of normal cases. 

Each pair of correspondences yields one value 𝑐𝑐𝑖𝑗(R). To remove the influence of different 

depths on 𝑐𝑐𝑖𝑗(R) (note that object points far away from the projection centers normally yield 

smaller values for 𝑐𝑐𝑖𝑗 (R) than those that are closer), this research uses the mean 

value, 𝑐𝑎𝑙𝑙𝑒𝑑 𝐵𝐿𝑖𝑗, of the top 10% largest 𝑐𝑐𝑖𝑗(R) as a criterion to quantify the degree of an image 

pair having a VSB or BPVD (see Equation (3.8)). The smaller the  𝐵𝐿𝑖𝑗  is, the higher the 

probability that the image pair has a very short baseline or a baseline parallel to the viewing 

direction. 

 𝐵𝐿𝑖𝑗 = avg (𝑐𝑐𝑖𝑗(R)∈ {top 10% largest 𝑐𝑐𝑖𝑗(𝑅)})                                           (3.8) 

where avg(.) returns the mean value. 

As a side note, observe that there exists an implicit assumption that the length of a baseline 

cannot be equal to zero when decomposing the essential matrix into relative rotation and 

translations [Longuet-Higgins, 1981; Hartley and Zisserman, 2004]. However, relative rotations 

can obviously still be computed for image pairs with a zero-length baseline, as this is the task of 

transforming images into epipolar geometry, and equation (3.8) remains correct in this case; the 

corresponding derivation can be found in appendix A. 

In order to investigate the relevance of this assumption for the presented work, a simulation 

experiment is designed to investigate whether rotations can still be accurately estimated if the 

baseline is very short or even has a length of zero. 

 0 < 𝜃𝑖 < 𝜃𝑗 < 𝜋 ⇒ 𝑐𝑜𝑠−1
(𝑹𝒊𝒋𝒙𝒋)

𝑇𝒕𝒊𝒋

|𝒙𝒋||𝒕𝒊𝒋|
> 𝑐𝑜𝑠−1

𝒙𝒊
𝑻𝒕𝒊𝒋

|𝒙𝒊||𝒕𝒊𝒋|
                                                    (3.4) 

                  i.e.   
𝒙𝒊
𝑻𝒕𝒊𝒋

|𝒙𝒊||𝒕𝒊𝒋|
>
(𝑹𝒊𝒋𝒙𝒋)

𝑻𝒕𝒊𝒋

|𝒙𝒋||𝒕𝒊𝒋|
                                                                        (3.5)                                      
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As Figure 3.9 (a) shows, a set of 100 3D points is randomly generated in a cube of [-1,1]3. Two 

cameras are simulated with a focal length of 3500 pixels and an image size of 1200×800 pixels 

viewing these 3D points. One reference camera is fixed at point (5,0,0) and the second camera 

moves from this point along an arc (shown by the green line) with its center at (0,0,0) and 5m 

radius until these two cameras are 3m (arc distance) away from each other. The corresponding 

rotation matrices are designed by requiring these two cameras to be able to view all 3D points. 

Based on this setup, image pairs with known exterior orientation parameters are simulated for 

baselines between 0m and 3m. The image coordinates of the 3D object points are generated via 

the collinearity equations using Gaussian noise with a standard deviation of 0.2 pixels. The relative 

orientations of these image pairs are estimated using the 5-point algorithm with the resulting 

conjugate point coordinates and are compared to the simulated exterior orientation parameters. 

Since the relative translation is normalized and the scale is unknown, it is only feasible to compare 

the translation directions. The arc between two cameras is transferred into baseline length. The 

obtained results are showed in Figure 3.9 (b): The relative rotation error remains stable, while the 

relative translation error increases as the baseline decreases, which means that the relative rotation 

can be robustly estimated, while the relative translation cannot, when the baseline is very short. 

   

    (a)                                                                                        (b)   

Figure 3.9: Simulation experiment. (a) shows the poses of the simulated cameras and the position of 

object points. The red frame is the fixed camera and the black frames denote the different projection 

centers of the second camera. (b) shows the error in degree of relative rotation and translation for 

different baseline lengths. 

   
Figure 3.10: BLij values of ROs from various baselines. The corresponding ROs of very short baselines 

and normal baselines are randomly select from the tested benchmarks B1, B2 and B3, ROs of BPVD are 

from UAV1 dataset described in table 5.1 (see Section 5.2). The vertical axis denotes the BLij values and 

the horizontal axis shows the serial number of ROs that are selected. The dashed, solid and pointed 

curves denote normal baseline, very short baseline and baseline parallel to viewing direction, 

respectively. 
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Similar to the idea of eliminating RS ROs, random selections of ROs with very short baseline 

and normal baseline are taken from the benchmark Wang et al. [2019c], as well as ROs with BPVD 

from the UAV1 dataset with BPVD ROs illustrated in section 5.2. Equation (3.8) is then employed 

to compute the corresponding BLij values. As the curves in Figure 3.10 show, ROs with normal 

baselines typically generate BLij values which are much higher than 0.1, whereas the other two 

cases of baselines have BLij values that are all below 0.1. Therefore, in this thesis, ROs with BLij 

values higher than 0.1 are considered as normal baselines. Thus, there are two remaining 

possibilities for BLij values smaller than or equal to 0.1: one is the critical configuration of VSB 

and the other is ROs of BPVD. As it is known that the RO can be correctly estimated for image 

pairs of BPVD with a reasonably long baseline, it is advantageous to identify ROs of BPVD in 

order to keep them as part of the photogrammetric block. 

3.2.4 Identifying correct ROs of baselines parallel to the viewing 
direction 

To investigate the precision of BPVD ROs, another simulation is conducted, similar to the one 

discussed earlier and shown in Figure 3.9. However, this time the simulated camera’s motion 

trajectory is along the camera’s viewing direction as the green line in Figure 3.11 (a) shows. 

Comparing Figure 3.11 (b) with Figure 3.9 (b), significant similarities can be observed, which 

implies that in the case of baselines parallel to the viewing direction, the relative translation is still 

imprecise for very small baselines, whereas, it becomes more accurate when the length of the 

baseline increases. Relative rotations, on the other hand, can be robustly estimated independent of 

the length of the baseline. Hence, it makes sense that correct BPVD ROs are retained, although 

they were initially sorted out due to small BLij values as described in the last subsection. 

     

(a)                                                                               (b)   

Figure 3.11: Simulation experiment along the viewing direction. (a) shows the poses of the simulated 

cameras and the position of object points. The red frame is the fixed camera and the black frames denote 

the different projection centers of the second camera. (b) shows the error in degree of relative rotation 

and translation for different baseline lengths. 
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In Figure 3.12, Ci, Cj  and Ck are the projection centers of image i, j and k, P1 and P2 are object 

points, 𝜃𝑖12 , 𝜃𝑗12  and 𝜃𝑘12  are the corresponding intersection angle of these object points with 

respect to the respective projection centers. In the case of BPVD, as Figure 3.12 shows, for any 

two object points (which are not collinear with any of the projection centers), the intersection angle 

with the closer projection center should always be larger than that with projection center further 

away, such that 𝜃𝑘12 > 𝜃𝑗12 > 𝜃𝑖12 . Therefore, for every image pair, for example for image i and 

j, all such intersection angles for pairs of object points that are projected into different quadrants 

in the image plane (to avoid intersection angles which are too small) are estimated in the BPVD 

cases (and in contrast to the VSB cases dealt with above). Subsequently, for each pair of calculated 

intersection angles 𝜃𝑗12  and 𝜃𝑖12 , the equation 𝜃𝑗12  > 𝜃𝑖12  can be set up, and the longer the 

baseline, the larger is the difference between these two angles. The goal is to distinguish short 

from longer BPVD baselines, as only the longer ones are to be kept. In order to do so, the average 

𝑎𝑣𝑔𝜃 of all angle differences (𝜃𝑗12-𝜃𝑖12) is computed, and pairs with average values larger than 

0.1 (in radian) are identified as correct BPVD ROs.  

Thus, (3.9) is formulated to conclude the RO selection in terms of critical configurations: 

ROs {

𝑉𝑆𝐵, 𝑖𝑓  𝐵𝐿𝑖𝑗 ≤ 0.1 and 𝑎𝑣𝑔𝜃 ≤ 0.1 

 𝐵𝑃𝑉𝐷, 𝑖𝑓  𝐵𝐿𝑖𝑗 ≤ 0.1 and 𝑎𝑣𝑔𝜃 > 0.1

𝑁𝑜𝑟𝑚𝑎𝑙 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,     𝑖𝑓  𝐵𝐿𝑖𝑗 > 0.1

                                     (3.9) 

ROs are identified to have a normal baseline if the corresponding 𝐵𝐿𝑖𝑗 value is larger than 0.1. 

In contrast, a value smaller than or equal to 0.1 can have two reasons: ROs have a VSB if the 

corresponding 𝑎𝑣𝑔𝜃 value is smaller or equal than 0.1; and ROs are categorized as BPVD cases 

if 𝑎𝑣𝑔𝜃 is larger than 0.1. 

 
Figure 3.12: Two view geometry constraint for a baseline parallel to the viewing direction. 
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For BPVD cases, another problem exists, even if the baseline is reasonably wide: as the ray 

intersection angles are small, the depth uncertainty is rather large. As many global SfM pipelines 

use this depth information to do global translation estimation [Wang et al., 2019a and 2019b; Cui 

and Tan, 2015; Cui et al, 2015], those translation estimates can become rather uncertain, too. In 

particular, the global SfM method proposed in this thesis estimates the global unified scale factors 

for every available image pair by employing the depth values of object points from individual local 

spatial intersections. Moreover, the refined ROs are fed into the subsequent global SfM pipeline 

(explained in Chapter 4) for 3D reconstruction in the corresponding experiments. However, Figure 

3.12 depicts that BPVD ROs normally lead to small intersection angles for object points which 

further decrease as the distances between object points and viewing direction becomes smaller. So, 

in principle, the triangulation results of BPVD image pairs show a higher uncertainty in depth, 

also referred to as Z direction, than in X and Y direction (these two directions are defined as within 

the image space). This effect becomes even more visible, if the distance between object points and 

 
Figure 3.13. Division of images. 

   
Figure 3.14. Cofactor on X, Y and Z between the first and the rest of the images. 
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the viewing direction becomes smaller. To demonstrate this behavior, some close range images 

along viewing direction are taken. In particular, at each station three images are captured by only 

rotating the camera around the viewing direction, while the principal point is close to the image 

center (see CR1 in Table 5.1 and Figure 5.4). The relative orientation between the first image and 

the rest of the images is estimated (using the 5-point algorithm and RANSAC), and an 

investigation of the cofactors of X, Y, Z of the triangulating is conducted. In this context, the 2D 

image planes are evenly divided into eight parts as a rectangular ripple, so that the distances 

between two neighboring rectangles in vertical and horizontal directions are equal, as Figure 3.13 

illustrates. 

For the correspondences that are located in the same part of an image, the average values of the 

cofactors X, Y and Z are computed if more than 10 correspondences exist in the corresponding 

part. Figure 3.14 visualizes the results, where the horizontal axis shows the image ID and the 

vertical axis denotes the cofactors of X, Y and Z, namely, Qxx, Qyy and Qzz for each part of the 

image. As it can be seen from this result, images 2 and 3 have quite large cofactors on these three 

directions. Because the images 1, 2 and 3 are taken from the same photogrammetric station by 

only rotating the camera, the baselines between these images are very short (almost equal to 0), 

resulting in relative translations that are totally wrong. As the camera moves away along the 

viewing direction, all the cofactors tend to decrease. As what one can expect: first, Qzz is always 

larger than Qxx and Qyy; second, the points that are close to the image center show a much worse 

Qzz. Although Qzz is never as good as Qxx and Qyy in BPVD image pairs, one could select the 

most reliable object points from these “not good” ones for global SfM. In this thesis, only the 

correspondences such that the corresponding Qzz < 10 × max (Qxx, Qyy) (max (·) returns the 

maximum item) are kept. 

3.3 Discussion 

This chapter addresses time efficient and robust methods for pre-processing steps, whose results 

are considered as input for the subsequent global image orientation. Based on a random k-d forest, 

first a time efficient strategy is introduced to determine overlapping image pairs. The goal is to 

only match and compute the relative orientations for those pairs which actually show a sufficient 

overlap. Then, novel methods are presented to eliminate blunders in ROs for conducting robust 

global image orientation. In particular, the compatibility of triplets regarding relative rotation and 

translation errors is checked, and RO outliers due to RS (repetitive structure) and VSB (very short 

baseline) are investigated. Criteria for these two cases are introduced, and as the latter criterion is 

sensitive to BPVD (baseline parallel to the viewing direction) pairs, also a new criterion for this 

case is proposed accordingly. Nevertheless, the following challenges are still open, posing 

potential limitations, and need to be overcome to improve the robustness:  

1) While enough points are currently guaranteed to be available for the computation of the relative 

orientation parameters, both the point distribution in the overlapping area and error 

propagation are not taken into account to detect potential numerical problems in parameter  
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estimation. Neither is the investigation of a homography H as an alternative to the fundamental 

matrix F performed to overcome difficulties stemming from planar objects. Another possible 

option is to use a trifocal tensor instead of the essential or fundamental matrix to tie together 

three images rather than two as basic building blocks. While this solution is more reliable by 

considering more geometrical constraints, the corresponding complexity must be considered, 

because the number of triplets can theoretically be cubic in terms of the number of images. 

2) The solutions presented in this section contain a number of assumptions and some free 

parameters which need to be determined in advance. These free parameters are selected 

empirically, and the most reasonable ones are generalized to all datasets. This strategy works 

very well and is thoroughly demonstrated on various datasets in the experimental section. 

However, in real scenarios, the obtained dataset can be more complex than those used in this 

work,  which may require that some of these free parameters  have to be re-adjusted.
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4 Global image orientation 

The Preprocessing outlined above aims at efficiently providing inputs that is largely free of 

blunders for the subsequent image orientation task. In this chapter, these inputs are represented by 

means of a graph 𝒢 = {𝒱, ℰ}, known as viewgraph, in which each vertex in 𝒱 indicates an image 

and an edge (i, j) in  ℰ denotes the relative orientation of images i and j which was estimated and 

successfully passed the previous RO outlier elimination process. Furthermore, the inputs also 

contain the correspondences (xi, xj) of each image pair (i, j) and the 3D coordinates of the tie points 

generated by these correspondences. To obtain an image orientation solution in a fast and robust 

way, this chapter is devoted to a detailed explanation of newly developed global image orientation 

methods using these inputs. 

4.1 General Overview 

This section gives a brief overview of the proposed global image orientation solution. Analogous 

to the majority of conventional global strategies, a two-step strategy of first estimating global 

rotations and subsequently solving global translations is applied in this thesis. As shown in Figure 

1.2, after the introduction of global rotation estimation (4.2), a novel global translation method is 

presented (4.3). Then, the refinement using bundle adjustment is described in Section 4.4. Finally, 

a related discussion is given in Section 4.5. 

In the first part (4.2), the used global rotation estimation method is discussed. The 

corresponding rotation matrix preliminaries are given, before the robust global rotation estimation 

algorithm is presented. While the main contributions of this thesis do not cover the issue of global 

rotation estimation, for the completeness of the whole method, the popular global rotation 

estimation method of Chatterjee and Govindu [2013] was selected and is explained here. Two 

reasons are given for this choice: first, to make a fair comparison of the relevant contributions on 

global translation estimation, it is important that the global rotation results are computed with the 

same global rotation estimation method; second, their work is widely used in many state-of-the-

art global image orientation algorithms and considered to be capable of providing reliable rotations 

for large numbers of images. 

In the following two parts, given the already estimated global rotations, a newly developed 

global translation estimation method which utilizes relative translations together with tie points is 

introduced.  
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The fourth part comprises some details of the final robust bundle adjustment (4.4) and the last 

part concludes the presented image orientation methods and discusses the corresponding 

limitations and possible solutions. 

4.2 Global rotation estimation 

This section focuses on determining global rotations from pairwise relative rotations. To start with, 

in section 4.2.1, some fundamental preliminaries of rotations are reviewed (e.g., characteristics of 

the relevant Lie group and Lie algebra), before the problem of solving global rotations is stated. 

Section 4.2.2 is dedicated to the detailed procedure for global rotation estimation using the method 

of Chatterjee and Govindu [2013], in which a hybrid coarse-to-refined strategy using the L1 norm 

and iterative reweighted least squares is adopted. Finally, while this thesis does not intend to 

contribute to the task of global rotation estimation, some practical difficulties are studied and 

corresponding hints for solving them are discussed in 4.2.3. 

4.2.1 Rotation preliminaries and problem statement 

All 3×3 rotation matrices R form a closed group known as the Special Orthogonal group SO(3), 

which is a differentiable Riemannian manifold, i.e., SO(3) is a Lie group which in turn is the basis 

for efficient methods for rotation estimation. Apart from the standard characteristics of a group, a 

Lie group has a smooth differentiable structure providing the additional advantage that the product 

and inverse operations are differentiable mappings. The local neighbor of a point in a Lie group is 

topologically equivalent to a vector space, i.e., a Lie algebra 𝔰𝔬(3). The mapping techniques of 

rotation matrices between SO(3) and 𝔰𝔬(3) are denoted as logarithm and exponential mapping. The 

projection of SO(3) to 𝔰𝔬(3) is given by: 

log(R)=[𝝔]× , 𝝔 = arcsin(‖𝒘‖2)
𝒘

‖𝒘‖2
, w = 

𝑹−𝑹𝑻

𝟐
                                     (4.1)                                

in which 𝝔 is a 3-dimensional vector and 𝔰𝔬(3) is the relevant skew-symmetric matrix indicated as 

[𝝔]× 

[𝝔]× = (

0 −𝜚3 𝜚2
𝜚3 0 −𝜚1
−𝜚2 𝜚1 0

) 

The corresponding back projection which maps 𝔰𝔬(3) into SO(3) is given the by exponential 

operation: 

R= exp([�̃�]×)= I +sin(α) [�̃�]×+(1-cos(α)) [�̃�]×
2                              (4.2) 

where I is an identity matrix, (𝝔, α) is in axis-angle representation of R with 𝝔 = α�̃� and ‖�̃� ‖2=1. 

The inherent bi-invariant distance between two rotation matrices on SO(3) can be formulized 

as d(𝑹𝒊
 , 𝑹𝒋

 ) = ||log(𝑹𝒊
 𝑹𝒋
−𝟏)||F = ||log(𝑹𝒋

 𝑹𝒊
−𝟏)||F, where ||.||F is the Frobenius norm. The global 
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rotation estimation problem can then be stated as following: Given a set of relative rotations {Rij | 

(i, j) ϵ ℰ}, the goal is to determine the global rotations Rglobal = {R1,…, RN} with respect to a given 

frame of reference such that  

argmin
𝑹𝑔𝑙𝑜𝑏𝑎𝑙 ∈ 𝑆𝑂(3)

∑ 𝑑 
𝟐(𝑹𝒊𝒋

 , 𝑹𝒋
 𝑹𝒊
−𝟏)(𝑖,𝑗) ϵ ℰ                                        (4.3) 

Considering just one relative rotation 𝑹𝒊𝒋
 = 𝑹𝒋

 𝑹𝒊
−𝟏 indicated by the edge (i, j) ∈ ℰ, according to 

the Baker-Campbell-Hausdorff-formula [Gilmore, 1974], the first–order approximation of the 

corresponding Lie algebraic relation can be written as 𝝔𝒊𝒋
 = 𝝔𝒋

 − 𝝔𝒊
 . The global rotations are 

further denoted by angle-axis representation as 𝝔𝒈𝒍𝒐𝒃𝒂𝒍
  = {𝝔𝟏

 ,…, 𝝔𝑵
  }. In consequence, for the 

given edge (i, j) ∈ ℰ, the relationship is formulated as 

𝝔𝒊𝒋
 = 𝝔𝒋

 − 𝝔𝒊
  = [··· −𝑰3×3  ··· 𝑰3×3 ···]⏟            

𝑨𝒗𝑖𝑗

𝝔𝒈𝒍𝒐𝒃𝒂𝒍
                                      (4.4) 

where in 𝑨𝒗𝑖𝑗, I and –I are set as 3×3 blocks in the corresponding location of j and i respectively. 

𝝔𝒓𝒆𝒍
  = Av𝝔𝒈𝒍𝒐𝒃𝒂𝒍

                                                      (4.5) 

By constructing all edges in ℰ in the form of (4.4), equation (4.5) is obtained, where 𝝔𝒓𝒆𝒍
  is the 

vector obtained from stacking all relative rotations 𝝔𝒊𝒋
  and Av is the coefficient matrix obtained 

from stacking all the related matrices 𝑨𝒗𝑖𝑗. 

To solve equation (4.5), the discrepancy between observations Rij and the current estimation is 

optimized in the Lie algebra for all relative rotations. Based on a Gauss-Markov model, equation 

(4.5) can be written in the form of ev = Av∆𝝔𝒈𝒍𝒐𝒃𝒂𝒍
 - ∆𝝔𝒓𝒆𝒍

 , where ∆𝝔𝒓𝒆𝒍
  is the corresponding 

collection of ∆𝝔𝒊𝒋
 , following the estimation of step 3 as algorithm 4.1 shows, the individual 

rotations are updated by exponentially mapping the Lie algebraic update item ∆𝝔𝒊
  to the Lie group 

SO(3). This procedure guarantees that the algorithm always provides a solution which is located 

on the rotation manifold. 

 

Algorithm 4.1 Lie-Algebraic global rotation estimation 

Input: {Rij | (i, j) ϵ ℰ} 

Output: Rglobal = {R1,…, RN} with respect to a given frame of reference 

Initialization: Obtain an initial value for Rglobal  

         While ||∆𝝔𝒓𝒆𝒍
 || > 𝜖 do 

               1. ∆𝑹𝒊𝒋
 

 = 𝑹𝒋
−𝟏𝑹𝒊𝒋

 𝑹𝒊
  

               2. ∆𝝔𝒊𝒋
  = log(∆𝑹𝒊𝒋

 
) 

               3. Solve Av∆𝝔𝒈𝒍𝒐𝒃𝒂𝒍
  = ∆𝝔𝒓𝒆𝒍

  

               4. 𝑹𝒊
  = 𝑹𝒊

 exp(∆𝝔𝒊
 ), i ∈ [1, N] 

           End  
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4.2.2 Robust solution of global rotations 

To achieve a robust solution, Chatterjee and Govindu [2013] proposed a coarse to refined strategy. 

In particular, the initial solution is obtained using the robust L1 norm, and then the solution is 

further improved by an iteratively reweighted least squares approach using the Huber-like 

estimator. 

Robust coarse solution. As the Lie algebra is a vector space, the problem of robust optimization in 

the Lie algebra is analogous to the robust estimation of a linear equation system. Inspecting the 

conventional linear problem of Ax = b where x ∈ ℝ𝑛  and b ∈ ℝ𝑚 (m>n), the unknown x can be 

determined if A is of full rank. However, the difficulty of solving it varies when the observations 

are corrupted by noise and outliers, resulting in b = Ax + e, where e is the residual indicating the 

difference between the model and the given observations. Step 3 Av∆𝝔𝒈𝒍𝒐𝒃𝒂𝒍
  = ∆𝝔𝒓𝒆𝒍

  in algorithm 

4.1 can be solved by 

argmin
∆𝝔𝒈𝒍𝒐𝒃𝒂𝒍
 

‖𝒆𝝔‖𝐿1
    ⟺     argmin

∆𝝔𝒈𝒍𝒐𝒃𝒂𝒍
 

‖𝑨𝒗∆𝝔𝒈𝒍𝒐𝒃𝒂𝒍
 − ∆𝝔𝒓𝒆𝒍

 ‖
𝐿1

                  (4.6) 

In equation (4.6), 𝒆𝝔 = 𝑨𝒗∆𝝔𝒈𝒍𝒐𝒃𝒂𝒍
 − ∆𝝔𝒓𝒆𝒍

 ,  ∆𝝔𝒈𝒍𝒐𝒃𝒂𝒍
 ∈ ℝ3|𝒱| and ∆𝝔𝒓𝒆𝒍

 ∈ ℝ3|ℰ|, since the number 

of unknown global rotations is equal to the number of nodes in 𝒢, i.e., |𝒱|, the number of known 

observations is equal to the number of edges in 𝒢, i.e., |ℰ| , and each ∆𝝔𝒊
  is a 3-dimensional vector. 

Evidently, the number of edges |ℰ| is much larger than the number of vertices |𝒱|. The relevant 

L1 norm embedded in algorithm 4.1 is denoted as L1RA, for which each row of Av contains only 

two non-zero entries {-1, +1}, characterizing Av as extremely sparse which allows to compute the 

solution efficiently. In addition, this L1 norm problem is solved with the alternating direction 

method of multipliers (ADMM) as a least unsquared deviations minimizer, more details of 

implementing ADMM for L1 minimization can be found in Boyd et al. [2010]. 

Refined solution. While the L1 minimization mentioned above offers a robust rotation estimation 

in the presence of outliers, the estimation result can be further improved by considering the 

problem of robust global rotation estimation as M-estimator modifications of least squares 

estimation. However, if the solution obtained by L1 norm is approximately accurate, the residuals 

for individual relative rotations provide a good indication of the reliability of the input {Rij | (i, j) 

ϵ ℰ}. This information is utilised to iteratively solve a robust weighted least squares problem that 

minimizes the discrepancy between relative rotations and the estimated global rotations.  

Investigating the linear equation system Ax = b, one widely known solution is the standard least 

squares loss function 𝑒𝑇𝑒 where e = Ax – b. In the sense of coping with outliers, a robust version 

of this loss function is used, i.e., ∑ 𝜌(||𝑒𝑖||)𝑖 , where ei is the i-th entry of the error vector e and 

𝜌(. ) is the robust Huber-like loss function 𝜌(𝑥) =  𝑥
2

(𝑥2 + 𝑐2)⁄ . To obtain a value for x which 

minimizes ∑ 𝜌(||𝑒𝑖||)𝑖 , the following is derived: 
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argmin
𝑥

∑ 𝜌(||𝑒𝑖||)𝑖  = argmin
𝑥

∑ 𝑒𝑖
2

(𝑒𝑖2 + 𝑐2)
⁄𝑖  

⇒ 
𝜕∑ 𝜌(||𝑒𝑖||)𝑖

𝜕𝑥
 = 

𝜕∑ 𝜌(||𝑒𝑖||)𝑖

𝜕𝑒 
 
𝜕𝑒

𝜕𝑥
 = 0 

⇒ 𝐴𝑇𝜙(𝑒)𝐴x =𝐴𝑇𝜙(𝑒)𝑏                                                                                                          (4.7) 

in which 𝜙(𝑒) is a diagonal matrix with 𝜙(𝑖, 𝑖) = 𝑐
2

(𝑒𝑖2 + 𝑐2)2
⁄ . The system of equations (4.7) is 

a non-linear optimization due to the dependency of 𝜙(𝑒) on x through e. Nevertheless, such 

problems are typically addressed with an iterative scheme. Assuming x is fixed, the vector e can 

be obtained with e = Ax – b and 𝜙(𝑒) is then fixed. Subsequently, the relevant minimization 

problem becomes argmin
𝑥

(𝐴𝑥 –  𝑏)𝑇  𝜙(𝑒)(𝐴𝑥 –  𝑏) , and its solution is denoted as x = 

(𝐴𝑇𝜙(𝑒)𝐴)−1𝐴𝑇𝜙(𝑒)𝑏. Given this x, 𝜙(𝑒) can in turn be re-estimated. So, the alternation between 

computing x (fixing 𝜙(𝑒)) and 𝜙(𝑒) (fixing x) is recursively conducted until it converged. This 

strategy is popularly known in literature as Iteratively Reweighted Least Squares (IRLS) and is 

intuitively stated as Algorithm 4.2.  

 

It is worth to note that the IRLS method can also be applied to robustly solve the Lie algebraic 

linear problem of step 3 of algorithm 4.1. Although IRLS can provide a good solution, it essentially 

is a greedy algorithm and requires a good initialization of x. In absence of a good initial guess, the 

intermediate reweighting 𝜙(𝑒) may not be informative enough and the method may not converge 

to a reliable final estimation. Since the L1RA method shows a high efficacy and offers a good 

estimate of Rglobal, the results of this method are utilized as the initialization for a subsequent robust 

global rotation estimation using the IRLS algorithm. 

Algorithm 4.2 Iteratively Reweighted Least Squares (IRLS) 

Set an initial value to x 

         While ||x-xprev|| > 𝜖 do 

               1. xprev = x 

               2. e = Ax - b 

               3. 𝜙 = 𝜙(𝑒) 

               4. 𝑥 = (𝐴𝑇𝜙𝐴)−1𝐴𝑇𝜙𝑏 

         End  

Algorithm 4.3 Robust Global Rotation Estimation (L1RA-IRLS) 

L1RA step: 

 Compute the initialization of Rglobal  

 Run Algorithm 4.1 by solving step 3 using Equation (4.6) 

IRLS step: 

 Set the initial guess of Rglobal as the output of L1RA 

 Run Algorithm 4.1 by solving step 3 using Algorithm 4.2 
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    The complete robust global rotation estimation of Chatterjee and Govindu [2013] is stated by 

Algorithm 4.3 (denoted as L1RA-IRLS). Both components are demonstrated to be crucial for the 

estimation process. While the L1RA is devoted to offer a good initialization as it is an efficient 

method for robust estimation, the IRLS step is necessary to appropriately weight the uncertainty 

information from individual relative rotation observations to provide an accurate solution. 

4.2.3 Discussion 

According to the presented details, the employed global rotation averaging method has several 

practical characteristics: First, the initialization of step L1RA. Chatterjee and Govindu [2013] 

compute the initial guess by using a randomly selected spanning tree. Second, the iteration 

convergence criterion of both steps (which is set to 𝜖 = 10-3). In the hybrid scheme of L1RA-IRLS, 

to provide an initialization for the IRLS step, this convergence criterion is not applied in the L1RA 

stage. In contrast, running L1RA for 5 iterations is sufficient to achieve an estimation of Rglobal 

which fulfills the requirements of the following IRLS step (the corresponding tuning parameter c 

is selected as 5°). 

Despite the popularity of the described method, two difficulties still should be taken care of:  

first, the gauge ambiguity. The rotation of the first image (in the image set) is set to be a 3×3 

identity matrix to remove the gauge ambiguity of the reference system. This is in fact not a good 

choice if the first image has a week connection to the photogrammetric block. Second, robustness. 

It is actually of special notice that although the robustness of the method presented by Chatterjee 

and Govindu [2013] has already been widely demonstrated, their method can further benefit 

significantly if observations with less outliers are provided (e.g., the presented RO robustification 

procedure outlined in Chapter 3), because the initialization of L1RA has a significant influence on 

the accuracy that can easily be corrupted by blunders within the set of relative rotations. In 

addition, a widely used idea to obtain a reliable solution is recommended here, namely, outliers 

should be detected in the IRLS step and then a standard least squares adjustment with all the inliers 

having equal weights is carried out. 

4.3 Global translation estimation 

While the previous section focused on the estimation of global rotations, this section concentrates 

on the other type of exterior orientation parameters: global translations. In particular, a new global 

translation estimation method using tie points within triplets and relative translations is 

investigated. 

4.3.1 Problem statements and relevant function model 

For each image i in the viewgraph, this section aims to estimate its projection center Ci in a 

consistent global coordinate system (e.g. in the coordinate system of the first image). Each edge 
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(i, j) of the viewgraph encodes the relative rotation Rij and relative translation tij of the two images 

i and j; || tij || = 1. These parameters are constrained by equation (4.8): 

𝑹𝒊𝒋 = 𝑹𝒋𝑹𝒊
−𝟏  

                                                                  𝜆𝑖𝑗 𝒕𝒊𝒋 = 𝑹𝒊(𝑪𝒋 − 𝑪𝒊)                                                  (4.8) 

Referring to equation (4.8), at this stage, Rij, tij and Ri are already known from relative 

orientation and global rotation estimation (Chapter 4.2), respectively: tij is the relative translation 

vector pointing from the projection center of image i to the one of image j (defined in the local 

coordinate system of i-th image), and Ri is the global rotation matrix of image i. The remaining 

unknowns are the scale factors λij, which must be uniquely determined up to a global gauge 

ambiguity and the coordinates of the projection centers Ci (i, j =1, 2, 3…., N, where N is the number 

of images in the viewgraph). Collecting all the edges ℰ in the viewgraph 𝒢 using the relationship 

of equation (4.8), one can set up a linear equation system for global translation estimation. The 

challenge then is to estimate the global scale factors λij for every edge in 𝒢. As Figure 4.1 implies, 

for one image pair, the values of the 3D tie point coordinates are proportional to the length of the 

baseline. For each image, all the overlapping images are considered first, before the corresponding 

3D tie point coordinates are investigated to determine consistent scale factors for the related image 

tuple. As many tuples are generated as there are images; this step is carried out for each image 

separately. Subsequently, the different tuples are connected and global consistent scales are 

derived before determining the projection center coordinates Ci. 

   

Figure 4.1:  Local pairwise triangulation. Cj: projection center of image j if the length of the baseline is 

defined as b. P: the position of a tie point under these circumstances. Cj’, P’: Projection center of image 

j and tie point if the length of the baseline is changed to be b’. 
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4.3.2 Determination of globally consistent scale factors  

Consistent scale factors per image tuple 

With reference to Figure 4.1 let the origin of the coordinate system be the projection center of 

image i and its rotation matrix to be the identity matrix. Assuming that the (unknown) baseline 

length corresponds to ||Ci Cj||, the coordinates of object point P can be computed from the image 

coordinates of its corresponding homologous points. Obviously, if the projection center of image 

j is extended to Cj’, object point P will move to P’ (Figure 4.1) and it is easy to establish equation 

(4.9) using ||.|| to denote the length of the respective vectors. As the object point should always be 

located in front of the camera, the value of the object point’s Z-coordinate is certainly larger than 

0 and the ratio i

ij  of the two Z values (Zp and Zp’) can be used instead of || Ci P ||/|| Ci P’ ||. This 

makes the proposed method more computationally efficient, because it is not necessary to calculate 

the more complex Euclidean distance between each object point and the reference projection 

center. 

‖𝑪𝒊 𝑪𝒋‖

‖𝑪𝒊 𝑪𝒋
′‖
=

‖𝑪𝒊 𝑷‖

‖𝑪𝒊 𝑷′‖
=

𝑍𝑝

𝑍
𝑝′
 =

i

ij                                                      (4.9) 

Figure 4.2 offers a direct illustration of the ambiguity resulting from inconsistent scale factors 

and its solution. Assuming an object point to be visible in three images (with projection centers 

Ci, Cj, Ck), it can be used for scale transfer from image pair (i, j) to image pair (i, k). The 

corresponding ray intersections must result in identical coordinates for the same tie points in object 

space, which can be achieved by selecting a proper scale factor for the image pair (i, k). 

Now, by considering all image pairs in the viewgraph which contain image i (denoted as 

reference image), the solution for a consistent scale factor i

ij  of each image pair (i, j) in the local 

coordinate system of image i is presented; For each object point P that can be viewed on both 

image pairs (i, j) and (i, k), equation (4.10) is set up: 

 Figure 4.2:  Global scale factor ambiguity. 
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                                                      (4.10) 

where i

jkr is constant with respect to these three images. 

First of all, each triplet is inspected independently. For each three-ray point, a value i

jkr can be 

calculated. To achieve a reliable solution, first the mean value and standard deviation of all i

jkr

values is calculated. Then, the points with i

jkr values within the interval of twice the standard 

deviation are kept, and the average 
i

jkr  is computed from the remaining i

jkr values. If the resulting 

number of inliers i

jkr is below a threshold pt, this triplet is not considered any further. 

Next, all images connected to the reference image i are considered which allows to solve all the 

corresponding scales simultaneously. However, equation (4.10) is in the form of a non-linear 

constraint. Therefore, the logarithm of both sides is taken to formulate it as a linear equation: 

𝑙𝑜𝑔𝜂𝑖𝑗
𝑖 − 𝑙𝑜𝑔𝜂𝑖𝑘

𝑖 = 𝑙𝑜𝑔�̅�𝑖𝑗
𝑖                                                (4.11) 

By setting up equations of type (4.11) for all image pairs (j, k) which overlap with image i, the 

linear equation system (4.12) is built, where XZ and bZ are vectors. XZ contains the i

ijlog  

(considered as unknowns) and bZ the i

jkrlog  values (computed as described above); AZ is a sparse 

matrix with rank deficiency 1, containing two non-zero elements per row, 1 and -1. The rank 

deficiency expresses the fact that the scale can be determined only up to a common value. To 

remove this ambiguity, for the image pair with the largest number of correspondences i

ijlog = 1 

is used as a constraint. 

𝑨𝑍𝑿𝑍 = 𝒃𝑍                                                               (4.12) 

𝑎𝑟𝑔 min
𝑋𝑍
‖𝑨𝑍𝑿𝑍 − 𝒃𝑍‖2                                                     (4.13) 

To obtain the optimal solution for the overdetermined system in equation (4.12), the standard 

least-squares estimation is adopted according to equation (4.13). For each reference image, it is 

required to solve the corresponding linear equation system (4.12). AZ is relatively small when 

solving for each image independently and the solution can be estimated efficiently. Alternatively, 

a large equation system could be also built by taking into consideration all images simultaneously. 

However, AZ would become very large and it would be inefficient to solve equation (4.13). In this 

thesis, solving equation (4.12) for each reference image independently is advocated. Furthermore, 

it is easy to parallelize this procedure, which means several individual image can be solved 

simultaneously. 

After determining consistent scale factors within tuples, translation outlier detection, described 

in section 3.2.1, is conducted to obtain more robust global scale factors and translations. 

 



 

66  4.4 Robust bundle adjustment 

 

Consistent scale factors across image tuples 

By applying the above approach, not too much effort is required to obtain consistent scale factors 

for each image tuple with one image as reference image. However, these scale factors are not 

consistent across tuples. It is thus necessary to compute another scale factor 𝛾𝑖 to transfer the local 

coordinate systems into a global unified one. As each image pair i and j, is part of at least two 

tuples (the ones with images i and j as reference, respectively) equation (4.14) can be formulated, 

iji

ij

j

ji

j

i
sf

η

η

γ

γ
==                                                         (4.14) 

Employing the same rationale as in setting up equations (4.11) and (4.12), obtain 

          𝑙𝑜𝑔𝛾𝑖 − 𝑙𝑜𝑔𝛾𝑗 = 𝑙𝑜𝑔𝑠𝑓𝑖𝑗                                            (4.15)  

𝑨𝑅𝑿𝑅 = 𝒃𝑅                                                           (4.16)  

where, AR, XR and bR are defined analogously to the terms in equation (4.12). Due to the rank 

defect of AR, 𝛾1 is set to 1. The scale factors 𝛾 of all tuples are simultaneously solved, again using 

the standard least square estimation: 

𝑎𝑟𝑔 min
𝑋𝑅
‖𝑨𝑅𝑿𝑅 − 𝒃𝑅‖2                                                 (4.17) 

Finally, the global scale factor 
ij  of each pair can be determined by 

𝜆𝑖𝑗 = (𝛾𝑖𝜂𝑖𝑗
𝑖 + 𝛾𝑗𝜂𝑗𝑖

𝑗
) 2⁄                                                     (4.18)    

4.3.3 Solving global translations based on relative translations 

Revisiting equation (4.8) after the scales are determined, only the image projection centers Ci 

remain unknown. Multiplying both sides of equation (4.8) by 𝑹𝒊
−𝟏, a linear equation system is 

eventually set up to determine the global translations, 

(𝑪𝒋 − 𝑪𝒊) = 𝜆𝑖𝑗𝑹𝒊
−𝟏𝒕𝒊𝒋                                                         (4.19)  

To estimate all the projection centers, a linear equation system is generated by integrating 

equation (4.19) with all the edges in the viewgraph: 

𝑨𝑃𝑿𝑃 = 𝒃𝑃                                                                 (4.20) 

where XP and bP are vectors consisting of image projection center coordinates Ci and 𝜆𝑖𝑗𝑹𝒊
−𝟏𝒕𝒊𝒋, 

respectively. AP is a sparse matrix in which three consecutive rows are all zeros, unless two 

corresponding images form an image pair which exists in the viewgraph. This matrix also has a 

rank deficiency due to a missing datum. The first image is defined as the origin of the global 

coordinate system to solve for that deficiency, i.e. C1 = 0.  Then, the coordinates of the projection 

centers of all images are estimated via standard least squares estimation (4.21), 

𝑎𝑟𝑔 min
𝑋𝑃
‖𝑨𝑃𝑿𝑃 − 𝒃𝑃‖2                                                       (4.21) 
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4.4 Robust bundle adjustment 

After calculating the initial exterior orientation parameters of all available images, all the unknown 

object coordinates of the tie points are obtained by taking the average of multiple pairwise space 

intersections [Förstner and Wrobel, 2016, p.596]. As these initial values may contain errors and 

outliers exist due to spurious correspondences, the reconstructed tie points are checked and filtered 

using the condition that estimated tie point must always lie in front of all images in which they are 

visible. The final step of the global image orientation workflow, as Figure 1.2 illustrates, is the 

refinement by bundle adjustment. All the relevant initial results including orientation parameters 

and tie points’ coordinates are optimized based on the functional model of the collinearity 

equations: 
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                                                (4.22) 

 

with  𝑹𝒊= (

𝑟11 𝑟21 𝑟31
𝑟12 𝑟22 𝑟32
𝑟13 𝑟23 𝑟33

)  

where (X, Y, Z) are the 3D coordinates of the j-th tie point 𝑋𝑗 which is assumed to be viewed by 

the i-th image, and (x, y) are the corresponding 2D image coordinates 𝒙𝒊𝒋. (𝑥0, 𝑦0) are the principal 

point coordinates of i-th image, f is its principal distance, ( 𝑋0, 𝑌0, 𝑍0) are the coordinates of the 

unknown projection center 𝑪𝒊 (equivalent to the image translation vector), and 𝑟𝑚𝑛 (m =1, 2, 3; n 

=1, 2, 3) are the entries of the rotation matrix 𝑹𝒊. Note that for the sake of simplicity, the indices i 

and j are omitted in equation (4.22).  

The stochastic model is set up as an identity matrix for the covariance matrix, which assumes 

that all observations are uncorrelated and of equal uncertainty. Bundle adjustment is considered to 

be the maximum likelihood solution of the image orientation problem, but it relies on the quality 

the initial values. Since bundle adjustment is a standard optimization approach in photogrammetric 

procedures, and this thesis does not intend to contribute to this topic, only some necessary 

information on the implementation are introduced. More detailed information can be found in 

[Förstner and Wrobel, 2016]. 

Equation (4.22) is a typical representation of the collinearity function. However, the axis-angle 

representation is used in the implementation in this thesis, due to the fact that a representation with 

Euler angle may have problems with gimbal lock. Equation (4.23) is adopted to carry out the 

refinement task: 

- ( , , , )minimize a
 


1 1i i i j

N M

ij ij i i i j huberK ,R ,C ,X
i j

x K R C X                              (4.23) 
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where N is the number of  images considered and M is the number of computed object points, 

while 𝑎𝑖𝑗 = 1 if an object point j is visible in an image i, otherwise, 𝑎𝑖𝑗 = 0. 𝑲𝒊 contains the intrinsic 

parameters (𝑥0, 𝑦0, 𝑓). 𝑹𝒊, 𝑪𝒊, 𝑲𝒊 and 𝑿𝒋 are considered as the items which need to be updated with 

improved estimations. Hence, a bundle adjustment with simplified self-calibration is performed 

(note that each image has its own set of intrinsic parameters, however, images taken from the same 

camera with the same setting have identical intrinsic parameters). The vector 𝜑 = (x, y)T contains 

the back projected x and y coordinates according to the collinearity equations (4.22), and  𝒙𝑖𝑗 are 

the observed 2D image coordinates. The Huber loss function (see Equation (4.24)) is used in the 

refinement pipeline, as it is less sensitive to observations with large residuals than the standard 

least squares estimation: the squared error loss (0.5e2) is used only if the absolute value of residuals 

is smaller than 2 pixels, otherwise, 2(|e|-1) is used as loss function instead. 

𝑓(𝑒) = {
0.5𝑒2          𝑖𝑓 |𝑒| ≤ 2 

2(|𝑒| − 1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                (4.24) 

Equation (4.23) is iteratively optimized using formula (4.24) and the unknowns are updated 

after every iteration. Two criteria are adopted for termination: (a) the difference between the total 

cost value of equation (4.23) from the last to the current iteration is smaller than a threshold (𝜖𝑏𝑎) 

times the current total cost value of equation (4.23); (b) the number of iterations is larger than Trba. 

Erroneous object points occur rather often in SfM and have a negative effect on the final results. 

To obtain a more robust solution, two strategies are proposed to detect these errors: observations 

with residuals larger than a threshold vr are eliminated as well as object points for which the 

corresponding largest intersection angle of all rays generating this point is smaller than a threshold 

da. To make it solvable, for each image in the photogrammetric block, a threshold Top is introduced 

defining the minimum number of object points that need to be visible in an image. If an image 

does not have a sufficient number of observations, it is excluded from the block. 

4.5 Discussion 

This chapter provides a detailed explanation on how the exterior orientation parameters of the 

images in the filtered viewgraph 𝒢  can be estimated in a global manner. Based on the 

characteristics of SO(3), a coarse to refined global rotation estimation method is presented. More 

specifically, two robust estimators using L1 norm and a Huber-like loss function are integrated to 

provide an efficient and robust solution for rotation estimation, identical to the approach presented 

by Chatterjee and Govindu [2013]. Next, a global linear translation estimation method is presented 

using relative translations and tie points concatenated to form tuples. Lastly, the estimated initial 

values are refined by robust bundle adjustment. Nevertheless, there are several inherent limitations 

which are worth further attention to gain a deeper understandings of the potential of the approach 

presented: 

1) In this chapter, several least squares applications are introduced to solve various overdetermined 

problems, the main concentration is on the description of function model, and the related stochastic 
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models are not discussed. Although various strategies have been suggested to execute the global 

image orientation method in a robust fashion, it would be interesting to also investigate the 

stochastic model of each least square application. This would not only make the method more 

theoretically elegant, but also make a numerical reliability analysis possible for the estimated 

solution.  

2) To remove the gauge datum when solving global translations using relative translations, the 

first image is always set as the reference which means its rotation and translation are fixed by an 

identity matrix and zero vector, respectively. While this is the most straightforward idea to solve 

the datum problem, it is not always the best choice. According to Wilson et al. [2016], fixing an 

image with a higher number of connected images can reveal more local convexity than using one 

from the periphery of the block. Therefore, it might be meaningful to investigate various choices 

for fixing the gauge datum, potentially providing a solution closer to the global optimum.
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5 Experimental setup 

In the last two chapters, the global image orientation approach with focus on improving time 

efficiency and robustness is described. The goal of the conducted experiments is to assess the 

performance of the proposed methods on various datasets. In particular, the time efficiency, 

robustness and accuracy of the preprocessing steps as well as the global image orientation method 

are investigated. For this purpose, this chapter is devoted to establishing the experimental setup 

for the subsequent evaluation. Section 5.1 introduces the objectives of the experiments which also 

reflect the goals of this thesis. According to the objectives, various datasets used in the experiments 

are introduced in section 5.2. The following section 5.3 provides more details on the 

implementations, such as information on the hardware and on free parameter settings being used. 

Finally, to achieve a convincing evaluation, section 5.4 presents the strategies and criteria that are 

adopted for the experimental evaluations. 

5.1 Objectives of the designed experiments  

In general, the primary objective of the experiments is to investigate the efficacy of the presented 

approach as a whole. Nevertheless, referring to Figure 1.2, the main developed components of the 

whole workflow are: detection of mutual overlapping image pairs, detection of RO outliers and 

global translation estimation. Therefore, in the evaluation phase three corresponding experimental 

objectives are designed to be investigated: 

Objective 1: Assessment of the detection capability of mutually overlapping image pairs. To 

cope with a large number of images which are not regularly organized, in section 3.1, a time 

efficient image matching strategy based on a random k-d forest is suggested. Following this 

strategy, mutual overlapping image pairs are detected first, before homogenous points and the 

relative orientations are derived from them. As the corresponding results of this step are the input 

for the subsequent image orientation process, the first objective of the designed experiments is to 

validate the efficacy of the proposed approach and to investigate the corresponding time efficiency. 

More specifically, it is to be investigated that how many correct overlapping image pairs can be 

found as well as the amount of incorrectly detected overlapping image pairs. Furthermore, the 

computational time is evaluated. 

Objective 2: Assessment of the robustification of the input ROs. As the original input, generated 

as described in Section 3.1, usually still contain gross errors, in Section 3.2 the idea of eliminating 
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these errors from the input ROs is introduced to improve the robustness for the subsequent image 

orientation estimation. First, based on the relative rotations and translations, a general method 

integrating the concept of triplet compatibility is presented; Second, different approaches are 

proposed to deal with blunders due to repetitive structure, very short baselines and baselines 

parallel to the viewing direction, respectively. Therefore, the second objective of the experiments 

is to demonstrate that the proposed RO outlier detection method is valid and can improve the 

performance of image orientation. In this context, the evaluation on dealing with images with 

repetitive structure and inappropriate baselines is of particular interest. 

Objective 3: Assessment of global image orientation results. The final expected outputs of the 

whole thesis are the image orientation parameters and the coordinates of generated tie points, while 

the main corresponding contribution to global image orientation is the solution of global 

translation estimation. The previously estimated image orientation parameters and coordinates of 

tie points are refined by employing a robust bundle adjustment. Thus, the final objective of the 

experiments is to evaluate the image orientation results. For this purpose, the determined 

translations before and after bundle adjustment are evaluated by investigating the corresponding 

precision and accuracy. In addition, the processing time for carrying out image orientation is also 

taken into account. 

5.2 Test datasets 

To investigate the listed objectives and their fulfilment, various datasets are employed to 

perform the evaluation. Table 5.1 contains some general information about the experimental image 

datasets. Based on the organization of the images, there are in general two classes of datasets: 

ordered image sets which were acquired sequentially using an identical camera, and unordered 

image sets which were acquired in arbitrary ways using different cameras. This is also the reason 

that the image size of ordered data is constant per dataset, while in the unordered datasets the size 

may vary. All the used datasets are cited from the related publications. In this thesis, the essential 

matrix is used for computing the relative orientation; the intrinsic parameters, namely the principal 

point coordinates and principal distance, are either obtained from EXIF meta-information or from 

calibration information provided by the corresponding authors (only when this is necessary). 

Which of the datasets are used to examine the individual objectives is listed in Table 5.1 as 

well. In general, Objective 3, assessing the performance of global image orientation, is investigated 

for all the datasets. Because the ultimate goal pursued in this thesis is to develop an image 

orientation method that can be applied to various datasets, the developed global image orientation 

method is tested on all categories of images. The related evaluation of the image orientation results 

is provided in the next chapter. 
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Category 
Name of 

dataset 

U  

or 

O 

Number 

of 

Images 

Image Size Original 
Intrinsic 

Parameters 
GT 

Objectives 

1 2 3 

ETH3D Facade O 76 6201×4130 
Schops et 

al. [2017] 
EXIF Yes    

Oblique dataset 3DOMcity O 420 6016×4016 

Özdemir 

et al. 

[2019] 

EXIF  Yes    

Internet datasets 

Various 

(see Table 

6.1) 

U 

Various 

(see 

Table 

6.1) 

Various 

Wilson 

and 

Snavely 

[2014] 

PbA Yes    

Various 

(see Table 

6.2) 

O 

Various 

(see 

Table 

6.2) 

1936×1296  

Olsson 

and 

Enqvist 

[2011] 

EXIF Yes    

P
ro

b
le

m
at

ic
 D

at
as

et
s 

Benchmarks 

with RS and 

VSB ROs 

B1 

O 

182 

3936×2624 

Wang et 

al. 

[2019c] 

EXIF  Yes 

   

B2 215    

B3 342    

Public 

datasets with 

high degree of 

RS 

TOH O 341 4368×2912 

Shen et 

al. [2016] 

EXIF No    

Sta. O 156 4800×3200 EXIF No    

Ind. O 152 1200×800 EXIF No    

Str. O 175 3968×2232 EXIF No    

Capitole O 99 3392×2264 Cohen et 

al. [2012] 

EXIF No    

CAB O 312 1696×1132 EXIF No    

Datasets with 

BPVD 

CR1 O 33 2640×1760 Wang 

and 

Heipke 

[2020] 

EXIF No    

CR2 O 24 2640×1760 EXIF No    

UAV1 O 48 4000×3000 EXIF No    

UAV2 O 47 4000×3000 EXIF No    

Complex 

dataset 
Church U 1455 Various 

Michelini 

and 

Mayer 

[2020] 

EXIF  No    

Challenging 

dataset 
Quad U 6514 Various 

Crandall 

et al. 

[2011] 

PbA  Yes    

GT = Ground Truth; U or O = Unordered or Ordered; O = Ordered; U = Unordered; PbA = Provided by Authors 

: The method of the corresponding objective is not used on the specific dataset. 

: The method of the corresponding objective is used on the specific dataset, but the related detailed assessment is not given. 

: The method of the corresponding objective is used, and the related detailed assessment is provided on the specific dataset. 

Table 5.1: Datasets used in the experiments. 

To demonstrate the proposed method’s efficacy on detecting mutual overlapping image pairs 

(equivalent to Objective 1), two types of unordered and ordered internet datasets (see Figure 5.1 

and 5.2 for sample images) are selected. However, in principal, this proposed method can also be 

applied on all the other datasets, but, as table 5.1 shows, it is not employed on the datasets with 

RS, VSB and BPVD. There are three reasons for not using the proposed time efficient image 

matching method: First, all these datasets are ordered with relatively small numbers of images, 

therefore the primary goal of establishing valid stereo pairs can be reached much easier. Second, 

all these datasets are captured in some deliberate way to obtain images with RS, VSB or BPVD. 

Thus, these datasets are particularly used in this thesis for conducting the evaluation of Objective 
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2. Figure 5.3 shows two sample images for each of these datasets. Those two sample images look 

very similar, but, they are in fact from two different real scenarios. Figure 5.4 shows samples of 

BPVD images which were captured at positions with various depths along the viewing direction. 

Lastly, when comparing against other methods, the same input should be used for a fair 

comparison. Those other methods, however, typically use exhaustive matching during 

preprocessing. The evaluation of Objective 2, eliminating outliers by checking the compatibility 

of triplets, is discussed for several datasets from ordered and unordered internet datasets, see table 

5.1 the ground truth for the rotation and translation parameters is available as standard reference. 

To fully explore the potential of the proposed methods as a whole, the complex and the 

challenging dataset are investigated. The complex dataset consists of both UAV and terrain images 

leading to week pairwise epipolar geometric configurations. The challenging dataset contains 

different amount of image pairs with RS and VSB. Two sample images of both datasets are showed 

in Figure 5.5. 

 

 
porta                                            coucha                                            gbg 

 

 pumpkin                                        SriMar                                       Faplace 

 

 Ystad                                             Buddah                                    Kingscollege 

 

 Lejonet                                              UWO                                           Orebro 

 

  Spilled                            Ahus                               SanMarc                         Duomo 

Figure 5.1: Sample images of ordered internet datasets. 
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 Ellis_Island             Piazza del Popolo                     NYC Library                    Metropolis 

 

  York Minster              Montreal N.D.                    Tower of London                Notre Dame 

 

         Alamo                    Gendarmenmarkt               Vienna Cathedral                 Union Square 

 

  Roman Forum                                  Piccadily 

Figure 5.2:  Sample images of unordered internet datasets. 

                         

                 B1                                                   B2                                             B3                                                        

     
                            ToH                                              Sta.                                                     Ind. 

   
                             Str.                                               CAB                                          Capitole    

Figure 5.3: Sample images of datasets with repetitive structure. 

  
CR1                                                                        CR2 

  
UAV1                                                                      UAV2 

Figure 5.4: Sample images of BPVD datasets from positions with various depths. 

 
Church                                                         Quad 

Figure 5.5: Sample images of the complex and the challenging datasets, respectively. 
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5.3 Free parameter settings 

There are a number of free parameters to be selected in the proposed methods (see Table 5.2). 

Their significance and selection are explained in the following. For image matching, those are 

n_tr, the number of k-d-trees in the forest, d, the minimum difference between nearest 

neighbouring features (expressed as the normalised scalar product between the two feature vectors) 

and cpmin, the minimum number of conjugate points per image pair. These parameters were 

investigated in Wang et al. [2017] and the values are chosen here according to the findings reported 

in that publication. Basically, n_tr is set to be 6 as a good compromise for time efficiency and the 

performance of detected mutual overlapping image pairs. While using more random trees can 

improve the result to a limited degree, the processing time increases significantly. Large values 

for cpmin will reduce the number of matched image pairs and some images may be excluded from 

the photogrammetric block. On the other hand, cpmin varies for different image matching methods, 

i.e., in the proposed random k-d forest based method only subsets of features are employed, while 

exhaustive pairwise image matching uses all features which aims to provide as many 

correspondences as possible for the RO calculation and tie point generation. The percentage of 

image pairs selected to be overlapping, a, is a rather sensitive parameter and is empirically selected 

based on some experiments conducted earlier and reported in Wang et al. [2019b]. In general, the 

photogrammetric block is extended if a is large, but at the same time, the block contains highly 

redundant ROs which may include blunders. 

When verifying the epipolar geometric constraint, the number of RANSAC iterations (Trr) is 

empirically selected. The maximum error in the epipolar geometry verification, ve, is set to 4 pixels 

which is relatively large, its value takes into account the fact the intrinsic parameters of the sensors 

are only known with limited accuracy. To be considered as an inlier, an image pair must contain 

at least Nc conjugate points, which must account for more than b% of the total number per image 

pair. 

To detect the RO outliers by checking the triplet rotation and translation compatibility, the two 

thresholds, 𝜀𝑟  and 𝜀𝑡, are selected to be 5.0 degrees and 2.0, respectively, based on experience (note 

that 𝜀𝑡 should be proportional to the tuple consistent scale fixed by the reference image pair which 

is set to 1). These relatively large values again reflect the limited accuracy of the intrinsic sensor 

parameters; the more relaxed these two thresholds are set, the fewer ROs are typically detected as 

outliers, which results in a larger and denser photogrammetric block. The parameter pt, the 

minimum number of points per triplet for scale determination, is also selected heuristically. 
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Table 5.2: Parameter settings for the experiments. 

 For the bundle adjustment, two criteria 𝜖𝑏𝑎 and Trba  are employed to terminate the optimization 

procedure. Specifically, the iterative refinement stops after Trba iterations or if the total cost value 

(calculated by equation (4.23)) does not change from one iteration to the next one by more than 

𝜖𝑏𝑎  times the current total cost value. The refinement procedure would be terminated rather 

quickly if 𝜖𝑏𝑎 is set to be very large value (e.g., 1) or if Trba is selected to be a small value. In 

consequence, the orientation result of the photogrammetric block would be less accurate and less 

robust while more images might be retained in the block. To eliminate outliers, the maximum 

reprojection error vr is set to be equal to the value ve (which is 4 pixels) and, finally, the minimum 

intersection angle used to decide whether a point is accepted is set to 10 degrees. For each image, 

there should be at least some object points in the photogrammetric block, while the actual number 

 
Name Description Value Unit 

Influence 

on PB 

Im
ag

e 
M

at
ch

in
g
 

Efficient image 

matching based on 

random k-d forest 

n_tr Number of k-d trees 6 Tree          + 

d 

Minimum distance to ensure neighbourhood 

between features (normalized scalar product of 

feature descriptor vectors) 

0.7 ∅ - 

cpmin Minimum number of conjugate points per image 

pair 
30 

Point 
- 

a 
Percentage of image pairs selected as 

overlapping 
35 ∅ + 

Pairwise image 

matching 
cpmin 

Minimum number of conjugate points per image 

pair 
80 Point - 

Epipolar Geometry 

Estimation 

Trr 
Maximum number of RANSAC iterations in 

relative orientation 
4096 iteration ? 

ve 
Maximum epipolar geometry error in relative 

orientation 
4.0 Pixel + 

Nc 
Minimum number of conjugate points after 

epipolar geometry verification 
50 Point - 

b 

Minimum percentage of conjugate points after 

epipolar geometry verification (from those 

before the check) 

30 ∅ - 

ROs outlier detection 

𝜀𝑟  
Maximum allowed value of triplet rotation 

compatibility 
5.0 Degree + 

𝜀𝑡 
Maximum allowed value of triplet translation 

compatibility 
2.0 ∅ + 

Global translation estimation pt 
Minimum number of triplet points for scale 

transferring 
5 Point - 

Robust  

Bundle Adjustment 

𝜖𝑏𝑎 
Maximum change between unknowns from one 

iteration to the next to stop computations 
10-6 ∅ + 

Trba Maximum number of iterations 50 iteration - 

vr Maximum reprojection error 4.0 Pixel + 

da Minimum intersection angle 10.0 Degree - 

Top 
Minimum number of object points observed by 

each image 
15 Point - 

PB = Photogrammetric block 

∅: parameter does not have a scale. 

+: increasing the specific parameter value will result in a PB containing more images. 

 -: increasing the specific parameter value will result in a PB containing less images. 

 ?: changing the specific parameter may have various influences on the PB. 
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depends on the optimization procedure, e.g. more object points are needed if intrinsic parameters 

need to be refined. Thus, in this work, an image in the corresponding block must contain at least 

15 object points (Top). 

Influence of parameter settings 

It should be first noted that for all experiments identical parameter values (as suggested in the 

table) were used. Preliminary experiments suggested that their selection is not very critical. 

Nevertheless, in general, various selections do have an influence on the final PB up to some degree, 

as the last column ‘Influence on PB’ of Table 5.2 indicates. If a more complete and denser PB is 

desired (e.g., all captured images are required to be orientated for making sure that a complete 

reconstruction of the area can be obtained) parameters labelled with ‘+’ may be increased and the 

ones marked with “-” may be reduced, and vice versa, if a sparse but more robust PB is desired. 

5.4 Evaluation strategy and criteria 

This section describes the strategy and criteria used in the experiments for the qualitative and 

quantitative evaluation of the proposed approaches. The corresponding strategy and criteria for 

assessing the preprocessing steps are discussed in section 5.4.1, which is followed by those for 

investigating the global image orientation in section 5.4.2. 

5.4.1 Preprocessing steps 

Detecting mutually overlapping image pairs 

As Table 5.1 implies, the ordered and unordered internet datasets are used to assess the presented 

method for determining mutually overlapping image pairs. Since it is typically not easy to obtain 

the ground truth of real overlapping image pairs and one of the most widely used ways to solve 

this problem is to conduct exhaustive pairwise image matching, in this thesis the result of 

exhaustive pairwise matching is considered as the reference to evaluate the results of the detected 

overlapping image pairs. It worth to remind that this reference is not the best one and two 

noticeable weeknesses exist: some determined overlapping image pairs in the reference, in fact, 

may not overlap. This can resulte from some spurious matches, e.g., similar texture or limitations 

from the feature descriptor; On the other hand, some real overlapping image pairs may not be 

included by the reference, for example in the oblique aerial image set, some real overlapping image 

pairs between oblique images may not be found by using the conventional SIFT feature. 

Nevertheless, in the corresponding evaluation phase, the exhaustive pairwise image matching is 

still used as reference for the following reasons: first, the ground truth of real overlapping image 

pairs is not easy to generate, even a trained professional photogrammetrists can make a mistake 

when judging whether two images overlap or not and it is also infeasible to manually make such 

judgements for thousands of images. Second, the idea of exhaustive pairwise image matching is 

popular in many academic and commercial packages, e.g., VisualSFM, Colmap, Photoscan, and 

its efficacy has already been widely demonstrated. 
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In addition, the results after epipolar geometry verification (some outliers of ROs and non-

overlapping image pairs will be excluded) using exhaustive pairwise matchings are normally used 

as input for the subsequent image orientation by the mentioned packages. Therefore, based on this 

input, the epipolar geometric results of the detected overlapping image pairs are assessed as well. 

To allow for a quantitative evaluation, this problem can be treated as a classification issue which 

is similar to judging whether the two images of a detected overlapping pair really observe the same 

scene or not. Based on the estimated references, the criteria of precision and recall with and 

without epipolar geometry verification are studied. A generic confusion matrix is shown in Table 

5.3, while the connection between the entries of the confusion matrix and the precision and recall 

are given in equation 5.1.  

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
   Recall = 

𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                   (5.1) 

 Actual positive Actual negative 

Predicted positive TP FP 

Predicted negative FN TN 

Table 5.3: Confusion matrix. 

To give a more intuitive illustration, Figures 5.6 (a) and (b) show exemplary overlap graphs of 

the reference result by exhaustive pairwise matching and the detected overlapping pairs using the 

proposed method, respectively.  The horizontal and vertical axes are the image IDs (Note that this 

also applies for all the relevant overlap graphs mentioned in the following contents), black 

indicates overlap and white no overlap. Figure 5.6 (c) is formed by taking the difference of the 

Figures 5.6 (a) and (b), pixels are labelled green (identical to TP) if the corresponding locations 

are both black, pixel are labelled blue (identical to FN) if Figure 5.6 (a) is white and Figure 5.6 (b) 

is black, and pixel are marked in red (identical to FP) if Figure 5.6 (a) is black and Figure 5.6 (b) 

is white, while white pixels existing in both Figures 5.6 (a) and (b) correspond to TN. 

Lastly, the performance of one state-of-the-art method (called VocMatch [Havlena and 

Schindler, 2014]) is discussed. To compare the time efficiency, the running time of various 

methods are discussed as well. 

 

(a) Detected overlap graph                  (b) Reference results               (c) Difference overlap graph 

Figure 5.6: Example of overlap graph. 
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Robustifying the ROs 

In the evaluation of the method for making the input ROs more robust, the general approach for 

checking the compatibility of triplets and the individual approaches for coping with outliers due 

to RS & VSB and BPVD are inspected, respectively. 

Method for checking triplets’ compatibility. Two datasets, one ordered and one unordered, with 

ground truth exterior orientation parameters are tested, respectively. First, the ground truth relative 

rotations and relative translations are estimated from the ground truth exterior orientation 

parameters. Then, the discrepancies between the measured relative rotations and translations and 

the corresponding ground truth values are investigated (more details on computing these 

discrepancies can be found in Appendix B.1 and B.2). Among the detected RO inlier and outlier 

set, the graph of the cumulative distribution function (attributed with the relative rotation and 

translation errors) is employed to show the related performance. The desired performance is that 

the remaining ROs with small discrepancies should be mainly included in the inlier set, whereas, 

the ROs with large discrepancies should mainly be included in the outlier set. 

 Ne Np Correct ROs RS VSB 

B1 182 2011 1089 784 138 

B2 215 6357 1935 4030 392 

B3 342 4956 3202 1422 332 

Table 5.4: Three benchmarks with ROs ground truth. 

Method for coping with ROs due to RS & VSB and BPVD. Analogous to Table 5.3, detecting 

RO outliers can also be cast as a classification problem if the ground truth of the ROs is known. 

In this context the term ground truth refers to the knowledge of each potential pair of images, 

whether it overlaps, whether it is non-overlapping with RS and whether it has a very short baseline. 

For the data sets B1, B2 and B3 of Table 5.1, the corresponding ground truth has been established 

manually by considering standard photogrammetric requirements. Some detailed information of 

these three benchmarks is listed in Table 5.4, where Ne is the largest number of connected images 

after filtering by the five-point algorithm and RANSAC, Np indicates the corresponding number 

of ROs after this filtering step. The number of correct RS and VSB ROs for each dataset is also 

provided (note that there is no BPVD RO in these three datasets). Therefore, the criteria of the 

corresponding precision and recall values are again used to carry out the evaluation via a 

comparison with several RO outlier detection methods. In addition, the corresponding 

performance can also be indirectly revealed by comparing the image orientation results of using 

and not using the proposed methods (this strategy is in fact also applied on the other problematic 

datasets for which ground truth exterior orientation parameters are not available in the 

experimental parts), which is explained in the following image orientation evaluation stage. 

Validation of the improved robustness on image orientation. To verify the hypothesis that the 

proposed methods for outlier detection are indeed capable of improving the image orientation 

results, two additional tests to investigate the quality of the estimated rotations and object points 

are carried out: First, influence on global rotation estimation. The basic idea of estimating global 

rotation matrices is to average the input relative rotations. Although this thesis employs the method 
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of Chatterjee and Govindu [2013] which is acknowledged to be relatively robust, it is interesting 

to see whether the robustified ROs can further benefit from this global rotation estimation and if 

so, to which degree the solution can be improved. In particular, the number of iterations and the 

processing time needed to converge are analyzed, and the accuracy of the global rotation solution 

is studied. Second, influence on the reconstructed object point. Based on the ETH3D facade dataset 

in which the ground truth of the object points is acquired using a laser scanning technique, the 

quality of the image orientation result is verified by inspecting various pipelines with and without 

the outlier detection in the stage of robustifying input ROs. 

The completeness of the photogrammetric block 

In the preprocessing steps both the procedures of detecting mutually overlapping image pairs and 

robustifying ROs can affect the size of the photogrammetric block, because these steps essentially 

determine whether the edges in the viewgraph can be maintained or need to be removed, while 

images with less than two connected edges will be eliminated from the block. Therefore, one 

crucial criterion for investigating the preprocessing steps is the corresponding value of Ne (largest 

number of connected images in the block) after each procedure. 

5.4.2 Global image orientation 

Basically, the evaluation of global image orientation is about the quality of the estimated exterior 

orientation parameters and the determined object points (which can only be evaluated if the related 

reference is available), and the corresponding runtime. 

First, a set of quasi-oblique aerial images [Özdemir et al., 2019] is tested. In a controlled lab 

environment over a 3D test field which simulates some common urban scenarios (as shown in 

Figure 5.7), 420 images (consisting of 144 nadir images and 276 oblique images) are captured, 

whereby the ground sampling distance (GSD) varies from 0.13mm to 0.27mm in the oblique 

images and amounts to 0.12mm in the nadir views. Three different criteria are suggested to 

evaluate the quality of the image orientation results: 1. Precision assessment: The reprojection 

errors of 115 targets labelled by red crosses in Figure 5.7 are reported to assess the precision of 

orientation results in image space. 2. Accuracy assessment: Three control bars (shown as blue lines 

in Figure 5.7) and three check bars (shown as yellow lines in Figure 5.7) with known length are 

 
Figure 5.7: Top view of the simulated urban scenario. 
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provided to evaluate the accuracy of the orientation results in object space. 3. Relative accuracy 

assessment: The errors of rotation and translation are inspected by taking the provided exterior 

pose parameters as a reference. 

Then, the image orientation results of ordered and unordered internet datasets are assessed. As 

the global rotation solution is not the main contribution of this thesis, the assessment is mainly 

conducted on inspecting the accuracy of the global translation solution. More specifically, based 

on the ground truth exterior orientation parameters, the corresponding accuracies before and after 

the robust bundle adjustment are shown (note that the ground truth and the estimated image 

orientation results are given in different coordinate systems; see appendix C for transferring them 

into a unified frame and calculating the mean translation errors). To demonstrate that the presented 

global image orientation method is more time efficient compared to the conventional incremental 

method, one incremental approach by Wang et al. [2018] is tested on these datasets as well. In 

addition, several state-of-the-art global methods are compared in terms of the accuracy of 

translations and of the time efficiency, except one all investigated methods run on the same 

hardware. 

Finally, the problematic datasets which typically contain critical stereo pairs are tested. As there 

is no ground truth for the exterior orientation parameters, qualitative results of the proposed global 

image orientation method are compared. The results of the proposed global image orientation 

method integrated with various RO outlier elimination methods are qualitatively investigated, and 

a coarse numerical analysis on the runtime and on the precision in image space is provided.
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6 Evaluation 

In this chapter, experimental results are presented and are thoroughly evaluated in order to clarify 

the advantages and limitations of the proposed methods. First, the performance of the proposed 

preprocessing steps is assessed (Sec. 6.1). In particular, the results of the methods to detect mutual 

overlapping image pairs and to increase the robustness of ROs are discussed. Afterwards, based 

on the inputs generated by these preprocessing steps, the evaluation of global image orientation 

(Sec. 6.2) is extensively investigated on various datasets (see Table 5.1). Finally, Section 6.3 closes 

this chapter with a synthesis of the reported experiments. 

6.1 Evaluation of preprocessing steps 

In this section, experiments conducted on parts of the listed datasets (see Table 5.1) are presented. 

The evaluation of the results for detecting mutual overlapping image pairs is carried out on all 

ordered and unordered internet datasets (Sec. 6.1.1), as they are assumed to be representative 

enough to demonstrate the capability of the presented method. Then, the efficacy of the proposed 

methods to increase the robustness of ROs are assessed (Sec. 6.1.2). Basically, the results are 

compared with the provided ground truth information (more details on the ground truth are given 

in Section 5.1). 

6.1.1 Performance of overlapping pair determination 

Qualitative evaluation 

To provide an intuitive impression of the results generated by the presented method to detect 

mutual overlapping image pairs, some qualitative results are first shown exemplarily for two 

datasets, one ordered internet dataset (Lejonet) and one unordered dataset (Piazza del Popolo), see 

Figure 5.1 and 5.2 for their sample images. 

As the similarity degree value is crucial for the determination of final mutual overlapping image 

pairs, based on these two datasets, Figure 6.1 shows the corresponding overlap graphs attributed 

with their normalized similarity degree values (determined using a linear normalization). The 

colour of the pixel varies gradually from blue to green. While more bluish pixels indicate that the 

corresponding image pairs are supposed to have a lower probability to overlap, the more greenish 

pixels indicate that the corresponding image pairs are supposed to have a higher probability to 

overlap, the white pixels are the image pairs with the estimated Sij equal to -1 which is due to that 
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less than 5 corresponding features are found. Comparing Figure 6.1(a) with Figure 6.1(b), one 

finding of the corresponding overlap graphs is that ordered datasets typically yield a more regular 

graph, while the overlap graph of an unordered dataset is usually irregular. The unordered images 

were captured in an arbitrary way which means that any image can potentially overlap with any 

other image. In contrast, the capturing process of ordered images is close to a sequential manner, 

which means that any image should overlap with its nearest neighbouring images (unless there is 

a closing loop). The efficacy of the proposed similarity degree value Sij is revealed by Figure 

6.1(b), because most pixels along the diagonal have been assigned with a greenish colour 

indicating that the corresponding images have a high probability to overlap with their neighbours 

(the green pixels on the right top and the left bottom corner are formed due to the fact that image 

capture occurred in a loop). 

After computing the similarity degree value Sij, image pairs that have the a% largest Sij scores 

are chosen as potential overlapping pairs for a given image. Algorithm 3.1 is then adopted to refine 

these pairs by clustering images and discarding single images. Analogous to Figure 5.6, Figures 

6.2(a) and 6.3(a) are the detected overlap graphs resulting from the proposed method, Figures 

6.2(b) and 6.3(b) are the reference results using exhaustive pairwise image matching with the 

settings described in Table 5.2. Figures 6.2(c) and 6.3(c) are the difference graphs, when 

comparing the detected and reference overlap graphs. To qualitatively assess these results, the 

difference overlap graphs are produced (the meaning of blue, red, and green pixels is equal to the 

one in Figure 5.6, namely, pixel is labelled green which is identical to true positive if detected 

overlap graph and reference result are both black, pixel is labelled blue  which is identical to false 

negative if detected overlap graph is white and reference result is black, and pixel is marked in red 

which is identical to FP if detected overlap graph is black and reference result is white) and imply 

that the detected overlapping image pairs are generally consistent with the reference as a whole. 

However, there exist some red pixels indicating that some predictions are actually incorrect and 

some blue pixels which means that some actually overlapping pairs are not successfully predicted. 

This can be explained by the fact that the reference is not the most rigorous ground truth and two 

weeknesses exist: some determined overlapping image pairs in the reference, in fact, do not 

(a) Piazza del Popolo                                         (b) Lejonet 

Figure 6.1: Overlap graph attributed with normalized similarity degree value Sij. 
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overlap; some real overlapping image pairs may not be included in the reference (see Sec. 5.4.1 

for more details). 

Figures 6.4 and 6.5 are the overlap graphs after filtering for epipolar geometric verification. It 

can be seen that in both datasets many overlapping image pairs detected by the proposed method 

and the exhaustive image matching method are eliminated as outliers, and that the difference 

overlap graphs are improved significantly: most of the original red pixels disappear and the number 

of blue pixels is reduced. This is due to the fact that image pairs incorrectly considered as 

overlapping in exhaustive matching and by the proposed method do not pass the epipolar 

geometric check and are thus discarded. On the other hand, the proposed method is able to 

determine a set of overlapping image pairs which have a high chance to pass the epipolar geometric 

check. 

       
(a) Detected overlap graph                (b) Reference result                     (c) Difference overlap graph 

Figure 6.2: Overlap graph of Piazza del Popolo. 

   
(a) Detected overlap graph                (b) Reference result                     (c) Difference overlap graph 

Figure 6.3: Overlap graph of Lejonet. 

   
(a) Detected overlap graph                 (b) Reference result                    (c) Difference overlap graph 

Figure 6.4: Overlap graph of Piazza del Popolo after epipolar geometric verification. 
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Quantitative evaluation 

The qualitative evaluation illustrates the capability of the proposed method to some extent. 

Nevertheless, a quantitative evaluation is obviously needed for a more complete analysis of the 

proposed method.  According to the evaluation strategy and criteria described in Section 5.4.1, the 

precision and recall of each ordered and unordered internet dataset are investigated and the 

corresponding runtime is reported. In addition, the results are compared against one state-of-the-

art method, VocMatch [Havlena and Schindler, 2014]. 

Tables 6.1 and 6.2 show the numerical results for all unordered and ordered internet datasets 

investigated in this section, sorted by the number of images per dataset. Before running epipolar 

geometric verification, for the proposed method all precision values are higher than 0.7, which 

indicates that more than 70% of the found overlapping image pairs are identical to the reference 

determined by exhaustive pairwise matching. In addition, the precision values of ordered internet 

datasets are generally higher than those of unordered internet datasets, e.g., the lowest precision 

on ordered internet datasets is 0.85, and only 0.73 for unordered ones. The reason can be explored 

by revisiting Figure 6.1: the similarity degree value Sij is more distinguishable for ordered internet 

datasets than for unordered ones. This clear difference is due to the fact that ordered image sets 

were taken in a sequential way, so neighboring images typically have similar content while images 

taken at an earlier or later epoch tend to depict different scenes. Thus, the Sij values of these pairs 

are expected to be very small. However, unordered images typically show the same object from 

arbitrary viewpoints and many of these image pairs actually mutually overlap to various degrees, 

thus, the Sij values of these pairs can vary a lot. In particular, the distribution of normalized Sij 

values on ordered datasets is more close to be bi-modal, whereas, for unordered datasets the 

normalized Sij values are more equally distributed with values ranging around the median values 

(0.4 – 0.7). The better the Sij values can be separated in practice, the more beneficial they are for 

the task of classifying non-overlapping and overlapping image pairs. For each image, only the 

image pairs with the 35% largest similarity degree values are further considered. This explains the 

somewhat small recall values compared to the precision. Nevertheless, except for very few datasets 

(Piccadily, Pumpkin, UWO, SanMarc), the recall values are only higher than 0.4. A comparison 

   
(a) Detected overlap graph                  (b) Reference result                   (c) Difference overlap graph 

Figure 6.3: Overlap graph of Lejonet after epipolar geometric verification. 
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with VocMatch1 [Havlena and Schindler, 2014] is shown in these two tables as well. To allow for 

a fair comparison, some parameters of VocMatch were adjusted to be identical to the ones used in 

this thesis (see Table 5.2). Considering the resulting adjacency matrix of VocMatch only, the 

proposed method outperforms VocMatch with respect to both precision and recall. Nearly all 

measures for both groups of datasets are larger for the proposed method compared to VocMatch, 

before and after epipolar geometric verificaiton. 

Name N 

Before EG verification After EG verification 

Exh PM VocMatch Exh PM VocMatch 

Ne Ne P R Ne P R Ne Ne P R Ne P R 

Ellis_Island 247 247 245 0.88 0.52 233 0.83 0.37 243 239 0.96 0.59 231 0.90 0.52 

Piazza del Popolo 354 354 345 0.80 0.45 343 0.74 0.34 348 335 0.94 0.52 343 0.89 0.49 

NYC Library 379 379 371 0.73 0.49 356 0.64 0.35 372 363 0.93 0.69 351 0.91 0.52 

Metropolis 394 393 388 0.74 0.42 385 0.60 0.21 388 378 0.95 0.53 385 0.88 0.50 

York Minster 458 458 455 0.72 0.49 455 0.62 0.38 453 448 0.95 0.56 455 0.90 0.44 

Montreal N.D. 474 474 468 0.76 0.51 468 0.66 0.40 471 464 0.95 0.60 461 0.92 0.51 

Tower of London 508 508 506 0.73 0.54 486 0.68 0.39 499 489 0.93 0.62 479 0.87 0.54 

Notre Dame 553 553 553 0.94 0.45 551 0.86 0.36 553 553 0.97 0.51 543 0.95 0.48 

Alamo 627 620 601 0.92 0.41 611 0.75 0.35 611 579 0.99 0.58 605 0.86 0.50 

Gendarmenmarkt 742 740 731 0.74 0.44 441 0.66 0.27 712 708 0.91 0.50 441 0.93 0.41 

Vienna Cathedral 918 916 911 0.81 0.42 896 0.65 0.32 901 896 0.96 0.54 895 0.89 0.44 

Union Square 930 930 909 0.76 0.48 901 0.70 0.36 899 879 0.97 0.55 901 0.94 0.46 

Roman Forum 1134 1133 1131 0.77 0.46 1079 0.59 0.26 1112 1112 0.90 0.54 1103 0.86 0.43 

Piccadily 2508 2416 2393 0.76 0.35 2221 0.71 0.29 2356 2311 0.86 0.44 2194 0.88 0.38 

EG = Epipolar geometry; Exh = Exhaustive pairwise image matching; PM = Proposed method; P = Precision; R= Recall;  

N = the number of images of each input dataset; Ne = the largest number of connected image in the photogrammetric block; 

These abbreviations are also used in the subsequent tables in this section.  

Table 6.1: Evaluation of image matching accuracy on unordered internet dataset. 

Name N 

Before EG verification After EG verification 

Exh PM VocMatch Exh PM VocMatch 

Ne Ne P R Ne P R Ne Ne P R Ne P R 

Porta 141 141 141 0.91 0.41 141 0.92 0.33 141 141 1.0 0.54 141 1.0 0.48 

CouCha 176 176 176 0.86 0.43 176 0.84 0.35 176 176 1.0 0.60 176 0.98 0.51 

Gbg 179 179 179 0.92 0.49 179 0.88 0.36 179 179 1.0 0.53 179 1.0 0.47 

Pumpkin 209 209 209 0.89 0.35 209 0.87 0.33 209 209 0.99 0.58 209 0.95 0.48 

SriMar 222 222 222 0.94 0.42 222 0.91 0.42 222 222 1.0 0.54 222 1.0 0.52 

Fapalace 281 281 281 0.93 0.41 281 0.92 0.34 281 281 1.0 0.50 281 1.0 0.48 

Ystad 290 290 290 0.85 0.45 290 0.89 0.44 290 290 1.0 0.53 290 1.0 0.56 

Buddah 322 322 322 0.92 0.44 322 0.94 0.39 322 322 0.97 0.51 322 1.0 0.48 

Kingscollege 361 361 361 0.91 0.52 361 0.87 0.47 361 361 1.0 0.63 361 1.0 0.60 

Lejonet 368 368 368 0.88 0.54 368 0.86 0.48 368 368 1.0 0.61 368 1.0 0.59 

UWO 692 692 692 0.93 0.39 692 0.87 0.34 692 692 1.0 0.53 692 1.0 0.51 

Orebro 763 763 763 0.94 0.41 763 0.94 0.30 763 763 1.0 0.54 763 10 0.50 

Spilled 781 781 781 0.86 0.40 781 0.86 0.34 781 781 0.94 0.58 781 0.92 0.52 

Ahus 811 811 811 0.87 0.42 811 0.85 0.38 811 811 0.99 0.55 811 0.99 0.54 

SanMarc 1499 1499 1499 0.92 0.36 1499 0.90 0.28 1499 1499 1.0 0.49 1499 1.0 0.36 

Duomo 1805 1805 1805 0.85 0.41 1805 0.84 0.27 1805 1805 0.98 0.52 1805 0.96 0.43 

Table 6.2: Evaluation of image matching accuracy on ordered internet dataset. 

After epipolar geometric verification, for both methods, the proposed method and VocMatch, 

precision and recall on both ordered and unordered datasets are improved, which is consistent with 

the observations on the qualitative results. On the one hand, more than 90 percent of detected 

                                                 
1  VocMatch can be found at https://www.ethz.ch/content/dam/ethz/special-interest/baug/igp/photogrammetry-

remote-sensing-dam/documents/sourcecode-and- datasets/Vocmatch/vocmatch-1.0.zip  

https://www.ethz.ch/content/dam/ethz/special-interest/baug/igp/photogrammetry-remote-sensing-dam/documents/sourcecode-and-%20datasets/Vocmatch/vocmatch-1.0.zip
https://www.ethz.ch/content/dam/ethz/special-interest/baug/igp/photogrammetry-remote-sensing-dam/documents/sourcecode-and-%20datasets/Vocmatch/vocmatch-1.0.zip
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overlapping image pairs by the proposed method are correct. On the other hand, over 50 percent 

of the reference image pairs are successfully detected. Special attention should be paid to low 

recall values, because this may indicate that the photogrammetric block is not reconstructed 

completely. For this purpose, the information of Ne after each procedure is shown in Tables 6.1 

and 6.2. For the unordered internet datasets, few images which are weekly connected to the 

photogrammetric block are excluded after exhaustive matching and EG verification. Compared 

with the reference, the proposed method keeps almost the same number (for some datasets just 

slightly less) of images. For the ordered internet datasets, the proposed method and VocMatch 

provide exactly the same Ne value as the exhaustive pairwise matching. 

 Name 
Exh Proposed Method VocMatch 

Matching EG Total RKF Matching EG Total Total 

U 

Ellis_Island 899 135 1034 28 330 47 405 (×2.6) 457 

Piazza del Popolo 1429 200 1629 37 324 51 412 (×4.0) 483 

NYC Library 2126 236 2362 32 616 79 727 (×3.2) 569 

Metropolis 1790 218 2008 30 381 26 437 (×4.6) 477 

York Minster 3932 440 4372 39 489 64 592 (×7.4) 619 

Montreal N.D. 4865 506 5371 46 870 113 1029(×5.2) 880 

Tower of London 3555 411 3966 48 322 43 413 (×9.6) 503 

Notre Dame 10663 1034 11697 50 1219 166 1435(×8.2) 1443 

Alamo 4998 662 5660 71 562 80 713 (×7.9) 661 

Gendarmenmarkt 5558 1015 6573 78 714 118 910 (×7.2) 1046 

Vienna Cathedral 17664 2044 19708 101 1167 154 1422(×13.8) 1265 

Union Square 13300 1913 15213 101 979 107 1187(×12.8) 1388 

Roman Forum 23582 3685 27267 128 923 88 1139(×15.0) 1130 

Piccadily 130216 16735 146951 380 2706 468 3554(×41.3) 3332 

O 

Porta 497 75 572 33 124 40 197 (×2.9) 211 

CouCha 1169 157 1326 42 332 79 453 (×2.9) 489 

Gbg 636 123 759 38 175 45 258 (×2.9) 303 

Pumpkin 321 66 387 39 125 26 190 (×2.0) 177 

SriMar 1189 203 1392 51 313 73 473(×2.9) 512 

Fapalace 1686 323 2009 66 416 148 630 (×3.2) 689 

Ystad 4002 554 4556 84 529 156 769 (×5.9) 734 

Buddah 801 224 1025 60 251 71 382 (×2.7) 369 

Kingscollege 2580 432 3012 87 788 161 1036 (×2.9) 986 

Lejonet 5915 634 6549 97 816 214 1127 (×5.8) 1444 

UWO 15957 1319 17276 213 1237 255 1705(×10.1) 2010 

Orebro 16295 2136 19061 253 1835 427 2515 (×7.6) 2469 

Spilled 16973 2897 19870 244 1777 404 2425 (×8.2) 2845 

Ahus 21810 1487 23297 258 1329 219 1806(×13.2) 2054 

SanMarc 59149 11206 70355 581 2376 848 3806(×18.2) 3741 

Duomo 118036 20040 138076 767 3536 1123 5446(×25.4) 5712 

U = Unordered internet dataset; O = Ordered internet dataset; RKF = random k-d forest; 

Table 6.3: Runtime in seconds for all experiments on the internet datasets. The factor in brackets indicates 

the speed-up of the proposed method compared to exhaustive matching. The bold font indicates the fastest 

method. 

Table 6.3 lists the runtime of the various steps for image matching and performing epipolar 

geometric verification. All of these experiments are executed on the same machine with a quad-

core processor (3.2 GHz Inter (R) Core (TM)i5-6500, 32G memory) and eight threads in total. 

Compared with the conventional exhaustive pairwise matching, the suggested image matching 
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strategy only considers the determined overlapping image pairs. This improves the speed by a 

factor between 2.6 to 41.3 (see Table 6.3) depending on the size of the dataset, while the factor 

generally increases as the number of input images grows (see N of each dataset in Table 6.1 and 

6.2). It is clear that exhaustive image matching needs more time for more images, because more 

features and more potential pairs are needed to be dealt with. This is also true for the runtime of 

executing the random k-d forest, as more time is required to build a random k-d forest for more 

images. When comparing the proposed method and VocMatch, similar runtimes can be observed 

for both method (both show a runtime in the same order of magnitude, in contrast to exhaustive 

pairwise image matching) to complete the image matching and EG verification task. Note that 

absolute runtimes from different datasets are hard to compare, as the number of images are 

different per dataset, furthermore, for the unordered image sets the image size varies considerably 

even within the same dataset (this can be found by inspecting the original image sets2) which can 

result in that the number of extracted features might vary greatly.  

6.1.2 Performance of the robustification of ROs 

In this section, the evaluation of the proposed general approach to increase the robustness of ROs 

by checking the triplet compatibility is first studied on one ordered and one unordered internet 

dataset (Lejonet and Piazza del Popolo). Then, the detection of outlier ROs due to RS and VSB is 

analysed on the benchmarks specified by the relevant objective (see Table 5.1) for which the 

ground truth ROs are provided. Finally, the image orientation results which are obtained using and 

not using the robustified input ROs are compared. 

Robust ROs by checking triplet compatibility 

First, the relative rotations before and after rotation outlier detection are evaluated by comparing 

them with the ground truth (see Section 5.4.1). Figure 6.6 shows the results in terms of the 

cumulative distribution function of the different variants compared to ground truth. The arc cosine 

of the average value of the main diagonal elements from the difference rotation matrix between 

the ground truth and observed relative rotation matrix is used (see Appendix B.1). As Figure 6.6(a) 

shows, before carrying out rotation outlier detection, only 33% of the differences are smaller than 

20 degrees for Piazza del Popolo, and only 40% for Lejonet. After outlier detection, nearly 80% 

of the rotations show a difference from the ground truth below 20 degrees (76% and 82% for 

Piazza del Popolo and Lejonet, respectively). While this demonstrates that the rotations are 

inaccurate before performing rotation averaging, it is a clear indication that the proposed rotation 

outlier detection approach is very useful. To see how many good relative rotations are eliminated, 

Figure 6.6(b) is shown. Among these eliminated relative rotations, only less than 10% have errors 

below 20 degrees, and most of the eliminated relative rotations’ errors are between 40 and 100 

degrees. 

                                                 
2 The original unordered image sets can be accessed by http://www.cs.cornell.edu/projects/1dsfm/ 

http://www.cs.cornell.edu/projects/1dsfm/
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A similar comparison was carried out for the combined outlier detection in relative rotation and 

translation. The intersection angle between the derived relative translation vector and the ground 

truth is used as the evaluation criterion (see Appendix B.2). Figure 6.7(a) shows, that before outlier 

detection, only 28% of the translation directions are within 30 degrees of the ground truth for 

Piazza del Popolo, and only 45% for Lejonet. After rotation outlier detection according to 

rotational triplet compatibility, the corresponding results for Piazza del Popolo increase to 55% 

and for Lejonet to 66%. This indicates that wrong rotation and translation values are indeed highly 

correlated (see Section 3.2.1). Performing also the additional outlier detection according to 

translation triplet compatibility yields values in the range of 64% for Piazza del Popolo, and 82% 

for Lejonet. Again, while these values are still somewhat inaccurate, the benefit of our outlier 

detection approach is clearly visible. Figure 6.7(b) shows the CDF of the eliminated relative 

translations using rotation and translation triplet compatibility, respectively. The trends of the 

shown curves are very similar to those of Figure 6.6 (b): for both rotation and translation 

compatibility checking, less than 10% of the eliminated relative translations have an error below 

 
(a)                                                                       (b)  

Figure 6.6: The cumulative distribution function (CDF) of relative rotation errors. In (a), “Lejonet_R” 

is the result after outlier detection by checking the rotation triplet compatibility, “Lejonet_o” denotes 

the result without using the corresponding outlier detection method. For the other dataset, the same 

notation is applied. In (b), “Lejonet _e(R)” is the result of eliminated relative rotations by checking the 

rotation triplet compatibility, the same notation is applied for the other dataset. 

 
(a)                                                                       (b)  

Figure 6.7: The CDF of relative translation error. In (a), “Lejonet_R and T” is the result after outlier 

detection by combing the check of both rotation and translation triplet compatibility, “Lejonet_R” is the 

result after outlier detection by only using rotation triplet compatibility, “Lejonet _o” denotes to the 

result without using any outlier detection. For the other dataset, the same notation is applied. In (b), 

“Lejonet _e(R)” is the result of eliminated relative translations by using rotation triplet compatibility 

and “Lejonet _e(T)” is the result of eliminated relative rotations by using translation triplet 

compatibility. The same notation is applied on the other dataset. 
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20 degrees, while most of the eliminated relative translations have errors between 30 and 100 

degrees. 

Robustification of ROs due to RS and VSB 

To validate the performance of the corresponding presented method to detect incorrect relative 

orientations (ROs) due to repetitive structure (RS) and very short baseline (VSB), Table 6.4 

provides the obtained precision and recall values for detecting RS, VSB and the correct ROs. For 

this purpose, the benchmarks with RS and VSB ROs (see Table 5.1) and the relevant ground truth 

ROs (see Table 5.4) are used. It can be observed that most ground truth ROs can be detected (recall 

is higher than 90%), while also many of our precision values are higher than 90% (with B2 and 

B3 reaching 89.6% and 88.6% for VSB only, respectively). These results illustrate that most of 

the identified ROs are correctly classified as correct, RS or VSB by the presented method. 

 
Detection of RS only Detection of VSB only 

Correct ROs after RS and 

VSB elimination 

P R P R P R 
B1 92.7 90.2 90.6 92.4 90.2 97.0 

B2 95.2 91.2 89.6 90.6 95.5 96.0 

B3 91.4 90.2 88.6 93.2 93.3 92.6 

Table 6.4: Precision and recall values in percent on detecting RS, VSB and correct ROs. P and R denote 

precision and recall. 

 
Ground 

truth 
PM_RSVSB PM_GTC 

Wang et al. 

[2019c] 

Wilson and Snavely 

[2014]  

Zach et al. 

[2010] 

B1 1089 1171 1846 1303 1569 1684 

B2 1935 1946 5066 1918 5391 5839 

B3 3202 3178 4776 3278 3690 4349 

PM_RSVSB = The presented method for detecting outlier ROs due to RS and VSB (see Section 3.2.2 and 3.2.3);  

PM_GTC = The presented method for detecting outlier ROs using the general triplet compatibility check (see 

Section 3.2.1);  

These two abbreviations are used in subsequent tables, figures and contexts as well. 

Table 6.5: Comparison of the number of selected ROs from different methods. 

 PM_RSVSB PM_GTC Wang et al. [2019c] 
Wilson and 

Snavely [2014]  
Zach et al. [2010] 

 P R P R P R P R P R 
B1 90.2 97.0 56.4 95.2 81.4 97.4 65.2 94.2 59.8 92.2 

B2 95.5 96.0 40.2 98.7 93.8 93.0 37.3 98.6 35.3 98.7 

B3 93.3 92.6 66.5 99.1 91.3 93.5 81.9 95.2 73.1 98.8 

Table 6.6: Comparison of precision and recall value in percent of different methods. P and R denote 

precision and recall; the best values are highlighted. 

To further investigate the presented RS and VSB ROs elimination method, the results of 

PM_GTC (denoted as the proposed method only using the general triplet compatibility check), 

Wang et al. [2019c], Wilson and Snavely [2014] and Zach et al. [2010] are compared. Among 

these methods, Wang et al. [2019c] suggested the same criteria as this thesis introduced for 

detecting RS and VSB ROs, but for different datasets various settings of free parameters have to 

be selected in advance for good results (note that here the results of Wang et al. [2019c] with 

individually refined free parameters are presented), Wilson and Snavely [2014] detected RO 

outliers by inspecting the geometric inconsistencies of the relative translations, [Zach et al, 2010] 
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presented a method which adopted the loop consistency constraint to infer the invalid ROs. Table 

6.5 shows that the number of selected ROs for Wang et al. [2019c] and the PM_RSVSB (denoted 

as the proposed method by detecting and eliminating RO outliers due to both RS and VSB) are the 

two smallest ones (and closest to the ground truth values from Table 5.4); this is also illustrated 

by Figure 6.8 in which the overlap graphs of PM_RSVSB and Wang et al. [2019c] are filled with 

less black pixels than those of the other methods, more RO outliers are eliminated by these two 

methods. Based on the ground truth ROs, the precision and recall values are estimated (by 

employing Equation 5.1), as Table 6.6 shows. It can be seen that the recall values of all methods 

are higher than 90%, which means they are all able to detect most of the correct ROs, whereas the 

PM_RSVSB clearly outperforms the others in terms of precision. 

Some additional experiments on six public datasets with highly repetitive structure, namely the 

Temple of Heaven (ToH), Indoor (Ind.), Stadium (Sta.), Street (Str.), CAB and Capitole (see Table 

5.1) are reported as well, for which Figure 5.3 shows some sample images. Table 6.7 contains for 

each dataset the largest number (Ne) of connected images after exhaustive pairwise image 

matching and filtering by the 5-point algorithm and RANSAC, the corresponding number of ROs 

after filtering Np, and the number of ROs attributed as correct by each of the five methods. 

 Ne Np 

Number of correct ROs 

PM_RS PM_GTC 
Wang et al. 

[2019c] 

Wilson and 

Snavely [2014]  

Zach et al. 

[2010] 

ToH 341 56429 2658 48507 2387 48540 34195 

Sta. 156 1733 972 1368 1092 1338 728 

Ind. 152 4740 816 4059 1064 3449 3380 

Str. 175 5171 1163 3832 1225 4089 4544 

Capitole 99 3177 1197 2798 693 1764 2731 

CAB 312 10486 2907 4095 2184 4773 6150 

PM_RS = The presented method for only detecting outlier ROs due to RS (see Section 3.2.2), as these datasets do 

not include a critical configuration of VSB; 

Table 6.7: Comparison of the number of ROs from different methods. 

 
Figure 6.8: Overlap graphs of the three benchmark datasets from different methods. The second column 

is the RO ground truth, where green pixels denote correct ROs, red pixels are RS ROs and blue pixels 

denote VSB ROs. In the following five columns, black pixels indicate that the corresponding ROs are 

kept and white pixels represent non-overlapping image pairs. 
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Taking Figure 6.9 and Table 6.7 into consideration, it is found that after the application of the 

5-point algorithm each dataset has a very redundant number of ROs, and incorrect ROs survived 

due to RS. The third column of Figure 6.9 shows the nRSij graph. Specifically, the nRSij value is 

estimated for each RO by transforming the results of Equation (3.2) into the interval [0,1] (by linear 

normalization) for each dataset individually. The brighter a pixel is, the larger is the corresponding 

nRSij and, thus, the higher is the probability that the image pair does not overlap. By investigating 

the results shown in Figure 6.9, it can be seen that most of the image pairs corresponding to the 

darker pixels in the third column are kept by PM_RS (the presented method for only detecting RO 

outliers due to RS) and Wang et al. [2019c], whereas, many pairs related to brighter pixels are still 

considered as correct using the other three methods. When analysing the numbers in Table 6.7, it 

can be seen that PM_RS and Wang et al. [2019c] generally eliminate more ROs than the other 

three methods (this can also be observed by inspecting Figure 6.9: PM_RS and Wang et al. [2019c] 

result in a clearly thinner overlap graph). Also, the number of ROs selected by Wang et al. [2019c] 

is always 7 times the corresponding value of Ne (this is a design feature of Wang et al. [2019c]). 

As a consequence, if fewer correct ROs exist, Wang et al. [2019c] could probably generate 

incorrect reconstruction results. The self-adapting strategy for parameter selection introduced in 

PM_RS and the different selection criterion employed in this thesis (see Equation (3.3)) overcome 

this problem. 

Analysing the performance of PM_GTC, PM_RSVSB and PM_RS, PM_GTC shows good 

capability on the ordered and unordered internet datasets, whereas, it shows very limited success 

for datasets containing RO outliers due to RS and VSB. Note that the investigations of these public 

datasets are limited to the direct inspection of ROs and constitute a rather a qualitative evaluation 

(this is due to the absence of ground truth). The corresponding benefits on the results of global 

image orientation are explored in the following section and in Section 6.2.3. 

 
Figure 6.9: Overlap graph of the six public datasets obtained with the different methods. The second 

column is the overlap graph from the input ROs, black pixels indicate that the corresponding ROs are 

available. This is also true for the last five columns. The third column is the normalized nRSij graph. 
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Validation of the improved robustness on image orientation 

Two further tests are conducted to validate the improved robustness of image orientation results 

using the refined ROs: influence on global rotation estimation results and influence on the 

reconstructed object point. 

Influence on global rotation estimation results. Three different datasets from ordered internet 

(Lejonet), unordered internet (Piazza del Popolo) and problematic dataset (B3) are tested, for 

which the ground truth rotations of Lejonet and Piazza del Popolo are provided by the publisher 

and the results of Wang and Heipke [2020] is adopted as ground truth for B3. The performance of 

the global rotation estimation method [Chatterjee and Govindu, 2013] introduced in Section 4.2 is 

evaluated by comparing the mean rotation errors of using and not using the proposed robustifying 

ROs methods. Figure 6.10 shows the convergence behavior of these three datasets, where both 

Lejonet and Piazza del Popolo employ the PM_GTC, and B3 uses the PM_RSVSB. 

The yellow curves in Figure 6.10 imply that the original version of Chatterjee and Govindu 

[2013] can indeed improve the initial rotations. The first five iterations (using L1RA) reduce the 

mean rotation error and provide a good initialization for the subsequent IRLS estimator. 

Nevertheless, after refining the input ROs by the proposed method to increase the robustness of 

the ROs, several explicit improvements can be seen: First, the initializations obtained by the 

random MST (Minimum spanning tree) become better. The reason is most probably that the 

random MST is less contaminated by RO outliers after the robustification method is applied. 

Especially, for Piazza del Popolo and B3 which are very likely to contain blunders of ROs, the 

mean rotation errors of the initialization are decreased by a factor between 2 and 5. Second, both 

the number of iterations necessary for the estimation to converge and the final mean rotation error 

are highly improved. Without using the proposed method, 22, 20 and 14 iterations are needed for 

convergence on these three datasets respectively, whereas only 12, 10, and 7 iterations are 

necessary after employing the proposed method. The final mean rotation errors are reduced by 1.5, 

4.6 and 7.5 degrees, respectively. This can be explained by the fact that the improved initialization 

is efficient for the algorithm L1RA-IRLS (cf. Algorithm 4.3) in terms of the final solution and the 

necessary number of iterations. Comparing the runtime listed in Table 6.8, it can be observed that 

   
(a)  Lejonet                                   (b) Piazza del Popolo                                     (c) B3 

Figure 6.10: Convergence rate with respect to the iteration number. 
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the overall runtime, and also the average time per iteration, is improved. This behavior is mainly 

reflected by the procedures of L1RA and IRLS: the runtime for each corresponding iteration is 

reduced, which is due to the fact that the number of input ROs becomes smaller after eliminating 

outlier ROs, which in turn leads to a smaller coefficient matrix when executing L1RA and IRLS 

(see Algorithm 4.1 and 4.2). 

 
With proposed method Without proposed method 

Ne L1RA IRLS Total Ne L1RA IRLS Total 

Lejonet 368 10.7(2.14) 4.7(0.67) 15.4(1.28) 368 32.5(6.50) 37.3(2.19) 69.8(3.63) 

Piazza del Popolo 335 3.3(0.66) 2.1(0.42) 5.4(0.54) 348 6.5(1.30) 22.5(1.50) 29.0(1.45) 

B3 342 11.3(2.26) 1.4(0.70) 12.7(1.81) 342 25.7(5.14) 21.6(2.40) 47.3(3.15) 

Table 6.8: Runtime in seconds for convergence. The numbers in brackets are the average runtime per 

iteration. 

As a consequence, the proposed ROs robustification methods can indeed positively affect the 

global rotation estimation method of Chatterjee and Govindu [2013] with respect to both the 

quality of the final optimal solution and the convergence rate (in particular, the number of iteration 

and runtime of each iteration are reduced). 

Influence on the reconstructed object point. To further demonstrate the advantage of increasing 

the robustness of ROs, the dataset facade provided by Schöps et al. [2017] is tested, for which the 

ground truth of interior and exterior parameters and the point cloud are provided. To evaluate the 

number of accurately reconstructed object points, the ground truth interior and exterior orientation 

parameters are first adopted to calculate the coordinates of all the generated object points, such 

that the calculated object points are given in the same coordinate system as the ground truth the 

point cloud. Then, a 3D similarity transformation (see Appendix C) is applied to transform the 

generated object points to the coordinate system of the ground truth point cloud. The idea of 

Schöps et al. [2017] is employed to evaluate the estimated results3: The authors register the input 

point cloud to the ground truth point cloud and analyse two criteria, “accuracy” and 

“completeness”. “accuracy” is defined as the fraction of reconstructed points which are located 

within a distance to the ground truth points smaller than a certain threshold. “completeness” is 

defined as the amount of ground truth points for which the distance to the registered points is below 

a threshold, where the distance threshold is called “tolerance”. This thesis only discusses the 

metric “accuracy”, because dense matching is not considered to be part of this work, only sparse 

point clouds are generated, which makes the evaluation of “completeness” meaningless. Sparse 

point clouds are sufficient for the task of image orientation, so that “accuracy” is sufficient to carry 

out the evaluation in this context. 

                                                 
3  The corresponding project can be accessed via https://github.com/ETH3D/multi-view-evaluation and datasets 

including images and point clouds can be downloaded via https://www.eth3d.net/datasets 

https://github.com/ETH3D/multi-view-evaluation
https://www.eth3d.net/datasets
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Nop 

Tolerance (in meters) 

0.05 0.1 0.2 0.5 

Accuracy Nx Accuracy Nx Accuracy Nx Accuracy Nx 

Without PM_GTC 90300 38.1% 34407 70.0% 63200 94.9% 85731 99.1% 89487 

With PM_GTC 79432 57.1% 45316 81.4% 64672 95.2% 78862 99.3% 79432 

Table 6.9: Evaluation on façade using different workflows. Nop is the number of object points that are 

triangulated by the corresponding workflow. Nx is the number of reconstruction points within the distance 

threshold. 

Figure. 6.11 shows the visualized evaluation results of the global image orientation workflows 

(without PM_GTC and with PM_GTC), where the “tolerance” is set to 0.05m, 0.1m, 0.2m and 

0.5m. Analysing Figure 6.11 together with Table 6.9, it is found that more object points are 

triangulated without using PM_GTC because more conjugate points corresponding to the related 

image pairs can be utilized to generate object points. It can be further seen that using PM_GTC 

improves the results, as more green points are visible and the obtained accuracy is higher. When 

 
Figure 6.11: Visualization of facade evaluation results. Green points have a position error within the 

corresponding tolerance value, for red points the position error exceeds the tolerance value, blue points 

denote that the points cannot be observed by the ground truth point cloud under the corresponding 

tolerance value by using the method of Schöps et al [2017]. 
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the tolerance value is altered to 0.2m and 0.5m, as Table 6.9 shows, Nx is larger for Without 

PM_GTC. This is mainly due to the fact that the total number of reconstructed object points Nop is 

larger, containing many noisy points, from which some object points are kept using a relatively 

high tolerance of 0.2m or 0.5m. Although Nx is higher, the “accuracy” is lower. Comparing these 

two workflows, the one enhanced by the proposed ROs robustification procedure performs better. 

In the case that the tolerance is equal to 0.05m and 0.1m, it provides a larger number of accurate 

tie points with higher “accuracy”, while only a smaller number of inaccurate points is kept when 

the tolerance is set to 0.2m or 0.5m. 

Summary 

The performance and efficacy of the proposed methods to increase the robustness of ROs are 

demonstrated in the previous evaluation experiments. Furthermore, it is also shown that these 

methods have a positive influence on the image orientation results. Therefore, all the subsequent 

image orientation experiments are conducted using the relevant ROs robustification methods (see 

Table 5.1 for the relevant experimental objectives of different datasets). 

6.2 Evaluation of global image orientation 

The previous sections are dedicated to the evaluation of the proposed pre-processing methods. The 

general behaviour of finding mutual overlapping image pairs and increasing the robustness of ROs 

were investigated. In this section, based on the input generated by the proposed pre-processing, 

the analysis of the global image orientation results is presented. As it has already been stated in 

Section 5.2, to comprehensively demonstrate that the objective of this thesis can be successfully 

achieved, various datasets are employed.  

For the sake of clarity, the following is structured as: Section 6.2.1 discusses the evaluations on 

ordered datasets. A set of quasi-oblique aerial images (oblique dataset see Table 5.1) are first tested 

and the evaluation of image orientation results on 2D image and 3D object space are respectively 

studied. In addition, a set of ordered datasets from the internet are oriented. In particular, the 

translation accuracy and the runtime are studied by comparing them with several state-of-the-art 

global image orientation methods, in particular, two of them are Wang et al. [2019a] and Wang et 

al. [2021] which were developed by the same author of this thesis, another one is Cui and Tan 

[2015]. This is followed by an analogous study on unordered internet datasets in Section 6.2.2, in 

which the translation accuracy and the runtime are again inspected. Finally, the image orientation 

results on various problematic datasets are shown in Section 6.2.3, for which an extensive 

qualitative analysis combined with a quantitative evaluation is provided. 

6.2.1 Ordered datasets 

Two categories of ordered datasets are reported in this section: an oblique dataset and internet 

datasets. 
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Oblique dataset 

Table 6.10: Precision assessment (in pixels). RMS(x), RMS(y), and RMS are the RMS (root mean square) 

of reprojection error of the 115 red cross targets (as Figure 5.7 shows) in horizontal and vertical direction 

and Euclidean residual, respectively. 

Table 6.11: Accuracy assessment (in mm). CH1, CH2, and CH3 are the corresponding check bars shown 

by Figure 5.7. 

 
without bundle adjustment with bundle adjustment 

PM_GTC_IO (I) (II) PM_GTC_IO (I) (II) 

RMSE (X) 1.81 1.47 1.36 0.56 0.56 0.56 

RMSE (Y) 5.60 5.36 5.48 0.65 0.65 0.65 

RMSE (Z) 1.80 1.96 1.66 0.40 0.44 0.39 

RMSE (O) 1.17 1.17 1.07 0.09 0.09 0.09 

RMSE (P) 1.34 1.34 1.02 0.14 0.14 0.14 

RMSE (K) 1.40 1.40 1.08 0.25 0.25 0.25 

Table 6.12: Relative accuracy assessment. Taking the exterior orientation results of Özdemir et al. [2019] 

as a reference, RMSE (X), (Y) and (Z) are the root mean square error of translation parameters (mm), 

RMSE (O), (P) and (K) are the root mean square error of three rotation angles (degrees), O, P and K 

denote Omega, Phi, Kappa, respectively. The best results are highlighted. 

Tables 6.10, 6.11 and 6.12 present the image orientation evaluation criteria on the quasi-oblique 

aerial images which were explained in Section 5.4.21. As it can be seen by inspecting these three 

tables, before carrying out bundle adjustment, the root mean square (RMS) value of the 

reprojection error generated by the proposed method PM_GTC_IO (the proposed global image 

orientation using the general triplet compatibility check to robustify the input ROs) is around 4.8 

pixels (Table 6.10), and the accuracies of the check bars in object space are about 0.8 to 1.8 mm 

(Table 6.11) which correspond approximately to the GSD ranging from 0.13mm to 0.27mm for 

                                                 
1  The investigated methods are part of a public image orientation contest (more information is available on 

http://3dom.fbk.eu/3domcity-task-1-results). The evaluation is only compared to those of other participants. More 

details of these investigated methods have been introduced in section 2.4.3 and 2.5. 

 without bundle adjustment with bundle adjustment 

Reference PM_GTC_IO (I) (II) Reference PM_GTC (I) (II) 

RMS(x) - 2.35 2.23 2.20 0.14 0.13 0.13 0.13 

RMS(y) - 3.44 3.62 3.43 0.15 0.14 0.14 0.14 

RMS - 4.78 4.59 4.47 0.20 0.19 0.19 0.19 

(I) = Wang et al. [2019a] with L1 norm; 

(II) = Wang et al. [2021]; 

PM_GTC_IO = The proposed global image orientation using the input of PM_GTC. 

 ‘-’ = the corresponding results are not accessible; 

These symbols are used in the following tables and discussions as well. 

Reference = Özdemir et al. [2019]; 

 without bundle adjustment with bundle adjustment 

Reference PM_GTC_IO (I) (II) Reference PM_GTC (I) (II) 

CH1 - 0.91 0.92 0.94 0.03 0.08 0.08 0.09 

CH2 - 1.59 1.73 1.45 0.11 0.15 0.15 0.15 

CH3 - 0.85 0.79 0.82 0.03 0.07 0.06 0.05 

http://3dom.fbk.eu/3domcity-task-1-results
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oblique images and 0.12mm for nadir views. The corresponding relative accuracy for exterior 

orientation parameters before bundle adjustment (Table 6.12) shows the translation error ranges 

from 1.4mm to 5 mm and the three rotation angle errors are approximately 1.3 degrees. 

PM_GTC_IO and (I) (indicating the method of Wang et al. [2019a]) have the same rotation error 

because the same method, Chatterjee and Govindu [2013], is applied to provide global rotation 

solution. (II) (indicating the method of Wang et al. [2021]) is slightly better than the other two 

methods on these criteria, because (II) benefits from the fact that only a subset of the best triplets 

(just enough to connect all images) is considered, and the corresponding ROs within the selected 

triplets used as inputs are more robust with respect to the triplet compatibility. A qualitative 

comparison can be seen in Figure 6.12 in which the exposure positions of images are illustrated. 

All methods generally produce initial values for bundle adjustment that are approximately 

coincident with the reference (see Figure 6.13 (a)). However, the exposure positions of (II) are 

visually closer to the reference which is consistent with the results shown in Tables 6.10-6.12. 

After bundle adjustment, almost the same precision is achieved by all three methods. This in 

turn implies that all of these methods can be employed as a tool for providing a reliable 

initialization for the final bundle adjustment and almost the same optimal solution is achieved. 

Figure 6.13 (b) and (c) are the visualization of final reconstruction results from two different 

perspectives (after bundle adjustment) using PM_GTC_IO. 

   
(a)                                                  (b)                                                        (c) 

Figure 6.12: Visualization of exposure positions before bundle adjustment. (a) is the result of 

PM_GTC_IO. (b) and (c) are the results of (I) and (II), respectively. 

   
(a)                                                  (b)                                                        (c) 

Figure 6.13: Visualization of the result after bundle adjustment. (a) is the exposure positions from the 

provided reference. (b) and (c) are the reconstruction results of PM_GTC_IO observed from two various 

perspectives. 
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Internet datasets 

Name 
Without BA With BA 

PM_GTC_IO (I) (II) Incre. PM_GTC_IO (I) (II) 

Porta 1.055 1.236 0.743 0.063 0.075 0.107 0.074 

CouCha 1.103 1.056 1.342 0.095 0.106 0.125 0.105 

Gbg 0.461 0.714 0.481 0.066 0.081 0.088 0.069 

Pumpkin 0.861 1.123 1.313 0.061 0.077 0.079 0.079 

SriMar 0.536 0.753 0.521 0.025 0.060 0.073 0.059 

Fapalace 0.156 0.352 0.291 0.036 0.046 0.056 0.047 

Ystad 0.789 0.951 0.566 0.051 0.077 0.093 0.078 

Buddah 1.667 1.891 1.091 0.781 0.767 0.779 0.740 

Kingscollege 0.863 1.135 0.991 0.185 0.121 0.147 0.126 

Lejonet 2.334 3.341 1.913 0.344 0.331 0.347 0.328 

UWO 0.761 1.059 0.934 0.079 0.082 0.088 0.080 

Orebro 0.777 1.234 1.189 0.051 0.045 0.050 0.045 

Spilled 1.120 1.534 1.743 0.108 0.105 0.134 0.103 

Ahus 3.256 3.753 3.941 0.291 0.316 0.345 0.307 

SanMarc 1.112 1.591 0.593 0.077 0.092 0.093 0.092 

Duomo 1.056 1.444 1.346 0.120 0.120 0.151 0.145 

Incre. = The incremental image orientation method of Wang et al. [2018]. This abbreviation is also used in the following tables. 

Table 6.13: Translation evaluation on ordered internet datasets. The mean translation error of the various 

methods is listed, which is given in a random unit defined up to an unknown similarity transform2. The best 

results in each row are highlighted. 

In this section, the abovementioned global image orientation methods are compared using the 

ordered internet datasets (see Table 5.1) and the translation errors before and after applying the 

bundle adjustment are discussed. Furthermore, to demonstrate the advantage of the global image 

orientation method’s time efficiency, an incremental image orientation method (Wang et al. 

[2018]) is included for comparison, obviously, it is only feasible to analyze the results after bundle 

adjustment, because images are sequentially oriented and results without any refinement of bundle 

adjustment, in principle, cannot be obtained.  Detailed quantitative results are shown in Table 6.13. 

From the results without bundle adjustment, all three methods initialize the exterior orientations 

with small differences which can be attributed to the relatively good input ROs, as all these datasets 

were captured by professionals (Olsson and Enqvist [2011) using a camera of relatively good 

quality (the initial intrinsic parameter from EXIF file is relatively accurate) and a suitable overlap 

degree among images was taken into account during image capture. Even so, the proposed 

PM_GTC_IO method is generally better than (II) in estimating translations (only a few datasets 

are worse, and with just a very small margin), while (I) is the worst. In 9 out of 16 datasets, the 

best results are obtained by PM_GTC_IO, however, (II) is superior on the other 6 datasets, (I) 

delivers the best solution only for one dataset. This can be explained by the fact that the proposed 

method applies the general ROs robustification method considering both rotation and translation 

triplet capability, and (II) only employs a subset of some best triplets, however, only rotation triplet 

                                                 
2 The datasets together with the references are available at 

http://www.maths.lth.se/matematiklth/personal/calle/dataset/dataset.html. The reconstruction results provided by the 

authors (Olsson and Enqvist [2011]) are considered as references. These results are all provided with random units 

which are related to a specific coordinate system up to an unknown similarity transformation. Rescaling, rotating or 

translating the reconstruction does not change the reprojections. Therefore, it makes sense to measure the quality of 

the orientation result by the distance between the corresponding solution and the reference.  

http://www.maths.lth.se/matematiklth/personal/calle/dataset/dataset.html
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capability is utilized in (I) and many tie points are selected to connect all images for solving 

translations, outliers in these selected tie points can negatively affect the solution. After the 

refinement by bundle adjustment, as Table 6.13 illustrates, all translation accuracies from the 

various methods are improved. In general, superior results can be observed for the incremental 

method, because incremental methods are supposed to be more robust and outliers are recursively 

handled when iteratively adding new images and running bundle adjustment. In addition, similar 

to the corresponding results on the oblique dataset, there are no clear differences among these three 

global image orientation methods. This indicates that they are all able to provide a reliable 

initialization which makes the final bundle adjustment converge to a similar optimal solution. The 

qualitative visualizations of the ordered internet datasets are shown in Figure 6.14, in which the 

figure showing the blue trajectory denotes the exposure positions computed by the proposed 

method PM_GTC_IO without bundle adjustment, and the figure with red dots and colorful 

triangles is the corresponding refined reconstruction result after bundle adjustment. 

Name 
Incre. PM_GTC_IO (I) (II) 

Nr T∑ Nr To TBA T∑ Nr To TBA T∑ Nr To TBA T∑ 

Porta 141 396 141 37 99 136 141 187 112 299 141 20 93 118 

CouCha 176 535 176 25 175 200 176 63 177 240 176 25 185 210 

Gbg 179 636 179 78 90 168 179 67 84 151 179 25 96 121 

Pumpkin 209 753 209 199 124 323 209 178 158 336 209 44 112 156 

SriMar 222 1622 222 38 154 192 222 79 144 223 222 45 163 208 

Fapalace 281 1736 275 138 188 326 281 346 171 517 281 52 201 253 

Ystad 290 2133 290 179 254 433 290 321 193 514 290 59 233 292 

Buddah 322 1985 322 225 200 425 322 478 256 734 322 70 182 252 

Kingscollege 355 3145 355 207 170 377 355 433 195 628 355 79 156 235 

Lejonet 368 3466 368 256 169 427 368 567 212 779 368 85 169 254 

UWO 692 9074 688 561 395 956 692 954 432 1386 692 134 369 503 

Orebro 763 13423 763 726 351 1077 763 1159 444 1603 763 188 333 521 

Spilled 781 14891 780 742 439 1181 781 1334 476 1810 781 172 414 586 

Ahus 805 15116 801 736 444 1180 805 1064 774 1838 805 246 399 645 

SanMarc 1499 19921 1466 840 523 1363 1479 1442 601 2043 1499 297 533 830 

Duomo 1805 26314 1793 1000 783 1783 1796 1857 813 2670 1805 376 763 1139 

Table 6.14: Runtime in seconds for ordered internet datasets by using different methods. Nr is the number 

of orientated images. To is the time for image orientation, TBA denotes the runtime for bundle adjustment. 

T∑ indicates the total runtime. The fastest approach in each row is highlighted. 

Table 6.14 lists the runtime for completing the image orientation task on ordered internet 

datasets. Again, all four methods were tested on the same hardware (a quad-core processor (3.2 

GHz Inter (R) Core (TM)i5-6500, 32G memory) with eight threads available in total). Although 

the incremental method gives the best image orientation results, it is the slowest by a factor of 

around 2 to 20 (depending on the size of datasets). Carrying out investigations among the global 

methods, their performance with respect to the runtime is within the same order of magnitude. 

However, some notable findings can be summarized: first, (II) is generally the most time-efficient 

solution and (I) is the slowest one, which is mainly due to the runtime required to solve the initial 

image orientation (see the related To column of Table 6.14). (II) solves the initialization based on 

a subset of minimal best connected triplets and the exterior orientation parameters (rotations and 

translations) are calculated synchronously. On the other hand, (I) solves a large linear equation 
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system which estimates every image translation and the necessary selected tie points 

simultaneously. Furthermore, the L1 norm is applied for a robust estimation which is not as fast as 

the L2 norm. In this thesis, all remaining ROs are used to solve the unknown translations, it is thus 

inferior to (II), on the other hand, no tie point coordinates need to be solved and the L2 norm is 

applied as well, therefore the proposed PM_GTC_IO is faster than (I). Second, the number of 

recovered images varies for different methods: while the incremental method and (II) typically 

solve all the images, PM_GTC_IO and (I) orient slightly less images. This is because some images 

that are not well connected to the photogrammetric block are excluded by the triplet compatibility 

check. Specifically, PM_GTC_IO excludes more images than (I) as both rotation and translation 

compatibility constraints are considered by PM_GTC_IO and (I) only employs the rotation 

compatibility constraint. For the incremental method, the ROs after epipolar geometric validation 

are directly inserted to image orientation (see relevant numbers in Table 6.2); as for (II), the 

completeness of the photogrammetric block is inherently guaranteed when dealing with triplet 

selections. 

  
Duomo                                                                       Orebro   

      

SanMarc                                                                       Ahus

           
Pumpkin                                                                       Lejonet     
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Buddah                                                                       gbg    

                

Fapalace                                                                       Ystad          

       
Porta                                                                      SriMar          

       

CouCha                                                                       UWO

                
Kingscollege                                                                       Spilled 

Figure 6.14: Visualization of the results for ordered internet datasets. The blue trajectory in the left part 

per dataset denotes the exposure positions computed by the proposed method PM_GTC_IO without 

bundle adjustment, and the figure with red dots and colorful triangles is the corresponding refined 

reconstruction result after bundle adjustment 
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Summary 

Based on the described results of ordered datasets, it can be observed that the incremental method 

normally performs best, but it costs much more time to carry out the image orientation task. 

Nevertheless, a fairly similar accuracy can be achieved using global methods (after bundle 

adjustment) which is 2 to 20 times faster. Comparing the proposed PM_GTC_IO and (II), it is 

found that (II) is generally faster than PM_GTC_IO without large discrepancies with respect to 

the translation error ((II) is also better on some datasets), therefore (II) seems to diminish the 

significance of this thesis. Yet, the proposed method shows good results on a dataset which (II) 

fails to deal with. This dataset, namely campus (provided by Cui and Tan [2015]), is made up of 

1040 images which form a very large closed loop. From Figure 6.15(a), it can be seen that (II) 

produces a very distinct drift, resulting from the fact that all image pose parameters are estimated 

by hierarchically traversing the selected connected triplets. The error from the similarity 

transformation between two connected triplets is recursively accumulated during the traversing 

procedure, thus, the estimated initial image pose parameters are too far away from the global 

optimum. Consequently, even after bundle adjustment the drift is only reduced but not eliminated. 

In contrast, the disconnection of the initial loop in PM_GTC_IO is very small. Moreover, the 

reconstruction visually result shows a closed loop after bundle adjustment. This is mainly due to 

the fact that all eligible relative orientations are applied for solving exterior orientation parameters 

and errors are evenly distributed on every estimated image pose, which also means that the loop 

closure constraint is implicitly considered by this manner. This inherent characteristic can be more 

explicitly demonstrated on the following unordered datasets, as loops would be inadvertently 

formed if images were taken in an arbitrary way (any two images are possible to overlap). 

6.2.2 Unordered datasets 

Analogous to ordered internet datasets, a similar numerical evaluation on unordered internet 

datasets is carried out and shown in Table 6.15. The reference results3 are generated by using 

Bundler [Snavely et al., 2006], as this strategy is widely used by many other global SfM methods. 

The evaluation of (III) [Cui and Tan, 2015], which also employs information of relative 

translations and tie points, is directly cited from the corresponding paper, while the others are self-

implemented on the same machine. Before bundle adjustment, the proposed PM_GTC_IO 

                                                 
3 See more information at http://www.cs.cornell.edu/projects/1dsfm/ 

(a)                                                                                (b) 

Figure 6.15: Visualization of image orientation results of campus. (a) is the result of (II). (b) is the result 

of the proposed PM_GTC_IO, the blue trajectories denote the exposure positions before bundle 

adjustment. The red ellipses denote the visual drifts. 

http://www.cs.cornell.edu/projects/1dsfm/
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performs best on most (10 of 14) datasets, (II) and (III) are better on just two and three of them, 

respectively. Investigating the results of (I), it can be seen that this method is the worst. The reason 

for this is basically identical to the one on the previously discussed ordered internet datasets, but 

with a few particular factors relating to unordered internet datasets: the selected tie points have a 

higher chance (compared to ordered internet datasets) to be contaminated by spurious matches and 

the initial stereo pair (which can have a significant influence on the quality of the orientation result) 

might not be well selected due to the fact that complex stereo configurations exist in unordered 

internet datasets. On the other hand, the impact of the implicitly considered loop closure 

constraints is revealed on these unordered datasets, which allows the proposed method to typically 

outperform (II). Note also, that (I) and (II) failed to deal with Piccadily because of the limitation 

of the used machine in terms of main memory. The proposed method can, however, bypass this 

limitation. After the bundle adjustment, it is again found that the incremental method generates the 

best translations on most datasets. However, the three self-implemented global methods obtain a 

similar performance which in turn implies that the final bundle adjustment finds comparable 

optimal solutions using the initialization from these three global methods. Lastly, via inspecting 

(III), before bundle adjustment the accuracy differences between (III) and the proposed method 

are small, whereas, after bundle adjustment PM_GTC_IO is better than (III) and some results of 

(III) become even worse. The reason is probably that the presented robust bundle adjustment used 

here is more efficient than the one employed by (III). Visualizations of the unordered internet 

dataset reconstruction results are shown in Figure 6.16. 

Name 
Without BA With  BA 

PM_GTC_IO (I) (II) (III) Incre. PM_GTC_IO (I) (II) (III) 

Ellis_Island 1.9 4.6 10.7 5.5 0.8 1.1 1.3 2.1 4.2 

Piazza del Popolo 2.1 5.4 7.4 2.7 2.1 1.8 2.5 2.6 2.5 

NYC Library 1.6 2.0 2.6 1.9 0.9 1.4 1.3 1.0 1.6 

Metropolis 7.4 9.8 11.6 10.6 2.2 2.1 2.6 2.2 16.6 

York Minster 3.2 5.9 6.1 5.7 2.1 2.9 3.6 1.9 14.2 

Montreal ND 1.1 1.9 1.5 0.7 0.5 0.9 0.9 0.6 1.1 

Tower of London 9.6 12.4 11.7 11.2 1.6 2.0 4.0 3.1 12.5 

Notre Dame 1.7 2.9 1.3 0.6 0.7 1.4 1.6 0.3 1.0 

Alamo 0.7 1.4 2.6 2.0 0.3 0.5 0.5 0.6 3.1 

Gendarmenmark 20.3 25.1 25.5 27.7 9.3 12.4 12.9 12.4 27.3 

Vienna Cathedral 3.9 7.6 6.2 5.9 2.6 3.1 3.9 4.2 4.9 

Union Square 6.4 7.1 6.4 12.7 3.9 4.4 4.4 4.3 11.7 

Roman Forum 10.2 11.3 9.3 9.4 6.1 2.9 5.8 5.5 10.1 

Piccadily 4.1 - - 2.5 1.9 2.1 - - 2.2 

(III) = Cui and Tan [2015], this item is used in the following tables and contents. 

“-” = The corresponding results are not available.  

Table 6.15: Translation evaluation on unordered internet datasets. The mean translation errors (in meters) 

of various methods are provided. The best results in each row are highlighted. 

Table 6.16 provides the individual runtimes of the unordered internet datasets evaluated. Note 

that the runtime of Cui and Tan [2015] is in fact not directly comparable because of the different 

hardware that was used to obtain these numbers. However, it is still interesting to see how large 

the gap is between the proposed method and the state-of-the-art method4 regarding time efficiency.  

                                                 
4 Cui and Tan [2015] ran their experiments on a machine with two 2.3 GHz Intel Xeon E5-2650 processor with 16 

threads enabled. 
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From Table 6.16, (III) performs faster on 8 of 14 datasets. Most of them benefit from the lower 

time the bundle adjustment needed (it is worth to mention that four out of these eight datasets have 

worse translation accuracy after bundle adjustment than before); PM_GTC_IO and (II) run fastest 

on three other datasets each. To allow for a fair comparison, only the self-implemented methods 

are studied in more detail, as they are run on the same machine. In general, all global methods are 

always faster than the incremental method, normally around 10-20 times depending on the specific 

dataset. The reduced runtime mainly results from the computationally expensive intermediate 

bundle adjustment that is carried out by the incremental method. PM_GTC_IO and (II) are 

superior to (I), and (II) is faster than PM_GTC_IO on 8 of 14 unordered datasets. In addition, 

approximately the same number of images are solved, but (II) solves slightly more. These 

observations are basically consistent with the ones on the results of ordered internet datasets shown 

in Table 6.14. 

Name 
Incre. PM_GTC_IO (I) (II) (III) 

Nr T∑ Nr To TBA T∑ Nr To TBA T∑ Nr To TBA T∑ TBA T∑ 

Ellis_Island 219 1556 221 30 85 115 219 73 101 174 223 41 95 136 169 208 

Piazza del Popolo 300 3116 304 24 188 212 299 91 189 280 309 64 139 203 147 194 

NYC Library 293 3046 305 20 184 204 310 86 176 262 311 62 136 198 171 213 

Metropolis 284 2314 296 15 242 257 290 81 227 308 306 63 185 248 25 60 

York Minster 386 4751 381 35 538 573 377 142 574 716 388 89 405 494 611 663 

Montreal ND 431 6136 427 75 493 568 427 182 469 651 433 98 396 494 613 648 

Tower of London 407 5966 404 36 342 360 414 102 366 468 421 81 350 431 503 563 

Notre Dame 529 9364 519 230 884 1114 520 277 871 1148 539 134 856 990 461 552 

Alamo 522 7801 532 124 253 359 526 244 321 566 535 120 244 364 481 578 

Gendarmenmark 488 3321 472 30 344 374 477 92 374 466 477 103 393 496 131 214 

Vienna Cathedral 722 14331 736 169 884 1053 713 394 834 1228 736 169 754 903 440 582 

Union Square 691 7421 704 124 233 357 689 166 338 504 726 173 282 455 47 92 

Raman Forum 934 19752 973 160 1294 1454 964 311 1313 1624 994 268 984 1252 339 491 

Piccadily 1913 27064 1856 1226 1029 2255 - - - - - - - - 1053 1480 

Table 6.16: Runtime in seconds for unordered internet datasets. Nr is the number of orientated images. (III) 

is directly cited from the paper Cui and Tan [2015]. To is the time for image orientation, TBA denotes the 

runtime for bundle adjustment. T∑ indicates the total runtime. The fastest approach in each row is 

highlighted. 

            Montreal Notre Dame                              Notre Dame                                         Alamo 
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                 Piccadily                                                                            Gendarmenmarkt

 
                    Tower of London                                   York Minster                                          Piazza del Popolo

Metropolis                              Vienna Cathedral                                  Ellis Island 

Figure 6.16: Visualization of the results for nine of the internet datasets. 
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6.2.3 Problematic datasets 

Benchmark with RS and VSB ROs 

To investigate how RS and VSB ROs affect the proposed global image orientation method and to 

demonstrate that the elimination of wrong ROs is beneficial to improve the reconstruction results, 

based on the benchmarks with RS and VSB ROs, validation experiments are conducted using five 

pipelines with different sets of ROs as input (the ROs generated from different pipelines are fed 

into the proposed global method for image orientation): the manually generated ground truths ROs, 

the presented RS and VSB RO elimination method together with BPVD RO identification (these 

two are indicated by “GT_IO” and “PM_RSVSB_IO”, respectively, in the following content and 

figures), no ROs elimination, only RS elimination, and only VSB elimination with BPVD RO 

identification, which are denoted as “PM_Noclean_IO”, “PM_RS_IO” and 

“PM_VSBBPVD_IO”, respectively. Figure 6.17 visualizes the reconstruction results (Note that 

ground truth reconstruction results are not available.). Images from google maps show the 

individual scene and the footprints of these buildings are highlighted by green lines. Not 

surprisingly, using the ground truth ROs, the proposed GT_IO can produce reconstruction results 

which are consistent with the footprint images (this again demonstrates the effectiveness of the 

specific proposed global image orientation method). Comparing “PM_RSVSB_IO” to “GT_IO”, 

it can be found that there are no visual drifts between them which implies that the ROs selected by 

the proposed methods are mostly correct. Investigating the results of “PM_RSVSB_IO” and of the 

other three experiments further, it becomes obvious that only the proposed method yields correct 

results, as artefacts were generated by the other three methods (shown in the ellipses). Reminding 

that, although BPVD ROs identification was conducted on these three benchmarks, there exist in 

fact no BPVD ROs in these three benchmarks and none of the detected VSB ROs were identified 

as BPVD ROs. It can be concluded that both, RS and VSB ROs have a negative effect on the 

presented global image orientation method. Thus, it is necessary to eliminate both types of errors. 

 
Figure 6.17: Visualization of reconstruction results from the five different pipelines. The footprint images 

were downloaded from google maps (green lines highlight the footprint of the buildings). Ellipses denote 

visual artefacts. 
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The visualizations of the reconstruction results in Figure 6.17 are only shown for a qualitative 

comparison, a related numerical analysis is further provided. Figure 6.18 shows the reprojection 

error distribution of the three benchmarks from the five different pipelines. According to the 

comparison, there are only very small discrepancies between GT_IO and PM_RSVSB_IO which 

can also be indirectly implied from Figure 6.17. Nearly 90% of the reprojection errors are within 

one pixel for GT_IO and PM_RSVSB_IO, and the maximum reprojection errors lie between 3 and 

4 pixels, whereas for the other three pipelines, there are much fewer reprojection errors smaller 

than one pixel and significantly more between 1 pixel and 4 pixels. The maximum reprojection 

errors are larger than 10 pixels in most cases. Therefore, eliminating incorrect ROs by the 

suggested method does significantly improve the robustness of the presented global image 

orientation method. 

Figure 6.19 shows a visualization of the reconstruction results obtained by using the ROs 

considered to be correct by different methods of the literatures, for which the results of detected 

overlap graphs are shown in Figure 6.8 in Section 6.1.2, also, the presented global image 

orientation method is applied; Artefacts, depicted as ellipses, are again visible in the results of 

Zach et al. [2010], Wilson and Snavely [2014] and PM_GTC_IO. It can be concluded that the 

proposed RO elimination method generates the best results. 

     
         (a) B1                                                           (b) B2                                                       (c) B3 

Figure 6.18. Reprojection error distribution of five different pipelines on the three benchmarks. 

 
Figure 6.19: Visualization of reconstruction results on three benchmarks from different methods. 
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Figure 6.20 again shows the distribution of the reprojection errors obtained with the different 

methods on these three benchmarks. PM_RSVSB_IO and Wang et al. [2019c] yield very similar 

results, approximately 90% of the errors are again below one pixel and the maximum residuals are 

smaller than 5 pixels. The reprojection error distributions of Zach et al. [2010], Wilson and Snavely 

[2014] and PM_GTC_IO are again wider, reprojection errors larger than 8 pixels exist in all 

benchmarks, and the proportions of reprojection errors smaller than one pixel are much lower than 

those of PM_RSVSB_IO and Wang et al. [2019c]. 

Comparing the results of PM_RSVSB_IO and Wang et al. [2019c] shown in Figures 6.19 and 

6.20, it can be concluded that the performances of these two methods on these three benchmarks 

is very similar. It is interesting to note, however, that Wang et al. [2019c] selected a set of 

individual free parameters for each benchmark dataset to obtain the reported results (as mentioned, 

these individual parameters are used for the results reported here). These free parameters are rather 

difficult to determine in advance, and the results of Wang et al. [2019c] are sensitive to their 

choice. In contrast, PM_RSVSB_IO does not have such difficulty and adopts a self-adapting 

strategy for parameter selection when dealing with RO outliers due to RS and VSB. 

Public datasets with high degree of RS 

The public datasets with a high degree of RS are also assessed. Again no ground truth for the 

ROs is provided for these datasets to independently validate the quality of the detected correct 

ROs. Similar to the evaluation of the previous sections, different sets of ROs are inserted into the 

suggested global image orientation pipeline. First, a comparison of PM_RS_IO, Zach et al. [2010], 

Wilson and Snavely [2014] and PM_GTC_IO is discussed for ToH, Sta., Ind. and Str. 

Visualizations of the reconstruction results are shown in Figure 6.21, the ellipses denote artefacts. 

Th reconstruction results of Wang et al. [2019c] are visually identical with those of PM_RS_IO. 

For ToH, only a part of the temple is reconstructed by Zach et al. [2010], Wilson and Snavely 

[2014] and PM_GTC_IO. Probably due to the RS ROs in the Str. dataset, which results in an 

overlap graph with a pair of wings as shown in Figure 6.9, Zach et al. [2010], Wilson and Snavely 

[2014] and PM_GTC_IO all generated a folded reconstruction. As for Ind., many images are 

incorrectly oriented by Zach et al. [2010], Wilson and Snavely [2014] and PM_GTC_IO, so that 

these three methods again produce a folded reconstruction result. The reconstruction result of Sta. 

by Zach et al. [2010] does not keep a consistent block, and it has the lowest number of ROs (728); 

     
         (a) B1                                                           (b) B2                                                       (c) B3 

Figure 6.20: Reprojection error distribution of different methods on the three benchmarks. 
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the circular stadium is also not closed by Wilson and Snavely [2014] or by PM_GTC_IO. In 

contrast to the other methods, PM_RS_IO does not show any visual artefact on these four datasets. 

This proves the capability of the proposed method to detect RS ROs and to consequently deliver 

correct reconstruction results. 

To further underline the conclusions from Figure 6.21, it is necessary to again show the 

reprojection error distribution for these four datasets (see Figure 6.22). Form this figure the same 

conclusions can be drawn as from Figure 6.20. 

As it has already been mentioned, the strategy to select correct ROs by Wang et al. [2019c] 

might fail on some datasets due to the fixed number of selected ROs, being seven times the number 

of connected images after filtering. To explore this issue further, two additional datasets, namely, 

Capitole and CAB, are tested. Figure 6.23 shows the reconstruction results of these two datasets 

with ROs from different methods. Analogously to the results shown in Figure 6.21, Zach et al. 

[2010], Wilson and Snavely [2014] and PM_GTC_IO generate different artefacts as the ellipses 

indicate. Wang et al. [2019c] do improve the reconstruction results, as the artefacts are smaller, 

which is also illustrated by the reprojection error distribution shown in Figure 6.24. However, a 

comparison of the reconstruction results of PM_RS_IO and Wang et al. [2019c] reveals that the 

 
Figure 6.21: Visualization of reconstruction results on four public datasets from PM_RS_IO, 

PM_GTC_IO, Wang et al. [2019], Wilson and Snavely [2014] and Zach et al. [2010]. 

     
         (a) ToH                                      (b) Sta                                      (c) Ind.                                    (d) Str. 

Figure 6.22: Reprojection error distribution on ToH, Sta, Ind. and Str. compared with other methods. 
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suggested self-adapting method performs better than the one proposed by Wang et al. [2019c] (see 

Figures 6.23 and 6.24). 

For a better analysis of these two reconstruction results, the reprojection error distributions of 

Capitole and CAB from different methods are shown in Figure 6.24. These results reveal that in 

90% of the cases, the reprojection error of PM_RS_IO is less than one pixel, and the rest of them 

are spread over the ranges of 1-2, 2-3, 3-4 pixels. For the three other methods of Zach et al. [2010], 

Wilson and Snavely [2014] and PM_GTC_IO, in contrast, a much smaller percentage of 

reprojection errors are smaller than one pixel and residuals with larger values (e.g., 3-4, 4-5, 5-6 

pixels) make up a relatively high percentage. Coming to Wang et al. [2019c], Figures 6.24 (a) and 

(b) imply that PM_RS_IO outperforms this approach, because more reprojection errors are 

assigned to ranges of smaller values. 

In summary, based on these public datasets with highly repetitive structure, it turns out that 

PM_RS_IO provides the best reconstruction results compared to the other methods, i.e., Wang et 

al. [2019c], Zach et al. [2010], Wilson and Snavely [2014] and PM_GTC_IO. 

Datasets with BPVD 

To investigate the presented method on identifying correct BPVD ROs and the strategy of 

selecting robust correspondences from these correct BPVD image pairs, this section reports the 

results on four BPVD datasets; some sample images are shown in Figure 5.4. For these close-range 

 
Figure 6.23: Visualization of reconstruction results on Capitole and CAB from PM_RS_IO, 

PM_GTC_IO,  Wang et al. [2019c], Wilson and Snavely [2014] and Zach et al. [2010]. 

              
(a) Capitole                                                                             (b) CAB 

Figure 6.24: Reprojection error distribution of Capitole and CAB compared with other methods. 
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datasets, two different scenarios are considered, namely, outdoor and indoor scenes, CR1 is the 

outdoor image set capturing images of a building’s facades and CR2 is the indoor image set taken 

along a narrow corridor. The outdoor scenes were captured using a UAV - first some images of a 

built-up area were taken from various flying heights, then, images of a planar grassland patch were 

captured. Since there is no repetitive structure in these datasets, the function for eliminating RS 

ROs is turned off. 

Similar to the experiments mentioned before, the suggested global image orientation method is 

used for recovering the image poses and the coordinates of object points, the results are shown in 

Figure 6.25. To demonstrate the proposed method’s performance on BPVD datasets, the 

reconstruction results of the proposed global image orientation method without any ROs blunder 

detection (denote as PM_IO) and with BPVD ROs processing (denote as PM_BPVD_IO) are 

compared. From Figure 6.25, it can be seen that in the PM_IO case all four BPVD datasets 

generated different visual artefacts shown by the solid ellipses. PM_BPVD_IO generates a better 

result, specifically, it does not generate so many object points somewhere in the air for CR1, no 

motion drift happens in CR2, and the generated object point cloud does not show a somewhat 

convex shape for the two UAV image sets. To improve the robustness of the suggested global 

image orientation method, many object points around the viewing direction (close to the principal 

points in image space) are eliminated before reconstruction as the dashed ellipses illustrate, this is 

due to the employed correspondence selection strategy described in Section 3.2.4. Note that the 

photogrammetric block does not contain any image if only the VSB criterion is used, because all 

image pairs of BPVD will be eliminated as RO outliers due to VSB (the corresponding 

reconstruction result is not shown here, because there is no reconstruction at all). 

Figure 6.26 provides numerical results for the self-generated BPVD datasets. Analyzing Figure 

6.26 (a) and (b) it can be seen that the proposed method to increase the robustness of ROs has a 

 
Figure 6.25: Visualization of reconstruction results on BPVD datasets. Dashed ellipses denote areas 

which are near the viewing direction, solid ellipses indicate visual artefacts. 
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positive influence on the presented global image orientation method. In detail, for all four BPVD 

datasets more than 90% of the reprojection errors are smaller than 1 pixel and the maximum 

residuals are all below 5 pixels (except for CR2 where it is below 6 pixels). 

Challenging dataset and Complex dataset 

To further explore the potential of the proposed methods, two further datasets, namely, Quad 

[Crandall et al., 2011] and Church [Michelini and Mayer, 2020], are evaluated. Quad is denoted 

as challenging dataset because many global image orientation methods failed to deal with it due 

to RS (see the corresponding sample image in Figure 5.5) and image pairs with critical geometric 

configuration such as VSB. The complexity of Church results from the image configurations 

including wide baselines as well as terrestrial and UAV images with significantly different viewing 

direction. In addition, also blunder ROs due to both RS and critical configurations of VSB and 

BPVD exist in this dataset. 

              
(a) PM_BPVD_IO                                                                        (b) PM_IO 

Figure 6.26: Reprojection error distribution of self-generated BPVD datasets. 

 
Figure 6.27: Visualization of reconstruction results of Quad for different methods. Red dashed ellipses 

denote areas where some images are missing. Green solid ellipses depict visual artefacts. 
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First, the performance on the Quad dataset is inspected using various methods, with Figure 6.27 

visualizing the corresponding reconstruction results. Wang et al. [2019c] was implemented with 

two sets of free parameters provided by the authors (Setting 1 is adjusted to generate a better result 

for Quad, while Setting 2 is the default setting). Compared to the ground truth of the reconstruction 

[Crandall et al., 2011], the suggested PM_RSVSB_IO obtains the most reasonable result. Setting 

1 of Wang et al. [2019c] loses some images (as the dashed ellipses show). Lots of visual artefacts 

occur in the results of Setting 2 of Wang et al. [2019c]. Similar results were obtained for the 

original ROs without any robustification and for ROs after the outlier elimination using the general 

rotation and translation triplet compatibility check. This particularly illustrates the difficulties of 

this dataset. 

 

 

 
Figure 6.28: Visualization of reconstruction results of Church using various pipelines. For each pipeline, 

two pictures from different perspectives are shown. Red dashed ellipses denote areas where some images 

are missing. Green solid ellipses depict artefacts. 
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 Nr 
Number of object 

points 
σ0 (in pixels) 

Runtime of image 

orientation (in seconds) 

Iterations of final bundle 

adjustment 

Michelini and Mayer [2020] / 290748 0.55 396 / 

Colmap 1444 550962 0.97 16762 5 

Wang et al. [2021] 1420 440962 0.42 1334 11 

PM_RSVSB_IO 1405 542635 0.46 1663 13 

PM_GTC_IO - - - - No convergence 

Table 6.17: Comparison of Church from different pipelines. σ0 is the mean reprojection error. The results 

of Colmap5 (Schönberger and Frahm, 2016), Wang et al. [2021], PM_RSVSB_IO and PM_GTC_IO were 

executed on the same machine as previous experiments used, namely, a  quad-core processor (3.2 GHz 

Inter (R) Core (TM)i5-6500, 32G memory) and eight threads in total. The result of Michelini and Mayer 

[2020] is directly cited from their paper, which was generated on a machine of 2×Intel® Xeon® E5-2643 

v3 (6 cores, 3.40 GHz). The best result in each column appears in bold. “/” means the corresponding item 

is not available. “-” means that the corresponding item is not provided due to the non-converged refinement 

of bundle adjustment.   

Next, the reconstruction results of the complex dataset (Church) are reported. As no reference 

is available, a relatively coarse quantitative comparison together with a qualitative evaluation are 

given only and shown in Table 6.17 and Figure 6.28: Compared with Colmap, the number of 

reconstructed object points and orientated images is slightly lower for the proposed 

PM_RSVSB_IO. However, this method performs much better than Colmap with a lower mean 

reprojection error and an accelerated runtime (10.2 times faster). Inspecting the performance of 

Wang et al. [2021] in comparison to PM_RSVSB_IO, less time is used to generate a better 

(regarding the mean reprojection error) but sparser reconstruction. Figure 6.28 shows 

reconstruction results of these four pipelines, assuming the reconstruction of Colmap to be the 

reference as 1444 out of 1455 images are solved. Both the presented PM_RSVSB_IO and Wang 

et al. [2021] can reconstruct the church as a whole, yet, some images are missing in the results of 

PM_RSVSB_IO as the red dash ellipses indicate. As it has already been clarified, the general ROs 

elimination method using the triplet compatibility constraints cannot cope with RS and VSB ROs, 

this leads to that the bundle adjustment dose not converge when using the initial image orientation 

parameters estimated by the PM_GTC_IO method (therefore, the qualitative and quantitative 

results are not shown). In particular, the iteration number of bundle adjustment in PM_GTC_IO 

exceeds the maximum threshold (50 times) while the bundle adjustment of other two global 

methods converge after about a dozen iterations (11 iterations for Wang et al. [2021] and 13 

iterations for PM_RSVSB_IO). Compared to Michelini and Mayer [2020], the most attractive 

virtue of the proposed PM_RSVSB_IO pipeline is that up to 250,000 object points are additionally 

reconstructed with an even smaller mean reprojection error. However, the method of Michelini 

and Mayer [2020] outperforms the other approaches with respect to time efficiency (4.2 times 

faster than PM_RSVSB_IO), which is mainly caused by two factors: first, the significantly lower 

number of object points reduces the runtime of the bundle adjustment; second, parallelization is 

utilized on a more powerful machine (2 × Intel® Xeon® E5-2643 v3 (6 cores, 3.40 GHz)) by them. 

                                                 
5 The package is available at https://colmap.github.io, Version 3.2, the corresponding default settings are applied. 

https://colmap.github.io/
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6.3 Synthesis 

The presented methods are thoroughly assessed by the comprehensively conducted experiments 

that are described in the previous subsections. In this section, the most remarkable findings of 

these experiments are synthesized. 

6.3.1 Preprocessing steps 

In this thesis, preprocessing concentrates on solving two main issues regarding time efficient 

image matching and robustification of the input ROs. 

Time efficient image matching 

To demonstrate the performance of the presented fast image matching approach, two types of 

datasets consisting of ordered and unordered internet datasets are tested, which are considered to 

be representative. Based on the exhaustive pairwise image matching, a relevant efficacy of over 

90 percent precision and over 50 percent recall after epipolar geometric validation can be achieved 

around 3 to 44 times faster using the proposed method. Compared with the method VocMatch, 

approximately the same runtime is achieved, while reaching a higher precision and recall. 

Robustification of the input ROs 

The effectiveness of the ROs robustification method is illustrated, while validating the general 

blunder ROs elimination method checking the triplet compatibility on Lejonet (ordered internet 

dataset) and Piazza del Popolo (unordered internet dataset). It is shown that the most of remaining 

ROs are correct and that most of the eliminated ROs are indeed incorrect. In addition, three 

benchmarks with ground truths ROs are employed to evaluate the proposed method’s capability 

of dealing with RS and VSB ROs: more than 90 percent of the detected ROs are correct and more 

than 90 percent of the truly correct ROs are detected as well. Furthermore, the corresponding 

experimental results reveal that using the ROs robustification method improves the convergence 

behavior of the global rotation estimation method [Chatterjee and Govindu, 2013] with respect to 

the convergence speed and to the accuracy of the final solution. Finally, also less inaccurate object 

points are produced after increasing the robustness of the ROs. 

6.3.2 Global image orientation 

The quality of the estimations resulting from global image orientation are highly dependent on the 

inputs generated by preprocessing steps. In order to evaluate the accomplishment of the research 

objectives described in Chapter 1, various datasets are orientated and evaluated. Employing 

ordered and unordered datasets using different methods, the incremental method shows superior 

results with respect to accuracy, while the proposed global image orientation method reaches 
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almost the same level of accuracy after bundle adjustment, while typically being 2-20 times faster. 

The translation accuracy before and after bundle adjustment are studied, implying that the 

proposed method does not reach the same level of accuracy that is achieved after bundle 

adjustment. However, this method yields a good initialization for bundle adjustment. In addition, 

extensive experiments on abundant problematic datasets are conducted. Combined evaluations 

consisting of quantitative and qualitative results show that the proposed global image orientation 

method including the proposed ROs robustification method can provide a robust and reliable 

reconstruction result for most scenarios. 
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7 Conclusion and Outlook 

This chapter closes the presented thesis and draws conclusions from the presented methods and 

the corresponding experiments with respect to the pursued objective. Moreover, several promising 

directions for potential future works are outlined. 

The main research goal of this work is to develop a novel method for determining accurate 

exterior orientation parameters in a fast and robust manner. This goal was achieved by two 

continuous lines of research: preprocessing consisting of time efficient image matching and ROs 

robustification, and global image orientation consisting of global rotation and translation 

estimation. ‘Fast’ was approached by accelerating the procedure of image matching and image 

orientation which are typically the two most time-consuming steps. ‘Robust’ was addressed by the 

detection and elimination of RO outliers and the used robust bundle adjustment. 

Preprocessing steps can be treated as tools for yielding accurate inputs for the subsequent image 

orientation. Two main issues were addressed at this stage: image matching and handling outliers 

in ROs: 

1. First, a method based on random k-d forest was developed for fast seeking mutual overlapping 

image pairs. In particular, features from all images were employed to build several k-d trees 

that were supposed to be as independent to each other as possible. Similarity degree values 

among potential pairs were then estimated for identifying mutual overlapping pairs. Without 

any prior information, time efficiency is improved by only conducting image matching and 

epipolar geometry validation on these determined overlapping image pairs.  According to the 

tests on dozens of ordered and unordered internet datasets, the efficacy is discussed by 

considering the results of exhaustive pairwise image matching as reference. After epipolar 

geometry computation, the precisions and recalls are nearly all over 90 and 50 percent, 

respectively, on both unordered and ordered internet datasets. These values have been shown 

to be good enough for executing image orientation. Furthermore, the time efficiency is 

improved by a factor ranging from 2 to 41 times depending on the size of the specific dataset. 

2. Second, in order to improve the robustness of image orientation, approaches for the 

robustification of ROs were presented. Other than verifying the geometric relationships 

between image pairs, a general method was proposed by checking the compatibility among 

triplets. For this purpose, two different compatibility measures were estimated using relative 

rotations and relative translations. It was shown that the remaining ROs were indeed less 

contaminated by RO outliers regarding to the relative rotation and translation error. In addition, 

a method was designed to cope with wrong ROs resulting from repetitive structure (RS) and 

very short baselines (VSB). Criteria for these two cases were introduced based on the number 
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of conjugate points in overlapping pairs and on the magnitude of the intersection angle during 

triangulation. As the latter criterion is sensitive to pairs with a long enough baseline 

approximately parallel to the viewing direction, a new criterion was presented accordingly. 

The corresponding performance was quantitatively and qualitatively demonstrated on various 

datasets, and the positive influences on the global rotation estimation method [Chatterjee and 

Govindu, 2013] and on the reconstructed object points were further shown. 

In this thesis, a two-step global image orientation method consisting of global rotation 

estimation and global translation estimation is advocated. As ample research has been published 

on solving global rotations from pairwise relative rotations, this thesis concentrates on determining 

global translations. To make this work more self-contained, the global rotation estimation method 

by Chatterjee and Govindu [2013] was nevertheless presented. It was shown that the presented 

ROs robustification method can improve the approach of Chatterjee and Govindu [2013] with 

respect to both the accuracy of the solution and the convergence rate. In addition, a new method 

that can simultaneously estimate translations for all available images was proposed. In this context, 

globally consistent scale factors for every remaining relative translation were computed using the 

depth of tie points from individual local spatial intersection. The corresponding global translations 

were then determined by averaging these scaled relative translations. Finally, these estimated 

initial values were refined by the introduced robust bundle adjustment. 

The performance of global image orientation was thoroughly demonstrated on various datasets: 

the reconstruction results of ordered and unordered datasets were compared with one conventional 

incremental SfM method and several state-of-the-art global SfM methods. Compared to the 

incremental method, approximately the same accuracy was achieved by the presented global 

method, while the runtime was reduced by a factor around 10 – 20. All the investigated global 

image orientation methods achieved nearly the same accuracy and time efficiency, whereas, the 

proposed global method was superior when dealing with unordered datasets. To further prove that 

the presented ROs robustification method is beneficial for the presented global image orientation 

method, various problematic datasets were tested. Datasets containing challenging cases of 

repetitive structure (RS), very short baselines (VSB) and baseline parallel to the viewing direction 

(BPVD) were reconstructed using the global image orientation method and the uncontaminated 

ROs generated by various methods. The results show that the proposed method integrated with the 

corresponding proposed RO robustification method clearly produces the best reconstruction result. 

To further explore the presented approaches’ potentials, one challenging dataset (6514 images) 

and one complex dataset (1455 images) were tested, in addition. The proposed method was able 

to reconstruct both datasets with very good results. 

There are several future directions which can be followed up to further improve the present 

approaches. 

First, threshold investigation. In this thesis, the implemented thresholds as introduced in Table 

5.1 were empirically selected without fully detailed trials. Although the empirical selection was 

demonstrated to be efficient on all experimental datasets, future efforts could be paid on this issue 

to try to learn better settings via testing more different threshold settings and datasets. For example, 
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from the presented qualitative and quantitative results, the reconstruction as a whole could be 

generally recovered while few images were still missing which may lead to a broken model.  

Second, gauge definition. Since all the relevant problems stated in this thesis are still in the 

frame of a free network, the gauge definition issue exists in both global rotation estimation and 

global translation estimation, i.e., the first image was normally selected to have a 3×3 identity 

rotation matrix and a zero vector for translation. However, this may not be an optimal choice, for 

example, the risk of a degenerated solutions is increased if the first image is weekly connected to 

the photogrammetry block. As Wilson et al. [2016] suggested, one possible way which deserves 

further research is that an image with more connected images should have a higher priority to 

define the gauge. 

Finally, bundle adjustment. While bundle adjustment is not part of the contribution of this work, 

bundle adjustment is always the most time-consuming procedure in estimating orientation 

parameters. Thus, several extensions can be carried out to further accelerate this procedure. First, 

tie point selection. Typically, bundle adjustment refines all the generated tie points which are 

usually noisy and redundant. Thus, it might be interesting to only select a minimal set of best tie 

points. Such an approach could extremely reduce the computational burden of bundle adjustment, 

because the number of tie points is normally much larger than the number of images. Second, 

applying GPU techniques. Applying graphic hardware GPU on bundle adjustment is not a very 

recent idea, since it was first implemented by Wu et al. [2011]. In this work, the preconditioned 

conjugate gradients were integrated with the GPU to quickly solve a very large linear equation 

system, but, this approach is limited due to the missing information of the solution’s uncertainty. 

Third, distributed strategies. In order to efficiently conduct the optimization task for a very large 

dataset, the large bundle adjustment optimization can be distributed into various subtasks and be 

carried out on communicating branch machines (such as, Zhang et al. [2017] and Mayer [2019]), 

whereas the final result is synthesized by a master machine. 

In summary, the expected objectives of this thesis have been successfully met. Starting from 

the obtained features, the proposed method can be treated as a black box for extracting the 

corresponding image orientation parameters. According to the comprehensively reported 

experiments, this black box is applicable to fast and robustly orient image datasets and yet can be 

further updated by using a more reasonable threshold setting and gauge definition, or via a more 

advanced bundle adjustment pipeline. 
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Appendix 

A. Proposition for very short baselines 

The elements of the relative rotation matrix R can be accurately estimated from the essential 

matrix, no matter how short the baseline length is.  

Proof. Inspired by the calculation of the essential matrix [Hartley and Zisserman, 2003], the 

correspondences are employed to obtain a solution of a 3×3 matrix L. 

𝒙𝑗
𝑇L𝒙𝑖

 =0 ⇔ (𝒙𝑖
𝑇⊗𝒙𝑗

𝑇 ) vec(L) = 0                                             (A.1) 

where ⊗ denotes the Kronecker product, 𝒙𝑖 and 𝒙𝑗 are the coordinates of all the correspondences 

from image i and j, vec(.) is the vectorization of a matrix. Besides this, it is also feasible to get a 

formula XP = XCi +𝜆𝑖𝑹𝒊𝒙𝒊 and XP = XCj +𝜆𝑗𝑹𝒋𝒙𝒋, where XP denotes coordinate vector of object 

point P and XCi, XCj are projection centers of image i and j in the object space. 𝜆𝑖 and 𝜆𝑗 are the 

corresponding scale factors, 𝑹𝒊 and 𝑹𝒋 are the corresponding rotations from image to object space.  

XP = XCi +𝜆𝑖𝑹𝒊𝒙𝒊 = XCj +𝜆𝑗𝑹𝒋𝒙𝒋                                               (A.2) 

This can be rewritten as 

𝒙𝒋 = 𝜆𝑖𝑗(𝑹𝒊𝒋 
 𝒙𝒊 + 𝑣𝑖𝒕𝒊𝒋)                                                        (A.3) 

𝜆𝑖𝑹𝒊𝒙𝒊 = XCj - XCi +𝜆𝑗𝑹𝒋𝒙𝒋                                                  (A.4) 

where 𝒕𝒊𝒋 = 𝑹𝑗
−1(XCi - XCj) is the baseline vector and 𝑹𝒊𝒋 = 𝑹𝑗

−1𝑹𝒊 is the relative rotation, 𝜆𝑖𝑗 =

𝜆𝑖/𝜆𝑗, 𝑣𝑖 = 1/𝜆𝑖.To take the relative rotation and translation into consideration, (A.1) is rewritten 

by using the mixed-product property of  ⊗ and equation (A.3), 

                                  (𝒙𝑖
𝑇⊗ (𝜆𝑖𝑗(𝑹𝒊𝒋 

 𝒙𝑖  +  𝒗𝑖𝒕𝒊𝒋)
𝑇 ) vec(L) = 0 

⇔ (𝒙𝑖
𝑇⊗ [𝒙𝑖

𝑇  𝒗𝑖 ]
 ) (I3⊗ [𝑹𝒊𝒋    𝒕𝒊𝒋]

𝑇)vec(L) = 0                                 (A.5) 

in which 𝜆𝑖𝑗 is eliminated as 𝜆𝑖𝑗 is always larger than 0, 𝒗𝑖 contains all the 𝑣𝑖  values from all the 

correspondences. 
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{
 
 

 
 
𝒙𝟏

𝑇⊗ [𝒙𝟏
𝑇  𝑣1 ]

 

𝒙𝟐
𝑇⊗ [𝒙𝟐

𝑇  𝑣2 ]
.
.

𝒙𝒎
𝑇⊗ [𝒙𝒎

𝑇  𝑣2 ]}
 
 

 
 

(I3⊗ [𝑹𝒊𝒋    𝒕𝒊𝒋]
𝑇) vec(L) = 0                               (A.6) 

Thus, equation (A.6) is obtained, where m is the number of correspondences. Then, U represents 

the parameter matrix and z representing the unknowns, namely 𝑹𝒊𝒋, 𝒕𝒊𝒋 and L 

U = 

{
 
 

 
 
𝒙𝟏

𝑇⊗ [𝒙𝟏
𝑇  𝑣1 ]

 

𝒙𝟐
𝑇⊗ [𝒙𝟐

𝑇  𝑣2 ]
.
.

𝒙𝒎
𝑇⊗ [𝒙𝒎

𝑇  𝑣2 ]}
 
 

 
 

,  z = (I3⊗ [𝑹𝒊𝒋    𝒕𝒊𝒋]
𝑇) vec(L)                          (A.7) 

Uz=0                                                                     (A.8) 

Via analyzing the U matrix and unfolding it, 

U＝

{
 
 

 
 
𝑥1
2      𝑥1𝑦1    𝑥1   𝑥1𝑣1    𝑦1𝑥1    𝑦1

2    𝑦1    𝑦1𝑣1     𝑥1 𝑦1  1  𝑣1 

𝑥2
2     𝑥2𝑦2    𝑥2   𝑥2𝑣2    𝑦2𝑥2    𝑦2

2    𝑦2    𝑦2𝑣2     𝑥2 𝑦2  1  𝑣2
.
.

𝑥𝑚
2  𝑥𝑚𝑦𝑚  𝑥𝑚 𝑥𝑚𝑣𝑚  𝑦𝑚𝑥𝑚  𝑦𝑚

2  𝑦𝑚  𝑦𝑚𝑣𝑚   𝑥𝑚 𝑦𝑚  1  𝑣𝑚 }
 
 

 
 

                 (A.9) 

It can be found that columns 2, 3 and 7 are equal to columns 5,9 and 10, so, rank(U)≤9. Therefore, 

when m≥9, the homogeneous equation (A.8) has three linearly independent basic solutions 

                                              𝜺𝟏 = (0  1  0  0 −1
  0  0  0    0    0  0  0 )  

   𝜺𝟐 = (0  0  1  0   0   0  0  0  −1
   0  0  0 )                                   (A.10) 

                                              𝜺𝟑 = (0  0  0  0   0   0 1   0    0 −1
 0  0 )   

Thus, the general solution space of z is 

z = (I3⊗ [𝑹𝒊𝒋    𝒕𝒊𝒋]
𝑇) vec(L) = (𝑘1𝜺𝟏+𝑘2𝜺𝟐+𝑘3𝜺𝟑)                                (A.11) 

in which 𝑘1, 𝑘2, 𝑘3 are all real numbers. According to (A.7), 

(I3⊗ [𝑹𝒊𝒋    𝒕𝒊𝒋]
𝑇) vec(L) = vec([𝑹𝒊𝒋    𝒕𝒊𝒋]𝑇𝑳)                                  (A.12) 

Substituting (A.12) in equations (A.11) yields 

[𝑹𝒊𝒋    𝒕𝒊𝒋]𝑇𝑳 = {
𝑹𝒊𝒋

𝑇𝑳

 𝒕𝒊𝒋
𝑇𝑳
}  =  {

0    −𝑘1  −𝑘2
𝑘1    0   −𝑘3
𝑘2    𝑘3     0
0      0      0

}                                      (A.13) 

Then, the relationships between 𝑹𝒊𝒋 and L, 𝒕𝒊𝒋 and L are formulated as  
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L = 𝑹𝒊𝒋 {

0  −𝑘1  −𝑘2
𝑘1    0   −𝑘3
𝑘2    𝑘3     0
0       0      0

} = 𝑹𝒊𝒋[𝒌]⨀，[𝒌]⨀ = {

0  −𝑘1  −𝑘2
𝑘1    0   −𝑘3
𝑘2    𝑘3     0
0       0      0

}                       (A.14) 

  𝒕𝒊𝒋
𝑇𝐿 = 0                                                               (A.15) 

and k = (𝑘1, −𝑘2, 𝑘3). (A.14) means that the solution L of (A.1) is the essential matrix [Hartley et 

al., 2013]. So, 𝑹𝒊𝒋 can be decomposed from L. From (A.14) and (A.15), when 𝒕𝒊𝒋 ≠ 0, 𝒕𝒊𝒋  =±𝑹𝒊𝒋𝒌 

and 𝑹𝒊𝒋 can be correctly estimated using SVD decomposition [Hartley and Zisserman, 2003]. For 

𝒕𝒊𝒋 = 0, it is clear that L has no relationship with 𝒕𝒊𝒋, and it is still related to 𝑹𝒊𝒋 and k. k can never 

be a zero vector which means 𝒕𝒊𝒋 is not related to k, because the solution z will be zero if k is a 

zero vector and this requires that the homogenous equation has a full rank which means Rank(U) 

= 12, and this can never happen. Therefore, 𝑹𝒊𝒋 can still be correctly estimated from L when 𝒕𝒊𝒋 = 

0, and the corresponding solution for 𝒕𝒊𝒋 is not the correct relative translation, but the k vector. 

B. Calculation of the discrepancy between relative 
orientation and ground truth exterior orientation 
parameters 

B.1 Discrepancy with respect to relative rotations  

Given one relative rotation �̂�𝒊𝒋
 
for images i and j, estimated by the decomposition of an essential 

matrix using the five-point method, and the corresponding ground truth global rotation 𝑹𝒊 and 𝑹𝒋, 

then, the discrepancy of relative rotation from the ground truth can be computed by  

𝛽 = (trace(�̂�𝒊𝒋
−𝟏
𝑹𝒊𝑹𝒋

−𝟏) –  1) /𝟐                                              (B.1)       

𝜃𝑟 =  arccos (𝛽) ∙  180/ 𝝅                                                      (B.2) 

where  𝛽  is the average value of the main diagonal elements of �̂�𝒊𝒋
−𝟏
𝑹𝒊𝑹𝒋

−𝟏  , and 𝜃𝑟  is the 

discrepancy value with respect to the relative rotations. 

B.2 Discrepancy with respect to relative translations  

As the length of a relative translation is normalized to 1 when decomposing the essential matrix, 

whereas, ground truth translation parameters are typically attributed with global scales, in the 

thesis, the corresponding discrepancy is computed as the intersection angle between the relative 

translation estimated from essential matrix and relative translation computed by the corresponding 

ground truth translation parameters. In principal, the more accurate the estimated relative 

translation is, the smaller should be this intersection angle. Given relative translation tij of the two 
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images i and j, and the corresponding ground truth global rotation 𝑹𝒊 and global translations Ci 

and Cj,  

�̌�𝑖𝑗= 𝑹𝒊(𝑪𝒋 − 𝑪𝒊)                                                    (B.3) 

Equation (B.3) computes the ground truth relative translations of images i and j; to obtain the 

corresponding discrepancy, the intersection angle is computed by equation (B.4) 

 𝜃𝑡 = arccos (𝒕𝒊𝒋 ∙ �̌�𝑖𝑗/(‖𝒕𝒊𝒋‖‖�̌�𝑖𝑗‖)) ∙  180/ 𝝅                      (B.4) 

and 𝜃𝑡 is the discrepancy value with respect to the relative translations. 

C. Calculation of the mean translation errors 

The image projection centres from ground truth are regarded as control points and the projection 

centres calculated by our method are transferred into the coordinate system of these control points 

using the following 3D similarity transformation [Horn et al., 1988]: 

( ) i id RC T , i=1,2,3…n                                                                                                              (C.1) 

where ⅆ𝑖 are the coordinates of the control points and Ci are the corresponding projection centre 

coordinates, n is the number of the control points. 𝜆 is the scale factor, R is a 3×3 rotation matrix 

and T is a three-dimensional translation vector. There are seven parameters to be estimated, namely 

one scale factor, three rotation angles for R and three translation parameters for T. One 

corresponding pair consisting of a control point and the corresponding projection centre yields 

three equations, so at least three point pairs are necessary to determine the seven unknowns. 

RANSAC is used to solve this problem and the solution that results in the smallest mean translation 

error is kept. In this thesis, 4096 RANSAC iterations are conducted. Three pairs of control points 

and the corresponding image projection centres are randomly selected. The centroids ⅆ𝑐 and Cc 

are calculated by equation (C.2),  

=( + + )/31 2 3d d d dc ,  =( + + )/3 c 1 2 3C C C C                                                                                               (C.2) 

where ⅆ1 , ⅆ2  and ⅆ3  are control points which are randomly chosen, C1, C2 and C3 are the 

corresponding projection centres. Using the centroids determines reduced coordinates ⅆ𝑐𝑖 and Cci 

for i= {1,2,3}: 

ⅆ𝑐𝑖 = ⅆ𝑖 − ⅆ𝑐  , =   ci i cC C -C                                                                               (C.3) 

Then, the scale λ is estimated using equation (C.4): 

= ( + + )/( + + )  c1 c2 c3 c1 c2 c3d d d C C C                                                                                      (C.4) 
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where ||.|| is the L2 norm. Using the resultant value of 𝜆, 𝑪𝑐𝑖, i= {1,2,3} are transferred, into a 

coordinate system which has the same scale as the one of the control points, see equation (C.5):  

 𝑪𝑠𝑐𝑖 = 𝜆𝑪𝑐𝑖.                                                                                 (C.5) 

To estimate the rotation matrix R and the translation T, equation (C.6) is optimized using least 

squares adjustment, 
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                                                           (C.6) 

because the term ⅆ𝑐 − 𝜆𝑹𝑪𝑐 − 𝜆𝑻 is constant, the centroid of 𝑪𝑐 can also be transferred to ⅆ𝑐 by 

(C.1) and 𝑹 
𝑻𝑹 =1. To minimize (C.6), the term 2ⅆ𝑐𝑖

𝑇 𝑹𝑪𝑠𝑐𝑖 must be maximized, which is equal to 

maximizing trace(RH), with H =∑ 𝑪𝑠𝑐𝑖ⅆ𝑐𝑖
𝑇3

i=1
. H is decomposed by SVD (singular value 

decomposition) into H = U𝜦𝑽 
𝑇. The diagonal entries of 𝜦 are the singular values of H; U and V 

contain the left-singular vectors and the right-singular vectors of H. Finally, R is equal to U𝑽 
𝑇, T= 

(ⅆ𝑐 − 𝜆𝑹𝑪𝑐)/𝜆.  Given the values of 𝜆, R and T, the error of each image projection centre with 

respect to the “ground truth” can be determined as, 

2
( )ie   i id RC T                                                                                                                        (C.7) 

where ⅆ𝑖 − 𝜆(𝑹𝑪𝑖 + 𝑻) is the translation error vector, it is normalized to obtain the position centre 

error 𝑒𝑖 by using the L2 norm. The mean position centre error �̅� is calculated by averaging these 

normalized position errors. 
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