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Abstract

Today, short- and long-term structural health monitoring (SHM) of bridge structures has received
considerable attention. However, permanent, cost-effective, and reliable monitoring are still chal-
lenging issues. From a surveying or civil engineer's point of view, vibration-based SHM is often
carried out by inspecting the changes in the dynamic responses of bridge structures known as modal
parameters, such as eigenfrequencies, eigenforms and modal damping.

The use of cost-effective micro-electro-mechanical-systems (MEMS) accelerometers with a high
sampling frequency is becoming more affordable and feasible for the aforementioned monitoring
task. Within this dissertation, a three-step scenario is proposed to choose a suitable MEMS ac-
celerometer despite of its purchase price, measurement range and sampling frequency. Firstly, a
robust calibration procedure is proposed and implemented to model MEMS related systematic
errors such as biases, scale factors, and non-orthogonality angles between the axes. Secondly, a
controlled excitation experiment is conducted by using a high-precision shaker. Thirdly, a static
test experiment is accomplished over a long period.

Robust, accurate, and automatic estimation of the modal parameters is particularly challenging
when vibration measurements are contaminated with a high coloured measurement noise, e.g., due
to cost-effective MEMS acceleration data. This is even more challenging when the structure is
continuously under imposed forces due to moving vehicles or wind. For this purpose, a robust and
automatic vibration analysis procedure the so–called robust time domain modal parameter identi-
fication (RT-MPI) approach is proposed and implemented. It is a novel approach in the sense of
automatic excitation (e.g. ambient) window selection, automatic and reliable identification of initial
eigenfrequencies even closely spaced ones as well as robustly and accurately estimating the modal
parameters. To estimate frequencies, damping ratio coefficients, amplitudes, and phase shifts, an
observation model consisting of a damped harmonic oscillation (DHO) model, an autoregressive
model of coloured measurement noise and a stochastic model in the form of the heavy-tailed fam-
ily of scaled t-distributions with unknown degree of freedom and scale factor, is employed. The
aforementioned three parametric models are jointly adjusted by means of a generalised expectation
maximisation (GEM) algorithm. The proposed RT-MPI algorithm is also able to estimate ampli-
tudes in a metric unit and with a high accuracy for the recorded acceleration data by means of
double integration of the DHO model. The eigenforms are characterised in a subsequent step, and
by using the estimated parameters from the GEM algorithm. In addition, having amplitudes in the
metric unit allows to characterise deflection eigenforms in their true scales for selected excitation
windows within short time intervals.

The deformation/displacement monitoring by merely using the MEMS accelerometer is challenging,
since it suffers from accuracy degradation with time for absolute position/displacement estimates.
Therefore, the MEMS accelerometers and an image-assisted total station (IATS) are fused by
performing one-dimensional (1D) coordinate update within the Kalman filtering framework. To
generate 1D displacement data from the IATS, video frames of a passive target, that is attached to
a bridge structure, are captured by means of a telescope camera of the IATS. A passive target cen-
troid detection algorithm is proposed and implemented, which is robust and reliable with respect
to poor environmental conditions, such as low lighting, dusty situations, and skewed angle targets.
Next, an angular conversion factor of the telescope camera is calibrated, which allows to convert
the generated displacement data from pixel to metric unit.
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Experiments are performed in four case studies including simulation, controlled excitation and two
real applications of a footbridge structure and a synthetic bridge. The estimated modal parameters
are compared and validated by their true values as well as their corresponding estimates obtained
from reference sensors such as reference accelerometer, geophone, and laser tracker. Additionally,
the estimated eigenfrequencies and damping ratio coefficients are compared with a well-known
covariance driven stochastic subspace identification (SSI-COV) approach. The results show that
the MEMS accelerometers are suitable for identifying all occurring eigenfrequencies of the bridge
structures. Moreover, the vibration analysis procedure demonstrates that amplitudes are estimated
in submillimetre range accuracy, frequencies with an accuracy of better than 0.1Hz and damping
ratio coefficients with an accuracy of better than 0.1 and 0.2% for modal and system damping,
respectively. The analysis reveals the superiority of the proposed RT-MPI algorithm compared to
the SSI-COV algorithm. Finally, a high accurate displacement time series at the level of submil-
limetre is generated by fusion of the IATS and the MEMS measurements.

Keywords: Vibration analysis, Deformation analysis, Modal parameters, MEMS accelerometer,
Image-assisted total station, Robust parameter estimation, Generalised expectation maximisation
algorithm, Kalman filter, Bridge monitoring



Zusammenfassung

Heute hat die kurz- und langfristige Überwachung des baulichen Zustands (Structural Health Mo-
nitoring, SHM) von Brückenkonstruktionen erhebliche Aufmerksamkeit erhalten. Eine permanente,
kosteneffiziente und zuverlässige Überwachung ist jedoch nach wie vor eine große Herausforderung.
Aus der Sicht eines Vermessungs- oder Bauingenieurs wird das schwingungsbasierte SHM häufig
durchgeführt, indem die Veränderungen in den dynamischen Reaktionen von Brückenkonstruktio-
nen untersucht werden, die als modale Parameter, wie Eigenfrequenzen, Eigenformen und modale
Dämpfung, bekannt sind.

Der Einsatz von kostengünstigen MEMS-Beschleunigungsmessern (Micro-Electro-Mechanical-
Systems) mit hoher Abtastfrequenz wird für die oben genannte Überwachungsaufgabe immer
realistischer und machbar. In dieser Arbeit wird ein dreistufiges Szenario vorgeschlagen, um
unter Berücksichtigung des Anschaffungspreises, des Messbereichs und der Abtastfrequenz einen
geeigneten MEMS-Beschleunigungsmesser auszuwählen. Erstens wird ein robustes Kalibrierver-
fahren vorgeschlagen und implementiert, um MEMS-bezogene systematische Fehler wie Offsets,
Skalierungsfaktoren und Nichtorthogonalitätswinkel zwischen den Achsen zu modellieren. Zweitens
wird ein kontrolliertes Anregungsexperiment unter Verwendung eines hochpräzisen Schwinger-
regers durchgeführt. Drittens wird ein statisches Testexperiment über einen langen Zeitraum
durchgeführt.

Eine robuste, genaue und automatische Schätzung der oben genannten modalen Parameter ist
besonders dann eine Herausforderung, wenn Schwingungsmessungen mit einem hohen farbigen
Messrauschen, z.B. aufgrund der kostengünstigen MEMS-Beschleunigungsdaten, überlagert sind.
Dies ist noch schwieriger, wenn die Struktur unter ständiger Einwirkung von Kräften durch sich
bewegende Fahrzeuge oder Wind steht. Zu diesem Zweck wird ein robustes und automatisches
Schwingungsanalyseverfahren vorgeschlagen und implementiert, d.h. ein so genannter robuster
Ansatz zur Identifizierung modaler Parameter im Zeitbereich (RT-MPI). Es ist ein neuartiger
Ansatz im Sinne der automatischen Auswahl des Anregungsfensters (Umgebungsfenster), der
automatischen und zuverlässigen Identifizierung der Näherungswerte für die Eigenfrequenzen,
selbst wenn diese nahe beieinander liegen, sowie der robusten und genauen Schätzung der modalen
Parameter. Zur Schätzung von Frequenzen, Dämpfungsverhältniskoeffizienten, Amplituden und
Phasenverschiebungen wird ein Beobachtungsmodell verwendet, das aus einem Modell der gedämpf-
ten harmonischen Schwingungen (DHO), einem autoregressiven Modell des farbigen Messrauschens
und einem stochastischen Modell in Form der skalierter t-Verteilungen mit unbekanntem Frei-
heitsgrad und Skalierungsfaktor besteht. Die drei vorgenannten parametrischen Modelle werden
gemeinsam mit einem verallgemeinerten Erwartungsmaximierungsalgorithmus (GEM) angepasst.
Der vorgeschlagene RT-MPI-Algorithmus ist in der Lage, Amplituden in metrischer Einheit und
mit hoher Genauigkeit für die aufgezeichneten Beschleunigungsdaten durch Doppelintegration des
DHO-Modells zu schätzen. Die Eigenformen werden in einem nachfolgenden Schritt und unter
Verwendung der geschätzten Parameter aus dem GEM-Algorithmus charakterisiert. Darüber
hinaus ermöglicht die Angabe der Amplituden in metrischer Einheit die Charakterisierung der
Eigenformen in ihren wahren Maßstäben für ein ausgewähltes Anregungsfenster innerhalb eines
kurzen Zeitintervalls.

Die Überwachung der Verformung/Verschiebung durch die bloße Verwendung des MEMS-
Beschleunigungssensors ist eine Herausforderung, da die Genauigkeit mit der Zeit für absolute
Positions-/Verschiebungsschätzungen abnimmt. Daher werden die MEMS-Beschleunigungsmesser
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und eine bildgestützte Totalstation (IATS) durch ein eindimensionales (1D) Koordinaten-Update
innerhalb des Kalman-Filters verschmolzen. Um 1D-Verschiebungsdaten aus dem IATS zu
generieren, werden Videobilder eines passiven Ziels, das an einer Brückenstruktur befestigt ist,
mit Hilfe der Teleskopkamera des IATS erfasst. Es wird ein Algorithmus zur Erkennung des
passiven Zielschwerpunkts vorgeschlagen und implementiert, der robust und zuverlässig in Bezug
auf schlechte Umgebungsbedingungen, wie z.B. schwache Beleuchtung, staubige Situationen und
schiefwinklige Ziele, ist. Als nächstes wird ein Winkelumrechnungsfaktor der Teleskopkamera
kalibriert, der es erlaubt, die erzeugten Verschiebungsdaten von Pixel in metrische Einheiten
umzurechnen.

Die Experimente werden in vier Fallstudien durchgeführt, darunter Simulation, kontrollierte
Anregung sowie zwei reale Anwendungen mit einer Fußgängerbrücke und einer synthetischen
Brücke. Die geschätzten modalen Parameter werden mit ihren wahren Werten sowie mit den ent-
sprechenden Schätzungen, die von Referenzsensoren wie Referenzbeschleunigungsmesser, Geophon,
und Lasertracker erhalten wurden, verglichen und validiert. Zusätzlich werden die geschätzten
Eigenfrequenzen und die Dämpfungskoeffizienten mit einem bekannten kovarianzgetriebenen
stochastischen Subraumidentifikationsansatz (SSI-COV) verglichen. Die Ergebnisse zeigen, dass
die MEMS-Beschleunigungsaufnehmer geeignet sind, alle auftretenden Eigenfrequenzen der
Brückenstrukturen zu identifizieren. Darüber hinaus zeigt das Schwingungsanalyseverfahren,
dass die Amplituden mit einer Genauigkeit im Submillimeterbereich, die Frequenzen mit einer
Genauigkeit von besser als 0,1Hz und die Dämpfungskoeffizienten mit einer Genauigkeit von
besser als 0,1 und 0,2% für die Modal- bzw. Systemdämpfung geschätzt werden können. Die
Analyse zeigt die Überlegenheit des vorgeschlagenen RT-MPI-Algorithmus gegenüber dem SSI-
COV-Algorithmus. Schließlich wird durch die Fusion der IATS- und der MEMS-Messungen eine
hochgenaue Verschiebungszeitreihe im Submillimeterbereich erzeugt.

Stichworte: Schwingungsanalyse, Deformationsanalyse, modale Parameter, MEMS-
Beschleunigungsmesser, bildgestützte Totalstation, robuste Parameterschätzung, Verallgemeinerter
Algorithmus zur Erwartungsmaximierung, Kalman-Filter, Brückenüberwachung
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AIC Akaike Information Criterion
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LUH Leibniz University Hannover

MEMS Micro-Electro-Mechanical System

ML Maximum Likelihood

NExT Natural Excitation Technique

OMA Operational Modal Analysis
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PDF Probability Density Function

PPS Pulse Per Second

PSD Power Spectral Density

PSVC Portable Shaker Vibration Calibrator

qGMM quasi-Gauss-Markov Model

RANSAC RANdom SAmple Consensus

RDT Random Decrement Technique

RMSE Root Mean Square Error

RNN Recurrent Neural Network

RT-MPI Robust Time Domain Modal Parameter Identification

RTS Robotic Total Station

SHM Structural Health Monitoring

SNR Signal to Noise Ratio

SSI Stochastic Subspace Identification

TLS Terrestrial Laser Scanner

UDHO Undamped Harmonic Oscillation

VAR Vector-Autoregressive

VCE Variance Component Estimation

WNT White Noise Test

ZUPT Zero Velocity Update

1D One-Dimensional

2D Two-Dimensional

3D Three-Dimensional
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1 Introduction

1.1 Structural Health Monitoring of Bridge Structures
For more than a decade, short- and long-term structural health monitoring (SHM) of bridge in-
frastructures has received increasing attention. However, monitoring of such infrastructures in a
reliable and cost-effective way is still a challenging issue. According to US Federal Highway Agency
statement in 2005, the quality of 28% of the US bridges, 10% of the European bridges and an
average of 10% of the Asian bridges are inadequate (Wenzel, 2009a) to be used in daily increasing
traffic. Therefore, it highlights the demand for frequent/permanent monitoring, diagnosis and re-
habilitation.

The SHM process allows to assess the current health state of the structure, and to detect unsafe
conditions, unexpected behaviour or structural damages by means of regular measurements of the
structure over time using an array of sensors (Dawson, 1976). An extensive survey of SHM ap-
proaches can be found in Doebling et al. (1998). The SHM is commonly conducted based on visual
observation, the material properties of structures, and interpretation of structures dynamic char-
acteristics (Alvandi and Cremona, 2006). Such structures related characteristics can be monitored
by inspecting the changes in global dynamic behaviour of the structure such as eigenfrequencies,
eigenforms and modal damping, which are known as modal parameters.

Permanent monitoring of the bridge structures, in particular, dilapidated, severely damaged or
endangered bridges is a challenging issue. The current inspections of the bridge structures in Ger-
many is manifested in the DIN 1076. Accordingly, the civil engineers perform this task as follows:
main inspections and tests (at the beginning right after the bridge construction and then every
six years), simple inspections and tests (three years after the main inspections and then every six
years), surveys (once a year but not regularly) and continuous observations (two times per year).
In special cases, such as traffic accidents, flood and heavy storms, specific inspections are carried
out (DIN 1076).

Geodetic methods and sensors have gained an increasing reputation in either short- or long-term
deformation monitoring of the bridge structures over the last decade. Such techniques and measure-
ments can be considered as complementary information to geological or civil engineering monitoring
procedures to pursue several goals, such as (Omidalizarandi et al., 2019c):

• for extensive inspection, assessment, evaluation and rehabilitation of the existing bridges,

• to avoid decommissioning at a very early stage,

• to mitigate a risk and to ensure sufficient safety for the users and the structure itself during
operation,

• to reduce repair cost,

• to extend life time,

• to allow life cycle monitoring.

The short- and long-term deformation monitoring of the bridges – from a geodetic point of view – is
conducted using a proper measurement system and methodology to reach the aforementioned goals.
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The exemplary requirements of such a measurement system for monitoring dynamic behaviour of
bridge structures can be considered as follows:

• cost-effectiveness,

• adequate sampling rate,

• appropriate measurement and sensitivity ranges,

• less influence of measurements by environmental factors such as lighting, weather conditions,
external obstructions, etc.,

• less need for frequent re-calibration,

• allows identifying deformation parameters of interest.

Depending on the type of deformation monitoring and observed object, the parameters of interest
may vary, which are briefly described in the following section.

1.2 Relevant Parameters for a Deformation Process
Deformation monitoring of a bridge is a procedure that involves frequent/permanent measurements
to inspect either short-term dynamic behaviour of the bridge structure including eigenfrequencies
(i.e. natural frequencies), eigenforms (i.e. mode shapes) and modal damping or long-term deforma-
tions and movements. Therefore, unexpected deformations or abnormal dynamic behaviours along
with their corresponding influencing factors can be specified at an early stage. The regularity of
the monitoring is specified depending on the type of movement which can be a fast movement,
e.g., due to the ambient excitation imposed by traffic and wind, or a slow one, e.g., caused by
tectonic changes. Moreover, deformation analysis and interpretation of the parameters checked by
statistical testing can be carried out as complementary steps and in a post-processing to ensure
safety and life-cycle maintenance of the bridge structures.

From a geodetic point of view, the long-term deformation monitoring is carried out by calculating
displacements for points/regions of interest at different epochs of time by using measurements of
a selected geodetic sensor. Typically, proper choice of the sensor depends on the characteristics
of the structure, accessibility, costs, deformation parameters and their corresponding demanded
precision and accuracy. The reference points and/or geodetic control network must be established
on a stable area out of the deformed region (Caspary, 2000), which enables us to perform a geo-
referencing with respect to a global coordinate system. Additionally, the instrument's stability
during the measurements must be secured. Ehrhart and Lienhart (2015a), for example, considered
the telescope angular tilt reading of image-assisted total stations (IATS) to compensate for minor
shakes of the instrument. It is also possible to re-measure the reference points at specified time
intervals to obtain a new update information of the sensor position during monitoring.

Deformation models are categorised into four groups (Heunecke et al., 2013):

1. Congruence model,

2. Kinematic model,

3. Static model,

4. Dynamic model.

The first two deformation models are descriptive considering merely the pure description of the
deformation while the last two deformation models are casual describing the relationship between
the causative effects (loads) and deformations. Kinematic deformation modelling is the main focus
of this dissertation due to the following reasons:
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• bridge structures are always oscillating with very small excitation amplitudes at a millime-
tre/submillimetre level,

• no availability of loads information,

• high importance of identification of bridge dynamics behaviours.

The static and kinematic deformation parameters are briefly explained in the following.

1.2.1 Static deformation parameters
Static deformation monitoring of a bridge structure is often carried out by calculating deflections
with respect to a reference coordinate system after imposing the loads. Moreover, time is not
explicitly modelled. The static deformation monitoring is often accomplished when the bridge
structure reaches an equilibrium state. Subsequently, the computed deflection is then compared to
a steady situation when there is no influences of the loads. A rigid body movement of the bridge
structure induced by, e.g. foundation settlements, creep or tectonics changes, is typically calculated
for long-term monitoring. Thus, the static deformation parameters consist of deflection and the
rigid body movements. Additionally, cracks caused by means of the induced loads may also be
measured and analysed as additional information. As previously stated, stability of the instrument
must be ensured during the monitoring procedure to obtain reliable and accurate estimates of the
deformation parameters.

1.2.2 Kinematic deformation parameters
As previously mentioned, a kinematic deformation model is a descriptive model where movement
(excitation) is a function of time and loads are not modelled. To assess the condition of bridge struc-
tures based on this model, the kinematic deformation parameters – which are known as the modal
parameters – should be identified. Such parameters include eigenfrequencies, their corresponding
eigenforms and damping values. As a preliminary step, vibration measurements are recorded from
well-defined discrete points on the structure with a proper sampling frequency, which is specified in
advance. In addition, it is also possible to characterise deflection eigenforms in vertical, longitudinal
and lateral directions when the structure is moving. The modal parameters are briefly described
in the following.

1.2.2.1 Eigenfrequencies and eigenforms

Eigenfrequency is a frequency that an oscillating structure tends to excite even in the absence of ex-
ternal forces. Eigenfrequencies may differ depending on the bridge material (concrete, steel, wood),
bridge length, bridge type (suspension, cable stayed, span girder and etc.), and bridge application
(roadway, railway, pedestrian). Eigenfrequency is inversely proportional to bridge span, which can
be approximately calculated by the following equation, and with σf = ±0.81 [Hz] (Cantieni, 1984):

f = 100
L

+ 0.6, (1.1)

where L is the bridge span in [m] and f is the eigenfrequency in [Hz]. Therefore, the maximum and
minimum eigenfrequencies can be calculated with respect to the minimum and maximum bridge
spans. According to dynamic load tests on 224 highway bridges performed by the Swiss federal
laboratories for materials testing and research (Cantieni, 1984), the fundamental frequency reaches
10Hz, due to minimum span of 11m (Meng, 2002). Such a relation between eigenfrequencies and
bridge spans is also valid for railway bridges as described by Meng (2002). In addition, according
to the dynamic loading test for different railway bridges (Frýba, 1996), the highest fundamental
frequency may reach 50Hz (Meng, 2002). Lämmle (2002) investigated the eigenfrequency changes
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depending on the different materials (concrete, steel, wood, and etc.) for footbridge structures.
As described by Lämmle (2002) and Hamm (2003), the first vertical eigenfrequency of footbridge
structures is approximately between 0.5 and 6Hz and its average is about 3.18Hz. However, it is
typically close to 2.0Hz in order to be close to the usual step frequency under walking conditions
(Hamm, 2003).

Eigenforms are the vibration forms corresponding to the respective eigenfrequencies (Wenzel,
2009b). The eigenform is often estimated for each identified eigenfrequency at measured points
on the structure. The correct positions of the aforementioned points are precalculated in advance,
for example, based on a finite element model (FEM) analysis. To reliably determine the vibration
behaviour of a structure under an actual load, it is vital to consider higher order eigenfrequencies
and their respective eigenforms rather than considering only the first order ones (Wenzel et al.,
1999). As described in Wenzel et al. (1999), actual displacement of an oscillating structure is
calculated based on the combination of all determined eigenforms.

1.2.2.2 Damping

Damping illustrates the actual degree of exploitation of a real oscillating structure. It is determined
based on continuous decay of a vibration signal when it reaches a static equilibrium (Wenzel, 2009b).
On one hand, the damping value is increased significantly by behavioural changes, such as transition
from elastic to elastoplastic behaviour, e.g., in case of exceeding a maximum load-bearing capacity
of the structures (Eibl, 1988). On the other hand, the damping is influenced by the energy content
of the vibration signal that causes its amplitude to be changed. Accordingly, the damping values
are categorised into two classes of “modal” and “system” damping, which are related to the energy
content of the vibration signal. Since resonance often occurs in higher frequencies, it might be
adequate to characterise the modal damping for a dominant eigenfrequency (Wenzel, 2009a). The
system damping is determined when the energy content of the vibration signal increases due to
high loads, such as train passages or heavy traffic (Wenzel, 2009a).

Figure 1.1 shows the time series of acceleration data generated based on a simulation for different
damping ratio coefficients (ξ), where (ξ = 0) is undamped sinusoidal, (ξ < 1) is underdamped,
(ξ = 1) is critically damped, and (ξ > 1) is overdamped. In order to protect the structure against
any possible excitation, 1.5% damping variation is typically allowed (Wenzel, 2009a). However,
damping may also vary depending on material and geometry of the structure.

Figure 1.1: Simulated acceleration data with different damping ratio coefficients.
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1.3 Modal Identification Techniques

Modal identification techniques are applied to identify the dynamic behaviour of structures. De-
pending on the availability of input and output data, they are categorised into three groups as
follows:

1. Experimental modal analysis (EMA) (Heylen, 1997) using measured forces as input and a
vibration response of the structure as output data.

2. Operational modal analysis (OMA) using only the output data.

3. Combined experimental OMA with eXogenous inputs (OMAX) (Guillaume et al., 2006) using
an artificial force.

In OMAX approaches, the forces are imposed at the level of operational forces amplitudes or lower.
Subsequently the generated excitation is considered as a useful one and not as a noise in the modal
identification process (Reynders, 2012).

EMA methods can be carried out based on either the frequency response function (FRF) (Brandt,
2011) in frequency domain or the impulse response function (IRF) in time domain. In these meth-
ods, the induced forces to the structure are measured and considered in an estimation procedure.
However, such an experiment is not practically suitable to be carried out for large structures, such
as bridges. In particular, it is a challenging task to identify the external forces in the case of
ambient excitation imposed by wind (Maia et al., 2001). Moreover, it is economically inefficient to
generate excitations (Zhang et al., 2012).

In the OMA method, the ambient excitation is of utmost interest, since it reflects the true excitation
due to traffic, wind, wave and micro-earthquakes over lifetime of bridge structures (Peeters et al.,
2001). The OMA method is advantageous, since there is no need to measure and consider the loads
for such excitation. However, the OMA approaches have two drawbacks (Parloo, 2003):

1. estimation of the mode shapes are not correctly scaled and can be varied depending on the
amplitude changes,

2. recorded measurements often have poor quality or lower signal to noise ratio (SNR) in the
ambient excitation compared to the forced excitation.

OMA can be performed either in frequency domain or in time domain. In frequency domain, the
full or half spectra are typically estimated from the measurements and are used as input, e.g. by
Peeters et al. (2005a) and Peeters and Van der Auweraer (2005b). In time domain, the measure-
ments are used directly as input. Different OMA approaches are proposed by previous researchers,
where the well-known approaches are as follows: natural excitation technique (NExT) (James et al.,
1995), stochastic subspace identification (SSI) (Hermans and Van der Auweraer, 1999; Peeters, 2000;
Fan et al., 2007; Reynders et al., 2008; Boonyapinyo and Janesupasaeree, 2010), frequency domain
decomposition (FDD) (Brincker et al., 2001), random decrement technique (RDT) (Ibrahim, 2001),
wavelet (Lardies and Gouttebroze, 2002) and the polyreference (Peeters et al., 2005a; Peeters and
Van der Auweraer, 2005b) version of least-squares complex frequency-domain (LSCF) estimates
(Guillaume et al., 1998).

In this dissertation, the time domain OMA method is accomplished by using the measurements
directly as input while having no information of the induced forces. However, in order to estimate
the modal parameters within the adjustment procedure, initial values of frequencies are taken from
the frequency domain.
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1.4 Related Works
This section is focusing on the previous works, which dealt with geodetic deformation monitoring
by considering the static and kinematic deformation behaviours of bridge structures using time
series measurements. To monitor and inspect whether short- or long-term movements of bridge
structures, different contact- or non-contact-based geodetic measurement techniques were applied
by previous researchers. A brief overview of the state of the art are described in the following.
Roberts et al. (2004) performed bridge deflection monitoring up to a millimetre accuracy by using
a triaxial accelerometer of type Kistler with sampling frequency of 200Hz and GPS receivers of
types Leica CRS1000 and SR530 with a sampling frequency of 10Hz. The GPS measurements
were used in the zero velocity update (ZUPT) and coordinate update (CUPT) to suppress the
accumulation drift derived from a single and double integration of the acceleration data over time.
A high frequency noise of the acceleration data was detected from a static measurement test which
was filtered out based on low-pass or band-pass filters. The spectrum analysis was carried out
to identify the main eigenfrequencies. Pakzad et al. (2008) performed vibration monitoring of
a suspension road bridge by using a spatially dense wireless sensor network of accelerometers.
The sensor network composed of accelerometers of type ADXL202 with sensitivity range of 1mg
at 25Hz and accelerometers of type Silicon Design 1221 with noise level of approximately 10µg.
The sampling frequency in both accelerometers was set to 1000Hz and downsampled to 50Hz
by averaging to reduce the noise level. The latter accelerometer was well-suited for capturing
ambient excitation with small amplitude at the level of few hundreds of µg. Bürki et al. (2010)
conducted kinematic deformation monitoring of a steel bridge using a Leica TCA 2003 equipped
with a small CCD camera clipped on a total station (so–called DAEDALUS measurement system).
To generate displacement time series, a standard torch as a light emitting target was captured
with a sampling frequency of 15Hz, which was then extracted by means of the blob detection
algorithm. Subsequently, a dominant eigenfrequency was detected by using fast Fourier transform
(FFT). Liebig et al. (2011) accomplished static deformation monitoring of a motorway bridge
structure which was under heavy loads, by using tactile sensor and a terrestrial laser scanner
(TLS) of type Zoller+Fröhlich Imager 5006. The combination of both measurement systems also
allowed to calibrate a FEM. The TLS were used in a three-dimensional (3D) measurement mode,
a two-dimensional (2D) profile measurement mode with a sampling frequency of 12.5Hz, and one-
dimensional (1D) single-point measurement mode with a sampling frequency of 620Hz. Neitzel et al.
(2012) carried out vibration analysis of a bridge structure by using a sensor network of low-cost
accelerometers with a sampling frequency of 600Hz, a TLS of type Zoller+Fröhlich Imager 5003
with a sampling frequency of 7812Hz (in the single-point measurement mode) and a terrestrial
interferometric synthetic aperture radar with a sampling frequency of 200Hz as a reference sensor
for the validation purpose. The TLS measurements were downsampled to 78.12Hz by averaging
over 100 measurements, which allowed detecting small displacements in submillimetre range. To
estimate the modal parameters such as first natural frequency and its corresponding damping
coefficient, a damped harmonic oscillation (DHO) model was used and solved by the least squares
adjustment. Schmitt et al. (2013) carried out deflection and strain analysis of a bridge structure by
employing 2D profile measurements of a TLS of type Zoller+Fröhlich Imager 5006 with a sampling
frequency of 12.5Hz. In addition, tactile sensors (strain gauges) were used to obtain strain values
with a sampling frequency of 1200Hz as reference measurements. To obtain accurate estimates of
deflections from the 2D profile measurements, B-spline curve approximation was applied in a sense
of the least squares adjustment. Next, the nonlinear artificial neuronal networks was applied to
directly calculate strain values out of the approximated deflections. The measured strain values were
used as train data sets into the neural network. Psimoulis and Stiros (2013) conducted vibration
monitoring of a short span railway bridge by using a robotic total station (RTS) with non-constant
sampling rate measurements in a range of 5–7Hz. The least squares spectrum analysis (LSSA)
in Pagiatakis (1999) and the Norm-Period code in Pytharouli and Stiros (2008) were employed
to estimate the modal parameters for non-equidistant data. In Ehrhart and Lienhart (2015b),
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displacement and vibration analysis of a footbridge structure were carried out by using an IATS
of type Leica MS50 with a sampling frequency of 10Hz, an accelerometer of type HBM B12/200
with a sampling frequency of 200Hz and a RTS of type Leica TS15 with a sampling frequency
of 20Hz. The video frames of a circular target marking attached to the footbridge structure and
structural features such as bolts were captured by means of a telescope camera of the IATS to
generate displacement time series. For this purpose, the circular target centroids were extracted by
means of least squares ellipse fitting with Gauss-Helmert model (GHM). Additionally, the structural
features were detected by using template matching, feature matching and optical flow. Schill and
Eichhorn (2019) performed deformation monitoring of the bridge structures by using a phase-based
profile scanner of type Zoller+Fröhlich Profiler 9012 with a sampling frequency of 50Hz. Ehrhart
(2017b) accomplished static and kinematic deformation monitoring of bridge structures by using
the IATSs of types Leica MS60 and MS50. As reported by Ehrhart (2017b), the Leica MS60 allows
capturing video frames with a practical sampling frequency of 30Hz, which is adequate to identify
eigenfrequencies of bridge structures in a range of less than 15Hz considering Nyquist sampling
theorem. Moreover, it was demonstrated that image-based angle measurements which are obtained
from the IATS are superior to conventional automated angle measurements of RTS to retroreflective
prisms and can achieve a better precision at the level of less than 0.1mgon (1σ).

1.5 Problem Statements

As previously mentioned, frequent/permanent, reliable, and cost-effective short- and long-term
monitoring and diagnosis of bridge structures is a challenging issue. Often, civil engineers inspect
and monitor the bridge structures by using high-end sensors with extremely high accuracy. How-
ever, it may not be economically suitable for permanent monitoring. As a preliminary step, it is
crucial to select a proper and cost-effective measurement device, which can be mounted on the
bridge structure for a long time. Next, the selected sensor should be calibrated, which allows to
obtain reliable data sets. Environmental conditions such as temperature and humidity have an
impact on the sensor measurements, which should be considered during the calibration procedure.
Furthermore, it is of great importance to select a sensor, which is less influenced by systematic
errors. In addition, it should not need frequent re-calibrations.

To estimate modal parameters including eigenfrequencies, damping ratio coefficients, amplitudes
and phase shifts, a proper functional model is required to be determined. In addition, the esti-
mation of the modal parameters in a robust, accurate, precise and automatic procedure is also a
challenging issue. This is even more challenging in case of cost-effective vibration measurements,
which are often contaminated with high coloured measurement noise. Additionally, such measure-
ments are also suspected to numerous outliers of different magnitudes, which are required to be
handled. The eigenfrequencies must be identified in an optimal and reliable manner in advance,
which are used as initial values within the adjustment procedure. Moreover, to optimally and
correctly characterise eigenforms of the bridge structures, the sensor positions need to be known
or calculated in advance.

The state-of-the-art approaches mainly focus on estimations of the eigenfrequencies, eigenforms
and modal damping. However, the eigenforms are not typically estimated in their true scales. To
characterise deflection eigenforms with a high accuracy, and by using acceleration data, the am-
plitudes are required to be estimated in a metric unit. Furthermore, the estimated damping ratio
coefficients are always varied depending on the amount of loads that are imposed on the bridge
structures. Subsequently, it is a very complex and demanding task to obtain accurate estimates of
the damping ratio coefficients, and in an acceptable range, in either ambient or forced excitation
experiments.

At the end, it is of great interest to perform long-term deformation/displacement monitoring of the
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bridge structures at millimetre/submillimetre level accuracy. However, it is a challenging issue in
case of the acceleration data, since its double integrated data is drifting over time. Therefore, an
additional sensor is required to deal with this problem. Finally, a reliable and accurate data fusion
is required to be performed to overcome the deficiencies of both measurement systems in short-
and long-term displacement and vibration monitoring.

1.6 Research Topics

The main objective of this research is to perform robust kinematic deformation monitoring of
bridge structures using micro-electro-mechanical-systems (MEMS) and an IATS. The information
obtained from both aforementioned measurement systems are complementary to each other and the
strength of one measurement method overcomes the weakness of the other in a short- and long-term
displacement and vibration analysis. Multiple MEMS as part of a geo-sensor network are mounted
at different positions of a bridge structure, which are precalculated by means of a FEM analysis.

Despite of the purchase price and an adequate sampling frequency of the MEMS sensors, a three-
step scenario is proposed to select an optimal one. Firstly, a robust calibration procedure is proposed
and implemented to degrade the influence of the MEMS-related systematic errors such as biases,
scale factors and non-orthogonality angles between the axes. Therefore, it ensures the reliability of
the measurements over a long period. Secondly, a controlled excitation experiment is carried out
by using a high-precision shaker to estimate harmonic oscillation parameters, and to compare them
with a reference accelerometer. Thirdly, a static test experiment is accomplished by recording 3D
acceleration data over a long period. Therefore, it allows to estimate an offset and a drift of the
measurements over a long period. Additionally, auto-correlation as well as underlying distributional
model parameters are estimated for each axis individually.

A robust modal parameter identification technique in the time domain is proposed and implemented
to characterise the dynamic response of the bridge structure robustly, accurately, and automatically
(Omidalizarandi et al., 2020). As a preliminary step, an ambient window is selected in an automatic
procedure for the recorded measurements under either ambient or forced excitation. Next, a novel
cost function is introduced, which enables to optimally and reliably identify eigenfrequencies even
closely spaced ones. Then, the aforementioned eigenfrequencies are used as initial values within the
adjustment procedure. To estimate the modal parameters including eigenfrequencies, amplitudes,
phase shifts, and damping ratio coefficients, an observation model consisting of: (1) a DHO model,
(2) an autoregressive (AR) model of the coloured measurement noise and (3) a stochastic model in
the form of scaled t-distributions is employed (Omidalizarandi et al., 2020). The aforementioned
three parametric models are jointly adjusted by means of a generalised expectation maximisation
(GEM) algorithm given in Alkhatib et al. (2017). The eigenforms are characterised in a subse-
quent step, and by using the aforementioned estimated parameters from the GEM algorithm. The
term “robust” in this dissertation means that the proposed approach is outlier-resistant. This is
achieved by stochastically modelling the outliers by means of the heavy-tailed scaled t-distribution
with unknown degree of freedom and unknown scale factor (Kargoll et al., 2018). Subsequently, an
underlying adjustment model of the GEM algorithm allows for self-tuning, robust and maximum
likelihood (ML) estimation of the parameters (Alkhatib et al., 2017). A novel double integration us-
ing the DHO model is proposed and implemented to convert the acceleration data to displacement
data in a metric unit (e.g. in mm). Subsequently, it enables to characterise deflection eigenforms
in their true scales, and with a high accuracy (Omidalizarandi et al., 2020). The proposed robust
modal parameter identification algorithm is applicable for any type of data sets even those con-
taminated with high coloured measurement noise.

Besides the MEMS accelerometers, the IATS as a modern geodetic sensor that allows to perform
kinematic deformation monitoring. For this purpose, a 1D displacement time series is generated
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1.6 Research Topics

based on video frames of a passive target captured by an embedded on-axis telescope camera of
the IATS. An optimal passive target pattern is selected as a preliminary step, which is utilised
for generating displacement time series from the IATS. Such a passive target is beneficial due to
being cost-effective as well as easy to mount. Next, a fast, automatic, reliable, and accurate pas-
sive target centroid detection approach is proposed and implemented, which has less sensitivity
to poor environmental conditions, such as low lighting, dusty situations and skewed angle targets
(Omidalizarandi et al., 2019a). The vertical angular conversion factor of the telescope camera of
the IATS is calibrated, which is used to convert displacements from pixel [px] unit to metric unit
such as millimetre in vertical direction (Omidalizarandi et al., 2018).

Figure 1.2 illustrates an exemplary set-up of the MEMS accelerometers and IATS for one-span nar-
row width bridge structure. As it can be seen, five MEMS accelerometers can be mounted at the
first, second, and third quarters of the bridge structure. However, discussions with civil engineer-
ing experts often assists to optimally set-up the sensors. To perform displacement monitoring and
analysis in this dissertation, the video frames of the passive target, attached in the vicinity of one
the MEMS accelerometers (see Fig. 1.2), is captured by the telescope camera of the IATS located
at point S2. Therefore, a high accurate 2D displacement time series is generated in an image plane
perpendicular to the viewing direction. The third dimension of the displacement data, with less
accuracy, is generated based on slope distance measurements towards the passive target. In this
work, the IATS could not be set-up at point S1 due to effects of the bridge vibration. In addition,
merely the 1D displacement and acceleration data in the vertical direction have been considered
for simplicity. However, the proposed procedure can be fully extended to the 3D displacement and
acceleration data.

Figure 1.2: Exemplary set-up of the MEMS accelerometers and IATS for one-span narrow width
bridge structure.

The state-of-the-art of the IATS with low sampling frequency (e.g. 10 to 20Hz) has a limitation
to detect higher frequencies in the light of Nyquist sampling theorem. To overcome this problem,
similar to the works of Omidalizarandi and Neumann (2015); Omidalizarandi et al. (2016, 2019b),
a high-resolution digital camera with a higher sampling frequency can be attached on top of the
IATS by means of a clamping system. Therefore, the external calibration parameters or the relative
orientation of the sensor origins are calculated to relate the data of the sensors to each other. To
robustly and accurately estimate the external calibration/orientation parameters (EOPs) between
the IATS and the external digital camera, a rigorous bundle adjustment procedure similar to the
work of Omidalizarandi et al. (2019b) can be applied. The functional models are determined based
on the collinearity equations, the 3D Helmert transformation, and the constraint equation. To es-
timate the unknown parameters of the aforementioned functional models, three robust adjustment
models are developed and implemented, which are as follows (Omidalizarandi et al., 2019b):

1. An expectation maximisation (EM) algorithm to solve a GHM with grouped t-distributed
random deviations,
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2. An EM algorithm to solve a corresponding quasi-Gauss-Markov model (qGMM) with t-
distributed pseudo-misclosures,

3. A classic least-squares procedure to solve the GHM with variance components and outlier
removal.

Finally, the long-term kinematic deformation monitoring is conducted by fusing 1D displacement
data obtained from the IATS and 1D acceleration data recorded from the MEMS accelerometer with
different sampling frequency based on 1D CUPT within the framework of Kalman filter (KF). Such
data fusion allows to compensate for the drift of the double integrated MEMS acceleration data over
time (Omidalizarandi et al., 2019c). The 1D displacement data generated from the IATS is merely
obtained for the passive target that is attached in the vicinity of one of the MEMS accelerometers.
Therefore, the relative 1D displacements between other MEMS accelerometers can be calculated
based on the amplitudes derived from the double integration of the recorded acceleration data. An
overview of the aforementioned research topics is represented in Figure 1.3.

Figure 1.3: An overview of the research studies.

1.7 Outline of the Dissertation
This dissertation is organised in seven chapters as follows: chapter 2 describes the potential of
MEMS accelerometers for bridge deformation monitoring. In chapter 3, the potential of IATS for
bridge deformation monitoring is discussed. Robust kinematic deformation monitoring of bridge
structures is introduced in chapter 4. Chapter 5 presents the MEMS-based bridge monitoring
supported by IATS. Results of the experiments for a simulated data, a footbridge, and a synthetic
bridge are discussed in chapter 6. Summary, conclusion, and outlook are given in chapter 7.
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2 Suitability Analysis of MEMS Accelerometers
for Deformation Monitoring of Bridges

2.1 Introduction
The use of cost-effective MEMS sensors for the task of vibration-based SHM of bridge structures is
becoming more affordable and feasible. It can be used for frequent/permanent monitoring, which
can assist to avoid any deterioration of the bridge structures. Therefore, the repair cost and risk
is reduced and lifetime of the bridge structures is ensured. In the following, the MEMS sensor is
called MEMS accelerometer due to merely using its acceleration data.

In this dissertation, the MEMS accelerometer is used due to the following reasons:

• being cost-effective,

• possibility to set-up a sufficient number of the MEMS accelerometers at different positions of
the bridge structures,

• allowing permanent monitoring by performing measurements with a high sampling frequency,
e.g., 100Hz, at specified time intervals,

• recording acceleration measurements from a three axes accelerometer to identify eigenfre-
quencies of the bridge structure in longitudinal, lateral and vertical directions,

• feasibility of detecting all eigenfrequencies and eigenforms of the bridge structures,

• possibility of localising potentially damages in parts of the bridge structures by using densely
distributed sensors, and based on identified eigenfrequencies and eigenforms.

However, the lateral and the vertical directions are of utmost interests, since wind and driving
directions of vehicles are mainly influencing in the lateral and the vertical directions, respectively.

Different MEMS accelerometers with different qualities (i.e., uncertainties of the measurements)
and prices are available in the market. Therefore, it is important to select one, which suits well
for the purpose of cost-effective kinematic deformation monitoring of bridge structures. In spite of
the purchase price and an adequate sampling frequency of the MEMS accelerometer, a three-step
scenario is proposed in this chapter to select an optimal one. Firstly, the calibration procedure
is carried out using a youBot for fixed positions and for certain time intervals, and over different
temperature ranges. Thus, the MEMS related systematic errors are modelled, and their impacts on
long-term measurements are degraded. Secondly, a controlled excitation experiment is performed
by using a high-precision shaker to compare estimated harmonic oscillation parameters with a
reference accelerometer. Thirdly, a static test experiment is conducted to estimate an offset and
a drift of the measurements over a long period. In addition, this experiment allows to model
auto- and cross-correlations for the 3D acceleration data. However, merely the auto-correlation is
considered and the discussion of the cross-correlation model is out of scope of this dissertation.

This chapter is organised as follows: The ongoing section describes the measurement set-up and
the data acquisition. Section 2.3 discusses a suitability analysis in selecting optimal triaxial MEMS
accelerometers for the purpose of bridge monitoring. The calibration of the MEMS accelerometer is
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introduced in section 2.4. This section is subdivided in 5 subsections and provides outlines of test
scenarios for the calibration, calibration model of triaxial accelerometers, estimation procedure
via two different adjustment models, as well as the experimental results. Section 2.5 outlines
specifications of a selected MEMS accelerometer for bridge monitoring. Finally, the summary of
this chapter is given in section 2.6.

2.2 Measurement Set-up and Data Acquisition
A geo-sensor network of the cost-effective MEMS accelerometers are mounted at specific positions
of a bridge structure, which is precalculated in advance by means of the FEM analysis. Addition-
ally, the FEM analysis can provide the measurement directions. To perform the FEM analysis, a
3D model can be used which is created, for example, by using a 2D plan of the bridge structure
(von der Haar, 2017).

For the time being, the geo-sensor network of the MEMS accelerometers comprises a master node
and three measuring nodes that are so–called master and slave sensors (see Fig. 2.1). The MEMS
are connected via wires and the 3D acceleration data are transmitted via USB to a PC. The mea-
surement starts by triggering the slave sensors from the master sensor via cable. The system is
protected by an aluminium housing, which is resistant against temperature, humidity, rain, wind
and etc. (Omidalizarandi et al., 2019c).

Figure 2.1: Scheme of MEMS accelerometers. The master MEMS sensor is located on top and
other three slave MEMS sensors are located at the bottom that all are protected by the
aluminium housing and connected via wires.

The master and slave sensors consist of the MEMS accelerometer and a control/storage unit. The
MEMS acceleration data is recorded with a specified sampling frequency of 100Hz. On the one
hand, it allows to identify eigenfrequencies of bridge structures in a range of 0.1 to 50Hz (in the
view of Nyquist sampling theorem). On the other hand, it yields less data storage for a long-term
deformation monitoring. High eigenfrequencies close to 50Hz often occur in railway bridges (Meng,
2002; Roberts et al., 2004). However, in case of a bridge structure with higher eigenfrequencies
than 50Hz, a higher sampling frequency can be specified. The acceleration range is set to ±2g,
which is adequate to sense ambient excitation. However, higher ranges such as ±4g/±8g/±16g can
also be set if it is desired (Omidalizarandi et al., 2019c). The acceleration measurements are stored
into the SD memory card in blocks.

A time stamp transmitted by the master node at each memory block is provided by an integrated
low-cost global navigation satellite system (GNSS) equipment. Thus, the time synchronisation be-
tween the MEMS sensors is carried out based on the GPS time. Currently, the time synchronisation
between the MEMS accelerometers is at the level of 0.01 s, which enables to properly characterise
eigenforms of bridge structures.
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Side-by-side vibration measurements from proper reference sensors are conducted and analysed to
get reliable evaluation, assessment, and validation of the aforementioned cost effective measurement
system in determination of the modal parameters of bridge structures.

2.3 Suitability Analysis in Selecting Optimal MEMS Accelerometers
A three-step scenario is proposed to select a suitable MEMS accelerometer regardless of the sam-
pling frequency and the purchase price. In the first step, a robust and automatic calibration
procedure is developed and implemented to estimate the calibration parameters including three
biases, three scale factors, and three non-orthogonality angles between the axes. The acceleration
data is recorded over different temperature ranges to have a good realisation of the changes of
the calibration parameters. Therefore, in spite of calibrating the MEMS accelerometer data, a
proper MEMS accelerometer is selected whose corresponding measurements are less influenced by
the aforementioned systematic errors. Additionally, a robust estimation of the calibration param-
eters over a variety of temperature ranges is carried out, which subsequently enables to perform
interpolation at a specified temperature for a later in-situ monitoring. Moreover, it is desired to
select a sensor, which has a stability of the calibration parameters over a long period and does not
need frequent re-calibrations. Further information regarding the calibration procedure is given in
section 2.4.

In the second step, a controlled excitation experiment is carried out by using a high-precision shaker
at laboratory environment. The advantages of such experiment are twofold (Omidalizarandi et al.,
2019c):

1. the harmonic oscillation parameters including frequency, amplitude, damping ratio coefficient
as well as phase shift are estimated and then compared with known vibration parameters.
Additionally, it allows to evaluate and compare them with the estimated parameters obtained
from either other slave MEMS accelerometers or reference sensors,

2. the time synchronisation between different MEMS accelerometers are compared and validated
based on the estimated phase shifts.

The aforementioned controlled excitation experiment is presented in the next subsection. In the
third step, a static test experiment is carried out by using 3D acceleration data recorded from three
different axes over a long period, e.g., 24 hours. Subsequently, a long-term stability of the measure-
ments is investigated by estimating an offset (intercept) and (linear or quadratic) drift coefficients
for all axes. Therefore, it enables us to select a sensor with minimal offset and drift values. More-
over, the (unknown) auto- and cross-correlations as well as the (unknown) distributional charac-
teristics of the acceleration measurements can be investigated by employing a vector-autoregressive
(VAR) process with t-distributed errors (Kargoll et al., 2020b). However, the discussion of the VAR
process is out of scope of this dissertation and merely the auto-correlation is considered. The readers
are referred to Kargoll et al. (2020a,b) for more information regarding the VAR process. The third
step of the aforementioned scenario is briefly discussed in subsections 2.3.2. In this dissertation, all
aforementioned three-step scenario have been carried out for one type of MEMS accelerometer from
Bosch GmbH. However, it is possible to apply them for any types of accelerometers in a selection
process.

2.3.1 Controlled excitation experiment
As previously stated, the controlled excitation experiment is conducted by using a high-precision
shaker (Fig. 2.2, right) at the laboratory. The shaker is so–called the vibration test system, which
is of type TV 51110. It has a frequency range of 2 – 7000Hz and its maximum displacement peak–
peak is 13mm (see manufacturer's data sheet for details in TIRA Schwingtechnik (2019)). The
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slave MEMS accelerometers are mounted on a levelled plate connected to four shakers that include
highly accurate reference accelerometers recording the acceleration measurements with a sampling
rate of 1024Hz (see Fig. 2.2, left).

Figure 2.2: A controlled excitation experiment at the Institute of Dynamics and Vibration Research
(IDS), Leibniz University Hannover (LUH), using a shaker to validate the time synchro-
nisation between all three slave MEMS accelerometers (left), the shaker – vibration test
system TV 51110 (right) (TIRA Schwingtechnik, 2019)).

The experiments are carried out for frequencies of 5, 10 and 20Hz, and with a duration of 60 s.
The estimated harmonic oscillation parameters and their corresponding uncertainties are provided
in Tables 2.1 and 2.2 for the three slave MEMS accelerometers used, namely, IMU_slave_02,
IMU_slave_03 and IMU_slave_04 with and without applying the calibration parameters. The
estimated parameters comprise the frequency [Hz], the amplitudes in both units of [m/s2] and
[mm], the phase shift [◦], the absolute gravity value, and an AR model order for which the es-
timation procedure is described in chapter 4. The uncertainties of the amplitudes in [m/s2] and
[mm] have been calculated based on error propagation using Equations 4.23 and 4.26, respectively.
The comparison of the estimated phase shifts between sensors show the variations up to 5◦. Ad-
ditionally, comparison of the estimated frequencies with their nominal values demonstrate minor
and major differences for lower and higher frequencies, respectively. For example, the frequency
of 5 and 20Hz have differences of approximately 0.003 and 0.01Hz, respectively. Subsequently, it
proves higher influence of the time synchronisation on higher frequencies, which is expected. In
addition, as can be seen in Table 2.2, better uncertainty estimates are obtained for lower frequen-
cies. Besides, the analyses show the better uncertainty estimates for the sensor IMU_slave_02
compared to the others. Furthermore, less impact of the calibration parameters on the estimated
modal parameters for a short time interval is observable (Omidalizarandi et al., 2019c). As shown
in Omidalizarandi et al. (2019c), increasing the length of time series demands for increasing the AR
model order to satisfy the white noise acceptance test. The reason lies in the fact that acceleration
data recorded for a longer period of time are contaminated with a higher coloured measurement
noise, which is due to environmental influences.

2.3.2 Static test experiment
A static test experiment is carried out to estimate offset and (linear or quadratic) drift coefficients
over a long period. In addition, the auto-correlation in addition to the distributional characteristics
of the acceleration data are investigated for each axis of the MEMS accelerometers individually.
For this purpose, 3D acceleration data are recorded from three cost-effective MEMS accelerometers,
and for a duration of approximately 24 hours. Two of the aforementioned MEMS accelerometers
are of type BNO055 from Bosch GmbH but with different boards. The first one is with Arduino
UNO-Board that is so–called NAMS, and the second one is with Tinkerforge-Board that is so–called
IMU. The third MEMS accelerometer is of type ADXL345 with Arduino UNO-Board. The readers
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Table 2.1: Estimated harmonic oscillation parameters obtained from the controlled excitation ex-
periment for the slave MEMS acceleration data with and without applying calibration
parameters.

MEMS Sensor Calib. status f̂ [Hz] Â [m/s2] Â [mm] ϕ̂ [◦] |g| [m/s2] p
I
M
U
_
sl
a
v
e_

02 No

5.0028 0.312 0.316 5.49 10.419 9

10.0056 1.436 0.363 153.26 10.424 6

20.0112 5.562 0.352 100.92 10.504 10

Yes

5.0028 0.306 0.310 5.57 9.801 9

10.0056 1.407 0.356 153.34 9.804 6

20.0112 5.442 0.344 101.18 9.851 9

I
M
U
_
sl
a
v
e_

03 No

5.0027 0.352 0.356 5.79 10.420 12

10.0055 1.589 0.402 152.37 10.424 21

20.0108 5.940 0.376 102.46 10.527 14

Yes

5.0027 0.345 0.349 5.86 9.821 12

10.0055 1.560 0.395 152.43 9.823 21

20.0108 5.826 0.368 102.64 9.882 14

I
M
U
_
sl
a
v
e_

04 No

5.0027 0.387 0.391 7.63 10.357 10

10.0056 1.733 0.438 156.81 10.363 6

20.0108 6.314 0.399 106.17 10.519 11

Yes

5.0027 0.383 0.388 7.69 9.814 10

10.0056 1.716 0.434 156.87 9.816 6

20.0108 6.249 0.395 106.35 9.866 11

are referred to the data sheets of the aforementioned sensors for details information (Datasheet
ADXL345, 2015; Datasheet BNO055, 2016).

The observation model is consisting of (1) a functional model based on a linear drift, (2) an
auto-correlation model based on the AR process, and (3) a stochastic model based on the scaled
t-distribution. The unknown parameters include an offset, a linear drift coefficient, AR model order
and coefficients, scale factor and degree of freedom (df) of the underlying t-distribution. However,
an adequate AR model order can be selected based on the either Akaike information criterion
(AIC) (Kargoll et al., 2020a) or an acceptance of white noise test (WNT) criterion described by
Kargoll et al. (2018). The WNT criterion is investigated by calculating a test statistic based on the
maximum cumulated periodogram excess over a cumulated white noise periodogram. Therefore, it
is accepted when being smaller than a critical value by considering a predefined significance level
(i.e. α=0.05). The aforementioned observation model has a structure of a Gauss-Markov model
(GMM). Further information regarding the estimation procedure of the AR-univariate algorithm
can be found in chapter 4.

The static acceleration measurements `1, . . . , `n (n = 32743, 33300, and 43107 in case of the NAMS,
IMU, and ADXL) are recorded at approximately a constant temperature and with sampling fre-
quencies of 0.38, 0.5 and 0.5Hz from the aforementioned MEMS accelerometers. Therefore, they
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Table 2.2: Uncertainties of the estimated harmonic oscillation parameters obtained from the con-
trolled excitation experiment for the slave MEMS acceleration data with and without
applying calibration parameters.

MEMS Sensor Calib. status σ̂f [Hz] σ̂A [m/s2] σ̂A [mm]

I
M
U
_
sl
a
v
e_

02 No

2.65e-07 9.25e-06 9.35e-06

2.66e-06 5.84e-04 1.48e-04

2.57e-05 0.0171 0.0011

Yes

2.58e-07 8.86e-06 8.97e-06

2.61e-06 5.59e-04 1.41e-04

2.76e-05 0.0181 0.0011

I
M
U
_
sl
a
v
e_

03 No

3.06e-07 1.21e-05 1.22e-05

2.60e-06 6.00e-04 1.62e-04

4.26e-05 0.0311 0.0019

Yes

3.01e-07 1.16e-05 1.17e-05

2.60e-06 6.00e-04 1.55e-04

4.18e-05 0.0299 0.0018

I
M
U
_
sl
a
v
e_

04 No

2.20e-07 9.89e-06 1.01e-05

1.83e-06 4.60e-04 1.16e-04

5.61e-05 0.0461 0.0029

Yes

2.20e-07 9.69e-06 9.80e-06

1.81e-06 4.51e-04 1.14e-04

5.55e-05 0.0453 0.0029

are modelled based on the linear drift with following equation:

`t = ft(β) + et

= c0 + c1xt + et, (2.1)

where β are the unknown functional parameters including the offset (c0) in [m/s2], and the linear
drift coefficient (c1) in [m/s3]. et is the random deviation contaminated with the coloured noise,
and xt are equidistant time instances (t = 1, . . . , n). In case of quadratic drift of the acceleration
data, a quadratic coefficient is added to the Equation 2.1.

Table 2.3 summarises the statistics of the estimated parameters based on the AR-univariate algo-
rithm. The ĉ0 [m/s2] is the estimated offset, ĉ1 is the estimated linear drift coefficient [m/s3], σ̂l is
the estimated standard deviation of white noise measurements, p is the AR model order, and wntc
is the acceptance or rejection of the WNT criterion.

Comparison of the AR model orders for different MEMS accelerometers reveals a higher coloured
measurement noise in the ADXL and the IMU acceleration data, particularly in their Y and Z axes,
compared to the NAMS accelerometer. This is even higher in the ADXL acceleration data, which
can be observed from rejection of the WNT criterion even up to the AR model order 25. Figure 2.3

16



2.3 Suitability Analysis in Selecting Optimal MEMS Accelerometers

Table 2.3: Statistics of the estimated unknown parameters in the functional model based on the lin-
ear drift, the auto-correlation model based on the AR-univariate process and the stochas-
tic model based on the centred and scaled t-distribution with an unknown df and unknown
scale factor for measurements of three cost-effective MEMS accelerometers at a constant
temperature

.

Sensor Axis ĉ0 ĉ1 σ̂c0 σ̂c1 σ̂l p wntc ν̂

[m/s2] [m/s3] [m/s2] [m/s3] [m/s2] [-] [-] [-]

NAMS
X -0.3597 6.81e-09 6.84e-05 1.37e-09 0.0066 1 yes 16.89

Y 0.2811 -6.12e-08 0.0001 2.91e-09 0.0132 1 yes 120

Z -0.1354 6.64e-09 0.0001 3.13e-09 0.0141 1 yes 120

IMU
X 0.1685 -1.39e-07 0.0001 3.35e-09 0.0118 1 yes 120

Y -0.0978 3.45e-07 0.0001 3.68e-09 0.0115 7 yes 120

Z -0.1316 2.97e-08 0.0004 1.04e-08 0.0360 11 yes 120

ADXL
X 0.0799 -7.96e-10 5.70e-05 1.14e-09 0.0272 1 yes 2.1

Y 0.2965 2.21e-09 0.0002 5.17e-09 0.0480 25 no 2.95

Z -0.4211 7.34e-09 0.0002 4.99e-09 0.1182 25 no 2.1

Figure 2.3: AR model coefficients correspond to the ADXL acceleration data recorded from Y and
Z axes.

illustrates the AR model coefficients correspond to the acceleration data recorded in Y and Z axes
of the ADXL in order to have an impression about size of the AR model coefficients. As it can be
seen, the AR model coefficient at order 7 is slightly larger than the others for both Y and Z axes.
The analyses reveal a less coloured measurement noise in the X-axis of all aforementioned MEMS
accelerometers. In addition, the acceleration data recorded from the X-axis has significantly a
better uncertainty of the white noise measurements compared to the Z-axis. Moreover, the IMU
acceleration data shows higher estimates of the df of the underlying t-distribution, i.e., rather close
approximation of the normal distribution, in all three axes compared to two other sensors. The IMU
data shows slightly higher drift at a constant temperature compared to other two accelerometers.
However, as it was shown in Kemkes (2016), the IMU data, particularly the measurements recorded
from its X-axis, has a better stability of the measurements, i.e., approximately linear behaviour,
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over temperature ranges of 8 to 40◦C compared to the NAMS acceleration data. Consequently,
the IMU is selected as a suitable sensor among two other aforementioned MEMS accelerometers.
For this purpose, the estimates of the calibration parameters as well as the long-term stability of
the measurements over a variety of temperature ranges, the stochastic model parameters and the
auto-correlation model parameters are considered.

2.4 Calibration of MEMS Accelerometers
In this chapter, a robust and computationally efficient calibration procedure is proposed and im-
plemented to obtain reliable acceleration measurements recorded from the MEMS accelerometers.
Such a calibration procedure mainly eliminates the MEMS related systematic errors such as biases,
scale factors and non-orthogonalities between the axes. The experimental studies and analyses of
this research demonstrate that the estimated modal parameters from calibrated acceleration data
have minor deviations from those obtained from uncalibrated ones in a short time interval. How-
ever, the proposed calibration procedure is more beneficial either for a long-term monitoring, e.g.
few minutes or higher, or to enhance the accuracy of the displacements calculated from the double
integration.

2.4.1 Development of test scenarios for MEMS accelerometers calibration
A calibration procedure is designed, developed, and implemented based on a common six-position
static acceleration tests, cf. Shin and El-Sheimy (2002). A KUKA youBot (see Fig. 2.4) is utilised
to automatically perform calibration for fixed positions and for a certain time interval. It is an
omnidirectional mobile robot with an arm consisting of 5 axes and 4 wheels. Its weight is 5.3 kg
and its minimum and maximum velocities are 0.01 and 0.8m/s (KUKA youBot, 2012). The MEMS
accelerometer is rigidly attached to the arm of the youBot to ensure its stability through the entire
experiment.

Figure 2.4: Scheme of the KUKA youBot inside the climate chamber.

Figure 2.5 depicts the MEMS acceleration data recorded in all three directions for 20 positions
each measured for 5 minutes. As we can see, the positions were defined approximately symmetric
to have more reliable and accurate estimates of the calibration parameters. The first and last few
seconds of the measurements recorded at each position are discarded due to its transition measure-
ments of the youBot from one position to the other. It could be seen in this figure, that still some
transition measurements remain that are approximately connecting two consecutive measurements.
Therefore, they are treated as outliers within the calibration estimation procedure.

18
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Figure 2.5: Scheme of the entire MEMS acceleration data recorded for fixed positions and for a
certain time interval. The acceleration data in the X, Y and Z directions (ax, ay and
az) are illustrated with blue, red and green colours.

Since the performance characteristics of MEMS accelerometers are highly dependent on the en-
vironmental conditions such as temperature or humidity variations, the calibration procedure is
accomplished in a climate chamber and over different temperature ranges between 10 to 30◦C.
Therefore, it allows to observe the changes of the calibration parameters. Aforementioned temper-
ature ranges have been selected due to the restrictions of the climate chamber and the youBot in
higher or lower temperatures (Omidalizarandi et al., 2019c). Kemkes et al. (2019) compared the
variations of humidity and temperature inside the housing box which protects MEMS accelerom-
eter, with its surrounding environment. Thus, its corresponding investigation reveals that the
humidity inside the housing box is kept constant despite changes of the humidity outside of the
box. By contrast, the temperature inside the housing is adapted to the outside temperature.

2.4.2 Calibration model of triaxial accelerometers

A functional equation for the calibration of triaxial accelerometers is determined based on the work
of Shin and El-Sheimy (2002) as follows:

fg =
[
lgx − bgx
1 + sgx

]2

+
[
tan θyz

(
lgx − bgx
1 + sgx

)(
1

cos θyz

)
+
(
lgy − bgy
1 + sgy

)]2

+
[
tan θzx tan θyz −

tan θzy
cos θzx

(
lgx − bgx
1 + sgx

)
+
(

tan θzx
cos θyz

)

×
(
lgy − bgy
1 + sgy

)
+
(

1
cos θzx cos θzy

)(
lgz − bgz
1 + sgz

)]2

− |g|2

= 0, (2.2)
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where lgx, lgy, and lgz are the acceleration data recorded in all three directions. Unknown calibration
parameters include three biases (bgx, bgy, bgz), three scale factors (sgx, sgy, sgz), and three non-
orthogonality angles between the axes (θzx, θzy, θyz). The θzx and θzy are the non-orthogonalities
of the Z-axis with respect to the X and Y axes, and θyz is the non-orthogonality between X
and Y axes. A local gravity value (here g ≈ 9.812623860m/s2) is defined as a constraint within
the adjustment procedure. Thus, it allows a reliable estimate of the calibration parameters with
respect to the reference value. For more information, the readers are referred to Shin and El-Sheimy
(2002).

The gravity value can also be calculated based on the Equation 2.3 described by Titterton and
Weston (1997) as

g(0) = 9.780318(1 + 5.3024.10−3 × sin2 L− 5.9.10−6 × sin2 2L), (m/s2)

g(h) = g(0)
(1 + h

R0
)2 , (m/s2) (2.3)

where L is the geodetic latitude, h is the orthometric height above sea level, and R0 is the Earth
radius.

2.4.3 Adjustment of the calibration model with standard Gauss-Helmert model and
variance component estimation

In this adjustment model, the aforementioned deterministic calibration model (Equation 2.2) is
solved in a nonlinear standard GHM based on the principle of weighted least squares. To accurately
and reliably obtain the unknown calibration parameters, the proposed approach by Shin and El-
Sheimy (2002) is improved by assigning optimal weights to the observations based on the variance
component estimation (VCE) in an iterative manner. The proposed adjustment model is not
memory and computationally efficient due to an inverse of a large weight matrix within the GHM.
Despite of downsampling of the acceleration measurements by 100, its computation is still time
consuming.

It is assumed that stochastically independent observation vectors belong to 3 distinct groups with
k ∈ {1, 2, 3} that correspond to the acceleration measurements recorded in X, Y , and Z directions.
It is further assumed that the stochastic observation vector and its corresponding error vector
model follow a normal distribution, which is described by

lk∼N(µk,Σk), ek∼N(0,Σk), (2.4)

where Σk is the positive definite variance-covariance matrix of lk, µk are the expected values of
lk and E(ek) = 0. The condition equation is defined based on Equation 2.14, which is solved by
minimising the square sum of the residuals for the downsampled acceleration measurements. For
more information concerning the GHM, the readers are referred to Niemeier (2008). An uncertainty
of the acceleration measurements recorded from each axis is initially defined based on the standard
deviation of the measurements. Therefore, the weight is calculated for each distinct group with

Pk = σ2
0Σ−1

k , (2.5)

where σ2
0 is the unknown theoretical variance of unit weight, which here is considered a priori to be

1. Similar to the Algorithm 3 proposed in Omidalizarandi et al. (2019b), the adjustment model is
solved in three iterative procedures. In the first iterative procedure, the unknown functional model
parameters (ξ) are estimated while a convergence criterion, as defined in the following, is fulfilled.

d = (max |ξ(s) − ξ(s+1)|) ≤ 10−12, (2.6)
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where d is the maximum of the absolute differences of the estimated unknown parameters. In
the second iterative procedure, the stochastic model is introduced by assigning optimal weights
to the observations based on the VCE algorithm, as proposed by Koch (2014a) and applied in
Omidalizarandi et al. (2019b). For this purpose, the covariance matrix of the observations is
calculated as

Σll =


Σxx · · · 0
... Σyy

...
0 · · · Σzz

 =


s2

1Q11 · · · 0
... s2

2Q22
...

0 · · · s2
3Q33

 , (2.7)

where the factors {s2
1, s

2
2, s

2
3} are initialised based on the given a priori variances of the observables

and Q11, Q22 and Q33 are the cofactor matrices, which their corresponding variance components
(i.e. σ2

k for k ∈ {1, 2, 3}) are expected to have values close to 1. The VCE procedure proceeds until
σ̂k = [1, 1, 1]′ is achieved with an adequate estimation accuracy. Thus, the estimated factors, which
are a posteriori variances of the observables are calculated as

ŝ2
k =

C−1∏
c=1

(s2
k)(c).

R−1∏
r=1

(σ̂2
k)(r) for k ∈ {1, 2, 3}, (2.8)

where C and R are the maximum numbers of iterations (see Algorithm 3 in Omidalizarandi et al.
(2019b)). Next, a global test is accomplished in the third iterative procedure to evaluate the
correctness of the analysis (Amiri-Simkooei and Jazaeri, 2013). Thus, the null and alternative
hypotheses are defined similar to the works of Teunissen (2006) and Koch (2013a) with

H0 : σ2
0 = σ̂2

0 vs. H1 : σ2
0 6= σ̂2

0. (2.9)

The test value is defined by considering the normally distributed observations as proposed by
Neitzel (2010) and Amiri-Simkooei and Jazaeri (2013) with

Tχ2 = σ̂2
0
σ2

0
(m− u), (2.10)

where m and u are the numbers of observations and the unknown parameters. Here, a significance
level of α = 0.05 is considered. Therefore, if Tχ2 ≤ χ2

(m−u,1−α), the null hypothesis is accepted;
otherwise, it is rejected when the assumptions are violated (see Niemeier (2008)). To identify the
outliers in the acceleration measurements, the χ2 test with 95% confidence levels are applied with

Tχ2
g

=
eTg Pgeg

σ2
0

, (2.11)

where Tχ2
g
is the χ2 test value, the eg ((1 × 1) or (3 × 1) dimensions) and Pg ((1 × 1) or (3 × 3)

dimensions) are the residuals and the weight matrix of a few observables. Since performing data
snooping proposed by Baarda (1968) for such large number of the measurements is time consuming,
the outliers having test values above the calculated limit are reweighted by (Medić et al., 2019):

pg = 1
ŝ2
k

. exp
(
−

e2
g

(3ŝ2
k)2

)
, (2.12)

where the eg and pg account for one element of the eg and Pg. The entire adjustment procedure
repeats again to obtain the reliable and accurate estimates of the unknown parameters.
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2.4.4 Adjustment of the calibration model with applied adaptive robust estimation

Adjustment of the calibration model is further improved by means of an adaptive robust estimation
procedure to obtain more accurate, robust, and reliable calibration parameters. In addition, it is
a memory and computationally more efficient approach than the former one. For this purpose, a
component–wise vector multiplication is employed throughout the weighting for the entire MEMS
acceleration data.

In this model, the unknown calibration parameters are estimated based on an iterative re-weighted
least squares adjustment in a nonlinear GHM with t-distributed random deviations, as introduced
by Koch (2014a) and extended by Omidalizarandi et al. (2019b). The observables L1, L2 and L3
(i.e. lgx, lgy, and lgz) are assumed to be stochastically independent and belong to 3 different groups,
where each group k consists of nk observables.

Since the cost-effective MEMS acceleration data are expected to contain numerous outliers, the t-
distribution, which has heavier tails than normal distributions is used as outlier distribution in the
context of a robust ML estimation (Parzen, 1979; Wiśniewski, 2014). Therefore, lower weights are
assigned to the random deviations located in the tails of the probability density function (PDF),
yields a robust estimation procedure. A weight matrix is formed based on the locations of the
random deviations under the PDF of the scaled centred (Student’s) t-distribution with individual
unknown location parameter µk,i, group-dependent unknown scale factor σ2

k, and group-dependent
unknown df νk (Omidalizarandi et al., 2019b). The stochastic observation model is described by

Lk,i
ind.∼ tνk(µk,i, σ2

k), (2.13)

where an observable Lk,i with k ∈ {1, 2, 3} = {x, y, z} and i ∈ {1, . . . , nk} is associated with its
corresponding t-distribution depending on the measurement directions in the different axes.

In order to benefit from the large amount of the acceleration data recorded from the calibration
procedure and to avoid downsampling of the measurements, the GHM with t-distributed random
deviations algorithm proposed by Omidalizarandi et al. (2019b) is extended. The new adjustment
model prevents an inverse of quadratic form of the weight matrix within the adjustment procedure,
which makes it computationally efficient and fast. The proposed algorithm is described in the
following. To begin with the adjustment problem, the condition equation is set-up by

h(ξ,µ) = 0[r×1], (2.14)

where ξ is the (u× 1)-vector of functional parameters and µ the (n× 1)-vector of expected values
of L (i.e. µ = l+ e). All of the unknown parameters are stacked within the (u+ n+ 6)-vector

θ = [ξT ,µT , σ2
x, σ

2
y , σ

2
z , νx, νy, νz]T , (2.15)

all recorded observations are structured as a vector in a component form within the (n× 1)-vector

` = [`Tx , `Ty , `Tz ]T = [`x,1, . . . , `x,nx , `y,1, . . . , `y,ny , `z,1, . . . , `z,nz ]T , (2.16)

and the weight matrix is also structured as a vector in a component form

P = [pTx ,pTy ,pTz ]T = [px,1, . . . , px,nx , py,1, . . . , py,ny , pz,1, . . . , pz,nz ]T . (2.17)

In this adjustment model, instead of calculating the weight for each distinct group, the weight is
calculated for each individual observable nk. Next, the h(θ) is linearised and thus initialised by
using the expansion point θ[0] := θ(s) as
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h(θ) ≈ h(θ[0]) + ∂h(θ[0])
∂θ

(θ − θ[0])

= m + ∂h(θ[0])
∂ξ

(ξ − ξ[0]) +
3∑

k=1

∂h(θ[0])
∂µk

(µk − µ[0]
k )

= m + A(ξ − ξ[0]) +
3∑

k=1
Bk(µk − `k + `k − µ[0]

k )

= A∆ξ +
3∑

k=1
Bk(µk − `k) + m +

3∑
k=1

Bk(`k − µ[0]
k )

= A∆ξ +
3∑

k=1
Bk(µk − `k) + mp, (2.18)

where m = h(θ[0]) is the vector of misclosures, A = ∂h(θ[0])/∂ξ is the (r × u)-matrix of partial
derivatives of h(θ) with respect to ξ initialised at θ[0], and Bk = ∂h(θ[0])/∂µk is the (r × nk)-
matrix of partial derivatives of h(θ) with respect to µk initialised at θ[0], ∆ξ = ξ − ξ[0], and the
pseudo-misclosures are:

mp = m +
3∑

k=1
Bk(`k − µ[0]

k ). (2.19)

Therefore, the original condition equation is rewritten in the linearised form as

A∆ξ + Be+ mp = 0. (2.20)

The quadratic matrix B is stored in a component form composed of three vectors denoted by bx, by,
and bz, which allows to increase the efficiency of the computation. Subsequently, a component-wise
vector multiplication ⊗ is performed in the second summand of the Equation 2.20 via

3∑
k=1

Bk(µk − `k) = bx ⊗ (µx − `x) + by ⊗ (µy − `y) + bz ⊗ (µz − `z). (2.21)

The unknown parameters and the expected values of the observables can be calculated through

∆ξ(s+1) = −

AT

( 3∑
k=1

Bk[Pk(s)]−1BT
k

)−1

A

−1

AT

( 3∑
k=1

Bk[Pk(s)]−1BT
k

)−1

mp, (2.22)

ξ(s+1) = ξ(s) + ∆ξ(s+1), (2.23)

ek
(s+1) = [Pk(s)]−1BT

k

( 3∑
k=1

Bk[Pk(s)]−1BT
k

)−1 (
−A∆ξ(s+1) −mp

)
, (2.24)

µ
(s+1)
k = `k + ek(s+1). (2.25)

In the initial step s = 0, a uniform weight matrix P (0) = I is considered within the solution
equations, which is re-weighted in the next iteration steps. Since the weight matrix was stored in
the component form, thus ∑3

k=1 Bk[Pk(s)]−1BT
k can be determined through the component-wise

vector multiplication via

bx ⊗ [p(s)
x ]−1 ⊗ bx + by ⊗ [p(s)

y ]−1 ⊗ by + bz ⊗ [p(s)
z ]−1 ⊗ bz.
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To obtain an improved solution θ(s+1) through the aforementioned solution equations, a constrained
EM algorithm is employed by maximising the log-likelihood function subject to h(θ) = 0 (Omi-
dalizarandi et al., 2019b).

The group-dependent unknown scale factors and a posteriori variances of the observables for
k ∈ {x, y, z} are calculated through

(σ2
k)(s+1) = 1

nk

nk∑
i=1

p
(s)
k,i

(
`k,i − µ

(s+1)
k,i

)2
. (2.26)

(s2
k)(s+1) = (σ2

k)(s+1)
(

ν
(s+1)
k

ν
(s+1)
k − 2

)
. (2.27)

The dfs νx, νy, and νz are estimated through searching the zeros of (Kargoll et al., 2018)

0 = 1 + log ν(s+1)
k − ψ

(
ν

(s+1)
k

2

)
+ ψ

(
ν

(s+1)
k + 1

2

)

− log
(
ν

(s+1)
k + 1

)
+

nk∑
i=1

1
nk

(
log p(s+1)

k,i − p(s+1)
k,i

)
, (2.28)

with variables

p
(s+1)
k,i = ν

(s+1)
k + 1

ν
(s+1)
k +

(
`k,i−µ

(s+1)
k,i

σ
(s+1)
k

)2 , (2.29)

where ψ denotes the digamma function. An interval Newton method (Algorithm 6.1 in Hargreaves
(2002)) is employed to perform the zero search and to obtain a unique solution within an extremely
narrow interval (Omidalizarandi et al., 2019b).

2.4.5 Experimental results of the MEMS accelerometer calibration

In order to have a better realisation of the calibration parameters changes for a MEMS accelerom-
eter, a calibration procedure is conducted in a climate chamber over different temperatures. The
11 experiments are carried out over temperature ranges of 10 to 30◦C, started from 10◦C, reached
to 30◦C and then reversed back again to 10◦C.

Figures (2.6–2.8) illustrate the exemplary estimates of the calibration parameters computed by
the two proposed adjustment models, which are abbreviated to GHM–VCE and GHM–GEM. The
remaining estimates of the calibration parameters are provided in Figures A.1(a)–A.1(f) in the Ap-
pendix. The accurate, and robust estimates of the unknown calibration parameters are obtained
for the biases and the scale factors in both approaches, which have approximately similar values. It
can be seen that the estimated calibration parameters in forward and reversed back measurements
are nearly hysteresis, which might be due to changes of the temperatures from low to high and
inversely. In addition, the shifts between the estimated calibration parameters obtained from both
adjustment models are related to the different number of measurements, i.e., the downsampled
measurements are used in the GHM–VCE approach. However, such differences are very small and
therefore negligible. Furthermore, the GHM–GEM approach is performed in a time efficient man-
ner even for the case of using the entire recorded acceleration measurements.

As we expected, the trend of changes for the estimates of the calibration parameters are clearly
visible, particularly for the biases and the scale factors. Subsequently, it allows to correct the
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Figure 2.6: MEMS accelerometer calibration parameter - b̂gy [m/s2].

Figure 2.7: MEMS accelerometer calibration parameter - ŝgy.

Figure 2.8: MEMS accelerometer calibration parameter - θ̂yz [◦].
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acceleration measurements recorded in-situ environment at a specified temperature by means of a
linear interpolation. However, the range of changes for the estimates of the three non-orthogonality
angles are quite small and may still linearly be determined. There might be either a mathematical
correlation between the unknown parameters or a correlation between the acceleration measure-
ments recorded from the relevant axes. Investigation of such a correlation is out of the focus of this
dissertation and can be considered as a future work.

Figure 2.9 depicts the estimates of a posteriori standard deviations of the acceleration measure-
ments. As it can be seen, the estimated standard deviations in both adjustment models, and for
the measurements recorded in X and Y directions have approximately similar values. However,
a significant difference can be observed for Z direction. This can be due to the reason that the
acceleration measurements obtained from the Z direction are much noisier than the two other axes.
In addition, in the second adjustment model, and by downsampling by factor 100, the number of
observations has been reduced significantly. Therefore, it is difficult to get the reliable estimates of
the corresponding uncertainty.

Figure 2.9: A posteriori standard deviation of the MEMS acceleration measurements - σ̂a [m/s2].

2.5 Sensor Specifications
In this study, a cost-effective MEMS sensor, e.g. of type BNO055 from the Bosch company, has
been used. The sensor dimension (width × length × height) is 40×40×19mm and its weight is 12 g.
It has 9 degrees of freedom comprising a triaxial 14-bit accelerometer, a triaxial magnetometer,
and a triaxial 16-bit gyroscope, which outputs acceleration, magnetic field strength, and rotation
data, respectively. Additionally, the fused sensors output quaternion, Euler angles, rotation vector,
linear acceleration, gravity and independent heading, roll and pitch angles information (see manu-
facturer's data sheet for details (Datasheet BNO055, 2016)). However, merely the 3D acceleration
data have been recorded, which allow monitoring of a bridge structure in longitudinal, lateral, and
vertical directions. The maximum sampling frequency of the MEMS accelerometer is 200Hz. Even
though, it is set to 100Hz in this dissertation, which is minimum 4 times higher than typical eigen-
frequencies of a bridge structure in the range of 0.1 to 25Hz. Acceleration ranges can be defined
in the ranges of ±2g/±4g/±8g/±16g, which is set to ±2g.

The MEMS accelerometer is factory calibrated and can perform automatic continuous self-
calibration during the measurements (Datasheet BNO055, 2016). However, this functionality is
turned off to avoid its direct influences on the raw measurements and thus obtaining calibration
parameters in a robust and reliable procedure as described in section 2.4.
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2.6 Summary
A suitability analysis of the cost-effective MEMS accelerometers used for kinematic deformation
monitoring of bridge structures is investigated in this chapter. It is conducted based on the three-
step scenario as follows: In the first step, an automatic, robust, and accurate calibration procedure
is proposed and implemented to compensate the systematic errors of the MEMS accelerometers
including biases, scale factors, and non-orthogonality angles between the axes. Moreover, it allows
to enhance the accuracy of displacements derived from double integration of the acceleration mea-
surements over time. In addition, it assists to select an optimal MEMS accelerometer with less
impact of the systematic errors.

To perform the calibration, the MEMS accelerometer is attached to the KUKA youBot and placed
in a climate chamber, which allows to perform automatic measurements for fixed positions and for
certain time intervals over different temperature ranges. The calibration model is solved based on
two different adjustment models, namely, GHM–GEM and GHM–VCE. The analysis demonstrates
a very close approximation of the parameters from both approaches, in particular for the biases and
the scale factors. However, the GHM–GEM approach is computationally more efficient than the
GHM–VCE. Furthermore, the entire recorded acceleration measurements are taken into account in
the estimation procedure, which leads to better estimates of a posteriori standard deviations of the
acceleration measurements. The analysis shows a minor impact of the calibration parameters on
the estimates of the modal parameters for a short time interval, e.g., a few minutes. However, to
perform kinematic deformation monitoring for a longer period of time, e.g., 10 minutes or higher,
the calibration parameters are required to be considered.

The second step of the aforementioned scenario is accomplished under a controlled excitation ex-
periment by using a shaker which includes high-end reference accelerometer. Thus, it allows to
estimate the harmonic oscillation parameters including frequency, amplitude and phase shift. Ad-
ditionally, it enables to compare and validate the estimates of the parameters with their known
values as well as with those estimation obtained from other MEMS accelerometers or the reference
sensor. Moreover, such experiment allows to check for time synchronisation between the MEMS
accelerometers based on the estimates of the phase shifts. According to the analyses, the estimated
phase shifts between the measurements of different MEMS accelerometers fluctuate up to 5◦, i.e.,
approximately at a level of maximum 0.01 s time delay in our case, that is sufficient to characterise
the eigenforms.

In the third step, a static test experiment is conducted to estimate offset and drift coefficients
over a long period. In addition, it allows to handle auto-correlation for the 3D acceleration data
and to characterise an underlying stochastic distribution model by employing the AR process with
t-distributed errors. Therefore, it assists to select a suitable sensor with less AR model order, which
accounts for the less auto-correlation. Furthermore, it is also possible to handle cross-correlation
by employing the VAR process, which is given in Kargoll et al. (2020b).

To this end, the aforementioned three-step scenario assist us in the selection process to optimally
choose the proper MEMS accelerometers for the purpose of the kinematic deformation monitor-
ing of bridge structures. This is performed by selecting the MEMS accelerometers, which their
measurements have been less influenced by the systematic errors. Additionally, long-term stability
of the measurements with minimal offset and drift values over different temperature ranges are
investigated. Moreover, the stochastic model parameters as well as auto-correlation model param-
eters assist us in such selection process. Besides, it is desired to select a MEMS accelerometer,
which has a better uncertainty of the measurements in X and Y directions. It should be noted
that the MEMS accelerometers used in this dissertation have the worst uncertainties in Z direction
compared to two other axes. Consequently, the MEMS sensors are set-up along their X and Y
axes parallel to the vertical and the lateral directions of bridge structures.
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3 Potential of Image-Assisted Total Stations for
Bridge Monitoring

3.1 Introduction
Alternative to the MEMS accelerometers, geodetic measurement systems can be used for either
short- or long-term deformation monitoring of bridge structures. To perform kinematic deforma-
tion monitoring, a proper sensor is selected which has a capability to detect maximum excitation
amplitudes corresponding to the eigenfrequencies of an oscillating structure. In addition, it should
be able to perform measurements with a required sampling frequency (Lienhart et al., 2017).

An IATS as a modern geodetic sensor allows to acquire polar measurements as well as video frames,
which are typically captured by either an embedded or external camera. The combination of both
aforementioned types of measurements is beneficial, since an accurate metric displacement time
series can be generated for sequences of the video frames, which enables to perform displacement
and vibration monitoring, cf. Ehrhart and Lienhart (2015a,b). The state-of-the-art IATSs, e.g.
Leica Nova MS50/MS60 MultiStations, has a narrow angle on-axis telescope camera with capabil-
ity of a digital zoom factor (e.g. 8× zoom factor), which is used to magnify captured signalised
or non-signalised targets. Subsequently, one can perform displacement analysis at the level of mil-
limetre/submillimetre accuracy.

The IATS is superior to a conventional RTS due to the following reasons (Ehrhart, 2017b):

• no need to set-up retroreflective prisms on the structures,

• reducing costs,

• mitigating labour works,

• allowing to detect both signalised passive targets or non-signalised (e.g. natural, structural)
ones by using image/video data,

• allowing to generate displacement time series with a higher accuracy in an image plane per-
pendicular to the viewing direction,

• higher and more constant sampling frequency, which allows to extract higher eigenfrequencies
than those from RTS,

• extracting low and stable eigenfrequencies in long-term deformation monitoring,

• less aliasing effects of vibration signals due to detection of higher frequency ranges.

To perform highly accurate deformation monitoring by means of the IATS, the instrument warm-
up effects, proper camera and total station calibrations, mapping parameters (i.e. to relate the
image coordinate system to the total station coordinate system), and a suitable image processing
algorithm are required (Ehrhart and Lienhart, 2017a; Ehrhart, 2017b). The readers are referred to
Ehrhart (2017b) for further detailed explanations concerning the aforementioned procedures.

Lighting condition is a challenging issue in image-based measurement systems such as IATS that
makes the measurements even impossible in case of a complete dark condition (Lienhart et al.,
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2017), which is not the case in the RTS or conventional total stations. To overcome this prob-
lem, Bürki et al. (2010) and Wagner et al. (2013) utilise a light emitting target. However, often
such a target needs a power supply as well as an accessibility to the bridge structure. Ehrhart
and Lienhart (2015b) uses natural targets as an alternative solution to the passive/active targets.
Even though, it still requires light sources at night. Moreover, low lighting increases image noise
and thus, depending on the target type and its corresponding detection approach, the resulting
accuracy might be affected.

The feasibility of an optimal passive target pattern and its automatic, fast, and accurate centroid
detection approach are investigated in Omidalizarandi et al. (2019a). The proposed approach is
robust and reliable with respect to poor environmental conditions, such as low lighting, dusty sit-
uations, and skewed angle targets.

Omidalizarandi et al. (2018) benefit from the aforementioned passive target centroid detection
procedure for the purpose of displacement and vibration monitoring of a footbridge structure in
vertical direction. Therefore, a displacements time series is generated in the pixel unit by using
video frames that are captured by the telescope camera of the IATS. Afterwards, it is converted to
a meaningful metric unit such as millimetre by calibrating a vertical angular conversion factor of
the telescope camera in a laboratory environment.

Non-orthogonal viewing direction of part of a monitored bridge structure towards the IATS is also
an important factor, which has an impact on the uncertainty of the generated displacement time
series. Ehrhart (2017b) proposed an approach to encounter this problem for different set-ups of the
IATS. As a simple approach, the 3D point clouds around a target can be acquired, e.g., by means
of the scanning functionality of the IATS. Subsequently, the normal vector of a plane is calculated,
which is used to project the target to a plane that is orthogonal to the viewing direction.

The state-of-the-art of the IATS, e.g., the Leica MS50 with a practical sampling frequency of 10Hz,
has a limitation to detect higher frequencies due to its low sampling frequency. To overcome this
problem, a newer version of the IATS such as the Leica MS60 can be used. Alternatively, a high-
resolution digital camera with higher sampling frequency might be attached on top of the IATS
by means of a clamping system. Subsequently, EOPs between the fused sensors can be determined
similar to researches of Omidalizarandi and Neumann (2015); Omidalizarandi et al. (2016). For this
purpose, the TLS measurements should be replaced by the IATS measurements. To estimate the
EOPs between the IATS and the external digital camera, the space resection in photogrammetry
by using the collinearity condition equations, the 3D Helmert transformation, and the constraint
equation are solved within a GHM and GMM adjustment. The observables comprise the measure-
ments of signalised target points, which need to be acquired by means of the IATS, a high resolution
digital camera, and a laser tracker for the validation purpose. Furthermore, Omidalizarandi et al.
(2019b) have proposed three adjustment models to estimate the EOPs robustly and accurately.

Such a sensor fusion technique allows to perform long-term congruence deformation monitoring in
addition to its capability in kinematic deformation monitoring. However, merely using state-of-the-
art wide angle full-frame digital single-lens reflex (DSLR) camera, e.g., Nikon D750, for detecting
such a small displacement, i.e., submillimetre range, is not possible. It is due to the fact that such
a camera has a larger field of view (FOV) and covers a larger area of an oscillating object with less
resolution. Therefore, a telescopic lens could be attached to the aforementioned DSLR camera to
decrease the FOV and also to increase the resolution.

In case of the IATS, a short-term kinematic deformation monitoring is carried out by identify-
ing the modal parameters based on generated displacement time series. For this purpose, Omi-
dalizarandi et al. (2018) employed an observation model consisting of an undamped harmonic
oscillation (UDHO) model in terms of a sum of sinusoids, an auto-correlation model in terms of the
AR process, and a stochastic model in the form of the heavy-tailed family of scaled t-distributions.
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Next, the aforementioned three parametric models are jointly adjusted by means of the GEM
algorithm. Kargoll et al. (2019) and Omidalizarandi et al. (2020) extended the aforementioned ob-
servation model by considering the DHO model instead of the UDHO model. Therefore, it allows to
estimate the damping ratio coefficient as an additional unknown parameter within the adjustment
procedure. The readers are referred to chapter 4 for further information.

The generated displacement time series from the IATS can also be used for the long-term defor-
mation monitoring despite of its application in short-term kinematic deformation monitoring. For
this purpose, an absolute deformation time series can be generated by comparing an actual video
frame with an initial one that is captured at the beginning of a measurement campaign. However,
target detection through a proper image processing algorithm, stability of the instrument during
the monitoring, influences of weather conditions such as air temperature and humidity as well as
frequent measurements of control points play important roles on the accuracy of long-term defor-
mation monitoring.

To perform long-term kinematic deformation monitoring, the recorded acceleration data by the
MEMS accelerometer may be fused with the generated displacement data based on video frames of
the passive target captured by the IATS. The passive target can be attached in the vicinity of one
of the MEMS accelerometers for an efficient and a reliable data fusion. The aforementioned data
fusion seems to be vital, since the computed absolute position changes by double integrating the
MEMS acceleration data drift very fast (typically already in a few seconds). Therefore, the CUPT
is accomplished within the framework of the KF to solve the aforementioned data fusion.

3.2 Data Acquisition and Preprocessing
The state-of-the-art IATS comprises a robotic total station functionality and an imaging sensor.
Additionally, 3D laser scanning and GNSS connectivity might also be included, e.g., the IATS of
type Leica MS50. Further details description of the IATS can be found in Wagner et al. (2014).

The IATS measurements consist of the polar measurements such as horizontal directions, verti-
cal angles, and distance measurements in addition to the video streams that are captured by an
embedded or external attached camera. Additionally, having embedded on-axis telescope camera
with capabilities of an optical magnification as well as the camera zoom factor functionality
allows to perform displacement monitoring in a submillimetre range (Ehrhart and Lienhart, 2015a;
Omidalizarandi et al., 2018). Furthermore, the IATS benefits from the motorised axes of rotations,
which can be utilised for automatic and autonomous measurements of specified active targets (i.e.
retroreflective prism targets) or passive targets (i.e. signalised or non-signalised targets) at different
time epochs.

In order to utilise the IATS for displacement and vibration analysis of the bridge structures, as a
preliminary step, the displacement time series is generated in the following steps:

1. initial pointing to a passive target that is attached to the bridge structure and reading the
polar measurements,

2. reading the polar measurements in particular slope distance measurements that is needed for
the conversion from pixel to metric unit,

3. turning on the autofocus of the telescope camera of the IATS to capture sharp images,

4. reducing FOV by 8× digital zoom,

5. capturing the video frames of the passive target at different time epochs,

6. calculating the relative displacements by subtracting the target centroids that are extracted
from the sequences of the video frames,
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7. calculating the angular conversion factor of the telescope camera,

8. conversion from pixel unit to metric unit.

Such a measurement system is advantageous over other vision-based measurement systems, since
it allows to obtain displacements in metric unit without the need for an additional measurement
system.

To generate displacement time series for the purpose of short-term kinematic deformation moni-
toring, the extracted passive target centroids are always averaged over a certain period of time to
define the equilibrium position. Therefore, the displacement time series is calculated as follows:

δyi = αS(yi − y), (3.1)

where yi is the target centroid that is extracted at epoch i [px], y is the average of the extracted
target centroid within a certain period of time [px], S is the slope distance [mm], and α is the
angular conversion factor [′′/px]. Further explanations regarding the target centroid extraction as
well as calibration of the angular conversion factor of the telescope camera of the IATS are provided
in the following sections.

In order to benefit from an individual functionality of the IATS, the GeoCOM interface (Leica
Geosystems, 2014) is used in the Python programming language (Omidalizarandi et al., 2018).
Moreover, the stability over time for either short- or long-term deformation monitoring can be
controlled by measuring the tilt of the IATS in the horizontal and vertical directions similar to the
research of Ehrhart and Lienhart (2015b). For a more precise conversion, the instrument's axes
errors, vertical index error, and collimation error can also be considered.

3.3 Automatic and Accurate Passive Target Centroid Detection
An optimal passive target composes of a circular border with four intersected lines and its centroid
detection algorithm is proposed by Omidalizarandi et al. (2019a). The proposed target centroid
detection approach is proved to be an accurate, robust, reliable, and fast under poor environmen-
tal conditions such as low lighting, dusty environment, and skewed angle targets. In addition, in
case of poor initial sighting to the target or an incomplete viewing target pattern, the proposed
approach is still able to reliably localise the target. The aforementioned passive target design is
cheap regarding its manufacturing costs, which allows to attach several of them close to the MEMS
accelerometers. Thus, the video frames of the aforementioned passive targets, that are captured
by the telescope camera of the IATS, can be used for the purpose of either short- or long-term
deformation monitoring.

The manual initial sighting to the passive target is accomplished merely at the first measurement
epoch. Afterwards, all subsequent measurements are carried out automatically by means of mo-
torised axes of rotations of the IATS by using the measurement values of the initial pointing similar
to researches of Ehrhart and Lienhart (2015a,b).

The passive target centroid detection algorithm proposed by Omidalizarandi et al. (2019a) is briefly
explained in the following. For each image frame that is extracted from the captured video streams,
the localisation of the passive target is performed by using the Hough circle transform (HCT)
(Kaehler and Bradski, 2016). Afterwards, the template matching is carried out to detect the circu-
lar target border among all spurious detected circles. Therefore, it allows one to crop the images
to a region of interest that contains the passive target. Its advantages are twofold: (1) limiting the
search space to extract relevant edge features of the target and (2) speeding up the process (Reiterer
and Wagner, 2012). The cropping is performed based on the measurements of the slope distance to
the target, object size of the target, and the horizontal and vertical FOVs of the telescope camera
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of the IATS as follows:

FOV = 2 · tan−1
(
D

2 · S

)
[rad], (3.2)

dw = w · FOV
FOVh ·

(
π

180
) [px], (3.3)

dh = h · FOV
FOVv ·

(
π

180
) [px], (3.4)

where S is the slope distance [m], D the target size in object space [m], dw, dh the target width
and height [px], w and h the width and heights of the captured image [px], FOVh and FOVv the
horizontal and the vertical FOVs, which in case of the IATS, are set to 1.25◦ and 0.95◦, respectively
(Omidalizarandi et al., 2019a). It should be noted that the circle detection in a noisy image is
challenging. Therefore, the precise manual initial sighting from the previous step assists to reliably
recognise the passive target.

The median blur and bilateral filtering are applied to smooth the cropped images by reducing the
noise and to preserve the sharp edges. To extract line features of the cropped image, the line
segment detector (LSD) (Grompone von Gioi et al., 2012) is applied. It is advantageous compared
to the Canny edge detector (Canny, 1986), since there is no need to connect fragmented extracted
edges. Additionally, it is only parametrised at the beginning and does not need any further changes
in case of either poor lighting conditions or viewing angles (Omidalizarandi et al., 2019a).

In the next step, azimuths of the extracted lines are calculated and sorted in a descending order.
Then, the azimuths with maximum bin values are selected based on a histogram of the azimuths in
an iterative procedure. In each iteration, the LSD lines with a deviation less than a predefined angle
threshold of 15◦ from the corresponding azimuth bin value are selected. Afterwards, the selected
LSD vector lines are converted to LSD raster lines to increase the redundancy. The random sample
consensus (RANSAC) (Fischler and Bolles, 1981) line fitting algorithm is then applied to fit the
line to the LSD raster lines and to discard spurious lines. To increase the reliability and robustness
of the fitted lines, a Huber-robust line fitting (Kaehler and Bradski, 2016) is applied to those LSD
raster lines within a predefined buffer width from each side of the fitted RANSAC line. The fitted
Huber lines are intersected. Subsequently, the intersected points are clustered by using the k–d tree
neighbourhood algorithm and by considering a threshold of 2 pixels. Afterwards, the maximum
cluster is selected and a final intersection point is calculated based on the weighted average values
of the interested points. Figure 3.1 illustrates an overview of the proposed target centroid detection
algorithm. For further information, the readers are referred to Omidalizarandi et al. (2019a).

3.4 Conversion of Displacement Time Series from Pixel to Metric
Units

The calculated displacement time series in pixel units is converted to metric units by using cali-
bration parameters of the IATS. The calibration parameters, which are related to its optical mea-
surement system, comprise the internal calibration of the telescope camera of the IATS including
focal length, principal point, radial, and tangential distortions. In addition, the corresponding total
station related error sources consist of, e.g., zero offset, horizontal collimation error, vertical index
error, tilting axis error, and compensator index error.

In this dissertation, the internal calibration of the telescope camera of the IATS is neglected, since
it has small effect on the short-term kinematic deformation monitoring due to the relative compu-
tation of the displacement time series for the sequence of the video frames (Ehrhart and Lienhart,
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Figure 3.1: An overview of the passive target centroid detection algorithm.
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2015a). In addition, reduction of the FOV by 8× digital zoom allows to take a small central por-
tion of the image captured with 1× digital zoom. Subsequently the effect of the aforementioned
camera calibration parameters is mitigated (Omidalizarandi et al., 2018). Figure 3.2 illustrates
captured images by the telescope camera of the IATS for two different distances. As previously
stated, the FOV is reduced by 8× digital zoom and the image resolution is set to 320×240 px. As
it can be seen, the target centroid is located approximately close to the centre, which is due to the
precise manual initial sighting at the beginning of the measurements. Additionally, the proposed
target pattern including redundant line features mitigates the impact of the radial and tangential
distortions at centre of the images. Furthermore, the remaining systematic errors are treated as
coloured measurement noise, which is separated from white noise through the AR process (Omi-
dalizarandi et al., 2018). Further explanation of the aforementioned AR procedure is described in
the next chapter.

Figure 3.2: The IATS telescope camera images: image resolution of 320×240 px and 8× digital zoom
for distances of 5m (left), and 23m (right).

A long-term deformation monitoring at the accuracy level of millimetre/submillimetre can be ac-
complished by using a deformation time series, which is generated from the video frames of the
IATS. For this purpose, the internal camera calibration of the IATS can be performed similar to
researches of Walser (2004); Ehrhart (2017b); Zhou et al. (2017) to model the corresponding sys-
tematic errors and to increase the reliability of the measurements.

The generated displacement time series is converted from pixel to metric units by means of the
angular conversion factor of the telescope camera of the IATS, which needs to be calibrated. In this
dissertation, since the displacement and vibration analysis is performed in the vertical direction,
the vertical angular conversion factor is merely calibrated. To begin with its calibration, a coded
target pattern is designed in AutoCAD 2016 software with fixed coded target distances. Since the
telescope camera of the IATS has a very small FOV, the aforementioned coded target pattern is
plotted in two different paper sizes of A2 and A4 with distances of 0.09 and 0.0335m. Therefore,
it allows to cover more coded targets in the images captured at different distances up to approxi-
mately 30m (Omidalizarandi et al., 2018).

A target centroid of the coded target in the image space is extracted based on the image processing
techniques as described in Omidalizarandi et al. (2018). To obtain the 3D object coordinates of the
coded targets, multiple images from different viewing angles are captured by using a high-resolution
digital camera. Afterwards, the target centroids extracted in the image space are put into the space
resection bundle adjustment and solved in an iterative procedure.

The vertical angular conversion factor is computed based on the following equations:

psyi = δXY Zi
δxyi

[mm/px], (3.5)

psy = p̂1.S + p̂0, (3.6)
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p̂v = p̂1.S + p̂0, (3.7)

ˆFOVv = p̂v · h
S

[rad], (3.8)

α̂v =
ˆFOVv
h
· 180 · 3600

π
[′′/px], (3.9)

where δXY Zi is the difference between 3D coordinates of the target centroids in [m], δxyi is the
difference between the target centroids in both x and y directions in [px], psyi is the pixel size in
the y direction at a specified slope distance, p̂1 and p̂0 are the estimated coefficients of the first
degree polynomial, S is the slope distance in [m], p̂v is the estimated pixel size value obtained from
fitted polynomial at a specified slope distance, ˆFOVv is the estimated vertical FOV in [rad], h is
the height of the image in [px] and α̂v is the estimated vertical angular conversion factor in [′′/px].
To fit the first degree polynomial and to evaluate them, for example, polyfit and polyval MATLAB
routines can be used, respectively (Omidalizarandi et al., 2018).

The estimated α̂v is equal to 1.9583 [′′/px], which is a close approximation of 1.9632 [′′/px]
given in Ehrhart and Lienhart (2015a). Additionally, the estimated ˆFOVv is equal to 1.04442◦,
which slightly differs from its corresponding value given in the user manual of the sensor (Omi-
dalizarandi et al., 2018).

3.5 External Calibration of Image-Assisted Total Stations and Digital
Camera

As previously mentioned, to tackle the low sampling rate problem of the IATS, e.g., Leica MS50,
a high-resolution digital camera with higher sampling rate may be attached on top of the IATS
similar to the researches of Omidalizarandi and Neumann (2015); Omidalizarandi et al. (2016).
Typically, wide angle DSLR cameras are not able to detect such small displacements in submil-
limetre range due to a larger FOV with considerably less resolution. To overcome this problem, a
telescopic lens might be attached to the aforementioned DSLR cameras to decrease the FOV and
therefore to increase the resolution.

Additionally, the high-resolution DSLR camera may allow to perform long-term congruence de-
formation monitoring both in direction of the laser beam of the IATS and perpendicular to that
despite of its capability in short-term kinematic deformation monitoring. This can be carried out
by extracting points, lines or plane features both from the 3D scanning point clouds and the im-
ages captured at different epochs of time. Subsequently, aforementioned data fusion is beneficial,
since both measurements are complementary to each other and the weakness of one sensor data
is compensated by the strength of another one. However, in case of large incidence angles, the
measurements obtained from both sensors do not necessarily enhance the accuracy of deformation
monitoring, but increase the precision (Omidalizarandi et al., 2019b). In such a case, multiple
images from free set-ups of cameras may additionally be captured. The discussion of congruence
deformation monitoring is out of scope of this dissertation and may be conducted in future work.

In the context of sensor fusion, the relative orientation parameters between the sensor origins must
be known. For geodetic sensors including embedded cameras, such as the IATS with the telescope
or overview cameras, the EOPs are typically known from a calibration procedure in the manufactur-
ing process. By contrast, in case of an externally attached camera, the EOPs are priorly unknown,
which should be determined through a proper calibration procedure (Omidalizarandi et al., 2019a).

To determine the EOPs between the high-resolution DSLR camera and a geodetic sensor such as a
TLS, Omidalizarandi and Neumann (2015); Omidalizarandi et al. (2016, 2019b) benefit from sig-
nalised target points. The observables comprise the 2D coordinates of the signalised target points
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acquired from the captured images, their corresponding 3D coordinates measured by the TLS as
well as horizontal angle reading of the TLS (Az). Additionally, high accurate 3D coordinates mea-
sured by a laser tracker are used for the purpose of validation. For simplicity, the observables
are assumed to be independent and therefore the stochastic model is defined as a block diagonal
matrix. In addition, the internal camera calibration parameters are calculated in advance from the
laboratory calibration to prevent their correlation with the EOPs (Omidalizarandi et al., 2019b).

The deterministic models are defined based on the space resection technique in photogrammetry
by using the collinearity condition equations (Eqs. 3.10 and 3.11), the 3D Helmert transformation
(Eq. 3.12), and a constraint equation (Eq. 3.13). The unknown parameters consist of the 6 EOPs
between the the TLS and the digital camera, i.e., three translations (XC , YC , ZC) and three orienta-
tions (κ, ϕ, ω), the 7 EOPs between the TLS and the laser tracker, i.e., the scale (λ), the translations
(X ′c, Y ′c , Z ′c), and the orientations (κ′, ϕ′, ω′), as well as the target coordinates in the TLS coordinate
system (XTLS , YTLS , ZTLS) (Omidalizarandi et al., 2019b). Thus, the mathematical functions are
as follows:

Fx = x′ − f p
q
, (3.10)

Fy = y′ − f s
q
, (3.11)

F = λRκ′ϕ′ω′


XTLS

YTLS

ZTLS

 +


X ′c

Y ′c

Z ′c

−

XL

YL

ZL

 , (3.12)

F =


X

Y

Z

−

XTLS

YTLS

ZTLS

 , (3.13)

where (x′, y′) are rectified target coordinates in the image space according to Brown's equations
(Duane, 1971), f is the focal length, (XL, YL, ZL) are the target coordinates in the laser tracker
coordinate system, (X,Y, Z) are the unknown target coordinates in the TLS coordinate system.
The rotation matrix (Rκ′ϕ′ω′) is the product of the individual rotation matrices which are derived
as follows:

Rω′ =


1 0 0
0 cosω′ sinω′

0 − sinω′ cosω′

 ,

Rϕ′ =


cosϕ′ 0 − sinϕ′

0 1 0
sinϕ′ 0 cosϕ′

 ,

Rκ′ =


cosκ′ sin κ′ 0
− sin κ′ cosκ′ 0

0 0 1

 .

The (p, s, q) parameters given in Equations 3.10 and 3.11 are calculated by transforming the TLS
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target coordinate to the 3D camera coordinate system by means of the following equation:
p

s

q

 = Rκϕω

RAz


XTLS

YTLS

ZTLS

 −

Xc

Yc

Zc


 , (3.14)

where the rotation matrix Rκϕω is set up in analogy to Rκ′ϕ′ω′ . In addition, the RAz is the rotation
matrix based on the measured Az, which is defined of the same type as Rκ′ .

Omidalizarandi et al. (2019b) proposed three adjustment models to estimate the EOPs between the
fused sensors by a rigorous bundle adjustment procedure robustly, and accurately. The developed
and implemented adjustment methods are as follows:

1. the EM algorithm to solve the GHM with grouped t-distributed random deviations,

2. the EM algorithm to solve the qGMM with t-distributed pseudo-misclosures,

3. a classical least-squares procedure to solve the GHM including the VCE and outlier removal
procedure.

The first adjustment model, which is an extension to Koch (2014b), allows for observation group-
specific scale factors and group-specific dfs. The second adjustment model is established by trans-
forming the GHM's condition equations into observation equations of a substitute GMM. Subse-
quently, instead of downweighting outlying observations individually, all observations which are
causing large misclosure values are uniformly downweighted. The third adjustment model takes
the form of a classical GHM. Additionally, the VCE is applied to recalculate the covariance matrix
of the observations in an iterative manner. The statistical testing such as chi-square or t-student
tests are applied to identify outliers and to exclude them (Schneider, 2008).

The non-linear deterministic models are linearised based on the Taylor series expansion. There-
fore, a direct linear transformation together with the RANSAC algorithm are applied to estimate
the initial values for the collinearity equation. Moreover, the closed-form solution by using unit
quaternions is applied to estimate the initial values for the 3D Helmert transformation (Horn,
1987). Figure 3.3 shows a scheme of the proposed algorithm. The readers are referred to Omi-
dalizarandi et al. (2019b) for further information.

3.6 Sensor Specifications and Measurement Systems
Previous sections described a general procedure that could be applied to any type of the IATS.
However, in this dissertation, an IATS of type Leica Nova MS50 MultiStation with a practical
sampling frequency of 10Hz is used to perform displacement and vibration analyses. The total
station functionalities of the IATS allow to perform polar measurements with following accuracy
levels:

• an angular accuracy of 1′′ (according to ISO 17123-3),

• an optical-distance measurement accuracy of 1mm + 1.5 ppm for prism targets from 1.5 to
10000m (according to ISO 17123-4),

• an optical-distance measurement accuracy of 2mm + 2ppm for non-prism targets, e.g., pas-
sive targets, from 1.5 to 2000m.

In addition, the used IATS consists of an overview camera with diagonal FOV of 19.4◦ and a tele-
scope camera with diagonal FOV of 1.5◦. Both the telescope and the overview cameras comprise 5
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Figure 3.3: A scheme of the robust external calibration of the IATS and digital camera by using
signalised targets. The correlation model is neglected for simplicity.

megapixels CMOS sensors. The telescope camera is an on-axis camera with 30× optical magnifica-
tion of the overview camera, which is located in the optical path of the IATS. The horizontal and
vertical FOVs of the telescope camera of the used IATS are 1.3◦ and 1.0◦. The angular resolution
(α) of the telescope camera is approximately 1.7′′/px, which is calculated by dividing the diagonal
FOV by the diagonal length, in [px], of an captured image (Leica Geosystems, 2013).

The resolutions of the captured images vary from 320 × 240 px to 2560 × 1920 px. However, the
Leica MS50 allows to capture video streams with a resolution of 320 × 240 px (Ehrhart and Lien-
hart, 2015a). The white balance is set to ‘automatic’ and the autofocus is set to ‘on’ to capture
sharp images. As previously stated, the FOV is reduced by 8× zoom using the camera zoom
factor functionality of the GeoCOM interface to increase the resolution. In addition, the reflector-
less distance measurements to the passive targets allow to precisely set the telescope’s focus motor
position (Ehrhart and Lienhart, 2015a). The entire video acquisition procedure is controlled via our
self-developed graphical user interface in the Python programming language (Omidalizarandi et al.,
2018).
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3.7 Summary

A good feasibility of an IATS for displacement and vibration analysis of bridge structures is shown
in this chapter.

The IATS as a modern geodetic sensor benefits from polar measurements as well as two embedded
on-axis telescope and overview cameras. The combination of both types of the measurement al-
lows to perform displacement/deformation analysis of bridge structures in submillimetre/millimetre
range accuracy.

The IATS is privileged over the MEMS accelerometers in either short- or long-term displacement
monitoring. It is due to the reason that absolute position changes derived from double integration
of the MEMS acceleration data are drifting fast. However, in short-term displacement monitoring,
e.g., a few seconds, it is possible to obtain a higher accurate displacement data from the MEMS
acceleration data. It can be achieved by double integration of the DHO model (see section 4.5).
Additionally, the MEMS accelerometers are more suitable to perform vibration analysis and to
detect all eigenfrequencies, e.g. in a range of 0.1 to 25Hz that often occur in bridge structures.
However, the state-of-the-art IATS, e.g. Leica MS60, allows to identify eigenfrequencies of bridge
structures up to 15Hz (Ehrhart, 2017b) by considering the Nyquist sampling theorem.

The IATS merely allows to perform vibration analysis in only two directions orthogonal to viewing
direction. In addition, it is challenging to characterise eigenforms by using one IATS. Therefore,
additional IATS or cameras (e.g. DSLR camera) should be utilised. On the contrary, the MEMS
accelerometer is cost-effective and therefore numerous of them can be set-up at different positions
of bridge structures. Therefore, the acceleration data are recorded in vertical, lateral, and longitu-
dinal directions. Subsequently, the eigenforms can be characterised in all three directions.

Calibration parameters have a great affect on the accuracy of the displacement/absolute defor-
mation time series, which are obtained from the IATS in either short- or long-term deformation
monitoring. However, the MEMS acceleration data are recorded directly and there is no need
for an additional data conversion. Furthermore, as previously stated, the calibration parameters
of the MEMS accelerometers have less impact on the estimated modal parameters in short-term
kinematic deformation monitoring. However, they should be considered for long-term deformation
monitoring to achieve more accurate and reliable results.

The IATS is a contactless measurement system and therefore it can acquire measurements by being
set up away from the bridge structures. The IATS is capable of capturing signalised/non-signalised
targets and there is no need to set-up retroreflective prisms on the structures. In addition, it is
noteworthy to mention that the IATS is advantageous to a conventional RTS for vibration analysis.
It is due to the fact that the IATS has a higher and constant sampling rate, which enables to detect
eigenfrequencies in a wider range with a higher accuracy.

A displacement time series is generated by measuring a slope distance to a passive target, and by
using sequences of video streams of the passive target, which is captured by an embedded on-axis
telescope camera of the IATS with a practical sampling frequency of 10–20Hz depending on the
instrument's type. The passive target is possibly attached in the vicinity of one of the MEMS
accelerometers. An absolute deformation time series can be generated by comparing the detected
targets that are obtained from actual video frames and an initial one captured at the beginning of
measurement campaign. For this purpose, as a preliminary step, the feasibility of a proper passive
target pattern consisting of four intersected lines with a circular border as well as its accurate and
reliable centroid detection approach is investigated in (Omidalizarandi et al., 2019a). Next, a ver-
tical angular conversion factor is calibrated in a laboratory environment, which allows to convert
the generated displacement from pixel to metric units such as millimetre.
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A comprehensive observation model consisting of the DHO model, an auto-correlation model in
the form of an AR process, and a stochastic model in the form of heavy tailed family of scaled t-
distributions with an unknown df and with unknown scale factor are employed and jointly adjusted
by means of the GEM algorithm. Therefore, a robust and consistent procedure is proposed and
implemented, which allows to robustly, accurately, and reliably perform displacement and vibration
analyses of the bridge structures. Readers are referred to chapter 4 for more information.

The overall analyses demonstrate that the IATS, i.e., Leica MS50, is capable to identify eigenfre-
quencies up to 5Hz, i.e., in the view of Nyquist sampling theorem. The vibration analyses obtained
from both controlled excitation and the bridge structures demonstrate that amplitudes are esti-
mated in submillimetre range accuracy and frequencies with an accuracy of better than 0.1Hz.
However, the damping ratio coefficients could not be detected as accurate as of that obtained from
the MEMS acceleration data. This is due to the reason that the amplitudes of an oscillation are
lower than the uncertainties of the measurements. In addition, the higher frequencies that are not
detected are superimposed on the lower frequencies and therefore can change the magnitudes of
the amplitudes (Omidalizarandi et al., 2019c).

To overcome the deficiency of the IATS with a low sampling frequency, a high resolution digital
camera, that is equipped with a telescopic lens, can be mounted on top of it. To estimate the
EOPs between the fused sensors, a robust sensor fusion approach is proposed and implemented
which can be extended and used to other sensor fusion problems by defining a proper functional
model. For this purpose, the four non-linear functional models are defined based on the space
resection by collinearity equations, the 3D Helmert transformation, and the constraint equation.
The aforementioned functional models are then solved in a rigorous bundle adjustment procedure
by using the signalised target points. Next, the three different adjustment models are developed
and implemented to robustly and high accurately estimate the EOPs between the fused sensors.
In addition, the Laser tracker as a highly accurate reference sensor is considered for the purpose of
validation.

The IATS and the MEMS accelerometer data sets can be used as complementary information to
each other and the weakness of one sensor data is compensated by the strength of another one.
Such information is particularly of interest when maximum amplitudes that are derived from an
ambient excitation experiment for a bridge structure (e.g. a concrete bridge) are considerably
small, i.e., at the level of the coloured measurement noise of the MEMS acceleration data. In
addition, the MEMS acceleration data yields accurate estimates of the modal parameters such as
eigenfrequencies, amplitudes, and damping ratio coefficients over short time but suffers from accu-
racy degradation with time for absolute displacements/positions estimates. Therefore, 1D CUPT
is carried out by fusing the IATS displacement data and the MEMS acceleration data within the
KF framework to encounter this problem (Omidalizarandi et al., 2019c). Further information is
presented in chapter 5.
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4 Robust Kinematic Deformation Monitoring of
Bridge Structures

4.1 Introduction

Kinematic deformation monitoring of an oscillating structure, such as a bridge, plays an important
role in characterising the dynamic behaviour of the structure. It further allows to assess the current
states of the health of the structure and to avoid its deterioration at an early stage. To perform
vibration-based SHM of the bridge structure from a geodetic point of view, the kinematic defor-
mation monitoring is carried out by estimating the modal parameters including eigenfrequencies,
eigenforms, and modal damping.

The aforementioned modal parameters, in particular, eigenfrequencies may vary case by case, de-
pending on geometry, material, weight, stress, and strain of a structure (Neitzel et al., 2011). In
addition, applied excitations as well as environmental conditions, e.g., temperature and humidity
variations, cause changes of the modal parameters (Peeters et al., 2001; Rohrmann et al., 2000).
Subsequently, it is a challenging task to recognise deterioration of a structure under such conditions.
Typically, statistical hypothesis testing is accomplished to interpret the changes of the estimated
modal parameters. However, a large-scale data acquisition, e.g., over a year, and under different
loading and environmental conditions are required. Such comprehensive experiments are time con-
suming, which is out of scope of this dissertation. Therefore, to simplify the task, the focus is more
on the estimation of the aforementioned modal parameters, i.e. for a specific temperature.

As a preliminary step, a suitable and cost-effective measurement system is required. It is desirable
to choose a sensor which is capable of performing automatic and permanent vibration measure-
ments at specified time intervals and with an adequate sampling frequency. For this purpose, as
previously mentioned, a geo-sensor network of MEMS accelerometers are located at predefined po-
sitions, which are precalculated from the FEM analysis. Subsequently, the recorded acceleration
data are used to identify all eigenfrequencies occurring at the bridge structures (in the view of
Nyquist sampling theorem).

Robust, accurate, and automatic estimates of the aforementioned modal parameters is also a chal-
lenging task. Particularly, this is even more challenging when the structure is under continued
imposition of the forces due to moving vehicles or wind. Thus, to have reliable realisation of the
aforementioned modal parameters changes, a robust kinematic deformation monitoring procedure
is developed and implemented, which can be extended and used for any type of time series data sets.
The proposed approach is so–called robust time domain modal parameter identification (RT-MPI)
technique. It can be conducted either in near real-time or in a post-processing to achieve robust
and high accurate results.

The RT-MPI algorithm allows to automatically select an excitation (ambient) window. It further
allows for an automatic and a reliable identification of initial eigenfrequencies as well as a robust and
accurate estimation of eigenfrequencies, damping ratio coefficients and eigenforms of an oscillating
structure. The modal parameters including eigenfrequency, damping ratio coefficient, amplitude,
and phase shift are jointly estimated by means of the GEM algorithm, and by determining an
observation model consisting of: (1) a DHO model, (2) the AR model of coloured measurement
noise and (3) a stochastic model in the form of the heavy-tailed family of scaled t-distributions.
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The eigenforms are characterised in a subsequent step, and by using the estimated parameters from
the GEM algorithm. An overview of the proposed RT-MPI algorithm is sketched in Figure 4.1.

The proposed RT-MPI approach is superior to the state-of-the-art approaches such as data driven
stochastic subspace identification (SSI-DATA) (e.g., Boonyapinyo and Janesupasaeree (2010)) or co-
variance driven stochastic subspace identification method (SSI-COV) (e.g., Magalhaes et al. (2009);
Reynders et al. (2008)), due to the following reasons:

• achieve robust, reliable, and accurate estimates of the modal parameters,

• no need to define the system order,

• high accurate estimates of amplitudes in both units of [m/s2] and [mm],

• being able to characterise a deflection eigenform in its true scale for selected excitation window
within a short time interval.

This chapter continues by automatically selecting a proper excitation window for either ambient or
forced vibration measurements, which is introduced in section 4.2. Eigenfrequencies are identified
in section 4.3, which are used as initial frequency values within the adjustment procedure. Next,
the robust estimation procedure is explained in section 4.4. The displacement analysis based on
double integration is described in section 4.5. The characterisation of eigenforms is presented in
section 4.6. Finally, a summary is given in section 4.7.

4.2 Ambient Window Selection
As a preliminary step, a proper excitation window is selected, which allows to optimally estimate
the modal parameters, in particular, damping ratio coefficients (Omidalizarandi et al., 2020). The
aforementioned excitation window is a so–called ambient window when it comprises ambient vibra-
tion measurements. In an ideal case, the excitation window, that consists of a perfect free vibration
decay of a vibration signal, should be selected. However, selection of such an ambient window is
often a crucial task, since a bridge structure is mostly under continuous imposition of loads such
as moving vehicles or wind. Subsequently, the estimates of the damping ratio coefficients can be
significantly influenced depending on the energy contents of the signal and the amplitudes (Wenzel,
2009a).

The ambient window selection procedure is started by detecting the peaks of vibration measure-
ments, e.g., MEMS acceleration data. A minimum peak height value is set to three times standard
deviation of the acceleration data. The k-nearest neighbour (KNN) search algorithm is applied
within a range of 10 – 15 s to cluster the selected peaks. The aforementioned range is defined due
to mitigating the energy contents of the imposed external forces in a few seconds. A peak with
maximum value in each cluster is selected as a starting point. Acceleration data within an ambient
window with a size of 10 s are selected, which are then input into the estimation procedure to esti-
mate the modal parameters (see sections 4.3 and 4.4 for detailed explanations of initialisation and
estimation steps). Next, the ambient window is enlarged incrementally by a defined step size, e.g.,
10 s, to meet the next significant peak of a new cluster (see Algorithm 1 in Omidalizarandi et al.
(2020)).

A pattern recognition methodology might be beneficial for detecting undesirable signals caused
by e.g, passing trains or electrical sources (Wenzel, 2009a). In addition, as mentioned by Wenzel
(2009a), such abnormal signals typically appear with extremely sharp rises having amplitudes sig-
nificantly greater than a normal signal.

In near real-time processing of our proposed algorithm, it is not necessary to omit either the un-
wanted signals or the sharply rising peaks. However, in a post-processing step, the starting point
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4.2 Ambient Window Selection

Figure 4.1: An overview of the RT-MPI algorithm.
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4 Robust Kinematic Deformation Monitoring of Bridge Structures

of the ambient window is moved forward through the peaks within each cluster and thus repeating
the estimation procedure. The aforementioned repetitive procedure proceeds till obtaining an ac-
ceptance of WNT criterion described by Kargoll et al. (2018). Consequently, it can be interpreted
that in case of the acceptance of the WNT criterion, the influence of the unwanted signals caused,
i.e., mainly due to the external forces, might have been mitigated with the selected ambient window
(Omidalizarandi et al., 2020).

4.3 Identification of Initial Modal Frequencies

Identification of initial eigenfrequencies as approximate values plays an important role in the es-
timation procedure of the proposed RT-MPI algorithm. Such identification task is even more
challenging in case of either closely spaced frequencies or presence of high coloured measurement
noise in the vibration measurements (Omidalizarandi et al., 2020).

To deal with the aforementioned problems, the eigenfrequencies determination is performed in two
steps and with different parameterisation of the signal subspace dimension and noise power thresh-
old (see Algorithm 2; Steps 1 and 2 in Omidalizarandi et al. (2020)). The first step allows to
extract well-separated eigenfrequencies with dominant amplitudes. By contrast, the second step
enables to identify closely spaced frequencies or possibly those frequencies with lower amplitudes.

For this purpose, a pseudospectrum is calculated based on the eigenspace analysis of the correla-
tion matrix of the measurements (`) (Marple, 1987) by using multiple signal classification (MUSIC)
algorithm (Jiang and Adeli, 2007; Amezquita-Sanchez and Adeli, 2015). The MUSIC algorithm
allows to extract high-resolution frequencies by using the vibration measurements either contam-
inated with high coloured measurement noise or having low SNR value (Amezquita-Sanchez and
Adeli, 2015). In the first and the second parameterisation of the MUSIC algorithm, the signal
subspace dimension is set to the integer value of half of a sampling frequency (Fs/2) and (3 · Fs/2).
In addition, an integer length of the FFT is set to 1024 and 4096.

To get rid of spurious frequencies extracted from the MUSIC algorithm and to obtain correct ini-
tial values, the two following steps are carried out: firstly, the frequencies are bounded within the
determined boundaries. Then, they are replaced with the corresponding frequencies obtained from
the DFT, which have maximum amplitudes within the boundaries. Secondly, two upper and lower
limits of noise power thresholds are calculated based on the estimates of the power spectral density
(PSD) of the vibration measurements, which are used in the first and second MUSIC algorithm
parameterisation. The readers are referred to Omidalizarandi et al. (2020) for detailed information
regarding the calculation of the noise power thresholds.

The frequencies identified from the first step (see Algorithm 2; Step 1 in Omidalizarandi et al.
(2020)) are input to the robust estimation step, which is described in the following section. Next, a
new vector of frequencies, which consists of remaining frequencies, is formed by subtracting the fre-
quencies extracted from the first and second steps. Then, all possible combinations of the remaining
frequencies are determined and added to the first vector of the initial frequencies (i.e. frequencies
identified from the first step) at each iteration (see Algorithm 3 in Omidalizarandi et al. (2020)).

Finally, an optimal vector of initial frequencies is selected based on a minimum estimate of cost
values, which are calculated with

cost(n) = eTf
(n) + eTξ

(n) + log10(p(n)) + wntc + εA, (4.1)

where p is the AR model order, wntc the cost value for the WNT criterion (i.e. being 0 or 1 in case of
acceptance or rejection of the WNT criterion), εA the root mean square error (RMSE) of amplitudes
of the frequencies identified from the first step (see Algorithm 2 in Omidalizarandi et al. (2020))
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using the amplitude spectrum of the raw measurements and the estimated measurements. In
addition, Tf (n) and Tξ(n) are the mathematical formulations at iteration (n), which are calculated
based on the weighted square sum of estimates of the eigenfrequencies and the damping ratio
coefficients as follows:

Tf
(n) = f̂T Σ̂f f̂

M
,

Tξ
(n) = ξ̂T Σ̂ξξ̂

M
, (4.2)

where f̂ are the estimated eigenfrequencies, ξ̂ the estimated damping ratio coefficients, Σ̂f and Σ̂ξ

are a posteriori covariance matrices of the estimated frequencies and damping ratio coefficients,
and M the number of identified eigenfrequencies.

In the aforementioned cost function, the defined log10(p) function possibly enables us to select
a lower AR model order. This is due to the reason that a higher AR model order may absorb
those undefined frequencies with lower amplitudes as coloured measurement noise. At the end,
the selected initial vector of eigenfrequencies is then input to the adjustment procedure again
to achieve the final estimates of the modal parameters (see estimation step in Algorithm 3 of
Omidalizarandi et al. (2020)).

4.4 Robust Modal Parameter Estimation based on Time Series
Analysis

The proposed RT-MPI algorithm in this chapter can be considered in the category of the OMA
method. It allows to perform displacement and vibration analyses of bridge structures by using only
vibration measurements, e.g. MEMS acceleration data, without the necessity to impose external
forces. After selecting a proper excitation window as described in section 4.2, the RT-MPI algorithm
is carried out in two following steps:

1. identification of initial modal frequencies (see section 4.3),

2. estimation step.

The estimation step is described in this section. The proposed approach allows to automatically,
robustly and accurately estimate the modal parameters including eigenfrequencies, amplitudes,
phase shifts, and damping ratio coefficients. In addition, there is no necessity to define tuning
parameters. However, a priori knowledge about the SNR of the measurements is beneficial in
the identification of initial modal frequencies in an optimal manner. As previously stated, the
eigenforms are characterised in the subsequent step, and by using the estimated parameters from
the GEM algorithm.

Previously, Kargoll et al. (2018) proposed a self-tuning robust estimation procedure in the sense
of an iterative reweighted least-squares approach. An observation model was defined based on a
linear regression time series model with AR model and t-distributed random deviations. Next, an
expectation conditional maximisation either (ECME) algorithm was proposed to obtain adaptive
robust ML estimation of the parameters. The GEM algorithm given in Alkhatib et al. (2017)
is derived from the ECME algorithm, which is proposed by Kargoll et al. (2018). In the GEM
algorithm, a univariate and linear regression model is extended to a multivariate and nonlinear
regression model. In addition, in the GEM algorithm, the underlying optimisation problem is based
on the research of Dempster et al. (1977) in which the maximum expectation of the parameters is
approximated within each step of the EM algorithm instead of fully reaching it (Alkhatib et al.,
2017).
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In this dissertation, as stated before, the 1D version of the GEM algorithm, which is associated with
univariate AR process is applied. Therefore, merely 1D vibration measurements recorded from each
direction are considered. Omidalizarandi et al. (2018) proposed a robust displacement and vibration
analysis procedure by estimating eigenfrequencies, amplitudes, and phase shifts. An observation
model consisting of the UDHO model, the AR model and t-distributed random deviations was
employed and jointly adjusted by means of the GEM algorithm. Omidalizarandi et al. (2020)
extended the research of Omidalizarandi et al. (2018) as follows:

1. changing the functional model from UDHO model to DHO model,

2. additionally estimating the damping ratio coefficients,

3. achieving precise and accurate estimates of the amplitudes in both units of [m/s2] and [mm],

4. automatically selecting an excitation window,

5. identifying initial eigenfrequencies,

6. characterising the eigenforms.

A brief explanation of the aforementioned robust modal parameter estimation procedure is de-
scribed in the next subsections.

4.4.1 Estimation model

As previously mentioned, an observation model is defined to obtain robust estimates of the modal
parameters for a 1D regression time series. It consists of: (1) a parametric nonlinear DHO model,
(2) a parametric auto-correlation model in terms of a univariate, covariance-stationary AR process,
and (3) a parametric stochastic model in terms of the independent heavy-tailed scaled t-distribution.
The aforementioned parametric models are briefly described in the following.

4.4.1.1 Functional model

To estimate the modal parameters including eigenfrequencies, amplitudes, phase shifts, and damp-
ing ratio coefficients, a proper functional model is defined. For this purpose, as stated before,
Omidalizarandi et al. (2020) extended the research of Omidalizarandi et al. (2018) by changing the
functional model from UDHO model to DHO model, which is introduced in Amezquita-Sanchez
and Adeli (2015). Therefore, it allows to additionally estimate the damping ratio coefficients.

The vibration measurements `1, . . . , `n, which are obtained at equidistant time instances xt
(t = 1, . . . , n), e.g., from accelerometers, video streams of an IATS or other geodetic sensors,
can be modelled based on

`t = ht(θ) + et

= a0
2 +

M∑
j=1

[
aj cos (2πfj

√
1− ξj2xt) + bj sin (2πfj

√
1− ξj2xt)

]
· exp(−2πξjfjxt) + et, (4.3)

where f1, . . . , fM are the undamped frequencies, a0, a1, . . ., aM , and b1, . . ., bM the Fourier series
coefficients and ξ1, . . ., ξM the damping ratio coefficients, which are included in the unknown
parameter vector (θ). The fjd = fj

√
1− ξj2 corresponds to the damped frequency and et is the

random deviation contaminated with the coloured noise that is a so–called coloured noise residual.
As we can see from Equation 4.3, by setting all the damping ratio coefficients equal to zero, the
DHO model is converted to the UDHO model.
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The preceding highly non-linear observation equation can be written in the form of

`t = Atθ + et, (4.4)

where At is the design matrix, which is assumed to have full rank. The vibration measurements (`t)
are subtracted from their mean value throughout the entire ambient window selected. However,
they are detrended in case of either linear or quadratic drifts. This can be performed either by
means of calibration parameters or by replacing the term offset a0

2 in Equation 4.3 by c0 + c1xt for
the linear drift (Omidalizarandi et al., 2019c) or by c0 + c1xt + c2x

2
t in case of quadratic drift.

4.4.1.2 Auto-correlation model

Previously, in the context of time series measurements, e.g., Nassar et al. (2004) benefit from the AR
process to model relatively high measurement noise contaminated in gyroscope measurements. In
addition, as described by Kuhlmann (2003), measurements with a high sampling frequency are often
subject to auto-correlation due to similar time dependent systematic errors between neighbouring
measurements. Thus, in this dissertation, to deal with high coloured measurement noise in the
vibration measurements, e.g., cost-effective MEMS acceleration data, the AR process given in
Kargoll et al. (2018) is applied to 1D vibration measurements to handle the auto-correlation. It
is possible to model both auto- and cross-correlations of the 3D vibration measurements (recorded
from three different axes) by employing a VAR process and multivariate t-distributed random
deviations as proposed by Kargoll et al. (2020a). However, it is out of focus of this dissertation and
can be considered in the future research. For simplicity, the random deviations (et) are assumed to
be autocorrelated through a univariate covariance-stationary AR process by (Kargoll et al., 2018):

et = α1et−1 + . . .+ αpet−p + ut, (4.5)

where ut is the white noise variable. In addition, αT = [α1, . . . , αp] are the AR coefficients, which
are considered as unknown parameters within the estimation procedure.

4.4.1.3 Stochastic model

In this dissertation, stochastic dependencies between the acceleration data recorded from different
axes, have been neglected and shall be analysed in the future. Thus, the white noise components u1,
. . ., un are assumed to be stochastically independent and follow the centred and scaled t-distribution
tν(0, σ2) with an unknown degree of freedom ν, zero mean and an unknown scale factor σ2, that is

ut
ind.∼ tν(0, σ2). (4.6)

Such assumption allows to account for the outliers of different magnitudes, heavy-tailed white
noise components, and setting the level of precision (Kargoll et al., 2019). In view of the preceding
equation, the white noise variable is obtained by:

ut = et − α1et−1 − . . .− αpet−p = α(L)(`t − ht(θ)), (4.7)

where the lag operator Ljet := et−j and the lag polynomial α(L) = 1−α1L− . . .−αpLp are used as
convenient notations. For simplicity, the required initial values e0, e−1, etc., are set to zero. α(L)
is considered as a digital filter to decorrelate the random deviations (Kargoll et al., 2018).

4.4.1.4 Log-likelihood function

The aforementioned three parametric models are combined in a joint log-likelihood function, which
is defined based on the natural logarithm of the joint PDF of the scaled t-distributed white noise
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components (Kargoll et al., 2018) with

logL(θ, σ2,α, ν|`) = n log

 Γ
(
ν+1

2

)
√
νπσΓ

(
ν
2
)
− ν + 1

2 ·
n∑
t=1

log
[
1 + 1

ν

(
α(L)(`t − ht(θ))

σ

)2]
, (4.8)

where Γ is the gamma function. The maximisation of the aforementioned joint log-likelihood
function enables for robust and ML estimation of the parameters. It further allows self-tuning
of the t-distribution model parameters (Kargoll et al., 2018). For this purpose, the unknown
parameters of DHO model, AR error model and t-distributed random deviations are defined as
unknown parameter vector ΘT = [θT ,αT , σ2, ν]T , which are jointly adjusted by means of 1D
version of the GEM algorithm given in Alkhatib et al. (2017). The GEM algorithm is briefly
described in the following section.

4.4.2 Robust adjustment procedure

To begin with the estimates of the unknown parameters (ΘT ) based on the GEM algorithm, firstly,
the highly nonlinear DHO model (Equation 4.3) is linearised. As the simulation results shown in
Kargoll et al. (2019), the GEM algorithm is not sensitive to the initial values compared to the
standard least-squares adjustment. It is due to the reason that GEM algorithm benefits from the
AR process and the scaled t-distribution for ML estimation of the parameters. However, a proper
identification of frequencies are required in advance. Mautz (2001) applied a global optimisation
approach to overcome this problem and to perform spectral analysis of a time series with unknown
frequencies. In this research, the initial frequencies are identified based on the proposed algorithm
described in section 4.3. The initial damping ratio coefficients are set to 0. The AR model order
is initially set to 1 and is progressively increased by 1 to reach its maximum predefined value. As
stated before, the estimates of the modal parameters obtained from the GEM algorithm enable
to calculate the cost value (Equation 4.1) for each vector of initial frequencies and for each AR
model order (Omidalizarandi et al., 2020). Such estimation procedure can be considered as global
optimisation procedure, which allows to efficiently and reliably obtain globally optimum estimates
of the modal parameters.

The GEM algorithm consists of the expectation step (E-step) and the maximisation step (M-step)
(Alkhatib et al., 2017). In the E-step, the weights are calculated at each iteration step of this
algorithm, which are used to downweight outliers and to estimate the parameters in the M-step.
The observation weight at iteration step i (w(i)

t ) is calculated by using initial or estimated parameter
values θ(i), α(i), σ(i) and ν(i) with (Alkhatib et al., 2017)

w
(i)
t = ν(i) + 1

ν(i) +
(
u

(i)
t /σ

(i)
)2 . (4.9)

The calculated weights are the diagonal elements of the weight matrix W(i), which is used within
the subsequent M-step. Initially, the weight matrix is set to the unit matrix W(0) = In. Fur-
thermore, the scale factor is set to the identity value σ(i) = 1 and the degree of freedom is set to
ν(0) = 30. In addition, the AR process coefficients are set to zero (α(0) = 0[p×1]). Such initial
assumptions account for approximately standard normal and uncorrelated random deviations.

The M-step is accomplished by estimating the unknown parameter vector consisting of four pa-
rameter groups Θ(i) = [θ(i), α(i), σ(i), ν(i)] individually. First, the parameters θ of the nonlinear
DHO model are estimated by solving the linearised normal equations

∆θ(i+1) =
( 1

(σ2)(i) · (A
(i))TW(i)A(i)

)−1 1
(σ2)(i) · (A

(i))TW(i)∆`(i)
, (4.10)
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where ∆`(i)t := α(i)(L)∆`t is the decorrelated filtered reduced observation calculated from reduced
observations ∆`(i)t = `t − ht(θ(i)), and A(i)

t,k := α(i)(L)At,k are the decorrelated filtered Jacobi
matrix components calculated from Jacobi matrix components A(i)

t,k = ∂ht(θ(i))
∂θk

.

The Jacobi matrix A(i)
t,k is defined based on the partial derivatives of DHO model (4.3) with respect

to the unknown parameters, that read

∂ht(θ(i))
∂a0

= 1
2 , (4.11)

∂ht(θ(i))
∂aj

= cos(2πf (i)
j

√
1− (ξj2)(i)xt), (4.12)

∂ht(θ(i))
∂bj

= sin(2πf (i)
j

√
1− (ξj2)(i)xt), (4.13)

∂ht(θ(i))
∂ξj

= exp(−2πf (i)
j ξj

(i)xt) · (−2πf (i)
j ξj

(i)
√

1− (ξj2)(i)xt) · . . .[
b

(i)
j cos(2πf (i)

j

√
1− (ξj2)(i)xt)− a(i)

j sin(2πf (i)
j

√
1− (ξj2)(i)xt)

]
+ . . .

exp(−2πf (i)
j ξj

(i)xt) · (−2πf (i)
j xt) · . . .[

b
(i)
j sin(2πf (i)

j

√
1− (ξj2)(i)xt) + a

(i)
j cos(2πf (i)

j

√
1− (ξj2)(i)xt)

]
, (4.14)

∂ht(θ(i))
∂fj

= exp(−2πf (i)
j ξj

(i)xt) · (2π
√

1− (ξj2)(i)xt) · . . .[
b

(i)
j cos(2πf (i)

j

√
1− (ξj2)(i)xt)− a(i)

j sin(2πf (i)
j

√
1− (ξj2)(i)xt)

]
+ . . .

exp(−2πf (i)
j ξj

(i)xt) · (−2πξj(i)xt) · . . .[
b

(i)
j sin(2πf (i)

j

√
1− (ξj2)(i)xt) + a

(i)
j cos(2πf (i)

j

√
1− (ξj2)(i)xt)

]
. (4.15)

A Gauss-Newton step with step size γ ∈ (0, 1] is calculated (Equation 4.16), which assists for a
better convergence of the GEM algorithm.

θ(i+1) = θ(i) + γ∆θ(i+1), (4.16)

Next, the estimates of the coloured noise residuals is computed with e(i+1)
t = `t−ht(θ(i+1)). Thus,

it allows to assemble the matrix E(i+1) with (Alkhatib et al., 2017)

E(i+1) =


e

(i+1)
0 · · · e

(i+1)
1−p

...
...

e
(i+1)
n−1 · · · e

(i+1)
n−p

 . (4.17)

The solution of the normal equations with respect to the AR coefficients is calculated based on
(Alkhatib et al., 2017)

α(i+1) =
(
(E(i+1))TW(i)E(i+1)

)−1
(E(i+1))TW(i)e(i+1). (4.18)
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The estimated AR process is necessary to be invertible. For this purpose, all roots (i.e., possibly
complex valued roots) of α(i+1)(z) = 0 are checked to be located within the unit circle. Otherwise,
all roots with a magnitude larger than 1 are mirrored into the unit circle (Porat, 1994; Kargoll et
al., 2018).

The estimated AR coefficients are used to filter the coloured noise residuals and, thus, to estimate
the white noise residuals result through (Alkhatib et al., 2017)

u
(i+1)
t = α(i+1)(L)e(i+1)

t . (4.19)

The scale factor is calculated by dividing the weighted sum of squared white noise residuals by the
number of observations as (Alkhatib et al., 2017)

(σ2)(i+1) = 1
n

n∑
t=1

w
(i)
t

(
u

(i+1)
t

)2
. (4.20)

Finally, a zero search of the Equation 4.21 is carried out to estimate the degree of freedom of the
underlying t-distribution (Alkhatib et al., 2017).

0 = log ν(i+1) + 1− ψ
(
ν(i+1)

2

)
+ ψ

(
ν(i+1) + 1

2

)
− log

(
ν(i+1) + 1

)
+ 1
n

n∑
t=1

(
logw(i+1)

t − w(i+1)
t

)
,

(4.21)

where ψ is the digamma function and the weights w(i+1)
t are computed by substituting u(i+1)

t , σ(i)

and ν(i) into the Equation 4.9. The readers are referred to Alkhatib et al. (2017) for detailed
explanations regarding derivation and implementation of the GEM algorithm.

As proposed by Kargoll et al. (2017), the zero search based on the interval Newton method (see
Algorithm 6.1 in Hargreaves (2002) for details) is applied by using INTLAB library (Rump, 1999).
Thus, it allows to reliably estimate the ν of the t-distribution1. However, the aforementioned zero
search based algorithm is not computationally efficient and, thus, it is mainly suitable for the
post-processing step. In near real-time processing, the ν can be estimated based on the standard
MATLAB routine fzero to speed up the procedure. However, the estimates of the ν is not reliable
enough and its estimates are rather close approximations of the normal distribution with higher
degree of freedom. Therefore, to get fast and reliable estimate of the ν, standard MATLAB routine
mle can be used. The analysis demonstrates that the estimates of ν derived from the mle is very
close to that one derived from the INTLAB library. Consequently, the new estimates of the ν
obtained from the mle is put into the GEM algorithm again to get reliable and robust estimates of
the parameters.

A cosine form of the Equation 4.3 without considering the damping ratio coefficient (Equation 4.22)
is used to compute amplitudes and phase shifts.

aj cos (2πfjxt) + bj sin (2πfjxt) = Aj cos (2πfjxt + φj). (4.22)

Therefore, the amplitudes and the phase shifts2 are calculated by

Aj =
√
aj2 + bj

2, (4.23)

1The INTLAB library version 10 has been used.
2To estimate the phase shifts, the MATLAB routine atan2 is applied to calculate a four–quadrant inverse tangent
by using the estimated Fourier coefficients.
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φj = tan−1(−bj
aj

). (4.24)

4.5 Displacement Analysis based on Double Integration
To derive amplitudes in a metric unit, e.g., millimetre, the DHO model (Equation 4.3) is double
integrated without considering the term of the offset, that is

dt = Ht(θ) + et

=
M∑
j=1

[[
exp(−2πfjxtξj) · cos(2πfjxt

√
1− ξj2) · (2ajξj2 − aj + 2bjξj

√
1− ξj2)

]
/(4fj2π2)−

[
exp(−2πfjxtξj) · sin(2πfjxt

√
1− ξj2) · (bj − 2bjξj2 + 2ajξj

√
1− ξj2)

]
/(4fj2π2)

]
+ et,

(4.25)

where a1, . . ., aM , and b1, . . ., bM are the Fourier coefficients, f1, . . . , fM the eigenfrequencies and
ξ1, . . ., ξM the damping ratio coefficients, which are the estimates of the modal parameters obtained
from the estimation procedure (see section 4.4). Next, the calculated displacements (d = ∑n

t=1 dt)
are considered as observables, which are put into the GEM algorithm by considering the DHO
model as a functional model. Using the new estimates of the modal parameters, the amplitude
(Amj) is calculated for each eigenfrequency in the unit of [m] based on the Equation 4.23.

For the purpose of validation, the amplitudes are calculated by (Omidalizarandi et al., 2018)

Acmj = Aj
(2 · π · fj)2 , (4.26)

where fj is the estimated eigenfrequency in [Hz], Aj is the estimated amplitude in [m/s2] and Acmj

is the expected and calculated amplitude in [m]. Theoretically, the Acmj is equal to Amj for each
eigenfrequency. However, in reality, there is a slight and negligible difference between them, which
is due to the uncertainty of the estimated parameters.

4.6 Characterisation of Eigenforms
As a preliminary step, to correctly characterise the eigenforms, it is required that MEMS accelerom-
eters are located at certain positions, which are precalculated from the FEM analysis. Then, the 1D
acceleration data are recorded for a duration of, e.g., 10 minutes at each sensor position. Next, the
acceleration data are put into the GEM algorithm to estimate the modal parameters. The UDHO
model described by Kargoll et al. (2018) and Omidalizarandi et al. (2018) is used as a functional
model. This is due to the reason that the estimates of the damping ratio coefficients, as one of the
unknown parameter in the DHO model, is a very challenging issue for long-term measurements.

The amplitudes and phase shifts are computed based on the Equations 4.23 and 4.24. The esti-
mated phase shifts are then used to identify the sign of the amplitudes. For example, the sign of
the amplitude is changed when the phase shift difference is approximately 180◦. Having amplitude
values and their corrected signs, depending on the eigenform orders, the polynomials of meaningful
degree are estimated based on either regression or least-squares adjustment. It should be noted that
the prior knowledge about eigenfrequencies and their corresponding eigenforms can be provided by
the FEM analysis in advance. However, it is also possible to characterise the eigenforms without
any knowledge about their orders. In this case, the B-spline curve approximation similar to the
research of Bureick et al. (2016) could be applied.

The aforementioned estimates of the eigenforms do not yield true scales. To overcome this prob-
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lem, the DHO model is fitted to a selected excitation window within a short time interval, e.g.
few minutes. Therefore, it enables to estimate amplitudes in metric units by means of the double
integration of the DHO model. Subsequently, it allows to characterise deflection mode shapes with
true scales for the selected excitation window.

The aforementioned eigenform characterisation procedure is beneficial, since it delivers reasonable
results even in case of using a low number of sensors. In addition, its connection to the proposed
robust modal parameter estimation procedure allows to robustly and accurately characterise the
eigenforms in their true scales.

4.7 Summary
A novel robust time domain modal parameter identification technique is proposed and implemented
in this chapter, which can be used for any type of vibration measurements in the form of time se-
ries. The proposed vibration analysis procedure allows to automatically select an excitation (e.g.
ambient) window and to identify initial eigenfrequencies, automatically and reliably. It further
allows to estimate the modal parameters including eigenfrequencies, eigenforms, and damping ra-
tio coefficients robustly and accurately. Moreover, it enables to perform double integration of the
acceleration data and to obtain amplitudes in metric units with a high accuracy. Having amplitude
estimations in metric units for a selected ambient window, e.g., in a range of few minutes, allows
to characterise deflection eigenforms in their true scales with a high accuracy.

In order to estimate the modal parameters, initial eigenfrequencies are required to be identified
in advance. For this purpose, the identification is performed in two steps and with different pa-
rameterisation of the noise power threshold and the signal subspace dimension. In the first step,
the well-separated initial eigenfrequencies are extracted, which are above a noise power threshold.
Next, all possible combinations of the remaining frequencies, identified from the second step, are
added to the initial eigenfrequencies identified from the first step. Subsequently, a new vector of
initial frequencies is formed at each iteration.

To begin with the estimation procedure, the observation model consisting of the parametric DHO
model, the parametric auto-correlation model in the form of an AR process, and the parametric
stochastic model in terms of heavy tailed family of scaled t-distributions with an unknown df and
scale factor is employed, which is jointly adjusted by means of the GEM algorithm. Consequently,
a self-tuning, robust, and ML estimation of the parameters is obtained. The aforementioned es-
timation procedure is repeated for each vector of initial eigenfrequencies and for each AR model
order to calculate the cost value. A high AR model order may absorb those undefined frequencies
with low amplitudes. Thus, the maximum AR model is set to 10, which yields fast convergence of
the algorithm. However, in case of high systematic errors of sensor measurements, the AR model
order is increased to a higher value. An optimal vector of initial frequencies that is associated
with the minimum cost value is selected. To obtain final estimates of the modal parameters, the
estimation step is carried out again by using the optimal vector of initial frequencies selected from
the previous step.

The excitation window selection, the identification of initial frequencies and the estimation step are
complementary to each other in the proposed RT-MPI algorithm. In addition, they ensure robust
and accurate estimation of the modal parameters. The improper selection of an excitation window
has a direct influence on the estimates of the amplitudes and damping ratio coefficients. In addi-
tion, the aforementioned two steps in identification of the initial frequencies allow to identify both
well-separated and closely spaced frequencies. It should be mentioned that well-defined selection of
the initial eigenfrequencies can lead to fast and efficient convergence of the adjustment procedure.
The calculated noise power threshold enables to get rid of spurious frequencies. The inadequate
choice of the AR model order may absorb those undefined frequencies with low amplitudes. The
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minimum value of the defined cost function allows to optimally and reliably identify the initial
frequencies. The proposed robust estimation procedure is particularly of great importance when
vibration measurements are contaminated with a high coloured measurement noise, e.g., cost effec-
tive MEMS acceleration data. Therefore, it allows to handle the auto-correlation and to account
for the outliers of different magnitudes and heavy-tailed white noise components. The zero search
based on the INTLAB enables to reliably estimate the df of the t-distribution. However, it is not
computationally efficient and mainly suitable for a post-processing step. Subsequently, the fzero
and the mle MATLAB routines can be used alternatively to speed up the procedure in near real-
time processing. However, the mle MATLAB routine yields more reliable results compared to the
fzero which is due to reliable estimation of the df of the underlying t-distribution. The numerical
results of the proposed RT-MPI algorithm for different experimental case studies are presented and
discussed in chapter 6.
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Image-Assisted Total Stations

5.1 Introduction
Permanent, cost-effective, and reliable monitoring of dilapidated, severely damaged or endangered
bridges is challenging. As stated before, only high end geodetic sensors such as IATS are often
not economically sustainable for such permanent monitoring tasks. Besides, the selected geodetic
sensor should be able to perform measurements with an adequate required sampling frequency.
Furthermore, number of directions corresponding to bridge motions of interest, measurement range,
demanding accuracy, installation requirements, measurement duration, storage, data transmission,
time synchronisation of measurements, cost, etc. should be considered.

To perform short- and long-term deformation/displacement monitoring of bridge structures, the
fusion of cost-effective MEMS accelerometers and an IATS is beneficial due to the following reasons:

• providing complementary frequency bands by detecting lower frequency ranges from the IATS
displacement data and upper frequency ranges from the MEMS acceleration data (Xu et al.,
2019),

• achieving a high accurate estimates of the displacement time series with a wider frequency
bandwidth as well as a higher resolution (Xu et al., 2019),

• increasing the redundancy,

• compensating a drift of absolute position/displacement estimates derived from the double
integration of the MEMS acceleration data by using the IATS displacement data,

• using estimated displacement data to assess the bridge structure conditions under different
loads as well as performing model calibration (Xu et al., 2019).

Previous researchers such as Hong et al. (2013); Park et al. (2018) integrated acceleration and dis-
placement data by superimposing double integrated acceleration measurements and displacement
measurements, which yields displacements with an optimal coverage of frequency bands. Smyth
and Wu (2007); Xu et al. (2017, 2019) applied the KF approach by using the equations of motion
to solve state space model parameters consisting of displacements and velocities.

In this chapter, the feasibility of fusing cost-effective MEMS accelerometers and an IATS for gen-
erating high accurate displacement time series is investigated. On one hand, the IATS is often
used to acquire polar measurements of a measured object, which can be then converted to the
3D Cartesian coordinates. However, to perform displacement analysis in a submillimetre range,
such 3D coordinates are not practically appropriate. On the other hand, as stated before, the
displacement analysis by merely using the MEMS accelerometer is challenging, since it suffers from
accuracy degradation with time for absolute position/displacement estimates.

To overcome the aforementioned problem, a high accurate 1D displacement time series is generated
from the IATS by capturing video frames of a passive target – introduced in section 3.3 – that
is attached to a bridge structure. The passive target centroid detection algorithm proposed by
Omidalizarandi et al. (2019a) – described in section 3.3 – is applied to extract the target centroids
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with high accuracy. Further explanations regarding conversion of the displacement time series from
pixel to metric unit is given in Omidalizarandi et al. (2018), which is briefly described in section 3.4.
In this dissertation, merely 1D displacement time series have been generated. However, it is also
possible to generate 3D displacement time series as described by Ehrhart (2017b). In this case, as
previously mentioned in section 1.6, a 2D displacement time series is generated from the measure-
ments of an image plane, which is perpendicular to a viewing direction. The third dimension of
the aforementioned displacement time series is obtained based on the slope distance measurements
towards a target or structural features.

To this end, the displacements and acceleration measurements are obtained, which are often auto-
correlated. As described by Kuhlmann (2003), the white measurement and process noise are re-
quired to be considered within the KF approach. For this purpose, Kuhlmann (2003) modified
the KF algorithm by considering a shaping filter, which allows to tackle coloured measurement
noise contaminated with GPS measurements used for deformation analysis. In this dissertation,
the decorrelation of the coloured measurement noise is carried out based on the AR process as
part of the GEM algorithm – described in chapter 4 – for selected excitation window. Therefore, it
enables to robustly and accurately estimate the uncertainties of the white noise measurements used
in the KF algorithm. Additionally, the estimated modal parameters from the acceleration data are
used to generate double integrated acceleration data (see section 4.5), which is then synchronised
with the displacement measurements of the IATS based on the cross-correlation.

Finally, to fuse the 1D MEMS acceleration data with the 1D displacement data obtained from the
IATS, Omidalizarandi et al. (2019c) performed 1D CUPT within the KF approach, which avoids
drifting of the MEMS-related displacements over a longer period of time. An overview of the
proposed approach within the multi-rate KF framework is sketched in Figure 5.1, which is briefly
described in this chapter. The proposed data fusion approach is not the main focus of this disser-
tation and it is an initial idea that needs to be improved in the future work.

This chapter is organised as follows: The ongoing section introduces the basics of the KF approach
for displacement analysis. Section 5.3 presents the heterogeneous data fusion of displacement and
acceleration measurements. At the end, the summary is given in Section 5.4.

5.2 Basics of Kalman Filtering for Displacement Analysis

The KF is a recursive optimal filter, which is accomplished in three steps of initialisation, pre-
diction, and filtering. Therefore, an optimum estimate of the state vector parameters is obtained
recursively based on a weighted average of a predicted state vector and a new observation vector
(Gelb, 1974). The aforementioned weightening is carried out by considering a covariance matrix of
the process noise and a covariance matrix of the observations. Xu et al. (2017) applied ML estima-
tion to specify the uncertainties of the measurements and the process noise. In this dissertation,
the uncertainties of the measurements including acceleration and displacement data are determined
based on the GEM algorithm described in chapter 4.

The fusion process typically starts by describing differential equations. In this chapter, the de-
scription of the data fusion process directly starts with a standard solution approach based on the
classical discrete KF framework, for simplicity. To begin with the KF estimation, the state vector
yk at epoch k is described as

yk =


dk

vk

ak

 , (5.1)
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Figure 5.1: Fusion of the IATS displacement data and the MEMS acceleration data within the KF
framework.
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where dk, vk, and ak are the displacements, the velocities, and the accelerations at the epoch
k. However, Smyth and Wu (2007) considered the measured acceleration as an input and the
displacement as an observed output. Subsequently, the state vector was merely described based
on the displacements and velocities. As previously stated, further investigations, comparisons and
possibly improvements of the proposed data fusion shall be performed in the future work.

The predicted state vector (ȳk+1) at epoch k+1 is computed based on the linear system equation
as

ȳk+1 = Φk · ŷk + Gk ·wk + Lk · uk, (5.2)

where Φk is the transition matrix calculated from the equations of motion with respect to the
state vector parameters, ŷ is the updated state vector at epoch k, Gk and wk are the matrix and
vector of disturbing variables or noises. Lk and uk are the matrix and vector of acting forces. In
this dissertation, the influence of acting forces is neglected for simplification. The prediction step
allows to compensate the displacement data gaps derived by different sampling frequencies of the
acceleration and displacement measurements. Alternatively, the IATS displacement data with a
lower sampling frequency can be resampled based on a reconstructed displacement data by using
the estimated DHO model parameters (see Figure 5.1).

The observation model is determined by

`k+1 = Ak+1ŷk+1 + ek+1,

[
dk+1

ak+1

]
=
[

1 0 0
0 0 1

]
dk+1

vk+1

ak+1

+ ek+1, (5.3)

where ` is the observation vector, A the design matrix and e the vector of residuals. The transition
matrix is then derived by integration with respect to the state vector parameters, that is

Φk =


1 ∆t 1

2∆t2

0 1 ∆t
0 0 1

 , (5.4)

where ∆t is the sampling interval. The covariance matrix of the process noise is defined based on
Wiener-sequence acceleration (Bar-Shalom et al., 2004) with

Σww =


1
20∆t5 1

8∆t4 1
6∆t3

1
8∆t4 1

3∆t3 1
2∆t2

1
6∆t3 1

2∆t2 ∆t

 q̃, (5.5)

where q̃ is the ratio between the system noise and observation noise. The covariance matrix of the
observations is given by

Σll =
[
σ2
d 0

0 σ2
a

]
, (5.6)

where σd and σa are the a priori standard deviations of the displacements and the accelerations,
which are set to 0.0001m and 0.013m/s2, respectively. A correlation between the displacement
and acceleration data is neglected due to their independent measurements. As stated before, the
aforementioned a priori standard deviations are obtained from the estimation procedure described
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in chapter 4. The similar numerical results can be found in subsection 2.3.2 and chapter 6. For
further detailed formulations concerning the KF steps, please refer to Kalman (1961); Gelb (1974);
Omidalizarandi and Zhou (2013).

5.3 Heterogeneous Data Fusion of Displacement and Acceleration
Measurements

A 1D displacement data, with a sampling frequency of 10Hz, obtained from an IATS, e.g., Leica
MS50, is integrated with an acceleration data, with a sampling frequency of 100Hz, recorded from
a MEMS accelerometer in the vertical direction to generate high accurate displacement time se-
ries. As previously stated, the coloured measurement noise of the aforementioned measurements
are decorrelated based on the AR process, as part of the GEM algorithm, to handle the auto-
correlation. Next, 1D CUPT is performed within the KF framework based on the equations of
motion, which subsequently allows to optimally estimate state vector parameters including dis-
placements, velocities and accelerations (see section 5.2). Therefore, the displacement drift derived
from double integration of the acceleration data is minimised by using the IATS displacement data
within the filtering step of the KF algorithm (Omidalizarandi et al., 2019c).

In order to fuse different sensors with different measurements and sampling frequencies, a time
synchronisation is required in advance. Ideally, a very precise time synchronisation should be
accomplished at the hardware level, e.g., by using GPS pulse per second (PPS) signals and a
micro-controller. However, in this dissertation, the time synchronisation between displacement and
acceleration measurements is carried out based on the cross-correlation (Ferrari et al., 2016). This
is a challenging task, since the measurements of different sensors might have different units. To
overcome this problem in this research, the MEMS acceleration data is double integrated within
a selected excitation window. Next, the displacement time series obtained from the MEMS ac-
celerometers and the IATS are resampled to a sampling frequency of a reference sensor, i.e., a laser
tracker, with a sampling frequency of 1000Hz. In case of not availability of the reference sensor,
the resampling can be performed to a sampling frequency of the acceleration data similar to the
work of Park et al. (2018). Next, the cross-correlations between the IATS and MEMS displacement
data are calculated with respect to the laser tracker (Figure 5.2). The calculated time lags account
for maximum values of occurred cross-correlations (Omidalizarandi et al., 2019c).

Figure 5.2 illustrates the cross-correlations between the IATS and the MEMS displacement data
with respect to the laser tracker displacement data in which their maximum cross-correlation values
are 0.74 and 0.82, respectively. Theoretically, it is expected to achieve a better cross-correlation be-
tween the IATS and the laser tracker data. However, the proposed double integration approach (see
section 4.5) deduces a high accurate MEMS displacement data with a wider frequency bandwidth
as well as a higher resolution, which yields slightly higher maximum cross-correlation values. To
have a better realisation of the generated displacement data and the accuracy of the time synchro-
nisation, the generated IATS and the MEMS displacement data are overlaid with the laser tacker
data after performing the time synchronisation (see Figure 5.3) (Omidalizarandi et al., 2019c). As
it can be seen from this figure, the peaks of the aforementioned displacement data sets are properly
fitted together. In addition, peaks of the MEMS displacement data are slightly closer to the peaks
of the laser tracker compared to the IATS data, which reveals the extraction of higher eigenfre-
quencies from the MEMS displacement data. The slightly jagged laser tracker data are at the level
of the corresponding uncertainty of the measurements, which is very small.

Two alternative solutions are proposed and implemented to fuse displacement and acceleration data
with different sampling frequencies within the KF framework. In the first solution, multi-rate KF
similar to the work of Smyth and Wu (2007) and Ferrari et al. (2016) is applied. Therefore, inno-
vation and design matrices are adaptively updated to be compatible with the sampling frequencies
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Figure 5.2: Cross-correlations between the IATS and the laser tracker displacement data (top), and
the double integrated adjusted MEMS acceleration data (MEMS displacement data) and
the laser tracker data (bottom) within the selected ambient window.

Figure 5.3: Overlaying of the displacement data obtained from the IATS (red colour), the MEMS
displacement data (blue colour) and the laser tracker data (green colour) within the
selected ambient window.

of the measurements (Figure 5.4). In the second solution, the displacement data are resampled
to the sampling frequency of the acceleration data. Each of the aforementioned approaches has
its own advantages and disadvantages. In the multi-rate KF, different types of measurements are
fused with their own sampling frequencies. In addition, it allows considering the measurements
with their estimated uncertainties obtained from the estimation procedure. However, it is a chal-
lenging task when the IATS displacement data are not available. By contrast, the resampling KF
enables us to consider more displacement data sets than the raw displacement observations (Omi-
dalizarandi et al., 2019c). However, it is vital to accurately and reliably estimate the DHO model
parameters, since the resampled displacement data is directly influenced by the estimated DHO
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model parameters. The pattern recognition techniques may assist to predict the displacement data
for different loads, which shall be considered in the future work.

Figure 5.4: The displacements analysis based on the multi-rate KF approach by using the displace-
ment and acceleration measurements: the displacements obtained from the IATS (blue),
the predicted displacements (red) and the filtered displacements (green).

5.4 Summary
In this chapter, the good feasibility of MEMS accelerometers supported by an IATS for short- and
long-term displacement monitoring of bridge structure is demonstrated. For this purpose, the IATS
displacement data and the MEMS acceleration data are fused within the KF framework.

Such a sensor fusion is beneficial due to good and complementary coverage of lower and upper fre-
quency ranges by means of the IATS and MEMS displacement data. Subsequently, a high accurate
displacement time series at a submillimetre range is generated, which has a higher resolution as
well as a wider frequency bandwidth.

A time synchronisation at the level of approximately 0.01 – 0.02 s is carried out, as a preliminary
step, based on cross-correlation of the displacements time series of the aforementioned sensors with
a reference sensor. MEMS displacement data is generated by double integration of the MEMS
acceleration data within a selected excitation window and by using the DHO model parameters
estimated from the GEM algorithm. Furthermore, the aforementioned estimation procedure allows
to decorrelate the high coloured measurement noise contaminated with the acceleration data. Sub-
sequently, a posteriori standard deviations of the white noise measurements of the displacement
and the acceleration data are estimated, which are used within the KF algorithm.

The 1D CUPT within the multi-rate KF framework is carried out to compensate a displacement
drift of the MEMS accelerometers by using the IATS displacement data in vertical direction. Al-
ternatively, the resampling KF is performed by resampling the IATS displacement data to the
sampling frequency of the acceleration data. The resampling of the displacement data based on
their estimated modal parameters greatly improves the results by increasing the number of the
IATS displacements data. However, its estimation is directly influenced by the estimated DHO
model parameters. By contrast, the multi-rate KF allows to perform aforementioned data fusion
by using different types of measurements with their own sampling frequencies.

63





6 Experiments and Results

Experiments are carried out in four case studies including simulation, controlled excitation and two
real applications of a footbridge structure and a synthetic laboratory bridge. In the first case study,
a simulated acceleration data is generated, which is then employed and solved by the proposed RT-
MPI algorithm (Omidalizarandi et al., 2020). Therefore, the analysis of the simulated data allows
to compare and validate the estimated DHO parameters, i.e., eigenfrequencies, damping ratio coef-
ficients, amplitudes, and phase shifts, with their true values. In addition, the estimated parameters
are compared with the well-known SSI-COV algorithm which was implemented in MATLAB by
Cheynet (2020). In the simulation experiment, it is expected to reach the highest accuracy of the
estimates of the aforementioned parameters due to generating a free vibration decay of a signal.
However, true measurements are contaminated with coloured measurements noise and outliers to
assess the robustness of the proposed algorithm. Subsequently, the frequencies are estimated at
the accuracy level of third to fourth decimals, the damping ratio coefficients are estimated at the
accuracy level of second to third decimals, the amplitudes (depending on amplitudes of low and
high frequencies) in [m/s2] are estimated at the accuracy level of second to third decimals, the
amplitudes in [mm] are estimated at the accuracy level of second to fourth decimals, and the phase
shifts are estimated at an average accuracy level of approximately 1.0◦. The analysis of this exper-
iment is mainly inspired from the research of Omidalizarandi et al. (2020) with a minor extension,
which is related to the estimates of df by means of the mle MATLAB routine. Subsequently, despite
of speeding up the process, it yields correct estimates of the df. In addition, some complementary
results are also provided. To this end, the analysis of the simulation experiment proves the pro-
posed RT-MPI algorithm theoretically and numerically. In addition, it is demonstrated that the
robustness and accuracy of the proposed algorithm is much more than expected and needed for
real application of bridge structures, and thereof, is fully satisfactory.

In the controlled excitation experiment, the aforementioned DHO parameters are estimated for
MEMS acceleration data as well as IATS displacement data. Subsequently, the estimated parame-
ters are compared and validated with their corresponding known values. Additionally, it gives an
idea about the auto-correlation and stochastic models of the vibration measurements. Moreover,
the estimated uncertainties of the measurements from this experiment could also be used in 1D
CUPT within the KF approach. Using high accurate reference sensors such as a laser tracker
enables us to validate the estimated amplitudes in [mm]. Moreover, such experiments allow to
check the accuracy of time synchronisation between different MEMS accelerometers. The analysis
of this case study is mainly inspired from the research of Omidalizarandi et al. (2018). However,
it is extended by adding the analysis of the MEMS accelerometers. Furthermore, the analysis is
improved by the recent version of the RT-MPI algorithm.

In the third case study, a vibration analysis is carried out for a footbridge structure, and by using
the MEMS and PCB piezoelectic (PCB piezotronics, 2019) reference accelerometers. Therefore,
the modal parameters including eigenfrequencies, damping ratio coefficients, and eigenforms could
be identified for both aforementioned sensors what allows to perform a validation. As a preliminary
step, the FEM analysis is performed, which allows to place the sensors in their optimal positions.
In addition, it provides us the foreknowledge about possible eigenfrequencies and eigenforms. The
analysis of this case study reveals that the MEMS accelerometers are suitable for identifying all
occurring eigenfrequencies of the bridge structures. Moreover, the vibration analysis procedure
demonstrates that amplitudes are estimated in submillimetre range accuracy, frequencies with an
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accuracy of better than 0.1Hz and damping ratio coefficients with an accuracy of better than 0.1
and 0.2% for modal and system damping, respectively. Additionally, the estimated eigenfrequen-
cies and modal damping are compared with the SSI-COV approach. The results demonstrate the
superiority of the proposed RT-MPI algorithm compared to the SSI-COV algorithm. The reason
lies in the fact the proposed RT-MPI algorithm does not restrict to a free vibration decay of vibra-
tion measurements, and thus, can provide the accurate and robust results for the entire time series.
This is achieved by performing the estimation at each selected excitation (e.g. ambient) window.
Subsequently, median values of all estimated eigenfrequencies and damping ratio coefficients yield
reliable and accurate results. The aforementioned accuracy of the estimated parameters could even
be improved by performing the measurements at different time intervals over a day or a week.
Therefore, the influence of imposed loads such as moving vehicles and wind could be mitigated.
It should be mention that the influence of the temperature and humidity on the estimated modal
parameters are neglected, since it is required extensive experiments over a month or a year which
was out of the timeline of this dissertation.

The fourth case study is conducted for a synthetic laboratory bridge, which is oscillated by impos-
ing a load by a modal hammer. The measurements are performed by using MEMS accelerometers,
an IATS, a laser tracker, and a geophone. The analysis of this experiment is inspired from the re-
search of Omidalizarandi et al. (2020). The results show that the frequencies are estimated at the
accuracy level of third decimals, and the damping ratio coefficients are estimated at the accuracy
of second to third decimals. Consequently, it demonstrates the high accuracy and robustness of
the proposed RT-MPI algorithm. In addition, the MEMS and the IATS measurements are fused in
this experiment, which subsequently enables to generate a high accurate displacement time series
at the level of submillimetre by performing 1D CUPT within the KF framework. An overview of
the aforementioned experimental studies is represented in Figure 6.1.

Figure 6.1: An overview of the experimental studies and their individual goals.

6.1 Example based on Simulated Acceleration Data
In the simulation experiment, a true observation vector is defined based on the DHO model with
a sampling frequency of 100Hz, which spanned 100 s of the acceleration data. The parameter val-
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ues of the DHO model (Equation 4.3) are set to a0 = 0 [m/s2], aj = (4.0, 2.0, 2.0, 8.0) [m/s2],
bj = (−3.0, 3.0, 3.0, 7.0) [m/s2], fj = (5.0, 5.3, 15.0, 35.0) [Hz], ξj = (0.5, 0.8, 0.8, 0.5) [%] (for j
∈ [1, 2, 3, 4]). The white noise vector is generated under the t-distribution assumption (see Equa-
tion 4.6) with parameter values σ2 = 0.04 and ν = 4.0 and with the same length of the simulated
acceleration data. Next, the white noise vector is turned into the coloured noise vector by con-
sidering an AR(1) process with the AR model coefficient value α1 = 0.4. The generated coloured
noise vector is then added to the true observation vector to generate the noisy and auto-correlated
acceleration data (Figure 6.2).

The unknown parameters consist of the functional model parameters (Equation 4.3), i.e., Fourier
coefficients, frequencies, and damping ratio coefficients, the parameters of the correlation model
(Equation 4.5), i.e., the AR model coefficients and the parameters of the stochastic model (Equa-
tion 4.6), i.e., the unknown df and the unknown scale factor, which are adjusted by means of the
GEM algorithm (see section 4.4). The amplitudes and phase shifts are calculated by considering
the cosine form of the Equation 4.3 without damping ratio coefficients (Equation 4.22) and based
on the Equations 4.23 – 4.24, respectively. As stated before, the initial frequencies are required to
be identified in advance (see section 4.3). The overview of the proposed RT-MPI algorithm can
be seen from Figure 4.1. The first 20 s of the simulated acceleration data and their corresponding
adjusted data are illustrated in Figure 6.2. In addition, Figure 6.3 shows the estimated coloured
noise residuals and decorrelated residuals of the simulated acceleration data. Such results are de-
rived from the filtering (Equation 4.7) of the former residuals by means of the inverted estimated
AR model.

Figure 6.2: Simulated acceleration data based on the DHO model contaminated with coloured noise
(blue solid line), and the DHO model fitted to the simulated acceleration data (red solid
line) (The first 20 s).

Figure 6.4 depicts the DFTs of both simulated acceleration data and their corresponding adjusted
data in the amplitude spectrum. As it can be seen, all eigenfrequencies are identified even two
closely spaced frequencies of 5.0 and 5.3Hz. Figure 6.5 illustrates the magnification of the afore-
mentioned closely spaced frequencies. The amplitudes of the dominant peaks, which correspond
to all eigenfrequencies, in both DFT results are very close to each other, which yields a minimum
RMSE value (see Equation 4.1). Subsequently, it demonstrates an optimal and reliable identifica-
tion of the eigenfrequencies as well as a robust and accurate estimation of the modal parameters.

Figure 6.6 shows histogram of the estimated white noise residuals, a fitted normal distribution with
parameter values N(µ = −0.0023, σ2 = (0.2753)2) as well as fitted t-distribution with parameter
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Figure 6.3: The estimated coloured noise residuals (red dashed line) and decorrelated residuals (blue
solid line) of the simulated acceleration data (The first 20 s).

Figure 6.4: The DFTs of the simulated acceleration data (black solid line) and their corresponding
adjusted data (red solid line) in the amplitude spectrum.

values t(ν = 4.3662, σ2 = (0.2027)2). As it can be seen, the t-distribution is nicely fitted to the
white noise residuals, which is narrower than the normal distribution. Figure 6.7 depicts the his-
togram of the adjusted weights. As described by Koch (2013b); Kargoll et al. (2018); Kargoll et al.
(2020a), the adjusted weights increase relatively smooth from lower to higher values in which out-
liers are located in the tails of t-distribution, and thus, having lower weights.

To estimate amplitudes in metric unit, e.g., millimetre, Omidalizarandi et al. (2020) proposed two
different methods of double integration by using the DHO model and the equations of motion,
which are briefly described in section 4.5. Figure 6.8 represents the first 20 s of displacement time
series for the simulated acceleration data, which is generated based on double integration of the
DHO model. It is worth mentioning that the aforementioned double integration approach is capa-
ble of reconstructing highly accurate displacement time series while there is a robust and accurate
estimate of the DHO model parameters available from the estimation procedure. An optimal and
proper selection of an excitation (ambient) window highly affects the accuracy of the estimated
amplitudes obtained from double integration. For furthermore information in this regard, please
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Figure 6.5: The magnification of the DFTs of the simulated acceleration data (black solid line) and
their corresponding adjusted data (red solid line) in the amplitude spectrum, showing
two closely spaced frequencies of 5.0 and 5.3Hz.

Figure 6.6: Histogram of the estimated white noise residuals (blue colour), fitted normal distribution
with N(µ = −0.0023, σ2 = (0.2753)2) (green solid colour) and fitted t-distribution with
t(ν = 4.3662, σ2 = (0.2027)2) (red solid colour).

refer to the chapter 4.

Table 6.1 represents the statistics of the estimated unknown parameters including the DHO model
parameters, the correlation model parameter, and the stochastic model parameters by the proposed
RT-MPI algorithm (Omidalizarandi et al., 2020). In addition, the DHO model parameters are com-
pared with the SSI-COV algorithm implemented in MATLAB by Cheynet (2020). However, the
aforementioned SSI-COV algorithm cannot estimate correlation and stochastic model parameters.
In order to use the SSI-COV algorithm, two slightly different time series are generated based on two
different white noise vectors, which are then used to calculate the cross covariance of the different
data sets. The SSI-COV algorithm is applied by tuning the parameters similar to the work of
Cheynet et al. (2017) as follows: (1) the time lag of a correlation function is set to 6.4 cycles of a
lower frequency (Magalhaes et al., 2009), i.e., here 6.4 · 5 = 32, (2) the minimum and maximum
values of modal orders are set to 2 and 30, respectively, (3) the eigenfrequency variation is set
to 1 · 10−2, (4) the modal damping coefficient variation is set to 3 · 10−2, (5) the minimum MAC
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Figure 6.7: Histogram of the adjusted weights.

Figure 6.8: The displacement time series calculated for the simulated acceleration data based on
double integration of the DHO model (The first 20 s).

variation between eigenforms is set to 5 · 10−3, and (6) the distance between two modes is set to
2 · 10−2 (Omidalizarandi et al., 2020).

In the proposed RT-MPI algorithm, the unknown parameters are estimated for three cases where
the ν is obtained by applying INTLAB, fzero, and mle. As it can be seen, the estimated frequencies
from the aforementioned three variants of the RT-MPI algorithm are very close to each other in
which their differences are at the level of third to fourth decimals. The percentage errors for two
lower frequencies (i.e., 5 and 5.3Hz), and for two higher ones (i.e., 15 and 35Hz), are 0.0191 and
0.0005% in case of the INTLAB, 0.0283 and 0.0085% in case of the fzero, 0.0191 and 0.0005%
in case of the mle, and 0.0194 and 0.0053% in case of the SSI-COV algorithm, respectively. The
percentage error of the estimated damping ratio coefficients with their nominal values reveal the
average values of 1.02, 1.87, and 1.03% for the first to third variants of the RT-MPI algorithm,
respectively, which is about 1.44% in case of the SSI-COV algorithm. To this end, the frequencies
and damping ratio coefficients are estimated high accurately in both RT-MPI (all variants) and
the SSI-COV algorithms. Regarding the estimates of the amplitudes in [m/s2] in the RT-MPI
algorithm, the average percentage errors of 0.9, 1.19, and 0.9% are calculated for the first to third
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Table 6.1: Statistics of the unknown parameters including the DHO model parameters, the correla-
tion model parameters, and the stochastic model parameters, estimated from the RT-MPI
algorithm that are compared and validated with the SSI-COV algorithm and their known
values for the simulated acceleration data (Omidalizarandi et al., 2020).

Parameters f A ADHO AMOT ION ξ φ α1 ν σ2

[Hz] [m/s2] [mm] [mm] [%] [◦] [-] [-] [-]

5.0000 5.0000 5.0661 5.0661 0.5000 36.8699

0.5000 4.0000 0.0400Simulated 5.3000 3.6056 3.2514 3.2514 0.8000 -56.3099
data 15.0000 3.6056 0.4059 0.4059 0.8000 -56.3099

35.0000 10.6301 0.2198 0.2198 0.5000 -41.1859

4.9996 5.1110 5.1792 5.1539 0.5141 37.7709

0.4939 4.3662 0.0411RT-MPI 5.3016 3.6282 3.2697 3.2494 0.7976 -58.1599
(ν determined 15.0001 3.5848 0.4036 0.3798 0.8053 -56.8767
by INTLAB) 34.9999 10.6103 0.2194 0.1452 0.5015 -41.2764

4.9999 5.1322 5.2003 5.1745 0.5153 37.2764

0.4991 10000 0.0757RT-MPI 5.3029 3.5597 3.2064 3.1862 0.7731 -59.4356
(ν determined 14.9978 3.5773 0.4028 0.3789 0.7942 -56.1857

by fzero) 34.9992 10.6376 0.2199 0.1452 0.5016 -41.3963

4.9996 5.1112 5.1795 5.1538 0.5142 37.7676

0.4939 4.4274 0.0413RT-MPI 5.3016 3.6278 3.2693 3.2474 0.7974 -58.1643
(ν determined 15.0001 3.5846 0.4035 0.3712 0.8052 -56.8707

by mle) 34.9999 10.6104 0.2194 0.1399 0.5015 -41.2769

5.0010 - - - 0.4900 36.8331

- - -SSI-COV 5.3010 - - - 0.8100 55.7620
15.0012 - - - 0.7800 56.5484
34.9991 - - - 0.5000 56.9214

variants. Subsequently, it shows that the first and third variants achieve highly accurate estimates
of the amplitudes in [m/s2], which are slightly better than the second variant. In addition, double
integration by using the DHO model achieves considerably accurate estimates of the amplitudes
in [mm] compared to the second method which is using the equations of motion. The percentage
errors of the estimated amplitudes in [mm] based on the DHO model are 0.88, 1.21, and 0.89%
for the first to third variants. In case of the equation of motion, the percentage errors of the
estimated amplitudes in [mm] are 10.54, 11.18, and 11.79% for the first to third variants, which
have significant differences with their nominal values. It should be mentioned that the current
version of the SSI-COV algorithm does not derive the amplitudes. The percentage errors of the
estimated phase shifts show average levels of 1.74, 1.85, and 1.74% for the first to third variants
of the RT-MPI algorithm. However, the estimated phase shifts from the SSI-COV algorithm are
significantly different, which are therefore not comparable with their nominal values as well as the
RT-MPI algorithm. The percentage errors of the estimated AR(1) model coefficient (α1) for all
three variants of the RT-MPI algorithm are 1.22, 0.18, and 1.22%, which are very small and negli-
gible. The stochastic model parameters (ν and σ2) obtained from the first and third variants of the
RT-MPI algorithm reveal accurate estimates of the parameters. By contrast, the second variant
of the RT-MPI algorithm shows significant differences from its true values in which accounts for a
rather close approximation of the normal distribution with the higher df. However, the SSI-COV
algorithm does not calculate the AR and stochastic model parameters (Omidalizarandi et al., 2020).

The analysis of the simulation study demonstrates and validates the robustness, and high accuracy
of the estimated unknown parameters in the first and third variants of the RT-MPI algorithm.
However, the first variant is computationally expensive compared to the second and third one.
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Subsequently, the first variant is mainly suitable to be applied in a post-processing step. The third
variant is slightly slower (i.e., some few seconds) than the second one, which is due to applying the
GEM algorithm once more with correct estimates of the df. To get a rough idea of a run time speed
of the aforementioned three variants, the analysis of the simulated data with a length of 10000 takes
about 10144, 64, and 67 s for the first to third variants. Therefore, it indicates that the first variant
is approximately 153 times slower than two other variants. However, the run time speed of the
algorithm can be changed depending on size of data sets, a maximum AR model order, and the
number of vectors of initial eigenfrequencies. It is worth mentioning that the estimated modal pa-
rameters from the second variant of the RT-MPI algorithm do not show significant differences with
their nominal values despite of significantly different estimates of the stochastic model parameters.
In near real-time processing, it is recommended to apply either the second or the third variants of
the RT-MP algorithm. However, the third variant will achieve more robust and accurate results.
Moreover, the analysis reveals that the RT-MPI algorithm is superior to the SSI-COV algorithm
with no necessity for defining tuning parameters. It might be a good idea to jointly benefit from
the SSI-COV and the RT-MPI algorithms in real-time processing, which its further investigation
could be part of the future work.

6.2 Example based on Shaker Vibration Calibrator
Controlled excitation experiments are carried out to estimate harmonic oscillation parameters con-
sisting of frequencies, amplitudes, and phase shifts for vibration measurements (`) obtained from
either the MEMS acceleration data or the IATS displacement data. Subsequently, the estimated
parameters are compared and validated with their corresponding known values. In addition, it gives
an idea about the auto-correlation and stochastic models of the vibration measurements. Possibly,
time-variability of the AR model (Kargoll et al., 2017) can also be investigated through the GEM
algorithm, but it is out of focus of this dissertation.

For this purpose, the controlled excitation experiments are carried out by using shakers in the labo-
ratories of the Geodetic Institute Hannover (GIH), Institute of Concrete Construction (IFMA), and
the IDS, LUH. As previously stated, the shaker in the IDS was used for the suitability analysis in
selecting optimal MEMS accelerometers (see section 2.3). In this section, the controlled excitation
experiment is conducted by using a portable shaker vibration calibrator 9210D (PSVC) (Figure 6.9,
left) in the laboratories of IFMA and GIH, due its availability at the time of experiment. Addition-
ally, two high-end reference sensors such as a laser tracker of type AT960-LR (Figure 6.9, right)
and a reference accelerometer of type PCB ICP quartz are used for the purpose of validation.
The laser tracker is a reference measurement system, which allows to measure 3D point data with
a maximum permissible error of 15 µm + 6 µm/m, and maximum sampling frequency of 1000Hz
(Hexagon, 2015). However, in this experiment, its sampling frequency is set to 200.

The aforementioned experiment is accomplished for oscillation frequencies of 2, 3, 4, 10, and 15Hz
with an amplitude of 0.3m/s2, which are set throughout two sensitive dials of PSVC. Each fre-
quency is measured for about seven minutes by means of the MEMS, the IATS, the PCB reference
accelerometer, and the laser tracker. However, the higher frequencies of 10 and 15Hz cannot be
detected by the IATS, due to its low practical sampling frequency of 10Hz (in view of the Nyquist
sampling theorem). The PSVC is located at a distance of approximately 5.36m from the laser
tracker and the IATS. The laser tracker measurements are performed by using a Leica red-ring
reflector (RRR) 0.5 inch ball (i.e., with a radius of 6.35mm ± 0.0025mm and an acceptance an-
gle ≤ ±30◦), that is mounted on a small platform attached to the PSVC (Figure 6.9, left). The
MEMS accelerometer is placed inside the aforementioned platform which records the acceleration
data with the sampling frequency of 100Hz in this research. The PCB reference accelerometer is
an internal sensor of the PSVC, which its sampling frequency is set to 200Hz. An optimal passive
target (as proposed by Omidalizarandi et al., 2019a) is rigidly attached to the platform, which is
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(a) PSVC and attached MEMS and targets (b) Laser tracker

Figure 6.9: A vibration analysis based on the MEMS and the reference acceleration data as well as
the IATS and the laser tracker displacement data sets through the controlled excitation
experiment in the laboratory of GIH by using the PSVC 9210D (Omidalizarandi et al.,
2018).

captured by means of the telescope camera of the IATS with the sampling frequency of 10Hz. The
centroid of the passive target is extracted based on the research of (Omidalizarandi et al., 2019a) to
generate a highly accurate displacement data (see section 3.3). Afterwards, the calibrated vertical
angular conversion factor is used to convert vertical displacements data from pixel to metric unit
(see section 3.4).

In this experiment, it is assumed that vibration measurements have no significant damping. There-
fore, an observation model consisting of the UDHO model (i.e. the DHO model (Equation 4.3)
by setting the damping ratio coefficients to zero), the AR model, and the scaled t-distribution
with an unknown df and an unknown scale factor are employed and jointly adjusted by means
of the GEM algorithm (Omidalizarandi et al., 2018). To test whether the damping of observed
oscillations from the aforementioned PSVC is significant or not, Kargoll et al. (2019) proposed two
bootstrap tests and compared the calculated p-values with the significance level (α = 0.05). As a
result, it was verified that the vibration measurements recorded from the PSVC have no significant
damping. Subsequently, it justifies the right use of the UDHO model within the GEM algorithm
in the aforementioned experiment. As described by Kargoll et al. (2019), the proposed bootstrap
testing procedure can be used for a factory calibration of the PSVC by testing oscillation-related
parameters using the recorded acceleration data. The readers are referred to Kargoll et al. (2019)
for further information in this regard.

Table 6.2 summarises the statistics of the displacement and vibration analysis for the aforemen-
tioned four sensors, and with an excitation window size of 50 s except for the IATS. The excitation
window size of 100 s is selected for the IATS data due to its low sampling frequency. According
to the analysis, the percentage errors of the estimated frequencies for the three lower ones (i.e.,
2, 3, and 4Hz), and for the two higher ones (i.e., 10, and 15Hz) show average levels of 0.0044,
and 0.0048% in case of the PCB, 0.010, and 0.011% in case of the MEMS, 0.0036, and 0.0028%
in case of the laser tracker, which is about 0.066% in case of the IATS for the three lower ones.
In case of the IATS, the estimated frequencies have relatively larger percentage errors compared
to the estimates obtained from other sensors. This is due to the reason that it has significantly
lower sampling frequency compared to others. In case of the MEMS, its corresponding percentage
error is very small, which is negligible. For the MEMS accelerometer, the amplitudes in [m/s2] are
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(a) MEMS - Z axis (b) PSVC–PCB

(c) IATS (d) Laser tracker - Z axis

Figure 6.10: Histogram of the white noise residuals estimated for the frequency of 3Hz, and for
(a) the MEMS acceleration data in Z-axis [m/s2], (b) the PCB reference acceleration
data [m/s2], (c) the IATS displacement data in vertical direction [mm], and (d) the
laser tracker displacement data in Z-axis [mm] in a controlled excitation experiment
by using the PSVC.

compared with the reference accelerometer for the three lower, and two higher frequencies. Accord-
ingly, the analysis shows the percentage errors of 3.13, and 2.52%. The percentage errors of the
amplitudes in [mm] for the three lower and the two higher frequencies are about 3.13, and 2.56%
in case of the MEMS, and 0.95, and 3.16% in case of the laser tracker. In case of the IATS, its
corresponding estimate for the three lower frequencies is 8.93%, which is relatively large compared
to others. The analyses demonstrate that the laser tracker delivers slightly better estimates of the
amplitudes, which is expected. The estimated amplitude from the IATS is still considerably small
and has a maximum deviation of 0.0805mm for the frequency of 2Hz. The estimated df of the
t-distribution underlies the white noise components in which the low df corresponds to heavy-tailed
t-distribution. Concerning the PCB measurements, the estimated df are roughly between 9 and
58. Its corresponding estimates by the laser tracker measurements reveal a closer approximation of
normal distribution, particularly for the lower frequencies, compared to the PCB. The estimated
df from the MEMS are roughly varied between 6 to 16, where the higher estimates of the df are
obtained from the lower frequencies of 2 and 3Hz. By contrast, the estimated df from IATS mea-
surements are below 2, which indicates unstable estimates of the df. Therefore, it shows a large
number of outliers in the measurement noise of the IATS with a heavy-tailed t-distribution. Sub-
sequently, the df for the IATS analysis is set to 3, which is in accordance with the recommendation
of the guide to the expression of uncertainty in measurement (ISO, 2008) in which input quantities
with statistically determined (i.e., type-A) standard uncertainties affect the output quantities. For
better realisation of the aforementioned statements concerning the estimated df, histogram of the
white noise residuals estimated for the frequency of 3Hz, and from all aforementioned sensors are
provided in Figure 6.10.

Concerning the estimates of AR model order (p), the laser tracker measurements have the highest
estimated AR model orders. This is due to the fact that the laser tracker measurements have a
drift, which can be seen in Figure 6.14 with a low frequency of approximately 0.05Hz. In addition,
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Table 6.2: Statistics of displacement and vibration analysis for vibration measurements obtained
from the PCB reference accelerometer, the MEMS accelerometer, the IATS, and the laser
tracker. f̂ is the estimated frequency, Â and Âm the estimated amplitudes in [m/s2]
and [mm], respectively, |∆Âm

| the absolute deviation of the estimated amplitude in [mm]
compared to those from PCB accelerometer, p the AR model order, ν̂ the estimated df,
σ̂` a posteriori standard deviation of the vibration measurements in their measurements
unit, wntc the acceptance of the WNT criterion (i.e., yes in case of acceptance, otherwise
no), t the length of an excitation window selected and Fs the sampling frequency.

Sensor f̂ Â Âm |∆Âm
| p ν̂ σ̂` wntc t Fs

[Hz] [m/s2] [mm] [mm] [-] [-] [-] [-] [s] [Hz]

2.0001 0.2705 1.7126 0.0 7 34.81 0.0206 yes

50 200
PSVC–PCB 3.0001 0.2911 0.8191 0.0 6 52.15 0.0191 yes

[m/s2] 4.0002 0.2929 0.4637 0.0 7 9.31 0.0193 yes
10.0005 0.2956 0.0749 0.0 1 46.64 0.0179 yes
15.0007 0.2954 0.0332 0.0 1 57.24 0.0179 yes

2.0002 0.2831 1.7925 0.0799 7 15.26 0.0482 yes

50 100
MEMS 3.0003 0.2992 0.8421 0.0230 1 12.08 0.0309 yes
[m/s2] 4.0004 0.2986 0.4726 0.0089 3 8.67 0.0336 yes
(Z-axis) 10.0011 0.2923 0.0740 0.0009 5 6.88 0.0508 yes

15.0016 0.2838 0.0319 0.0013 4 8.46 0.0688 yes

2.0001 - 1.7441 0.0315 36 33.61 0.0014 yes

50 200
Laser tracker 3.0001 - 0.8204 0.0013 13 275.85 0.0013 yes

[mm] 4.0001 - 0.4598 0.0039 26 196.37 0.0012 yes
10.0003 - 0.0731 0.0018 20 17.17 0.0012 yes
15.0004 - 0.0319 0.0013 30 13.05 0.0010 no

2.0013 - 1.6321 0.0805 1 3.0 0.0492 yes
100 10IATS 3.0020 - 0.7415 0.0776 1 3.0 0.0262 yes

[mm] 4.0027 - 0.4076 0.0561 1 3.0 0.0196 yes

it can also be due to a time-variability of the AR model, which is justified by considering the time-
variability through the GEM algorithm, and thus, obtaining the WNT acceptance for the frequency
of 15Hz, and with an AR model order 13. The IATS displacement data shows a minimum AR
model of 1 compared to the other sensors. However, the AR model order is also influenced by the
number of measurements, which can be seen from the analysis of the shaker and for a duration of
5 minutes in the research of Omidalizarandi et al. (2019c). The analysis of IATS provided in this
section is improved compared to the research of Omidalizarandi et al. (2018), and by using the
recent version of the proposed RT-MPI algorithm.

Figure 6.11 depicts the estimated coloured noise residuals and the decorrelated residuals of the
given vibration measurements, which are obtained from the aforementioned four sensors. The
fluctuation in the coloured noise residuals of the laser tracker data are mainly due to remaining
frequencies of the measurement drifts with small amplitudes. Figure 6.12 illustrates histogram of
the adjusted weights. As it can be seen, the adjusted weights estimated from both reference sensors
are increased smoother compared to those estimated from the MEMS and the IATS data. How-
ever, the adjusted weights obtained from the IATS data do not increase smoothly, which proves
the existence of numerous outliers. Figures 6.13 and 6.14 represent the eigenfrequencies estimated
for the IATS and the laser tracker data, respectively. As it can be seen, the lowest frequencies of
0.6667 and 0.0527Hz correspond to the measurements drift in the IATS and the laser tracker data.
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(a) MEMS - Z axis (b) PSVC–PCB

(c) IATS (d) Laser tracker - Z axis

Figure 6.11: The estimated coloured noise residuals (red dashed line) and the decorrelated residuals
(blue solid line) of the vibration measurements corresponding to the frequency of 3Hz,
and for (a) the MEMS acceleration data in Z-axis [m/s2], (b) the PCB reference ac-
celeration data [m/s2], (c) the IATS displacement data in vertical direction [mm], and
(d) the laser tracker displacement data in Z-axis [mm].

(a) MEMS - Z axis (b) PSVC–PCB

(c) IATS (d) Laser tracker - Z axis

Figure 6.12: Histogram of the weights estimated for the frequency of 3Hz, and for (a) the MEMS
acceleration data in Z-axis [m/s2], (b) the PCB reference acceleration data [m/s2],
(c) the IATS displacement data in vertical direction [mm], and (d) the laser tracker
displacement data in Z-axis [mm] in a controlled excitation experiment by using the
PSVC.
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Figure 6.13: Representation of the frequencies estimated from the IATS displacement data with
sampling frequency of 10Hz through the controlled excitation experiment.

Figure 6.14: Representation of the frequencies estimated from the laser tracker displacement data
with sampling frequency of 200Hz through the controlled excitation experiment.

6.3 Example based on a Footbridge

A vibration analysis of a footbridge structure is performed by using the MEMS and PCB piezoelec-
tic (PCB piezotronics, 2019) reference accelerometers with sampling frequencies of 100 and 2000Hz.
The aforementioned footbridge is the Mensa footbridge, located in Hannover, Germany. It has a
length of 27.05m (23.22m main span and 3.83m side span) and a width of 2.42m (see Fig. 6.15).
The reference acceleration data is downsampled to 100Hz to speed up the processing. In addition
to the aforementioned reference accelerometer, the Mensa footbridge is dynamically analysed based
on the FEM analysis. For further information regarding the FEM analysis, please refer to Omi-
dalizarandi et al. (2020). Subsequently, such a real application of the footbridge structure allows
to compare and validate the estimated modal parameters including eigenfrequencies, eigenforms,
and damping ratio coefficients with the reference accelerometers as well as the FEM analysis.

The geo-sensor network of the MEMS accelerometers are located at certain positions that are precal-
culated by means of the FEM analysis. Subsequently, it allows to correctly characterise eigenforms.
As previously stated, the MEMS accelerometer is a three axis accelerometer, which is capable of
recording vibration measurements in longitudinal (X-axis), lateral (Y -axis), and vertical (Z-axis)
directions of bridge structures. By contrast, the reference accelerometer used is a one axis ac-
celerometer in which its multiple set-ups are required to record vibration measurements in all three
directions. However, in this research, the eigenforms are merely characterised in vertical direction
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Figure 6.15: Measurement set-up in the Mensa footbridge experiment: The positions of the MEMS
and the PCB piezoelectic accelerometers are highlighted by red and blue circles (Her-
rmann, 2018).

due to the usage of only three MEMS slave sensors, namely, IMU_Slave_02, IMU_Slave_03,
and IMU_Slave_04 (see Fig. 6.15). The MEMS accelerometer is set-up along its X-axis due to
having a better uncertainty compared to Z-axis. However, the uncertainties of X and Y –axes are
not significantly different from each other. Three reference sensors, namely, DSV1, DSV3, and
DSV5 are located near the aforementioned MEMS slave sensors, for the validation purpose (Omi-
dalizarandi et al., 2020).

Typically, the dynamic response of a footbridge is recorded under an ambient excitation imposed
by either moving pedestrians (mainly in vertical direction) or wind (mainly in lateral direction). In
this research, an additional excitation is induced by impulses from a modal hammer. The modal
parameters including eigenfrequencies and damping ratio coefficients are estimated for the vertical
and torsion modes, which are provided in the research of Omidalizarandi et al. (2020). According
to the aforementioned analysis, the estimates of the damping ratio coefficients are influenced by the
amount of loads. However, since the energy contents of external forces are decreased through time,
it is expected that the estimates of damping ratio coefficients reach gradually to an equilibrium.
Accordingly, it is possible to obtain a unique damping ratio coefficient by calculating a weighted
average or a median of the estimated values. Such calculation can also be performed similarly for
the eigenfrequencies (Omidalizarandi et al., 2020).

Table 6.3 summarises the statistics of estimated eigenfrequencies [Hz] and damping ratio coeffi-
cients [%] obtained from the RT-MPI algorithm. In this chapter, it is merely provided for the first
and second vertical modes (i.e., indexed by V) and the fourth torsion mode (i.e., indexed by T). In
addition to the aforementioned estimated parameters, the first torsion mode and two other vertical
modes are also estimated in Omidalizarandi et al. (2020). The median of estimated parameters
is calculated for the entire time series of vibration measurements to obtain the final estimates.
The estimated parameters are then compared to the SSI-COV algorithm, which is implemented in
MATLAB by Cheynet (2020).
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Table 6.3: Statistics of the estimated eigenfrequencies [Hz] and damping ratio coefficients [%] ob-
tained from all three MEMS acceleration data by means of the RT-MPI and SSI-COV
algorithms for the Mensa footbridge (Omidalizarandi et al., 2020).

Sensor Time [s] Method fV 1 [Hz] ξV 1 [%] fV 2 [Hz] ξV 2 [%] fT 4 [Hz] ξT 4 [%]

MEMS

7.22–357.05
RT-MPI 4.085 0.36 13.764 0.72 26.323 0.66
SSI-COV 4.084 0.81 13.734 0.47 26.294 0.65

7.22–57.22
RT-MPI 4.066 0.38 13.801 0.95 26.353 0.72
SSI-COV 4.073 0.32 13.742 0.73 26.335 0.54

65.95–115.95
RT-MPI 4.106 0.26 13.781 0.78 26.314 0.58
SSI-COV 4.100 0.20 13.868 0.19 26.302 0.55

123.95–173.95
RT-MPI 4.072 0.90 13.766 0.76 26.344 0.65
SSI-COV 4.072 1.10 13.769 0.60 26.319 0.57

185.79–235.79
RT-MPI 4.112 0.45 13.769 0.70 26.293 0.62
SSI-COV 4.088 0.40 13.776 0.51 26.285 0.63

246.62–296.62
RT-MPI 4.084 0.26 13.763 0.44 26.284 0.67
SSI-COV 4.087 0.28 13.774 0.32 26.282 0.65

307.05–357.05
RT-MPI 4.098 0.38 13.762 0.71 26.324 0.68
SSI-COV 4.095 0.40 13.764 0.49 26.312 0.57

2D plan FEM 3.642 _ 13.294 _ _ _

The comparison of both aforementioned algorithms demonstrates that the RT-MPI algorithm al-
lows to efficiently decrease the influence of loads on the estimated parameters. Particularly, more
accurate and reliable results are obtained for the damping ratio coefficients by means of the median
of estimates. However, the SSI-COV algorithm does not achieve reasonable results for the estimates
of damping ratio coefficients while considering the entire time series at once. As it can be seen from
Table 6.3 and for the time interval of 7.22 – 357.05 s, the damping ratio coefficients corresponding
to the first and second vertical modes as well as the first torsion mode are not estimated correctly in
the SSI-COV algorithm. It can be justified by their comparisons with the estimates obtained from
other time intervals. By contrast, both approaches achieve rather close estimates of the parameters
in shorter time intervals. However, the SSI-COV algorithm does not achieve reliable results for
the damping ratio coefficients corresponding to the second vertical and the first torsion modes.
In addition, maximum deviation of the estimated eigenfrequencies in both approaches is approxi-
mately 0.03Hz (Omidalizarandi et al., 2020). Besides, the percentage errors have been calculated
with respect to the estimated parameters obtained from the RT-MPI algorithm considering the
entire time series (7.22 – 357.5 s). The estimated frequencies and damping ratio coefficients above
percentage errors of 1% and 20%, respectively, are highlighted in bold. As it can be seen, all the
estimated frequencies are below the threshold of 1%. Some damping ratio coefficients correspond
to the first and second vertical eigenfrequencies are above the threshold of 20%, which is due to
the higher imposition of the loads. However, median of the estimated parameters over the entire
time series reduce the influence of the loads. It should be noted that the frequencies and damping
ratio coefficients have been provided up to third and second decimals, respectively. This is due
to the reason that loads and environmental factors affect on the uncertainties of the estimated
parameters. However, as previously shown in sections 2.3.1 and 6.2, the MEMS accelerometers can
deliver better accuracy, in particular for the frequencies, in controlled excitation experiments.

The estimated parameters obtained from the MEMS and the reference acceleration measurements
are compared for the last 60 s of the measurements, and with an incremental step size of 5 s for
the validation purpose. The provided analysis in Omidalizarandi et al. (2020) demonstrates that
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all eigenfrequencies can be detected precisely for both acceleration measurements. As described by
Wenzel (2009a), the modal and system damping could be possibly altered between 0 – 0.1 and 0
– 0.2. Therefore, the median of all estimated damping ratio coefficients for each ambient window
selected is within the aforementioned range which is acceptable (Omidalizarandi et al., 2020).

According to the FE simulations which were analysed based on the 3D CAD model created from
the 2D plan (Omidalizarandi et al., 2020), the frequencies of 3.642 and 13.294 Hz from the FEM
analysis are equivalent to the frequencies of 4.1 and 13.75Hz. Subsequently, it demonstrates that
merely approximate estimates of the eigenfrequencies can be calculated from the FEM analysis
and no calculation of the damping ratio coefficients can be provided (Omidalizarandi et al., 2020).
However, the FEM calibration may improve the results, which is out of the scope of this disserta-
tion.

To characterise the eigenforms (see Figs. 6.16 – 6.18), the modal parameters including amplitudes,
eigenfrequencies, and phase shifts were estimated in advance, and by considering the UDHO model
within the GEM algorithm (see chapter 4). For this purpose, the estimation of the aforementioned
parameters is accomplished for the entire time series and for each sensor's measurements individ-
ually. Comparison of the eigenforms deduced from the MEMS and the reference accelerometers
demonstrates the reliability, robustness, and high accuracy of the estimation procedure in the pro-
posed RT-MPI algorithm. As previously stated, it is also possible to characterise the deflection
eigenforms with true scales within the selected ambient window, and for a short time interval.
In this case, the UDHO model is replaced by the DHO model. Next, the double integration of
the DHO model is carried out to obtain highly accurate estimates of the amplitudes. Such de-
flection eigenforms can also provide the estimates of damping ratio coefficients for the vibration
measurements recorded at each sensor node (Omidalizarandi et al., 2020).

Figure 6.16: MEMS accelerometers: time series of the acceleration measurements (top) (selected am-
bient window within the red dashed lines) in which the X- and Y -axes represent time
[s] and amplitude [m/s2]; vertical eigenforms calculated for different eigenfrequencies
(bottom). The texts for each eigenform represent estimated phase shifts (blue), eigen-
frequencies (black), and amplitudes (red) at specified positions (Omidalizarandi et al.,
2020).
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Figure 6.17: 3D vertical eigenforms characterised for different eigenfrequencies obtained from the
MEMS accelerometers: the first vertical eigenform (4.07 Hz; left) and the second
vertical eigenform (13.75 Hz; right). Amplitudes scaled by 200 in Z-axes (Omi-
dalizarandi et al., 2020).

Figure 6.18: Reference accelerometers: time series of the acceleration measurements (top) (selected
ambient window within the red dashed lines) in which X- and Y -axes represent time
[s] and amplitude [m/s2]; vertical eigenforms calculated for different eigenfrequencies
(bottom). The texts for each eigenform represent estimated phase shifts (blue), eigen-
frequencies (black) and amplitudes (red) at specified positions (Omidalizarandi et al.,
2020).

6.4 Example based on a Synthetic Bridge

A vibration analysis of a synthetic bridge from the BAM, located approximately 80 km from Berlin,
Germany, with a length of 24.0m, a width of 0.8m, and a height of 0.3m is carried out. The afore-
mentioned bridge is a rigid platform without any natural frequencies. Therefore, the modal hammer
is used to generate an artificial oscillation. The vibration measurements are recorded by using the
MEMS accelerometers, the IATS of type Leica MS50, a geophone, and the laser tracker of type Le-
ica AT960-LR with sampling frequencies of 100Hz, 10Hz, 1000Hz, 1000Hz, respectively. However,
in this research, the focus is on the MEMS acceleration data as well as the geophone velocity data
(i.e., reference measurements), which allows to validate the estimated modal parameters including
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eigenfrequencies and damping ratio coefficients (Omidalizarandi et al., 2020).

Figure 6.19 illustrates the MEMS acceleration data as well as the geophone velocity data, which
are recorded in vertical direction. The MEMS accelerometer is set-up along its Z-axis. The first
ambient window, with a length of 10 s, is started from the last peak with a high amplitude which
is then enlarged by a step size of 10 s to reach the maximum duration of 120 s. As it can be
seen from this figure, the estimated first eigenfrequency and its corresponding damping ratio co-
efficient are represented for different ambient window sizes. Table 6.4 summarises the statistics
of the aforementioned modal parameters estimations by means of the RT-MPI algorithm, and for
the measurements of the MEMS and the geophone. In this table, merely the part of analysis of
the research of Omidalizarandi et al. (2020) is represented. However, the median values are calcu-
lated for the entire analysis. The estimated parameters are then compared with the analysis of the
MEMS acceleration data based on the SSI-COV algorithm. Frequencies of 3.91, 6.13, and 15.77Hz
correspond to the 1st – 3rd modes, respectively. The analysis demonstrates robustness, reliability,
and highly accurate eigenfrequencies and damping ratio coefficients estimations which are derived
from the MEMS acceleration data in the proposed RT-MPI algorithm. The aforementioned esti-
mated parameters are then compared and evaluated with the analysis obtained from the geophone
measurements and the SSI-COV algorithm. According to the analysis, the estimated eigenfrequen-
cies deviate about a maximum of 0.01 and 0.04Hz with respect to the analysis obtained from
the geophone measurements and the SSI-COV algorithm. Additionally, deviation of the estimated
damping ratio coefficients from both aforementioned approaches is below 0.1%, which is within the
range and is acceptable (Omidalizarandi et al., 2020).

(a) MEMS accelerometer (IMU_Slave_02) measurements (b) Geophone measurements

Figure 6.19: BAM synthetic bridge: time series of (a) the MEMS acceleration measurements [m/s2]
and (b) the geophone velocity measurements [mm/s] (blue solid lines); selected ambi-
ent window within the red dashed lines for a duration of 120 s. The blue and orange
coloured texts stand for the estimated eigenfrequencies [Hz] and damping ratio coeffi-
cients [%], for the first mode at specified positions (Omidalizarandi et al., 2020).

6.5 Summary
In this chapter, a good feasibility of cost-effective MEMS accelerometers for displacement and vi-
bration analysis of bridge structures is demonstrated. The proposed RT-MPI algorithm in this
research allows to estimate the modal parameters including eigenfrequencies, eigenforms, damp-
ing ratio coefficients, and amplitudes robustly, reliably, and high accurately. The estimates of the
amplitudes in metric unit enables to characterise deflection eigenforms in their true scales, and
with a high accuracy for a selected excitation window. The time synchronisation between different
sensor nodes is an important step, which greatly influences the estimated eigenforms. The FEM
analysis assists to position the sensor nodes, which subsequently allows to correctly characterise
the eigenforms.
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Table 6.4: Statistics of frequencies [Hz] and damping ratio coefficients [%] estimated from the MEMS
acceleration data and the geophone velocity data based on the RT-MPI and the SSI-COV
algorithms for the BAM synthetic bridge (Omidalizarandi et al., 2020).

Time [s] 24.4 44.4 64.4 84.4 104.4 Median

f1 [Hz] 3.912 3.914 3.911 3.914 3.914 3.914
ξ1 [%] 0.95 0.94 1.01 0.97 0.97 0.97

MEMS f2 [Hz] 6.132 6.129 6.119 6.134 6.136 6.132
RT-MPI ξ2 [%] 1.55 1.63 1.59 1.53 1.52 1.54

f3 [Hz] 15.774 15.775 15.760 15.783 15.781 15.775
ξ3 [%] 0.93 0.90 0.93 0.91 0.92 0.92

f1 [Hz] 3.912 3.917 3.918 3.918 3.918 3.918
ξ1 [%] 1.01 1.01 1.01 1.00 1.01 1.00

Geophone f2 [Hz] 6.135 6.139 6.141 6.136 6.136 6.141
RT-MPI ξ2 [%] 1.52 1.52 1.53 1.52 1.54 1.53

f3 [Hz] 15.764 15.773 15.777 15.769 15.770 15.772
ξ3 [%] 0.95 0.92 0.91 0.92 0.92 0.92

f1 [Hz] 3.920
ξ1 [%] 0.90

MEMS f2 [Hz] 6.131
SSI-COV ξ2 [%] 1.48

f3 [Hz] 15.734
ξ3 [%] 0.97

To estimate the modal parameters including eigenfrequencies, damping ratio coefficients, phase
shifts, and amplitudes for a short-term deformation monitoring, the observation model is defined
based on the DHO model, the AR model, and stochastic model in form of the scaled t-distributions,
which are jointly adjusted by means of GEM algorithm. The combination of the aforementioned
three parametric models allow for self-tuning, robust, and ML estimation of the parameters. Addi-
tionally, it ensures the efficient convergence of the algorithm. The identification of initial frequencies
and a proper selection of an excitation window play important roles, and significantly influencing
the final parameter estimates. For a long-term deformation monitoring, the DHO model is replaced
by the UDHO model to avoid an influence of damping on characterisation of eigenforms. In the
proposed RT-MPI algorithm, the unknown parameters can be estimated for three cases where the
df (ν) is obtained by applying the INTLAB library as well as fzero and mle MATLAB routines.
Double integration by using the DHO model achieves considerably accurate estimates of the am-
plitudes in metric unit.

According to the experimental studies, calibration of the MEMS accelerometer has a minor impact
on the estimates of modal parameters, particularly on the eigenfrequencies, for a short time interval,
e.g., a few minutes. However, it is essential to be considered for long-term vibration measurements,
e.g., 10 minutes or more, to compensate for the systematic errors of the MEMS accelerometer
including biases, scales, and non-orthogonality angles between the axes.

Experimental studies are carried out based on the simulated acceleration data, the controlled exci-
tation, and two real applications of the footbridge and the synthetic bridge. For real experiments,
the MEMS accelerometers with a specified sampling frequency of 100Hz and the IATS (i.e., using
video frames captured by its telescope camera) with a sampling frequency of 10Hz are used. In
addition, the reference sensors such as the laser tracker, the geophone and the reference PCB ac-
celerometers are used for the validation purpose.
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Aforementioned experiments allow to estimate the modal parameters including eigenfrequencies,
eigenforms, damping ratio coefficients, amplitudes – in [m/s2] and [mm] – and phase shifts, which
are compared and validated with their true values, the reference sensors, the FEM analysis as well
as the well-known SSI-COV algorithm. According to the analysis, both RT-MPI (all three variants
of estimating df) and SSI-COV algorithms achieve rather similar results for the frequencies and
damping ratio coefficients in the simulation experiment. However, the damping ratio coefficients
estimates in the SSI-COV algorithm are merely stable and reliable while there is a perfect free
vibration decay of a signal. By contrast, the proposed RT-MPI algorithm is able to robustly and
accurately estimate damping ratio coefficients even in case of imposed loads at different time inter-
vals in real experiments. This is achieved by calculating the median values of estimated damping
ratio coefficients for selected excitation windows. Similarly, a median value is also calculated for
estimated eigenfrequencies to obtain a unique value. In the simulation experiments, the estimates
of amplitudes by using the RT-MPI algorithm have very small differences to their true values,
which is negligible. However, the SSI-COV algorithm could not estimate the amplitudes. The first
and third variants of the RT-MPI algorithm achieve robust and highly accurate estimates of the
parameters, which are slightly better than the second variant. However, in case of highly noisy
vibration measurements, the second variant of the RT-MPI algorithm cannot correctly estimate the
ν, which may influence the final parameter estimates. The first variant of the RT-MPI algorithm is
computationally expensive and it is suitable for post-processing. The second and third variants of
the RT-MPI algorithm are relatively fast, which can be used for near real-time processing. For ex-
ample, the analysis of the simulated data with length a 10000 data sets shows that the first variant
is approximately 153 times slower than two other variants. To this end, the analysis demonstrates
superiority of the RT-MPI algorithm compared to the SSI-COV algorithm. In addition, in the
simulation experiment, the proposed RT-MPI algorithm is theoretically and numerically proved.
Moreover, it is demonstrated that the robustness and accuracy of the proposed RT-MPI algorithm
are much more than expected and needed for real application of bridge structures, which is fully
satisfactory.

In the controlled excitation experiment, the estimated df of t-distribution for the laser tracker and
the PCB acceleration measurements reveal rather close approximation of a normal distribution.
This is relatively similar for the MEMS acceleration data, in particular for lower frequencies. By
contrast, the estimated df regarding the IATS displacement data with heavy tails show a large
number of outliers in the measurement noise of that sensor. This can also be justified based on the
histogram of adjusted weights. According to that, the adjusted weights for the reference sensors
measurements such as the laser tracker displacement data as well as the PCB acceleration data
are increased smoothly, which is almost similar to the MEMS acceleration data. By contrast, ad-
justed weights obtained from the IATS displacement data do not increase gradually and smoothly,
which proves the existence of numerous outliers. In addition, the estimates of AR model order
demonstrate relatively high auto-correlation of the noise measurements for cost-effective MEMS
accelerometer. However, the AR model order is relatively large for the laser tracker displacement
data compared to other sensors data sets. The reason lies in the existence of systematic errors such
as the measurements drift over a long period. By considering the time-dependent AR model within
the GEM algorithm, particularly for the laser tracker measurements, the AR model order might
be decreased.

The overall analysis demonstrates that the proposed RT-MPI algorithm can estimate all eigen-
frequencies, their corresponding eigenforms as well as damping ratio coefficients for cost-effective
MEMS acceleration data recorded at a bridge structure. The analysis showed a submillimetre ac-
curacy level for amplitudes, considerably better than 0.1Hz for the eigenfrequencies, and damping
ratio coefficients estimates of better than 0.1 and 0.2% for modal and system damping. Besides,
the lower eigenfrequencies (in the view of Nyquist sampling frequency) can also be identified from
the IATS displacement data with a high accuracy.
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7.1 Summary and Conclusion
In this dissertation, a robust kinematic deformation monitoring of bridge structures is performed
by using cost-effective MEMS accelerometers and an IATS. Use of cost-effective MEMS accelerom-
eters for permanent monitoring and inspection of the bridge structures is economically plausible. It
enables to prevent any deterioration of the structures at the earliest possible stage. Subsequently,
the repair cost and risk is reduced and lifetime of the bridge structures is ensured. On the contrary,
the IATS is a relatively expensive sensor and its continuous measurements over several months or
years is not feasible. The information obtained from both systems are complementary to each other
and the strength of one measurement method overcomes the weakness of the other in short- and
long-term displacement and vibration monitoring.

The MEMS accelerometers are used to perform vibration analyses and to identify the modal param-
eters including eigenfrequencies, eigenforms and damping ratio coefficients in longitudinal, lateral
and vertical directions of the bridge structures. For this purpose, multiple MEMS as part of a
geo-sensor network are mounted at certain positions of a bridge structure, which are precalculated
by means of a FEM analysis. Therefore, it allows to correctly characterise the eigenforms. Since
absolute position/displacement changes derived from double integration of the MEMS acceleration
data are drifting fast, the IATS as an aiding measurement system is used (Omidalizarandi et al.,
2019c). However, in short-term displacement monitoring, e.g., a few seconds, it is possible to ob-
tain a high accurate displacement data from the MEMS acceleration data. This is achieved based
on double integration of the DHO model, and by using the estimated parameters from the GEM
algorithm within a selected excitation window. The data fusion of the MEMS accelerometers and
the IATS is carried out within the KF framework, which subsequently allows for a complementary
coverage of lower and upper frequency ranges. Therefore, a high accurate displacement time series
at a submillimetre range is deduced, which has a higher resolution as well as a wider frequency
bandwidth.

Despite of the purchase price and an adequate sampling frequency of the MEMS accelerometers, a
three-step scenario is proposed to select an optimal one, which are as follows:

1. A robust calibration procedure is proposed and implemented to estimate MEMS-related sys-
tematic errors such as biases, scale factors and non-orthogonality angles between the axes.
The calibration is carried out in a climate chamber over different temperature ranges, which
subsequently enables us to have a good realisation of the changes of the calibration pa-
rameters. Therefore, a MEMS accelerometer with minimal influences of the aforementioned
systematic errors can be selected (Omidalizarandi et al., 2020).

2. A controlled excitation experiment is accomplished by using a high-precision shaker. There-
fore, it allows to estimate harmonic oscillation parameters, and to compare and validate them
with the their known values as well as with the analyses obtained from either other MEMS
accelerometers or a reference accelerometer. Moreover, it enables to check the time synchro-
nisation accuracy between different MEMS accelerometers (Omidalizarandi et al., 2020).

3. A static test experiment is conducted by recording 3D acceleration data over a long period.
Therefore, it allows to estimate an offset and a drift of the measurements. Additionally, the
unknown auto-correlation parameters as well as underlying distribution model parameters are
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estimated by employing the AR process with t-distributed errors. Moreover, the uncertainties
of the measurements are estimated. Subsequently, a less AR model order, a high df of
the t-distribution, and better uncertainties of measurements, are considered as important
influencing factors in the selection process. At the end, the estimated uncertainties of the
measurements assists to optimally set-up the MEMS sensors at bridge structures.

The calibration model of the MEMS accelerometers is solved based on two different adjustment
models, namely, GHM–GEM and GHM–VCE. The analysis demonstrates a very close approxima-
tion of the parameters from both approaches. However, the GHM–GEM approach is computa-
tionally more efficient than the GHM–VCE. The analysis shows a minor impact of the calibration
parameters on the estimates of the modal parameters for a short time interval, e.g., a few minutes.
However, to perform kinematic deformation monitoring for a longer period of time, e.g., 10 minutes
or higher, the calibration parameters are required to be considered.

To generate a high accurate displacement time series from the IATS, as a preliminary step, an opti-
mal passive target pattern is selected, which is cost-effective and easy to mount. A fast, automatic,
reliable, and accurate passive target centroid detection approach is proposed and implemented,
which has less sensitivity to poor environmental conditions, such as low lightning, dusty situations
and skewed angle targets (Omidalizarandi et al., 2019a). Next, a displacement time series is gener-
ated based on video frames of the passive target captured by an embedded on-axis telescope camera
of the IATS. In addition, a slope distance to the aforementioned passive target is measured. The
angular conversion factor of the telescope camera is calibrated, which allows to convert displace-
ments from pixel to metric unit such as millimetres (Omidalizarandi et al., 2018).

The state-of-the-art of the IATS has a limitation to detect higher frequencies due to low sampling
frequency (e.g. 10 to 20Hz). To overcome this problem, a high-resolution digital camera with a
higher sampling frequency can be attached on top of the IATS by means of a clamping system. Af-
terwards, the external calibration parameters are estimated to relate the data of the sensors to each
other. To detect such small displacements at the level of submillimetre, the aforementioned digital
camera could be equipped with a telescopic lens, which needs an additional calibration procedure.
The external calibration parameters between the IATS and an high-resolution digital camera can
be estimated robustly and accurately based on a rigorous bundle adjustment procedure similar to
the research of Omidalizarandi et al. (2019b). The functional models are determined based on the
collinearity equations, the 3D Helmert transformation, and the constraint equation. The constraint
equation is defined to estimate target coordinates as unknown parameters within the adjustment
procedure. Three different adjustment procedures are developed and implemented to deal with
high non-linearities of the functional models, which are as follows (Omidalizarandi et al., 2019b):

1. An EM algorithm to solve a GHM with grouped t-distributed random deviations.

2. An EM algorithm to solve a qGMM with t-distributed pseudo-misclosures.

3. A classical least-squares procedure to solve the GHM with VCE and statistical outlier removal.

The comparison of the aforementioned three adjustment models demonstrates the robust, accurate
and precise estimation of the parameters, in particular by the second and third procedure. In
addition, the second adjustment model is computationally more efficient than the other two (Omi-
dalizarandi et al., 2019b).

The MEMS acceleration data or the IATS displacement data are often contaminated with a high
coloured measurement noise. In addition, they are mostly suspected of having numerous outliers.
Therefore, a novel robust time domain modal parameter identification approach the so–called RT-
MPI technique is proposed and implemented. It allows to identify dynamic responses of the bridge
structures such as eigenfrequencies, eigenforms and damping ratio coefficients in a robust, accu-
rate, precise, cost-effective, efficient, and automatic manner. It further allows to automatically
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select an excitation (e.g. ambient) window, and to identify initial eigenfrequencies automatically
and reliably. Moreover, it enables to perform double integration of the acceleration data and to
obtain amplitudes in metric unit with a high accuracy. Having amplitude estimations in metric
unit for a selected ambient window, e.g., in a range of few minutes, allows to characterise deflection
eigenforms in their true scales with a high accuracy. The proposed approach can be applied for any
type of vibration measurements in the form of time series to perform displacement and vibration
analysis.

The aforementioned steps in the proposed RT-MPI algorithm including the excitation window se-
lection, the identification of initial frequencies and the estimation step are complementary to each
other, which ensures robust and accurate estimation of the modal parameters. The improper se-
lection of an excitation window directly influences the estimates of amplitudes and damping ratio
coefficients. In addition, the proposed approach in identification of the initial frequencies allows to
identify both well-separated and closely spaced frequencies (Omidalizarandi et al., 2020).

To begin with the estimation procedure, a comprehensive observation model consisting of a DHO
model, an auto-correlation model in the form of an AR process and a stochastic model in the form
of the heavy-tailed family of scaled t-distributions is employed. Therefore, it allows to jointly adjust
the parameters including eigenfrequencies, Fourier series coefficients, damping ratio coefficients, AR
coefficients, df and scale factor of the underlying t-distribution by means of the GEM algorithm.
Subsequently, it yields a robust, and ML estimation of the parameters. The amplitudes and phase
shifts are calculated based on the Fourier series coefficients and the eigenforms are characterised in
a subsequent step, and by using the estimated parameters from the GEM algorithm. Besides, the
time synchronisation between different sensor nodes is an important step, which greatly affects the
estimates of the eigenforms.

The aforementioned estimation procedure is performed in a repetitive procedure for each vector of
initial eigenfrequencies, and for each AR model order to calculate the cost value. An inadequate
choice of AR model order may absorb those undefined frequencies with low amplitudes. Thus, the
maximum AR model is set to 10, which yields fast convergence of the algorithm. However, in case
of high systematic errors of sensor measurements, the AR model order is increased to a higher value.
Besides, coloured measurement noise characteristics can also be observed from the estimated AR
model order from the static test experiment. An optimal vector of initial frequencies that is asso-
ciated with the minimum cost value is selected. The estimation step is carried out again by using
the optimal vector of initial frequencies selected from the previous step to obtain final estimates
of the modal parameters (Omidalizarandi et al., 2020). The aforementioned estimation procedure
further assists us to decorrelate the high coloured measurement noise contaminated with the accel-
eration data. Subsequently, a posteriori standard deviations of the white noise measurements of
the displacement and the acceleration data are estimated, which are used within the following KF
algorithm.

Two alternative approaches of multi-rate and resampling KF algorithms are proposed to perform
1D CUPT, and to compensate a displacement drift of the MEMS accelerometers by using the IATS
displacement data (Omidalizarandi et al., 2019c). The resampling approach greatly improves the
results by increasing the number of the IATS displacements data. However, its estimation is di-
rectly influenced by the estimated DHO model parameters. By contrast, the multi-rate KF allows
to perform data fusion with their own sampling frequencies. In both aforementioned approaches,
a time synchronisation is performed, as a preliminary step, based on cross-correlation of the IATS
and the MEMS displacements time series with a reference sensor.

Experimental studies are carried out based on a simulated acceleration data, controlled excitations,
and two real applications of a footbridge and a synthetic bridge. For real experiments, besides the
MEMS accelerometers and the IATS, the reference sensors such as a laser tracker, a geophone and
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a reference PCB accelerometer are used for the validation purpose. Aforementioned experiments
allow to estimate the modal parameters including eigenfrequencies, eigenforms, damping ratio co-
efficients, amplitudes – in [m/s2] and [mm] – and phase shifts, which are compared and validated
with their true values, the reference sensors, the FEM analysis as well as the well-known SSI-COV
algorithm. According to the analysis, both RT-MPI and SSI-COV algorithms achieve rather similar
results for the frequencies and damping ratio coefficients in the simulation experiment. However, the
damping ratio coefficients estimates in the SSI-COV algorithm are merely stable and reliable while
there is a perfect free vibration decay of a signal. By contrast, the proposed RT-MPI algorithm is
able to robustly and accurately estimate damping ratio coefficients even in case of fluctuating loads
at different time intervals in real experiments. This is achieved by calculating the median values
of the estimated damping ratio coefficients for selected excitation windows. Similarly, a median
value is also calculated for estimated eigenfrequencies to obtain a unique value. In the simulation
experiments, the estimates of amplitudes by using the RT-MPI algorithm have small differences
to their true values, which is negligible. However, the SSI-COV algorithm cannot estimate the
amplitudes. To this end, the analysis demonstrates superiority of the RT-MPI algorithm compared
to the SSI-COV algorithm (Omidalizarandi et al., 2020).

In the simulation experiment, the estimated df of the t-distribution for the laser tracker and the
PCB acceleration measurements reveal rather close approximation of a normal distribution. This is
relatively similar for the MEMS acceleration data, in particular for lower frequencies. By contrast,
the estimated df regarding the IATS displacement data with heavy tails show a large number of
outliers in the measurement noise of that sensor. In addition, the estimates of the AR model order
demonstrate relatively high auto-correlation of the noise measurements for MEMS accelerometers.
However, the AR model order is relatively large for the laser tracker displacement data compared to
other sensors data sets. The reason lies in the existence of systematic errors such as measurements
drift over a long period. By considering the time-dependent AR model within the GEM algorithm,
particularly for the laser tracker measurements, the AR model order might be decreased.

The overall analysis demonstrates that the proposed RT-MPI algorithm can estimate all eigen-
frequencies, their corresponding eigenforms as well as damping ratio coefficients by using MEMS
acceleration data recorded at a bridge structure. The analysis showed a submillimetre accuracy
level for amplitudes, considerably better accuracy than 0.1Hz for the eigenfrequencies and better
accuracy than 0.1 and 0.2% for damping ratio coefficients in modal and system damping, respec-
tively (Omidalizarandi et al., 2020). In addition, lower eigenfrequencies could also be identified
from the IATS displacement data with high accuracy. However, in case of the IATS, the damping
ratio coefficients could not be detected as accurate as those obtained from the MEMS acceleration
data. This is due to the fact that the amplitudes of the oscillation are lower than the uncertainties
of the measurements. In addition, the higher frequencies that are not detected (in the view of
Nyquist sampling theorem) are superimposed on the lower frequencies and therefore can change
the magnitudes of the amplitudes.

7.2 Outlook

In light of this dissertation, there are still some open questions and recommendations that can be
addressed as future research, which are as follows:

1. A fully automated and knowledge-based software could be developed and implemented, which
consists of data acquisition, online data preprocessing and processing, data transmission,
offline data post-processing, deformation analysis, and an alarming system.

2. The influence of the MEMS-related calibration parameters on the estimated modal parameters
for a long period could be investigated.
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3. A time synchronisation between sensor nodes could be improved at the hardware level to
achieve the highest possible accuracy.

4. A cross-correlation between either 3D acceleration data of a MEMS accelerometer or the
acceleration data recorded from other MEMS accelerometers could be handled based on a
VAR process. However, in this dissertation, such a cross-correlation is neglected. Therefore,
its influence on the estimated modal parameters is required to be investigated.

5. The VAR process could also be used in a selection process of a suitable MEMS accelerometer.
In this case, a minimal VAR model order shows a minimum cross-correlation between the
3D-axes of the MEMS accelerometer (Kargoll et al., 2020b).

6. The feasibility of a cost-effective vision-based measurement system with a high sampling
frequency in deformation monitoring of a bridge structure could be investigated. In addition,
an external high-resolution digital camera equipped with a telescopic lens could be mounted
on top of an IATS to improve the deformation analysis over a short-time interval.

7. A convolutional neural network could be applied to localise a passive target for captured
images.

8. A model selection problem or a significance test could be applied to improve the identification
of initial eigenfrequencies.

9. A global optimisation and an interval search algorithm could be applied to fit DHO models
to the selected excitation windows over the entire time series at once. For this purpose, a
maximum and a minimum estimate of the eigenfrequencies could be selected as an upper and
a lower bounds of interval. This might help to obtain a unique estimates of eigenfrequencies
over a long period.

10. A pattern recognition technique based on a recurrent neural network (RNN) could be applied
to improve an excitation (e.g. ambient) window selection procedure. In addition, RNN
could be applied to predict a dynamic response of a bridge structure over either different
temperature ranges or different loads.

11. The proposed 1D CUPT approach in this dissertation can be extended to 3D CUPT to cover
all directions of a bridge structure. This can be accomplished by generating 3D displacement
time series from an IATS.

12. Exhaustive experimental studies for different bridge structures such as short- and long-span
bridges with different materials, and over different temperature ranges can be carried out
to have a good realisation of the changes of the modal parameters. Such experiments allow
to test estimated eigenfrequencies and damping ratio coefficients against their corresponding
estimated values from previous epochs and to verify the structural health of a bridge.
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A Appendix
Figures A.1(a)–A.1(f) depict the estimates of the calibration parameters (remaining from chapter 2),
which are computed by the GHM–VCE and GHM–GEM.

(a) (b)

(c) (d)

(e) (f)

Figure A.1: MEMS accelerometer calibration parameters. (a): b̂gx [m/s2], (b): b̂gz [m/s2], (c): ŝgx,
(d): ŝgz, (e): θ̂zx [◦], (f): θ̂zy [◦].
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A novel automatic and accurate passive target centroid detection approach is 

proposed and developed which has numerous fields of applications, such as in 

engineering geodesy, photogrammetry, robotics and navigation. It is robust and 

reliable with respect to poor environmental conditions, such as low lighting, dusty 

situations and skew angle targets. This research is conducted in two parts. Firstly, 

an optimal target selection and its accurate automatic and fast centroid detection is 

performed. Afterwards, two case studies of the proposed approach are presented 

for automatic target pointing by means of the telescope camera of an image assisted 

total station (here Leica Nova MS50 MultiStation) and automatic target 

measurements for a digital camera (here Nikon D750). The results show that a 

circular target with a line pattern consisting of four intersected lines is an optimal 

pattern. The accuracy of the proposed method varies depending on the image 

resolution and distances to the objects. We performed experiments for distances 

between 1.6 and 28 m for the image assisted total station and achieved sub-

millimetre accuracy. 

Keywords: Passive target centroid detection, Optimal target pattern, Image assisted 

total stations, Digital camera, Image processing, Image analysis 

Introduction 

There is an increasing demand nowadays for automatic, low cost and accurate monitoring 

of civil engineering structures (e.g. buildings, bridges, dams) or natural objects (e.g. 

landslides) using state-of-the-art image assisted total station (IATS) (Reiterer et al. 2009, 

Bürki et al. 2010, Thuro et al. 2010, Wagner et al. 2013, Wagner et al. 2014, Ehrhart and 

Lienhart 2015a, 2015b, Guillaume et al. 2016, Wagner 2016, 2017). Total stations with 

externally attached cameras or embedded cameras are commonly referred to as IATS. 

In the context of sensor fusion, when using a camera in combination with, for 

example, a total station or a laser scanner, the external calibration parameters (i.e. the 

relative orientation of the sensor origins) must be known to relate the data of the sensors 

to each other. For embedded cameras, the external calibration parameters are usually 

known through the manufacturer’s calibration procedure. There is typically no need for 

the user to determine the external calibration parameters before a measurement task. By 

contrast, when using an externally attached camera, the external calibration parameters 

are a-priori unknown and have to be determined by an appropriate calibration procedure. 

In any case, an internal camera calibration should be performed to convert the pixel 

coordinate system to the metric coordinate system. Walser (2004), Ehrhart and Lienhart 



 

 

(2016) and Zhou et al. (2017) proposed camera calibration approaches to convert pixel 

coordinates to their corresponding metric coordinates. However, it is also possible to 

rotate the telescope of an IATS to the detected target by knowing the pixel differences 

between the initial pointing in the direction of the optical path of the telescope and the 

precise direction to the detected target’s centroid. In this case, the instrument’s axial 

errors, vertical index error, collimation error, in addition to the internal camera calibration 

parameters need to be obtained and considered to relate pixel coordinates to metric 

coordinates precisely.  

Considering the classical total station part of the IATS, active targets (i.e. 

retroreflective tape and classical prisms) are measured by the reflector-based distance 

measurement unit. Passive targets (i.e. marked target locations or arbitrary artificial object 

surfaces) are determined by the reflectorless distance measurement unit. An IATS 

benefits from both the images captured by its telescope camera and the precise polar 

measurements (i.e. horizontal directions, zenith angles and distance measurements). The 

motorised axes of rotations of the IATS allows for accurate, automatic and autonomous 

monitoring. Bürki et al. (2010) overviewed the advantages and disadvantages of the 

traditional automatic target recognition (ATR) technique that demands an active target 

(i.e. a classical prism) as follows: 

(1) Mandatory use of a reflector as target, which limits the measurement range. 

(2) Systematic angular measurement errors due to inaccurate ATR zero offset 

calibration. 

(3) Less applicability for industrial metrology due to the dependency of ATR angular 

measurements on the reflector. 

(4) Systematic errors due to the varying intensity of the laser emitter and subsequent 

uneven target illumination. 

Passive targets, as a low-cost alternative to the retroreflective tape and classical 

prisms, have numerous applications in engineering geodesy (e.g. cheap manufacturing 

costs and accurate target pointing by means of the IATS, self-positioning update of the 

IATS with respect to the control points), photogrammetry (e.g. automatic camera 

calibration), robotics and navigation. In addition, in the case of mounting prisms in 

difficult to access environments, such as rock faces, tunnels and bridges, passive targets 

seem to be more beneficial as there is no need of removal between measurement 

campaigns due to their cheap manufacturing costs. Ehrhart and Lienhart (2015a, 2015b) 

presented a displacement and vibration monitoring of a footbridge structure using the 

telescope camera of an IATS to measure circular targets rigidly attached to the footbridge 

structure. The target centres are extracted by least squares ellipse fitting within a Gauss-

Helmert model (GHM). In addition, the user interaction and manual pointing by the 

operator has only to be performed in the first measurement epoch (i.e. to initially point to 

the targets). Subsequently, the motorisation of the axes of rotations is used to 

automatically point to the targets based on the measurement values of the initial pointing. 

This procedure is used for all subsequent epochs.  

Automatic target detection can be carried out with different approaches, such as 

coded target (CT) detection (Zhou et al. 2015), ellipse detection (Chow et al. 2010, 

Ehrhart and Lienhart 2015a, Guillaume et al. 2016), circle matching (Bürki et al. 2010), 

cross line detection (Reiterer and Wagner 2012, Yi et al. 2018), least squares template 

matching (Grün 1996, Akca 2003, Grün and Akca 2005, Bürki et al. 2010, Kregar et al. 

2013) and centre of mass (Bürki et al. 2010). Zhou et al. (2015) automatically detected 

concentric rings of CTs using the open source OpenCV library (Kaehler and Bradski 

2016). Subsequently, all calibration parameters at a certain focus position were calculated 



 

 

by means of CTs and angular readings from a total station. New sets of calibration 

parameters were computed by cubic polynomial interpolation at different focus positions. 

The challenges regarding this solution are the need to define some thresholds and 

constraints to get rid of spurious detected ellipses, the need to restrict the effect of non-

perpendicularity of the surface of CTs to the aiming direction and the need for a complete 

viewing target pattern within the image’s field of view (FOV). Subsequently, CTs seem 

to be the proper choice of targets for camera calibrations, since both the target centroid 

coordinates and the ID (i.e. target identification number) are obtained simultaneously. 

Nevertheless, this may not be a good solution for highly accurate monitoring applications, 

as it is merely dependent on the ellipse detection. In addition, it is also a challenging issue 

in the case of poor lighting conditions or skewed targets (i.e. targets with bad incidence 

angles). Yi et al. (2018) proposed an automatic approach to detect cross-shaped passive 

target patterns using the radiometric and geometric information of three-dimentional (3D) 

point clouds based on discrete Morse theory on the intensity image. Reiterer and Wagner 

(2012) compared template matching, edge-based and point-based methods. They applied 

the edge-based technique to a region-of-interest (ROI) which contains the target. The 

proposed approach is advantageous for extracting relevant edges within the ROI and 

speeding up the process by reducing the search domain. The disadvantages of the 

proposed approach are the sensitivity to a change of the lighting conditions and the 

requirement of a user interaction to set the threshold parameters. They found that the 

edge-based method is the best-suited detection method compared to template- or point-

based methods. The template matching method is based on finding the maximum 

correlation between a template and the search images using grey values. It is variant with 

respect to scale, rotation and illumination of the objects. As described by Reiterer and 

Wagner (2012), the template matching technique can be improved by extracting features 

along contours and using them in the matching procedure. 

The novelty of our approach is twofold: firstly, we propose an optimal passive 

target pattern which overcomes the restrictions of the formerly proposed target patterns 

by applicability without special light conditions, low manufacturing costs, subpixel 

detection accuracy, fast run time speed and ease of mounting. Secondly, the highly 

accurate detection of its centroid is based on digital image processing techniques and the 

classical polar measurements of an IATS. The proposed target pattern and its detection 

approach is robust and reliable in poor environmental conditions, such as low lighting 

(i.e. no need for active illumination), dusty situations and skew angle targets. Moreover, 

it is invariant to the scale, rotation and illumination of the targets. It also works well even 

after a poor initial pointing to the target. In addition, it successfully detects target 

centroids in the case of an incomplete viewing target pattern. Therefore, the proposed 

target pattern is cheap regarding its manufacturing costs and its detection approach is fast 

and accurate, which suits numerous applications, such as deformation monitoring. The 

focus of this work is on the optimal passive target selection and its accurate, automatic 

and fast centroid detection. The conversion of pixel coordinates to the corresponding 

metric coordinates based on camera calibration parameters will be performed in future 

research.  

Sensor Specifications 

In our experiments, we used the telescope camera of an IATS (here Leica Nova MS50 

MultiStation (MS50)) and a digital single lens reflex (DSLR) camera (here Nikon D750) 

attached on top of a terrestrial laser scanner (TLS).  



 

 

The Leica MS50 measures prism targets from 1.5 m to 10000 m with an accuracy 

of 1 mm + 1.5 ppm and a measurement time of typically 1.5 s. Furthermore, it measures 

non-prism targets (arbitrary artificial object surfaces) from 1.5 m to 2000 m with an 

accuracy of 2 mm + 2 ppm and a measurement time of typically 1.5 s. Its laser dot size is 

about 8 mm x 20 mm at 50 m. The Leica MS50 includes an overview camera with a 

diagonal FOV of 19.4° and a telescope camera with a FOV of 1.5°. Both cameras have 

5-megapixel CMOS sensors (2560 x 1920 px; maximum image size), where the telescope 

camera has a 30 X optical magnification (Leica Geosystems 2013). The angular 

resolution (𝛼) of the telescope camera is approximately 1.7′′/px, which is computed by 

division of the diagonal FOV by the diagonal length of the captured image in pixel units. 

According to Leica Geosystems (2013), the horizontal and vertical FOVs of the telescope 

camera of the Leica MS50 are 1.3° and 1.0°, respectively. In this research, concerning the 

use of the telescope camera of the Leica MS50, its autofocus is set to ‘on’, the image 

resolution varies from [640 x 480 px] to [2560 x 1920 px] and the white balance is set to 

‘automatic mode’. Moreover, reflectorless distance measurements to the targets allow one 

to set the telescope’s focus motor position (autofocus) precisely. We used the GeoCOM 

interface (Leica Geosystems 2014) to get full access to the individual functionality of the 

Leica MS50. We implemented the GeoCOM interface in the script language Python 3.4 

for simplicity, in addition to our proposed target centroid detection algorithm. The Leica 

MS50 can be controlled via the graphical user interface that we developed, see Figure 1, 

which allows us to perform the data acquisition and analysis (target centre detection) in 

an efficient and effective manner. 

 

Figure 1. Graphical user interface in script language Python 3.4 to control Leica total 

stations and run our target centroid detection algorithm. 

The full frame DSLR camera (here NIKON D750; 24 megapixel) is used in 

combination with a laser scanner; it is firmly attached on top of the laser scanner. This 

sensor fusion allows us to perform displacement analyses of natural and artificial objects 

in both horizontal and vertical directions perpendicular to the laser beam (Omidalizarandi 

and Neumann 2015, Omidalizarandi et al. 2016). In addition, it benefits from a larger 

FOV and, subsequently, covers a larger part of the monitored object compared to the 

embedded cameras of state-of-the-art IATS. The following parameters for the DSLR 

camera were chosen for our experiments: the image size is set to ‘large’ with a size of 



 

 

[6016 x 4016 px]. The focus mode is set to ‘manual’, the autofocus is set to ‘off’, the lens 

focus is set to ‘infinity’, the exposure is set to ‘aperture-priority auto’, the white balance 

is set to ‘auto’, the ISO sensitivity is set to ‘100’ and the aperture (f-stop) is set to ‘6.3’ 

(Nikon 2014). 

Data Acquisition and Pre-processing 

The research was conducted with different passive target patterns to select the optimal 

one and, consequently, extract the target centroid automatically and accurately. Two 

different methodologies are proposed and their advantages and disadvantages are 

presented and discussed in detail.  

 

Figure 2. Design of passive target candidates. 

The target candidates can be classified based on border shapes or patterns. The 

targets with rectangular and circular borders are so-called Rb and Cb targets, respectively. 

Target patterns that include line features, circle features or a combination of them are so-

called Lp, Cp or LCp targets. Figure 2 shows our twelve target candidates: rectangular 

target with line pattern (RbLp target; a, b, c), rectangular target with circle pattern (RbCp 

target; f, l), rectangular target with line and circle pattern (RbLCp target; d, e), circular 

target with line pattern (CbLp target; g, k) and circular target with circle pattern (CbCp 

target; h, i, j). 

In our research, the Rb and Cb targets have been designed in the software AutoCAD 2016 

by Autodesk with a size of 0.07 and 0.06 m, respectively. Targets were captured with the 

telescope camera of the Leica MS50 at various distances up to a maximum distance of 

about 28 m. The target size can be adopted to suit the maximum distances to the objects 

and monitoring applications. Note that the target size in the image space is changing with 

the distance to the IATS. Figure 3 shows target b, which was captured with the telescope 

camera of the Leica MS50 at different distances. 

 

Figure 3. Captured targets at different distances. (a) 28.33, (b) 20.13, (c) 7.28, (d) 3.34 

and (e) 1.67 m. 



 

 

A cropping of the captured images is performed to extract the corresponding target 

to extract the relevant features within the ROI and to speed up the procedure (Reiterer 

and Wagner 2012). It is based on the object size of the target, the slope distance, and the 

horizontal and vertical FOVs of the telescope camera. Based on Eqs. (2) and (3), the 

change of the horizontal and vertical FOVs to lower values leads to a larger cropped target 

image, which, subsequently, decreases the cropping sensitivity to skew angle targets and 

slope distances. Since the telescope camera of the IATS is coaxial with the line of 

collimation, one has the possibility to initially localise the targets and to crop the 

corresponding captured images based upon the centre of the target and the computed 

target width and height in pixel units (Eqs. (2) and (3)). Equation (1) computes the FOVs 

based on the target size in the object space and the measured slope distance to the target. 

Afterwards, based on the width and height of the captured image, and the horizontal and 

vertical FOVs of the telescope camera, the target width and height are computed in pixel 

units. 

                                           𝐹𝑂𝑉 = 2 × tan−1(𝐷 (2 × 𝑆)⁄ )    [𝑟𝑎𝑑]                                       (1) 

where           𝐷 = target size in object space [m] and 𝑆 = slope distance [m]. 

                                                            𝑑𝑤 =
𝑤 × 𝐹𝑂𝑉

𝐹𝑂𝑉ℎ
                                                                 (2) 

                                                              𝑑ℎ =
ℎ × 𝐹𝑂𝑉

𝐹𝑂𝑉𝑣
                                                                 (3) 

where             dw= target width [px]; dh= target height [px]; 

                       w = width of captured image [px]; h = height of captured image [px]; 

                          FOVh = horizontal FOV [rad]; and FOVv= vertical FOV [rad]. 

Line Feature Extraction 

Edges in digital images can be extracted based on either the Canny edge detector (Canny 

1986) or the line segment detector (LSD) algorithm (Grompone von Gioi et al. 2012). 

The LSD algorithm is preferable for the Lp or Cp target, since the connectivity between 

the extracted edges is better than in the Canny operator and there is no need for edge 

linking to connect fragmented extracted edges. The LSD parameters include: sigma of 

Gaussian filter (here set to 0.75), bound to the quantisation error on the gradient norm 

(here set to 2.0), the gradient angle tolerance (here set to 22.5°), the minimal density of 

region points in the rectangle (here set to 0.7), the number of bins (here sets to 1024) and 

the gradient modulus in the highest bin (here set to 255). The aforementioned thresholding 

parameters are set for different images with different resolutions and there is no need for 

further changing of parameters to extract the line features based on the LSD algorithm. 

Please refer to Grompone von Gioi et al. (2012) for more information concerning the 

LSD algorithm. The Canny operator is a better choice compared to LSD to extract any 

types of Cp targets due to deriving smoother extracted edges. Figure 4a shows the cropped 

image of the captured image from the Nikon D750 camera and Figures 4b and 4c show 

extracted edges by means of the Canny edge detector using the OpenCV library and the 

LSD, respectively. 

 



 

 

 

Figure 4. (a) Cropped image, (b) extracted edges by the OpenCV Canny edge detector 

and (c) extracted edges by the LSD. 

Optimal Target Pattern Selection 

The optimal target pattern selection is performed for the twelve designed Rb and Cb targets 

with Lp and Cp patterns (Fig. 2). In Cp targets, after extracting the edges by the Canny 

edge detector, the next step is to form contours from the extracted edges. In Cp targets, 

the circle radius in the object space [m] is converted to the image space [px] using Eqs. 

(1) to (3). This procedure is only valid for targets perpendicular to the laser beam. In the 

case of skew angle targets, circles are changing to ellipses and the computation of the 

normal vector of the target planes is needed to estimate the radius more accurately. This 

leads to additional measurements on the target surface for the computation of the normal 

vector, which is not cost-efficient and might be a time-consuming task. Thus, among the 

twelve targets under investigation, Lp targets are better choices than Cp targets due to their 

accurate and easier target centroid detection, even in the case of bad incidence angles. 

Therefore, targets d, e, i and j are not suitable, because all four circles must be visible to 

allow us to compute the centroid by means of averaging over the centres of four circles.  

 

Figure 5. Captured passive targets at a distance of about 1.6 m. Targets patterns a to l 

from top left side to the bottom right. 

As can be seen from Figure 5, parts of the measured targets at a distance of about 

1.6 m captured by a Leica MS50, are not visible and, therefore, a target centroid detection 

of the aforementioned Cp or LCp targets are more problematic. 

It should be noted that the designed targets were optimised for digital image 

processing using either the captured images from the embedded telescope camera of a 

Leica MS50 or high-resolution images of external digital cameras. Better results could be 

obtained for manual pointing by human observers by using circular targets with 

concentric circles matched to the width of the cross-hairs at different distances. 

Targets b and k are chosen for an in-depth evaluation and further experiments due 

to their numerous intersecting lines and, consequently, an increased redundancy 



 

 

compared to the other target designs. These two targets will be investigated in more detail 

in the following section. 

Target Centroid Detection 

The target centroid detection is performed for targets b and k to select the optimal one. 

Two different methodologies are presented in more detail: the longest line-based target 

centroid detection (LL-TCD) (see Fig. 11, and Fig. 17 in Appendix A) and the azimuth-

based target centroid detection (A-TCD) (see Fig. 11, and Fig. 18 in Appendix A). 

In both approaches, the cropping of the captured images from the IATS are carried 

out by considering the horizontal and vertical FOVs equal to 1.25° and 0.95°, respectively 

(Figs. 6a and 11). The next step is to apply the median blur filtering to reduce the noise 

and to smooth the cropped images. Thereafter, a bilateral filter, which is non-linear, edge-

preserving and noise reducing, is applied to preserve the sharp edges of the image (Figs. 

6b and 11). The LSD is then applied to extract the edges of the filtered cropped image 

from the previous stage (Figs. 6c and 11). Note that the horizontal and vertical FOVs 

previously mentioned are only appropriate when manual target pointing measurements 

are close to the centre of the target. Later, the horizontal and the vertical FOVs are set to 

0.3° for practical reasons in the structural monitoring applications (due to the significant 

movements of targets), to cover a greater part of the captured image.  

Longest Line-based Target Centroid Detection 

The lengths of all extracted edges are computed and sorted in descending order in the 

longest line-based target centroid detection (LL-TCD) approach. The longest line is then 

selected at the first iteration (Figs. 6d and 11). Next, the longest line selected is extended 

on both sides to the edges of the image (Fig. 6e). The buffer lines with 𝑑𝑤/80 pixels (i.e. 

the value of 80 pixels has been chosen by trial and error) distance from the extended line 

are defined, which support the selection of all lines in the same direction and assist the 

removal of spurious lines which are not within the buffer lines (Fig. 11). 

 

Figure 6. The longest line-based target centroid detection: (a) Cropped image of 

rectangular target with line pattern, (b) filtered target image with applied median blur and 

bilateral filtering, (c) edge image with applied LSD algorithm, (d) longest LSD line 

selection at the first iteration and (e) its extension to other sides. 

Afterwards, vector lines are converted to raster lines to increase the redundancy 

by having more raster points (Fig. 11). Random sample consensus (RANSAC) (Fischler 

and Bolles 1987) line fitting, Huber robust line fitting or least squares line fitting (with 

an applied Gauss Helmert model (GHM)) can be applied to fit the line to the extracted 

edges. The OpenCV Huber line fitting is based on the M-estimator technique and is 

robust, efficient and fast. It fits the line iteratively using the weighted least squares 

algorithm. After each iteration, the weights 𝑤𝑖 are adjusted based on the inverse of 



 

 

distance function 𝜌(𝑟𝑖) (Eqs. 4), where 𝑟𝑖 is the distance between 𝑖𝑡ℎ point and the 

corresponding fitted line and C is a threshold (Huber 1981, Kaehler and Bradski 2016). 

             ρ(r) =  {

r2

2
                       if (r < C)

C ⋅ (r −
C

2
)          otherwise

         where C = 1.345                          (4) 

If the OpenCV Huber line fitting is applied, the accuracy of the fitted line is 

unknown. Therefore, a GHM-based least squares line fitting approach is implemented to 

overcome this issue. Global and local tests based upon a 𝜒2 test with a 95% confidence 

level are applied. Data snooping is performed to reject large residuals or outliers one by 

one. In the local test, all points with normalized 𝜒2 test values above a predefined test 

value can be rejected at once to speed up the procedure. In the Huber robust M-estimator 

technique (Huber 1981), measurements are re-weighted based upon the inverse of the 

distance function. In this case, the observations with large residuals have the lowest 

weights. According to our experiments, the GHM-based line fitting approach results are 

slightly different from those of the OpenCV Huber line fitting algorithm. It is possible to 

compute the standard deviations of the detected target centroids for different distances 

(e.g. in our experiment, up to 28 m with 13 target measurements at different distances in 

one set up) and to fit a polynomial curve (i.e. we applied the polyfit function of the 

software MATLAB 2016a by Mathworks) to approximate the curve parameters. In order 

to increase the run time speed of the procedure, the OpenCV Huber line fitting is used to 

fit the line and then the standard deviations of the detected target centroids for each 

specific distance is estimated based on the curve parameters calculated from the GHM-

based line fitting. Figure 7 shows the standard deviations calculated from the GHM line 

fitting approach in a solid red colour and the fitted polynomial curve (i.e. degree 6) in a 

dashed black colour. In order to give an impression about the accuracy of the detected 

target centroids, the approximate pixel size is calculated in metric units for two different 

image sizes at slope distances of 1, 10, 20 and 30 m (Table 1). The maximum standard 

deviations, about 6 pixels, appeared at a distance of 1.67 m. As we can see in Figure 7 

and Table 1, the pixel size at a distance of 1.67 m for the image sizes of [2560 x 1920 px] 

and [640 x 480 px] are approximately 0.01 mm and 0.05 mm. Therefore, the maximum 

standard deviations of the detected target centroids for the image sizes mentioned 

previously are approximately 0.08 and 0.33 mm, respectively. 

 

Figure 7. Standard deviations of the Gauss-Helmert model line fitting (solid red), 

Polynomial curve fitting of degree 6 – MATLAB (dashed black). 

 



 

 

Image size [px] Slope distance [m]  Pixel size [mm] 

2560 x 1920 1 0.008 

2560 x 1920 
2560 x 1920 

2560 x 1920 

640 x 480 
640 x 480 

640 x 480 

640 x 480 

10 
20 

30 

1 
10 

20 

30 

0.082 
0.164 

0.245 

0.033 
0.327 

0.655 

0.982 

Table 1. Pixel size in metric units for image sizes of [2560 x 1920 px] and [640 x 480 px] 

at a distance of 1, 10, 20 and 30 m. 

The Huber robust line fitting approach is applied to the extracted edges, which are 

within the buffer lines, to robustly fit the line and get rid of outliers. This procedure 

proceeds until no extracted edges remain. Small and spurious extracted lines are discarded 

by thresholding. Consequently, the intersection points of all extracted lines are detected. 

A k-d tree nearest neighbourhood algorithm is applied to detect the neighbouring 

intersection points within 2 pixels.  

The k-d tree or k-dimensional tree is a space-partitioning data structure which is 

used to organise points in a space with k dimensions. It is a binary tree which associates 

each node in the tree with one of the k-dimensions using a hyperplane that is a 

perpendicular to the corresponding axis. The hyperplane is used to divide the space into 

the two parts known as left sub-tree and right sub-tree. Therefore, each node is associated 

to each sub-tree based on smaller or greater values at each root. This procedure proceeds 

until only one element remains in the last tree (Bentley 1975).  

The maximum intersection point cluster closest to the initial pointing point is then 

selected. At the end, the mean of the maximum cluster selected is computed to derive the 

final intersection point (Fig. 11).  

A drawback of the target pattern b is the high chance of maximum intersection 

point clusters at the four corners of the targets. To overcome this problem and to detect 

the target centroids more reliably, circles with a radius of 𝑑𝑤/8 pixels around the 

intersection points detected are defined. All edge lines are then intersected with the 

defined circle. Afterwards, the azimuth between the detected intersection points of line-

line and intersection points of line-circle are computed and subtracted from each other to 

obtain the inner angles. In targets b and k, for instance, in the ideal case and no skew 

angles of the target, eight 45° angles between edge lines should be obtained (i.e. 

8× 45° = 360°). However, these angles can vary depending on the skew angle of the 

targets. Thus, a threshold angle of 10° is considered to overcome this problem. The 

probability of all intersection points of line-line are then calculated based on the 

multiplication of accepted angles with 12.5% to achieve 100% (i.e. 8 × 12.5% = 100%) 

as a maximum possible probability. Next, the mean of the intersection points at maximum 

probability is computed to achieve the final intersection point. Figures 8a, 8b and 8c show 

all the lines extracted and the representation of all intersection points of line-circle with 

corresponding probabilities. The centroid intersection point has the highest probability 

for selection compared to the other intersection points. However, the probability and 

reliability of the target centroid detected is decreased by missing some line patterns and 

by detecting spurious lines due to the noisy image. 



 

 

 

Figure 8. The longest line based target centroid detection: (a) Depiction of all lines 

extracted, (b) depiction of all intersection points of line-circle with corresponding 

probabilities and (c) final detected target centroid. 

Azimuth-based Target Centroid Detection 

In the azimuth based target centroid detection (A-TCD) approach, a paper printed target 

pattern k (Fig. 9) is designed to increase the efficiency and run time speed of the algorithm 

under different lighting conditions (e.g. normal lighting, very bright: direct lighting, semi-

dark: close indirect lighting, dark: far indirect lighting and totally dark: no source of light).  

 

Figure 9. Designed circular target with line pattern: (left) paper printed target and (right) 

target printed on reflective tape. 

In this methodology (see Fig. 11 for pseudo-code of the procedure), firstly, the 

localisation of the target in each captured image is performed by means of the Hough 

circle transform (HCT) (Kaehler and Bradski 2016) to detect circular objects. The radius 

of the circles in the HCT is calculated based on Eqs. (2) and (3), and by considering the 

horizontal and vertical FOVs of 1.3° and 1.0°, respectively. In order to discard the 

spurious detected circles, the captured image is cropped in the region of detected circles 

and converted to a binary image. In addition, the target template image is resized based 

on the calculated target width and height and converted to a binary image. The histogram 

of the binary image from circles is compared to that from a target template image and the 

circle image with the maximum correlation is selected. 

In the next step, edge lines are extracted to a selected region of detected circles by 

means of the LSD. The relevant edges are extracted within the ROI, which also speeds 

up the process. In the case of a very noisy image, a detection of circles is nearly 

impossible. Thus, the whole cropped image is considered for further processing. Next, 

line azimuths are calculated. Based on a histogram of the azimuths, the maximum azimuth 

is selected. Afterwards, the angles between the LSD lines and the maximum azimuth 

direction are computed and the lines within a predefined angle threshold, less than 15° 

here, are accepted. The RANSAC algorithm is applied to fit an optimal line to the selected 

lines and to remove spurious or false lines, which are nearly parallel to each line pattern 

(Figs. 10c and 11). Buffer lines with 𝑑𝑤/80 pixels from each side are defined and the 

Huber robust line fitting algorithm is applied to extract lines more accurately. The k-d-



 

 

tree neighbourhood is applied to detect the neighbouring intersection points within 2 

pixels. Subsequently, the maximum intersection point cluster is selected and the mean of 

them results in the final intersection point (Fig. 11). The advantage of CbLp targets 

compared to the former ones (RbLp) is that their detection by the second methodology is 

faster and working well even without a good initial pointing. This is due to the fact that 

the chance of a target centroid detection at the centre cluster is much higher, because of 

fewer parallel lines at the edges of the designed target pattern. Another difference between 

the previous two approaches is that applying the RANSAC line fitting in the LL-TCD 

approach is arbitrary, since the buffer lines are defined along the longest lines iteratively 

and directions are already known. However, in the A-TCD approach, the RANSAC line 

fitting needs to be applied to estimate line parameters among all detected parallel lines 

randomly. Later results prove that the CbLp targets seem to be a better solution than the 

RbLp targets. 

 

Figure 10. The azimuth-based target centroid detection: (a) Cropped image of circular 

target with line pattern, (b) filtered target image with applied median blur and bilateral 

filtering, (c) selected parallel lines within predefined angle threshold in green and fitted 

line with RANSAC algorithm in red, (d) all extracted lines in blue and final detected 

target centroid with red. 

Algorithm: Target centroid detection using image assisted total stations (Leica MS50) 

1. Input: 

2.       Initial pointing to the passive target with specific size    

3.       Read slope distance from Leica MS50 

4.       Capture passive target using telescope camera of Leica MS50 

5.       Read template image of target (optional) 

6. Pre-processing:  

7.       Calculate target size in pixel units   

8.       Calculate horizontal and vertical FOVs    

9.       Crop captured image  

10.       Median blur filtering  

11.       Bilateral filtering  

12.       Edge detection using LSD 

13.       Template matching (Optional) 

14.             Detect circles in cropped image using Hough circle transform 

15.             Create binary image for detected circle regions 

16.             Resize template image based on the size of cropped image 

17.             Create binary image of template image 

18.             Compare histogram of template image and detected circle regions 

19.             Select circle region with maximum correlation 

20.       if (Template matching) 



 

 

21.             Detect edges within the selected circle region 

22.       else 

23.             Use all extracted edges 

24.       end if 

25. Target centroid detection: 

26.       if (azimuth based target centroid detection approach (A-TCD)) 

27.             Compute line azimuths 

28.             Calculate histogram of line azimuths 

29.             Sort azimuth bin centres in descending order 

30.             while (azimuth bin centres array is empty?) 

31.                     Select azimuth bin centre from beginning 

32.                     Select all parallel lines 

33.                     Convert line vectors to raster 

34.                     RANSAC line fitting 

35.                     Huber line fitting 

36.                     Discard selected azimuth bin centre 

37.             end while 

38.       end if     

39.       if (longest line based target centroid detection approach (LL-TCD)) 

40.             Assign code 0 to all lines 

41.             Compute line lengths 

42.             Discard small and spurious lines 

43.             Sort lines based on lengths in descending order 

44.             while (all lines have code 1?) 

45.                     Select longest line with code 0 

46.                     Select parallel lines within buffer size 

47.                     Convert line vectors to raster 

48.                     RANSAC line fitting or Huber line fitting 

49.                     Assign code 1 to all selected lines within buffer as visited lines 

50.             end while 

51. Final processing: 

52.             Compute intersection points of all lines 

53.             Store intersection points in array 

54.             K-d tree neighbourhood 

55.             Select neighbouring points within 2 pixels 

56.             if (azimuth based target centroid detection approach (A-TCD)) 

57.                     Select cluster with maximum intersection points  

58.       Else if (longest line based target centroid detection approach (LL-TCD)) 

59.                     Select cluster with maximum probability 

60.             end if 

61.             Mean of selected intersection points 

62. Output: 

63.             Detect target centroid [px] 

64.      Use GeoCOM interface to automatically rotate telescope to the   detected 

point 

65.             Detect target centroid [m]  

Figure 11. Pseudo-code of the proposed target centroid detection approaches. 



 

 

Experimental Results 

In this research, an optimal target pattern selection and its accurate and automatic centroid 

detection is presented. The efficiency, reliability, repeatability, separability and accuracy 

of the proposed method is now evaluated and examined with two sample applications. 

The first test is performed using the telescope camera of an IATS (here Leica MS50) in 

the laboratory of the Geodetic Institute Hannover (GIH) of the Leibniz Universität 

Hannover. The dimensions of the laboratory are approximately 58 m (length) x 2.5 m 

(width) x 3 m (height). The aim is to select the optimal target pattern among twelve 

designed targets and detect the target centroid automatically after an initial, rough 

pointing. The second test is carried out to validate our proposed target centroid detection. 

It is performed by using a DSLR camera (here Nikon D750 24.3-megapixel) and a 

terrestrial laser scanner (TLS; here Zoller+Fröhlich Imager 5006) in the 3D laboratory of 

the GIH (about 6 m (width) x 8.5 m (length) x 5 m (height)). In the second test, the goal 

is to obtain highly accurate external calibration parameters between the TLS and the 

DSLR camera. 

Case study I – Optimal Target Pattern Selection and Its Accurate Centroid 

Detection Using Image Assisted Total Stations 

In this case study, the rectangular target with a line pattern (RbLp) and the circular target 

with a line pattern (CbLp) are examined, evaluated and compared to select the optimal 

one. Subsequently, the target centroid detection is carried out based on image processing 

techniques. Table 2 and Figure 12 indicate the applicability of the longest line based 

target centroid detection (LL-TCD) approach for the RbLp target (i.e. target b in Fig. 2) 

at different distances with different line fitting approaches by calculating the absolute 

deviations between the three line fitting approaches and one precise manual pointing 

measurement. The results (Fig. 12) show that the three line fitting approaches are very 

close for distances longer than 5 m. On the other hand, for distances below 5 m, the 

RANSAC line fitting shows larger deviations (in pixel units) than the two other line fitting 

methods. The RANSAC line fitting randomly fits the line and is robust regarding the 

outliers and for selecting true line patterns. However, the final intersection points may 

change slightly for each run of the algorithm due to its random characteristics. 

Subsequently, it was found that even by applying the RANSAC algorithm, the detected 

target centroids are accurate enough and comparable with the two other line fitting 

approaches in the metric unit. As previously indicated in Table 1 and can be seen in Figure 

12, the maximum absolute deviations between the RANSAC line fitting and the one-time 

manual pointing is about 10 pixels at the distance of 1.67 m, which is approximately 

equivalent to 0.14 mm for the image size of [2560 x 1920 px]. The probability shown in 

Table 2 Column 7 proves that the LL-TCD approach can successfully detect the target 

centroid. In addition, as we can see in Table 2, 𝜎𝑥𝑦  [px] shows that standard deviations of 

the detected target centroid points can be calculated by the law of error propagation for 

the intersected lines. The standard deviation changes inversely with distance and features 

better values for targets at longer distances, which is reasonable.  



 

 

 

Figure 12. Absolute deviations between line fitting approaches and manual pointing, 

RANSAC line fitting (red), OpenCV Huber line fitting (blue) and Gauss-Helmert model 

line fitting (green) in the longest line-based target centroid detection approach. 

 

Image 

No. 

Slope 

distance(m) 
∆𝑑𝑅𝐴𝑁𝑆𝐴𝐶−𝑀𝑎𝑛𝑢𝑎𝑙 

(px) 

∆𝑑𝐻𝑢𝑏𝑒𝑟−𝑀𝑎𝑛𝑢𝑎𝑙 

(px) 

∆𝑑𝐺𝐻𝑀−𝑀𝑎𝑛𝑢𝑎𝑙 

(px) 

𝜎𝑥𝑦 

(px) 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

(%) 

1 28.336 1.9290 1.7976 1.7996 0.37 100 

2  

3 
4 

5 

6 
7 

8 

9 
10 

11 

12 
13 

26.439 

23.692 
21.723 

20.113 

17.934 
15.862 

12.649 

9.357 
7.279 

5.272 

3.343 
1.676 

2.4211 

2.1308 
5.0085 

1.6662 

0.4296 
3.2253 

3.0417 

4.6096 
6.6705 

3.8300 

8.1340 
10.5392 

2.1674 

1.8181 
4.6402 

1.2704 

0.9624 
2.5709 

2.4760 

3.0831 
3.3538 

3.4602 

2.7586 
4.3811 

2.1686 

1.8188 
4.6501 

1.2423 

0.9520 
2.6966 

2.4690 

3.2997 
3.4473 

3.4431 

2.4969 
5.1585 

0.46 

0.48 
0.54 

0.59 

0.63 
0.70 

0.93 

1.17 
1.74 

2.51 

3.32 
5.79 

100 

100 
100 

100 

100 
100 

100 

100 
100 

100 

100 
100 

Table 2. Statistics of the target pattern b (see Fig. 2) based on the longest line-based target 

centroid detection approach. 

Tables 3 and 4 and Figure 13 represent the applicability of the LL-TCD and the 

A-TCD approaches for the CbLp target (i.e. target k in Fig. 2) in different lighting 

conditions (i.e. normal, very bright (direct lighting), semi-dark (close indirect lighting), 

dark (far indirect lighting) and totally dark (no source of light)) with different line fitting 

approaches. Columns (2) to (6) in Tables 3 and 4 show the slope distances to the target, 

absolute deviations between the RANSAC-based LL- or A-TCD approaches with one-

time manual measurement, absolute deviations between the Huber-based LL- or A-TCD 

approaches with a single manual measurement, processing times (in seconds) and the 

different lighting conditions, respectively. Tables 3 and 4 show that the two approaches 

differ slightly. The run time of the A-TCD approach is, on average, about five times 

smaller than in the LL-TCD approach (see Tables 3 and 4). The times shown (in seconds) 

indicate the processing time with the Huber line fitting algorithm. The processing can be 

even faster by using GPU programming for real-time applications. The two proposed 

approaches failed in total darkness without a source of light. A repeatability test was 

performed for target k (see Fig. 2) at image numbers 14 to 18, 19 to 23 and 24 to 30 by a 

single manual pointing and then applying a target centroid detection algorithm. 

Furthermore, the probability of 62.5% for image number 30 in the dark lighting condition 

shows the benefit of having more lines and, thus, more redundancy in the procedure of 

the target centroid detection. For a better understanding of the results in Tables 3 and 4, 

note that each pixel at the distance of 28.11 m for the image size of [2560 x 1920 px] 

equals about 0.23 mm. Therefore, the maximum deviation of about 6 pixels between the 

LL-TCD and A-TCD approaches with single manual pointings in ‘dark’ lighting 



 

 

conditions amounts to about 1.38 mm. This demonstrates the limits of human vision when 

pointing to distant targets (28 m) in poor lighting conditions. 

Image 

No. 

Slope 

distance(m) 

∆𝑑𝑅𝐴𝑁𝑆𝐴𝐶−𝑀𝑎𝑛𝑢𝑎𝑙 

(px) 

∆𝑑𝐻𝑢𝑏𝑒𝑟−𝑀𝑎𝑛𝑢𝑎𝑙 

(px) 

𝑇𝑖𝑚𝑒  

(sec.) 

Lighting 

condition 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

(%) 

14 28.119 2.4578 2.3904 37.583 normal 100 

15 

16 
17 

18 

19 
20 

21 

22 
23 

24 

25 

26 

27 

28 
29 

30 

31 
32 

28.118 

28.119 
28.119 

28.119 

28.111 
28.110 

28.110 

28.110 
28.110 

28.110 

28.111 

28.110 

28.110 

28.109 
28.109 

28.109 

19.531 
19.543 

0.7700 

3.2439 
2.4607 

0.1930 

2.0228 
1.2612 

0.2016 

3.1033 
2.3159 

4.8719 

5.9831 

2.7642 

2.6628 

2.7977 
3.2131 

4.6414 

1.6256 
- 

0.7811 

3.2896 
2.4284 

0.2451 

1.9919 
1.2507 

0.0890 

3.1502 
2.3731 

4.7083 

6.0042 

2.7737 

2.3948 

3.1688 
3.2303 

2.4050 

1.5527 
- 

40.932 

26.322 
22.590 

34.623 

48.816 
43.722 

37.168 

42.402 
35.615 

4.8923 

14.515 

6.9635 

11.776 

9.3259 
6.7233 

14.497 

25.539 
- 

normal 

normal 
normal 

normal 

normal 
normal 

normal 

normal 
normal 

dark 

dark 

dark 

dark 

dark 
dark 

dark 

very bright 
totally dark 

100 

100 
100 

100 

100 
100 

100 

100 
100 

100 

100 

100 

100 

100 
100 

62.5 

100 
Failed 

Table 3. Statistics of the target pattern k (see Fig. 2) based on the longest line-based target 

centroid detection approach. 

Image 

Nr. 

Slope 

distance(m) 

∆𝑑𝑅𝐴𝑁𝑆𝐴𝐶−𝑀𝑎𝑛𝑢𝑎𝑙 

(px) 

∆𝑑𝐻𝑢𝑏𝑒𝑟−𝑀𝑎𝑛𝑢𝑎𝑙 

(px) 

𝑇𝑖𝑚𝑒 

 (sec.) 

Lighting 

condition 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 

𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑? 

14 28.119 2.7049 2.4835 4.1680 normal yes 

15 

16 

17 
18 

19 

20 
21 

22 

23 
24 

25 

26 
27 

28 

29 
30 

31 

32 

28.118 

28.119 

28.119 
28.119 

28.111 

28.110 
28.110 

28.110 

28.110 
28.110 

28.111 

28.110 
28.110 

28.109 

28.109 
28.109 

19.531 

19.543 

0.6968 

3.2854 

2.4519 
0.2954 

1.9522 

0.6870 
0.5696 

2.2340 

1.8595 
5.0083 

5.9855 

2.1833 
2.5941 

2.6632 

3.0693 
3.0727 

1.3034 

- 

0.6972 

3.2970 

2.4462 
0.2684 

1.9228 

0.6419 
0.6082 

2.1881 

1.8585 
4.8121 

5.8264 

2.0391 
2.5507 

2.7626 

3.0821 
2.7556 

1.1858 

- 

4.0233 

4.1100 

4.4490 
4.2359 

4.0063 

4.5735 
4.1813 

4.9542 

4.7490 
4.4399 

4.1196 

5.4152 
4.4269 

4.9119 

4.5334 
4.7361 

4.0632 

- 

normal 

normal 

normal 
normal 

normal 

normal 
normal 

normal 

normal 
dark 

dark 

dark 
dark 

dark 

dark 
dark 

very bright 

totally dark 

yes 

yes 

yes 
yes 

yes 

yes 
yes 

yes 

yes 
yes 

yes 

yes 
yes 

yes 

yes 
yes 

yes 

Failed 

Table 4. Statistics of the target pattern k (see Fig. 2) based on the azimuth-based target 

centroid detection approach. 

 

 



 

 

 

 

Figure 13. The longest line-based target centroid detection approach; (a, c, e) captured 

passive targets number 14, 30 and 32 with an image size of 2560 x 1920 px, (b, d, e) 

manual measurements to the target k at different places (red dot), RANSAC-based 

detected centroid (green dot), and Huber-based detected centroid (blue dot). [Note: Target 

32 (f) failed in detection due to totally dark lighting condition]. 

 

 

 

Figure 14. The azimuth-based target centroid detection approach; (left) captured passive 

targets with image size of 640 x 480 px (middle) cropped image in addition to detected 

edges (blue colour) and detected Hough circle in red (right), manual measurements to the 

target k at different places (red dot) and Huber-based detected centroid (blue dot). 

Figure 14 shows the applicability of the A-TCD approach and its successful target 

centroid detection in a semi-dark lighting condition, for imperfect target pattern (top) or 

when close to artificial objects or other targets (middle) or poor initial pointing (bottom). 

The captured images with an image size of 640 x 480 px are depicted on the left side. The 

centre pictures show the cropped images with the detected edges and Hough circles. On 



 

 

the right side, the measurements performed after intentionally poor initial pointing and 

the corresponding detected target centroids are shown. As we can see in Figure 14 (top, 

middle and bottom), localisation assists us to overcome the problem of being close to the 

artificial objects or even poor initial pointing to perform target centroid detection more 

reliably, accurately and faster. 

We also performed a repeatability test for the captured images of the target pattern 

k (see Fig. 2) with an image size of 2560 x 1920 px at the fixed orientation and fixed 

distance of 4.88 m from the Leica MS50. For this purpose, we intentionally pointed to 

various places of the target (i.e. a radius of 0.03 m) between the centre and border around 

the target and captured the images. The columns (2) and (3) in Table 5 show the absolute 

deviations between the Huber-based A-TCD approach with a single manual measurement 

in pixels and metric units, respectively. The standard deviations of the X, Y and Z 

coordinates in Table 5 (bottom) prove that we can successfully detect target centroids 

with a high accuracy even with imprecise initial manual pointing to the target.  

Image No ∆𝑑𝐻𝑢𝑏𝑒𝑟−𝑀𝑎𝑛𝑢𝑎𝑙 

(px) 

∆𝑑𝐻𝑢𝑏𝑒𝑟−𝑀𝑎𝑛𝑢𝑎𝑙 

(m) 

𝑋_𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 (𝑚) 𝑌_𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 (𝑚) 𝑍_𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 (𝑚) 

32 1.65 0.0006 1.2545 2.0645 -1.4453 

33 
34 

35 

36 
37 

38 

39 
40 

41 

42 
43 

44 

45 
46 

47 

48 
49 

50 

89.75 
85.63 

68.34 

44.46 
66.02 

82.54 

156.38 
163.54 

119.40 

114.33 
166.70 

213.85 

139.87 
141.37 

167.30 

166.38 
162.45 

239.06 

0.0165 
0.0159 

0.0128 

0.0082 
0.0124 

0.01539 

0.02911 
0.03061 

0.02218 

0.02122 
0.03124 

0.04121 

0.02601 
0.02610 

0.03145 

0.03152 
0.03015 

0.04437 

1.2545 
1.2545 

1.2545 

1.2546 
1.2546 

1.2546 

1.2546 
1.2545 

1.2546 

1.2545 
1.2546 

1.2546 

1.2544 
1.2545 

1.2545 

1.2546 
1.2546 

1.2545 

2.0640 
2.0640 

2.0641 

2.0641 
2.0641 

2.0641 

2.0641 
2.0641 

2.0641 

2.0643 
2.0641 

2.0641 

2.0644 
2.0643 

2.0643 

2.0642 
2.0642 

2.0643 

-1.4454 
-1.4454 

-1.4454 

-1.4454 
-1.4453 

-1.4453 

-1.4453 
-1.4454 

-1.4453 

-1.4453 
-1.4455 

-1.4455 

-1.4453 
-1.4454 

-1.4454 

-1.4454 
-1.4454 

-1.4454 

𝑠𝑡𝑑 dev.   0.00006 0.00013 0.00006 

Table 5. Statistics of the repeatability test of the target pattern k (see Fig. 2) at a distance 

of 4.88 m based on the azimuth-based target centroid detection approach. 

Case study II – Application in Highly Accurate External Calibration of TLS and 

DSLR Camera 

In this case study, the goal is to validate our target centroid detection approaches. It 

integrates a DSLR camera with a TLS and calculates the external calibration parameters 

based upon a rigorous statistical space resection bundle adjustment. Local and global tests 

are performed to reject large residuals and outliers. Furthermore, a variance component 

estimation is performed to assign the optimal weights to the observations. Please refer to 

Omidalizarandi and Neumann (2015) and Omidalizarandi et al. (2016) for a detailed 

discussion in this regard. In our previous research, we calculated the target centroid using 

the subpixel target mode of the software PhotoModeler 5.2.3 by Eos Systems Company 

and measured four circles around the target centre. Afterwards, the target centroids were 

calculated by averaging over the four circle centres (Fig. 15c). Here, we detect the target 

centroids using the LL-TCD approach and compare its results with those of 

PhotoModeler. As we can see from Figure 15c, the target pattern features only two lines, 



 

 

which are fewer than the four lines in our optimal targets (i.e. targets b and k in Fig. 2). 

However, the results prove that even with only two intersected lines, we can achieve 

accurate results that are approximately equivalent with the PhotoModeler measurements. 

The PhotoModeler measurements are sensitive to the image resolution and noise, which 

both degrade the accuracy and reliability of its target centroid detection. Additionally, 

Photomodeler always requires manual thresholding and the definition of maximum and 

minimum diameter size of circles to automatically detect their centroids, which is time-

consuming and a challenge. 

 

Figure 15. (a) Back of the target, (b) magnetic holder, (c) front of the target with depiction 

of the detected centroid of circles using the PhotoModeler software, and (d) corner cube 

reflector mounted on the magnetic holder. 

Figure 16 shows the absolute deviations between the target centroids detected 

with different line fitting approaches and PhotoModeler measurements in pixel units. 

Table 6 gives the statistics of these absolute deviations. As the table shows, the mean and 

maximum deviations based on the RANSAC line fitting approach differ slightly from 

those of the two other line fitting approaches. 

 

Figure 16. Absolute deviations between the detected target centroids of different line 

fitting approaches and PhotoModeler measurements (in pixel units). 

 ∆𝑑𝑅𝐴𝑁𝑆𝐴𝐶  ∆𝑑𝐻𝑢𝑏𝑒𝑟 ∆𝑑𝐺𝐻𝑀 

Mean      [px] 0.0000 0.0000 0.0000 

Max        [px] 
Std dev.  [px] 

1.8485 
0.2506 

1.0208 
0.2649 

0.9768 
0.2696 

Table 6. Statistics of the absolute deviations between the detected target centroids with 

different line fitting approaches and the PhotoModeler measurements (in pixel units). 



 

 

Table 7 gives the calculated external calibration parameters between the TLS and 

the DSLR camera with an applied GHM and variance component estimation. The last 

column in Table 7 shows the differences between the calculated parameters (i.e. external 

calibration parameters between the TLS and the DSLR camera plus focal length) from 

the PhotoModeler measurements and from the detected target centroid based on the LL-

TCD approach. There are no significant differences when comparing the results and 

calculated standard deviations of the two approaches. 

6 DOF Values 

PhotoModeler 
(1) 

    

PhotoModeler 

Values 

LL-TCD 
approach (2) 

    

LL-TCD 
approach 

∆ 

() () 

𝜔  (Deg.) 90.4873 0.0028 90.4820 0.0027 0.0053 

𝜑  (Deg.) -9.3086 0.0035 -9.3129 0.0036 0.0043 

𝜅   (Deg.) -0.2303 0.0017 -0.2299 0.0016 -0.0004 

𝑋𝐶  (m) -0.0129 0.0003 -0.0129 0.0003 0.0000 

𝑌𝐶   (m) 

𝑍𝐶 (m) 

f    (mm) 

0.2147 

0.0880 
20.4132 

0.0002 

0.0005 
0.0028 

0.2149 

0.0871 
20.4155 

0.0002  

0.0005 
0.0028 

-0.0002 

0.0009 
-0.0023 

Table 7. External calibration parameters between the TLS and the DSLR camera (6 DOF) 

plus focal length with applied Gauss-Helmert model based on PhotoModeler image 

measurements (Omidalizarandi et al. 2016) and the longest line-based target centroid 

detection approach. 

Conclusions 

In this research, a novel automatic, low-cost and accurate passive target centroid detection 

approach was proposed, implemented and evaluated. It is robust, reliable and accurate 

with respect to lighting, dusty environment and skew angle targets. According to our 

experiments, a circular target with a line pattern (target k in Fig. 2) is a suitable target 

design and pattern due to the four intersected lines, which increase the redundancy. 

Moreover, in normal, very bright, semi-dark and dark lighting conditions, paper targets 

seem to be adequate. There is no need to use reflective targets.  

We proposed two methodologies to deal with rectangular and circular targets, 

namely, azimuth-based target centroid detection method and longest line-based target 

centroid detection. In both approaches, cropping the captured images based on the 

horizontal and vertical FOVs of the cameras, target size in object space as well as slope 

distance to the target help us to perform a fast, reliable and accurate processing in the 

region-of-interest. The LSD algorithm is superior to the Canny edge detector and features 

fewer spurious lines. Three different line fitting methods (i.e. RANSAC, OpenCV Huber 

and Gauss-Helmert model) were compared and achieved very close and comparable 

results. The localisation of the targets based on template matching increased the reliability 

of the results. 

The efficiency, reliability, repeatability and accuracy of our proposed approaches 

were evaluated and examined with two practical tests. In the first test, the longest line 

based target centroid detection and the azimuth based target centroid detection methods 

were compared with single precise manual pointing measurements for the captured 

images from the telescope camera of the Leica MS50. It shows that our proposed 

approaches are even better than single manual measurements. Furthermore, our methods 

allow for an automatic target detection based on precise or imprecise initial pointing 

coordinates. The experiments were performed at distances between 1.6 and 28 m and 

demonstrated sub-millimetre accuracy for an image size of 2560 x 1920 px.  



 

 

In the second test, the PhotoModeler image measurements were compared with 

the longest line-based target centroid detection approach. The results of this test prove 

that we obtain approximately equivalent results with the two methods. 

Outlook 

In future work, we will calibrate the vertical angular resolution of the telescope camera 

of the Leica MS50 to permit a precise conversion of the pixel coordinates to the metric 

coordinates. The time series of detected target centroids may be used for accurate 

displacement and vibration analyses of, for example, bridge structures at frequencies less 

than 5 Hz (in view of the Nyquist sampling theorem). The proposed target pattern and its 

detection approach is suitable for applications in Engineering Geodesy, such as the 

monitoring of construction sites with many cheap paper-based targets. 
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Appendix A: Flowcharts of the proposed target centroid detection approaches 

 

Figure 17. Flowchart of the longest line based target centroid detection (LL-TCD). 



 

 

approach.

 

Figure 18. Flowchart of the azimuth based target centroid detection (A-TCD) approach. 
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Accurate vision-based displacement
and vibration analysis of bridge
structures by means of an
image-assisted total station
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Abstract
Today, short- and long-term structural health monitoring of bridge infrastructures and their safe, reliable and cost-
effective maintenance have received considerable attention. For this purpose, image-assisted total station (here, Leica
Nova MS50 MultiStation) as a modern geodetic measurement system can be utilized for accurate displacement and
vibration analysis. The Leica MS50 measurements comprise horizontal angles, vertical angles and distance measurements
in addition to the captured images or video streams with practical sampling frequency of 10 Hz using an embedded on-
axis telescope camera. Experiments were performed for two case studies under (1) a controlled laboratory environment
and (2) a real-world situation observing a footbridge structure using a telescope camera of the Leica MS50.
Furthermore, two highly accurate reference measurement systems, namely, a laser tracker Leica AT960-LR and a porta-
ble shaker vibration calibrator 9210D in addition to the known natural frequencies of the footbridge structure calculated
from the finite element model analysis are used for validation. The feasibility of an optimal passive target pattern and its
accurate as well as reliable detection at different epochs of time were investigated as a preliminary step. Subsequently,
the vertical angular conversion factor of the telescope camera of the Leica MS50 was calibrated, which allows for an
accurate conversion of the derived displacements from the pixel unit to the metric unit. A linear regression model in
terms of a sum of sinusoids and an autoregressive model of the coloured measurement noise were employed and solved
by means of a generalized expectation maximization algorithm to estimate amplitudes and frequencies with high accu-
racy. The results show the feasibility of the Leica MS50 for the accurate displacement and vibration analysis of the bridge
structure for frequencies less than 5 Hz.
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vibration analysis, footbridge monitoring

Date received: 9 October 2017; accepted: 4 May 2018

Handling Editor: Xiangyang Xu

Introduction

Today, short- and long-term structural health monitor-
ing (SHM) of the bridge infrastructures and their safe,
reliable and cost-effective maintenance has received
considerable attention. For this purpose, various mea-
surement systems with different levels of accuracies and
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prices are being widely used depending on the demand.
SHM is commonly being conducted based on visual
observation, the properties of the material of the struc-
tures and the interpretation of the structural character-
istics by inspecting the changes in the global behaviour
of the structure (e.g. natural frequencies, mode shapes
and modal damping).1 Therefore, SHM is interpreted
as a process to detect structure damages or identify
their characteristics by the discrete or continuous mea-
surements over time. Furthermore, the dynamic charac-
teristics of a structure, such as frequencies, can change
due to the temperature variations or the damages
occurring in the structure.2 From a surveying engineer’s
point of view, it is crucial to detect any deterioration of
the structures (even small cracks) by frequent measure-
ments. Typically, the geodetic measurement systems,
such as total station, robotic total station (RTS), terres-
trial laser scanner (TLS), laser tracker (LT), global posi-
tioning system (GPS) or other sensors such as digital
camera or accelerometer, can be used for displacement
and vibration monitoring. The Nyquist theorem must
be fulfilled to identify the frequencies of the oscillating
structure correctly. Consequently, the proper measure-
ment systems must be used according to the sampling
frequency required and the maximum amplitude
derived from the oscillation of the structure.3 Bridges
(including footbridges or road bridges) generally oscil-
late in a range of 1.2–10Hz (or more).4 Previous
researchers used different geodetic sensors for vibration
monitoring of the bridge structures. Psimoulis and
Stiros,5 for example, used RTS for vibration monitor-
ing of a cable bridge, pedestrian suspension bridge and
steel railway bridge for non-constant sampling rate
measurements of the RTS in a range of 5–7Hz and per-
forming spectral analysis based on the Norm-Period
code.6 Roberts et al.7 presented the hybrid configura-
tion of GPS with a sampling frequency of 10Hz and
triaxial accelerometer with sampling frequency of
200Hz for a bridge deflection monitoring. On one
hand, the accelerometer measurements of this hybrid
measurement system were beneficial to eliminate the
disadvantages of GPS measurements regarding multi-
path, cycle slips errors and the need for good satellite
coverage. On the other hand, GPS measurements were
utilized to suppress accumulation drift of the accelera-
tion data over time through velocity and coordinate
updates. Neitzel et al.8 used the sensor network of the
low-cost accelerometers with a sampling frequency up
to 600Hz, the TLS (Zoller + Fröhlich Imager 5003) in
a single-point measurement mode with a sampling fre-
quency of 7812Hz and a terrestrial interferometric syn-
thetic aperture radar (t-InSAR) with a sampling
frequency of 200Hz for vibration analysis of the bridge
structure. They defined a functional model based on a
damped harmonic oscillation and solved it in the sense
of the least square adjustment. The reason for such a

high sampling frequency of the TLS was to detect dis-
placements smaller than 1mm by averaging the mea-
surements over 100 measurements and to reach a
practical sampling frequency of 78.12Hz. An overview
of the TLS-related structural monitoring was given in
Vosselman and Maas.9

Structural monitoring by means of the vision-based
measurement technologies is becoming increasingly pop-
ular in the context of civil engineering structures such as
buildings, bridges and dams. In particular, an image-
assisted total station (IATS), which can be a total station
with an integrated external camera, for example, a high-
resolution digital camera mounted on top of the scan-
ning system by means of a clamping system, cf.
Omidalizarandi et al.,10,11 or an internally embedded
camera, was employed by Reiterer et al.,12 Bürki et al.,13

Wagner et al.,14,15 Ehrhart and Lienhart,2,16 Guillaume
et al.,17 Wagner18,19 and Lienhart et al.3 Most modern
IATS measurement systems have motorized axes of
rotation, which allow for an automatic rotation of the
telescope to the points previously measured at different
epochs of time. The IATS measurements comprise hori-
zontal directions, vertical angles and distance measure-
ments (in a polar coordinate system) in addition to the
captured object images or video streams using embedded
or externally attached cameras. The internally embedded
on-axis telescope camera in addition to the motorized
axes of rotations is particularly well-suited to an accu-
rate, automatic and autonomous measurement of struc-
tures in static and dynamic monitoring. Subsequently, it
enables us to measure both active targets (i.e. retro-
reflective prism targets) and passive targets (i.e. signa-
lized or non-signalized targets). Therefore, IATS with an
on-axis telescope camera is advantageous over other
vision-based measurement systems since the displace-
ments in the image space can be converted directly to
the metric unit by means of total station capabilities. In
addition, its stability over time can be controlled by
measuring its telescope angles and tilt reading3 using
GeoCOM interface.20

Ehrhart and Lienhart16 used the telescope camera of
an IATS for the displacement and vibration monitoring
of a footbridge structure based on the captured video
frames of the circular target marking rigidly attached
to the structure. Afterwards, least-squares ellipse fitting
based on the Gauss–Helmert model (GHM) was
applied to extract the target centres. Ehrhart and
Lienhart2 and Lienhart et al.3 employed an IATS
(Leica MS50 with a sampling frequency of 10Hz), an
RTS (Leica TS15 with a sampling frequency of 20Hz)
and an accelerometer (HBM B12/200 with a sampling
frequency of 200Hz) for vibration analysis of a foot-
bridge structure based on measurements of the circular
target markings (i.e. signalized targets) and structural
features (like bolts, that is, non-signalized targets) of
the bridge.
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The choice of a feasible optical target pattern and its
accurate, automatic recognition at different epochs of
time is the preliminary step in image-based structural
monitoring using passive targets. Different target pat-
terns with different detection techniques were previ-
ously proposed by several researchers, for instance,
least-squares template matching by Gruen,21 Akca,22

Gruen and Akca23 and Bürki et al.;13 coded target
detection by Zhou et al.;24 ellipse detection by Ehrhart
and Lienhart16 and Guillaume et al.;17 circle matching
by Bürki et al.;13 cross-line detection by Reiterer and
Wagner25 and centre-of-mass detection by Bürki et al.13

Omidalizarandi et al.26 presented an optimal circular
target with the line pattern consisting of four inter-
sected lines and proposed a target centroid detection
approach, which was shown to be robust, reliable and
accurate regarding the lighting condition, dusty envi-
ronment and skewed angle targets.

After extracting the target centroid, the next step is
to accomplish camera calibration to convert the pixel
(px) coordinates to more meaningful metric quantities,
such as theodolite angle readings (i.e. horizontal and
vertical directions27–29). Based on the pixel differences
between the initial pointing to the corresponding target
of interest and the precisely calculated direction to the
detected target centroid, an accurate remeasurement of
the centroid of the target is also possible (i.e. taking
advantage of the motorized axes of rotation of the
IATS). However, the instrument’s axes errors, vertical-
index error and collimation error can also be considered
to perform the conversion from the pixel to the metric
coordinates more precisely. In order to capture sharp
images with the telescope camera of the IATS, the cor-
responding targets should be focused by turning on the
autofocus capability of the IATS. This, however, leads
to changes in the internal camera calibration

parameters. Zhou et al.24 proposed IATS telescope
camera calibration based on measurements of the coded
targets and their angular reading from the total station
at a certain focus positions. Subsequently, new sets of
calibration parameters were calculated by means of
cubic polynomial interpolation at certain focus posi-
tions. In the context of displacement monitoring and
for the purpose of converting object movements within
the image space from the pixel unit to a proper angular
quantity, Ehrhart and Lienhart16 merely calibrated the
vertical angular conversion factor in the temperature-
controlled laboratory with a fixed and stable set-up of
the total station and the target. The video frames of the
circular target marking were captured with a sampling
frequency of 10Hz at a fixed position for different hori-
zontal and vertical rotations of the telescope camera of
IATS. In addition, telescope angles were measured with
a sampling frequency of 20Hz to improve the measured
reference angles by averaging.

The focus of this research is to perform accurate dis-
placement and vibration analysis for two case studies
under (1) a controlled excitation in a laboratory envi-
ronment and (2) an uncontrolled excitation in a real-
world situation observing a footbridge structure using
the telescope camera of the Leica MS50 (Figure 1, left)
with a sampling frequency of 10Hz. Furthermore, two
highly accurate reference measurement systems,
namely, a laser tracker Leica AT960-LR (with a sam-
pling frequency of 200Hz; Figure 1, middle) and a por-
table shaker vibration calibrator (PSVC) 9210D (with a
sampling frequency of 200Hz; Figure 1, right) in addi-
tion to the known natural frequencies of the footbridge
structure calculated from the finite element model
(FEM) analysis are used for validation. To perform
accurate displacement and vibration analysis, first, the
feasibility of the optimal passive target pattern and its

Figure 1. Leica Nova MS50 MultiStation (left), Laser Absolute Tracker AT960-LR (middle) and Portable Shaker Vibration
Calibrator 9210D (right).
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accurate and reliable detection at different epochs of
time are investigated. Subsequently, the vertical angular
conversion factor of the telescope camera of the Leica
MS50 is calibrated, which allows for an accurate con-
version of the derived displacements from the pixel unit
to the metric unit. A linear regression model in terms of
a sum of sinusoids and an autoregressive (AR) model
of the coloured measurement noise is employed to esti-
mate amplitudes and frequencies with high accuracy.
The white noise components of the AR process are
assumed to independently follow a scaled (Student’s)
t-distribution to accommodate for outliers. The adjust-
ment of this combined observation model is carried out
by means of the generalized expectation maximization
(GEM) algorithm described in Alkhatib et al.30 In the
first application and under controlled excitation, we
compare the oscillation frequency and the amplitude
derived from the PSVC time series with the results
obtained from the Leica MS50 video frames and the
LT. In the second application and under uncontrolled
excitation, we compare the oscillation frequency and
the amplitude derived from the LT time series with the
Leica MS50 video frames of the footbridge structure.

Sensor specifications and measurement
systems

We used an IATS (here, Leica Nova MS50
MultiStation; Figure 1, left) for displacement and
vibration analysis in our experiments. The Leica MS50
includes the following:

1. Precise three-dimensional (3D) laser scanning;
2. A precise total station with an
� Angular accuracy of 1$ (according to ISO

17123-3);
� Optical-distance measurement accuracy of

1mm + 1.5 ppm (according to ISO 17123-
4) for prism targets from 1.5 to 10,000m; as
well as

� Optical-distance measurement accuracy of
2mm + 2ppm for non-prism targets (i.e.
here passive targets) from 1.5 to 2000m with
a measurement time of 1.5 s;

3. An overview camera with diagonal field of view
(FOV) of 19.4�;

4. A telescope camera with diagonal FOV of 1.5�;
5. GNSS connectivity.

Both the overview and the telescope cameras include
5MP complementary metal-oxide semiconductor
(CMOS) sensors in which the telescope camera is an on-
axis camera located on the optical path of the Leica
MS50 with 303 optical magnification of the overview
camera.31 In this work, we benefit from the total

station’s capabilities in terms of precise distance mea-
surements of the passive targets, in addition to the digi-
tal imaging by means of the telescope camera. The
angular resolution (a) of the telescope camera is approx-
imately 1.7$/px, which is basically calculated by dividing
the diagonal FOV by the diagonal length of the cap-
tured image in the pixel unit. To accomplish displace-
ment monitoring more accurately, the angular
resolution should be calculated from the calibration pro-
cedure in a controlled laboratory environment.
According to Leica Geosystems,31 the horizontal and
vertical FOVs of the telescope camera of the Leica
MS50 are 1.3� and 1.0�, respectively. As we calculate the
vertical displacement in our experiments, we merely ben-
efit from its vertical angular conversion factor for dis-
placement and vibration monitoring based on the live
video stream functionality of the Leica MS50. The nom-
inal sampling rate of the live video stream of the Leica
MS50 is 20Hz.31 However, in practice, we could capture
the video stream with a sampling frequency of 10Hz
using OpenCV library. In order to get full access to the
individual functionality of the Leica MS50 and for ease
of use, we made use of the GeoCOM interface,20 which
is written in the script language Python 3.4. In addition,
the target centroid detection algorithm proposed by
Omidalizarandi et al.26 is utilized to extract the target
centroid with high accuracy. The resolutions of the cap-
tured images vary from 320 3 240px to
2560 3 1920px. However, for live video stream, it is
only possible to capture video streams with a resolution
of 320 3 240px. Subsequently, the target centroid
detection approach should be robust, reliable and accu-
rate and should work well even in the case of a low-
resolution image. The autofocus is set to ‘on’, and the
white balance is set to ‘automatic’ to ensure the capture
of sharp images. We performed vibration analysis with
an image resolution of 320 3 240px and 13 zoom
(Figure 2, left); however, we achieved meaningless
results, since such small displacements were not detect-
able at all. Therefore, as Ehrhart and Lienhart16 pro-
posed, we reduced the FOV by 83 zoom using the
camera zoom factor functionality of the GeoCOM inter-
face (Figure 2, right), which gave us reasonable results.

Figure 2. The Leica MS50 telescope camera images: image
resolution of 320 3 240 px and 13 zoom (left) and image
resolution of 320 3 240 px and 83 zoom (right).
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It should be noticed that reflectorless distance measure-
ments to the targets allow us to set the telescope’s focus
motor position precisely.16 The entire procedure is con-
trolled via our self-developed graphical user interface
(GUI), which allows an efficient and effective data
acquisition and analysis.

Two highly accurate reference sensor systems are
utilized to perform validation. On one hand, a LT
(Figure 1, middle) with a maximum permissible error
of 15mm + 6mm/m of a 3D point data and measuring
rate output of 3000 points per second (3000Hz)32 was
employed. It allows for sub-millimetre range accuracy
of the target points, which can be considered as a refer-
ence coordinate frame. On the other hand, a PSVC
(Figure 1, right) was employed to perform controlled
excitation. It consists of a highly accurate reference
accelerometer (in our case, a precise PCB ICP quartz
reference accelerometer) and two sensitive dials, which
allow us to adjust the frequency and amplitude. For a
frequency in the ranges of 0.7Hz–2 kHz and 2Hz–
2 kHz, the acceleration can be read out with accuracies
of 6 3% and 6 10%, respectively.33

Passive target centroid detection

The displacement time series for the captured video
frames from the telescope camera of the Leica MS50
can be generated based on the continuous extractions
of the point features (i.e. being signalized or non-signa-
lized) at different epochs of time. Omidalizarandi
et al.26 proposed an optimal passive target (Figure 3)
and its centroid detection approach to tackle this prob-
lem. The proposed target constitutes a circular border
with line pattern including four intersected lines. It is
low-cost and easy to mount. In addition, its target cen-
troid detection approach is accurate, automatic and
fast as well as robust and reliable regarding skew angle

targets and poor environmental conditions, such as low
lighting (i.e. which may be very bright, semi-dark and
dark) and dusty situations. However, the detection
approach failed in totally dark lighting conditions.

The procedure starts by manual initial pointing of
the targets of interest, which is only carried out at the
beginning of the measurements. The telescope is then
rotated automatically by means of the motorized axes
of rotations of the Leica MS50 to the stored positions
of the corresponding targets, and images are captured
by means of the telescope camera. Subsequently, target
centroid detection (see Algorithm 1) is applied, and the
telescope is rotated automatically to the detected target
centroid to capture images or video frames.

Cropping of the captured images is carried out, tak-
ing into account the target object size (in our case
0.06m), slope distance (here, the maximum slope dis-
tance is up to 30m) and horizontal as well as vertical
FOVs of the telescope camera to extract relevant line
features of the aforementioned target pattern and to
speed up the procedure. Horizontal and vertical FOVs
are calculated according to

FOV = 2 � tan�1 D

2 � S

� �
(rad) ð1Þ

where D is the target size in the object space and S the
slope distance in metres. The calculated FOVs are mul-
tiplied by the width and height of the captured image to
obtain the width and height of the cropped image. For
practical reasons, the width and height of the cropped
image are considered three times larger than values cal-
culated to cover the target and its surroundings. This
has been found to be beneficial for extracting the target
centroid in a significant displacement of the target. We
discarded the localising of the target pattern in the cap-
tured images by assuming a good initial target pointing
at the beginning of the measurement. For further infor-
mation concerning the localisation of target, please
refer to Omidalizarandi et al.26 The median blur and
bilateral filtering are applied to reduce the noise and
preserve the sharp edges of the images, respectively.

The line segment detector (LSD) algorithm34 is
applied with stable threshold parameters to extract the
line features:

� The sigma value of the Gaussian filter is set to
0.75;

� The bound of quantization error on the gradient
norm is set to 2.0;

� The gradient angle tolerance is set to 22.5�;
� The minimal density of region points in the rec-

tangle is set to 0.7;
� The number of bins is set to 1024;
� The gradient modulus in the highest bin is set to

255.Figure 3. Designed passive target.
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Next, the azimuths of the lines are calculated, and
the maximum azimuth is selected based on the histo-
gram of the azimuths. Subsequently, those LSD lines
within the angle threshold of 15� from the maximum
azimuth direction are selected. A random sample con-
sensus (RANSAC) algorithm is applied to the selected
lines to fit the optimal line and to get rid of falsely
detected parallel lines. To extract lines more accurately,
the Huber-robust line fitting algorithm in Kaehler and
Bradski35 with specified buffer width from each side of
the fitted RANSAC line is applied. The neighbouring
intersection points within 2 px from each intersection
point are selected by means of the K-d tree neighbour-
hood algorithm. Finally, the maximum intersection
point cluster is selected and their mean yields the final
intersection point (Algorithm 1; see Omidalizarandi
et al.26 for further information).

Calibration of the optical measurement
system

The displacement time series for the captured images of
the Leica MS50 is produced by subtracting the

extracted target centroids at different epochs of time.
Subsequently, the calculated displacements in the pixel
unit are converted to the more meaningful metric unit
by means of the calibration parameters. The calibration
consists of an internal calibration of the telescope cam-
era of the Leica MS50 (regarding focal length, principal
point and radial and tangential distortions) and an
internal calibration of the error sources of the Leica
MS50 measurements (including the zero offset for dis-
tance measurements or horizontal collimation error,
vertical index error, tilting axis error and compensator
index error of angular measurements). As mentioned
previously, the FOV is reduced by 8 3 digital zoom to
capture a small central portion of the image captured
with 1 3 zoom (see Figure 2). Subsequently, it has very
small impact of the aforementioned camera calibration
parameters. However, as described in Ehrhart and
Lienhart,16 these camera calibration parameters can be
neglected due to the relative calculation of the displace-
ment for the sequences of the video frames. However, a
proper design of the target pattern, as proposed in
Omidalizarandi et al.26 (see Figure 3), may eliminate
the influences of the aforementioned small distortions
using the redundant line features and extract them in
the robust and reliable procedure. However, in this
research, we treat the remaining systematic errors, such
as calibration parameters, as coloured noise and sepa-
rate them from the white noise based on an AR model
of the coloured measurement noise (further discussion
about this is in the next section). The displacement time
series of the Leica MS50 is compared with the PSVC
and the LT datasets to give an impression of the accu-
racy of the detected target centroid and to visually
demonstrate the previous statements concerning the
neglecting of the remaining calibration parameters.
Since the output of the PSVC is the acceleration, it can
be converted to the displacement in metric units based
on equation (2)

dzi
=

azi
� az

(2pf )2
ð2Þ

where dzi
is the calculated displacement in the Z

direction (mm), azi
is the acceleration in the Z direction

(m/s2), az is the average of the acceleration data within
the specified period of time (m/s2) and f is the fre-
quency (Hz).

As we can see from Figure 4, the differences in the
amplitudes for all three sensors are at a sub-millimetre-
level accuracy. However, the time synchronization is
still a challenge and needs to be performed precisely. In
this work, the time synchronization is performed merely
for the controlled excitation in the laboratory environ-
ment by changing the frequency and amplitude of the
PSVC and by fitting the time series of all three sensors
at a point of change. Subsequently, as we can also see

Algorithm 1: Target centroid detection using telescope
camera of the Leica MS50

Initialisation:
initial pointing to the target

Input:
D = target size in object space (m)
S = slope distance (m)
captured image

Output:
Detected target centroid (px)

Procedure:
w = image width
h = image height
FOV= 2 � tan�1 D

2�S
� �

dw = 3 � w � FOV
dh = 3 � h � FOV
crop captured image using dw and dh

median blur and bilateral filtering
edge detection using LSD
compute line azimuths
calculate histogram of line azimuths
sort azimuth bin centres in descending order
While (azimuth bin centres array is empty?)

select azimuth bin centre from beginning
select all parallel lines
convert line vectors to raster
RANSAC line fitting
Huber line fitting
discard selected azimuth bin centre

End
compute intersection points of all lines
store intersection points in array
K-d tree neighbourhood
select neighbouring points within 2 pixels
select cluster with maximum intersection points
mean of selected intersection points
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in Figure 4, the synchronization was not achieved per-
fectly. However, time synchronization is not in the
focus of this research and will be investigated as part of
future research.

The vertical angular conversion factor of the tele-
scope camera of the Leica MS50 is calibrated to convert
pixel quantities to metric quantities. The calibration is
started by designing a coded target pattern in the soft-
ware AutoCAD 2016 in the two paper sizes A2 and A4

with fixed coded target distances of 0.09 and 0.0335m.
As previously mentioned, the telescope camera of the
Leica MS50 has a small FOV and cannot cover
the entire target pattern at different distances (see
Figure 5). Subsequently, the coded targets seem to be
more advantageous compared to the chessboard pat-
tern, since both the target centroid coordinates and the
ID (i.e. target identification number) are obtained
simultaneously. The highly accurate 3D object coordi-
nates of the targets are obtained by taking multiple
photos with a high-resolution camera from different
viewing angles and by solving the space resection bun-
dle adjustment in the iterative procedure.

The next step is to extract the target centroids of the
coded target pattern images captured at different dis-
tances up to approximately 30m and to assign them
the unique IDs. To extract a target centroid, median
blur and bilateral filtering are first applied to reduce
the noise and to preserve the sharp edges of the images.
The canny edge detector36 is then applied to extract the
edges. The inner circular part of the coded target is
extracted by means of the Hough circle transform
(HCT).35 To find the circles based on the HCT, the cir-
cle radius is approximately calculated using equations
(1) and (3)–(5)26

dw =
w � FOV

FOVh � p
180

� � (px) ð3Þ

dh =
h � FOV

FOVv � p
180

� � (px) ð4Þ

rc =
min (dw, dh)

2
(px) ð5Þ

where w is the image width (px), h is the image height
(px), dw is the circle diameter in the horizontal direction
(px), dh is the circle diameter in the vertical direction
(px), rc is the circle radius (px) and FOVh and FOVv are
the horizontal and vertical FOVs, which according to
the user manual of the sensor equal 1.3� and 1.0�,
respectively.

Next, the ellipse fitting in a least-squares sense is
applied to the concentric edge contours with detected
Hough circles. In order to assign a unique ID to each
target and to detect coded targets, template matching is
applied by their comparisons with the designed coded
targets. Finally, the vertical angular conversion factor
is calculated based on the equations

b= cos�1 dy

dxy

� �
(rad) ð6Þ

psy=
dXYZ � cos (b)

dy

(mm=px) ð7Þ

p= polyfit(psy, S) ð8Þ

pv = polyval(p, S) ð9Þ

FÔVv =
pv � h

S
(rad) ð10Þ

av =
FÔVv

h
� 180 � 3600

p
(00=px) ð11Þ

where dy is the difference between the target centroid in
y direction (px), dxy is the difference between the target
centroid in both x and y directions (px), dXYZ is the dif-
ference between the target centroid in X , Y and Z direc-
tions (m), psy is the pixel size in the y direction, p is the
coefficient of the best-fitting polynomial of degree 1 in
a least-squares sense, S is the slope distance (m), pv is
the value of the derived polynomial at specified slope
distances, FÔVv is the calculated vertical FOV (rad), h

is the height of the image (px) and av is the vertical
angular conversion factor ($/px).

Figure 4. Displacement time series for the PSVC, the LT and
the Leica MS50 at 3 Hz and distance of 7.52 m.

Figure 5. The coded target images captured using the
telescope camera of the Leica MS50 at distances of 30.39 m
(left) and 14.68 m (right).
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The MATLAB functions polyfit and polyval are
used, respectively, to fit a best line to the psy calculated
for different slope distances and to evaluate it at speci-
fied distances. Figure 6 (left) depicts the psy values cal-
culated for different slope distances, and Figure 6
(right) zooms in around the slope distance of 15m.

The value 1.9583 ($/px) is obtained from the evalua-
tion of the previous equations for calculation of the av,
which is very close to the value 1.9632 ($/px) given in
Ehrhart and Lienhart.16 Furthermore, the calculated
FOVv is approximately 1.04442�, a value which is
slightly different from the value given in the user man-
ual of the sensor.

Displacement and vibration analysis

The discrete Fourier transform (DFT) is typically
applied to estimate the amplitude and frequency of
oscillating objects, such as bridge structures. It might
achieve reasonable results while the measurements are
less contaminated with the coloured noise. To tackle
this problem and to estimate the amplitude and fre-
quency even in the case of high coloured measurement
noise, we proposed a robust and consistent procedure
which can be extended and used for any type of mea-
surement, particularly the vision-based measurement
system, to obtain the highly accurate results. In this
research, we utilize the captured video frames from the
telescope camera of the Leica MS50 for displacement
and vibration analysis of a footbridge structure.

We use a simple harmonic motion to perform the
displacement measurements, which means that the
acceleration measurement is directly proportional to its
displacement from the equilibrium position. In addi-
tion, the acceleration is directed towards the

equilibrium position.37 Subsequently, the extracted tar-
get centroids from video streams of the Leica MS50 or
the 3D coordinates from the LT are always averaged
over a specified period of time to define the equilibrium
position. We can calculate the displacement and accel-
eration for Leica MS50 measurements using the
equations

dyi
=aS(yi � �y) ð12Þ

dai
=aS(yi � �y)(2pf )2 ð13Þ

where S is the slope distance (m), a is the vertical angu-
lar conversion factor ($/px), yi is the extracted target
centroid at epoch i (px), �y is the average of the extracted
target centroid within the specified period of time (px)
and f is the frequency (Hz).

To compare the Leica MS50 and the LT, we can cal-
culate the displacements for the Leica MS50 measure-
ments based on equation (12) and then input the
displacements to equation (15) to calculate the ampli-
tude (mm) and the frequency (Hz), respectively.
Concerning the comparison of the Leica MS50 and the
PSVC, we note that the output of the latter consists of
acceleration measurements; we can calculate accelera-
tions for the Leica MS50 measurements based on equa-
tion (13) and then use equation (15) to calculate the
amplitude (m/s2) and the frequency (Hz). However, it is
also possible to calculate displacements from the accel-
eration measurements via double integration from
equation (15).

To estimate the frequency, merely pixel differences
are sufficient to derive reasonable results due to the lin-
earity property

Ffcf (t)g= cFff (t)g ð14Þ

Figure 6. Depiction of the pixel sizes of the captured images in the direction of y axis with respect to the slope distances (left) and
the magnification of the area highlighted by the circle (right).
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of the Fourier transform.16,38 Despite this possibility,
we performed both displacement and vibration analysis
in metric unit measurements.

We modelled the given vibration measurements
‘1, . . . , ‘n by means of a sum of sinusoids and additive
random deviations e1, . . . , en, as proposed by Kargoll
et al.,39 that is

‘t =
a0

2
+
XM
j= 1

aj cos 2pfjxt

� �
+ bj sin 2pfjxt

� �� �
+ et

ð15Þ

The frequencies f1, . . . , fM and the coefficients a0,
a1, . . . , aM and b1, . . . , bM are treated as unknown
parameters. Collecting these unknowns within the vec-
tor j, we can write the preceding non-linear observa-
tion equations in the form ‘t = ht(j)+ et. To take
coloured measurement noise into account, we assume
the random deviations to be autocorrelated through a
covariance-stationary AR process

et =a1et�1 + � � � +apet�p + ut ð16Þ

in which the coefficients aT = ½a1, . . . ,ap� are also con-
sidered as unknown parameters. Since we expect
numerous outliers of different magnitudes to be present
in the data, the white noise components u1, . . . , un are
assumed to follow the centred and scaled t-distribution
tn(0,s

2) independently with an unknown degree of free-
dom n and with unknown scale factor s2. We, thus,
have a one-dimensional version of the generic observa-
tion model in section ‘Sensor specifications and mea-
surement systems’ in Alkhatib et al.30 Estimation of the
model parameters uT = ½jT , aT ,s2, n�T can, thus, be
carried out efficiently by means of a one-dimensional
version of the GEM algorithm given in section ‘Passive
target centroid detection’ in Alkhatib et al.30 To
develop this algorithm, the observation and AR equa-
tions are inverted into

ut = et � a1et�1 � � � � � apet�p =a(L)(‘t � ht(j)) ð17Þ

where the lag operator Ljet : = et�j and the lag polyno-
mial a(L)= 1� a1L� � � � � apLp are used as conveni-
ent notations. The required initial values e0, e�1 and so
on are set equal to zero for simplicity.

Within iteration step i of this algorithm, the E-step
consists of the adjustment of the observation weights

w
(i)
t =

n(i) + 1

n(i) + u
(i)
t =s(i)

� 	2
ð18Þ

which depend on currently available initial or estimated
parameter values j(i), a(i), s(i) and n(i). The individual
weights then give rise to the diagonal weight matrix
W(i) used within the subsequent M-step. Initially, we

may use the unit weight matrix W(0) = In, the vanishing
AR process a(0) = 0½p 3 1�, the identity scale factor
s(i) = 1 and the degree of freedom n(0) = 30, and these
choices correspond to the initial assumption of approx-
imately standard-normal and uncorrelated random
deviations.

The M-step can be carried out by solving the four
parameter groups individually. First, the parameters j
are determined by solving the linearised normal
equations

Dj(i+ 1) = (A
(i)
)
T

W(i)A
(i)

� ��1

(A
(i)
)TW(i)D‘

(i) ð19Þ

with reduced observations D‘(i)t = ‘t � ht(j
(i)), decorre-

lation filtered reduced observations D‘
(i)

t : =a(i)(L)D‘t,

Jacobi matrix components A
(i)
t, k = ∂ht(j

(i))=∂jk and dec-

orrelation filtered Jacobi matrix components

A
(i)

t, k : =a(i)(L)At, k . By virtue of the functional relation-

ship (equation (15)), the derivatives occurring read

∂ht(j
(i))

∂a0

=
1

2
,

∂ht(j
(i))

∂aj

= cos 2pf
(i)

j xt

� 	

∂ht(j
(i))

∂bj

= sin 2pf
(i)

j xt

� 	

∂ht(j
(i))

∂fj

= 2pt b
(i)
j cos (2pf

(i)
j xt)� a

(i)
j sin (2pf

(i)
j xt)

h i

A Gauss–Newton step with step size g 2 (0, 1� gives

j(i+ 1) = j(i) + gDj(i+ 1) ð20Þ

and this solution yields the estimated coloured noise
residuals e

(i+ 1)
t = ‘t � ht(j

(i+ 1)). Based on these resi-
duals, we assemble the matrix

E(i+ 1) =

e
(i+ 1)
0 � � � e

(i+ 1)
1�p

..

. ..
.

e
(i+ 1)
n�1 � � � e(i+ 1)

n�p

2
664

3
775 ð21Þ

and then compute the solution of the normal equations
with respect to the AR coefficients

a(i+ 1) = (E(i+ 1))
T
W(i)E(i+ 1)

� 	�1

(E(i+ 1))TW(i)e(i+ 1)

ð22Þ

Here, we need to check whether all roots of
a(i+ 1)(z)= 0 are located within the unit circle; if this is
not true, we mirror all roots with a magnitude larger
than 1 into the unit circle in order for the estimated AR
process to be invertible. Applying the inversion (equa-
tion (17)) to this process, the white noise residuals
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result from the coloured noise residuals through
u
(i+ 1)
t =a

(i+ 1)
t (L)e(i+ 1)

t . The scale factor is now com-
puted as the weighted sum of squared white noise resi-
duals divided by the number of observations, that is

(s2)(i+ 1) =
1

n

Xn

t= 1

w
(i)
t u

(i+ 1)
t

� 	2

ð23Þ

Finally, to estimate the degree of freedom of the
underlying t-distribution, we determine the zero of the
equation

0= log n(i+ 1) + 1� c n(i+ 1)

2

� 	
+c n(i+ 1) + 1

2

� 	

� log n(i+ 1) + 1
� �

+ 1
n

Pn
t = 1

logw
(i+ 1)
t � w

(i+ 1)
t

� 	 ð24Þ

where the weights w
(i+ 1)
t are defined as in equation (18)

by substituting u
(i+ 1)
t , s(i) and the variable n(i), and

where c denotes the digamma function. More details
on the derivation and the implementation of this algo-
rithm can be found in Alkhatib et al.30

Experiments and results

We performed accurate displacement and vibration
analysis using video streams from the telescope camera
of a Leica MS50 with a practical sampling frequency of
10Hz. Experiments were performed for two case stud-
ies under (1) a controlled laboratory environment and
(2) an uncontrolled real-world situation observing a
footbridge structure using the telescope camera of
Leica MS50. Furthermore, an LT and a PSVC were
used as two highly accurate reference sensors with a
sampling frequency of 200Hz for the validation pur-
poses. Alternatively, the calculated natural frequencies
of the footbridge structure based on the FEM were uti-
lized for a validation.

The primary step to perform a displacement and
vibration analysis based on the video frames of the
Leica MS50 was to select an optimal passive target pat-
tern and to extract its centroid with high accuracy at
different epochs of time. Next, the vertical angular con-
version factor of the telescope camera of the Leica
MS50 was calibrated, which allows us to convert
derived displacements from the pixel unit to the metric
unit. In addition, the Fourier series (equation (15)) as a
linear regression model and an AR process (equation
(16)) as a coloured noise model were employed to esti-
mate amplitudes and frequencies with high accuracy,
assuming the white-noise components to follow a
scaled t-distribution with an unknown scale factor and
unknown degree of freedom. To estimate the model
parameters by means of the GEM algorithm described
in the preceding section, the number M of Fourier fre-
quencies and the model order p of the AR process were

specified beforehand. We determined the initial values
f
(0)

1 , . . . , f (0)M for the unknown frequencies based on
notable maximum amplitudes within the DFT of the
data. In addition, the model order of the AR process
was set to 25 throughout the entire procedure. To
apply the GEM algorithm, all three datasets were
divided to the segments of n= 1000 consecutive mea-
surements, spanning approximately 5 s for the LT and
PSVC measurements and spanning 100 s for the Leica
MS50 measurements.

Example based on the shaker vibration calibrator

The controlled excitations were performed at the
laboratory of the Geodetic Institute Hannover (GIH)
of the Leibniz Universität Hannover (LUH; see
Figure 7, right) by means of the Leica MS50, LT,
PSVC and IMU Brick 2.0 (which constitutes a low-cost
accelerometer). The analysis of the IMU Brick 2.0 mea-
surements is beyond the scope of this article and will be
carried in our future research. As can be seen from
Figure 7 (left), the optimal passive target pattern as
proposed by Omidalizarandi et al.26 oscillates as part
of the PSVC and is simultaneously measured through
video streaming by means of the telescope camera of
the Leica MS50. The PSVC contains a PCB ICP quartz
reference accelerometer, which outputs highly accurate
acceleration data. Specifically, the oscillation frequen-
cies of 2, 3 and 4Hz with an amplitude of 0.3m/s2 were
adjusted throughout two sensitive dials. Each fre-
quency was measured for a about 7min by all four sen-
sors. However, since the sampling frequency of the
Leica MS50 is only 10Hz in practice, the frequencies of

Figure 7. Vibration analysis of a controlled excitation based on
acceleration measurements from the PSVC 9210D, video
streams from the telescope camera of the Leica MS50, 3D
coordinates from the LT Leica AT960-LR and acceleration
measurements from the IMU Brick 2.0.
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higher than 5Hz could not be captured by the Leica
MS50 (in view of the Nyquist sampling theorem). To
perform measurements with the LT, a Leica red-ring
reflector (RRR) 0.5 in ball with a radius of
6:35mm6 0:0025 mm and an acceptance angle
� 6 30� was mounted on the small platform which
vibrates simultaneously with aforementioned passive
target.

Figure 8 shows the displacement time series of the
extracted target centroid with respect to the mean of
the extracted centroids throughout time in both milli-
metre and pixel units at 2Hz frequency and a slope dis-
tance of 5.3616m. In addition, the first 20 s of the Leica
MS50 data and the first 5 s of the LT and PSVC data
were discarded as transient oscillations.

Figure 9 depicts the DFT of the video streams from
the Leica MS50 at a distance of 5.3616m, where the
frequency induced by the PSVC was 2Hz. This fre-
quency is clearly associated with the maximum ampli-
tude. Figure 10 shows the target centroid extracted
from the Leica MS50 video streams alongside the
adjusted Fourier model at 2Hz for a 5 s time section.

Figure 11 shows the estimated coloured noise resi-
duals and the decorrelated residuals of the Leica MS50
dataset, resulting from the filtering (equation (17)) of
the former residuals by means of the inverted estimated
AR model. Figure 12 shows the adequacy of the esti-
mated AR coloured noise models in the light of an
accepted (periodogram-based) white noise.39

The DFT is shown in Figure 13, which reveals two
main amplitudes at 1.25 and 2.5Hz to shed further
light on the impact of the image motion error (see
Figure 14) on the estimation of the frequency. In addi-
tion, Figure 15 shows a higher coloured noise level in
comparison to Figure 11, which proves the existence of

Figure 9. Typical discrete Fourier transform of one segment of
the Leica MS50 dataset at distance of 5.3616 m, showing the
main amplitude at 2 Hz.

Figure 10. Typical section of the Fourier model (solid line)
fitted to the given measurements of the Leica MS50 dataset
(stars) at 2 Hz within 5 s.

Figure 11. Typical segment showing the estimated coloured
noise residuals and the decorrelated residuals of the Leica MS50
dataset at 2 Hz and a distance of 5.3616 m.

Figure 8. Displacement time series of the extracted target
centroid for the telescope camera images of the Leica MS50 at
2 Hz and a distance of 5.3616 m.
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the image motion errors throughout this time interval
of the experiment.

Table 1 summarizes the statistics of the displacement
and vibration analysis for all three sensors. In most
cases, the frequencies and amplitudes estimated from
the Leica MS50 measurements are very close to those
resulting from the two highly accurate reference sensors
(LT and PSVC). The estimated degrees of freedom of
the t-distribution underlie the white noise components.
Concerning the LT and the PSVC measurements, these
estimates are roughly between 14 and 60, indicating a
rather close approximation of a normal distribution.
By contrast, the estimated degrees of freedom regard-
ing the Leica MS50 measurements are in the range of
2–4.5, for which values the t-distribution has substan-
tial tails; we thus found a large number of outliers in
the measurement noise of that sensor.

Furthermore, the results show that the highest white
noise test acceptance rate (100%) was obtained for the
PSVC measurements, for which an AR order of p= 25

was chosen. Using the same model order, the LT mea-
surements also produced relatively high acceptance
rates in comparison to the PSVC data. However, the
acceptance rates regarding the Leica MS50 measure-
ments fluctuate between 25% and 75%, so that the
adjusted coloured noise model is clearly inadequate for
a number of segments analysed. On one hand, this find-
ing could be related to the image motion error (see
Figure 14) derived from a weak PC performance or
delay in the data transmission procedure from the Leica
MS50 to the PC. On the other hand, it could be related
to a minor shaking of the Leica MS50 throughout the
measurements, and this phenomenon can be taken into
account in our future work by continuously reading the

tilting axis error of the Leica MS50 using the GeoCOM
interface as described in Lienhart and colleagues.3,16 To
improve the coloured noise models and the resulting
performance of the white noise test, it might be benefi-
cial in future experiments to increase the measurement
time to obtain more redundant data and to be able to
increase the AR model order. Moreover, the absolute
deviation of the Mode of estimated amplitudes of the
sensors are listed in Table 1 and compared to those
from the PSVC with an AR order of p= 25. As we
expected, the absolute deviations of the two reference
sensors of LT and the PSVC have minor differences,
which are significantly smaller than those of the Leica
MS50.

Table 2 summarizes the statistics of the displacement
and vibration analysis for all three sensors without AR
processing to give an impression about strength of the
developed algorithm. In addition, the degree of freedom
was fixed to 120, which stands for the t-distribution,
approximating the normal distribution as described in
Abramowitz and Stegun40 and Koch.41 As we expected,
the absolute deviations from the PSVC without the AR
processing are not significant and has less coloured
measurement noise, as the estimated degree of freedoms
indicate approximately the normal distribution (see
Table 1). In addition, the absolute deviations for the
LT measurement without the AR processing are slightly
larger than those including AR processing. However,
the absolute deviations for the Leica MS50 without the
AR processing are mostly and significantly larger than
those included in the AR processing. In addition, as the
estimated degrees of freedom for the Leica MS50 data
are represented by a range of 2–4.5 (see Table 1), it
proves the existence of numerous outliers in the dataset.
Subsequently, by ignoring the AR processing within the
robust estimation procedure developed for the Leica
MS50, the results in some cases do not prove to be reli-
able or accurate enough.

Figure 12. Excess of the estimated periodogram of the
decorrelated (i.e. estimated white noise) residuals of the Leica
MS50 dataset at 2 Hz and a distance of 5.3616 m for the AR(25)
model (jagged line) with respect to the theoretical white noise
periodogram (horizontal centred line) and 99% significance
bounds (horizontal bounded lines).

Figure 13. Typical discrete Fourier transform of one segment
of the Leica MS50 dataset at a distance of 22.6635 m, showing
two main amplitudes at 1.25 and 2.5 Hz.
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Example based on real application of a footbridge
structure

An uncontrolled excitation of a footbridge structure
with a length of 27.051m and a width of 2.72m close
to the GIH (see Figure 16) was measured using the
Leica MS50 and LT. The measurements were carried
out for the first quarter and the middle of the foot-
bridge structure (marked by the circles in Figure 16).
Alternatively, the known natural frequencies of the
footbridge structure were utilized for a validation.
They were calculated based on the FEM analysis of a
design model of the footbridge structure, which was
carried out by the Institute of Concrete Construction

of the LUH. According to that, the vertical natural fre-
quencies of the footbridge structure are 3.642 and
13.294Hz, the longitudinal and the lateral natural fre-
quencies are 2.295 and 7.053 Hz, and the torsional nat-
ural frequencies are 3.759 and 11.828Hz, respectively.
As we can see in Figure 16, the Leica MS50 and the LT
are located at the footpath close to the side of the foot-
bridge structure. Regarding the natural frequencies, we
could only detect the vertical natural frequency of
3.642Hz and could not detect another one with the
value of 13.294Hz due to the low practical sampling
frequency of 10Hz of the Leica MS50 and in view of
Nyquist sampling theorem. On the other hand, it might
be necessary to set-up the Leica MS50 in a place, where

Table 1. Statistics of the displacement and vibration analysis for the Leica MS50, LTand PSVC measurements with an AR order of
p= 25.

Sensor Mode
(f̂ , Hz)

Time (s) NS S (m) Max
(L̂, mm)

Mode
(L̂, mm)

Min
(L̂, mm)

Mode (n̂) WNT (%) Dd (mm)

LT 2.000067 5 85 5.3616 1.7476 1.7358 1.7067 28.467 94.11 0.0327
3.000077 5 83 5.3616 0.8264 0.8203 0.8002 53.229 78.31 0.0011
4.000103 5 87 5.3616 0.4616 0.4598 0.4567 54.345 66.66 0.0032
2.000077 5 80 11.9425 1.7708 1.7565 1.7478 59.547 96.25 0.0269
3.000071 5 104 11.9425 0.8221 0.8186 0.8148 51.202 82.69 0.0008
4.000105 5 83 11.9425 0.4608 0.4578 0.4545 50.171 75.90 0.0057
2.000042 5 85 16.8771 1.7378 1.7256 1.7066 50.212 96.47 0.0310
3.000152 5 82 16.8771 0.8271 0.8151 0.8025 28.257 75.60 0.0044
4.000112 5 127 16.8771 0.4606 0.4574 0.4497 38.732 82.67 0.0061
2.000027 5 99 22.6635 1.7455 1.7231 1.7094 26.180 90.90 0.0321
3.000061 5 86 22.6635 0.8333 0.8246 0.7994 14.272 87.21 0.0044
4.000070 5 84 22.6635 0.4694 0.4665 0.4518 18.819 29.76 0.0035

PSVC 2.000106 5 95 5.3616 1.7227 1.7031 1.675 44.371 100 0.0
3.000221 5 99 5.3616 0.8300 0.8192 0.8006 54.612 100 0.0
4.000146 5 101 5.3616 0.4665 0.4630 0.4595 53.664 100 0.0
2.000142 5 91 11.9425 1.7514 1.7296 1.7041 47.149 100 0.0
3.000186 5 93 11.9425 0.8262 0.8194 0.8104 51.829 100 0.0
4.000299 5 93 11.9425 0.4667 0.4635 0.4569 50.199 100 0.0
2.000099 5 97 16.8771 1.7166 1.6946 1.6755 40.411 100 0.0
3.000128 5 97 16.8771 0.8256 0.8195 0.8043 49.681 100 0.0
4.000220 5 137 16.8771 0.4665 0.4635 0.4593 42.223 100 0.0
2.000075 5 121 22.6635 1.7111 1.6910 1.6721 45.319 100 0.0
3.000178 5 113 22.6635 0.8258 0.8202 0.8118 54.992 100 0.0
4.000215 5 133 22.6635 0.4661 0.4630 0.4602 48.468 100 0.0

MS50 2.001359 100 4 5.3616 1.6256 1.6181 0.4063 3.8933 75 0.0850
3.002026 100 4 5.3616 0.7496 0.7473 0.7424 4.4704 75 0.0719
4.002689 100 4 5.3616 0.4849 0.4119 0.4091 3.4502 25 0.0511
2.001327 100 4 11.9425 1.7250 1.7184 1.7147 4.4514 75 0.0112
3.003544 100 4 11.9425 0.7888 0.7842 0.6814 4.2560 25 0.0352
4.002680 100 4 11.9425 0.4339 0.4322 0.4287 1.9757 25 0.0313
2.002867 100 4 16.8771 1.6986 1.5932 0.2670 4.4179 50 0.1014
3.002015 100 4 16.8771 0.8293 0.7925 0.7678 3.4979 50 0.0270
4.002692 100 3 16.8771 0.4352 0.4347 0.4225 3.1020 33.33 0.0288
2.001887 100 4 22.6635 1.7356 1.4911 0.1650 1.9504 25 0.1999
3.002021 100 4 22.6635 0.7808 0.7591 0.7536 3.3790 75 0.0611
4.002694 100 4 22.6635 0.4240 0.4209 0.3817 2.8920 25 0.0421

LT: laser tracker; PSVC: portable shaker vibration calibrator; AR: autoregressive.

f̂ is the estimated frequency, NS the number of segments analysed, S the slope distance, L̂ the estimated amplitude or displacement, n̂ the estimated

degree of freedom, WNT the acceptance rate of the white noise test applied to the NS segments analysed and Dd the absolute deviation of the

mode (L̂) of the sensors compared to those from PSVC.
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it can measure the passive targets perpendicularly to
detect the longitudinal and lateral natural frequencies
of the footbridge structure. However, this was not the
case in our measurement campaign and we could not
detect those natural frequencies either.

Figures 17 and 18 show the DFT results for the
Leica MS50 measurement at Points A1 and A2, respec-
tively. In addition, Figure 19 shows the DFT result at
point A1 for the LT measurement as well. Since the
time synchronization needed to be performed between
the Leica MS50 and the LT measurements and was not
the case in our measurement campaign, the one-to-one
comparison between the results of the aforementioned
sensors does not make sense. However, we can rely on

the FEM results of the design model of the footbridge
structure for the validation in this case study. As can
be seen from Figures 17 and 19, the DFT results at
point A1 show the frequency of 4.07Hz with the maxi-
mum amplitude of 0.07mm, which was captured by the
Leica MS50 measurements, whereas the frequency of
4.06Hz with the maximum amplitude of 0.0497mm
was obtained for the LT measurements. However, the
results from the proposed approach show the frequen-
cies of 4.0768 and 4.0631Hz with the maximum ampli-
tudes of 0.0433 and 0.0462mm for the Leica MS50 and
LT measurements, respectively. However, the DFT
result in Figure 18 at point A2 shows the frequencies of
3.65 and 4.1Hz with the maximum amplitudes of 0.079

Table 2. Statistics of the displacement and vibration analysis for the Leica MS50, LTand PSVC measurements without AR model and
n= 120 the degree of freedom.

Sensor Mode
(f̂ , Hz)

Time
(s)

NS S (m) Max (L̂, mm) Mode (L̂, mm) Min
(L̂, mm)

Mode (n̂) WNT (%) Dd (mm)

LT 2.000060 5 85 5.3616 1.7480 1.7363 1.7076 120 0 0.0332
3.000081 5 83 5.3616 0.8263 0.8203 0.8003 120 0 0.0011
4.000134 5 87 5.3616 0.4617 0.4597 0.4568 120 0 0.0033
2.000075 5 80 11.9425 1.7707 1.7565 1.7481 120 0 0.0269
3.000089 5 104 11.9425 0.8223 0.8187 0.8148 120 0 0.0007
4.000113 5 83 11.9425 0.4606 0.4579 0.4546 120 0 0.0056
2.000072 5 85 16.8771 1.7364 1.7247 1.7063 120 0 0.0301
3.000158 5 82 16.8771 0.8312 0.8158 0.8014 120 0 0.0037
4.000096 5 127 16.8771 0.4652 0.4575 0.4525 120 0 0.0060
2.000060 5 99 22.6635 1.7452 1.7228 1.7097 120 0 0.0318
3.000103 5 86 22.6635 0.8394 0.8251 0.8057 120 0 0.0049
4.000111 5 84 22.6635 0.4732 0.4669 0.4618 120 0 0.0039

PSVC 2.000087 5 95 5.3616 1.7231 1.7032 1.6747 120 0 0.0001
3.000249 5 99 5.3616 0.8298 0.8194 0.8006 120 0 0.0002
4.000129 5 101 5.3616 0.4665 0.4630 0.4595 120 0 0.0000
2.000204 5 91 11.9425 1.7503 1.7289 1.7040 120 0 0.0007
3.000169 5 93 11.9425 0.8262 0.8193 0.8102 120 0 0.0001
4.000279 5 93 11.9425 0.4667 0.4633 0.4568 120 0 0.0002
2.000151 5 97 16.8771 1.7176 1.6941 1.6748 120 0 0.0005
3.000116 5 97 16.8771 0.8253 0.8196 0.8042 120 0 0.0001
4.000233 5 137 16.8771 0.4666 0.4635 0.4592 120 0 0.0000
2.000024 5 121 22.6635 1.7115 1.6912 1.6743 120 0 0.0002
3.000144 5 113 22.6635 0.8258 0.8204 0.8118 120 0 0.0002
4.000229 5 133 22.6635 0.4662 0.4631 0.4602 120 0 0.0001

MS50 2.001361 100 4 5.3616 1.6205 1.6161 1.0136 120 0 0.0870
3.002032 100 4 5.3616 0.7492 0.7462 0.7449 120 0 0.0730
4.002711 100 4 5.3616 0.4067 0.4059 0.3928 120 0 0.0571
2.001328 100 4 11.9425 1.7182 1.7125 1.7012 120 0 0.0171
3.002494 100 4 11.9425 0.7857 0.7490 0.3325 120 0 0.0704
4.002717 100 4 11.9425 0.4276 0.4261 0.4222 120 0 0.0374
2.001526 100 4 16.8771 1.6960 1.5940 0.8262 120 0 0.1006
3.002020 100 4 16.8771 0.7934 0.7840 0.7752 120 0 0.0355
4.002711 100 3 16.8771 0.4325 0.3174 0.1332 120 0 0.1461
2.001868 100 4 22.6635 1.0612 0.5376 0.4042 120 0 1.1534
3.002025 100 4 22.6635 0.7619 0.7578 0.7422 120 0 0.0624
4.002723 100 4 22.6635 0.4212 0.4178 0.4114 120 0 0.0452

LT: laser tracker; PSVC: portable shaker vibration calibrator; AR: autoregressive.

f̂ is the estimated frequency, NS the number of segments analysed, S the slope distance, L̂ the estimated amplitude or displacement, WNT the

acceptance rate of the white noise test applied to the NS segments analysed and Dd the absolute deviation of the Mode (L̂) of the sensors compared

to those from PSVC in Table 1.
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Figure 15. Typical segment showing the estimated coloured
noise residuals (dashed line) and the estimated white noise
residuals (solid line) of the Leica MS50 dataset at 2 Hz and a
distance of 22.6635 m.

Figure 16. Vibration analysis of the footbridge structure using
the telescope camera of the Leica MS50 to measure the passive
targets attached to the side of the footbridge (areas highlighted
by the circles) and using the LT to measure an attached corner
cube reflector close to the aforementioned passive targets.

Figure 17. Point A1: Typical discrete Fourier transform of one
segment of the Leica MS50 dataset at a distance of 16.5 m from
footbridge structure, showing the main amplitude of 0.07 mm at
a frequency of 4.07 Hz.

Figure 18. Point A2: Typical discrete Fourier transform of one
segment of the Leica MS50 dataset at a distance of 20.01 m from
footbridge structure, showing the main amplitudes of 0.079 and
0.055 mm at frequencies of 3.65 and 4.1 Hz, respectively.

Figure 19. Point A1: Typical discrete Fourier transform of one
segment of the LT dataset at a distance of 16.499 m from the
footbridge structure, showing the main amplitude of 0.0497 mm
at a frequency of 4.06 Hz.

Figure 14. Displacements of the extracted target centroid for
telescope camera images of Leica MS50 at 2 Hz and a distance of
22.6635 m.
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and 0.055mm, respectively. However, the proposed
approach shows the frequencies of 3.6451 and
4.0978Hz with the maximum amplitudes of 0.051 and
0.0367mm, respectively, which are comparable to those
calculated from the FEM with the frequency of
3.642Hz, and these findings demonstrate the correct-
ness of our calculations. The higher frequency of
approximately 4.07Hz obtained might be due to either
modulating the higher frequency of 13.294Hz or an
additional vibration produced by people passing across
the footbridge structure and the latter not reaching a
stable situation at the time of measurement.

In addition, Figures 20–22 illustrate the estimated
coloured noise residuals and the decorrelated (i.e. esti-
mated white noise) residuals for the Leica MS50 at the
two points of A1 and A2 in addition to the LT mea-
surements, respectively. We should mention that the LT

measurements of the bridge structure were performed
with a corner cube reflector of lesser quality than for
measurements within the laboratory experiment.
Consequently, a high level of noise in the displacements
for some segments appears in the results, which we can
be improved in our future work by employing a corner
cube reflector of a better quality. In addition, we could
even improve the Leica MS50 results by taking angular
tilt axis errors into account and by avoiding the very
minor shaking of the instrument.

Conclusion

A robust and consistent procedure was proposed to
perform an accurate displacement and vibration analy-
sis of a footbridge structure using an IATS (here, Leica
MS50). The Leica MS50 benefits accurate distance
measurements to the object in addition to the captured
video streams with a practical sampling frequency of
10Hz using an embedded on-axis telescope camera.
The experiments were carried out for two case studies
under a controlled excitation in the laboratory environ-
ment and an uncontrolled excitation of a footbridge
structure. In a first case study, the results were validated
by means of two highly accurate reference measurement
systems, namely, the portable shaker vibration calibra-
tor 9210D (with a sampling frequency of 200Hz) and
the Leica AT960-LR LT (with a sampling frequency of
200Hz). In the second case study, the validation was
performed based on the known natural frequencies of
the footbridge structure calculated from the FEM anal-
ysis. In addition, the LT measurement was also used for
a validation.

To extract target centroid from video streams of the
Leica MS50, the feasibility of an optimal passive target
pattern including four intersected lines and its accurate
and reliable detection approach, proposed in
Omidalizarandi et al.,26 were investigated at different

Figure 20. Point A1: Typical segment showing the estimated
coloured noise residuals (dashed line) and the estimated white
noise residuals (solid line) of the Leica MS50 dataset with the
main amplitude at 4.07 Hz for the footbridge structure.

Figure 22. Point A1: Typical segment showing the estimated
coloured noise residuals (dashed line) and the estimated white
noise residuals (solid line) of the LT dataset with the main
amplitude at 4.06 Hz for the footbridge structure.

Figure 21. Point A2: Typical segment showing the estimated
coloured noise residuals (dashed line) and the estimated white
noise residuals (solid line) of the Leica MS50 dataset with the
main amplitudes at frequencies of 3.65 and 4.1 Hz for the
footbridge structure.
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epochs of time as a preliminary step. Subsequently, the
vertical angular conversion factor was calibrated in the
laboratory environment to convert derived displace-
ments from the pixel unit to the metric unit.

To estimate amplitudes and frequencies for all three
sensors with high accuracy, vibration measurements
either in the length unit or the acceleration unit were
input to the Fourier series as a linear regression model
comprising a sum of sinusoids and additive random
deviations. Furthermore, the coloured measurement
noise was decorrelated through a covariance-stationary
AR process of an order 25, assuming the white noise
components to independently follow a central and
scaled t-distribution with an unknown scale factor and
unknown degree of freedom. At the end, model para-
meters were estimated by means of the GEM algorithm
as described in Alkhatib et al.30 The unknown frequen-
cies were initiated by means of notable maximum
amplitudes within the DFT of the data to perform
adjustment of the combined observation model for a
footbridge application.

The results indicate that the estimated frequencies
and amplitudes from the Leica MS50 measurements
were very close to those resulting from the two highly
accurate reference sensors (LT and PSVC) in the
laboratory environment and to those resulting from the
FEM analysis and the LT for the real application of
the footbridge structure. It was shown that the DFT
results and our proposed approach achieved approxi-
mately similar results when estimating the frequencies.
However, the results for the amplitudes varied from
minor to significant changes depending on the coloured
noise behaviour of the measurements. To show the
strength of the proposed approach, the estimated
results were compared in two cases of the AR model in
the order of 25: with an unknown degree of freedom
and without the AR process considering a constant
degree of freedom of 120, which is close approximation
of a normal distribution.

The estimated degrees of freedom of the t-distribu-
tion, in the case of considering the AR model order of
25, reveals that the LT and the PSVC measurements are
a rather close approximation of a normal distribution,
while, by contrast, the estimated degrees of freedom
regarding the Leica MS50 measurements with substan-
tial tails show a large number of outliers in the measure-
ment noise of that sensor. Moreover, the results show
that the highest white noise test acceptance rate (100%)
was obtained for the PSVC measurements. The LT
measurements also produced relatively high acceptance
rates in comparison to the PSVC data. However, the
acceptance rates regarding the Leica MS50 measure-
ments fluctuate between 25% and 75%, so that the
adjusted coloured noise model is clearly inadequate for
a number of analysed segments. Furthermore, the
image motion error for some video frames derived from

a weak PC performance or delay in the data transmis-
sion procedure from the Leica MS50 to the PC has a
significant influence on the estimated frequencies and
amplitudes and shows a higher coloured noise level
compared to the good quality video frames captured. In
summary, the results show the feasibility of Leica MS50
for an accurate displacement and vibration analysis of
the footbridge structure for frequencies less than 5Hz
(in view of the Nyquist sampling theorem).

In our future work, we will measure the minor shak-
ing of the Leica MS50 throughout the measurements
by continuously reading the tilting axis error of the
Leica MS50 using the GeoCOM interface. It might be
beneficial to increase the measurement time to obtain
more redundant data and to be able to increase AR
model order to improve the coloured noise models and
the resulting performance of the white noise test. In
addition, the proposed approach can be extended to
the time-dependant AR model to characterize the
coloured noise behaviour of the measurements over
time. Furthermore, the time synchronization for the
measurements of the sensors can be performed to have
a more realistic comparison of the results at a certain
point of time. Moreover, we will improve the LT mea-
surements for a footbridge structure by employing a
corner cube reflector of a better quality. The internal
calibration of the error sources of the Leica MS50 mea-
surements might improve the results. The possibility of
performing experiment with the Leica MS60 with a
maximum sampling frequency of 20Hz could also
improve the results. Finally, global optimization can be
applied for more accurate and reliable results to esti-
mate model parameters with unknown frequencies.
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Abstract: In the last two decades, the integration of a ter-
restrial laser scanner (TLS) and digital photogrammetry,
besides other sensors integration, has received consider-
able attention for deformation monitoring of natural or
man-made structures. Typically, a TLS is used for an area-
baseddeformationanalysis. Ahigh-resolutiondigital cam-
era may be attached on top of the TLS to increase the ac-
curacy and completeness of deformation analysis by op-
timally combining points or line features extracted both
from three-dimensional (3D) point clouds and captured
images at different epochs of time. For this purpose, the
external calibration parameters between the TLS and dig-
ital camera needs to be determined precisely. The cam-
era calibration and internal TLS calibration are commonly
carried out in advance in the laboratory environments.
The focus of this research is to highly accurately and ro-
bustly estimate the external calibration parameters be-
tween the fused sensors using signalised target points. The
observables are the image measurements, the 3D point
clouds, and the horizontal angle reading of a TLS. In ad-
dition, laser tracker observations are used for the pur-
pose of validation. The functional models are determined
based on the space resection in photogrammetry using the
collinearity condition equations, the 3D Helmert transfor-
mation and the constraint equation, which are solved in
a rigorous bundle adjustment procedure. Three different
adjustment procedures are developed and implemented:
(1) an expectation maximization (EM) algorithm to solve
a Gauss-Helmert model (GHM) with grouped t-distributed
random deviations, (2) a novel EM algorithm to solve a
corresponding quasi-Gauss-Markov model (qGMM) with t-
distributed pseudo-misclosures, and (3) a classical least-
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squares procedure to solve the GHMwith variance compo-
nents and outlier removal. The comparison of the results
demonstrates the precise, reliable, accurate and robust es-
timation of the parameters in particular by the second and
third procedures in comparison to the first one. In addi-
tion, the results show that the second procedure is com-
putationally more efficient than the other two.

Keywords: Terrestrial laser scanner, digital camera, ex-
ternal calibration, Gauss-Helmert model, quasi-Gauss-
Markov model, adaptive robust estimation, expectation
maximisation algorithm, structural monitoring

1 Introduction

Numerous research studies have been conducted concern-
ing short- and long-term deformation monitoring of natu-
ral objects such as landslides, rocks and ice glaciers ([1],
[2], [3], [4]), as well as of civil engineering infrastructures
such as dams, bridges and towers ([5], [6], [7], [8], [9], [10],
[11], [12], [13], [14]). In this context, the integration of a ter-
restrial laser scanner (TLS) and digital photogrammetry,
besides the integration of other sensors, has received con-
siderable attention ([15], [16], [17], [18]). On the one hand,
a TLS can typically be used for an area-based deforma-
tion analysis by comparing surfaces from scanned point
clouds captured at different epochs, as shown for instance
in [1], [4], [5], [8], [12], [13] and [19]. A TLS directly provides
fast, dense and accurate three-dimensional (3D) coordi-
nates (i. e., unstructured 3D point clouds) of the object’s
surface in combination with reflectivity values, which rep-
resent the energy of backscattered laser light. The accu-
racy of a single point measurement by a TLS varies de-
pending on the distance to objects and the object prop-
erties (e. g., colour and roughness) in the range of sub-
millimetre to millimetre. On the other hand, photogram-
metric techniques have been widely applied in a variety
of deformationmonitoring applications, see e. g. [20], [21],
[22], [23], [24], [25], [26] and [27]. It is possible to per-
form a 3D deformation analysis based on photogrammet-
ric techniques using at least two stereo images from differ-
ent standpoints. To produce the 3D coordinates, signalised
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or non-signalised points can be extracted from the cap-
tured images and solved by means of the stereo intersec-
tion bundle adjustment (e. g., [20], [24]).

Both measurement techniques have their own advan-
tages and disadvantages. With both kinds of techniques,
the measurements can be performed without any con-
tact to the object. A TLS usually covers a larger area of
an object by a single standpoint with a fully horizon-
tal field of view (FOV). However, its coverage for a ver-
tical FOV varies with different types of TLS (e. g., Leica
Geosystems Scanstation P40 (270°), RIEGL VZ-400 (100°),
Zoller+Fröhlich (Z+F) Imager 5016 (320°) and Faro Focus
X330 (300°). By contrast, a digital camera’s FOVs are sig-
nificantly smaller than for a TLS, which fact necessitates
multiple standpoints to cover the whole area. For both
measurement systems, the internal calibration should be
performed in a controlled laboratory environment. The
external orientation parameters (EOPs), including three
translations and three orientations, must be calculated
to transform the measurements into a common coordi-
nate reference frame. This is typically carried out based
on at least three known control points or based on sur-
face matching algorithms and their variants such as the
iterative closest point (ICP) algorithm [28]. Furthermore,
to tackle the scale problem with photogrammetric tech-
niques and to transform the coordinates from the image
space into object space, an approximate distancemeasure-
ment or a priori photogrammetric network adjustment is
necessary [25].

1.1 Motivation

In this work, a TLS of type Z+F IMAGER 5006 and a high-
resolution digital camera Nikon D750 are integrated as a
multi-sensor-system (MSS) to benefit from the advantages
of both sensors for an accurate structural monitoring. To
this end, the digital camera is rigidly attached on top of
the TLS using a clamping system (see Fig. 1, right). This in-
tegration allows for the usage of digital cameras with dif-
ferent image sizes or focal lengths [29]. Since the 6 EOPs
of the MSS vary for each set-up of the camera, an in-situ
calibration is performed.

To extract meaningful features such as points, lines,
or even small cracks from the 3D point clouds, either the
scan resolution or the number of scan stations should be
sufficiently increased. However, the latter is preferable to
former since:
– two low-resolution scans are often performed faster

than one high-resolution scan, while approximately

providing the same point spacing distances between
the measured 3D point clouds of the object;1

– better geometry between the scans is obtained, which
allows one to solve for the (internal and external) cal-
ibration parameters with lower correlations between
them;

– the systematic error sources of the TLS, such as inci-
dence angles (i. e., the angle between the TLS and ob-
ject), are eliminated, which my lead to a more reliable
estimation of the calibration parameters.

It should be noted that the systematic error sources of TLS
measurements (e. g., incidence angles, range noise, scale
factor, zeropoint error) canalso be eliminatedby thedeter-
ministic and stochastic modelling. For more information
in this regard, please refer to [30], [31], [32] and [33].

The high-resolution images captured by the digital
camera allow for a simplified extractionof aforementioned
features. Subsequently, the high-resolution images pro-
vide measurements with a high angular accuracy at the
subpixel level and therefore improve the lateral accuracy
of the 3D point clouds [34]. Such a high angular accuracy
can be obtained by capturing the images either from a free
set-up of cameras at closer distances to the object or from
a camera attached on top of the TLS at multiple scan sta-
tions. Although each captured image covers just a portion
of the object and not the entire object, the resolution is
thus increased. As a drawback with photogrammetric ap-
proaches, those images capturedwith larger incidence an-
gles to the objects cause a weak geometrical configuration
of the cameras, which leads to an inaccurate estimation
of the cameras’ pose parameters. This, however, can be
avoided for the MSS by using the external calibration pa-
rameters. Here, the combination of the 3D point clouds
with high-resolution images is beneficial due to the in-
crease of redundancy (i. e., including more feature points
or lines) in the adjustment procedure. However, in case of
a large incidence angle of the TLS, those images captured
from the camera mounted on top of the TLS also suffer
from a weak geometry. Thus, those feature points or lines
located at higher incidence angles need to be considered
with lower weights within the adjustment procedure. Con-
sequently, the high-resolution images do not necessarily
improve the accuracy of displacement monitoring, but in-
crease the precision. Still, the considered integration may
allow for an accurate and precise 3D deformation analy-
sis both in the direction of the laser beam and perpendicu-

1 Depending on the distances of scan stations to an object, the point
spacing distances between the 3D point clouds can be varied.
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lar to the laser beam. For this MSS, the information from
the both sensors are complementary to each other, and
the strength of one measurement method overcomes the
weakness of the other one.

Figure 1: Laser tracker Leica AT960LR (left), a Nikon D750
24.3-megapixel digital camera is rigidly attached on top of the Z+F
Imager 5006 TLS (right).

The innovations in this paper are threefold: firstly,
at a theoretical level, a novel quasi-Gauss-Markov model
(qGMM) is proposed as alternatives to the Gauss-Helmert
model (GHM) with t-distributed random deviations (intro-
duced by [35]) and to a classical GHM with variance com-
ponent estimation (VCE) and outlier detection. For the so-
lution of this qGMM, a tailored expectation maximisation
(EM) algorithm is provided. Secondly, these three proce-
dures are applied to compute highly accurate, robust and
reliable parameter estimates of the external calibration of
the TLS and the digital camera, which task has previously
not been achieved to the best knowledge of the authors.
However, the previous researchers solved such a problem
by the GMM, which would not be an ideal adjustment
model due to high non-linearity of the functional models.
Thirdly, a laser tracker (LT; see Fig. 1, left) is included as
a highly accurate reference sensor for the purpose of vali-
dation. Here, the 6 EOPs between the TLS and the camera
(i. e., the position and orientation of the digital camera rel-
ative to the TLS; see Fig. 1, right), the 7 EOPs between the
TLS and the LT (i. e., the scale, position and orientation of
the TLS with respect to the LT), and the target coordinates
in the object space are considered as unknown parame-
ters. To simplify the approach, it is assumed that there
are no correlations between the observables since they
aremeasured independently. Subsequently, the stochastic
model is considered as a diagonal matrix.

1.2 Literature review on external calibration
between TLS and digital camera

In the last two decades, several approacheswere proposed
to obtain the EOPs between the digital camera and a 2D
or 3D laser scanner. [36] proposed an algorithm to esti-
mate the external calibration parameters between a dig-
ital camera and a 2D laser range finder using a planar
checkerboard pattern. The laser scan lines arematched on
the planar pattern with the pattern plane from the cam-
era image. Subsequently, a global optimisation method is
applied to refine the parameters. [37] and [38] extended
the work of [36] from a 2D to a 3D laser scanner using
the planar checkerboard pattern to be observed from dif-
ferent viewing points. [39] performed a self-calibration of
an integrated range camera system using signalised tar-
gets. Next, the internal orientation/calibration parame-
ters (IOPs) of the digital camera, in addition to the range
finder’s systematic error parameters, are estimated simul-
taneously based on the collinearity equations and range
observation equations in a free-network bundle adjust-
ment. Variance component estimation is applied to opti-
mally re-weight observations in an iterative manner. [34]
proposed an algorithm to combine the 3D point clouds
with central perspective and panoramic images within an
integrated bundle adjustment based on a Gauss-Markov
model (GMM) with VCE. The 3D object point coordinates
as well as the IOPs and EOPs of the sensors are treated as
unknown parameters in the adjustment procedure. Subse-
quently, the evaluation of the estimated parameters is car-
ried out by means of statistical tests. [40] proposed an au-
tomatic target-less external calibration of a 3D laser scan-
ner and digital camera based on the mutual information
algorithm. The calibration parameters are calculated by
maximising the mutual information between the reflectiv-
ity values of the 3D point clouds and intensity values of
the captured image. Then, the gradient ascent algorithm
is applied to consider different 3D point clouds from dif-
ferent scenes in a single optimisation framework. A draw-
back of this approach is that it requires relatively precise
initial values for the 6 EOPs. [41] adopted the work of [40]
for an MSS consisting of a TLS and a high-resolution dig-
ital camera, for which results were promising. [42] pro-
posed an algorithm for highly accurate estimation of the
external calibration parameters between a TLS and a dig-
ital camera using the signalised target points. The space
resection bundle adjustment, 3D Helmert transformation
and a constraint equation were solved in an adjustment
model based on the GMM and GHM with VCE and a sta-
tistical testing procedure. [43] proposed an algorithm to
estimate the IOPs and EOPs of a 3D laser scanner and a
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rigidly connected digital camera in two least-squares sub-
problems using measurements of a calibration plane un-
der various configurations. [44] fused the 3D point clouds
andhigh-resolutiondigital imagesusing interest point fea-
tures extracted froman intensity image generated from the
3D point clouds and an image captured by the digital cam-
era. The point features are extracted using a Harris cor-
ner detector and then matched based on the zero mean
normalised cross correlation measure. To refine the cor-
respondences, the random sample consensus (RANSAC)
algorithm [45] is applied. Subsequently, to calculate the
EOPs, the matched points and their corresponding object
coordinates are input to the collinearity equations, solved
within the bundle adjustment procedure. [46] proposed an
approach for the registration of photogrammetric imagery
and LiDAR (light detection and ranging) data using lin-
ear features in the photogrammetric bundle adjustment.
The system of equations include the collinearity equations
for the endpoints of each line in both the image and ob-
ject space. In addition, a coplanarity constraint is defined
for an intermediate point of each line in the image space,
which is within the plane defined by the perspective cen-
tre of the image and two endpoints of that straight line in
the object space.

The robust procedure of sensor fusion suggested in
this contribution can be extended to other sensor fu-
sion problems with different applications, by identifying
a proper mathematical model for the orientation between
theused sensors. For example, theworkof [47] couldbe ex-
tended by using a high-resolution digital camera (such as
a Nikon D750with a frame rate up to 60Hz) equippedwith
a telescopic lens and mounted on top of an image assisted
total station (IATS) (e. g., a Leica Nova MS50 MultiStation
with a frame rate up to 20Hz). Thus, the deficiency of the
IATS regarding the low sampling rate in vibration analy-
sis of bridge structures could be improved. In addition, the
newly developed methodology allows to strictly consider
the stochasticity of the observations (i. e. the propagation
process from the observations to the parameters of inter-
est (6 EOPs)) and rigorously treats fully populated variance
covariance matrix (VCM).

2 Data acquisition, interfacing and
pre-processing

The data acquisition step consists of capturing the images,
the 3D point clouds, horizontal angle readings of the TLS
(Az) and the LT measurements (optionally).

The 3D point clouds are acquired with a Z+F IMAGER
5006 in “super high” resolution mode with normal qual-
ity. The vertical and horizontal resolution and accuracy
are 0.0018° and 0.007° rms, respectively [48]. In addition,
the signalised target points in the 3D point clouds are ex-
tracted using the “Fit target” mode of the software Z+F
LaserControl version 8.5.5.12510. For more information re-
garding the uncertainty of the signalised targets in the 3D
point clouds measurements, please refer to [49].

The full-framedigital single-lens reflex (DSLR) camera
NikonD750, is used to capture high-resolution images. The
pixel [px] resolution of the captured images in the large
mode image size is approximately 0.00597mm. To cap-
ture sharp images, the camera setting is adjusted accord-
ingly: the focus mode is set to “manual”, the white bal-
ance to “auto”, the ISO sensitivity (the camera’s sensitiv-
ity to light) to “100”, the f-stop to “6.3”, the autofocus to
“off” (to avoid changing of the camera calibration param-
eters) and the focus lens to “infinity”. To prevent a change
of focus, the focus ring is fixedwith rubber bands. In addi-
tion, the aperture needs to be optimised according to the
distance to the object. It is desired to set to “manual” to
avoid changes of the depth of field, which could lead to fo-
cus shift [50]. Moreover, the images are captured remotely
on the cell phone using a Nikon wireless mobile utility ap-
plication to avoid blurring of the captured images in case
of a shake of the camera. The most challenging issue in
this regard is related to the changes of the camera calibra-
tion parameters with respect to the distance to objects in a
real monitoring measurement. Subsequently, the camera
calibration is performed in a laboratory in advance for the
specified focus lens, which can be adjusted from “near in-
finity” to “far infinity”, depending on the distances of the
scan stations to the object of interest.

To perform camera calibration, 12 different images are
captured from different viewing directions to the 3D cali-
bration pattern (see Fig. 2). For this purpose, the camera is
first set up on a stabilised tripod. Then, the camera is ro-
tated about 45° towards the 3D calibration pattern. Among
the 12 captured images, 8 capture the top, bottom, left and
right part of the pattern in both landscape and portrait
camera positions (rolling the camera around by approxi-
mately 0° and 90°, respectively). Subsequently, the cap-
tured images are processed in PhotoModeler to calculate
the internal calibration parameters based on the bundle
adjustment algorithm.

To estimate the external calibration parameters of
the MSS, the images are captured by the digital camera
mounted on top of TLS. A sequence of images is taken by
varying the azimuth (Az) of the TLS with step sizes ap-
proximately between 10 and 15 degrees, thereby covering a

Brought to you by | Technische Informationsbibliothek Hannover
Authenticated

Download Date | 3/30/19 2:06 PM



M. Omidalizarandi et al., Robust external calibration of terrestrial laser scanner and digital camera | 109

Figure 2: 3D calibration pattern with precisely known target coordi-
nates for the internal camera calibration.

Figure 3: Depiction of detected circle centroids in a signalised target
using the PhotoModeler software (left), a magnetic holder (middle),
and a corner cube reflector attached to the magnetic holder (right).

360° rotation of the TLS. The Az is read off a side screen of
the TLS and stored for each captured image to rotate the 3D
point clouds from the TLS coordinate system to the camera
coordinate system.

The image measurements are performed for the sig-
nalised targets using the sub-pixel target mode of the soft-
ware PhotoModeler version 5.2.3 by Eos Systems Inc. As
can be seen from Figure 3 (left), the four centroids of the
circles in each target are measured, and a target centroid
is computed by averaging themeasured circle centres. The
back of the target consists of a hemispherical metal staff
that fits precisely to the magnetic holder (Fig. 3, middle).
Alternatively, the signalised target points are extracted by
an automatic procedure as well as a high accuracy based
on the work of [51] in which the results have the same level
of accuracy as PhotoModeler measurements.

The LT is used as a reference sensor for validation pur-
poses, which allows sub-millimetre range accuracy of the
target points in the object space with a maximum permis-
sible error of 15 µm + 6 µm/m [52]. It is pointed to the cor-
ner cubes reflector (Fig. 3, right) attached to the magnetic
holder (Fig. 3, middle) and measured for each target.

3 Calibration modelling

The focus of this research is to estimate the 6 EOPs be-
tween the TLS and digital camera robustly, reliably and
with a very high accuracy. In addition, the 7 EOPs between
the TLS and LT are determined for validation. The inter-
nal camera calibration was carried out in advance in the
laboratory environment to avoid their correlation with the
external calibration parameters.2

To estimate the 6 EOPs, the image coordinates are first
rectified using the calculated IOPs of the digital camera,
consisting of the principal point (xp, yp), the focal length
(f ), the coefficients of radial distortion (K1, K2, K3) and the
coefficients of decentring distortion (P1, P2). According to
Brown’s equations [53], the imagemeasurements (x, y) are
rectified to (x�, y�) according to

x� = x + x̄(K1r
2 + K2r

4 + K3r
6 + ⋅ ⋅ ⋅)

+ (P1(r
2 + 2x̄2) + 2P2x̄ȳ), (1)

y� = y + ȳ(K1r
2 + K2r

4 + K3r
6 + ⋅ ⋅ ⋅)

+ (P2(r
2 + 2ȳ2) + 2P1x̄ȳ), (2)

where

x̄ = x − xp, (3)
ȳ = y − yp, (4)

r = √(x − xp)2 + (y − yp)2. (5)

Next, a (3 × 3) rotation matrix based on the measured Az
is defined to rotate the 3D point clouds around its Z-axis
at the exposure time [54] (see Fig. 4). Therefore, the Az is
considered as an additional observable in the adjustment
procedure.

Figure 4: The TLS and camera coordinate systems from top view.

2 The TLS internal calibration is assumed to be up to date by regular
calibrations performed by the manufacturer.
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The mathematical function for computing the 6 EOPs
between the TLS and digital camera is based on the space
resection in photogrammetry using the collinearity condi-
tion equations [54]

Fx = x
� − f p

q
, (6)

Fy = y
� − f s

q
, (7)

where (x�, y�) are the rectified target coordinates in the im-
age space. Furthermore, the 7 EOPs between the TLS and
LT are determined by the 3D Helmert transformation

F = λRκ�φ�ω�
[[

[

XTLS
YTLS
ZTLS

]]

]

+ [[

[

X�c
Y �c
Z�c

]]

]

− [[

[

XL
YL
ZL

]]

]

. (8)

Here, (X�c,Y
�
c , Z
�
c) are the translations, (κ�,φ�,ω�) the ro-

tation angles, λ is the scale factor, (XTLS ,YTLS , ZTLS) are
the target coordinates in the TLS coordinate system,
(XL,YL, ZL) the target coordinates in the LT coordinate sys-
tem, and the rotation matrix Rκ�φ�ω� is the product of the
individual rotation matrices

Rω� =
[[

[

1 0 0
0 cosω� sinω�

0 − sinω� cosω�
]]

]

Rφ� =
[[

[

cosφ� 0 − sinφ�

0 1 0
sinφ� 0 cosφ�

]]

]

Rκ� =
[[

[

cos κ� sin κ� 0
− sin κ� cos κ� 0

0 0 1

]]

]

In addition, the constraints

F = [[
[

X
Y
Z

]]

]

− [[

[

XTLS
YTLS
ZTLS

]]

]

, (9)

involving the unknown target coordinates (X,Y , Z) in the
object space (TLS coordinate system) are defined to es-
timate the target coordinates as unknown parameters
within the adjustment procedure. The four non-linear
model equations (6)–(9) are solved by means of three ad-
justment procedures, which are described in Section 4.
The non-linear collinearity equations and the 3D Helmert
transformation are linearised based on the Taylor series
expansion. The initial values for the collinearity equations
are estimated using a direct linear transform (DLT) in com-
binationwith a RANSAC algorithm to robustly estimate the

parameters. For further information concerning the DLT
algorithm, collinearity equations and rotation matrices,
please refer to, e. g., [55]. Furthermore, the initial values
for the 3D Helmert transformation are computed via the
closed-form solution using unit quaternions [56] to obtain
the transformation parameters between the TLS and LT
coordinate system. The target coordinates in the 3D point
clouds are transformed to the 3D camera coordinate sys-
tem through

[[

[

p
s
q

]]

]

= Rκφω(RAz
[[

[

XTLS
YTLS
ZTLS

]]

]

− [[

[

Xc
Yc
Zc

]]

]

) , (10)

where (XC ,YC , ZC) are the corresponding translations and
(κ,φ,ω) the rotation angles; the rotationmatrixRκφω is set
up in analogy toRκ�φ�ω� , and the rotationmatrixRAz of the
same type as Rκ� .

It should be noted that typically in the photogram-
metric approaches, the images are captured from a free
set-up of the cameras in which one can achieve a good
geometric configuration of the camera poses with wide
baselines. However, in our current approach, the camera
mounted on top of the TLS merely rotates at nearly the
same point, which gives a weak geometry due to the nar-
row baseline. For this reason, the camera poses are not es-
timated directly from the stereo matching. Instead; the 3D
point clouds are rotated about its Z-axis using the mea-
sured Az to be transformed to the unique 3D camera co-
ordinate system. In addition, a possible systematic eccen-
tricity error of the TLS is compensated by the measured Az
that cover a 360° rotation of the TLS. Subsequently, its in-
fluence on the estimation of the camera pose parameters
is eliminated accordingly.

4 Adjustment models

The aforementioned three different adjustmentmodels are
employed to tackle the problem of estimating the external
calibration parameters. The first adjustment model (Sec-
tion 4.1) represents a GHMwith t-distributed random devi-
ations, as introduced by [35]. Themodel in [35] is extended
to allow for observation group-specific scale factors (pro-
posed in [57]) as well as group-specific degrees of freedom
(dof). As a further addition, it is demonstrated that the op-
timisation problem underlying these GHMs consists of a
constrained maximum likelihood estimation, so that the
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algorithms derived initially in [35, 57] can be established
more rigorously as generalised expectationsmaximisation
(GEM) algorithms with additional constraints.

The second adjustment model (Section 4.2) is a
novel kind of (‘quasi’) GMM with t-distributed pseudo-
misclosures (defined through a transformation of the
GHM’s condition equations into observation equations of
a substitute GMM). The idea here is to uniformly down-
weight all observations causing an extreme value of their
associated misclosure, rather than downweighting outly-
ing observations individually. The third adjustmentmodel
(Section 4.3) takes the form of a classical GHM (with-
out specification of a probability distribution) and in-
volves a least-squares estimationwithVCEandoutlier test-
ing.

The deterministic model, which was determined from
the aforementioned four non-linear model equations (6)–
(9) is the same for all three estimation procedures. In con-
trast, the distributional assumptions about the random
deviations deviate fundamentally from procedure to pro-
cedure. Concerning the variance-covariance model, only
the information about the precision of the measurements
is included, and currently any correlations that might ex-
ist between them are numerically ignored. In particular,
there might be correlations between the Az angle observ-
ables of the TLS and the observed targets in the 3D point
clouds. However, we surmise that the impact of such cor-
relations on the computed parameter estimates are not sig-
nificant.

The uncertainty modelling of the presented adjust-
ment models has a rigorous treatment of the VCMs in the
propagation process from the observations to the parame-
ters of interest. Therefore, fully populated VCMs with cor-
relation between the observations are theoretically and
correctly treated. From a numerical point of view, these
fully populated VCMs are not considered due to the fol-
lowing reasons. Firstly, thenumerical considerationof cor-
relation is very complex topic, which has also not been
investigated by other researchers to the best knowledge
of the authors. Therefore, it can be considered a research
topic on its own. Secondly, from our point of view, the
correlation between the observations has a lower impact
on the results than the occurring mathematical correla-
tion from the functional model. Furthermore, the mea-
surement strategy with different image coordinates for the
targets in each image leads to a decorrelation of the ob-
servations. Details of the variance-covariance modelling
will be provided in the following sub-sections that corre-
spond to the three adjustment procedures. Numerical re-
sults for the correlations of the parameters are given in
sub-section 5.1.

4.1 EM algorithm for the Gauss-Helmert
model with grouped t-distributed
random deviations

In this model, it is generally considered that the observ-
ablesL1, . . . ,Ln are stochastically independent andbelong
to N distinct groups, where each group k consists of nk
observables. It is further assumed that an observable Lk,i
with k ∈ {1, . . . ,N} and i ∈ {1, . . . , nk} follows a scaled
(Student’s) t-distribution with individual unknown loca-
tion parameter μk,i and group-dependent unknown scale
factor σ2k as well as unknown dof νk . Thus, the stochastic
observation model reads

Lk,i
ind.∼ tνk (μk,i, σ

2
k). (11)

On the one hand, the t-distribution model makes
sense in situations where numerous outliers are ex-
pected. In such situations, t-distributions, having gener-
ally thicker tails than normal distributions, may be used
as outlier distributions within the framework of a robust
maximum likelihood (ML) estimation [58, 59]. On the other
hand, the usage of t-distributionswith a dof between 3 and
4hasbeen recommendedwith the applicationof theGuide
to the Expression of Uncertainty in Measurement [60] in
situations, where input quantities with statistically deter-
mined (i. e., type-A) standard uncertainties affect the out-
put quantities (i. e., the observables to be adjusted) [61].
The set-up of group-dependent dofs thus allows for dif-
ferent outlier characteristics or input quantities having
type-A uncertainties within the different, fused observa-
tion groups. The variance of a single observable within
group k can be computed from the scale factor via the
equation s2k =

νk
νk−2
⋅ σ2k .

Alternatively, the t-distributionmodel can be stated as
the Gaussian variance-inflation model (cf. [62])

Lk,i|wk,i
ind.∼ N(μk,i, σ

2
k/wk,i), Wk,i

ind.∼
χ2νk
νk
, (12)

where a small value wk,i (“weight”) of the so-called latent
variable Wk,i arises for an observation located in the tails
of the original t-distribution (i. e., for an outlier). A small
weight leads then to an enlarged variance of the associated
conditionally Gaussian observable (Lk,i|wk,i).

In addition, the adjustment problem involves func-
tions h1, . . . , hr of the previous location parameters and ad-
ditional unknown functional parameters ξ1, . . . , ξu. These
functions are used to set up the desired constraint or con-
dition equations hj(ξ ,μ) = 0,where ξ is the (u×1)-vector of
functional parameters and μ the (n × 1)-vector of expected
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values of L [see also Equations (1) and (2) in [35]]. The lat-
ter location parameters are grouped according to

μ = [μT1 , . . . ,μ
T
N ]

T = [μ1,1, . . . , μ1,n1 , . . . , μN ,1, . . . , μN ,nN ]
T .

Combining the condition functions to the vector-valued
function h and denoting by 0[r×1] the (r × 1)-vector of ze-
ros, one thus finds

h(ξ ,μ) = 0[r×1]. (13)

For brevity of expressions, all of the unknown parameters
are stacked within the (u + n + 2N)-vector

θ = [ξ T ,μT , σ21 , . . . , σ
2
N , ν1, . . . , νN ]

T , (14)

all given (grouped) observations within the (n × 1)-vector

ℓ = [ℓT1 , . . . , ℓ
T
N ]

T = [ℓ1,1, . . . , ℓ1,n1 , . . . , ℓN ,1, . . . , ℓN ,nN ]
T ,

and accordingly the unobserved (grouped) weights in

w = [wT
1 , . . . ,w

T
N ]

T = [w1,1, . . . ,w1,n1 , . . . ,wN ,1, . . . ,wN ,nN ]
T .

Since the natural logarithm of the joint probability density
function (pdf) for (12) is given by

log f (ℓ,w) = −n
2
log(2π) − 1

2

N
∑
k=1

nk log(σ
2
k)

+ 1
2

N
∑
k=1

nkνk log (
νk
2
) −

N
∑
k=1

nk log Γ (
νk
2
)

−
N
∑
k=1

nk
∑
i=1

1
2
[νk + (
ℓk,i − μk,i

σk
)
2
]wk,i

+
N
∑
k=1

nk
∑
i=1

1
2
(νk − 1) logwk,i, (15)

a corresponding log-likelihood function can be defined by
log L (θ; ℓ,w) := log f (ℓ,w). Redefining h as a function of
the complete parameter vector θ and assuming to have ap-
proximate parameter values θ(s) from a previous computa-
tional (iteration) step s, a constrained EM algorithm is em-
ployed in the sense of [63] by maximising

EW |ℓ;θ(s) {log L (θ; ℓ,W)} subject to h(θ) = 0[r×1] (16)

to obtain an improved solutionθ(s+1). Note that the random
vectorW of grouped latent variables [W1,1, . . . ,WN ,nN ]

T re-
places the unavailable data w within the log-likelihood.
As usual, the conditional expectation of the complete-data
log-likelihood function is denoted byQ(θ|θ(s)), whichmay
bemaximisedwith respect toθunder the given constraints
via maximisation of the Lagrangian function

F(θ, λ) = Q(θ|θ(s)) − λTh(θ) (17)

with respect to θ and the Lagrange multipliers λ. The
Q-function based on (15) can be shown to take the form

Q(θ|θ(s)) = const. − 1
2

N
∑
k=1

nk log(σ
2
k)

− 1
2

N
∑
k=1

1
σ2k

nk
∑
i=1

w(s)k,i (ℓk,i − μk,i)
2

+ 1
2

N
∑
k=1

nkνk log νk −
N
∑
k=1

nk log Γ (
νk
2
)

+ 1
2

N
∑
k=1

nkνk [ψ(
ν(s)k + 1

2
) − log (ν(s)k + 1)

+ 1
nk

nk
∑
i=1
(logw(s)k,i − w

(s)
k,i )] , (18)

whereψ is the digamma function andwhere each imputed
weight w(s)k,i , as the conditional expectation of the latent
variable Wk,i, is determined by

w(s)k,i = EWk,i|ℓk,i ;θ
(s) {Wk,i} =

ν(s)k + 1

ν(s)k + (
ℓk,i−μ

(s)
k,i

σ(s)k
)
2 . (19)

Note that, in comparison to the Lagrangian function for
the standard GHM in the context of the method least
squares, (18) contains additional terms besides the sum of
squared residuals, which are attributed to the assumption
of Student instead of Gaussian distributions.

It will be convenient to fuse each of theseweights with
the inverse scale factor of the correspondingdata groupvia
p(s)k,i = w

(s)
k,i /σ

2
k, and to assemble the diagonal matrix

P(s) =
[[[

[

P(s)1 ⋅ ⋅ ⋅ 0
...

. . .
...

0 ⋅ ⋅ ⋅ P(s)N

]]]

]

(20)

with diagonal elements

diag(P(s)k ) = [p
(s)
k,1, . . . , p

(s)
k,nk
]T .

This allows one to write the double summation in the sec-
ond line of (18) as

N
∑
k=1

1
σ2k

nk
∑
i=1

w(s)k,i (ℓk,i − μk,i)
2 =

N
∑
k=1

nk
∑
i=1

p(s)k,i (ℓk,i − μk,i)
2

=
N
∑
k=1
(μk − ℓk)

TP(s)k (μk − ℓk).

As usual, h(θ) is linearised if necessary. Choosing the ini-
tial Taylor point θ[0] := θ(s), one obtains
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h(θ) ≈ h(θ[0]) + àh(θ
[0])
àθ
(θ − θ[0])

= m + àh(θ
[0])
àξ
(ξ − ξ [0]) +

N
∑
k=1

àh(θ[0])
àμk
(μk − μ

[0]
k ),

where m = h(θ[0]) is defined to be the vector of misclo-
sures, A = àh(θ[0])/àξ to be the (r × u)-matrix of partial
derivatives of h(θ) with respect to ξ evaluated at θ[0], and
Bk = àh(θ

[0])/àμk the (r × nk)-matrix of partial deriva-
tives of h(θ)with respect to μk (also evaluated at θ

[0]). This
yields

h(θ) ≈ m + A(ξ − ξ [0]) +
N
∑
k=1

Bk(μk − ℓk + ℓk − μ
[0]
k )

= AΔξ +
N
∑
k=1

Bk(μk − ℓk) +m +
N
∑
k=1

Bk(ℓk − μ
[0]
k )

= AΔξ +
N
∑
k=1

Bk(μk − ℓk) +mp (21)

with Δξ = ξ − ξ [0] and pseudo-misclosures

mp = m +
N
∑
k=1

Bk(ℓk − μ
[0]
k ). (22)

Then, the problem of maximising (17) is replaced by the
problem of maximising

F(θ, λ) = Q(θ|θ(s)) − λT (AΔξ +
N
∑
k=1

Bk(μk − ℓk) +mp) .

(23)
Within the M-step, the first partial derivatives of this La-
grangian function with respect to all of the parameter
groups in θ are set equal to zero. According to the principle
of expectation conditional maximisation (ECM), one pa-
rameter group may be optimised at a time while using the
most recent estimates of the parameters of other groups
when necessary. As part of the first ECM-step, first the pa-
rameter group consisting of Δξ ,μ1, . . . ,μN and λ is consid-
ered, for which one finds

àF(θ, λ)
àΔξ
= −ATλ = 0[u×1], (24)

àF(θ, λ)
àμk
= −P(t)k (μk − ℓk) − B

T
k λ = 0[nk×1],

(25)

àF(θ, λ)
àλ
= −(AΔξ +

N
∑
k=1

Bk(μk − ℓk) +mp) = 0[r×1]. (26)

Here, (25) gives

μk − ℓk = (P
(s)
k )
−1BTk λ,

which can be substituted into (26), giving

N
∑
k=1

Bk(P
(s)
k )
−1BTk λ + AΔξ +mp = 0[r×1].

Taking the inverted weight matrix (P(s))−1 as the scaling
matrix Σ(s), which has the blocks

Σ(s) =
[[[

[

Σ(s)1 ⋅ ⋅ ⋅ 0
...

. . .
...

0 ⋅ ⋅ ⋅ Σ(s)N

]]]

]

=
[[[

[

(P(s)1 )
−1 ⋅ ⋅ ⋅ 0

...
. . .

...
0 ⋅ ⋅ ⋅ (P(s)N )

−1

]]]

]

,

(27)
one arrives at the normal equation system derived in [35,
Section 3] for a single observation group. In view of the ap-
plications considered in subsequent sections, thematrices
A and B = [B1 ⋅ ⋅ ⋅ BN ] may be assumed to have full rank.
Consequently, the inverses of BΣ(s)BT = ∑Nk=1 BkΣ

(s)
k BTk and

AT (BΣ(s)BT )−1A also exist, so that the solution for the cur-
rent parameter groups can be computed through

Δξ = −(AT (
N
∑
k=1

BkΣ
(s)
k BTk)

−1

A)
−1

AT (
N
∑
k=1

BkΣ
(s)
k BTk)

−1

mp, (28)

ξ [1] = ξ [0] + Δξ , (29)

λ[1] = (
N
∑
k=1

BkΣ
(s)
k BTk)

−1

(−AΔξ [1] −mp) , (30)

μ[1]k = ℓk + Σ
(s)
k BTk λ

[1]. (31)

In these equations,Σ(s) contains the scale factorsσ21 , . . . , σ
2
N

still to be estimated within the current M-step. Apply-
ing the aforementioned ECM principle, one may substi-
tute for these the available estimates (σ21 )

(s), . . . , (σ2N )
(s)

from the preceding EM iteration step. Applying the prin-
ciple of constrained EM described in [63], the estimates
ξ [1] and μ[1]k should now be used (alongside the avail-
able (σ21 )

(s), . . . , (σ2N )
(s) and ν(s)1 , . . . , ν

(s)
N of the previous Tay-

lor point θ[0]) to repeat the linearisation of h(θ) with a
new Taylor point θ[1]. When themisclosures become small
enough (say, at iteration step t, when the maximum ab-
solute misclosure is less than a specified threshold ε), the
first ECM-step is complete, providing the estimates ξ (s+1) :=
ξ [t] and μ(s+1) := μ[t].

In the secondECM-step, newestimates of the scale fac-
tors associated with the different observation groups are
sought. One evidently obtains
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àF(θ, λ)
àσ2k
= −

nk
2σ2k
− 1
2σ4k

nk
∑
i=1

w(s)k,i (ℓk,i − μk,i)
2 = 0, (32)

and then, substituting the already available estimates
μ(s+1),

(σ2k)
(s+1) = 1

nk

nk
∑
i=1

w(s)k,i (ℓk,i − μ
(s+1)
k,i )

2
. (33)

Therefore, the a posteriori variances of the observables are
calculated as

(s2k)
(s+1) = (σ2k)

(s+1)(
ν(s+1)k

ν(s+1)k − 2
) . (34)

In case of ν(s+1)k < 2, the variance (s2k)
(s+1) is not well de-

fined, so that this estimate may become extremely small
and thus unrealistic. If desired, the preceding estimation
step can be extended to a VCE as shown in [57].

Regarding the final parameter group consisting of the
dofs ν1, . . . , νN , an ECM either (ECME) step can be em-
ployed, in which the log-likelihood function of the origi-
nal t-distributionmodel ismaximisedwith respect to these
variables. In analogy to Equation (27) in [64], this step re-
quires zero searches of ν(s+1)1 , . . ., ν(s+1)N within the N equa-
tions

0 = 1 + log ν(s+1)k − ψ(
ν(s+1)k
2
)

+ ψ(
ν(s+1)k + 1

2
) − log (ν(s+1)k + 1)

+
nk
∑
i=1

1
nk
(logw(s+1)k,i − w

(s+1)
k,i ) , (35)

with variables

w(s+1)k,i =
ν(s+1)k + 1

ν(s+1)k + (
ℓk,i−μ

(s+1)
k,i

σ(s+1)k
)
2 . (36)

The zero search is carried out bymeans of an interval New-
ton method (Algorithm 6.1 in [65]), which always gave a
unique solution within an extremely narrow interval.

4.2 EM algorithm for a quasi-Gauss-Markov
model with t-distributed
pseudo-misclosures

In this section, a quasi-Gauss-Markovmodel is introduced,
which is adjusted by means of an EM algorithm based on
the assumption of t-distributed pseudo-misclosures. The
algorithm starts with the linearisation of the condition

Algorithm 1: EMalgorithm for the GHMwith groups
of t-distributed errors.
Input : ℓ1, . . ., ℓN ; h(ξ ,μ); ξ

(0); itermax; ε, εν
Output: ̂ξ ; μ̂; σ̂21 , . . ., σ̂

2
N ; ν̂1, . . ., ν̂N

μ(0)k := ℓk
m = h(ξ (0),μ(0)), A = àh(ξ

(0) ,μ(0))
àξ , Bk =

àh(ξ (0) ,μ(0))
àμk

ξ (1) =

ξ (0) − (AT (
N
∑
k=1

BkBTk)
−1

A)
−1

AT (
N
∑
k=1

BkBTk)
−1

m

μ(1)k = ℓk + B
T
k (∑

N
k=1 BkB

T
k )
−1
(−AΔξ (1) −m)

(σ2k)
(1) = 1

nk

nk
∑
i=1
(ℓk,i − μ

(1)
k,i)

2

ν(1)k := 30
for s = 1 . . . itermax do

w(s)k,i =
ν(s)k +1

ν(s)k +(
ℓk,i−μ
(s)
k,i

σ(s)k
)
2 ,

Σ(s)k =
[[[

[

(σ2k)
(s)/w(s)k,1 ⋅ ⋅ ⋅ 0
...

. . .
...

0 ⋅ ⋅ ⋅ (σ2k)
(s)/w(s)k,nk

]]]

]

ξ [0] := ξ (s), μ[0] := μ(s)

for t = 0 . . . itermax do
mp = h(ξ

[t],μ[t]) +∑Nk=1 Bk(ℓk − μ
[t]
k ),

A = àh(ξ
[t] ,μ[t])
àξ , Bk =

àh(ξ [t] ,μ[t])
àμk

ξ [t+1] = ξ [t] − (AT (
N
∑
k=1

BkΣ
(s)
k BTk)

−1

A)
−1

AT (
N
∑
k=1

BkΣ
(s)
k BTk)

−1

mp

μ[t+1]k = ℓk +

Σ(s)k BTk (∑
N
k=1 BkΣ

(s)
k BTk )

−1
(−AΔξ [t+1] −mp)

ξ (s+1) := ξ [t+1], μ(s+1) := μ[t+1]

(σ2k)
(s+1) = 1

nk

nk
∑
i=1

w(s)k,i (ℓk,i − μ
[t+1]
k,i )

2

Solve (35) using (36) for k = 1, . . . ,N
d = max(max |ξ (s) − ξ (s+1)|, |(σ2k)

(s) − (σ2k)
(s+1)|),

dν = |ν
(s)
k − ν

(s+1)
k |

if s < itermax and d > ε and dν > εν then
s = s + 1

else
̂ξ := ξ (s+1), μ̂ := μ(s+1), σ̂2k := (σ

2
k)
(s+1),

ν̂k := ν
(s+1)
k ; break

equations at some Taylor point θ[t] and rewriting (21)–(22),
respectively, as

h(θ) ≈ AΔξ + B(μ − ℓ) +mp (37)
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and

mp = m + B(ℓ − μ
(t)). (38)

We do not group the observations ℓ, location parameters
μ and constraint matrix B since we do not make distribu-
tional assumptions about different groups of observables.
Instead, we view

ē = B(ℓ − μ) (39)

as linearly transformed residuals and as realizations of in-
dependently t-distributed random deviations

̄Ej
ind.∼ tν(0, σ

2) (j ∈ {1, . . . , r}). (40)

This assumption makes sense if no two of these ran-
dom deviations share the same (stochastically indepen-
dent) observables in L1, . . ., Ln. To establish an EM algo-
rithm, the preceding t-distribution model is replaced by
the equivalent Gaussian variance-inflation model

̄Ej|wj
ind.∼ N(0, σ2/wj), Wj

ind.∼
χ2ν
ν
. (41)

Treating now the pseudo-misclosures as new (trans-
formed) observations ̄ℓ = mp and defining Ā = −A as well
as ̄ξ = Δξ , we may rewrite (38) as observation equations

̄ℓ = Ā ̄ξ + ē (42)

of a quasi-Gauss-Markov model with t-distributed (trans-
formed) random deviations. The stochastic model (41) is
defined by the joint pdf

log f (ē,w) = − r
2
log(2π) − r

2
log(σ2) + rν

2
log (ν

2
)

− r log Γ (ν
2
) −

r
∑
j=1

1
2
[

[
ν + (
̄ℓj − Āj
̄ξ

σ
)
2

]

]
wj

+
r
∑
j=1

1
2
(ν − 1) logwj. (43)

In this case, the total parameter vector constitutes
θ̄ = [ ̄ξ T , σ2, ν]T and the log-likelihood function
log L (θ̄; ℓ,w) := log f (ē,w), which depends on the given
observations ℓ through ē via (42). The imputation of the
weights

w(0)j = EWj|ēj ;θ̄
(0) {Wj} =

ν(0) + 1

ν(0) + (
̄ℓj−Āj
̄ξ
(0)

σ(0) )
2 , (44)

and the maximisation of the Q-function

Q(θ̄|θ̄(0)) = EW |ē;θ̄(0) {log L (θ̄; ℓ,W)}

= const. − r
2
log(σ2) − 1

2σ2
r
∑
j=1

w(0)j ( ̄ℓj − Āj
̄ξ)2

+ rν
2
log ν − r log Γ (ν

2
) + rν

2
[ψ(ν

(0) + 1
2
)

− log (ν(0) + 1) + 1
r

r
∑
j=1
(logw(0)j − w

(0)
j )] (45)

is accomplished by employing the basic EM algorithm de-
scribed in [62]. Convergence of this iterative algorithm (say,
at iteration step s) yields the estimate ̂̄ξ = ̄ξ (s), as an es-
timate of Δξ . Adding the latter to the previous functional
parameter solution ξ [t] of the current Taylor point gives us
ξ [t+1]. To obtain a new location parameter solution μ[t+1],
the estimated residuals ̂ē = ē(s) resulting from the EM al-
gorithmmust first be transformed from the vector spaceℝr

to an element ê = ℓ − μ̂ of the vector space ℝn. Although
the mapping (39) cannot be inverted, one can compute

μ[t+1] = ℓ − (BTB)+BT ̂ē (46)

by using the pseudo-inverse (BTB)+ of the rank-deficient
matrix BTB. Alternatively, one may evaluate

μ[t+1] = ℓ + BT (BBT)
−1
(−AΔξ −mp) (47)

according to (30)–(31), as suggested by [66, Section 6.2] in
the context of least-squares adjustment.

Defining then a new Taylor point θ[t+1] by means of
the new estimates, the linearisation can be improved iter-
atively, as shown in Algorithm 2.

4.3 Classical adjustment model based on
Gauss-Helmert model using statistical
test and variance component estimation

In this section, we consider stochastically independent
observation vectors lk (with k ∈ {1, . . . ,N}) that belong
to N distinct groups and each group k consists of nk ob-
servables, which follows a normal distribution. Thus, the
stochastic observation vector and its corresponding error
vector model read

lk∼N(μk ,Σk), ek∼N(0,Σk) (48)

where μk is the expected values of lk, Σk is the positive def-
inite variance-covariance matrix of lk and E(ek) = 0.

The non-linear GHM is defined based on Equation 13,
and is solved by minimising the square sum of the resid-
uals for all the observables nk . Subsequently, the lineari-
sation is carried out according to (21). Next, the ξ and μ
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Algorithm 2: Second variant of QGMM using EM.
Input : ℓ; h(ξ ,μ); ξ (0); itermax; ε, εν
Output: ̂ξ ; μ̂; σ̂2; ν̂
μ(0) := ℓ
for t = 0 . . . itermax do

A = àh(ξ
(t) ,μ(t))
àξ

B = àh(ξ
(t) ,μ(t))
àμ

m = h(ξ (t),μ(t))

mp = m + B(ℓ − μ(t))
̄ℓ := wm

Ā := −A

Compute ̂̄ξ and ̂ē by means of Algorithm 1

Δξ := ̂̄ξ

ξ (t+1) = ξ (t) + Δξ

μ(t+1) = ℓ − (BTB)+BT ̂ē

wmax = max(|h(ξ (t+1),μ(t+1))|)

if wmax > ε then
t = t + 1

else
break

are estimated based on (29) and (31). Formore information
concerning the GHM, please refer to [67]. In the entire pro-
cedure, the dofs are determined by the difference of the to-
tal number of condition equations (i. e., the number m of
rows of the Bmatrix) and number of unknown parameters
(u). In addition, the weight is calculated for each distinct
group instead of each individual observables nk with

Pk = σ
2
0Σ
−1
k (49)

where σ20 is the unknown theoretical variance of unit
weight, which can be considered equal to 1.

The adjustment model includes three iterative proce-
dures. In the first iterative procedure, a convergence is
fulfilled until the maximum absolute differences of the
estimated unknown parameters are less than a specified
threshold ε (≃ 10−14)

d = (max |ξ (s) − ξ (s+1)|). (50)

In the second iterative procedure, VCE is applied to re-
calculate the covariancematrix of the observations as pro-
posed by [57] (see Algorithm 3). For this purpose, the co-

variance matrix of the observations is calculated as

Σ0 =
N
∑
k=1

Vk =
[[[

[

V1 ⋅ ⋅ ⋅ 0
...

. . .
...

0 ⋅ ⋅ ⋅ VN

]]]

]

=
[[[

[

s21σ
2
1 ⋅ ⋅ ⋅ 0

...
. . .

...
0 ⋅ ⋅ ⋅ s2Nσ

2
N

]]]

]
(51)

where the factors {s21 , . . . , s
2
N } are chosen based on a pri-

ori variances of the observables given by themanufacturer
in such a way that variance components {σ21 , . . . , σ

2
N } have

values close to 1 [57]. Furthermore, the diagonal elements
are arranged based on the indices of the observations from
the bundle adjustment procedure. Therefore, the symmet-
ric matrixWb, vector q, symmetric matrix S and σ̂k are cal-
culated, respectively as described by [57] (see Algorithm 3)

Wb = (
N
∑
k=1

BkΣ
(c)
k BTk)

−1

− (
N
∑
k=1

BkΣ
(c)
k BTk)

−1

A(AT (
N
∑
k=1

BkΣ
(c)
k BTk)

−1

A)
−1

AT (
N
∑
k=1

BkΣ
(c)
k BTk)

−1

(52)

q = (qi) = (m
T
pWb(

N
∑
k=1

Bk)Vi(
N
∑
k=1

BTk )Wbmp)

for i ∈ {1, ..., k} (53)

S = tr (Wb(
N
∑
k=1

Bk)Vi(
N
∑
k=1

BTk )Wb(
N
∑
k=1

Bk)Vj(
N
∑
k=1

BTk ))

for i, j ∈ {1, ..., k} (54)

σ̂k = S
−1q. (55)

This procedure proceeds until σ̂k = [1, ..., 1]� is ob-
tained with a sufficient estimation accuracy. Then, the es-
timated factors, which are the posteriori variances of the
observables, are calculated as

̂s2k = max (Vk) for k ∈ {1, ...,N} (56)

In the third iterative procedure, firstly, a global test is
performed to evaluate the correctness of the results due
to consideration of all observations, deterministic (func-
tional) and stochastic models into the computation of σ̂20
[68]. The null and alternative hypotheses are defined as
proposed by [69] and [70] with

H0 : σ
2
0 = σ̂

2
0 vs. H1 : σ

2
0 ̸= σ̂

2
0. (57)

Next, the test value is defined under the normality of
the observation as proposed by [68] and [71] with

Tχ2 =
σ̂20
σ20
(m − u). (58)
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If Tχ2 ≤ χ
2
(m−u,1−α) with consideration of α = 0.003 or

α = 0.05, the null hypothesis is accepted otherwise it is
rejected, which means observations are not normally dis-
tributed.

The local test (Data snooping [72]) is applied for a few
observables (e. g. image target observables in both x and
y directions, target observables in 3D point clouds in X, Y
and Z directions, LT target observables in X, Y and Z di-
rections) or a observable (e. g. Az observable of the TLS)
of each group of observations to reject the outliers and
large residuals in the adjustmentmodel iteratively and one
by one. Consequently, the statistical testing such as χ2 or
t-student tests are beneficial to interpret the adjustment
results and to evaluate the uncertainties of the measure-
ments and unknown parameters. However, they are ap-
propriate to identify outliers in the observations and ex-
clude them from the solutions [73]. Therefore, the χ2 test
with 99.7% and 95% confidence levels are applied with

Tχ2g =
eTgPgeg
σ20

(59)

where Tχ2g is the χ
2 test value, the eg is the residuals of a

few observables and Pg stands for the weight matrix of a
few observables.

Alternatively, the t-student test can be applied by a
normalised residuum with

Ttg =
eg
̂sk

(60)

where Ttg is the t-student test value and ̂sk is standard de-
viation of the residuals for each group of the observation.
Subsequently, the computed normalized residuum is com-
pared with the predetermined limit (here 2.5 to 4.0 as pro-
posed by [71]) whether above it (outlier) or below it (no out-
lier) to reject or accept the null hypothesis, respectively.
This procedure proceeds till no outlier or large residual re-
mains in the set of observations.

5 Experiments and results
As part of two different case studies, six independent ex-
periments were carried out in the 3D laboratory at our
institute. The room has a size of 6.2m (width) × 8.6m
(length) × 4.9m (height), and is covered with randomly
placed signalised targets on the walls, ceiling and floor.
The 6 EOPs between the TLS and digital camera and the
7 EOPs between the TLS and LT were estimated within the
three different adjustment models, and compared regard-
ing the accuracy, reliability, robustness and run time speed

Algorithm 3: GHM based on the statistical test and
VCE.
Input : ℓ1, . . ., ℓN ; h(ξ ,μ); ξ

(0); s21, . . ., s
2
N ; itermax;

ε
Output: ̂ξ ; μ̂; ̂s21, . . ., ̂s

2
N ;

μ(0)k := ℓk
m = h(ξ (0),μ(0)), A = àh(ξ

(0) ,μ(0))
àξ , Bk =

àh(ξ (0) ,μ(0))
àμk

Compute ξ (1) by (29)
μ(1)k = ℓk + B

T
k (∑

N
k=1 BkB

T
k )
−1
(−AΔξ (1) −m)

for c = 1 . . . itermax do
for s = 1 . . . itermax do

Σ(c)k =
[[[

[

(s21σ
2
1 )
(c) ⋅ ⋅ ⋅ 0

...
. . .

...
0 ⋅ ⋅ ⋅ (s2Nσ

2
N )
(c)

]]]

]

ξ [0] := ξ (s), μ[0] := μ(s)

for t = 0 . . . itermax do
ek = ℓk − μ

[t]
k

mp = h(ξ
[t],μ[t]) +∑Nk=1 Bkek,

A = àh(ξ
[t] ,μ[t])
àξ , Bk =

àh(ξ [t] ,μ[t])
àμk

Compute Δξ by (28)
ξ (s+1) = ξ (s) + Δξ

d = (max |ξ (s) − ξ (s+1)|),

if d > ε then
s = s + 1

else
break

ComputeWb by (52)
(σ̂k)(1) = [1, ..., 1]T

for r = 1 . . . itermax do
N
∑
k=1

Vk = |(s2k)
(c)(σ̂k)(r)|

Compute q by (53)
Compute S by (54)
(σ̂k)(r) = S−1q
if (max |(σ̂k)(r) − [1, ..., 1]T |) < ε then

break
else

r = r + 1

( ̂s2k)
(c) = max (Vk) for k ∈ {1, ...,N}

Global and local tests based on χ2 test
ds = max(|( ̂s2k)

(c) − ( ̂s2k)
(c+1)|)

if ds > ε and ∃ (rejected nk) then
c = c + 1

else
break
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up procedure. For ease of expressions, the first to third ad-
justment model names were abbreviated to EM-GHM, EM-
qGMM and GHM-VCE, respectively.

5.1 Case study I: External calibration
between TLS and digital camera

In the first case study, the three different adjustment mod-
els of section 4 are applied to achieve the external cali-
bration of the TLS and digital camera. Additionally, due
to mounting and demounting the digital camera on top of
the TLS by the clamping system, the 6 EOPs between the
fused sensors are slightly changing, which their variations
are investigated in 6 independent experiments.

The observables consist of 3 groups of the observa-
tions, which are the rectified target coordinates in the im-
age space (Image target observations: ℓ1), the target coor-
dinates in the 3D point clouds coordinate system (TLS tar-
get observations: ℓ2) and the Az angle observables of the
TLS (ℓ3).

The number of observables for each group of the ob-
servation are represented in Table 1. The number of image
target observations varied with the number of images, the
possible number of viewed targets in each image and the
overlapping of the images. However, the number of image
target observations and their corresponding TLS target ob-
servations are equivalent in the adjustment model.

The condition equations (13) are defined based on
non-linear model equations (6)–(7) and are given by

h1 = x̃i + ex̃i − f
p
q
= 0, (61)

h2 = ỹ + eỹi − f
s
q
= 0, (62)

Table 1: Statistics of the measurements for all six experiments. The
first column is the experiment number, the second column is the
number of captured images (i. e. equals to the number of Az angle
observables), the third column is the number of signalised targets,
and the fourth column is the number of image or TLS target observa-
tions.

Experiments
No.

Images
No.

Signalised
targets No.

Image/TLS target
observations No.

1 31 33 221
2 27 33 221
3 29 33 205
4 30 33 217
5 32 33 226
6 29 33 211

where

[[

[

p
s
q

]]

]

= Rκφω(R(Ãz+eÃz)
[[[

[

X̃TLSi + eX̃TLS i
ỸTLSi + eỸTLS i
Z̃TLSi + eZ̃TLS i

]]]

]

− [[

[

Xc
Yc
Zc

]]

]

) .

(63)
The x̃i and ỹi are the rectified image target observations,
X̃TLSi, ỸTLSi and Z̃TLSi are the TLS target observations with
i ∈ {1, . . . , nk} and Ãz is theAz angle observation of the TLS.
The ex̃i , eỹi , eX̃TLS i , eỸTLS i , eZ̃TLS i and eÃz are the errors of the
aforementioned observations.

The 6 EOPs (consisting three translations and three ro-
tations) are the unknownparameters (ξ ) with (6×1)-vector
of functional parameters in the adjustment model, which
are estimated jointly with their uncertainties (see Table 12
in the Appendix section 7). The calculated mean values of
estimated parameters from the six experiments and based
on all adjustment models demonstrate that they achieve
approximately similar results and mostly altering at the
level of their uncertainties (see Table 2). The estimated φ
parameter changes significantly fromexperiment to exper-
iment, which is due to the minor changes of the zero di-
rection for each new set-up of the TLS. This issue is also
clearly visible from calculated maximum deviations and
their corresponding standard deviations within all six ex-
periments in Table 2. The estimates of the rotation anglesω
and κ as well as three translations differ slightly between
the experiments, which can also be explained by the de-
attachment of the clamping system for each set-up of the
camera on top of the TLS. In addition, since the aperture
priority was set to “automatic” during the capturing the
images, subsequently it causes slightly changes of the fo-
cal length of camera. Subsequently, the translationparam-
eter in the Z direction changed slightly more compared to
twoother axesdue to its correlationwith the focal lengthof
camera. Interestingly, in most cases the estimated 6 EOPs
in GHM-VCE algorithmwith confidence level of 95% is be-
tween that of with confidence level of 99.7% and the EM-
qGMM algorithm. Furthermore, concerning the run time
speed up procedure, the EM-qGMM algorithm is signif-
icantly faster than GHM-VCE algorithm with confidence
level of 95%, which may even be much faster specially
while the measured data contaminated with greater num-
ber of outliers or large residuals (see Tables (12–13) in the
Appendix section 7).

The a priori and a posteriori standard deviations of the
observables are given in Table 3. The a posteriori standard
deviations of the observable in the EM-GHM algorithm es-
timated more robustly from experiment to experiment ex-
cept for those observables with low estimated dofs. How-
ever, in the GHM-VCE algorithm, the results sometimes
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Table 2: Case study I: Statistics of the external calibration/orienta-
tion parameters (6 EOPs) between the TLS and digital camera with
applied three adjustment models (EM-GHM, EM-qGMM and GHM-
VCE algorithms with 99.7% and 95% confidence levels) and for all
the six experiments. The first column lists the adjustment models,
the second column lists the 6 EOPs, the third column is the mean
values, the fourth column is the max deviations from the mean val-
ues, and the fifth column is the standard deviations.

Adjustment models 6 EOPs Mean Max dev. σ

EM-GHM

ω (°) 90.4762 0.0504 0.0344
φ (°) −9.5793 0.2730 0.2030
κ (°) −0.2147 0.0166 0.0097
Xc (m) −0.0132 0.0006 0.0005
Yc (m) 0.2154 0.0029 0.0018
Zc (m) 0.0838 0.0054 0.0041

EM-qGMM

ω (°) 90.4599 0.0370 0.0264
φ (°) −9.5770 0.2750 0.2055
κ (°) −0.2156 0.0130 0.0075
Xc (m) −0.0130 0.0007 0.0005
Yc (m) 0.2140 0.0005 0.0005
Zc (m) 0.0835 0.0041 0.0039

GHM-VCE 99.7%

ω (°) 90.4615 0.0371 0.0261
φ (°) −9.5785 0.2750 0.2044
κ (°) −0.2168 0.0128 0.0072
Xc (m) −0.0131 0.0007 0.0005
Yc (m) 0.2142 0.0006 0.0005
Zc (m) 0.0839 0.0042 0.0041

GHM-VCE 95%

ω (°) 90.4585 0.0361 0.0258
φ (°) −9.5759 0.2793 0.2057
κ (°) −0.2161 0.0122 0.0070
Xc (m) −0.0131 0.0008 0.0006
Yc (m) 0.2140 0.0006 0.0005
Zc (m) 0.0834 0.0038 0.0039

seems too optimistic or pessimistic for one type of the ob-
servable compared to another type, which may arise due
to significant fluctuations of the a posteriori variance fac-
tor of the unit weight (σ̂20) between 0.72 and 1.0 through all
experiments. Therefore, it causes different re-scaling of the
a posteriori standard deviations of the observables, which
leads to different rejection rate of the measurements for
each experiment. The a priori standard deviation of the
0.006mm for the image targets equals one pixel, which
the a posteriori standard deviations of the image targets
in most cases indicate the sub-pixel imagemeasurements.
It should be noted that within the EM-qGMMalgorithm, an
estimation of the uncertainties is currently not possible.

As previously mentioned, in the GHM-VCE algorithm,
the dof is calculated by subtracting the total number of
condition equations and number of unknown parameters,
whichdiffers fromexperiment to experiment due to thedif-
ferent number of rejected outliers or large residuals. Con-
sequently, it fluctuates between 348 to 444 (i. e. consider-

ing the confidence levels of 99.7% and 95%), which ap-
proximates the normal distribution. The estimated dofs for
the image targets or the targets in the 3D point clouds in
the EM-GHM algorithm fluctuate in the range of approxi-
mately 2.0–5.5, for which values the t-distribution has sub-
stantial tails and show large number of outliers in the
measurement noise of that sensor. However, those esti-
mated dofs below 2.0 are unstable andunrealistic inwhich
their multiplication with the scale factor (see Equation 34)
do not achieve reasonable results. Furthermore, the esti-
mated dofs in the EM-qGMM algorithm for that of below
2.0 are unstable too.

Moreover, Table 4 represents the statistics of the re-
jected measurements for all the six experiments including
the rejection rate of the Az, image and TLS target observa-
tions by considering confidence levels of 99.7% and 95%.
The rejected Az in the adjustment procedure yields reject-
ing all those relevant observables of that captured image
in the GHM-VCE algorithm. Such rejection of the Az ob-
servables may also occur while the number of the remain-
ing image or TLS targets (after performing the statistical
tests) are less than three in each captured image. In addi-
tion, those problematic Az observables resulted in inaccu-
rate estimation of the 6 EOPs in the EM-GHM algorithm,
which its evidence reveals in the large estimation of their
uncertainties. For instance, the estimated dofs for the Az
in experiments 3 and 4, which are below 2.0, may prove
the existence of such Az problem.

To investigate the possible correlations between the
calculated6EOPs, the covariancematrix of theparameters
based on the GHM-VCE algorithm with 95% confidence
level is provided in Table 5. Accordingly, the correlation
coefficients were calculated between the 6 EOPs (see Ta-
ble 6). The results represent a high correlation coefficients
between the φ–Xc as well as ω–Yc as we expected. This is
mainly due to the mathematical correlations between the
observations. In addition, it may also be influenced by the
distribution of the targets in our 3D laboratory.

The re-projection errors are calculated by subtracting
the back projection of the TLS target observations into the
image space from their corresponding image target obser-
vations based on Equations (6–7) and using the 6 EOPs
calculated based on the proposed three adjustment mod-
els. For instance, Figure 5 depicts the absolute deviations
of that re-projection errors in the pixel unit resulted from
EM-GHM algorithm. It also shows the total number of tar-
gets in the experiment 1 since there is no rejection of the
outliers in the EM-GHM algorithm. For each image, all the
targets with their deviations are considered in one column
bar and the number of targets extracted in each captured
image is indicated on top of the each column. Therefore,
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Table 3: Case study I: A priori and a posteriori standard deviations of the observables, estimated degree of freedom and a posteriori vari-
ance factor of unit weight. The first column indicates the experiment number, the second column lists the observables (which are the target
coordinates in the images captured, the target coordinates in the 3D point clouds and the Az of the TLS, respectively. The third column is a
priori standard deviations of observables (which are equal to nominal or expected standard deviations of the observations). The columns
(4–11) give a posteriori standard deviations and the estimated degrees of freedom of the observables obtained by the three adjustment
algorithms.

Experi-
ments

No.

Observables σ ̂σEM−GHM ̂νEM−GHM ̂σEM−qGMM ̂νEM−qGMM ̂σGHM−VCE−
99.7% νGHM−VCE−

99.7% ̂σGHM−VCE−
95%

νGHM−VCE−
95%

1
Image 0.006 0.0031 4.564 – 1.901 0.0013 428 0.0007 372
TLS 1.0 0.2634 2.670 – 1.901 0.8593 428 0.4777 372
Az 0.007 0.0050 3.956 – 1.901 0.0057 428 0.0055 372
σ̂20 1.0 – – – – 0.82208 – 1.00000 –

2
Image 0.006 0.0033 4.237 – 1.952 0.0008 394 0.0008 382
TLS 1.0 0.2819 2.606 – 1.952 0.7271 394 0.6804 382
Az 0.007 0.0074 2.871 – 1.952 0.0066 394 0.0043 382
σ̂20 1.0 – – – – 0.90576 – 0.87005 –

3
Image 0.006 0.0030 2.897 – 1.598 0.0010 390 0.0010 348
TLS 1.0 0.4154 1.816 – 1.598 0.8357 390 0.5473 348
Az 0.007 0.0071 1.833 – 1.598 0.0066 390 0.0060 348
σ̂20 1.0 – – – – 0.88184 – 0.99999 –

4
Image 0.006 0.0032 3.085 – 1.808 0.0016 422 0.0017 416
TLS 1.0 0.4182 1.929 – 1.808 1.1046 422 1.0617 416
Az 0.007 0.0048 1.274 – 1.808 0.0073 422 0.0060 416
σ̂20 1.0 – – – – 0.82158 – 0.79768 –

5
Image 0.006 0.0037 5.241 – 2.581 0.0022 444 0.0013 408
TLS 1.0 0.3964 2.337 – 2.581 1.1345 444 0.8799 408
Az 0.007 0.0060 120 – 2.581 0.0069 444 0.0047 408
σ̂20 1.0 – – – – 0.71948 – 0.82502 –

6
Image 0.006 0.0037 5.312 – 2.232 0.0020 416 0.0021 406
TLS 1.0 0.3982 2.225 – 2.232 1.1272 416 1.0516 406
Az 0.007 0.0050 120 – 2.232 0.0068 416 0.0056 406
σ̂20 1.0 – – – – 0.74339 – 0.69059 –

Table 4: Case study I: Statistics of the rejected measurements for all six experiments based on GHM-VCE algorithm with 99.7% and 95%
confidence levels.

Confidence level Experiments No. Rejection rate of Az
observations [%]

Rejection rate of image
target observations

[%]

Rejection rate of TLS
target observations

[%]

99.7%

1 0 0 1.81
2 0 0 4.52
3 3.45 0 2.44
4 3.33 0.46 0
5 0 0 0.44
6 0 0 0

95%

1 0 0 14.48
2 0 0 7.24
3 6.90 0.48 11.22
4 3.33 0.46 1.38
5 3.12 0 7.52
6 0 0 2.37
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Table 5: Case study I: Covariance matrix of the 6 EOPs calculated for the first experiment based on GHM-VCE algorithm with 95% confidence
level.

6 EOPs ω (rad) φ (rad) κ (rad) Xc (mm) Yc (mm) Zc (mm)

ω (rad) 6.7884e−10 −3.8852e−11 −1.1456e−10 2.9509e−07 3.0473e−06 −6.4059e−07
φ (rad) −3.8852e−11 2.0945e−09 −6.584e−11 −7.7556e−06 −1.3073e−07 −1.4797e−06
κ (rad) −1.1456e−10 −6.584e−11 4.0677e−10 2.1049e−07 −5.67e−07 1.9822e−07
Xc (mm) 2.9509e−07 −7.7556e−06 2.1049e−07 0.035906 0.001067 0.004912
Yc (mm) 3.0473e−06 −1.3073e−07 −5.67e−07 0.001067 0.015135 −0.002501
Zc (mm) −6.4059e−07 −1.4797e−06 1.9822e−07 0.004912 −0.002501 0.010834

Figure 5: Case study I: Absolute deviations between the re-projected
TLS data and measured image targets using 6 EOPs calculated from
EM-GHM algorithm in pixel unit (Experiment 1). The X -axis corre-
sponds to the image numbers and Y -axis corresponds to the abso-
lute deviations in pixel unit.

Table 6: Case study I: Correlation coefficients matrix calculated
between the 6 EOPs 2 by 2 for the first experiment based on GHM-
VCE algorithm with 95% confidence level.

6 EOPs ω φ κ Xc Yc Zc

ω −0.03258 −0.21801 0.05977 0.95069 −0.23621
φ −0.07133 -0.89432 −0.02322 −0.31063
κ 0.05508 −0.22852 0.09442
Xc 0.04578 0.24905
Yc −0.19527
Zc

the first column represents that the image 1 contains 9 tar-
gets, which derives 9 colourful blocks obtained from the
norm of absolute deviations in both x and y directions. Ad-
ditionally, it shows subpixel accuracy for most of blocks
of that image. As we expected, the subpixel re-projection
errors obtained except of that targets with large incidence
angles. The Figures (13–15) in the Appendix section 7 show
the results of the re-projection errors in the EM-qGMM and

GHM-VCE algorithmswith 99.7%and 95% confidence lev-
els in which the outliers or large residuals were rejected in
the GHM-VCE algorithms and no targets with large residu-
als are visible.

The Figures (6–8) show the residuals for three groups
of the observables in the first experiment, which each of
them includes the results from the EM-GHM and GHM-
VCE algorithms with 99.7% and 95% confidence levels
and there are no systematic trends visible. The residuals
from the EM-GHM algorithm are at the level of the un-
certainty of measurements, which demonstrate the relia-
bility of the estimation procedure. However, the residuals
from the GHM-VCE algorithms with 99.7% and 95% con-
fidence levels represent that more optimistic results ob-
tained for the image target observationswhereasmorepes-
simistic results obtained for the TLS target observations. In
addition, the obtained residuals from the GHM-VCE algo-
rithms with 95% confidence levels depicts more smoother
results compared to other adjustmentmodels due to reject-
ing more large residuals.

5.2 Case study II: External calibration
between TLS, digital camera and LT –
Validation

In the second case study, the LT target coordinates, which
have been calculated and obtained from a network adjust-
ment for all the targets in the 3D laboratory, are utilized as
an additional observation group in the adjustment proce-
dure to validate the accuracy of the calibration results.

The observables consist of 4 groups of the observa-
tions, which are the rectified target coordinates in the im-
age space (Image target observations: ℓ1), the target coor-
dinates in the 3D point clouds coordinate system (TLS tar-
get observations: ℓ2), the target coordinates in the LT coor-
dinate system (LT target observations: ℓ3) and theAz angle
observables of the TLS (ℓ4). The number of LT target obser-
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Figure 6: Case study I: Residuals of the image target observations based on EM-GHM algorithm, GHM-VCE algorithm with 99.7% confidence
level and GHM-VCE algorithm with 95% confidence level (Experiment 1). From top, the graphs (1–2) are the image measurements residuals
in x and y directions, respectively.

Figure 7: Case study I: Residuals of the TLS target observations based on EM-GHM algorithm, GHM-VCE algorithm with 99.7% confidence
level and GHM-VCE algorithm with 95% confidence level (Experiment 1). From top, the graphs (1–3) are the TLS observation in X , Y and Z
directions, respectively.

Figure 8: Case study I: Residuals of the Az angle observations based on EM-GHM algorithm, GHM-VCE algorithm with 99.7% confidence
level and GHM-VCE algorithm with 95% confidence level (Experiment 1).
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vations are the same as image and TLS target observations
in the adjustment models.

The condition equations (13) are defined based on
non-linear model equations (6)–(9) and are given by

h1 = x̃i + ex̃i − f
p
q
= 0, (64)

h2 = ỹ + eỹi − f
s
q
= 0, (65)

h3 = λRκ�φ�ω�
[[[

[

X̃TLSi + eX̃TLS i
ỸTLSi + eỸTLS i
Z̃TLSi + eZ̃TLS i

]]]

]

+ [[

[

X�c
Y �c
Z�c

]]

]

−
[[[

[

X̃LT i + eX̃LT i
ỸLT i + eỸLT i
Z̃LT i + eZ̃LT i

]]]

]

= 0,

(66)

h4 =
[[

[

X
Y
Z

]]

]

−
[[[

[

X̃TLSi + eX̃TLS i
ỸTLSi + eỸTLS i
Z̃TLSi + eZ̃TLS i

]]]

]

= 0, (67)

where X̃LT i, ỸLT i and Z̃LT i are the LT target observations
with i ∈ {1, . . . , nk} and eX̃LT i , eỸLT i , eZ̃LT i are their corre-
sponding errors.

The 6 EOPs (consisting three translations and three ro-
tations) between the TLS and digital camera, the 7 EOPs
(consisting three translations, three rotations and scale)
between the TLS and LT and the target point coordinates
in the TLS coordinate system are the unknown parame-
ters with ((6 + 7 + 3P) × 1)-vector of functional parame-
ters, where P is the number of targets. The aforementioned
unknown parameters are estimated jointly with their un-
certainties in the adjustmentmodels (see Tables (13–14) in
theAppendix section 7). Aswe expected, the estimated pa-
rameters are comparable to those of estimated from previ-
ous case study, and inmost cases the differences are at the
level of their uncertainties. In addition, the mean values
of the estimated 6 EOPs and 7 EOPs as well as their maxi-
mum deviations and standard deviations were calculated
based on the proposed adjustment models and for all the
six experiments (see Tables (7–8)). The obtained results in
Table 8 demonstrates the highly accurate, precise and re-
liable estimation of the 7 EOPs between the TLS and LT.

The a priori and a posteriori standard deviations of the
observables are given in Table 9. Furthermore, a posteri-
ori variance factor of the unit weight (σ̂20) was computed
for each experiment in the GHM-VCE algorithm with con-
fidence levels of 99.7% and 95% and their values in en-
tire experiments are approximately equal to 0.66. The es-
timated dofs for the image targets, the targets in the 3D
point clouds or LT targets measurements in the EM-GHM
algorithm fluctuate in the range of approximately 2.0–7.30.
Thismaybedue to the existence of systematic errors in TLS
data, some remaining minor errors in internal camera cal-
ibration parameters or possibly a correlation between the

Table 7: Case study II: Statistics of the external calibration/orien-
tation parameters (6 EOPs) between the TLS and digital camera
with applied three adjustment models (EM-GHM, EM-qGMM and
GHM-VCE algorithms with 99.7% and 95% confidence levels) – Val-
idation. The first column lists the adjustment models, the second
column lists the 6 EOPs, the third column is the mean values, the
fourth column is the max deviations from the mean values, and the
fifth column is the standard deviations.

Adjustment models 6 EOPs Mean Max dev. σ

EM-GHM

ω (°) 90.4918 0.0655 0.0495
φ (°) −9.5981 0.2865 0.2011
κ (°) −0.2069 0.0242 0.0182
Xc (m) −0.0120 0.0025 0.0016
Yc (m) 0.2163 0.0050 0.0031
Zc (m) 0.0827 0.0074 0.0048

EM-qGMM

ω (°) 90.4617 0.0355 0.0251
φ (°) −9.5745 0.2792 0.2076
κ (°) −0.2161 0.0135 0.0077
Xc (m) −0.0132 0.0009 0.0007
Yc (m) 0.2141 0.0005 0.0004
Zc (m) 0.0831 0.0041 0.0041

GHM-VCE 99.7%

ω (°) 90.4631 0.0358 0.0253
φ (°) −9.5788 0.2704 0.2022
κ (°) −0.2161 0.0146 0.0080
Xc (m) −0.0131 0.0006 0.0005
Yc (m) 0.2142 0.0005 0.0004
Zc (m) 0.0841 0.0037 0.0036

GHM-VCE 95%

ω (°) 90.4593 0.0381 0.0273
φ (°) −9.5790 0.2759 0.2046
κ (°) −0.2157 0.0148 0.0085
Xc (m) −0.0127 0.0008 0.0006
Yc (m) 0.2140 0.0007 0.0005
Zc (m) 0.0829 0.0041 0.0039

measurements. Moreover, the estimated dofs for the Az in
experiments 1 and 6, which are equal to 120 are approx-
imating the normal distribution. However, its estimation
in experiments 3 and 4, which are below 2.0, may depicts
the Az data problem as shown in previous case study. On
the other hand, better results obtained for the a posteriori
standard deviations of the observables in the GHM-VCE al-
gorithm by including the LT measurements as a reference
measurements and by solving the scale problem. This is
clearly visible fromnearly close estimation of the σ̂20 for the
entire experiments. However, in the EM-GHM algorithm,
more optimistic results obtained for the LT target obser-
vations whereas more pessimistic results obtained for the
image target observations, which may also due to the cor-
relation between the measurements.

Table 10 represents the statistics of the rejected mea-
surements based on the GHM-VCE algorithm with 99.7%
and 95% confidence levels. Subsequently, the rejection
rate of about 25% for image target measurements in GHM-
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Table 8: Case study II: Statistics of the external calibration/orienta-
tion parameters (7 EOPs) between the TLS and LT with applied three
adjustment models (EM-GHM, EM-qGMM and GHM-VCE algorithms
with 99.7% and 95% confidence levels) – Validation. The first col-
umn lists the adjustment models, the second column lists the 7
EOPs, the third column is the mean values, the fourth column is the
max deviations from the mean values, and the fifth column is the
standard deviations.

Adjustment models 7 EOPs Mean Max dev. σ

EM-GHM

ω� (°) 0.1023 0.0026 0.0021
φ� (°) −0.0670 0.0032 0.0020
κ� (°) 43.2167 0.0052 0.0033
X �c (m) 12.8018 0.0001 0.0001
Y �c (m) 15.7212 0.0001 0.0001
Z�c (m) 1.7022 0.0001 0.0001
λ 0.99988 0.00002 0.00002

EM-qGMM

ω� (°) 0.1023 0.0026 0.0021
φ� (°) −0.0677 0.0043 0.0026
κ� (°) 43.2165 0.0053 0.0033
X �c (m) 12.8018 0.0001 0.0001
Y �c (m) 15.7211 0.0001 0.0001
Z�c (m) 1.7022 0.0001 0.0001
λ 0.99987 0.00002 0.00001

GHM-VCE 99.7%

ω� (°) 0.1013 0.0036 0.0027
φ� (°) −0.0670 0.0035 0.0024
κ� (°) 43.2173 0.0052 0.0034
X �c (m) 12.8018 0.0001 0.0001
Y �c (m) 15.7212 0.0001 0.0001
Z�c (m) 1.7022 0.0001 0.0001
λ 0.99989 0.00002 0.00002

GHM-VCE 95%

ω� (°) 0.0998 0.0027 0.0020
φ� (°) −0.0675 0.0035 0.0023
κ� (°) 43.2180 0.0055 0.0034
X �c (m) 12.8018 0.0001 0.0001
Y �c (m) 15.7213 0.0001 0.0001
Z�c (m) 1.7021 0.0001 0.0001
λ 0.99989 0.00002 0.00002

VCE algorithm with 95% confidence level, may show that
sometimes VCE components were estimated so optimistic
that yields such a high rejection rate of the observations.
However, as previously mentioned, the larger number of
rejected image and TLS measurements compared to the
previous case study may be related to remaining internal
errors in TLS or images data, which their influences be-
come more visible by considering the LT data as a refer-
ence and additional observable in the adjustment model.
Table 11 depicts the RMSE calculated between the esti-
mated target point coordinates and their corresponding
measurements in the 3D point clouds for all the six experi-
ments based on GHM-VCE algorithmwith 99.7% and 95%
confidence levels. It depicts that the RMSE results in X, Y
and Z axes are gradually and slightly increasing, which
might be due to increase of theφ values in all experiments

and the existence of the correlation between the TLS mea-
surements and the Az measurements of the TLS.

The Figures (9–12) illustrate the residuals for four
groups of the observables. As we expected, there are no
systematic trends visible and again more smoother results
obtained for the GHM-VCE algorithmwith 95% confidence
level.

6 Conclusion

This research work aims to propose a robust procedure of
sensor fusion, which can be extended to other sensor fu-
sion problems with different applications by identifying
a proper mathematical model for the orientation between
the used sensors.

A high resolution digital camera may be attached on
top of a TLS to increase the accuracy and completeness
of the deformation analysis. This integration is beneficial
since the strength and weakness of both sensors are com-
plementary to each other. For this purpose, the EOPs be-
tween the MSS (here TLS, digital camera and LT for vali-
dation) needs to be determined robustly, reliably and with
a high accuracy. Therefore, four non-linear mathemati-
cal functions were determined based on the space resec-
tion by collinearity condition equations, the 3D Helmert
transformation and the constraint equation, which were
solved in a rigorous bundle adjustment procedure using
the signalised target points. Next, the three different ad-
justment models such as the EM algorithm to solve the
GHM with grouped t-distributed random deviations (EM-
GHM), a novel EM algorithm to solve a corresponding
quasi-GMM with t-distributed pseudo-misclosures (EM-
qGMM) and a classical least square procedure to solve the
GHMwith VCE and outlier removal (GHM-VCE)were devel-
oped and implemented. They compute highly accurate, ro-
bust and reliable parameter estimates of the external cali-
bration of the TLS and the digital camera, which has pre-
viously not been achieved to the best knowledge of the au-
thors. Additionally, the LT was included as a highly accu-
rate reference sensor for the purpose of validation.

As part of two different case studies, six independent
experiments were carried out in the 3D laboratory. In the
first case study, the 6 EOPs (consisting of three transla-
tions and three rotations) between the TLS and the digi-
tal camera were estimated based on 3 groups of the ob-
servations such as the image target observations, the TLS
target observations and the Az angle observables of the
TLS. The condition equations were defined based on the
space resection by collinearity condition equations. Due
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Table 9: Case study II: A priori and a posteriori standard deviations of the observables, estimated degree of freedom and a posteriori vari-
ance factor of unit weight – Validation.

Experi-
ments

No.

Observables σ ̂σEM−GHM ̂νEM−GHM ̂σEM−qGMM ̂νEM−qGMM ̂σGHM−VCE−
99.7% νGHM−VCE−

99.7% ̂σGHM−VCE−
95%

νGHM−VCE−
95%

1

Image 0.006 0.0052 6.491 – 0.139 0.0037 1378 0.0022 862
TLS 1.0 0.5047 2.762 – 0.139 0.3228 1378 0.2910 862
LT 0.01 0.0003 3.143 – 0.139 0.0071 1378 0.0002 862
Az 0.007 0.0053 120 – 0.139 0.0072 1378 0.0036 862
σ̂20 1.0 – – – – 0.65839 – 0.66936 –

2

Image 0.006 0.0054 5.657 – 0.141 0.0038 1383 0.0031 1163
TLS 1.0 0.4285 3.572 – 0.141 0.3423 1383 0.3145 1163
LT 0.01 0.0003 3.589 – 0.141 0.0072 1383 0.0072 1163
Az 0.007 0.0064 6.389 – 0.141 0.0073 1383 0.0051 1163
σ̂20 1.0 – – – – 0.65961 – 0.65971 –

3

Image 0.006 0.0108 1.929 – 0.141 0.0043 1367 0.0026 825
TLS 1.0 0.4266 3.332 – 0.141 0.3363 1367 0.3363 825
LT 0.01 0.0007 3.543 – 0.141 0.0026 1367 0.0026 825
Az 0.007 0.0299 1.813 – 0.141 0.0074 1367 0.0074 825
σ̂20 1.0 – – – – 0.65986 – 0.66912 –

4

Image 0.006 0.0091 2.058 – 0.142 0.0055 1540 0.0032 987
TLS 1.0 0.4352 4.614 – 0.142 0.3990 1540 0.3500 987
LT 0.01 0.0008 3.412 – 0.142 0.0011 1540 0.0011 987
Az 0.007 0.0186 1.571 – 0.142 0.0099 1540 0.0078 987
σ̂20 1.0 – – – – 0.65715 – 0.66566 –

5

Image 0.006 0.0061 5.436 – 0.142 0.0050 1625 0.0029 947
TLS 1.0 0.4435 4.298 – 0.142 0.4364 1625 0.3372 947
LT 0.01 0.0002 3.817 – 0.142 0.0065 1625 0.0065 947
Az 0.007 0.0069 25.575 – 0.142 0.0102 1625 0.0068 947
σ̂20 1.0 – – – – 0.65670 – 0.66750 –

6

Image 0.006 0.0057 7.270 – 0.140 0.0055 1577 0.0030 963
TLS 1.0 0.4849 3.707 – 0.140 0.4660 1577 0.3727 963
LT 0.01 0.0002 3.644 – 0.140 0.0066 1577 0.0066 963
Az 0.007 0.0055 120 – 0.140 0.0109 1577 0.0077 963
σ̂20 1.0 – – – – 0.65766 – 0.66678 –

Table 10: Case study II: Statistics of the rejected measurements for all six experiments based on GHM-VCE algorithm with 99.7% and 95%
confidence levels – Validation.

Confidence level Experiments No. Rejection rate of
Az observations

[%]

Rejection rate of
image target

observations [%]

Rejection rate of
TLS target

observations [%]

Rejection rate of
LT target

observations [%]

99.7%

1 0 6.33 10.41 0
2 0 6.33 4.97 0
3 3.45 4.88 4.88 0
4 3.33 1.38 3.23 0
5 3.12 3.54 0 0
6 0 0.47 0 0

95%

1 19.35 28.05 13.12 0
2 11.11 14.93 6.79 0
3 20.69 26.34 12.68 0
4 20.00 23.50 9.22 0
5 25 26.10 9.73 0
6 17.24 24.17 9.00 0
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Table 11: Case study II: The RMSE calculated between the estimated target point coordinates and the TLS measurements for all six experi-
ments based on GHM-VCE algorithm.

Experiments No. RMSEX (mm) RMSEY (mm) RMSEZ (mm) RMSEXYZ (mm) RMSEX (mm) RMSEY (mm) RMSEZ (mm) RMSEXYZ (mm)
Confidence level 99.7% Confidence level 95%

1 0.2998 0.3024 0.3570 0.5557 0.2429 0.3178 0.2991 0.4994
2 0.3498 0.3288 0.3419 0.5894 0.3354 0.2960 0.3038 0.5408
3 0.3250 0.3553 0.3214 0.5790 0.2393 0.2819 0.2562 0.4499
4 0.3445 0.3868 0.4516 0.6872 0.3373 0.3527 0.3512 0.6013
5 0.4235 0.4182 0.4596 0.7520 0.3131 0.3665 0.3209 0.5791
6 0.4612 0.4385 0.4894 0.8028 0.3493 0.4043 0.3524 0.6401

Figure 9: Case study II: Residuals of the image target observations based on EM-GHM algorithm, GHM-VCE algorithm with 99.7% confidence
level and GHM-VCE algorithm with 95% confidence level (Experiment 1). From top, the graphs (1–2) are the image measurements residuals
in x and y directions, respectively.

Figure 10: Case study II: Residuals of the TLS observation based on EM-GHM algorithm, GHM-VCE algorithm with 99.7% confidence level and
GHM-VCE algorithm with 95% confidence level (Experiment 1). From top, the graphs (1–3) are the TLS observation in X , Y and Z directions,
respectively.
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Figure 11: Case study II: Residuals of the LT observation based on EM-GHM algorithm, GHM-VCE algorithm with 99.7% confidence level and
GHM-VCE algorithm with 95% confidence level (Experiment 1). From top, the graphs (1–3) are the LT observation in X , Y and Z directions,
respectively.

Figure 12: Case study II: Residuals of the Az angle observation based on EM-GHM algorithm, GHM-VCE algorithm with 99.7% confidence
level and GHM-VCE algorithm with 95% confidence level (Experiment 1).

to mounting and demounting the digital camera on top of
the TLS by the clamping system, the calculated 6 EOPs var-
ied slightly from experiment to experiment, i. e. for the ro-
tation angles. The significant difference was related to the
estimated φ, which was due to the minor changes of the
zero direction for each new set-up of the TLS. However, the
estimation of the rotation angles ω and κ as well as of the
three translations slightly differed, which can also be re-
lated to the usage of that clamping system.

The estimated 6 EOPs inGHM-VCE algorithmwith con-
fidence level of 95% were approximately in between the
results of the GHM-VCE algorithm with confidence level
of 99.7% and EM-qGMM algorithm. Moreover, a posteri-
ori variance factor of the unit weight (σ̂20) calculated for
each experiment in the GHM-VCE algorithm with confi-
dence levels of 99.7% and 95%, which their values fluc-
tuate approximately between 0.72 and 1.0 for the entire
experiments. Subsequently, it causes different re-scaling
of the a posteriori standard deviations of the observables,
which influences the rejection rates of the measurements.

The estimated dofs for the image target observation or the
TLS target observations in the EM-GHM algorithm fluctu-
ated in the range of approximately 2.0–5.5, which illus-
trated a substantial tails in the t-distribution and conse-
quently large number of outliers in themeasurement noise
of that sensor. In addition, it was shown that in case of Az
data problem, the EM-GHM was not accurate and reliable
as two other algorithms.

In the second case study, the accuracy of the calibra-
tion results are evaluated, compared and validated by con-
sidering the LT observations as additional observable in
the adjustment model. The 6 EOPs between the TLS and
the digital camera, the 7 EOPs (consisting of three trans-
lations, three rotations and scale) between the TLS and
the LT and the target point coordinates in the TLS coor-
dinate system were the unknown parameters, which were
estimated jointly with their uncertainties by the afore-
mentioned three adjustmentmodels. The observables con-
sisted of 4 group of observations, which were image tar-
get observations, the TLS target observations, the LT tar-
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get observations and Az angle observables of the TLS. The
mathematical functions were determined based on the
space resection by collinearity condition equations, the 3D
Helmert transformation and the constraint equation. The
σ̂20 estimates for all the experiments in the GHM-VCE algo-
rithm with confidence levels of 99.7% and 95% were ap-
proximately equal to 0.66. The estimated dofs for the im-
age targets, TLS or LT targets measurements in the EM-
GHM algorithm fluctuated in the range of approximately
2.0–7.30. This may be due to the existence of systematic er-
rors in TLS data, some remaining minor errors in the in-
ternal camera calibration parameters or possibly a correla-
tionbetween themeasurements. On the other hand, the re-
jection rate of 25% for image targetmeasurements inGHM-
VCE algorithm with 95% confidence level may show that
sometimes VCE components were estimated too optimistic
yielding to such high rejection rates of the observations.

At the end, the comparison of the results from pro-
posed three adjustment models in estimation of the EOPs
between the MSS show the precise, reliable, accurate and
robust estimation of the parameters in all the proposed
adjustment models. However, in case of Az data problem,
the EM-GHM algorithm was not able to properly reweight
the observations, which leads to inaccurate estimation of
the parameters. Considering the run time speed-up proce-
dure, the EM-qGMM algorithm was computationally effi-
cient comparing to other two.

In the future work, an effect of the incidence angle for
the targets in the 3D point clouds can be considered in the
stochastic model. Moreover, the correlation between the
Az angle of the TLS and the TLS target observations as well
as a correlation between the internal camera calibration
and estimated parameters need to be investigated. Possi-

Figure 13: Case study I: Absolute deviations between the re-
projected TLS data and measured image targets using 6 EOPs cal-
culated from EM-qGMM algorithm in pixel unit (Experiment 1).

bly the proposed robust estimation procedure is extended
by considering a fully populated stochastic model instead
of the diagonal stochastic model to tackle the correlation
between the measurements. In addition, the zero direc-
tion problem regarding the TLS measurements can be im-
provedby sending a command to the TLS via a software de-
veloper’s kit (SDK) to start the measurements at the same
zero direction. Furthermore, the points or line features can
be considered in addition to the signalised targets in the
rigorous adjustment procedure to improve the results.

7 Appendix

Figure 14: Case study I: Absolute deviations between the re-
projected TLS data and measured image targets using 6 EOPs cal-
culated from GHM-VCE algorithm with 99.7% confidence level in
pixel unit (Experiment 1).

Figure 15: Absolute deviations between the re-projected TLS data
and measured image targets using 6 EOPs calculated from GHM-VCE
algorithm with 95% confidence level in pixel unit (Experiment 1).
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Table 12: Case study I: External calibration/orientation parameters (6 EOPs) between the TLS and digital camera with applied three adjust-
ment models. The first column is the experiment number, the second column lists the 6 EOPs, the third column is the initial values, the
columns (4–11) are the estimated 6 EOPs and their uncertainties calculated from the EM-GHM, EM-qGMM and GHM-VCE algorithms with
99.7% and 95% confidence levels, respectively.

Experi-
ments

No.

6 EOPs Initial
values

EM-GHM σ EM-qGMM σ GHM-VCE–
99.7%

σ GHM-VCE–
95%

σ

1

ω (°) 88.00 90.4894 0.0035 90.4824 0.0016 90.4845 0.0023 90.4791 0.0015
φ (°) −11.00 −9.3096 0.0045 −9.3020 0.0104 −9.3052 0.0032 −9.2966 0.0026
κ (°) −0.23 −0.2313 0.0025 −0.2286 0.0021 −0.2296 0.0015 −0.2283 0.0012
Xc (m) −0.02 −0.0129 0.0003 −0.0131 0.0006 −0.0131 0.0003 −0.0135 0.0002
Yc (m) 0.22 0.2148 0.0003 0.2143 0.0001 0.2146 0.0002 0.2142 0.0001
Zc (m) 0.09 0.0881 0.0002 0.0872 0.0002 0.0879 0.0001 0.0869 0.0001
Elapsed time (s) 247 368 779 2617

2

ω (°) 88.00 90.5013 0.0035 90.4934 0.0006 90.4933 0.0021 90.4921 0.0019
φ (°) −11.00 −9.4399 0.0045 −9.4371 0.0002 −9.4402 0.0031 −9.4357 0.0027
κ (°) −0.23 −0.2201 0.0025 −0.2175 0.0003 −0.2182 0.0014 −0.2178 0.0013
Xc (m) −0.02 −0.0138 0.0003 −0.0137 0.0022 −0.0137 0.0002 −0.0140 0.0002
Yc (m) 0.22 0.2151 0.0003 0.2145 0.0097 0.2147 0.0002 0.2146 0.0002
Zc (m) 0.09 0.0880 0.0002 0.0871 0.0021 0.0875 0.0001 0.0872 0.0001
Elapsed time (s) 246 350 1146 1632

3

ω (°) 88.00 90.5085 0.0675 90.4654 0.0007 90.4679 0.0024 90.4635 0.0018
φ (°) −11.00 −9.4934 0.1037 −9.4890 0.0003 −9.4915 0.0035 −9.4944 0.0031
κ (°) −0.23 −0.2075 0.0459 −0.2151 0.0004 −0.2161 0.0016 −0.2158 0.0013
Xc (m) −0.02 −0.0138 0.0075 −0.0137 0.0032 −0.0137 0.0003 −0.0133 0.0002
Yc (m) 0.22 0.2183 0.0054 0.2144 0.0111 0.2148 0.0002 0.2144 0.0002
Zc (m) 0.09 0.0860 0.0043 0.0869 0.0014 0.0874 0.0002 0.0868 0.0001
Elapsed time (s) 177 292 834 1847

4

ω (°) 88.00 90.4917 0.0644 90.4561 0.0008 90.4583 0.0030 90.4564 0.0029
φ (°) −11.00 −9.6299 0.0997 −9.6323 0.0005 −9.6309 0.0040 −9.6317 0.0037
κ (°) −0.23 −0.2064 0.0426 −0.2128 0.0004 −0.2146 0.0019 −0.2140 0.0018
Xc (m) −0.02 −0.0128 0.0072 −0.0123 0.0068 −0.0124 0.0003 −0.0123 0.0003
Yc (m) 0.22 0.2168 0.0052 0.2135 0.0101 0.2138 0.0003 0.2137 0.0002
Zc (m) 0.09 0.0784 0.0041 0.0794 0.0040 0.0797 0.0002 0.0796 0.0002
Elapsed time (s) 207 320 660 863

5

ω (°) 88.00 90.4258 0.0025 90.4229 0.0006 90.4244 0.0028 90.4224 0.0024
φ (°) −11.00 −9.7507 0.0033 −9.7511 0.0002 −9.7495 0.0037 −9.7482 0.0031
κ (°) −0.23 −0.2082 0.0018 −0.2057 0.0002 −0.2076 0.0019 −0.2067 0.0016
Xc (m) −0.02 −0.0127 0.0002 −0.0125 0.0020 −0.0127 0.0003 −0.0126 0.0003
Yc (m) 0.22 0.2136 0.0002 0.2134 0.0129 0.2136 0.0002 0.2135 0.0002
Zc (m) 0.09 0.0812 0.0001 0.0806 0.0020 0.0806 0.0002 0.0798 0.0002
Elapsed time (s) 3275 460 479 2021

6

ω (°) 88.00 90.4402 0.0025 90.4390 0.0008 90.4408 0.0030 90.4376 0.0027
φ (°) −11.00 −9.8523 0.0031 −9.8506 0.0002 −9.8534 0.0038 −9.8489 0.0034
κ (°) −0.23 −0.2148 0.0018 −0.2138 0.0004 −0.2147 0.0019 −0.2142 0.0018
Xc (m) −0.02 −0.0130 0.0002 −0.0129 0.0024 −0.0128 0.0003 −0.0131 0.0003
Yc (m) 0.22 0.2137 0.0002 0.2136 0.0114 0.2138 0.0003 0.2136 0.0002
Zc (m) 0.09 0.0808 0.0001 0.0798 0.0021 0.0802 0.0002 0.0800 0.0002
Elapsed time (s) 5879 458 299 746
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Table 13: Case study II: External calibration/orientation parameters (6 EOPs) between the TLS and digital camera with applied three adjust-
ment models – Validation. The first column is the experiment number, the second column lists the 6 EOPs, the third column is the initial val-
ues, the columns (4–11) are the estimated 6 EOPs and their uncertainties calculated from the EM-GHM, EM-qGMM and GHM-VCE algorithms
with 99.7% and 95% confidence levels, respectively.

Experi-
ments

No.

6 EOPs Initial
values

EM-GHM σ EM-qGMM σ GHM-VCE–
99.7%

σ GHM-VCE–
95%

σ

1

ω (°) 88.00 90.4919 0.0056 90.4827 0.0049 90.4849 0.0019 90.4825 0.0016
φ (°) −11.00 −9.3116 0.0071 −9.2953 0.0195 −9.3084 0.0027 −9.3031 0.0021
κ (°) −0.23 −0.2311 0.0041 −0.2296 0.0029 −0.2307 0.0013 −0.2305 0.0012
Xc (m) −0.02 −0.0128 0.0005 −0.0136 0.0009 −0.0128 0.0002 −0.0128 0.0001
Yc (m) 0.22 0.2149 0.0004 0.2144 0.0004 0.2145 0.0001 0.2143 0.0001
Zc (m) 0.09 0.0882 0.0003 0.0872 0.0003 0.0875 0.0001 0.0862 0.0001
Elapsed time (s) 6682 915 6814 11777

2

ω (°) 88.00 90.5038 0.0056 90.4938 0.0036 90.4949 0.0019 90.4942 0.0018
φ (°) −11.00 −9.4407 0.0069 −9.4340 0.0171 −9.4417 0.0026 −9.4393 0.0023
κ (°) −0.23 −0.2181 0.0041 −0.2174 0.0026 −0.2166 0.0014 −0.2182 0.0013
Xc (m) −0.02 −0.0138 0.0005 −0.0139 0.0012 −0.0136 0.0002 −0.0135 0.0002
Yc (m) 0.22 0.2152 0.0004 0.2146 0.0004 0.2147 0.0001 0.2147 0.0001
Zc (m) 0.09 0.0880 0.0003 0.0865 0.0005 0.0873 0.0001 0.0870 0.0001
Elapsed time (s) 569 746 3999 7123

3

ω (°) 88.00 90.5573 0.1512 90.4659 0.0050 90.4685 0.0021 90.4653 0.0018
φ (°) −11.00 −9.5637 0.2425 −9.4845 0.0124 −9.4922 0.0029 −9.4959 0.0024
κ (°) −0.23 −0.1849 0.1099 −0.2157 0.0045 −0.2160 0.0015 −0.2159 0.0014
Xc (m) −0.02 −0.0095 0.0159 −0.0139 0.0009 −0.0136 0.0002 −0.0130 0.0002
Yc (m) 0.22 0.2213 0.0109 0.2145 0.0004 0.2146 0.0002 0.2145 0.0001
Zc (m) 0.09 0.0815 0.0082 0.0867 0.0005 0.0874 0.0001 0.0862 0.0001
Elapsed time (s) 353 930 3408 7627

4

ω (°) 88.00 90.5278 0.1390 90.4597 0.0035 90.4599 0.0025 90.4551 0.0022
φ (°) −11.00 −9.6655 0.2262 −9.6351 0.0123 −9.6308 0.0037 −9.6330 0.0029
κ (°) −0.23 −0.1867 0.1004 −0.2114 0.0022 −0.2139 0.0018 −0.2120 0.0016
Xc (m) −0.02 −0.0106 0.0152 −0.0122 0.0008 −0.0125 0.0003 −0.0120 0.0002
Yc (m) 0.22 0.2191 0.0101 0.2138 0.0003 0.2138 0.0002 0.2136 0.0002
Zc (m) 0.09 0.0753 0.0079 0.0791 0.0003 0.0804 0.0002 0.0789 0.0001
Elapsed time (s) 324 921 2005 7992

5

ω (°) 88.00 90.4282 0.0041 90.4262 0.0047 90.4273 0.0023 90.4212 0.0021
φ (°) −11.00 −9.7527 0.0050 −9.7483 0.0815 −9.7510 0.0033 −9.7513 0.0027
κ (°) −0.23 −0.2071 0.0030 −0.2066 0.0015 −0.2064 0.0016 −0.2051 0.0015
Xc (m) −0.02 −0.0127 0.0004 −0.0125 0.0007 −0.0126 0.0002 −0.0121 0.0002
Yc (m) 0.22 0.2137 0.0003 0.2136 0.0002 0.2137 0.0002 0.2134 0.0002
Zc (m) 0.09 0.0817 0.0002 0.0800 0.0004 0.0810 0.0001 0.0795 0.0001
Elapsed time (s) 983 921 2028 10146

6

ω (°) 88.00 90.4420 0.0040 90.4420 0.0012 90.4432 0.0025 90.4375 0.0021
φ (°) −11.00 −9.8543 0.0047 −9.8498 0.0114 −9.8485 0.0038 −9.8514 0.0027
κ (°) −0.23 −0.2136 0.0029 −0.2159 0.0009 −0.2131 0.0018 −0.2127 0.0015
Xc (m) −0.02 −0.0129 0.0004 −0.0129 0.0024 −0.0133 0.0003 −0.0127 0.0002
Yc (m) 0.22 0.2138 0.0003 0.2138 0.0001 0.2139 0.0002 0.2136 0.0002
Zc (m) 0.09 0.0813 0.0002 0.0791 0.0002 0.0809 0.0001 0.0795 0.0001
Elapsed time (s) 3689 876 448 7740
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Table 14: Case study II: External calibration/orientation parameters (7 EOPs) between the TLS and LT with applied three adjustment mod-
els – Validation. The first column is the experiment number, the second column lists the 7 EOPs, the third column is the initial values, the
columns (4–11) are the estimated 7 EOPs and their uncertainties calculated from the EM-GHM, EM-qGMM and GHM-VCE algorithms with
99.7% and 95% confidence levels, respectively.

Experi-
ments

No.

7 EOPs Initial
values

EM-GHM σ EM-qGMM σ GHM-VCE–
99.7%

σ GHM-VCE–
95%

σ

1

ω� (°) 0.10 0.1013 0.0005 0.1017 0.0001 0.0995 0.0003 0.0992 0.0004
φ� (°) −0.07 −0.0673 0.0006 −0.0688 0.0001 −0.0681 0.0003 −0.0686 0.0004
κ� (°) 43.20 43.2115 0.0004 43.2112 0.0001 43.2129 0.0003 43.2125 0.0003
X �c (m) 12.80 12.8019 0.0001 12.8019 0.0001 12.8018 0.0001 12.8019 0.0001
Y �c (m) 15.70 15.7212 0.0001 15.7212 0.0001 15.7213 0.0001 15.7213 0.0001
Z�c (m) 1.70 1.7021 0.0001 1.7021 0.0001 1.7021 0.0001 1.7021 0.0001
λ 1.0 0.99987 0.00001 0.99987 0.00001 0.99987 0.00002 0.99987 0.00001
Elapsed time (s) 6682 915 6814 11777

2

ω� (°) 0.10 0.0997 0.0005 0.0998 0.0001 0.0984 0.0004 0.0971 0.0004
φ� (°) −0.07 −0.0693 0.0006 −0.0696 0.0001 −0.0696 0.0004 −0.0696 0.0004
κ� (°) 43.20 43.2214 0.0004 43.2212 0.0001 43.2225 0.0003 43.2228 0.0003
X �c (m) 12.80 12.8019 0.0001 12.8018 0.0001 12.8019 0.0001 12.8019 0.0001
Y �c (m) 15.70 15.7212 0.0001 15.7211 0.0001 15.7213 0.0001 15.7213 0.0001
Z�c (m) 1.70 1.7022 0.0001 1.7022 0.0001 1.7022 0.0001 1.7021 0.0001
λ 1.0 0.99987 0.00001 0.99986 0.00001 0.99988 0.00001 0.99989 0.00001
Elapsed time (s) 569 746 3999 7123

3

ω� (°) 0.10 0.1006 0.0073 0.1002 0.0001 0.0987 0.0003 0.0982 0.0003
φ� (°) −0.07 −0.0690 0.0080 −0.0703 0.0001 −0.0695 0.0004 −0.0698 0.0004
κ� (°) 43.20 43.2189 0.0060 43.2182 0.0001 43.2196 0.0003 43.2194 0.0003
X �c (m) 12.80 12.8018 0.0005 12.8019 0.0001 12.8019 0.0001 12.8019 0.0001
Y �c (m) 15.70 15.7212 0.0005 15.7213 0.0001 15.7213 0.0001 15.7214 0.0001
Z�c (m) 1.70 1.7023 0.0006 1.7022 0.0001 1.7022 0.0001 1.7021 0.0001
λ 1.0 0.99987 0.0002 0.99986 0.00001 0.99989 0.00001 0.99987 0.00001
Elapsed time (s) 353 930 3408 7627

4

ω� (°) 0.10 0.1043 0.0065 0.1034 0.0001 0.1030 0.0004 0.1015 0.0004
φ� (°) −0.07 −0.0668 0.0069 −0.0682 0.0001 −0.0660 0.0004 −0.0667 0.0004
κ� (°) 43.20 43.2172 0.0053 43.2171 0.0001 43.2179 0.0003 43.2190 0.0004
X �c (m) 12.80 12.8018 0.0005 12.8017 0.0001 12.8018 0.0001 12.8017 0.0001
Y �c (m) 15.70 15.7212 0.0005 15.7211 0.0001 15.7212 0.0001 15.7213 0.0001
Z�c (m) 1.70 1.7023 0.0005 1.7022 0.0001 1.7022 0.0001 1.7021 0.0001
λ 1.0 0.99990 0.0001 0.99989 0.00001 0.99992 0.00001 0.99992 0.00001
Elapsed time (s) 324 921 2005 7992

5

ω� (°) 0.10 0.1031 0.0005 0.1038 0.0001 0.1030 0.0004 0.1004 0.0004
φ� (°) −0.07 −0.0659 0.0005 −0.0661 0.0001 −0.0655 0.0004 −0.0661 0.0004
κ� (°) 43.20 43.2159 0.0004 43.2158 0.0001 43.2158 0.0003 43.2171 0.0004
X �c (m) 12.80 12.8017 0.0001 12.8018 0.0001 12.8017 0.0001 12.8018 0.0001
Y �c (m) 15.70 15.7212 0.0001 15.7211 0.0001 15.7212 0.0001 15.7213 0.0001
Z�c (m) 1.70 1.7022 0.0001 1.7023 0.0001 1.7022 0.0001 1.7021 0.0001
λ 1.0 0.99991 0.00001 0.99989 0.00001 0.99991 0.00001 0.99992 0.00001
Elapsed time (s) 983 921 2028 10146

6

ω� (°) 0.10 0.1049 0.0006 0.1049 0.0001 0.1049 0.0004 0.1025 0.0005
φ� (°) −0.07 −0.0638 0.0006 −0.0634 0.0001 −0.0635 0.0005 −0.0640 0.0004
κ� (°) 43.20 43.2156 0.0004 43.2153 0.0001 43.2154 0.0004 43.2171 0.0004
X �c (m) 12.80 12.8018 0.0001 12.8017 0.0001 12.8018 0.0001 12.8018 0.0001
Y �c (m) 15.70 15.7212 0.0001 15.7211 0.0001 15.7212 0.0001 15.7213 0.0001
Z�c (m) 1.70 1.7022 0.0001 1.7022 0.0001 1.7022 0.0001 1.7022 0.0001
λ 1.0 0.99991 0.00001 0.99986 0.00001 0.99990 0.00001 0.99991 0.00001
Elapsed time (s) 3689 876 448 7740
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Abstract: Today, short- and long-term structural health
monitoring (SHM) of bridge infrastructures and their safe,
reliable and cost-effective maintenance has received con-
siderable attention. From a surveying or civil engineer’s
point of view, vibration-based SHM can be conducted by
inspecting the changes in the global dynamic behaviour of
a structure, suchasnatural frequencies (i. e. eigenfrequen-
cies), mode shapes (i. e. eigenforms) and modal damp-
ing, which are known as modal parameters. This research
work aims to propose a robust and automatic vibration
analysis procedure that is so-called robust time domain
modal parameter identification (RT-MPI) technique. It is
novel in the sense of automatic and reliable identifica-
tion of initial eigenfrequencies even closely spaced ones
as well as robustly and accurately estimating the modal
parameters of a bridge structure using low numbers of
cost-effective micro-electro-mechanical systems (MEMS)
accelerometers. To estimate amplitude, frequency, phase
shift and damping ratio coefficients, an observationmodel
consisting of: (1) a damped harmonic oscillation model,
(2) an autoregressive model of coloured measurement
noise and (3) a stochastic model in the form of the heavy-
tailed family of scaled t-distributions is employed and
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jointly adjusted by means of a generalised expectation
maximisation algorithm. Multiple MEMS as part of a geo-
sensor network were mounted at different positions of a
bridge structure which is precalculated by means of a fi-
nite element model (FEM) analysis. At the end, the esti-
mated eigenfrequencies and eigenforms are compared and
validated by the estimated parameters obtained from ac-
celeration measurements of high-end accelerometers of
type PCB ICP quartz, velocity measurements from a geo-
phone and the FEM analysis. Additionally, the estimated
eigenfrequencies and modal damping are compared with
a well-known covariance driven stochastic subspace iden-
tification approach, which reveals the superiority of our
proposed approach. We performed an experiment in two
case studies with simulated data and real applications of
a footbridge structure and a synthetic bridge. The results
show that MEMS accelerometers are suitable for detecting
all occurring eigenfrequencies depending on a sampling
frequency specified. Moreover, the vibration analysis pro-
cedure demonstrates that amplitudes can be estimated in
submillimetre range accuracy, frequencies with an accu-
racy better than 0.1Hz and damping ratio coefficients with
anaccuracy better than0.1 and0.2% formodal and system
damping, respectively.

Keywords: Vibration analysis, Automatic modal parame-
ters identification, MEMS accelerometer, Robust param-
eter estimation, EM algorithm, Double integration, FEM
analysis, Bridge monitoring

1 Introduction

Short- and long-term structural health monitoring (SHM)
of bridge infrastructures and their safe, reliable and cost-
effective maintenance has received increasing attention in
the last three decades. The SHM process involves regu-
lar measurements of the structure over time using an ar-
ray of sensors to detect unsafe conditions, unexpected be-
haviour or structural damage, which allows us to realise
the current state of the health of a structure [1]. The SHM
is commonly carried out based on visual observation, the
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properties of the material of the structures and the in-
terpretation of the structural dynamic characteristics by
inspecting the changes in the global dynamic behaviour
of the structure, such as natural frequencies (i. e. eigen-
frequencies), mode shapes (i. e. eigenforms) and modal
damping [2], which are known as modal parameters.

As reported by the US Federal Highway Agency in
2005, 28% of the US bridges, 10% of the European bridges
and an average of 10% of the Asian bridges are deficient
[3], which illustrates the important role of frequent diag-
nosis, improvement and monitoring. Thus, it is crucial to
develop a hardware measurement system as well as im-
plementing a software, which enable us to perform a cost-
effective, automatic, timely, continuous, robust, reliable,
accurate and precise vibration-based SHM of the bridge
structures.

The vibration-based SHM can be accomplished either
in near real-time by estimating the modal parameters or
in a post-processing step, by interpretation of the param-
eters calculated by statistical testing, which are usually
the time-consuming tasks. However, such interpretation
can also vary depending on the material and geometry
of the structure case by case. Additionally, applied exci-
tations and temperature changes also have an influence
on the modal parameters, which make it more challeng-
ing to recognise the degradation of the structure [4]. As
described by Rohrmann et al. [5], such physical phenom-
ena (i. e. temperature variations) can lead to frequency
changes up to 10% over the year. Inspecting the influence
of the temperature on the modal parameters requires a
large-scale data acquisition over a year, which was out of
scope of this study. Therefore, we mainly focus on the es-
timation procedure for a specific temperature to simplify
the task.

Different contact-based or non-contact-based mea-
surement techniques can be utilised to monitor the long-
term movement of bridge structures, induced, for exam-
ple, by foundation settlement, or the short-term move-
ments, induced, for example, by wind and traffic [6].
Roberts et al. [7], for example, performed bridge deflection
monitoringusingaGPSwitha sampling frequencyof 10Hz
and a triaxial accelerometer with a sampling frequency
of 200Hz. The GPS measurements were utilised to sup-
press the accumulation drift of the acceleration data over
time through zero velocity update and coordinate updates.
Neitzel et al. [8] performed vibration analysis of a bridge
using a sensor network of low-cost accelerometers with a
sampling frequency of 600Hz, a terrestrial laser scanner
(TLS; Zoller+Fröhlich Imager 5003) in a single-point mea-
surement mode with a sampling frequency of 7812Hz and
a terrestrial interferometric synthetic aperture radar with

a sampling frequency of 200Hz as a reference sensor for
the validation purpose. The modal parameters, such as
first natural frequency and damping coefficients, were cal-
culated based on a damped harmonic oscillation (DHO)
model and were solved in the sense of the least square
adjustment. Psimoulis and Stiros [9] performed vibration
monitoring of a short span railway bridge using a robotic
total station (RTS) with non-constant sampling rate mea-
surements in a range of 5–7Hz. The spectral analysis was
carried out based on the least squares spectrum analy-
sis [10] and the Norm-Period code [11] to deal with non-
equidistant data. Ehrhart and Lienhart [12] carried out dis-
placement and vibration analysis of a footbridge structure
using an image-assisted total station (IATS) of type Leica
MS50 with a sampling frequency of 10Hz, an accelerom-
eter of type HBM B12/200 with a sampling frequency of
200Hz and a RTS of type Leica TS15 with a sampling fre-
quency of 20Hz. Adisplacement time serieswas generated
using captured video frames from the telescope camera of
the IATS for a circular target marking attached to the foot-
bridge structure and structural features, such as bolts.

As a preliminary step, on the one hand, a suitable sen-
sor with an adequate measurement rate (in the light of
Nyquist sampling theorem)must be selected which allows
us to identify all eigenfrequencies occurred at the bridge
structures. On the other hand, an opportunitymust be pro-
vided to set up cost-effective sensors at the bridge struc-
tures which will perform regular measurements for a long
period of time. Preferably, it is also advantageouswhen the
measurement system does not require frequent recalibra-
tion.

The modal identification techniques can be cate-
gorised into three groups: 1) the experimental modal anal-
ysis (EMA) [13] using input data (e. g. measured forces)
andoutput data (e. g. accelerationdata), 2) the operational
modal analysis (OMA), relying on the output-only data and
3) the combined experimental OMA with eXogenous in-
puts (OMAX) [14], using an artificial force. The induced
forces for the excitation of a structure in EMA methods
need to bemeasured and considered in an estimation pro-
cedure, such as the frequency response function (FRF) [15]
technique. However, such an experiment is not practically
suitable to be carried out for the large structures, such as
bridges, and too expensive to generate excitation [16]. On
the other hand, the OMA has two disadvantages, as de-
scribed by Parloo [17]: 1) it often records poor data qual-
ity due to a low ambient excitation level or lower signal to
noise ratio (SNR) compared to data recorded from a forced
excitation, and 2) the incorrectly scaled estimates of the
mode shapes, which vary depending on the ambient exci-
tation level. The main difference between OMAX and EMA
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approaches is that the induced forces are considered as
useful excitation and not as a noise in a modal identifi-
cation process with excitation amplitudes (i. e. due to the
artificial forces) at the level of amplitudes of the opera-
tional forces or lower [18]. In vibration-based SHM of a
bridge structure, the ambient excitation is of utmost inter-
est, since it reflects the true excitation due to traffic, wind,
wave and micro-earthquakes over its lifetime [4].

The OMA can be performed in either the frequency do-
main or the time domain. The spectra or the half-spectra
are typically estimated from the measurements in a pre-
processing step in frequency domain OMA methods and
used as input (e. g. Peeters et al. [19], Peeters and Van der
Auweraer [20]). However, the measurement or their cross
covariance in time domain OMA methods are being used
directly as input. Previous researchers performed OMA
based on the natural excitation technique [21], stochas-
tic subspace identification (SSI) [22, 23, 24, 25, 26, 27,
28], frequency domain decomposition (FDD) [29], random
decrement technique [30], wavelet [31] and the polyrefer-
ence [19, 20] version of least squares complex frequency-
domain (LSCF) [32] estimates.

In order to identify themodal parameters based on the
OMA method, for example, Van Overschee and De Moor
[22] proposed the SSI algorithm to determine state space
matrices using QR-factorisation, singular value decompo-
sition (SVD) and least squares adjustment. The SSImethod
can be performed using either the rawmeasurements that
is so-called data driven stochastic subspace identifica-
tion (SSI-DATA) or covariance matrices of the measure-
ments that is so-called covariance driven stochastic sub-
space identification method (SSI-COV). The SSI-COV is
memory efficient and fast compared to the SSI-DATA due
to using the covariance matrices instead of the raw mea-
surements [27]. More details comparison of the aforemen-
tionedmethods is presented in Peeters [24]. The disadvan-
tages of the SSI approach are threefold [16]: 1) is not com-
putationally efficient to process a large dataset due to the
QR-factorisation of a high-dimensional matrix [33], 2) the
system order of an identified model needs to be identi-
fied, and 3) there is no estimate of amplitudes. Bendat
and Piersol [34] proposed a basic FDD using a discrete
Fourier transform (DFT) and estimates the well-separated
modes directly from the power spectral density (PSD) ma-
trix. Brincker et al. [29] extended the work of Bendat and
Piersol [34] to detect the closely spaced frequencies. It is
performed by calculating the SVD of the spectral matrix
into a set of auto spectral density functions. Three assump-
tions to achieve precise results were made by considering
the impact of loading as a white noise, slight damping of
a structure and geometrical orthogonality between closely

spacedmodes. Otherwise, its results are an approximation
of the true modal parameters. Considering the white mea-
surements noise of 10 and 20%, it yields nearly precise
results for the frequencies with a maximum deviation of
0.037Hz. Peeters et al. [19] and Peeters and Van der Auw-
eraer [20] proposed the polyreference version of the LSCF
estimates using FRF that is called PolyMAX. The spectra
or half spectra are determined based on the Fourier trans-
form of the correlation sequences of positive time lags,
which are used as input instead of rawmeasurements. Un-
measured ambient forces are considered as white noise
with zero mean. The LSCF is applied to find initial values
for iterative maximum likelihood estimation. In most of
the aforementioned approaches, a separation of physical
modes from spurious ones is a challenging issue. Peeters
and Van der Auweraer [20] characterises the eigenforms
by selecting stable poles froma clear stabilisation diagram
based on user interaction. Magalhaes et al. [27] performed
automatic identification of themodal parameters based on
the SSI-COV method and applying a Fuzzy C-means clus-
tering to the stabilisation algorithm to select the stable
poles. However, a large number of tuning parameters such
as time lag for calculating the cross covariance functions,
minimum andmaximum numbers of modal orders, eigen-
frequency variation, modal damping coefficient variation,
minimum modal assurance criterion (MAC) variation be-
tween eigenforms and a distance between two modes are
needed to be defined in advance. Particularly, the time lag
and the distance between two modes are the most impor-
tant parameters,which are significantly influencing on the
accuracy of the estimated parameters as well as the num-
ber of modes identified.

The system identification of the structure, where the
vibration analysis is a detailed investigation of the dy-
namic behaviour, is also used to develop a mathematical
model. The latter can be an analytical expression of a set
of parameters or a numerical finite element model (FEM).
The numerical modelling with the FEM has been exten-
sively developed and applied in many experiments. The
static deflection of a high-speed railway track under high-
compression loads has been simulated [35] to identify the
bending shape and ultimate load limit with imperfections.
The FEM is applied to investigate processes that develop
over time, such as redistribution of bending strains in pre-
stressed concrete beams under fatigue loading [36] or the
analysis of offshore wind turbine foundations under gen-
eral transient loading, such as wind and waves [37]. For
very short impulse excitations, the impact damage and
crack development of reinforced concrete plates are mod-
elled numerically [38] and were validated within experi-
ments.
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We propose a novel robust and automatic procedure
to perform displacement and vibration analysis of bridge
structures using low numbers of cost-effective micro-
electro-mechanical (MEMS) accelerometers. The proposed
approach is so-called robust time domain modal pa-
rameter identification (RT-MPI) technique. It is supe-
rior to the previous approaches, since it allows to es-
timate the modal parameters including eigenfrequen-
cies, amplitudes, phase shifts and damping ratio co-
efficients robustly, reliably, accurately and in an auto-
matic manner with less need for defining tuning param-
eters.

For this purpose, a proper excitation window includ-
ing either ambient or forced vibration measurements is
selected in an automatic manner. Initial eigenfrequencies
used within the adjustment procedure are identified reli-
ably using a novel cost function. Additionally, it allows
one to tackle the difficulties in extraction of closely spaced
frequencies. To perform robust estimation of the modal
parameters, an observation model is defined based on
the DHOmodel, an autoregressive (AR) model of coloured
measurement noise and a stochastic model in the form
of the heavy-tailed family of scaled t-distributions, which
are jointly adjusted bymeans of a generalised expectation
maximisation (GEM) algorithm.

In contrast to the standard least squares techniques,
our proposed algorithm is not sensitive to the initialisa-
tion values as the simulation results shown inKargoll et al.
[39]. The proposed approach allows to overcome a highly
coloured measurement noise contaminated in the mea-
surements recorded from the MEMS accelerometers. The
eigenforms are identified robustly and accurately for the
eigenfrequencies occurred at the bridge structures. Fur-
thermore, a double integration of the DHO model allows
one to estimate amplitudes in a metric unit with a high ac-
curacy. Subsequently it enables us to characterise deflec-
tion mode shapes with a true scale for the excitation win-
dow selected within a short time interval.

In this study, the vibration-based SHM is performed
by defining an excitation as a function of time and not
modelling an influence of loads, which is so-called kine-
matic deformation monitoring. Different types of excita-
tion, such as the ambient excitation imposed by pedestri-
ans and the wind and the forced excitation imposed by a
modal hammer, are investigated for two types of bridge: a
footbridge and a synthetic outdoor laboratory bridge and
the analyses are compared and validated with high-end
reference measurements, the FEM analysis as well as the
well known SSI-COV approach. In addition, a simulation
experiment is performed to compare the estimated modal
parameters with their known values.

2 Data acquisition and
measurements set-up

A geo-sensor network of the cost-effective MEMS ac-
celerometers of type BNO055 from Bosch are mounted
at specific positions, which is precalculated by means of
the FEM analysis. The FEM analysis is carried out based
on a 3D CAD model obtained from 3D point clouds mea-
sured by a TLS. Based on the FEM analysis, the position
of the MEMS and the measurement directions are defined
(see Section 5). The MEMS are connected via wires and
the data transmission is conducted via USB to a PC. The
time synchronisation between sensors is carried out based
on the GPS time and by triggering the slave sensors (i. e.
MEMS accelerometers) from a master sensor. The afore-
mentioned measurement system is protected by a plas-
tic housing against temperature and humidity changes,
wind, rain and so on.

A data acquisition of the MEMS accelerometer is ac-
complished with specified sampling frequency of 100Hz,
which may be adequate to identify all eigenfrequencies of
road bridge structures in the range of 0.1 to 50Hz (in the
view of Nyquist sampling theorem). However, the relevant
eigenfrequencies of some bridge structures such as a rail-
way bridge may reach 50Hz [7] or even higher, which re-
quires higher sampling rate to be defined. The data acqui-
sition is carried out with a record length of 10minutes and
for a certain number of times per a day, which possibly al-
lows one to acquire the vibration measurements with less
influences of imposed external forces.

A side-by-side vibration measurement have been ac-
complished using the cost-effective MEMS sensor network
and reference sensors to get a reliable evaluation of a cost-
effective vibration measurement system for civil struc-
tures. For this purpose, the PCB ICP quartz piezoelectic
accelerometers [40] have been used. A piezoelectric ac-
celerometer generally covers a frequency range of 1Hz to
10 kHz. To perform data acquisition of the piezoelectric
sensors, a 24-bit analog-to-digital converter (ADC) with 16
measurement channels has been used. Each channel is
measured with an independent ADC which is controlled
with an internal hardware circuit, a so-called field pro-
grammable gate array. This ensures very accurate time
synchronisation for all channels and a constant sampling
rate. The time variations not visible between the time
stamp in the measurement data and the real-time of the
measurement are called jitter. A low jitter < 10 µs is espe-
cially relevant for identifying eigenforms. The readers are
referred to the [40] for further technical information about
the PCB piezoelectric accelerometer.
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3 Suitability analysis in selecting
optimal MEMS accelerometers

A selection of an optimal and cost-effective MEMS ac-
celerometer is a crucial and preliminary step to perform
timely long-term measurements of the bridge structures.
Therefore, Omidalizarandi et al. [41] proposed two scenar-
ios. In the first scenario, the MEMS accelerometers are
calibrated to compensate for the systematic errors, in-
cluding three biases, three scale factors and three non-
orthogonality angles between axes. A functional model of
the calibration procedure is defined similar to the work
of Shin and El-Sheimy [42]. To automatically perform cal-
ibration for fixed positions and for certain time interval, a
KUKA youBot is utilised. It is an omnidirectional mobile
robot with an arm consists of 5 axes and 4 wheels [43].
The MEMS accelerometer is rigidly attach to the arm of
the KUKA youBot, which ensures the stability of the ac-
celeration measurements through the calibration proce-
dure.

The calibration experiment is conducted in a climate
chamber and over certain temperature ranging between 10
and 30 °C to have a proper realisation of the changes of
the calibration parameters. It should be noted that higher
or lower temperature ranges were not possible due to the
restrictions of the climate chamber and youBot. Subse-
quently, in situ acceleration data can be corrected by esti-
mating the calibration parameters based on a linear inter-
polation at a measured temperature. Further detailed dis-
cussion of the calibration procedure developed is outside
the focus of this study.

The second scenario is performed to estimate the
harmonic oscillation parameters, such as frequency, am-
plitude, damping ratio coefficient and phase shift, in a
controlled excitation experiment in a laboratory environ-
ment using a shaker (Fig. 1). The benefit of using such a
shaker is twofold: 1) it includes a highly accurate refer-
ence accelerometer recording the acceleration measure-
ments with a sampling rate of 1024Hz, which is used for
the purpose of the validation, and 2) the time synchroni-
sation betweenMEMSaccelerometers can be compared to-
gether based on the estimated phase shifts.

According to the analysis in Omidalizarandi et al. [41],
the phase shifts between MEMS accelerometers varied be-
tween 2 and 5°. Additionally, it was shown that the time
synchronisation has a significant impact at higher fre-
quencies compared to lower ones. As an example, there is
about 0.01Hz frequency difference between its estimated
and nominal value for the frequency of 20Hz, which is ap-
proximately 0.003Hz for the frequency of 5Hz.

Figure 1: A controlled excitation experiment at the Institute of Dy-
namics and Vibration Research, Leibniz University Hannover, to vali-
date the time synchronisation between all three MEMS accelerome-
ters.

4 Robust vibration analysis based
on time series analysis

This section starts by selecting a proper excitation win-
dow, possibly including a free vibration decay of measure-
ments, which is introduced in subsection 4.1. Eigenfre-
quencies are identified in subsection4.2,whichareusedas
initial frequency values within the adjustment procedure.
Next, a robust estimation procedure is explained in sub-
section 4.3. Finally, the displacement analysis in a metric
unit is described in subsection 4.4.

4.1 Ambient window selection

To characterise the dynamic behaviour of the structure
including eigenfrequencies, amplitudes, phase shifts and
damping ratio coefficient, a proper excitation window,
possibly including ambient vibration measurements is se-
lected as a preliminary step. In this study, aforementioned
excitation window is so called ambient window. The esti-
mation of the damping ratio coefficients depends on the
amplitudes and the energy content of the signal [3]. There-
fore, such an ambient window selection is evenmore chal-
lenging when the structure is under the continued imposi-
tion of the forces due to moving vehicles or wind.

The imposition of the forces due to passing trains
or electrical sources are represented by extremely sharp
rises, whose magnitudes are significantly greater than a
normal signal [3]. As described by Wenzel [3], pattern
recognition methodologies might be helpful to detect un-
wanted signals, since the noise measurement characteris-
tics are quite unique. In our case, such a sharp rises ap-
pear in the acceleration measurements by means of the
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Figure 2: Time series of the acceleration data (m/s2) recorded by the
cost-effective MEMS accelerometer for a footbridge (blue line) and
selected positive peaks (black dots).

modal (impulse) hammer. Figure 2 depicts the time series
of the accelerationmeasurements under different loads for
a footbridge structure. As we can see in this figure, de-
spite the imposition of the loads by themodal hammer, the
acceleration measurements recorded under influence of a
traffic, which is mainly due to pedestrian passage over the
bridge, which in turn, does not allow a perfect free vibra-
tion decay of the acceleration data.

To begin with the selection of the ambient window,
the peaks of the acceleration data are identified based
on MATLAB1 routine findpeaks. It is parameterised by
defining the minimum peak height value based on three
times the standard deviations of the accelerationmeasure-
ments, which can be interpreted as outliers (see Fig. 2).
Next, the nearest neighbouring search algorithm in a
range of 10–15 s based on the MATLAB routine knnsearch
is applied to cluster the peaks selected. The selection of
the aforementioned time interval relies on the fact that the
energy contents of external forces are decreased in a few
seconds. The peak with maximum value in each cluster is
selected as a starting point. Next, the ambientwindow size
is enlarged incrementally by a step size of 10 s to meet the
next significant peak of a new cluster (see Algorithm 1).

In near real-time processing of our proposed algo-
rithm, it is not necessary to omit the sharply rising peaks.
For each ambient window selected, the modal parame-
ters are initialised as explained in subsection 4.2 and then
input into the estimation procedure described in subsec-
tion 4.3. A post-processing step is carried out to increase
the reliability and accuracy of the estimatedmodal param-

1 The MATLAB software R2018b – Academic version licensed by the
Leibniz University Hannover – has been used in our proposed algo-
rithm. TheMATLAB toolboxes include Signal Processing Toolbox and
the Statistics and Machine Learning Toolbox.

Algorithm 1: Robust and automatic modal parame-
ter identification in near real-time processing.
Input : Time series of measurements; step size=10
Output: Array of estimated modal parameters (θ̂)
find dominant peaks
cluster the peaks based on knnsearch
find the peaks with maximum amplitudes in each
cluster
st = starting time of the peaks
C = length(clusters)
k = 1
NextPeak = ‘not visited’
for i = 1 . . .C do

while NextPeak = ‘not visited’ do
st(i) = st(i) + step size
θ̂
(k)

= identify modal parameters based on
Algorithms 2 & 3
k = k + 1
if st(i) < st(i + 1) then

step size = step size + 10
else

step size = 10
NextPeak = ‘visited’

eters by moving forward through the peaks within each
cluster and repeating the estimation procedure. This pro-
cedure continues till the higher frequencies imposed, i. e.
mainly due to the external forces, have less impact on the
estimation procedure, which can be realised via an ac-
ceptance of white noise test (WNT) criterion described by
Kargoll et al. [44]. The aforementioned test statistic is ac-
cepted while the maximum cumulated periodogram ex-
cess over a cumulated white noise periodogram is smaller
than a critical value based on a predefined significance
level (i. e. 1 − α = 0.95).

4.2 Identification of initial modal frequency

An identification of eigenfrequencies plays an important
role in our proposed robust vibration analysis procedure,
since they are considered as initial values. This is even
more challenging either in the case of measurements
contaminated with high coloured measurement noise or
closely spaced modal frequencies.

The determination of initial values for the eigenfre-
quencies is carried out in two steps and with different
parameterization of the signal subspace dimension and
noise power threshold (see Algorithms 2; Steps 1 and 2).
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The first step allows one to determine well-separated and
dominant eigenfrequencies,while the second step enables
us to extract the closely spaced frequencies or frequen-
cies with lower amplitudes. For this purpose, first, a pseu-
dospectrum is applied, which is based on the eigenspace
analysis of correlationmatrix of themeasurements (ℓ) [45].
As described by Jiang and Adeli [46], the use of pseu-
dospectrum for estimation of eigenvalues of a non-normal
matrix achieves a reliable result. For this purpose, the
pseudospectrum is applied using the multiple signal clas-
sification (MUSIC) as proposed by Jiang and Adeli [46]
and Amezquita-Sanchez and Adeli [47]. It is used to ex-
tract high-resolution frequencies, even in case of a low
SNR or having the measurements contaminated with high
coloured noise [47]. Thus, the MATLAB routine pmusic is
applied for both steps with different parameterization of
signal subspace dimension bydefining it to the integer val-
ues of half of a sampling frequency (Fs/2) and (3 ⋅ Fs/2), re-
spectively. In addition, in the parametrisation of the pmu-
sic function, an integer length of the FFT (nfft) is defined
to 1024 and 4096, respectively, for the first and the second
parameterization of the MUSIC algorithm.

The MUSIC algorithm yields so many spurious fre-
quencies with aforementioned parameterization. In addi-
tion, the extracted frequencies and their corresponding
powers do not correspond to their true values with such
parameterization. To overcome these problems, firstly, the
boundaries around the frequencies are defined based on
the MATLAB routine islocalmin. Figure 3 depicts the pseu-
dospectrum estimation based on the MUSIC algorithm,
which represents the frequencies bounded with their cor-
responding boundaries. Thus, the frequencies identified
from the pseudospectrum are replaced with frequencies
with maximum amplitudes obtained from the DFT (Fig. 4)
within the boundaries determined. Secondly, two noise
power thresholds are determined to reject spurious fre-
quencies obtained from the first and the second parame-
terizations of the MUSIC algorithm, which have less power
compared to it. To determine the noise power threshold for
the first step, firstly, the power spectral density (PSD) is es-
timated based on the MATLAB routine periodogram. Next,
the noise power is obtained based on the MATLAB routine
snr and by considering the estimated PSD as input (set
PSD estimate as one-sided). However, there is still a risk
of missing some important frequencies with less power.
Therefore, theM-estimator SAmple andConsensus (MSAC)
algorithm [48] is applied to fit a line to the PSD. The fit-
ted line is shifted by 2.5σ error towards the SNR line. Thus,
the average of the SNR line and the shifted MSAC line val-
ues yields the determination of the noise power thresh-
old, which is considered for the first step of the initiali-

Figure 3: Pseudospectrum estimation based on the MUSIC algorithm
(black solid line), which frequencies bounded with their correspond-
ing boundaries (red dashed line).

Figure 4: The DFT of the MEMSmeasurements obtained from BAM
synthetic bridge experiment.

Figure 5: Periodogram of the MEMSmeasurements obtained from
the BAM synthetic bridge experiment (black line), determined noise
power based on SNR (magenta line), determined noise power based
on 2.5σ error of the fitted line to the periodogram using the M-
estimator SAmple and Consensus (MSAC) algorithm (red line) and
final determined noise power (blue line).

sation of eigenfrequencies. The noise power threshold for
the second step is determined based on the minimum of
the SNR line and the shifted MSAC line values. However,
a priori knowledge about the SNR of the measurements
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Algorithm 2: Robust modal parameter estimation
procedure – initialisation step.
Input : ℓ; Fs; SNRapriori (Optional)
Output: f 0; [f req]
Step 1:
Calculate pseudospectrum using MUSIC algorithm
as:
[P1

MUSIC , f
1
MUSIC] = pmusic(ℓ, Fs/2, ’half’, 1024, Fs);

Define boundaries for f 1MUSIC
Calculate frequency & power using Periodogram
SNRPSD = Calculate SNR based on Periodogram
SNRMSAC = Calculate SNR using shifted MSAC line
fitting on the Periodogram
SNRMean = Mean (SNRapriori, SNRPSD, SNRMSAC)
Select f 1MUSIC with power higher than SNRMean
Assign corresponding frequency1 with maximum
power within boundaries for each selected f 1MUSIC
f 0 = frequencies1

Step 2:
[P2

MUSIC , f
2
MUSIC] : = pmusic(ℓ, 3 ⋅ Fs/2, ’half’, 4096,

Fs);
Define boundaries for f 2MUSIC
SNRMin = Min (SNRapriori, SNRPSD, SNRMSAC)
Select f 2MUSIC with power higher than SNRMin
Assign corresponding frequency2 with maximum
power within boundaries for each selected f 2MUSIC
f 00 = frequencies2 \ frequencies1

[f req] = all possible combination of f 00

(SNRapriori) recorded either from controlled or ambient ex-
citation without external forces may assist us to increase
the reliability of the estimated noise power thresholds.

With the completion of the aforementioned two ini-
tialisation steps, we are now ready to estimate the modal
parameters using the proposed robust estimation proce-
dure described in subsection 4.3. To this end, the frequen-
cies identified from the first step of the initialisation step
(f 0) (see Algorithms 2; Step 1) are input to the estima-
tion step (see Algorithms 3). Alternative to the first step
of the Algorithms 2, other eigenfrequency identification
approaches, for example, the SSI-COV algorithm imple-
mented in MATLAB by Cheynet [49] may be used. How-
ever, multiple measurements recorded from different sen-
sors are required in the SSI-COV algorithm to calculate the
cross covariance of the measurements, which is not de-
manded in our proposed algorithm.

Next, the frequencies identified from the first and sec-
ond steps are subtracted to form a new vector of frequen-
cies (f 00), which have not been selected before (see Algo-

Algorithm 3: Robust modal parameter estimation
procedure – estimation step.
Input : ℓ; Fs; f

0; [f req]; itermax; pmax = 10
Output: θ̂
f 0 = F0

N = length([f req])
for n = 1 . . .N + 1 do

wnt(n) = false
if n > 1 then

Add freq(k) to f 0

M = length(f 0)
ξ 0 = 0
for p = 1 . . .pmax do
[θ̂
(n)
, ̂Σθ
(n)
,α(n), ν(n), e(n), u(n),wnt(n)]← GEM

algorithm (ℓ, Fs, f
0, ξ 0, p, itermax)

̂f , ̂ξ ← θ̂
(n)

Tf (n) = ̂f T Σ̂f ̂fM

Tξ (n) = ̂ξ T Σ̂ξ ̂ξM
if wnt(n) = true then

p(n) = p
wntc = 0
break;

else
p(n) = pmax
wntc = 1

cost(n) = eTf (n) + eTξ (n) + log10(p(n)) + wntc + ϵA
f 0 = F0

j = Min(cost)
θ̂ = θ̂
(j)

rithms 2; Step 2). Then, all possible combination of the
new vectors of frequencies are added to the vector of the
initial frequencies identified from the first step at each it-
eration (see Algorithm 3).

A cost value is calculated for each vector of initial
eigenfrequencies based on

cost(n) = eTf (n) + eTξ (n) + log10(p(n)) + wntc + ϵA. (1)

where p is the AR model order, wntc the cost value for the
WNT criterion (i. e. being 0 in case of the acceptance of
the WNT criterion or otherwise being 1), ϵA the root mean
square error of amplitudes of the frequencies identified
from the first step of the Algorithms 2, which is calcu-
lated between the amplitude spectrum of the raw mea-
surements and the estimatedmeasurements, andTf (n) and
Tξ (n) are test statistics at iteration (n) calculated based on
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the weighted square sum of estimates of the eigenfrequen-
cies and the damping ratio coefficients (see subsection 4.3)
as follows:

Tf
(n) = ̂f T Σ̂f ̂f

M
,

Tξ
(n) = ̂ξ T Σ̂ξ ̂ξ

M
. (2)

where ̂f is the estimated eigenfrequencies, ̂ξ the estimated
damping ratio coefficients, Σ̂f and Σ̂ξ are the joint a poste-
riori covariance matrices of the estimated frequencies and
damping ratio coefficients, respectively, and M the num-
ber of identified eigenfrequencies.

A choice of log10 function in the aforementioned cost
function is due to the fact that the less autoregressive (AR)
model order is desired, since a higher AR model order
may absorb those undefined eigenfrequencies as coloured
measurement noise. It should be noted that other mono-
tonic functions with a same behaviour of the log10 func-
tion can also be used for this purpose. Such a repetitive
procedure is terminated when no more vector of eigenfre-
quencies remaining from the second step for inclusion. At
the end, the vector of the initial frequencieswithminimum
estimates of the cost value is selected as the final initial
eigenfrequencies and input into the adjustment procedure
again to obtain the final estimates of themodal parameters
(see Algorithm 3).

4.3 Robust modal parameter identification

A proper functional model is defined to robustly and ac-
curately estimate the modal parameters in the time do-
main. It can be considered based on either an undamped
harmonic oscillation or DHO model. Omidalizarandi et al.
[50] proposed a robust vibration analysis procedure based
on a linear regression model in terms of the undamped
harmonic oscillation model, the ARmodel of the coloured
measurement noise and stochastic model, which were
jointly adjusted by means of the GEM algorithm described
by Alkhatib et al. [51]. However, on the one hand, the pro-
posed approach had a deficiency in the initialisation of the
eigenfrequencies, particularly for those closely spaced fre-
quencies. On the other hand, it was not complete enough
to characterise the damping ratio coefficients. To over-
come these problems, the deterministic model is extended
to the DHO model introduced in Amezquita-Sanchez and
Adeli [47] to estimate frequency, amplitude, phase shift
and damping ratio coefficient. Therefore, wemodelled the
given vibration measurements ℓ1, . . ., ℓn (recorded either

from the accelerometers or from the geodetic sensors) for
the specified time instance xt in which t = 1, . . . , n (i.e, cor-
responding to the measurement time through the ambient
window selected) based on

ℓt = ht(θ) + et

=
a0
2
+

M
∑
j=1 [aj cos (2πfj√1 − ξj2xt) + . . .

bj sin (2πfj√1 − ξj
2xt)] ⋅ exp(−2πξjfjxt) + et . (3)

where the undamped frequencies f1, . . ., fM , the coeffi-
cients a0, a1, . . ., aM , and b1, . . ., bM and damping ratio co-
efficients ξ1, . . ., ξM constitute the unknownparameter vec-
tor (θ). It should be noted that fjd = fj√1 − ξj

2 corresponds
to the damped frequency. The vibrationmeasurements (ℓt)
are subtracted from their mean value throughout the en-
tire ambient window. The full observationmodel here con-
sists of a parametric DHO model, a parametric autocorre-
lation model in terms of the AR process and a parametric
stochastic model in the form of the heavy-tailed scaled t-
distribution.

Nassar et al. [52] benefit the AR process to describe the
stochastic behaviour of inertial sensors (i. e. gyroscope)
measurements due to relatively high measurement noise.
Thus, to tackle highly coloured measurement noise con-
taminated with the MEMS acceleration data, we assume
that the randomdeviations (et) are autocorrelated through
a covariance-stationary AR process by

et = α1et−1 + . . . + αpet−p + ut . (4)

As proposed by Kargoll et al. [44], the AR coefficients αT =
[α1, . . . , αp] are considered as unknown parameters to han-
dle the autocorrelation. To account for the outliers of un-
known frequencies and amplitudes, heavy-tailed white
noise components and setting the level of precision [39],
the white noise components u1, . . ., un are assumed to in-
dependently follow the centred and scaled t-distribution
tν(0, σ2) with an unknown degree of freedom ν and with
an unknown scale factor σ2, that is,

ut
ind.
∼ tν(0, σ

2). (5)

The aforementioned three parametricmodels are com-
bined in the joint log-likelihood function (See Kargoll et al.
[44] for details) based on the

log L(θ, σ2,α, ν|ℓ) = n log[
Γ ( ν+12 )
√νπσΓ ( ν2 )

] − . . .

ν + 1
2
⋅
n
∑
t=1 log [1 + 1ν (α(L)(ℓt − ht(θ))σ

)
2
] . (6)
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The maximisation of such a joint log-likelihood func-
tion allows for a self-tuning, robust, maximum likelihood
estimation of the parameters [39]. To reliably estimate ν
of the t-distribution, a zero search based on the inter-
val Newton method (see Algorithm 6.1 in Hargreaves [53]
for details) is applied [54] by using INTLAB library [55].2

However, the zero search based on the interval Newton
method is not computationally efficient and is merely ap-
plied in post-processing of our proposed algorithm. In or-
der to speedup the procedure in near real-timeprocessing,
the ν is estimated based on the standard MATLAB routine
fzero.

Next, the GEM algorithm is employed to estimate the
model parameters. The initial frequencies are estimated
based on our proposed algorithm described in the subsec-
tion 4.2. The model order of the AR process is initially set
to 1 and progressively increases by 1 to reach its maximum
predefined value. In addition, the initial damping ratio co-
efficients are set to 0.

Consequently, our proposed algorithm allows one to
estimate all eigenfrequencies occurred without losing im-
portant information. In addition, the well-defined deter-
mination of the eigenfrequencies based on our proposed
algorithm speed up the process by fast convergencewithin
the adjustment procedure with lower AR model order. It
should be noted that a higher ARmodel order (e. g. higher
than 10) may absorb those undefined (might be impor-
tant!) eigenfrequencies with low amplitudes as coloured
measurement noise. According to our exhaustive experi-
mental study, the reliable identification of the initial fre-
quencies play an important role to avoid the aforemen-
tioned problem. In this study, the maximum AR model or-
der is set to 10, which also guarantees the fast convergence
of the algorithm.

4.4 Displacement analysis based on double
integration

The amplitudes in the metric unit (e. g. millimetre) is cal-
culated by double integrating the DHO model (see Eq. 3)
without considering the term of the offset as

dt = Ht(θ) + et

=
M
∑
j=1 [[exp(−2πfjxtξj) ⋅ cos(2πfjxt√1 − ξj2) ⋅ . . .
(2ajξj

2 − aj + 2bjξj√1 − ξj
2)]/(4fj

2π2) − . . .

2 The INTLAB library version 10 has been used.

[exp(−2πfjxtξj) ⋅ sin(2πfjxt√1 − ξj
2) ⋅ . . .

(bj − 2bjξj
2 + 2ajξj√1 − ξj

2)]/(4fj
2π2)] + et . (7)

where the coefficients a1, . . ., aM , and b1, . . ., bM , the eigen-
frequencies f1, . . . , fM and the damping ratio coefficients ξ1,
. . ., ξM are the estimates of the modal parameters obtained
from the estimation procedure (see subsection 4.3). Next,
the DHO model is fitted to the calculated displacements
(d = ∑nt=1 dt) to estimate the amplitudes for each of the
eigenfrequencies.

Alternatively, the double integration can be carried
out for the adjusted acceleration data based on the numer-
ical integration of the equations ofmotion using the trape-
zoidal rule. However, such double integration is a chal-
lenging issue since the absolute displacement changes
derived from the adjusted acceleration data are drifting
very fast in a few seconds. To tackle this problem, the
displacements calculated from the double integration are
detrended based on a piece-wise spline approximation
within the ambient window selected. Another critical is-
sue is the proper choice of the number of breaks and order,
which are here set to (length(d)/50) and 3, respectively.
Next, the DHOmodel is fitted to the displacements (d) cal-
culated using the estimated eigenfrequencies.

To make sure of the correctness of the estimated am-
plitudes in themetric unit, as proposed byOmidalizarandi
et al. [50], the amplitude is calculated based on

Amj =
Aj
(2 ⋅ π ⋅ fj)2

⋅ 1000. (8)

where fj is the estimated eigenfrequency in the unit of [Hz],
Aj is the estimated amplitude in the unit of [m/s2] and Amj
is the amplitude in the unit of [mm].

To avoid thedriftingof thedisplacements over a longer
period of time, Omidalizarandi et al. [41] used a generated
1D displacement time series using video frames of a pas-
sive target (attached in the vicinity of one of the MEMS
accelerometers, whose centroid was extracted based on
the work of Omidalizarandi et al. [56]) captured from the
embedded on-axis telescope camera of an IATS of type
Leica Nova MS50 MultiStation with a practical sampling
frequency of 10Hz. Subsequently, 1D coordinate updates
were performed using the MEMS acceleration data in the
vertical direction together with the 1D displacement mea-
surements from the IATS within a Kalman filter approach.
The double integration for a longer period of time, by just
using the acceleration data without use of additional dis-
placement measurements is a very complex problem and
is out of the scope of this study.
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5 Vibration analysis based on finite
element model analysis

The FEM can be used for a dynamic analysis of a structure
modelled as a linear and a non-linear system. In simple
systems, such as beams, frames and trusses, which consist
of individual members or elements that are connected at
joints (called nodal nodes), the behaviour of each element
can be regarded independently. This is realised by the cal-
culation of the element stiffness matrix and the element
mass matrix. The matrices of all elements are then assem-
bled into the system stiffness matrix and the system mass
matrix so that the equilibrium of force and the compatibil-
ity of displacements are satisfied at each nodal node. This
is called matrix structural analysis. The FEM method for
dynamic analysis is used for complex structures by means
of geometry, material properties and loading conditions,
although it does not differmuch from thematrix structural
analysis. Only the mapping of the nodal nodes to the fi-
nite elements is not naturally established by the geometry,
such as for the skeletal structures, and the displacements
at internal points of an element are expressed by appro-
priate interpolating functions and not by the exact analyt-
ical relationship. The loads at each element in all direc-
tions are called degrees of freedom and can be combined
by a vector F and the displacements at the correspond-
ing points are noted by x. The relation between the load
and the displacement is linked by the stiffness matrix K in
Equation (9) for the static behaviour.

K ⋅ x = F . (9)

The inertia of the masses and the damping in the dy-
namic formulationmust be considered by the introduction
of amassmatrixM and the dampingmatrixC. The general
equation of motion (10), as an ordinary differential equa-
tion, describes the movement of the nodal nodes (degrees
of freedom) and their first and second derivatives, ̇x and ̈x.

M ⋅ ̈x + C ⋅ ̇x + K ⋅ x = F . (10)

For the modal analysis, the vector F is considered a func-
tion of time of a harmonic excitation of the structure in a
selected frequency range. Simultaneously, the same load
is applied to all degrees of freedom of the entire FEM. This
ideal excitation cannot be achieved exactly for real struc-
tures. Common finite element software package can usu-
ally support the calculation of the eigenfrequencies and
eigenforms of a complex structure for dynamic FE analy-
sis. The modelling is usually simplified for real structures
to realise such an analysis, for example, as a girder grid
model.

6 Experiments and results

6.1 Case study I: Robust vibration analysis
based on time series analysis using
simulated data

In this section, a simulated acceleration data was gener-
ated and then employed and solved by our proposed al-
gorithm (RT-MPI) and the SSI-COV algorithm to compare
and validate the entire estimation procedure. For this pro-
pose, firstly, a true observation vector was defined based
on the DHO model with a sampling frequency of 100Hz,
which spanned 100 s of the acceleration data using the
parameter values a0 = 0, aj = (4.0, 2.0, 2.0, 8.0), bj =
(−3.0, 3.0, 3.0, 7.0), fj = (5.0, 5.3, 15.0, 35.0) [Hz] and the
damping ratio coefficients ξj = (0.5,0.8,0.8,0.5) [%] (for
j ∈ [1, 2, 3, 4]). In order to calculate the amplitudes and
phase shifts, we consider a cosine form of the sum of co-
sine and sine terms in Equation (3) without considering
the damping ratio coefficient as follows

aj cos (2πfjxt) + bj sin (2πfjxt) = Aj cos (2πfjxt + ϕj). (11)

Thus, the amplitudes and the phase shifts3 were calcu-
lated by

Aj = √aj2 + bj
2,

ϕj = tan
−1(−bj

aj
). (12)

The white noise vector was generated with the same
lengthof the accelerationdata andunder the t-distribution
assumption (see Equation (5)) with parameter values σ2 =
0.04 and ν = 4.0. Next, the white noise vector was turned
into the autocorrelated coloured noise vector considering
AR(1) process and the parameter value α1 = 0.4. The
generated coloured noise vector was then added to the
true observation vector to generate the noisy acceleration
data (see Fig. 6). In the case of the SSI-COV algorithm, two
slightly different time series were generated based on two
different white noise vectors, which were generated with
the same parameterisation as before.

In order to apply the SSI-COV algorithm [49], the tun-
ing parameters are defined as follows: the time lag of the
correlation function is set to 6.4 cycles of a lower frequency
as proposed by Magalhaes et al. [27] (i. e. here 6.4 ⋅ 5 = 32),
the minimum andmaximum numbers of modal orders are

3 To estimate the phase shifts, the MATLAB routine atan2 was used
to calculate a four–quadrant inverse tangent using the estimated
Fourier coefficients.
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Figure 6: Simulated acceleration data based on the DHO model
contaminated with coloured noise.

Figure 7: The DFT of the simulated acceleration data in the ampli-
tude spectrum (black solid line) and initialised and extracted fre-
quencies (blue dots and red dashed lines), respectively.

set to 2 and 30, respectively, the eigenfrequency variation
is set to 1 ⋅ 10−2, the modal damping coefficient variation is
set to 3 ⋅ 10−2, the minimumMAC variation between eigen-
forms is set to 5 ⋅ 10−3 and the distance between twomodes
is set to 2 ⋅ 10−2 similar to the tuning parameters used by
Cheynet et al. [57].

The unknown parameters of the functional model
(Equation (3)) consist of Fourier coefficients, frequencies,
amplitudes, phase shifts and damping ratio coefficients.
The unknown parameters of the correlation model (Equa-
tion (4)) consist of the AR model coefficients. The un-
known parameters of the stochastic model (Equation (5))
consist of the unknown degree of freedom and the un-
known scale factor. All aforementioned unknown param-
eters were estimated together by the maximisation of the
joint log-likelihood function (Equation 6) using the GEM
algorithm. The initial frequencieswere identified based on
our proposed algorithm described in the subsection 4.2.

Figure 7 illustrates the DFT of the acceleration data
in the amplitude spectrum. As can be seen, two closely
spaced frequencies of 5.0 and 5.3Hzwere intentionally de-
fined very close together for the validation purpose. In ad-

Figure 8: The cost values calculated at each iteration for the simu-
lated acceleration data.

Figure 9: Excess of the estimated periodogram of the decorrelated
(i. e. estimated white noise) residuals of the simulated acceleration
data the AR(1) model (jagged blue line) with respect to the theoret-
ical white noise periodogram (horizontal centred black line) and
95% significance bounds (horizontal bounded red lines).

dition, their corresponding phase shifts are approximately
orthogonal (see Table 1), which causes less influence of the
possible correlation between themon the estimation of the
modal parameters. The SNR value calculated from the RT-
MPI algorithmwas equal to 17.85,which enables us to iden-
tify the frequencies of 5.0, 15.0 and 35.0 [Hz] at the first step
of the Algorithms 2. However, we intentionally increased
the SNR value to 25 to decrease the number of frequencies
identified from thefirst step and to observe their influences
on the introduced cost function (see Equation (1)).

Figure 8 shows the cost values calculated at each iter-
ation. The first iteration stands for those frequencies iden-
tified from the first step. As we can see from this figure,
the combination of four frequencies achieves a lower cost
value due to the acceptance of the WNT criterion. Figure 9
depicts the adequacy of the estimated AR coloured noise
models in the light of an accepted WNT criterion.
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Figure 10: Detrending simulated acceleration data based on the
piece-wise spline curve approximation.

As we previously mentioned in the subsection 4.4, the
amplitudes in the metric unit (mm) are calculated based
on two different methods of the double integration using
the DHOmodel and the equations of motion, respectively.
Figure 10 shows the detrended acceleration data based
on the piece-wise spline curve approximation used for the
secondmethod of double integration. Figure 11 depicts the
displacement time series obtained by applying the double
integration for the detrended acceleration data and the de-
trended adjusted acceleration data.

Table 1 represents the statistics of the estimated un-
known parameters calculated by the RT-MPI and the SSI-
COV algorithms. In the RT-MPI algorithm, the unknown
parameters of the DHO model, the correlation model and
the stochastic model are computed for two cases where

Figure 11: The displacement time series calculated for the simu-
lated acceleration data: based on the double integration using the
detrended acceleration data (green) and the adjusted acceleration
data (red) as well as fitting the DHO model to the detrended ad-
justed acceleration data (blue).

the ν was estimated by applying INTLAB and fzero. As
we can see, the differences between the estimated fre-
quencies in both approaches are at the level of third or
fourth decimals. Regarding the estimated amplitudes in
the unit of [m/s2] in the RT-MPI algorithm, as we have
previously shown in Omidalizarandi et al. [41], such small
variations from the reference or true values at such fre-
quencies have less quantity differences in the metric unit
[mm] at the level of the first to second decimals that can be
neglected. However, the SSI-COV algorithmdoes not allow
us to calculate the amplitudes. The damping ratio coeffi-
cients estimated from two aforementioned different cases

Table 1: Statistics of the estimated unknown parameters in the functional model based on the DHO model, the correlation model based on
AR process and the stochastic model based on the centred and scaled t-distribution with an unknown degree of freedom and unknown scale
factor from the RT-MPI algorithm compared and validated with the SSI-COV algorithm for the simulated acceleration data.

Parameters f A ADHO AMOTION ξ ϕ α1 ν σ2

[Hz] [m/s2] [mm] [mm] [%] [°] [–] [–] [–]

Simulated data

5.0000 5.0000 5.0661 5.0661 0.5000 36.8699

0.5000 4.0000 0.04005.3000 3.6056 3.2514 3.2514 0.8000 −56.3099
15.0000 3.6056 0.4059 0.4059 0.8000 −56.3099
35.0000 10.6301 0.2198 0.2198 0.5000 −41.1859

Estimated by RT-MPI
(ν determined by INTLAB)

4.9996 5.1110 5.1792 5.1539 0.5141 37.7709

0.4939 4.3662 0.04115.3016 3.6282 3.2697 3.2494 0.7976 −58.1599
15.0001 3.5848 0.4036 0.3798 0.8053 −56.8767
34.9999 10.6103 0.2194 0.1452 0.5015 −41.2764

Estimated by RT-MPI
(ν determined by fzero)

4.9999 5.1322 5.2003 5.1745 0.5153 37.2764

0.4991 10000 0.07575.3029 3.5597 3.2064 3.1862 0.7731 −59.4356
14.9978 3.5773 0.4028 0.3789 0.7942 −56.1857
34.9992 10.6376 0.2199 0.1452 0.5016 −41.3963

Estimated by SSI-COV

5.0010 – – – 0.4900 36.8331

– – –5.3010 – – – 0.8100 55.7620
15.0012 – – – 0.7800 56.5484
34.9991 – – – 0.5000 56.9214
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of theRT-MPI algorithmshow the average levels of 0.005%
and 0.015%differences from their nominal values, respec-
tively, which its corresponding estimates from the SSI-COV
algorithm is 0.01%. The phase shifts estimated from two
aforementioned different cases of the RT-MPI algorithm
represents the average levels of 0.95° and 1.1° differences
from their nominal values, respectively, while the SSI-COV
algorithm achieves significantly different results (i. e. dif-
ferent signs or values) that is not comparable with the RT-
MPI algorithmand their nominal values. The differences of
the estimated AR(1) model coefficient (α1) for both cases of
the RT-MPI algorithm are very small. The stochastic model
parameters (ν and σ2) obtained from the former case of the
RT-MPI algorithm shows a very precise estimation of the
parameters. By contrast, the latter case of the RT-MPI al-
gorithm shows significant differences from their nominal
values. However, the SSI-COV algorithm does not allow to
calculate the AR and stochastic model parameters.

The analysis based on the former case of the RT-MPI
algorithm is computationally very expensive compared to
the latter case of the RT-MPI algorithm, whereas the es-
timated modal parameters do not show significant dif-
ferences from their nominal values. The frequencies and
damping ratio coefficients were estimated very precisely
with a high accuracy in the both algorithms. However,
the RT-MPI algorithm does not need any tuning param-
eters and achieves robust results, which is not the case
in the SSI-COV algorithm. Additionally, the SSI-COV algo-
rithm does not achieve a reasonable results for the phase
shifts and also could not provide the estimates of the am-
plitudes. At the end, a comparison of the estimated am-
plitudes in the RT-MPI algorithm and in the metric unit
reveals a very close and reliable estimation for the first
method of the double integration using the DHO model.
Consequently, the analysis of the simulation study demon-
strates and validates the reliability, robustness, high accu-
racy and precision of the RT-MPI algorithm.

6.2 Case study II: Robust vibration analysis
based on time series analysis using
experimental data validated with FEM
analysis

6.2.1 Example based on a footbridge

A vibration analysis of a footbridge structure that is a so-
called Mensa footbridge (located in Hannover, Germany;
see Fig. 12) with a length of 27.05m (23.22m main span
and 3.83m side span) and a width of 2.42m (see Fig. 13)
was carried out using the MEMS and high-end (refer-

Figure 12: A scheme of the Mensa footbridge, which was measured
by the MEMS and high-end (reference) accelerometers, the laser
tracker Leica AT960-LR and the terrestrial laser scanner Z+F IMAGER
5016.

ence) accelerometers with sampling frequencies of 100
and 2000Hz, respectively. The reference acceleration data
was downsampled to 100Hz in order to increase the run
time speed-up of the processing. It was additionally mea-
sured by means of a laser tracker of type Leica AT960-LR
(reference sensor), in a pointwise mode and a TLS of type
Z+F IMAGER 5016, in profile mode. However, the TLSmea-
surements analysis is out of the scope of this study.

Moreover, theMensa footbridge has been dynamically
analysed using the FE program ‘Sofistik’ for the purpose
of validation. The FEM is generated by means of two main
girders. The cross–section of the main girders is a wide-
flange beam of two IPBL (HEA) girders with a material
thickness of 10mm. The lateral stiffness of the superstruc-
ture is considered with 20 cross–beams (see Fig. 14). The
cross–beams are rectangular tubes 200 by 120mm and a
material thickness of 10mm. The total system is a girder
grid model. The expansion in width at one end of the
bridge that faces towards the Mensa is modelled with four
additional nodes. The stiffening sheets at the bearings and
the reduced beam height in this section is neglected. The
stiffness of the cover platesmust be considered by an addi-
tional steel thickness of 10mm on top of the cross beams.

The four bearings of the bridge are modelled as loose-
jointed connection nodes, but the displacements are lim-
ited in the longitudinal and lateral directions. Thehorizon-
tal stiffness results mainly from the pile stiffness of these
directions. The bearings in the vertical direction are con-
sidered fixed. The software converts the deadweight of the
constructions to point masses for the dynamic calculation
for the application of the loads.
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Figure 13:Measurement set-up in the Mensa bridge experiment: The locations of the MEMS and PCB piezoelectic accelerometers are de-
picted by red and blue coloured circles, respectively. All metric values are in meter [58].

Figure 14: Girder grid model of the main girders.

To identify eigenforms of the Mensa footbridge, a geo-
sensor network of the MEMS accelerometers are located
at certain positions, which their positions were precalcu-
lated from the FEM analysis. As we can see in Figure 13,
the locations of the MEMS accelerometers (i. e. provided
by Allsat GmbH) and the reference accelerometers (i. e.
provided by the Institute of Concrete Construction – Leib-
niz University Hannover) are illustrated. The MEMS ac-
celerometer is a three axis accelerometer which can per-
formmeasurements in the longitudinal (x-axis), lateral (y-
axis) and vertical (z-axis) directions of the bridge. By con-
trast, the reference accelerometer is a one axis accelerom-
eter, which needs multiple set-ups for recording accel-
eration data in all three directions. The eigenforms are

only characterised in the vertical direction, which is due
to the usage of only three MEMS slave sensors, namely,
IMU_Slave_02, IMU_Slave_03 and IMU_Slave_04, respec-
tively, (see Fig. 13). To reach this goal, the acceleration data
are recorded for the duration of a maximum of 6 minutes
and in the direction of the x-axes of the MEMS accelerom-
eters (see Figure 15; left). The PSD estimates of the MEMS
acceleration data are provided in Figure 15 (right). For the
purpose of the validation, three reference sensors, namely,
DSV1, DSV3 and DSV5 located close to the aforementioned
MEMS slave sensors, respectively. Figure 16 depicts the
time series of the accelerationdata recorded from theDSV3
sensor close to the IMU_Slave_03 and located nearly at the
centre of the bridge.

Typically, such a footbridge structure is under ambi-
ent excitations by pedestrians (mainly in the vertical di-
rection) or wind (mainly in the lateral direction). In this
study, additional excitations were also imposed by im-
pulses from a modal hammer. The ambient windows were
selected incrementallywith a step size of 10 s starting from
a peak with high amplitude. The modal parameters, such
as the eigenfrequencies and the damping ratio coefficients
were estimated and represented for the vertical and tor-
sion modes. Figures 17–19 represent the estimated modal
parameters for the aforementionedmodes at different step
sizes of the ambient windows and for the entire time series
of the acceleration data recorded from the aforementioned
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Figure 15: The MEMS accelerometer measurements – Mensa footbridge: time series of the acceleration measurements (m/s2) recorded from
three different sensors (left) and the PSD estimates of the acceleration measurements (right).

Figure 16: The reference accelerometer (DSV3) measurement –
Mensa footbridge: time series of the acceleration measurements
(m/s2) (blue line) and the selected (ambient) window with a maxi-
mum duration of 50 s (red dashed lines).

three MEMS slave sensors (see Algorithm 1). They clearly
show how the estimated damping ratio coefficients fluctu-
ate depending on the loads. As we can see in the first 60 s
of themeasurements and for the estimated eigenfrequency
associated with the first vertical mode, the damping ratio
coefficients have minus values, which is due to short de-
cay and a sudden rise of the amplitudes for the selected
ambientwindowwithin the 10 s. Since the energy of the ex-
ternal force decreased throughout the time, the estimated
damping ratio coefficients approximately reachanequilib-
rium, which allows us to identify them more reliably. One

can calculate theweighted average or themedian of the es-
timated values to determine a unique damping ratio coeffi-
cient for eacheigenfrequency for the entiremeasurements.
It is also valid for the eigenfrequencies.

Table 2 represents the statistics of the estimates of the
eigenfrequencies (Hz) and the damping ratio coefficients
(%) calculated by means of the RT-MPI algorithm (see
Figs. 17–19). The vertical and torsion modes are indexed
by V and T, respectively. For example, the first vertical
and torsion modes are indexed by V1 and T1, respectively.
The analyses were performed by calculating themedian of
the parameters calculated at each time interval. Addition-
ally, the aforementioned parameters were also calculated
by means of the SSI-COV algorithm. It should be noted
that two other vertical modes of 16.4 and 16.7Hz were also
detected from both approaches, which were not included
in the aforementioned table. Their corresponding eigen-
frequencies and the damping ratio coefficients estimated
from theRT-MPI and the SSI-COValgorithms andwith con-
sideration of the entire time series are as follows: ̃fV3 =
16.4088 (Hz) with ̃ξV3 = 0.2753 (%) and ̃fV4 = 16.6807 (Hz)
with ̃ξV4 = 0.4848 (%), which are the median values of
their corresponding estimated parameters obtained from
the RT-MPI algorithm and fV3 = 16.4080 (Hz) with ξV3 =
0.28 (%) and fV4 = 16.6856 (Hz) with ξV4 = 0.43 (%) are
obtained from the SSI-COV algorithm.
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Figure 17: The MEMS accelerometer measurements for all three MEMS sensors – Mensa footbridge: time series of the acceleration mea-
surements [m/s2] recorded from the IMU_Slave_02, the IMU_Slave_03 and the IMU_Slave_04 are depicted from top to bottom (blue line).
The black and orange coloured texts stand for the estimated frequencies [Hz] and damping ratio coefficients [%], respectively, for the first
vertical mode (fV1 = 4.1Hz) at the specified positions with the incremental step size of 10 s starting from the peaks with high amplitudes.

The comparison of the both aforementioned algo-
rithms demonstrates that the RT-MPI algorithm enables us
to possibly decrease the influence of the loads on the es-
timated parameters by means of the median of the esti-
mates. As we expected, the SSI-COV algorithm does not
achieve reasonable results for the damping ratio coeffi-
cients for the first and second vertical modes as well as
the first torsionmodewhile considering the entire time se-
ries at once. For the shorter time interval, which are cor-

responding to the ambient windows 1–6 selected, both ap-
proaches achieve very close estimates of the eigenfrequen-
cies and the damping ratio coefficients for the first, third
and fourth vertical modes as well as the fourth torsion
mode. However, the SSI-COV algorithm does not achieve
stable results for the damping ratio coefficients of the sec-
ond vertical mode as well as the first torsion mode. The
estimates of the eigenfrequencies obtained from the both
approaches have a maximum deviation of approximately
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Figure 18: The MEMS accelerometer measurements for two of MEMS sensors – Mensa footbridge: time series of the acceleration measure-
ments [m/s2] recorded from the IMU_Slave_02 (top) and the IMU_Slave_04 (bottom) (blue line). The black and orange coloured texts stand
for the estimated frequencies [Hz] and damping ratio coefficients [%], respectively, for the second vertical mode (fV2 = 13.76Hz) at the
specified positions with the incremental step size of 10 s starting from the peaks with high amplitudes.

Table 2: Statistic of the frequencies (Hz) and the damping ratio coefficients (%) estimated from all three MEMS acceleration data based on
the RT-MPI and SSI-COV algorithms for the Mensa footbridge.

Sensor Time [s] Method fV1 [Hz] ξV1 [%] fV2 [Hz] ξV2 [%] fT1 [Hz] ξT1 [%] fT4 [Hz] ξT4 [%]

MEMS

7.22–357.05 RT-MPI 4.0853 0.3618 13.7645 0.7150 3.6697 0.2226 26.3233 0.6653
SSI-COV 4.0838 0.8100 13.7337 0.4700 3.6635 0.7300 26.2943 0.6500

7.22–57.22 RT-MPI 4.0656 0.3827 13.8010 0.9528 3.6678 0.1533 26.3529 0.7229
SSI-COV 4.0725 0.3200 13.7418 0.7300 3.6570 0.4300 26.3351 0.5400

65.95–115.95 RT-MPI 4.1059 0.2642 13.7813 0.7777 3.6705 0.1384 26.3140 0.5828
SSI-COV 4.1002 0.2000 13.8678 0.1900 3.6572 0.3600 26.3019 0.5500

123.95–173.95 RT-MPI 4.0724 0.9005 13.7659 0.7642 3.6694 0.2428 26.3443 0.6549
SSI-COV 4.0715 1.1000 13.7697 0.6000 3.6541 0.4000 26.3197 0.5700

185.79–235.79 RT-MPI 4.1116 0.4510 13.7693 0.7045 3.6751 0.5035 26.2930 0.6211
SSI-COV 4.0877 0.4000 13.7763 0.5100 – – 26.2853 0.6300

246.62–296.62 RT-MPI 4.0841 0.2605 13.7627 0.4392 3.6692 0.3407 26.2837 0.6720
SSI-COV 4.0873 0.2800 13.7738 0.3200 – – 26.2821 0.6500

307.05–357.05 RT-MPI 4.0976 0.3843 13.7621 0.7123 3.6719 0.3127 26.3241 0.6863
SSI-COV 4.0946 0.4000 13.7644 0.4900 26.3121 0.5700

TLS FEM 3.6420 – 13.2940 – 3.7590 – – –
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Figure 19: The MEMS accelerometer measurements for all three MEMS sensors – Mensa footbridge: time series of the acceleration mea-
surements [m/s2] recorded from the IMU_Slave_02, the IMU_Slave_03 and the IMU_Slave_04 are depicted from top to bottom (blue line).
The black and orange coloured texts stand for the estimated frequencies [Hz] and damping ratio coefficients [%], respectively, for the fourth
torsion mode (fT4 = 26.30Hz) at the specified positions with the incremental step size of 10 s starting from the peaks with high amplitudes.

0.03 [Hz]. Moreover, the SSI-COV algorithm were not able
to estimate the first torsion mode in the ambient windows
4–6.

In addition, the result of the FE simulations calcu-
lated from the CAD model obtained from the TLS mea-
surements are illustrated in Figures 20–24 associating to
the correlated eigenforms for the vertical fV , the hori-
zontal bending fH and the torsion fT . The comparison of
the FEM analysis and the RT-MPI algorithm shows that

the frequencies of 3.642, 13.294 and 3.759Hz from the
FEM analysis are equivalent to the frequencies of 4.1,
13.75 and 3.67Hz, respectively. Subsequently, it demon-
strates that the FEM analysis can only provide us with
the approximate estimates of the eigenfrequencies and
there is no estimates of the damping ratio coefficients.
However, to obtain more accurate and precise results, it
needs to be calibrated, which is out of the scope of this
study.
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Figure 20: fV1 = 3.642Hz (first vertical mode).

Figure 21: fV2 = 13.294Hz (second vertical mode).

Figure 22: fH1−T 1 = 3.759Hz (first horizontal and torsion mode).
The eigenfrequencies (Hz) and the damping ratio co-

efficients (%) were also estimated for the last 60 s of the
measurements with an incremental step size of 5 s (see
Table 3), since the analysis from the previous step de-
picts more stable results at this part. Furthermore, we per-
formed its validation by comparing the analysis from the
MEMS and the reference acceleration measurements.

The analysis prove that all eigenfrequencies occurred
were detected very precisely, and are validated with the
analysis from the reference acceleration data. Due to the
imposition of the load by the modal hammer, the higher
frequencies, such as 100Hz (visible from the DFT of the
reference acceleration data; see Fig. 25), could not be de-
tected in the MEMS acceleration data in the light of the
Nyquist sampling theorem. Subsequently, it directly in-
fluences the estimated amplitudes and damping ratio co-
efficients of the frequency of 26.30Hz. As we can see in

Figure 23: fH2−T2 = 7.053Hz (second horizontal and torsion mode).

Figure 24: fT3 = 11.828Hz (third torsion mode).
Table 3, there is a significant difference between the am-
plitudes calculated from the MEMS and the reference ac-
celerometers for the first 20 s, which could be due to the
superimposition of the higher frequencies about 100Hz to
200Hz derived from additional impulses imposed by the
modal hammer that would not be detectable at all by the
MEMS accelerometers (in the light of the Nyquist sampling
theorem). As described in Wenzel [3], the modal and sys-
tem damping can vary between 0–0.1 and 0–0.2, respec-
tively. According to the aforementioned damping ranges,
the median of all estimated damping ratio coefficients for
the entire selected ambient window is within the range
and is acceptable.

Figures 26 and 27 illustrate the DFT of the reference
and the MEMS acceleration data for the duration of 30 s
within the selected ambientwindowand Figures 28 and 29
show the fitted DHO model to the given acceleration data
for the duration of 30 s within the selected ambient win-
dow using our proposed algorithm.

To characterise the eigenforms, the amplitudes, the
eigenfrequencies and the phase shifts were calculated
based on undamped harmonic oscillation model de-
scribed by Kargoll et al. [44] andOmidalizarandi et al. [50].
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Table 3: Statistic of the eigenfrequencies (Hz) and the damping ratio coefficients (%) estimated from the last ambient window of the MEMS
and the reference acceleration data for the Mensa footbridge.

Time [s] 317.05 322.05 327.05 332.05 337.05 342.05 347.05 352.05 357.05

MEMS

fV1 [Hz] 4.088 4.101 4.096 4.095 4.097 4.097 4.097 4.098 4.097
ξV1 [%] 0.226 0.363 0.319 0.327 0.419 0.369 0.385 0.382 0.386
AV1 [m/s2] 0.062 0.076 0.066 0.066 0.087 0.074 0.077 0.076 0.077
fT4 [Hz] 26.291 26.290 26.271 26.272 26.387 26.388 26.367 26.403 26.364
ξT4 [%] 0.649 0.650 0.686 0.654 0.711 0.716 0.712 0.743 0.709
AT4 [m/s2] 0.118 0.118 0.123 0.117 0.131 0.136 0.144 0.130 0.146

Reference Accel.

fV1 [Hz] 4.094 4.101 4.102 4.098 4.100 4.099 4.099 4.097 4.101
ξV1 [%] 0.202 0.286 0.293 0.390 0.428 0.434 0.449 0.449 0.458
AV1 [m/s2] 0.057 0.058 0.058 0.077 0.089 0.084 0.081 0.086 0.086
fT4 [Hz] 26.354 26.356 26.355 26.347 26.359 26.334 26.346 26.370 26.358
ξT4 [%] 0.649 0.649 0.649 0.541 0.615 0.635 0.580 0.583 0.541
AT4 [m/s2] 0.231 0.231 0.231 0.181 0.230 0.217 0.184 0.185 0.161

Figure 25: The DFT of the reference acceleration data (recorded from
DSV3) downsampled to 500Hz in the Mensa footbridge experiment
(black solid line) for the duration of 30 s within the selected ambient
window.

Figure 26: The DFT of the reference acceleration data (recorded from
DSV3) downsampled to 100Hz in the Mensa footbridge experiment
(black solid line), and extracted frequencies (red dashed lines) for
the duration of 30 s within the selected ambient window.

Figure 27: The DFT of the MEMS acceleration data (recorded from
IMU_Slave_03) in the Mensa footbridge experiment (black solid
line), and extracted frequencies (red dashed lines) for the duration
of 30 s within the selected ambient window.

Figure 28: The MEMS acceleration data (recorded from
IMU_Slave_03) in the Mensa footbridge experiment (blue solid line)
for the duration of 30 s within the selected ambient window, and the
DHO model fitted to the given acceleration data (red solid line).
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Figure 29: The reference acceleration data (recorded from DSV3) in
the Mensa footbridge experiment (blue solid line) for the duration of
30 s within the selected ambient window, and the DHO model fitted
to the given acceleration data (red solid line).

Therefore, the estimation was carried out using the ac-
celeration measurements of each sensor and for the en-
tire time series (see Figs. 30 and 32). This yields the esti-
mates of the modal parameters without considering the
damping ratio coefficients. By considering the damping
ratio coefficients for the selected ambient window, it is
also possible to characterise deflection eigenforms at dif-
ferent time intervals. Since the estimated amplitudes al-
ways have positive values, the estimated phase shift can
identify the sign of its corresponding amplitude. As an ex-
ample (see Figure 32), for the frequency of 13.75Hz, the dif-
ferences between the estimated phase shifts from the ac-
celeration measurements of the sensors DSV5 and DSV1

are above 180°, which change the sign of the correspond-
ing amplitude. The comparison of the estimated eigen-
forms between the MEMS and the reference accelerome-
ters demonstrates the high accuracy, robustness and reli-
ability of our estimation procedure.

6.2.2 Example based on a synthetic bridge

A vibration analysis of a synthetic bridge structure from
the BAM, located approximately 80 km from Berlin, Ger-
many, with a length of 24.0m, a width of 0.8m and a
height of 0.3m (see Fig. 33), is investigated. The measure-
ments were carried out using the MEMS accelerometers,
a geophone, the laser tracker of type Leica AT960-LR and
the IATS of type Leica MS50 with sampling frequencies
of 100Hz, 1000Hz, 1000Hz and 10Hz, respectively. How-
ever, in this study,wewill focus on the analysis of themea-
surements from the MEMS and the geophone.

To estimate the modal parameters, the acceleration
and the velocity data recorded from theMEMSand the geo-
phone, respectively, which were placed at a first quarter of
the BAM synthetic bridge. Themodal hammerwas utilised
to generate the artificial oscillation, since the aforemen-
tioned bridge was a rigid platformwithout any natural fre-
quencies.

Figures 34 and 35 depict the acceleration and the ve-
locity data acquired from the aforementioned sensors in
the Z direction. The ambient windows were selected by a

Figure 30:MEMS accelerometer: time series of the acceleration measurements (top) (selected ambient window highlighted between red
dashed lines) in which the X -axis and Y -axis represent a time (s) and amplitude (m/s2), respectively; vertical eigenforms calculated for
different eigenfrequencies (bottom). The texts for each eigenform represent estimated phase shifts (blue), eigenfrequencies (black) and
amplitudes (red) at specified positions.
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Figure 31: 3D Vertical eigenforms represented for different eigenfrequencies: the first vertical eigenform (4.07 Hz; left) and the second verti-
cal eigenform (13.75 Hz; right). Amplitudes scaled by 200 in Z-axes.

Figure 32: Reference accelerometer: time series of the acceleration measurements (top) (selected ambient window highlighted between
red dashed lines) in which the X -axis and Y -axis represent a time (s) and amplitude (m/s2), respectively; vertical eigenforms calculated for
different eigenfrequencies (bottom). The texts for each eigenform represent estimated phase shifts (blue), eigenfrequencies (black) and
amplitudes (red) at specified positions.

Figure 33: A scheme of the BAM synthetic bridge, which was mea-
sured by the MEMS accelerometers, the geophone, the laser tracker
Leica AT960-LR and the IATS Leica MS50.

step size of 10 s starting from the last peakwith high ampli-
tude and for themaximumduration of 120 s. The estimates
of the first eigenfrequency and its corresponding damp-
ing ratio coefficient for different ambient window sizes
were shown in the aforementioned figures. Table 4 repre-
sents the eigenfrequencies [Hz] and damping ratio coef-
ficients [%] estimated for the different ambient windows
using the RT-MPI algorithm, which are compared with the
analysis obtained using the SSI-COV algorithm and for
the MEMS acceleration data within the selected ambient
window shown in Figure 34. The frequencies of 3.91, 6.13
and 15.77Hz correspond to the 1st–3rd modes. The analysis
proves that the eigenfrequencies and thedamping ratio co-
efficients of theMEMSaccelerationdatawere estimated ro-
bustly, reliably andwith high accuracy in the RT-MPI algo-
rithm, as they are compared and evaluated with the anal-
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Table 4: Statistic of the frequencies (Hz) and the damping ratio coefficients (%) estimated from the MEMS acceleration data and the geo-
phone velocity data using the RT-MPI and SSI-COV algorithms for the BAM synthetic bridge.

Time [s] 24.4 34.4 44.4 54.4 64.4 74.4 84.4 94.4 104.4 114.4 Median

MEMS
RT-MPI

f1 [Hz] 3.911 3.914 3.914 3.913 3.911 3.911 3.914 3.914 3.914 3.914 3.914
ξ1 [%] 0.953 0.970 0.942 0.951 1.013 1.022 0.972 0.973 0.974 0.971 0.971
f2 [Hz] 6.132 6.131 6.129 6.137 6.119 6.121 6.134 6.135 6.136 6.136 6.132
ξ2 [%] 1.554 1.543 1.625 1.626 1.590 1.559 1.528 1.527 1.518 1.502 1.543
f3 [Hz] 15.774 15.772 15.775 15.771 15.760 15.757 15.783 15.783 15.781 15.781 15.775
ξ3 [%] 0.926 0.917 0.895 0.922 0.928 0.949 0.910 0.913 0.916 0.926 0.920

Geophone
RT-MPI

f1 [Hz] 3.912 3.916 3.917 3.918 3.918 3.918 3.918 3.918 3.918 3.919 3.918
ξ1 [%] 1.013 0.987 1.006 1.007 1.008 0.976 1.000 1.003 1.006 0.983 1.000
f2 [Hz] 6.135 6.141 6.139 6.140 6.141 6.143 6.136 6.135 6.136 6.148 6.141
ξ2 [%] 1.520 1.484 1.521 1.534 1.526 1.526 1.519 1.527 1.537 1.541 1.526
f3 [Hz] 15.764 15.769 15.773 15.772 15.777 15.775 15.769 15.769 15.770 15.780 15.772
ξ3 [%] 0.954 0.928 0.923 0.944 0.910 0.899 0.922 0.924 0.917 0.874 0.920

MEMS
SSI-COV

f1 [Hz] 3.920
ξ1 [%] 0.90
f2 [Hz] 6.131
ξ2 [%] 1.48
f3 [Hz] 15.734
ξ3 [%] 0.97

Figure 34: The MEMS accelerometer (IMU_Slave_02) measurement –
BAM synthetic bridge: time series of the acceleration measurements
(m/s2) (blue line); selected ambient window within the red dashed
lines for the duration of 120 s. The blue and orange coloured texts
stand for the estimated eigenfrequencies (Hz) and damping ratio
coefficients (%), respectively, for the first mode at the specified
positions.

ysis obtained from the geophone measurements and the
SSI-COV algorithm. The estimated eigenfrequencies devi-
ate about a maximum of 0.01 and 0.04Hz in comparison
to the analysis obtained from the geophonemeasurements
and the SSI-COV algorithm. Aswe can see, the deviation of
the estimates of the damping ratio coefficients estimated
from the both aforementioned approaches is below 0.1%,
which is within the range and is acceptable.

Figure 36 shows the nice overlaying of the DFT results
for the MEMS acceleration data and its corresponding ad-
justed data. Figure 37 illustrates the fitted DHO model to

Figure 35: The geophone measurement – BAM synthetic bridge:
time series of the velocity measurements (mm/s) (blue line); se-
lected ambient window within the red dashed lines for the duration
of 120 s. The blue and orange coloured texts stand for the estimated
frequencies (Hz) and damping ratio coefficients (%), respectively, for
the first mode at the specified positions.

the given acceleration data for the duration of 20 s within
the selected ambient window using our proposed algo-
rithm. The eigenfrequencies are clearly visible from the
peaks at the frequencies with the maximum amplitudes.
There are also three other frequencies of 18.30, 18.80 and
34.65Hz, so-called system frequencies, which have higher
amplitudes directly after imposition of the load and their
amplitudes damped very fast to the lower amplitudes in a
few seconds. This can be seen fromFigure 38, which repre-
sents all the extracted frequencies for the duration of 20 s
within the selected ambient window.
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Figure 36: The DFT of the MEMS acceleration data (recorded from
IMU_Slave_02) in the BAM synthetic bridge experiment and its cor-
responding adjusted data (black and blue solid lines, respectively)
and extracted frequencies (red dashed lines) for the duration of 20 s
within the selected ambient window.

Figure 37: The MEMS acceleration data (recorded from
IMU_Slave_02) in the BAM synthetic bridge experiment (blue solid
line) for the duration of 20 s within the selected ambient window,
and the DHO model fitted to the given acceleration data (red solid
line).

Figure 38: Representation of the extracted frequencies for the MEMS
acceleration data (recorded from IMU_Slave_02) for the duration of
20 s within the selected ambient window.

7 Conclusion
In this study, a robust and automatic time domain vibra-
tion analysis procedure was proposed that is so-called RT-
MPI technique. It allows one to estimate themodal param-
eters such as eigenfrequencies, eigenforms, damping ra-
tio coefficients as well as amplitudes robustly, reliably and
high accurately. Additionally, it allows to characterise the
deflection eigenforms at the specified time intervals with a
high accuracy. Furthermore, a good feasibility of the cost-
effective MEMS accelerometers for deformation monitor-
ing of bridge structures is demonstrated.

Two scenarios were proposed in the preprocessing
step, to guarantee a precise and reliable vibration anal-
ysis using the MEMS accelerometers. Firstly, the MEMS
accelerometers were calibrated in an automatic manner
using a KUKA youbot in a climate chamber. Thus, such
calibration procedure allows one to obtain the calibra-
tionparameters over different temperature ranges.Accord-
ing to our extensive experimental studies, the calibration
parameters obtained has a minor influence on the esti-
mated modal parameters, particularly on the frequencies
for short time intervals, for example, in the range of a few
minutes. Subsequently, it might not be necessary to per-
form a calibration for the estimation of a deflection eigen-
form at such short time intervals. However, to characterise
a eigenform for a longer period of time (e. g. 10 minutes
or more), the MEMS calibration procedure is beneficial,
since it allows one to refine the acceleration data by com-
pensating for the systematic errors, such as biases, scales
and non-orthogonality angles between the axes. The sec-
ond scenario was conducted in a controlled excitation en-
vironment using a shaker, which includes high-end refer-
ence accelerometers. Therefore, it allows one to check for
time synchronisation between the slave MEMS accelerom-
eters used. According to our analysis, the estimated phase
shifts between theMEMS accelerometers fluctuate up to 5°
in the controlled excitation experiment, which is sufficient
to characterise the eigenforms. To this end, both scenarios
assist us to select a proper and optimal MEMS accelerome-
ter for our purpose of bridgemonitoring. This is carried out
by selecting the MEMS accelerometers, which their mea-
surements have been less influenced by the systematic er-
rors such as biases. In addition, their measurements have
a reasonable time delay compared to themeasurements of
other MEMS accelerometers used.

A novel vibration analysis procedure was proposed in
the processing step, which is new regarding the automatic
ambient window selection, automatic identification of ini-
tial eigenfrequencies, robust, reliable and accurate esti-
mation of the modal parameters and a double integration.
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To initialise the frequencies used in the estimation
procedure and to avoid direct frequency peak picking from
a noisy DFT, the identification was performed in two steps
and with different parameterization of the noise power
threshold and the signal subspace dimension. In the first
step, the well-separated initial eigenfrequencies above
noise power threshold calculated are extracted. Next, all
possible combination of those frequencies identified from
the second step, which have not been selected in the first
step, are added to the vector of the initial frequencies iden-
tified from the first step, which form a new vector of initial
frequencies at each iteration.

To estimate the modal parameters, the observation
model was determined based on the DHO model, the AR
model of the coloured measurement noise and a stochas-
tic model in the form of heavy tailed family of scaled
t-distributions with an unknown degree of freedom and
with unknown scale factor. The aforementioned observa-
tion model was combined in a joint log-likelihood func-
tion and adjusted by means of the GEM algorithm. There-
fore, it allows for a self-tuning, robust and maximum like-
lihood estimation of the modal parameters. A novel cost
function is introduced, which allows to calculate a cost
value for each vector of initial eigenfrequencies at each
iteration. The estimation procedure is terminated while
no more vector of initial eigenfrequencies remains to be
included. Thus, a reliable, robust and accurate estimates
of the modal parameters are obtained using the optimal
vector of initial frequencies caused the minimum value of
the defined cost function. Thewell-defined initial eigenfre-
quencies speed up the process by fast convergence within
the adjustment procedure.

The overall analysis demonstrates that the MEMS ac-
celerometers used within our experimental studies al-
lows the identificationof all possible eigenfrequencies and
eigenforms of the bridge structures with a submillimetre
accuracy level for amplitudes, much better than 0.1Hz
for the eigenfrequencies and damping ratio coefficients
estimates better than 0.1 and 0.2% for modal and sys-
tem damping, respectively. The validation was carried out
based on the analyses of the reference sensors measure-
ments, the FEM analysis as well as the well-known SSI-
COV algorithm.

The analysis proves the superiority of the RT-MPI al-
gorithm compared to the SSI-COV algorithm, since the RT-
MPI algorithm derives the estimates of the eigenfrequen-
cies and the damping ratio coefficients based on the me-
dian values of the estimated parameters at different step
sizes of the ambient windows selected. However, the SSI-
COV algorithm can only achieve an accurate estimates of
the damping ratio coefficients, while there is a perfect free

vibration decay of the measurements. Moreover, the esti-
mates of the eigenfrequencies for both aforementioned ap-
proaches are very close together and their deviations can
be neglected.

A global optimisation can be applied to fit the DHO
model to the entire time series in future work. In addition,
the determination of initial eigenfrequencies will be im-
proved based on either a model selection problem or a sig-
nificant test. Furthermore, a correlation between closely
spaced frequencies will be taken into account. Moreover,
a pattern recognition technique can also be applied to im-
prove the ambient window selection.
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ABSTRACT: 

 

In this study, the feasibility of Micro-Electro-Mechanical System (MEMS) accelerometers and an image-assisted total station (IATS) 

for short- and long-term deformation monitoring of bridge structures is investigated. The MEMS sensors of type BNO055 from Bosch 

as part of a geo-sensor network are mounted at different positions of the bridge structure. In order to degrade the impact of systematic 

errors on the acceleration measurements, the deterministic calibration parameters are determined for fixed positions using a KUKA 

youBot in a climate chamber over certain temperature ranges. The measured acceleration data, with a sampling frequency of 100 Hz, 

yields accurate estimates of the modal parameters over short time intervals but suffer from accuracy degradation for absolute position 

estimates with time. To overcome this problem, video frames of a passive target, attached in the vicinity of one of the MEMS sensors, 

are captured from an embedded on-axis telescope camera of the IATS of type Leica Nova MS50 MultiStation with a practical sampling 

frequency of 10 Hz. To identify the modal parameters such as eigenfrequencies and modal damping for both acceleration and 

displacement time series, a damped harmonic oscillation model is employed together with an autoregressive (AR) model of coloured 

measurement noise. The AR model is solved by means of a generalized expectation maximization (GEM) algorithm. Subsequently, 

the estimated model parameters from the IATS are used for coordinate updates of the MEMS sensor within a Kalman filter approach. 

The experiment was performed for a synthetic bridge and the analysis shows an accuracy level of sub-millimetre for amplitudes and 

much better than 0.1 Hz for the frequencies. 

 

 

1. INTRODUCTION 

1.1 Motivation 

For more than 10 years now, the damage to road bridges from the 

60s and 70s, which has been increasingly noticed, has been 

attracting more and more attention from the media. Besides this, 

the monitoring of bridges with different tasks and methods came 

into the focus of attention. These questions require an 

interdisciplinary cooperation between geodesists, civil engineers 

and geotechnical engineers. 

 

Over the last decade of bridge monitoring, the authors and most 

likely other researchers as well as infrastructure operators have 

made different experiences. Initially, the scepticism towards 

permanent monitoring with geodetic sensors and methods was 

particularly high, but this methodology has gained an increasing 

reputation due to positive practical examples on selected bridges 

and other structures such as locks and dams. The impressive 

demonstration of geodetic methods soon led to the use of this 

technology in several cases: (1) for extensive rehabilitation 

measures on existing bridges, (2) to prevent early 

decommissioning, and (3) to ensure sufficient safety for people 

and the structure itself during operation. In combination with 

geotechnical monitoring procedures, this leads to undeniable 

economic advantages for the operators and for the society. 

 

However, the infrastructure operators, in particular the road 

construction authorities in Germany, were soon confronted with 

the demand for a massive expansion of the geomonitoring of 

bridges. Not only in the case of extensive rehabilitation measures, 

but also for the preventive monitoring of bridges with condition 

grades 3 according to DIN 1076. In particular, a high percentage 

of 21% of all bridges built before 1980 in Germany was affected.  

 

In particular, the high initial investment in the permanent use of 

geodetic methods caused the initial interest of the operators to 

drop considerably. The reason was seen in an economically 

unacceptable permanent monitoring of dilapidated, severely 

damaged or endangered bridges. And as long as nothing serious 

happened, the existing methodology for bridge monitoring 

seemed to be sufficient and in particular economically justifiable. 

 

The increasing number of critical bridge structures with a 

simultaneous rehabilitation backlog and a lack of experienced 

experts for the inspection and assessment of bridges suggests the 

question of whether there are not effective and inexpensive 

methods that only initiate a visual inspection or precise geodetic 

monitoring of bridges when verifiable indications are available 

through efficient and cost-effective monitoring procedures. Then 

the targeted and detailed inspection and monitoring of structures 

classified as critical could be initiated as required. 

 

The authors' goals are the self-sufficient use of a larger number 

of cost-effective and redundantly arranged sensors (here: Micro-

Electro-Mechanical System (MEMS) technology from the 

automotive industry) and the intelligent and continuous 

evaluation of data permanently obtained from potentially critical 

bridge structures based on frequency- and time-domain analysis 

methods. The following partial goals are in focus: (1) early and 
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timely detection of variations of the modal parameters relevant 

for the structural condition of the bridge (e.g. natural frequencies 

and eigenforms), (2) permanent control and long-term statements 

for structural deformations and (3) allocation of deformations to 

the relevant influencing variables on the building deformation. 

 

Therefore, this paper is organized as follows: The ongoing 

section gives a brief literature overview. Section 2 introduces the 

sensor specifications, the measurement set-up and the data 

acquisition. In Section 3 the suitability analysis of triaxial MEMS 

accelerometers for the purpose of bridge monitoring is discussed. 

The robust and automatic identification of modal parameters is 

introduced in Section 4. Section 5 presents the fusion of MEMS 

and image-assisted total station (IATS) data for a displacement 

analysis based on Kalman filtering. The realised experiment in 

Section 6 is sketched for a synthetic bridge, which is constructed 

by the Bundesanstalt für Materialforschung und -prüfung 

(BAM). The results of the experiment for the BAM synthetic 

bridge using the MEMS and the IATS are discussed in Section 7. 

The conclusion and the outlook on future work is given in 

Section 8. 

 

1.2 Literature review 

For the monitoring of long-term movements of bridges (induced 

by foundation settlement, creep, and stress relaxation) or short-

term movements (caused by wind and traffic) (Duff and Hyzak, 

1997), different contact-based or non-contact-based 

measurement methods can be utilised. As a surveying engineer's 

point of view, typically geodetic measurement systems, such as 

the global navigation satellite system (GNSS), robotic total 

stations (RTS), IATS, terrestrial laser scanner (TLS), laser 

tracker and/or other sensors such as accelerometers or digital 

cameras, can be used in the context of vibration monitoring of 

bridge structures. In the following, a brief and exemplarily 

overview of the state of the art based on a literature review is 

given. Roberts et al. (2004) utilised the hybrid measurement 

system consisting of a GNSS with a sampling frequency of 10 Hz 

and a triaxial accelerometer with sampling frequency of 200 Hz 

for a bridge deflection monitoring. Both measurement systems 

were complementary to each other since the GNSS 

measurements were used to suppress the accumulation drift of the 

acceleration data over time through zero velocity updates (ZUPT) 

and coordinate updates (CUPT). In order to filter out the high 

frequency noise, static test measurements with the 

accelerometers were carried out to identify those spurious 

frequencies induced by the sensor noise. Subsequently, the 

designed low-pass or band-pass filters were defined to suppress 

those frequencies with respect to the structural specifications and 

the results of the aforementioned static test. This is a challenging 

issue while the natural frequencies of bridges are located in the 

same band as those spurious frequencies. In addition, the hybrid 

measurement suffers from the drawback that the accuracy of the 

GNSS measurements are degraded due to multipath and cycle 

slips errors or poor satellite coverage. On the other hand, the 

state-of-the-art GNSS measurements cannot detect submillimetre 

displacement changes induced by higher natural frequencies. 

Neitzel et al. (2012) performed a vibration analysis of a bridge 

for a single point located along the bridge using a sensor network 

of accelerometers with a sampling frequency of 600 Hz, a TLS 

(Zoller+Fröhlich Imager 5003) with a sampling frequency of 

7812 Hz in single-point measurement mode and a terrestrial 

interferometric synthetic aperture radar (t-InSAR) with a 

sampling frequency of 200 Hz for a validation.  In order to 

overcome the deficiency of the TLS in detecting such small 

displacements in the submillimetre range, an averaging over 

100 measurements was carried out to reach a practical sampling 

frequency of 78.12 Hz. Psimoulis and Stiros (2013) used the RTS 

with non-constant sampling rate measurements in a range of 5-

7 Hz for vibration monitoring of a short span railway bridge. 

Ehrhart and Lienhart (2015a) performed displacement and 

vibration monitoring of a footbridge structure by capturing video 

frames from the telescope camera of an IATS for a circular target 

marking rigidly attached to the structure. Ehrhart and Lienhart 

(2015b) and Lienhart et al. (2017) were carried out vibration 

analysis of a footbridge structure using an IATS of type Leica 

MS50 with a sampling frequency of 10 Hz, an RTS of type Leica 

TS15 with a sampling frequency of 20 Hz and an accelerometer 

of type HBM B12/200 with a sampling frequency of 200 Hz 

based on measurements of the circular target markings and 

structural features such as bolts of the bridge structure. 

Omidalizarandi et al. (2018) used an IATS of type Leica MS50 

with sampling frequency of 10 Hz for displacement and vibration 

analysis of a footbridge structure. Schill and Eichhorn (2019) 

employed a phase-based profile scanner of type Zoller+Fröhlich 

Profiler 9012 with a sampling frequency of 50 Hz for 

deformation monitoring of the bridge structures. 

 

2. SENSOR SPECIFICATIONS, MEASUREMENT SET-

UP AND DATA ACQUISITION 

The MEMS sensors of type BNO055 from the Bosch company 

have been used in this study. It includes a triaxial 14-bit 

accelerometer, a triaxial 16-bit gyroscope and a triaxial 

magnetometer, which allows to acquire acceleration, rotation and 

magnetic field strength, respectively (see manufacturer's data 

sheet for details in Bosch (2016)). However, we merely benefit 

its accelerometer sensor to record the acceleration data in three 

main directions of a bridge structure (i.e. longitudinal, lateral and 

vertical directions). Its maximum sampling frequency is 200 Hz. 

But, we set it to 100 Hz by considering typical eigenfrequency 

ranges of the bridge structures between 0.1 up to minimum 

25 Hz, which is sufficient in the light of Nyquist–Shannon 

sampling theorem. Acceleration ranges can be defined in the 

ranges of ±2𝑔/±4𝑔/±8𝑔/±16𝑔, which is here set to ±2𝑔. At 

the moment, a geo-sensor network of the MEMS accelerometers 

includes a master node and three measuring nodes that are so 

called master and slaves, respectively.  

 

The measurement starts by triggering the slave sensors from the 

master sensor via cable. The acceleration measurements are 

recorded into the SD memory card in blocks. Each memory block 

has a time stamp transmitted by the master, which is provided by 

an integrated low-cost GNSS equipment. Both, the master and 

the slaves contain a Bosch BNO055 accelerometer and a 

control/storage unit. The components are mounted in an 

aluminium housing, which protects the electronics against 

temperature and humidity changes, wind and rain by means of a 

suitable design.  

 

To perform evaluation and validation of the estimated modal 

parameters from the MEMS accelerometers, a highly accurate 

reference sensor is employed. We have used a laser tracker of 

type Leica AT960-LR with a maximum permissible error of 

15𝜇m + 6𝜇m/m for a 3D point with a sampling frequency of 

1000 Hz (Hexagon Metrology, 2015). Therefore, the use of the 

laser tracker as a reference sensor allows high measuring 

accuracy with a high and precise measuring frequency. 

 

An IATS of type Leica Nova MS50 MultiStation is utilized to 

perform 1D CUPT of the acceleration data acquired by the 

MEMS accelerometers in the vertical direction. The angular 

accuracy is 1" according to ISO 17123-3. The outputs of the 

IATS are polar measurements, which can be used to calculate 
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Cartesian coordinates. Such 3D coordinates of the measured 

object are not practically suitable to perform displacement 

analysis in a sub-millimetre range. To overcome this problem, a 

1D displacement time series is generated based on continuous 

extraction of the passive target centroids from the video frames 

captured from the embedded on-axis telescope camera of the 

IATS with practical sampling frequency of 10 Hz. The 

conversion of the 1D displacement changes from the pixel unit to 

the metric unit is carried out based on a vertical angular 

conversion factor, target object size as well as a slope distance 

measured to the aforementioned passive target. For more 

information regarding the calibration procedure of the vertical 

angular conversion factor, please refer to cf. Ehrhart and Lienhart 

(2015a) or Omidalizarandi et al. (2018). It should be noted that 

merely 1D displacement time series has been generated using the 

aforementioned video frames due to availability of only one 

IATS at time of the measurements, which subsequently allows to 

perform just 1D CUPT in this study. 

 

The passive target centroids are extracted based on the work of 

Omidalizarandi et al. (2019a). The used target pattern comprises 

a circular border with four intersected line patterns (Figure 1). 

The procedure starts by manual initial sighting to the target at the 

beginning of the measurements and measuring its corresponding 

slope distance. Next, the images obtained from captured video 

frames are cropped based on a target object size as well as the 

slope distance. The median blur and bilateral filtering are applied 

for the purpose of noise reduction and sharp edge preservation. 

The line segment detector (LSD) (Grompone von Gioi et al., 

2012) is applied to extract line features. A histogram of azimuth 

of the extracted lines is calculated to select the lines with 

maximum azimuth bin values in an iterative procedure. 

Afterwards, the RANSAC algorithm is applied to those LSD 

lines with maximum deviation less than 15° from the selected 

lines from the previous step. A Huber-robust line fitting (Kaehler 

and Bradski, 2016) is then applied to those LSD lines within a 

predefined buffer width around the RANSAC lines to increase 

the robustness and reliability of the extracted lines. To this end, 

the extracted lines are intersected and then clustered based on 

their proximity by considering a threshold of 2 pixels. At the end, 

the maximum cluster is selected and its weighted average value 

results in the final intersection point. For further details the reader 

is referred to Omidalizarandi et al. (2019a). 

 

Figure 1 depicts the passive target attached to a frontal side of the 

BAM synthetic bridge in the vicinity of one the MEMS 

accelerometers, which is mounted at the bottom of the 

aforementioned synthetic bridge. In addition, a corner cube 

reflector is mounted to be measured by the laser tracker. 

 

 

Figure 1. A passive target (located inside the red ellipse) 

attached to the BAM synthetic bridge, which is close to the 

MEMS (located inside the cyan ellipse) and corner cube 

reflector (located inside the green ellipse). 

 

3. SUITABILITY ANALYSIS OF TRIAXIAL MEMS 

ACCELEROMETERS 

The acceleration measurements recorded from the MEMS 

accelerometer yields accurate results over short time intervals but 

may suffer from accuracy degradation with time in particular for 

absolute position estimates calculated from the double 

integration. Therefore, due to combined effects of MEMS related 

systematic and random errors such as noises, biases, drifts and 

scale factor instabilities on its long-term measurements, a 

calibration procedure is carried out to compensate the systematic 

errors and to provide reliable measurement results.  

 

To select a proper and optimal MEMS sensor despite of 

considering purchase price of the sensor and their sampling 

frequency, two scenarios are proposed. Firstly, a robust and 

reliable calibration procedure is developed and implemented to 

estimate the calibration parameters including three biases, three 

scale factors and three non-orthogonality angles between the axes 

in an automated manner. For this purpose, the calibration 

functions are defined based on common six-position static 

acceleration tests (cf. Shin and El-Sheimy, 2002) using a KUKA 

youBot (Figure 2). The used youBot enables us to perform 

calibration automatically for fixed positions and for certain time 

intervals. To have a better realisation of changes of the 

calibration parameters, the calibration procedure is carried out in 

a climate chamber over different temperature ranges between     

10℃ to 30℃. Higher or lower temperatures were not possible due 

to climate chamber and youBot restrictions. To this end, such a 

calibration procedure allows to avoid in-situ calibration by 

estimating the calibration parameters based on the interpolation 

of the parameters estimated at different temperatures in the 

controlled environmental experiment. Due to the use of only 1D 

acceleration data in this study, the calibration of the non-

orthogonality angles between the three axes may not play an 

important role. However, in our future research the 3D 

acceleration data in all three directions can be considered. Further 

explanation regarding the developed robust calibration procedure 

is also part of our future publication and it is out of scope of this 

study. 

 

 

Figure 2. A calibration experiment using a KUKA youBot 

inside the climate chamber at the Institute of Thermodynamics, 

Leibniz University Hannover. 

 

Secondly, controlled excitation experiments are conducted at the 

laboratory environment using a high-precision shaker (Figure 3). 

The advantages of such experiment are twofold: (1) it allows us 

to estimate harmonic oscillation parameters such as frequency, 

amplitude, damping ratio coefficient as well as phase shift and to 

compare them with those estimated parameters either from other 

slave MEMS accelerometers or from the reference sensors such 

as reference accelerometers or laser tracker. (2) The time 
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synchronisation between MEMS accelerometers can be 

compared together based on the estimated phase shifts.  

 

The measurements were performed at frequencies of 5, 10 and 

20 Hz. The shaker includes a highly accurate reference 

accelerometer recording the acceleration measurements with a 

sampling rate of 1024 Hz for the duration of 5 minutes. 

 

 

Figure 3. A controlled excitation experiment at the Institute of 

Dynamics and Vibration Research, Leibniz University 

Hannover to validate the time synchronisation between all three 

slave MEMS accelerometers. 

 

f  

(Hz) 

A 

 (m/s2) 

A  

(mm) 
𝜑  
(°) 

|𝑔| 
(m/s2) 

𝑝 

5.0027 0.3449 0.3491 5.7263 9.82 71 

10.0054 1.5612 0.3950 153.204 9.82 88 

20.0109 5.8159 0.3679 101.052 9.88 81 
 

f  

(Hz) 

A 

 (m/s2) 

A  

(mm) 
𝜑  
(°) 

|𝑔| 
(m/s2) 

𝑝 

5.0027 0.3512 0.3555 5.6675 10.42 71 

10.0054 1.5909 0.4025 153.147 10.42 88 

20.0109 5.9290 0.3751 100.859 10.53 81 

Table 1. Statistics of the controlled excitation experiment for a 

MEMS (IMU_slave_03) measurements with (top) and without 

(bottom) applying calibration parameters. 

 

 

Figure 4. Overlaying of time series of the acceleration data 

recorded from all three slave MEMS sensors for a duration of 

1 s and at the frequency of 20 Hz within the controlled 

excitation experiment. 

 

Figure 4 shows the overlaying of time series of the acceleration 

data recorded from all three slave MEMS sensors for a duration 

of 1 s and at the frequency of 20 Hz. As we can see from this 

figure, the peaks of the measurements obtained from the two of 

the MEMS sensors (IMU_slave_02 and IMU_slave_04) have 

been better matched compared to another one (IMU_slave_03). 

However, the time delay between their measurements is 

approximately 0.01 s, which is still acceptable for our application 

in this study.  

 

The analysis of the second scenario is exemplarily provided in 

Table 1 for one slave MEMS accelerometer, namely, 

IMU_slave_03 in two cases: (1) with and (2) without applying 

the calibration parameters. The estimated parameters include the 

frequency (Hz), the amplitudes in both units of (m/s2) and (mm), 

the phase shift (°), the calculated absolute gravity value based on 

the calibration parameters (m/s2) and an autoregressive (AR) 

model order, for which the estimation procedure is described in 

Section 4. Further analyses show that the phase shifts between 

sensors vary between 2 to 5 degrees. Moreover, the differences 

of approximately 0.003 Hz for the frequency of 5 Hz and 0.01 Hz 

for the frequency of 20 Hz in comparison with the nominal 

frequency values are realised. Such differences prove that the 

time synchronisation has greater influence at higher frequencies. 

Additionally, the analyses prove a very less influence of the 

calibration parameters on the estimated modal parameters for a 

short period of time. 

 

4. ROBUST AND AUTOMATIC IDENTIFICATION OF 

MODAL PARAMETERS 

To inspect the changes in the global dynamic behaviour of the 

structure such as natural frequencies, mode shapes (i.e. 

eigenforms) and modal damping, a proper functional model 

should be identified. To tackle this problem and to estimate 

amplitudes as well as frequencies for displacement and vibration 

analysis, a linear regression model in terms of a sum of sinusoids 

and the AR model of the coloured measurement noise were 

previously employed and solved by means of the generalized 

expectation maximization (GEM) algorithm (Omidalizarandi et 

al. 2018). However, the estimated amplitude might be influenced 

by the damping characteristics of the structure, which the 

previous undamped model does not capture. Therefore, the 

deterministic model is extended to a damped harmonic oscillation 

(DHO) introduced in Amezquita-Sanchez and Adeli (2015) and 

applied by Kargoll et al. (2019) to estimate frequency, amplitude, 

phase shift as well as damping ratio coefficient. 

 

We modelled the given acceleration measurements 𝑙1,...,𝑙𝑛 

according to the DHO model  

 

𝑙𝑡  =  
𝑎0

2
+ ∑[𝑎𝑗 cos(2𝜋𝑓𝑗√1 − 𝜉𝑗

2 𝑥𝑡)

𝑀

𝑗=1

 

                                   + 𝑏𝑗 𝑠𝑖𝑛(2𝜋𝑓𝑗√1 − 𝜉𝑗
2 𝑥𝑡)] 

                                   ×  𝑒𝑥𝑝(−2𝜋𝜉𝑗𝑓𝑗𝑥𝑡)  + 𝑒𝑡                        (1) 

 

where the time instances 𝑥1, . . . , 𝑥𝑛 correspond to the ambient 

window of the acceleration time series and where the undamped 

frequencies 𝑓1,...,𝑓𝑀, the coefficients 𝑎0,𝑎1,...,𝑎𝑀, and 𝑏1,...,𝑏𝑀 

as well as damping ratio coefficients 𝜉1,...,𝜉𝑀 are treated as 

unknown parameters. Subsequently, the damped frequencies are 

calculated by 𝑓𝑗𝑑  =  𝑓𝑗√1 − 𝜉𝑗
2. It should be noted that the 

acceleration measurements are subtracted from their mean value 

for each selected ambient window. 

 

To deal with the strong coloured measurement noise in the 

acceleration measurements, we assume the random deviations 

(𝑒𝑡) are autocorrelated through a covariance-stationary AR 

process as proposed by Kargoll et al. (2018) 
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                     𝑒𝑡  =  𝛼1𝑒𝑡−1 + . . . +𝛼𝑝𝑒𝑡−𝑝  + 𝑢𝑡                           (2) 

 

in which the coefficients 𝜶𝑻  =  [𝛼1, . . . , 𝛼𝑝]  are also considered 

as unknown parameters. Since we expect numerous outliers of 

different magnitudes to be present in the data, the white noise 

components 𝑢1,...,𝑢𝑛 of that AR noise model are assumed to 

follow the centred and scaled t-distribution 𝑡𝜈(0, 𝜎2), where the 

degree of freedom 𝜈 and scale factor 𝜎2 are treated as further 

parameters to be estimated, as suggested by Kargoll et al. (2018).  

 

Equation (1) only achieves reasonable results while the 

measurements do not have a significant drift. Therefore, 

acceleration measurements should be detrended by means of the 

calibration parameters to compensate a linear bias drift. 

However, this method is not applicable to the displacement time 

series obtained by using the IATS. Alternatively, the offset 
𝑎0

2
 in 

Equation (1) can be replaced by 𝑐0 + 𝑐1𝑥𝑡 to account for the linear 

drift either of the acceleration or displacement measurements. 

This model can be made more complex for displacement time 

series with higher orders, which extensions are, however, beyond 

the scope of this study. 

 

To estimate the model parameters by means of the 

aforementioned GEM algorithm, the number 𝑀 of Fourier 

frequencies and the model order 𝑝 of the AR process are specified 

beforehand. The required initial frequency values 𝑓1
(0)

,..., 𝑓𝑀
(0)

 

and the AR model order are defined as explained in 

Omidalizarandi et al. (2019b). In addition, the initial damping 

ratio coefficients are set to 0.  

 

5. FUSION OF MEMS AND IATS FOR 

DISPLACEMENT ANALYSIS BASED ON KALMAN-

FILTERING 

Typically, the 3D coordinate measurements of a state of the art 

IATS are at the level of 1 mm accuracy or above depending on 

the distance to the object, which are not sufficiently accurate to 

characterise such small displacements at the level of sub-

millimetre ranges for the application of bridge displacement 

monitoring. To achieve this goal in this study, the 1D 

displacement time series generated from the passive target 

centroid detection are fused with the acceleration measurements 

recorded from one of the MEMS accelerometers. Such a data 

fusion is also beneficial to overcome the 1D displacement drift of 

the MEMS accelerometer over time. For this purpose, the 1D 

CUPT is performed based on an iterative extended Kalman filter 

(iEKF). The Kalman filter is a recursive optimal filter which is 

carried out in three steps of initialisation, prediction and filtering. 

For more information in this regard, please refer to Kalman 

(1961). 

 

The state vector 𝒚(𝒌) at epoch k is described as 

 

                              𝒚𝑘 = [𝑑𝑘 , 𝑣𝑘 , 𝑎𝑘]                                          (3) 

 

here 𝑑𝑘 , 𝑣𝑘 , 𝑎𝑘 are the displacements, the velocities and the 

accelerations at the epoch k in the vertical direction. Since the 

acceleration and displacement are acquired with different 

sampling frequencies of 100 Hz and 10 Hz, respectively, the 

prediction step allows to compensate the displacement gaps. 

Alternatively, the displacement time series can be reconstructed 

from the estimated DHO model parameters to fill out those 

displacement gaps with resampling. The predicted state vector 

(𝒚
𝑘+1

) at epoch k+1 is calculated based on the linear system 

equation as 

               𝒚
𝑘+1

=  𝜱𝑘 .  𝒚̂𝑘  +  𝑮𝑘 .  𝒘𝑘  +  𝑳𝑘 .  𝒖𝑘                     (4) 

 

where 𝜱𝑘 is the transition matrix calculated from the dynamic 

model of the system (i.e. equations of motion) with respect to the 

state vector parameters,  𝒚̂𝑘 is the updated state vector at epoch 

k, 𝑮𝑘 and 𝒘𝑘 are the matrix and vector of disturbing variables or 

noises, 𝑳𝑘 and 𝒖𝑘 are the matrix and vector of acting forces. It 

should be noted that the influence of acting forces is neglected to 

simplify the problem.  
 

The observation model is determined as 

 

                          𝒍𝑘+1 = 𝐀𝑘+1. 𝒚̂𝑘+1 + 𝒗𝑘+1 ,      

                                                  

                     [𝑑
𝑘+1

𝑎𝑘+1]  =  [
1 0 0
0 0 1

] [
𝑑𝑘+1

𝑣𝑘+1

𝑎𝑘+1

] + 𝒗𝑘+1                     (5)                                             

 

where l is the observation vector, A is the design matrix and 𝒗 is 

the vector of residuals. The transition matrix is then given by 

integration with respect to the state vector parameters as 

 

                       𝜱𝑘  = [
1 ∆𝑡

1

2
∆𝑡2

0 1 ∆𝑡
0 0 1

]                                                (6) 

 

where ∆𝑡 is the sampling period. The covariance matrix of the 

process noise is defined based on Wiener-sequence acceleration 

as described by Bar-Shalom et al. (2001)  
 

                       𝜮𝒘𝒘  =

[
 
 
 
 

1

20
∆𝑡5 1

8
∆𝑡4 1

6
∆𝑡3

1

8
∆𝑡4 1

3
∆𝑡3 1

2
∆𝑡2

1

6
∆𝑡3 1

2
∆𝑡2 ∆𝑡 ]

 
 
 
 

𝑞̃                        (7) 

 

where 𝑞̃ is the ratio between the system noise and observation 

noise. The covariance matrix of the observations is given by 

 

                      𝜮𝒍𝒍  = [
𝜎𝑑

2 0

0 𝜎𝑎
2]                                                   (8) 

 

where 𝜎𝑑 and 𝜎𝑎 are the a-priori standard deviations of the 

displacements and the accelerations. It should be noted that the 

noise behaviour of the MEMS acceleration data at rest and for its 

3-axes (i.e. X, Y and Z) are approximately about 0.016, 0.018 and 

0.045 m/s2, respectively. However, the uncertainty for its Z axis 

at motion (i.e. under oscillation imposed by the modal hammer) 

is about 0.013 m/s2 according to the analysis performed for the 

synthetic bridge described in Section 6. Subsequently, the a-

priori standard deviations are set to 0.0001 m and 0.013 m/s2, 

respectively. For further details concerning the iEKF steps, 

please refer to cf. Omidalizarandi and Zhou (2013). 

 

6. EXPERIMENTAL SET-UP 

A kinematic deformation analysis of the BAM synthetic bridge 

structure, located in approximately 80 km distance from Berlin, 

Germany, with a length of 24.0 m, a width of 0.8 m and a height 

of 0.3 m (Figure 5) is investigated. The measurements were 

carried out using the MEMS accelerometers, the laser tracker 

Leica AT960-LR and the IATS (Leica MS50) with sampling 

frequencies of 100 Hz, 1000 Hz and 10 Hz, respectively. 

 

To identify all possible mode shapes of the aforementioned BAM 

synthetic bridge, the three slave and one master MEMS 
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accelerometers were attached at certain positions and at the first 

half of the synthetic bridge due to the symmetric behaviour of the 

mode shapes. Therefore, the three slave MEMS accelerometers 

are placed at the first, second and third quarters of the synthetic 

bridge. The master MEMS accelerometer is placed at the first 

quarter. 

 

 

Figure 5. The BAM synthetic bridge measured by the MEMS 

accelerometers, the laser tracker and the IATS. 

 

Since the BAM synthetic bridge is a rigid platform without any 

natural frequencies, therefore an artificial oscillation was 

generated using a modal hammer. 

 

As mentioned before, the acceleration measurements were 

acquired from all three slave MEMS accelerometers in three 

directions. However, only the acceleration measurements in the 

Z direction were considered. 

 

7. RESULTS FOR THE MEMS ACCELEROMETERS 

AND THE IATS 

Figure 6 depicts the displacement time series obtained from the 

video frames captured by the telescope camera of the IATS at a 

centre position of the BAM synthetic bridge for a duration of 

10 minutes. The large peaks illustrate the time instances while the 

external forces were imposed by the modal hammer. A steep rise 

at approximately 310 s is due to the bridge movement as it was 

visible from displacement time series obtained from the IATS 

and the laser tracker as well. 

 

 

Figure 6. Displacement time series at the centre position of the 

BAM synthetic bridge, which was obtained from the video 

frames captured by the telescope camera of the IATS (blue 

solid), and selected ambient window of 35 s (red dashed lines). 

 

Figure 7 shows the discrete Fourier transform (DFT) of the 

MEMS acceleration data. As we can see in this figure, it is very 

challenging to directly extract dominant eigenfrequencies from 

the DFT due to numerous spurious frequencies.  

Figure 8 illustrates the time series of the 1D displacements from 

the IATS and its adjusted data within the selected ambient 

window. Figures (9-10) depict the eigenfrequencies estimated for 

the acceleration data from the MEMS and for the displacement 

data from the IATS. As we can see in Figure 9, there might be a 

correlation between closely spaced frequencies of 5.73 and 5.33 

Hz, which have amplitudes approximately close to the noise level 

of the acceleration data.  

 

 
Figure 7. The DFT of the MEMS accelerations for the selected 

ambient window of 35 s shown in Figure 6. 

 

 

Figure 8. The time series of the displacements from the IATS 

within the selected ambient window (blue) and their adjusted 

observations (red). 

 

 

 
Figure 9. Identified frequencies from the MEMS acceleration 

data within the selected ambient window. 
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Figure 10. Identified frequencies for the displacement data from 

the IATS within the selected ambient window by considering 

the linear drift of the offset. 

 

In real applications of bridge structures, the natural frequencies 

might be changed but may not be diminished, which can be seen 

for the frequency of 3.3 Hz. In contrast, a system frequency 

caused by the imposition of the load will be diminished in a few 

seconds such as for the frequency of 27.46 Hz extracted from the 

acceleration data. The impact of the linear drift offset for the 

displacement data obtained from the IATS is visible for the lower 

frequency of 0.22 Hz. The frequency of 4.46 Hz for the 

displacement data from the IATS shows a superimposition of 

higher frequencies than 5 Hz, which is related to the deficiency 

of the IATS and its low sampling frequency. 

 

In order to obtain the acceleration measurements at the metric 

unit, a double integration is performed within the selected 

ambient window based on the work of Omidalizarandi et al. 

(2019b). Subsequently, the displacements are estimated for each 

identified eigenfrequency by fitting the DHO model to the double 

integrated adjusted acceleration data (Figure 11). 

 

 

Figure 11. The calculated displacements for the adjusted MEMS 

acceleration data within the selected ambient window based on: 

double integration (red) and fitted DHO model (blue). 

 

An eigenfrequency of 3.3 Hz is detected precisely from the 

measurements of the MEMS, the IATS and the laser tracker as 

we can see in Table 2. The double integration accuracy might be 

degraded for the calculated displacements obtained from the 

MEMS acceleration data for a duration of 10 s or less in case of 

high load impact on the structure. This is due to the fact that the 

modal parameters might not be identified reliably for such short 

time interval. Furthermore, the analysis shows that the estimated 

damping ratio coefficients from the IATS and the laser tracker 

are not as accurate as from the MEMS due to superimposition of 

those higher frequencies with small amplitudes. The reason lies 

in the uncertainty of the measurements, which are higher than the 

amplitudes of the oscillations. 

 

Time: 15 s 
f  

(Hz) 

A  

(mm) 

𝜉 

(%) 

MEMS 3.3278 0.1064 1.30 

IATS 3.2968 0.1357 2.27 

Laser tracker 3.3190 0.1263 1.61 
 

Time: 35 s 
f  

(Hz) 

A  

(mm) 

𝜉 

(%) 

MEMS 3.3242 0.0977 1.20 

IATS 3.3214 0.1217 1.97 

Laser tracker 3.3181 0.1282 1.64 

Table 2. Statistics of estimated modal parameters for the MEMS 

accelerometer, the IATS and the laser tracker measurements for 

a duration of 15 s (top) and 35 s (bottom) within the selected 

ambient window and at the centre position of the BAM 

synthetic bridge. 

 

In order to perform a data fusion of different measurements 

obtained from different sensors, a time synchronisation between 

the sensors plays an important role. In an ideal case, the time 

synchronisation should be performed at the hardware level. 

However, in this study, as described in Ferrari et al. (2016), to 

obtain better synchronisation between the measurements and to 

calculate a time delay between them, a cross-correlation is carried 

out. But, this is a challenging issue since the outputs of the sensor 

measurements are in different units. To tackle this problem, the 

adjusted MEMS acceleration data are converted to a 

displacement vector at the metric unit based on a double 

integration for a duration of 35 s within the selected ambient 

window. Next, the adjusted MEMS acceleration data and the 

IATS displacement data are resampled to the sampling frequency 

of the laser tracker. Then the cross-correlation between the IATS 

and MEMS with respect to the laser tracker is calculated. The 

analysis shows that a maximum cross-correlation between the 

MEMS and the laser tracker (10.909) is slightly higher than the 

maximum cross-correlation between the IATS and the laser 

tracker (10.631) (see Fig. 12). This makes sense due to extraction 

of higher eigenfrequencies from the MEMS compared to the 

IATS.  

 

 

Figure 12. Cross-correlation between the displacement time 

series obtained from the IATS data, the double integration of 

the adjusted MEMS acceleration data and the laser tracker data 

for a duration of 35 s within the selected ambient window. 

 

Figure 13 depicts an overlay of the displacement time series from 

aforementioned sensors after performing the time 

synchronisation. It shows how the peaks nicely fit together. 

Additionally, as we can also see from this figure, the amplitudes 
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of the peaks in the laser tracker and the MEMS are slightly higher 

than the IATS, which is due to the extracting the higher 

eigenfrequencies. 

 

 

Figure 13. Overlaying of displacement time series obtained 

from the IATS data, the double integration of the adjusted 

MEMS acceleration data and the laser tracker data within the 

selected ambient window. 

 

The iEKF is conducted by data fusion of the 1D displacements 

and 1D acceleration measurements with practical sampling 

frequencies of 10 Hz and 100 Hz, respectively. The 1D 

displacements obtained by the IATS are considered for a 1D 

CUPT in the filtering step of the iEKF to minimize the 

displacement drift resulting from the double integration of the 1D 

accelerations.  In order to perform iEKF, two alternative 

solutions were investigated. Firstly, the raw measurements from 

the 1D displacement and 1D acceleration datasets are included 

into the iEKF with different sampling frequencies by performing 

a multi-rate configuration similar to the work of Smyth and Wu 

(2006) and Ferrari et al. (2016). In this case, innovation and 

design matrices are adaptively updated to be compatible with the 

raw measurement sampling frequencies (Figure 14). 

 

 

Figure 14. The displacements analysis based on iEKF and the 

multi-rate configuration using the displacement and acceleration 

measurements: the displacements obtained from the IATS 

(blue), the predicted displacements (green) and the filtered 

displacements (red). 

 

In the second solution, the resampled displacement data from the 

IATS as well as the raw acceleration data are included into the 

iEKF. In this case, more displacement observations than the raw 

displacement observations are considered (Figure 15).  

 

However, the prior knowledge about a-posteriori standard 

deviations of the displacement and acceleration data obtained 

from the estimation procedure allows to have more reliable 

estimation within the iEKF procedure. Consequently, such 

filtering procedure enables us to avoid the drift of the 

displacements estimates derived from the MEMS acceleration 

data over a longer period of time (few minutes or higher) by 

means of the displacement data from the IATS. In our future 

work, the linear drift of the offset in the DHO model can be 

extended to higher order polynomials to enhance the generality 

of the proposed algorithm. 

 

 

 

Figure 15. The displacements analysis based on iEKF and 

performing the resampling using the displacement and 

acceleration measurements (top) and its magnification (bottom): 

the displacements obtained from the IATS (blue), the predicted 

displacements (green) and the filtered displacements (red). 

 

8. CONCLUSIONS 

 

In this study the good feasibility of MEMS accelerometers 

supported by an IATS for short- and long-term deformation 

monitoring of bridge structure is shown. 

 

To allow for a precise and reliable deformation monitoring of 

oscillating structures with less accuracy degradation over time, 

two scenarios are proposed. Firstly, a calibration procedure for 

MEMS accelerations is conducted to obtain calibration 

parameters, which enables us to later refine the measurements in 

a real monitoring of bridge structures. It is carried out using a 

KUKA youbot for fixed positions in a climate chamber and over 

different temperature ranges. However, the analysis reveals a 

minor influence of the calibration parameters on the estimated 

parameters for the short time interval (few minutes). The second 

scenario is performed to estimate the modal parameters in a 

controlled excitation experiment using a shaker. In addition, it 

enables us to observe the time synchronisation between the three 

used MEMS accelerometers. To this end, both scenarios support 

the selection process of finding the proper and optimal MEMS 

accelerometers. 

 

To perform a vibration analysis, the observation model is 

determined based on a DHO model, an auto-correlation model in 

the form of an AR process as well as a stochastic model in the 
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form of heavy tailed family of scaled t-distributions with an 

unknown degree of freedom and with unknown scale factor. The 

analyses prove that such a combination allows for robust, reliable 

and accurate estimation of the modal parameters. 

  

The overall analysis shows that the MEMS used within the 

experiment are capable to identify all possible eigenfrequencies 

of the synthetic bridge structure with an accuracy level of sub-

millimetre for amplitudes and much better than 0.1 Hz for the 

frequencies.  

 

A precise and reliable double integration of the acceleration 

measurements is carried out for a short time (i.e. 15 - 35 s) to 

obtain displacement changes within the selected ambient 

window. 

 

To overcome a displacement drift of the MEMS accelerometers 

in the vertical direction, the 1D CUPT is performed based on an 

iEKF by involving displacement time series generated from the 

video frames of the IATS. The resampling of the displacement 

data based on their estimated modal parameters significantly 

improves the results.  

 

In the future work, a possible correlation between closely spaced 

frequencies will be investigated. The estimation procedure for the 

displacement data is improved by extending the offset in the 

DHO model to higher order polynomials. Furthermore, a global 

optimization is applied to estimate the modal parameters for a 

longer period of time. Additionally, the influence of the 

calibration parameters on the estimated modal parameters within 

the long-term interval is investigated. 
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ABSTRACT 

In this contribution, a procedure for deciding, whether the oscillation of a surveyed structure is damped or 
not, is proposed. For this purpose, two bootstrap tests under fairly general assumptions regarding auto-
correlation and outlier-affliction of the random deviations (“measurement errors”) are suggested. These tests 
are derived from an observation model consisting of (1) a parametric oscillation model based on trigonometric 
functions, (2) a parametric auto-correlation model in the form of an autoregressive process, and (3) a parametric 
stochastic model in terms of the heavy-tailed family of scaled t-distributions. These three levels, which generalize 
current observation models for oscillating structures, are jointly expressed as a likelihood function and jointly 
adjusted by means of a generalized expectation maximization algorithm. Closed-loop Monte Carlo simulations 
are performed to validate the bootstrap tests. Visual inspection of models fitted by standard least-squares 
techniques are shown to be insufficient to detect a small significant damped oscillation. Furthermore, the tests 
are applied to a controlled experiment in a laboratory environment. The oscillation was generated by means of 
a portable shaker vibration calibrator and measured by a reference accelerometer and a low-cost accelerometer.  

 

I. INTRODUCTION 

Models for periodic phenomena based on 
trigonometric functions have played an important role 
in geodesy for decades (Vanicek, 1969; Wells et al., 
1985; Craymer, 1998; Pagiatakis, 1999; Mautz and 
Petrovic, 2005; Kaschenz and Petrovic, 2005; Psimoulis 
et al., 2008; Neitzel et al., 2011; Neitzel et al., 2012; 
Lehmann, 2014; Bogusz and Klos, 2016). Oscillations 
may be accurately measured in various ways, for 
instance, by means of a global navigation satellite 
system (GNSS) receiver, a ground based synthetic 
aperture radar (GBSAR), a terrestrial laser scanner (TLS), 
a laser tracker, an accelerometer and an image-assisted 
total station (cf. Neitzel and Schwarz, 2017; 
Omidalizarandi et al., 2018). The stochastic model 
employed for the inference of oscillation models greatly 
depends on the kind of observable.  

Besides the variances of the random deviations, auto-
correlations play a large role for such electronic 
instruments measuring at a high sampling rate and 
should therefore be taken into account in deformation 
analysis in general (cf. Kuhlmann, 2003). While 
covariance functions and covariance matrices have 
been traditionally employed for this purpose, 
autoregressive (AR) processes have become 
increasingly popular since the early 2000s in diverse 
fields of geodetic science (e.g., Schuh, 2003; Nassar et 
al., 2004; Park and Gao, 2008; Li, 2011; Luo et al., 2012). 
These studies demonstrated that AR models can be 
easily fitted to geodetic data in connection with least-

squares estimation (LSE) or Kalman filtering techniques. 
While constituting a parsimonious time-domain model 
that can easily be combined with a functional 
observation model, AR processes can be transformed 
into and interpreted through a covariance 
function/matrix and a spectral density function. 
Therefore, the specification and fitting of an AR 
correlation model are adopted also in the current 
contribution.  

Outliers constitute another phenomenon often found 
in geodetic data. A common approach to dealing with 
outliers consists of a robust (i.e., outlier-resistant) 
method of iteratively reweighted least squares (IRLS) 
based on an error law whose defining probability 
density function (pdf) has “longer tails” than a Gaussian 
bell curve (e.g., the L1-norm estimator and Huber 
estimator). Thus, when outliers are defined to be errors 
larger than three times the standard deviation of a 
random deviation (see Lehmann, 2013), they obtain 
substantially more probability mass via IRLS (reflected 
by lower weights) than with (uniformly weighted) LSE. 
To obtain estimation results that are as realistic as 
possible, it is desirable to match the shape of the pdf or 
the error law with the actual distribution of the 
residuals/outliers (cf. Wisniewski, 2014). To enable this, 
it makes sense to use a flexible family of error laws 
having suitable mathematical properties and having - 
besides a scale parameter that accounts for the 
variance of a random deviation - at least one shape 
parameter that controls the thickness of the tails. To 
foster automatization of the adjustment procedure, the 
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heavy-tailed family of scaled t-distributions is employed 
in this contribution. Its shape parameter/tuning 
constant is the degree of freedom, which can be 
estimated as part of an IRLS procedure (cf. Koch and 
Kargoll, 2013), so that this robust estimator has been 
called self-tuning (Parzen, 1979). Standard LSE 
corresponds to the special case, where the degree of 
freedom takes a large value.  

Parameter estimation is an intermediate step that 
reduces the observations to sufficient statistics, which 
are then used to express the test statistic (cf. Kargoll, 
2012). Under the standard assumptions of linear 
observation equations involving normally distributed 
random deviations and a given covariance or weight 
matrix, optimal (uniformly most powerful invariant) 
parameter tests are readily available (cf. Teunissen, 
2003). As these assumptions do not hold under the 
given model, we make use of bootstrap tests (cf. 
McKinnon, 2007), which can be tailored to such 
nonstandard model assumptions. In combination with 
Monte Carlo (MC) simulation (cf. Koch, 2018), such tests 
do not require knowledge of the distribution of the test 
statistic employed. In Section II, we develop various 
bootstrap tests for deciding, whether an observed 
oscillation is damped or not. This methodology extends 
recent developments of bootstrapping techniques in 
geodesy for confidence intervals (Neuner et al., 2014), 
parameter estimation (e.g., Angrisano et al., 2018) and 
uncertainty quantification (Lösler et al., 2018), to the 
domain of hypothesis testing. In Section III, it is shown 
how MC simulations are carried out to estimate the 
type-I error probabilities and power functions of the 
bootstrap tests. The performance of these tests is 
assessed and contrasted with the standard F-Test. The 
limits of standard least-squares fitting and visual 
inspection of resulting model plots for the purpose of 
detecting a damped oscillation are also explored. 
Subsequently, the proposed tests are applied to 
measurements of an oscillation generated by a portable 
shaker vibration calibrator and recorded both by the 
associated reference accelerometer and a low-cost 
accelerometer. Section IV draws some conclusions and 
gives an outlook to potential applications of the tests.  

 

II. METHODOLOGY 

A. Observation Model 

When observations describe a time-dependent 
undamped oscillation, one may use the model 

 

ℎ𝑡(𝜷) =
𝑎0

2
+ ∑ 𝑎𝑗 cos(2𝜋𝑓𝑗𝑥𝑡) + 𝑏𝑗 sin(2𝜋𝑓𝑗𝑥𝑡) (1)

𝑀

𝑗=1

 

 

consisting of an unknown offset 
𝑎0

2
 and a sum of 

sinusoids, which involve unknown coefficients 𝑎𝑗 and 

𝑏𝑗, unknown frequencies 𝑓𝑗, and specified equidistant 

time instances 𝑥𝑡 for 𝑡 = 1, … , 𝑛. The unknowns 
𝑎𝑗 , 𝑏𝑗 , 𝑓𝑗 (𝑗 = 1, … , 𝑀) form the vector 𝜷 of functional 

model parameters. In the case of a damped oscillation, 
the deterministic model (1) is extended to 

  

ℎ𝑡(𝜷, 𝝃) =
𝑎0

2
+ ∑ [𝑎𝑗 cos (2𝜋𝑓𝑗√1 − 𝜉𝑗

2 𝑥𝑡)

𝑀

𝑗=1

+ 𝑏𝑗 sin (2𝜋𝑓𝑗√1 − 𝜉𝑗
2 𝑥𝑡)]  

× exp(−2𝜋𝜉𝑗𝑓𝑗𝑥𝑡)                          (2) 

 

where 𝜉𝑗 is the so-called damping ratio coefficient and 

𝑓𝑗𝑑 = 𝑓𝑗√1 − 𝜉𝑗
2 the corresponding damped frequency 

(cf. Amezquita-Sanchez and Adeli, 2015). Clearly, the 
undamped oscillation model (1) is nested inside the 
damped oscillation model (2) since the former results 
from the latter by setting all damping ratio coefficients 
equal to zero.  

For both kinds of deterministic model, the 
observations 𝑙𝑡 are considered to be subject to auto-
correlated random deviations  

 

𝑒𝑡 = ∑ 𝛼𝑗𝑒𝑡−𝑗 +
𝑝
𝑗=1 𝑢𝑡                  (3) 

 

The coefficients 𝜶 = [𝛼1 ⋯ 𝛼𝑝]𝑇 of this AR(p) model are 

treated as unknown parameters to take unknown forms 
of auto-correlation into account. The boundary 
conditions are simply fixed by setting 𝑒0 = 𝑒−1 = ⋯ =
𝑒1−𝑝 = 0. The AR model order 𝑝 has to be specified 

based on prior information or through a statistical 
model selection procedure. To set the level of precision 
and to model outliers of unknown absolute frequency 
and magnitudes, the white noise components 𝑢1, … , 𝑢𝑛 

are assumed to be stochastically independent and to 
follow a scaled, centred t-distribution with unknown 
scale factor 𝜎2 and degree of freedom 𝜈, symbolically  

 

𝑢𝑡~𝑡𝜈(0, 𝜎2).                              (4) 

 

This combined parametric auto-correlation and error 
model allows for a self-tuning, robust, maximum 
likelihood estimation of the parameters. This 
estimation is based on the log-likelihood function  
 

log 𝐿(𝜷, 𝝃, 𝜶, 𝜎2, 𝜈; 𝒍) = 𝑛 log [
Γ(

𝜈+1

2
)

√𝜈𝜋𝜎2 Γ(
𝜈

2
)
] −

𝜈+1

2
×

                                                ∑ log [1 +
1

𝜈
(

𝑢𝑡

𝜎
)

2

]𝑛
𝑡=1   (5)  

 
where 𝑢𝑡 is expressed through (3) and the 

observations equations as functions of 𝜷, possibly 𝝃, 
and 𝜶 . The maximization of this log-likelihood function 
constitutes an alternative to a least-squares approach 
based on outlier-elimination and noise reduction 
through filtering. One advantage of the former 
approach is that a single algorithm and adjustment 
routine can be devised while avoiding some pre-
processing steps. Furthermore, (5) allows for likelihood 
ratio (LR) tests about the model parameters or 
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constraints thereof, as the deterministic and stochastic 
model assumptions are included.  
 

B. Hypotheses 

Besides estimating model parameters, we wish to 
identify an adequate oscillation model from (1) and (2). 
Since parsimonious observation models are preferred 
over models that include unnecessary parameters, it is 
desirable to test the null hypothesis 𝐻0 that the 
damping ratio coefficients 𝝃 are equal to zero. The 
alternative hypothesis can simply be specified to be the 
negation of 𝐻0, so that the problem is to test  

 

𝐻0: 𝝃 = 𝟎        versus        𝐻1: 𝝃 ≠ 𝟎.                       (6) 

 

A simple case is given by testing the damping ratio 
coefficient 𝜉 associated with a single natural frequency 
of the oscillating structure (the vector 𝝃 thus reduces to 
a scalar quantity).  

One possibility of measuring the deviation from 𝐻0 is 

to compute the weighted square sum 𝑇 = 𝝃̂𝑇𝚺̂𝝃̂𝝃̂
−1𝝃̂/𝑀, 

based on estimates 𝝃̂ and their joint a posteriori 

covariance matrix 𝚺̂𝝃̂𝝃̂. In the special case of 

uncorrelated and normally distributed random 
deviations (corresponding to 𝑝 = 0 and 𝜈 → ∞), the 
kind of Wald (W) test statistic 𝑇 would approximately 
follow Fisher’s 𝐹𝑀,𝑛−𝑢-distribution, where 𝑢 = 4𝑀 + 1 

is the total number of functional parameters 𝜷, 𝝃 in 
model (2). However, due to the stochastic model based 
on the family of scaled t-distributions, the test statistic 
𝑇 might not follow any standard distribution to a 
sufficient level of approximation. This hindrance, 
however, does not prevent the solution of the testing 
problem (6) since simulation-based bootstrap tests do 
not require the specification of a test distribution. A 
second natural test statistic is based on the difference  

 

𝐿𝑅 = log 𝐿(𝜷̃, 𝟎, 𝜶̃, 𝜎̃2, 𝜈; 𝒍) − log 𝐿(𝜷̂, 𝝃̂, 𝜶̂, 𝜎̂2, 𝜈̂; 𝒍) 
 

of the log-likelihoods at the constraint and unconstraint 
maximum likelihood estimates. Like the test statistic 𝑇, 
the LR test statistic 𝑇𝐿𝑅 = −2 𝐿𝑅 (cf. Section 2.5.6 in 
Kargoll, 2012) generally does not have a standard 
distribution, so that it will also be carried out by means 
of bootstrapping.  

 

C. The Bootstrap Tests 

The idea of a bootstrap test is to generate a large 
number 𝐵 of observation vectors under the true 𝐻0, to 
compute the 𝐵 values that the test statistic takes for 
these generated measurement series, and to check 
whether the value of the test statistic obtained for the 
actual measurement results is extremely large in 
comparison to the test values obtained under 𝐻0. These 
comparisons replace the comparison with a critical 
value derived from a fully specified test distribution 
(which is unknown in the present situation). As with a 
classical hypothesis test, the significance level 𝛼 may be 

fixed in advance. Then, given a vector 𝒍 of measurement 
results, the order 𝑀 of the oscillation model (1)/(2) and 
the order 𝑝 of the AR model (3), the following steps can 
be carried out in order to arrive at the test decision (see 
also Fig. 1.  

1. Estimation step: The generalized expectation 
maximization (GEM) algorithm described in 
Alkhatib et al. (2018) is used to compute: 

a) Parameter estimates 𝜷̂, 𝝃̂, 𝜶̂, 𝜎̂2, 𝜈̂, 

covariance matrix 𝚺̂𝝃̂𝝃̂ and white noise 

components 𝑢̂1, … , 𝑢̂𝑛 in the damped 
harmonic oscillation model (2). The 
nonlinear model is linearized within each 
GEM iteration (see the Appendix for the 
derivation of the Jacobi matrix);   

b) Parameter estimates 𝜷̃, 𝜶̃, 𝜎̃2, 𝜈 and white 
noise components 𝑢̃1, … , 𝑢̃𝑛 in the 
undamped harmonic oscillation model (1). 
The Jacobi matrix of this nonlinear model is 
obtained from the Jacobi matrix used in a) by 
setting 𝝃 = 𝟎. 

2. Testing step: The test statistic 𝑇 = 𝝃̂𝑇𝚺̂𝝃̂𝝃̂
−1𝝃̂/𝑀 or 

𝑇𝐿𝑅 = −2 𝐿𝑅 is computed.  
3. Simulation step: Firstly, 𝐵 white noise vectors 

  

𝒖(1) = [𝑢1
(1)

⋯ 𝑢𝑛
(1)

]
𝑇
 

  ⋮             

𝒖(𝐵) = [𝑢1
(𝐵)

⋯ 𝑢𝑛
(𝐵)

]
𝑇
 

 

are generated in one of the following two variants:  
a) Parametric bootstrapping: each white noise 

component 𝑢𝑡
(𝑘)

 (𝑡 = 1, … , 𝑛; 𝑘 = 1, … , 𝐵) is 
generated randomly from the fitted t-
distribution 𝑡𝜈̂(0, 𝜎̂2).  

b) Nonparametric bootstrapping: each 𝑢𝑡
(𝑘)

 is 
“randomly drawn” from the fitted white 
noise series 𝑢̂1, … , 𝑢̂𝑛 “with replacement” by 

generating random numbers 𝜏𝑡
(𝑘)

 from the 
discrete uniform distribution 𝑈(1, 𝑛). Each 

number 𝜏𝑡
(𝑘)

 defines an index, and the 
associated value 𝑢̂

𝜏𝑡
(𝑘)  of the fitted white 

noise series defines the newly generated 

white noise component  𝑢𝑡
(𝑘)

= 𝑢̂
𝜏𝑡

(𝑘) . 

Secondly, the white noise series are inserted into 
the fitted AR models to generate the coloured 

noise components 𝑒𝑡
(𝑘)

= ∑ 𝛼̂𝑗𝑒𝑡−𝑗
(𝑘)

+
𝑝
𝑗=1 𝑢𝑡

(𝑘)
 

based on the initial values 𝑒0
(𝑘)

= ⋯ = 𝑒1−𝑝
(𝑘)

= 0, 

resulting in the vectors 
 

𝒆(1) = [𝑒1
(1)

⋯ 𝑒𝑛
(1)

]
𝑇
 

               ⋮             

          𝒆(𝐵) = [𝑒1
(𝐵)

⋯ 𝑒𝑛
(𝐵)

]
𝑇
 

 

Thirdly, these realizations of the random 
deviations are added to the deterministic model 
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Figure 1. Flowchart of the computational steps of the bootstrap tests described in Section II.C. The random number generation 
within the simulation step is shown here by employing the MATLAB routines trnd (t-distribution) and randi (discrete uniform 
distribution). 
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fitted under 𝐻0, that is, 𝑙𝑡
(𝑘)

= ℎ𝑡(𝜷̃) + 𝑒𝑡
(𝑘)

, 

thereby producing the observation vectors 
 

𝒍(1) = [𝑙1
(1)

⋯ 𝑙𝑛
(1)

]
𝑇
 

               ⋮             

          𝒍(𝐵) = [𝑙1
(𝐵)

⋯ 𝑙𝑛
(𝐵)

]
𝑇
 

 

The aforementioned GEM algorithm is then used 

to compute, for every 𝒍(𝑘), the parameter 

estimates 𝝃̂(𝑘) and covariance matrix 

𝚺̂𝝃̂(𝑘)𝝃̂(𝑘) required for evaluating the test statistic 

via 𝑇(𝑘) = 𝝃̂(𝑘)𝑇𝚺̂
𝝃̂(𝑘)𝝃̂(𝑘)
−1 𝝃̂(𝑘). The algorithm also 

outputs log 𝐿(𝜷̃(𝑘), 𝟎, 𝜶̃(𝑘), 𝜎̃2(𝑘), 𝜐̃(𝑘); 𝒍) and 

log 𝐿(𝜷̂(𝑘), 𝝃̂(𝑘), 𝜶̂(𝑘), 𝜎̂2(𝑘), 𝜐̂(𝑘); 𝒍) with respect to 
the adjusted constraint and unconstraint model, 

necessary for the determination of 𝑇𝐿𝑅
(𝑘)

.  

4. Evaluation step: The p-value is estimated by 
computing (cf. McKinnon, 2007, Section 2) 

pv̂ =
1

𝐵
∑ 𝐼(𝑇(𝑘) > 𝑇),

𝐵

𝑘=1

 

 
or 
 

pv̂ =
1

𝐵
∑ 𝐼(𝑇𝐿𝑅

(𝑘)
> 𝑇𝐿𝑅),

𝐵

𝑘=1

 

 
where the indicator function 𝐼(. ) takes the value 
1 if the argument is true and the value 0 if the 
argument is false.  Note that in case 𝐻0 is false, the 
test value 𝑇 tends to be large. As the test values 
generated under the true 𝐻0 tend to be small, the 
indicator function tends to take the value 0, so 
that the p-value tends to be small in this case.   

5. Decision step: 𝐻0 is rejected if pv̂ < 𝛼. 
 

 

III. RESULTS 

A. Simulation of the Bootstrap Tests 

Every statistical test is characterized by the 
complementary type-I and type-II error rates, which 
constitute its primary quality measures. On the one 
hand, it is important to know if the specified 
significance level 𝛼 is truly reflected by the actual type-
I error rate for the described bootstrap test. On the 
other hand, it is useful to study the power function of 
that test in order to obtain an impression of its 
sensitivity. Both measures can be estimated via Monte 
Carlo simulation.  

To analyse the empirical type-I and type-II error rates 
for the bootstrap tests developed in Section II, Monte 
Carlo simulations based on 𝑅 = 500 and 𝑅 = 1,000  
samples of 𝑛 = 1,000 observations were carried out. 
For this purpose, firstly white noise samples  

 

      𝒖(1) = [𝑢1
(1)

⋯ 𝑢10,000
(1)

]
𝑇
 

  ⋮             

      𝒖(𝑅) = [𝑢1
(𝑅)

⋯ 𝑢10,000
(𝑅)

]
𝑇
 

 
were generated, on the one hand, using the t-
distribution (4) with parameter values 𝜎 = 0.001 and 
𝜈 = 3, on the other hand using the centred normal 
distribution 𝑁(0, 𝜎2) with the same scaling. Note that 
the vectors are 10 times longer than the actual number 
of observations. The reason for this is to eliminate the 
so-called warm-up effect created by the initial 
conditions (i.e., the zero values for time index values 
𝑡 = 0, −1, …) in the recursive computation of the 
coloured noise samples by means of (3). The last 1,000 
values of the generated coloured noise vectors thus 
truly reflect the characteristics of the AR process. The 
indexes 9,001…10,000 of these 1,000 values are shifted 
by -9,000 in order to obtain the indexing 𝑡 = 1, … , 𝑛 as 
defined for the models (1) – (4). Thus, the generated 
coloured noise vectors are denoted by   
 

𝒆(1) = [𝑒1
(1)

⋯ 𝑒1,000
(1)

]
𝑇
 

             ⋮             

          𝒆(𝑅) = [𝑒1
(𝑅)

⋯ 𝑒1,000
(𝑅)

]
𝑇
 

 
In this simulation study, an AR(1) process with 
parameter value 𝛼1 = 0.6828 was applied. A set of true 
deterministic models was defined to consist of the 
oscillation model (2) with the parameter values 𝑎0 =
0.0016, 𝑎1 = 0.0572, 𝑏1 = −0.0950, 𝑓1 = 16 [Hz] and 
𝜉1 = 𝑖 ∙ 10−9  (𝑖 ∈ {0, … ,51}) for the time instances 
𝑥𝑡 = 67.6813 [s] + (𝑡 − 1) ∙ 0.00512[s]. Adding the 
resulting true observations to the previously generated 
coloured noise vectors gave the observation samples 
 

𝒍(1) = [𝑙1
(1)

⋯ 𝑙1,000
(1)

]
𝑇
 

               ⋮             

          𝒍(𝑅) = [𝑙1
(𝑅)

⋯ 𝑙1,000
(𝑅)

]
𝑇

 

 
under 

• the two MC sample sizes 𝑅 = 500 and 𝑅 =
1,000, 

• the two sample distributions 𝑡3(0, 0.0012) and 
𝑁(0, 0.0012), and 

• the various damping ratio coefficient values 𝜉1 
listed before.  

Note that the case 𝜉1 = 0 (𝑖 = 0) corresponds to the 
simulation of a true 𝐻0, whereas the other non-zero 
values for 𝜉1 (when 𝑖 ∈ {1, … ,51}) are associated with a 
true 𝐻1.  

Three tests were applied to all these observation 
samples at a significance level of 𝛼 = 0.05 under 
various settings:  

1. both the parametric and the nonparametric 

bootstrap test based on the LR statistic 𝑇𝐿𝑅
(𝑘)

 (“BS 
LR-Test”) sampled  𝐵 = 99 and 𝐵 = 999 times, 
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2. both the parametric and the nonparametric 

bootstrap test based on the W statistic 𝑇(𝑘) (“BS 
W-Test”) for 𝐵 = 99 and 𝐵 = 999 times, and 

3. the standard “F-Test” based on the previous W 
statistic with the distributional assumption 
𝑇~𝐹1,995. With this test, the presence of the AR 

process and the non-normality of the white 
noise are ignored, so that the assumed redun-
dancy is 𝑛 − (4𝑀 + 1) = 995 with 𝑀 = 1. 

The odd choice of 99 or 999 bootstrap samples is 
motivated by the requirement of a Monte Carlo test 
that 𝛼(𝐵 + 1) is an integer (cf. McKinnon. 2007). To 
keep the computational burden of the Monte Carlo 
simulations manageable, the parameter 𝜈 was fixed at 
the true value 3 within the GEM algorithm. This yields a 
robust (though not self-tuning) estimator. The choice of 
the low degree of freedom 𝜈 = 3 is also in line with 
certain applications of the Guide to the Expression of 
Uncertainty in Measurement (ISO/IEC, 2008), when the 
observables are explained by input quantities having 
type-A (i.e., statistically determined) standard 
uncertainties (cf. Sommer and Siebert, 2004). For the 
samples generated by means of the normal 
distribution, the GEM algorithm was run with the fixed 
degree of freedom 𝜈 = 120, as this value leads to a 
close approximation of the sampling normal 
distribution 𝑁(0, 0.0012) by the t-distribution 
𝑡120(0, 0.0012) (cf. Koch, 2017).  

Now, counting for each application of a test 
throughout the 𝑅 MC runs the number of times that 𝐻0 
is rejected and dividing that number by 𝑅 yields an 
estimate of the test’s 

1. type-I error rate if 𝐻0 is true (i.e., if the MC 
simulation was carried out with 𝜉1 = 0). 

2. power if 𝐻1 is true (i.e., if the MC simulation was 
carried out with 𝜉1 > 0). 

Table 1 shows that the empirical type-I error rate of the 
F-Test greatly differs from the specified significance 
level 𝛼 = 0.05 in case of Student white noise correlated 
by the AR(1) model. In contrast, the significance level is 
reproduced by the two bootstrap tests rather well 
already for 𝐵 = 99 bootstrap samples. Increasing to  
𝐵 = 999 samples results in a correct second digit of 
type-I error rate. This confirms the finding of McKinnon 
(2007, p.3) that “it might be dangerous to use a value of 
𝐵 less than 999.” Evidently, increasing in addition the 
number of MC runs does not further improve the 
approximation. Furthermore, the results for parametric 
and nonparametric bootstrapping are surprisingly 
similar, in view of their fundamentally different ways of 
generating the white noise series. The former leads to 
slightly closer approximations of 𝛼 than the latter.  
 
 
 
 
 
 

Table 1. Bold numbers: Average rejections of 𝐻0 as 
estimates of the respective test’s type-I error rate. Regarding 
the bootstrap (BS) Wald (W-) and likelihood ratio (LR-) Test, 
the numbers of the first row correspond to nonparametric 
(np), of the second row to parametric (p) bootstrapping.  

R 500 1000 

F-Test 0.006 0.007 

B 99 999 99 999 

BS W-Test: np 
p 

0.044 
0.048 

0.052 
0.052 

0.061 
0.042 

0.053 
0.051 

BS LR-Test: np 
p 

0.044 
0.046 

0.052 
0.052 

0.061 
0.043 

0.054 
0.051 

 

Generating Gaussian white noise without auto-
correlations leads to the power functions shown in Fig. 
1. As the graphs for the parametric and the 
nonparametric bootstrap tests coincide, only the latter 
are displayed. Figure 2 (top) demonstrates that all three 
tests correctly reproduce 𝛼 = 0.05 when 𝐻0 is true (i.e., 
for the vanishing damping ratio coefficient 𝜉1 = 0). For 
most 𝜉1 > 0  the F-Test has slightly larger power than 
the bootstrap tests. As the F-Test is known to be 
uniformly most powerful invariant for linear models, 
the bootstrap tests could be expected to outperform 
the F-Test as the distribution of the F-Test statistic is not 
exact for a nonlinear model, as given by the damped 
harmonic oscillation model (2). Increasing the number 
of Monte Carlo runs or bootstrap samples might 
improve the performance of the bootstrap tests in this 
regard. More importantly, the bootstrap tests clearly 
outperform the F-Test in power when the Student 
distribution and the AR(1) model are used to generate 
the random deviations (see Fig. 2, bottom). The 
bootstrap W- and LR-Test again produce very similar 
results, which is not obvious since the standard Wald 
and likelihood ratio test are known to be equivalent 
mainly for linear models with Gaussian errors.   

 

 
 

Figure 2. Average rejections of 𝐻0 as estimates of the type-I 
error rate (for damping ratio coefficient 𝜉1 = 0) and power 
(for 𝜉1 > 0) for the F-Test (green dots), the bootstrap W-Test 
(dark crosses) and the bootstrap LR-Test (red dots). Top 
subplot: The bootstrap samples are generated with Gaussian 
white noise and without AR model (top subplot), alternatively 
with Student white noise and an AR(1) model (bottom 
subplot). 
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B. Failure of Least Squares Curve Fitting and Visual 
Inspection of Model Plots 

Taking the bootstrap tests as the reference methods 
for detecting a damped oscillation, the performance of 
a simpler testing procedure based on LSE and visual 
inspection of the fitted oscillation model is now 
explored. For this purpose, two different damped 
oscillation models (2) were defined for 100 s of data 
with a sampling rate of 100 Hz using the parameter 
values  𝑎0 = 0, 𝑎1 = 4.0, 𝑏1 = −3.0, 𝑓1 = 5 [Hz] as well 
as the two alternative damping ratio coefficients (i) 
𝜉1 = 1 ∙ 10−6 and (ii) 𝜉1 = 1 ∙ 10−5. Such small values 
were selected because the focus of the current study is 
on the reliable detection of a significant damping. In 
real applications, these levels could be larger, and the 
purpose of the test procedure would then be to test 
whether the damping ratio coefficient differs 
significantly from the permissible level available, e.g., 
from existing ISO standards. Note that the choice of the 
coefficient values 𝑎1 and 𝑏1 corresponds to the 

amplitude 𝐴 =  √𝑎1
2 + 𝑏1

2 = 5.0 and the phase angle 

𝜑 = atan2 (
−𝑏1

𝑎1
) ∙

180

𝜋
= 36.87 [degree]. The true 

observations resulting from this model were added to a 
white noise path generated from a scaled t-distribution 
with parameter values 𝜎 = 0.2 and 𝜈 = 4.  

In order for the LSE based on the linearization of the 
highly non-linear functional model (2) to converge, a 
precise initial value in particular of the frequency should 
be given. It is well known that the determination of 
oscillations with unknown frequencies is a challenging 
task requiring generally global optimization (cf. Mautz, 
2001; Mautz and Petrovic, 2005). In Tables 2 and 3 it can 
be seen that LSE converges for the initial frequency 
value 5.005 [Hz] but diverges for the initial values 5.2 
[Hz] and 5.3 [Hz]. MATLAB’s curve fitting routine fit, 
which was applied using the robust fitting option since 
the simulated t-distribution gives ride to outliers, yields 
estimates similar to LSE for the initial frequency value 
5.005 [Hz]; the estimates of the amplitude, phase angle 
and damping ration coefficients differ greatly from the 
true values for the two larger initial frequency values. 
The unreliable LSE can be improved to some extent by 
decreasing the step size in the computation of the 
parameter update. This Gauss-Newton method is also 
employed within the aforementioned GEM algorithm 
(applied in the estimation step of the bootstrap tests); 
see Alkhatib et al. (2018). The results in Tables 2 – 3 
show that LSE with decreased step size converges for 
the initial frequency values 5.005 [Hz] and 5.2 [Hz], but 
produces strongly distorted estimates for the initial 
value 5.3 [Hz]. In contrast, the GEM algorithm, which 
includes the fitting of an AR error process and of a 
scaled t-distribution, approximates the true solution 
precisely for all three initial values. Although the 
generated observations contain only white noise, AR 
model orders of 1 or 2 were identified through the 
application of the white noise test described in Kargoll 
et al. (2018a). Thus, the parameter estimates by the 

GEM algorithm are not distorted by the additional low-
order AR model estimation. Applying the bootstrap 
tests to the reference solution produced by the GEM 
algorithm results yields the results that the damping 
ratio coefficient 𝜉1 = 1 ∙ 10−6 is not significant (i.e., 𝐻0 
is accepted) whereas 𝜉1 = 1 ∙ 10−5 is significant (i.e., 
𝐻0 is rejected). In the cases where the LSE and the 
Gauss-Newton method both converge they produce 
identical oscillation models (shown in Fig. 3). Clearly, 
the significant damping by 𝜉1 = 1 ∙ 10−5 cannot be 
detected by visual inspection of the corresponding 
model plot (Fig. 3, bottom). It would not help either to 
zoom into a smaller time window since it needs to be 
analysed whether the entire segment analysed is 
damped or not. It may therefore be concluded that the 
employed curve fitting tool and the least squares 
methods, in connection with model plots, are inferior to 
a rigorous hypothesis test for damping such as the 
proposed bootstrap tests. 

 
 

Table 2. Estimated parameters of the damped oscillation 
model with 𝜉1 = 1 ∙ 10−6 by three methods for three 
different initial frequency values. `NaN’ indicates divergence 
of the iterations. 

Parameters 𝑓1  
[Hz] 

𝐴  
[-] 

𝜑 
[degree] 

𝜉1  
[%] 

True values 5.0 5.0 36.87 0.0001 

Initial values 5.005 - - 0.0000 

MATLAB-fit  5.0029  5.0029   36.92 0.00012 

LSE 4.9999 5.0008 36.95 0.00008 

Gauss-Newton 4.9999 5.0008 36.95 0.00008 

GEM alg. 4.9999 5.0043 36.92 0.00013 

 

Parameters 𝑓1  
[Hz] 

𝐴  
[-] 

𝜑 
[degree] 

𝜉1  
[%] 

True values 5.0 5.0 36.87 0.0001 

Initial values 5.2 - - 0.0000 

MATLAB-fit  5.009  3.9039  -30.80   0.1357 

LSE NaN NaN NaN NaN 

Gauss-Newton 4.9999 5.0008 36.95 0.00008 

GEM alg. 4.9999 5.0043 36.92 0.00013 

 

Parameters 𝑓1  
[Hz] 

𝐴  
[-] 

𝜑 
[degree] 

𝜉1  
[%] 

True values 5.0 5.0 36.87 0.0001 

Initial values 5.3 - - 0.0000 

MATLAB-fit  5.028  2.8375  -37.95   0.2623 

LSE NaN NaN NaN NaN 

Gauss-Newton 5.1074 0.0000 -137.27 -1.5645 

GEM alg. 4.9999 5.0043 36.92 0.00013 
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Table 3. Estimated parameters of the damped oscillation 

model with 𝜉1 = 1 ∙ 10−5 by three methods for three 
different initial frequency values. `NaN’ indicates divergence 
of the iterations. 

Parameters 𝑓1  
[Hz] 

𝐴  
[-] 

𝜑 
[degree] 

𝜉1  
[%] 

True values 5.0 5.0 36.87 0.001 

Initial values 5.005 - - 0.0000 

MATLAB-fit  5.0000  5.0022   36.90 0.00102 

LSE 4.9999 4.9986 36.91 0.00099 

Gauss-Newton 4.9999 4.9986 36.91 0.00099 

GEM alg. 4.9999 5.0022 36.90 0.0010 

 

Parameters 𝑓1  
[Hz] 

𝐴  
[-] 

𝜑 
[degree] 

𝜉1  
[%] 

True values 5.0 5.0 36.87 0.001 

Initial values 5.2 - - 0.0000 

MATLAB-fit  5.013  3.5886  -32.52  0.1412 

LSE NaN NaN NaN NaN 

Gauss-Newton 4.9999 4.9986 36.91 0.00099 

GEM alg. 4.9999 5.0022 36.90 0.0010 

 

Parameters 𝑓1  
[Hz] 

𝐴  
[-] 

𝜑 
[degree] 

𝜉1  
[%] 

True values 5.0 5.0 36.87 0.001 

Initial values 5.3 - - 0.0000 

MATLAB-fit  5.028  2.8496  -37.58  0.2608 

LSE NaN NaN NaN NaN 

Gauss-Newton 5.1255 0.0000 -61.15 -1.6032 

GEM alg. 4.9999 5.0022 36.90 0.0010 

 

 
 

 
 

Figure 3. Oscillation time series of simulated acceleration data 
(blue dots) with damping ratio coefficient 𝜉 = 1 ∙ 10−6 (top) 

and 𝜉 = 1 ∙ 10−5 (bottom) and the model computed by 
converged LSE/Gauss-Newton method using the initial 
frequency value 5.005 [Hz]. 

 
C. Controlled Excitation Experiment 

In the context of short-term deformation analysis of 
oscillating structures such as bridges, a geo-sensor 
network of low-cost accelerometers can be utilised for 
an accurate and robust vibration analysis of the 
structure (cf. Neitzel et al., 2012). For this purpose, a 
proper deterministic model needs to be identified to 
truly characterise the global behaviour of a bridge 
structure such as natural frequencies, mode shapes and 
modal damping. Therefore, the time-dependent 
undamped oscillation model (1) considered by Kargoll 
et al. (2018a,b) and Omidalizarandi et al. (2018) is 
extended to the time-dependent damped harmonic 
oscillation model (2). In these previous studies, it was 
demonstrated in particular that the frequencies and 
amplitudes can be estimated robustly and accurately. 
Concerning the amplitudes, which are of great 
importance for a subsequent mode shape analysis, it 
should be noted that their estimation is directly 
influenced by the choice of the deterministic model. In 
the context of structural health monitoring, it is 
desirable to test whether the damping of a structure 
has a certain level or not, since deviations from that 
level would indicate a deterioration of the structure’s 
intactness. As this level is usually non-zero, the 
hypotheses (6) and the test statistics should be adapted 
accordingly.  

As a preparation for such more general testing 
problems, we consider in this contribution the simpler 
case of testing whether an oscillation with a single 
natural frequency is damped or not. For this purpose, a 
controlled excitation experiment was performed at the 
Institute of Concrete Construction of Leibniz University 
Hannover, using a portable shaker vibration calibrator 
(PSVC) 9210D and a low-cost accelerometer. The PSVC 
comes along with a highly accurate reference 
accelerometer of type PCB ICP quartz, which is used for 
the validation. The acceleration data are acquired by 
the low-cost accelerometer of type BNO055 (Bosch 
Sensortec) and reference accelerometer with an 
oscillation frequency of 4 Hz and sampling rates of 
100 Hz and 200 Hz, respectively. For further 
information concerning the experimental setup and the 
used sensors, the reader is referred to Omidalizarandi 
et al. (2018).  

In this section, the hypotheses are one-dimensional 
cases of (6). To analyse damping behaviour throughout 
the measured time series, the low-cost and reference 
acceleration datasets were firstly divided into 45 
segments of consecutive 1000 and 2000 observations, 
respectively (each spanning 10 s). The auto-correlations 
of the accelerometer measurements are modelled by 
means of AR processes, which have previously been 
found to be an adequate class of models for this 
purpose (see, Nassar et al., 2014; Park and Gao, 2008). 
The order of the AR process was assumed to be 𝑝 = 15, 
based on the experience with previous analyses of the 
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datasets (see Kargoll et al., 2018a). Two tests were 
applied to all these observation samples at a 
significance level of 𝛼 = 0.05, based on the LR statistic 

𝑇𝐿𝑅
(𝑘)

 (“BS LR-Test”) and the W statistic 𝑇(𝑘) (“BS W-

Test”). For both tests, nonparametric bootstrapping 
based on 𝐵 = 99 and 𝐵 = 999 times was performed. 
The parameter 𝜈 was fixed at the value 4 within the 
GEM algorithm, reflecting the expectation of a 
moderate number of outliers in the data.  

In view of the setup of the controlled experiment, we 
expected to find no significant damping of the 
oscillation. To verify this, the p-values of both tests 
applied to all segments of the low-cost and reference 
accelerometer sensor data were calculated. The results 
for 99 bootstrap samples were found to be similar to 
those for 999 samples, so that only the former are 
shown in Figs. 4 and 5. It can be seen that all p-values 
are greater than the significance level, so that the 
rejection rate is 0, i.e., 𝐻0 is always accepted, so that 
there is no evidence for significant damping ratio 
coefficients. This finding demonstrates that the PSVC 
device including the reference accelerometer produces 
an oscillation at the specified frequency with no 
significant damping.  
 

 
Figure 4. Low-cost accelerometer: The estimated p-value 
based on the bootstrap W-Test (black solid line) and the 
bootstrap LR-Test (blue cross line) corresponding to 
nonparametric bootstrapping with  𝐵 = 99 samples.  The red 
horizontal line shows the significance level of 𝛼 = 0.05. 

 

 
Figure 5. Reference accelerometer: The estimated p-value 
based on the bootstrap W-Test (black solid line) and the 
bootstrap LR-Test (blue cross line) corresponding to 
nonparametric bootstrapping with  𝐵 = 99 samples. The red 
horizontal line shows the significance level of 𝛼 = 0.05. 

 

IV. CONCLUSIONS AND OUTLOOK 

A comprehensive observation model for a damped 
harmonic oscillation involving multiple frequencies, 
autoregressive random deviations and t-distributed 
white noise components can be adjusted by means of a 
GEM algorithm, which acts as a self-tuning robust 
estimator of all model parameters. Due to the intricacy 

of the model, test statistics in general do not have an 
exact standard distribution. Reasons for this are the 
non-linearity of the functional model (cf. Lehmann and 
Lösler, 2018), the non-normality of the estimator, and 
the non-normality of the random deviations. To test in 
particular whether the damping of an observed 
oscillation is significant or not, two bootstrap tests 
based on the well-known W and LR statistics were 
proposed since small significant damping is generally 
not visible to the eye in a plot of the oscillation model 
fitted by means of standard least-squares estimation or 
MATLAB’s curve fitting tool. The bootstrap tests are 
carried out by means of randomly generated bootstrap 
samples, without resorting to critical values from a test 
distribution. The number of bootstrap samples is 
crucial. To reproduce the significance level of 𝛼 = 0.05 
precisely by the empirical type-I error rate, it is 
recommended to generate at least 999 bootstrap 
samples. Both bootstrap tests have almost identical 
power functions, and it is also irrelevant whether 
parametric or nonparametric bootstrapping is carried 
out. The standard F-Test is slightly more powerful than 
the bootstrap tests when the random deviations are 
normally distributed and uncorrelated. In cases of 
Student and AR errors, however, the F-Test has an 
erratic type-I error rate and visibly reduced power, so 
that the bootstrap tests are clearly preferable in such 
situations. In the future, it is intended to extend the 
model selection procedure to determine whether 
certain sinusoids of within the damped harmonic 
oscillation model are significant or not. Furthermore, 
the test decisions could be contrasted with standard 
information criteria such as the AIC and BIC. The 
bootstrap tests confirmed that oscillations induced by a 
portable shaker vibration calibrator within a controlled 
experiment and observed by means of the reference 
and a low-cost accelerometer are practically 
undamped. The next step will be to adapt the 
procedure such that the damping ratio coefficient(s) 
can be tested against specified values in order to verify 
the structural health of an oscillating structure such as 
a bridge. Such a bootstrap testing procedure can be 
extended and used for a factory calibration of a 
portable shaker vibration calibrator measuring the 
accelerations by means of a reference accelerometer. 
In that case it is desirable to detect changes of all the 
parameters of the damped harmonic oscillation model, 
that is, possibly multiple frequencies, amplitudes and 
damping ratio coefficients simultaneously. In addition, 
the measurements of a low-cost accelerometer 
oscillating in combination with such a shaker can be 
investigated over a long period of time regarding 
aforementioned parameter changes.  
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APPENDIX 

The Jacobi matrix 𝑨 with respect to the damped 
harmonic oscillation model (2) is based on the partial 

derivatives  
𝜕ℎ𝑡(𝜷,𝝃)

𝜕𝑎0
= 0.5 as well as  

 
𝜕ℎ𝑡(𝜷, 𝝃)

𝜕𝑎𝑗

= cos (2𝜋𝑓𝑗√1 − 𝜉𝑗
2 𝑥𝑡), 

 
𝜕ℎ𝑡(𝜷, 𝝃)

𝜕𝑏𝑗

= sin (2𝜋𝑓𝑗√1 − 𝜉𝑗
2 𝑥𝑡) , 

 

𝜕ℎ𝑡(𝜷, 𝝃)

𝜕𝜉𝑗

= [− 𝑎𝑗sin (2𝜋𝑓𝑗[1 − 𝜉𝑗
2]

−
1
2 𝑥𝑡)

+ 𝑏𝑗cos (2𝜋𝑓𝑗[1 − 𝜉𝑗
2]

−
1
2 𝑥𝑡)]

× (−2𝜋𝑓𝑗𝜉𝑗[1 − 𝜉𝑗
2]

−
1
2𝑥𝑡) exp(−2𝜋𝑓𝑗𝜉𝑗𝑥𝑡)
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1
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