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Abstract 

For several years, digital 3D city models have taken a central role in a number of different 

tasks. These models are used in urban and regional planning, surveying, and navigation and 

telecommunication technology. They also enable in the environmental field precise analyses 

and simulations of pollutant, flood, and noise propagation. For many applications, realistic 

building models are an essential component of a 3D city model. Their manual reconstruction 

provides good results but is associated with a very high time expenditure. In order to meet the 

high demand for building models and the increased demands on their level of detail, research 

has been recently conducted to develop various (semi-)automatic reconstruction methods for 

the time-efficient and cost-effective generation of 3D building models. The goal of designing 

an automatic building reconstruction method, which fully meets the high demands of the 

present day, has, however, not yet been achieved. The reasons for this are manifold; a major 

reason is, for example, the large number of different and complex roof shapes. 

In this thesis, a new approach to the fully automatic reconstruction of semantic 3D building 

models based on airborne LiDAR data is presented. The approach is characterized by a strong 

integration of building knowledge, which is automatically derived during the reconstruction. 

The derivation of building knowledge is carried out by employing a grammar whose produc-

tion rules are applied in several bottom-up and top-down phases. In the selection process of 

the applicable production rules, methods of reinforcement learning from the field of machine 

learning are utilized. Thereby, it is taken into account that in complex roof structures and 

neighboring buildings similar roof elements or roof structures often occur multiple times. 

Through the application of the grammar, knowledge about the buildings is derived. This 

knowledge is modeled for each building in a separate multi-scale knowledge graph. The use 

of the grammar, together with the multi-scale knowledge graphs, in alternating bottom-up and 

top-down phases provides a reliable and robust derivation of further building knowledge. 

The grammar-guided method for deriving building knowledge can generally be integrated 

also into already existing data-driven reconstruction methods to improve their performance. 

This procedure is demonstrated exemplarily for a data-driven reconstruction based on binary 

space partitioning. 

In order to reduce the search space for the automatic derivation of building knowledge, a 

method for the automatic segmentation of roof surfaces is presented. It uses the building 

points of the underlying data set and employs the principles of surface growing. However, not 

only the measured height values of the point cloud are incorporated in this procedure, but 

additionally also virtual points, which are automatically generated during segmentation. As a 

result, segments can also grow below other roof surfaces, whereby the derivation of building 

knowledge and the construction of 3D building models are considerably simplified. 
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For the construction of 3D building models, a method based on half-space modeling is 

presented. It utilizes the building knowledge in the multi-scale knowledge graphs to define 

and combine half-spaces, whose hyperplanes result from the segments of the point cloud. In 

this way, buildings of arbitrary complexity are described in canonical form. The resulting 

building models have the property that they are always both geometrically and topologically 

correct. The building geometry of the reconstructed 3D building models can be enriched by 

the semantic information of the multi-scale knowledge graphs. Thereby, also the need for 

semantic 3D building models is satisfied. 

In general, the requirements for reconstructed building models depend on the individual 

application. To take this into account, two methods are presented which can optionally be 

executed during the reconstruction. The first method is concerned with the reconstruction of 

small roof elements (e.g., dormers or chimneys) in order to increase the level of detail of 

insufficiently detailed building models. It does not reconstruct multiple occurrences of roof 

elements of similar shape individually from one another, but jointly by means of an ICP 

(iterative closest point) based method. As a result, also those roof elements are recognized and 

reconstructed which taken individually would not have been reconstructed. The second 

method recognizes the frequently occurring regularities in buildings and renders them more 

strongly in the reconstructed models. For this, divisive clustering methods are applied, both in 

a local and a global context, to the hyperplanes of the half-spaces that are used to define the 

half-space models in canonical form. The resulting well-shaped building models are particu-

larly suitable for visualization purposes. 

Finally, the presented reconstruction method together with the resulting building models is 

evaluated using a benchmark data set and compared with other current state-of-the-art 

building reconstruction approaches. The results show that the presented method is robust and 

transferable to different building shapes and regions, and that the resulting 3D building 

models have a high quality with regard to their completeness and correctness. 
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Zusammenfassung 

Seit mehreren Jahren nehmen digitale 3D-Stadtmodelle in verschiedenen Aufgabenstellungen 

eine zentrale Rolle ein. Sie werden unter anderem in der Stadt- und Raumplanung, im 

Vermessungswesen und in der Navigations- und Telekommunikationstechnik eingesetzt. 

Zudem ermöglichen sie im Umweltbereich präzise Analysen und Simulationen zur Ausbrei-

tung von Hochwasser, Lärm und Schadstoffen. Ein für viele Anwendungszwecke wesentli-

cher Bestandteil von 3D-Stadtmodellen sind realitätsgetreue Gebäudemodelle. Deren 

manuelle Rekonstruktion bietet gute Ergebnisse, ist aber mit einem sehr hohen Zeitaufwand 

verbunden. Um der hohen Nachfrage nach Gebäudemodellen und den gestiegenen Anforde-

rungen an deren Detailierungsgrad nachzukommen, hat man sich in den letzten Jahren mit 

ihrer zeiteffizienten und kostengünstigen Erzeugung beschäftigt und einige (semi-) automati-

sche Rekonstruktionsmethoden entwickelt. Das Ziel ein Verfahren zur automatischen 

Gebäuderekonstruktion zu entwerfen, das den hohen Ansprüchen der heutigen Zeit gerecht 

wird, wurde bislang jedoch noch nicht vollständig erreicht. Die Ursachen hierfür sind 

vielfältig; z.B. ist ein wesentlicher Grund die große Anzahl unterschiedlicher und komplexer 

Dachformen. 

In der vorliegenden Arbeit wird ein neuer Ansatz zur vollautomatischen Rekonstruktion von 

semantischen 3D-Gebäudemodellen auf der Basis von luftgestützten LiDAR-Daten vorge-

stellt. Der Ansatz zeichnet sich durch eine starke Integration von Gebäudewissen aus, welches 

während der Rekonstruktion automatisch abgeleitet wird. Die Ableitung von Gebäudewissen 

erfolgt über eine Grammatik, deren Produktionsregeln in mehreren Bottom-Up- und 

Top-Down-Phasen angewendet werden. Bei der Selektierung der anzuwendenden Produk-

tionsregeln werden Methoden des bestärkenden Lernens aus dem Bereich des maschinellen 

Lernens eingesetzt. Dadurch wird berücksichtigt, dass in komplexen Dachstrukturen und 

benachbarten Gebäuden oftmals ähnliche Dachelemente oder Dachstrukturen mehrfach 

vorkommen. Das durch die Anwendung der Grammatik abgeleitete Gebäudewissen wird für 

jedes Gebäude in jeweils einem multiskaligen Wissensgraphen modelliert. Der Einsatz der 

Grammatik zusammen mit den Wissensgraphen in sich abwechselnden Bottom-Up- und 

Top-Down-Phasen ermöglicht eine zuverlässige und robuste Ableitung von weiterem 

Gebäudewissen. 

Das durch eine Grammatik geleitete Verfahren zur Ableitung von Gebäudewissen lässt sich 

generell auch in bereits existierende datengetriebene Rekonstruktionsverfahren zu deren 

Vorteil integrieren. Demonstriert wird dies exemplarisch anhand einer datengetriebenen 

Rekonstruktion, die auf einer binären Raumpartitionierung (engl. binary space partitioning) 

basiert. 

Um den Suchraum für die automatische Ableitung von Gebäudewissen zu verringern, wird 

eine Methode zur automatischen Segmentierung von Dachflächen vorgestellt. Sie verwendet 
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die Gebäudepunkte des zugrundeliegenden Datensatzes und die Prinzipien des Oberflächen-

wachstums (engl. surface growing). Es werden jedoch nicht nur die gemessenen Höhenwerte 

der Punktwolke in diesem Prozess berücksichtigt, sondern zusätzlich auch virtuelle Punkte, 

die während der Segmentierung automatisch erzeugt werden. Dies ermöglicht das Wachstum 

von Segmenten auch unterhalb anderer Dachflächen, wodurch die Ableitung von Gebäude-

wissen und die Konstruktion der 3D-Gebäudemodelle wesentlich vereinfacht werden. 

Für die Konstruktion der 3D-Gebäudemodelle wird ein Verfahren basierend auf der Halb-

raummodellierung vorgestellt. Es nutzt das Gebäudewissen in den multiskaligen Wissensgra-

phen für die Definition und Kombination von Halbräumen, deren Hyperebenen sich aus den 

Segmenten der Punktwolke ergeben. Auf diese Weise werden Gebäude beliebiger Komplexi-

tät in kanonischer Form beschrieben. Die daraus abgeleiteten Gebäudemodelle haben die 

Eigenschaft, dass sie sowohl geometrisch als auch topologisch immer korrekt sind. Die 

Gebäudegeometrie der rekonstruierten 3D-Gebäudemodelle lässt sich durch die semantischen 

Informationen der multiskaligen Wissensgraphen anreichern. Dadurch wird auch der Bedarf 

an semantischen 3D-Gebäudemodellen befriedigt. 

Generell hängen die Anforderungen an rekonstruierten Gebäudemodellen von der individuel-

len Anwendung ab. Um dies zu berücksichtigen werden zwei Verfahren vorgestellt, die 

optional während der Rekonstruktion ausgeführt werden können. Das erste Verfahren 

beschäftigt sich mit der Rekonstruktion von kleinen Dachelementen (z.B. Gauben oder 

Schornsteinen), um den Detailierungsgrad von nicht ausreichend detaillierten Gebäudemodel-

len zu erhöhen. Es rekonstruiert mehrfach und in gleicher Form vorkommende Dachelemente 

nicht unabhängig voneinander, sondern gemeinsam mittels einer ICP (engl. iterative closest 

point) basierten Methode. Dadurch werden auch solche Dachelemente erkannt und rekonstru-

iert, die einzeln für sich genommen nicht rekonstruiert worden wären. Das zweite Verfahren 

erkennt die in Gebäuden häufig auftretenden Regularitäten und gibt sie in den rekonstruierten 

Modellen verstärkt wieder. Dazu werden divisive Clusterverfahren sowohl im lokalen als 

auch im globalen Kontext auf die Hyperebenen der Halbräume der in der kanonischen Form 

definierten Halbraummodelle angewandt. Die daraus resultierenden formschönen Gebäude-

modelle eignen sich insbesondere für Visualisierungszwecke. 

Schließlich wird das vorgestellte Rekonstruktionsverfahren mit den daraus resultierenden 

Gebäudemodellen anhand eines Benchmark-Datensatzes evaluiert und mit anderen aktuellen 

Gebäuderekonstruktionsverfahren verglichen. Die Ergebnisse zeigen, dass das vorgestellte 

Verfahren sowohl robust als auch auf unterschiedliche Gebäudeformen und Regionen 

übertragbar ist, und dass die daraus resultierenden 3D-Gebäudemodelle eine hohe Qualität in 

Bezug auf deren Vollständigkeit und Korrektheit aufweisen. 
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1. Introduction 

During the last decades, several approaches for the reconstruction of 3D building models have 

been developed. Starting in the 1980s with manual and semi-automatic reconstruction 

methods of 3D building models from aerial images, the degree of automation has increased in 

recent years so that they became applicable to various areas. Some typical applications and 

examples are shown in section 1.1. Especially since the 1990s, when airborne light detection 

and ranging (LiDAR) technology became widely available, approaches for (semi-)automatic 

building reconstruction of large urban areas turned out to be of particular interest. Only in 

recent years, some large cities have built detailed 3D city models. Although much effort has 

been put into the development of a fully automatic reconstruction strategy in order to 

overcome the high costs of semi-automatic reconstructions, no solution proposed so far meets 

all requirements (e.g., in terms of completeness, correctness, and accuracy). The reasons for 

this are manifold as discussed in section 1.2. Some of them are manageable, for example, 

either by using modern sensors which provide denser and more accurate point clouds than 

before or by incorporating additional data sources such as high-resolution images. However, 

there is quite a big demand for 3D building models in areas where such modern sensors or 

additional data sources are not available. Therefore, in this thesis a new fully automatic 

reconstruction approach of semantic 3D building models for low- and high-density airborne 

laser scanning (ALS) data of large urban areas is presented and discussed. Additionally, it is 

shown how automatically derived building knowledge can be used to enhance existing 

building reconstruction approaches. The specific research objectives are outlined in 

section 1.3. It includes an overview of the proposed reconstruction workflows and the 

contribution of this thesis. In order to have lean workflows with good performance, some 

general assumptions on the buildings to be reconstructed are imposed and explained in 

section 1.4. The introduction ends with an outline of this thesis in section 1.5. 

1.1 Motivation 

3D building models are one of the major components of 3D city models1 (Geibel and Stilla, 

2000; Rau and Lin, 2011). They already play for quite some time a central role in urban and 

regional planning (Danahy, 1999; Wolff and Asche, 2008; Chen, 2011; Czyńska and Rubi-

nowicz, 2014), telecommunication (Siebe and Büning, 1997; Wagen and Rizk, 2003), 

positioning and navigation (Bradbury et al., 2007; Cappelle et al., 2012, Peyraud et al., 2013; 

Hsu et al., 2015), tourism (Coors et al., 2000; Glander and Döllner, 2009), and many other 

domains. Furthermore, they enable in the environmental field precise analyses and simula-

tions of, for example, noise transmission (Czerwinski et al., 2007; Stoter et al., 2008; Ranjbar 

                                                 
1 3D city models are according to (Stadler and Kolbe, 2007) digital representations of the Earth’s surface and 

related objects belonging to urban areas. They usually consist of a digital terrain model (DTM), 3D building 

models, street furniture (e.g., street signs, benches, statues, etc.), vegetation (e.g., trees, bushes, etc.), and other 

constructions above and below ground (e.g., bridges, tunnels, supply lines, streets, etc.). 
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et al., 2012), solar potential for large scale implementation of photovoltaics (Strzalka et al., 

2012; Eicker et al., 2013), shadow detection and sunlight distribution (Robinson, 2006; Yu et 

al., 2009), wind flows (Ayhan and Sağlam, 2012; Toja-Silva et al., 2016), safety and security 

in public spaces (Yaagoubi et al., 2015), and pollutant and flood propagation (Leszek, 2015). 

According to (Shiode, 2001), applications of 3D city models can be grouped generally into 

four categories: 

 planning and design, 

 infrastructure and facility services, 

 commercial sector and marketing, 

 promotion and learning of information on cities. 

Further possible categorizations and applications of 3D city models are described in (Singh et 

al., 2013). A comprehensive state-of-the-art review of 3D city model applications is given in 

(Biljecki et al., 2015). An overview of 3D GIS (Geographic Information System) analyses for 

3D city models is presented in (Moser et al., 2010). As can be seen, the application areas are 

quite diverse and lead at the present time to a rising demand for 3D building models. Particu-

larly in the context of smart cities, the modeling and reconstruction of buildings became a 

trending topic in recent years. 

Several cities such as New York (City of New York, 2017), Toronto (City of Toronto, 2016), 

Berlin (Döllner et al., 2006; Kada, 2009; City of Berlin, 2017), Singapore, (National Research 

Foundation, 2017), and Stuttgart (Wolf, 1999) provide nowadays 3D city models that have 

been reconstructed in a (semi-)automatic way. However, urban areas are continuously 

changing due to construction, destruction or extension (Morgan and Habib, 2002). Addition-

ally, the change rate of three-dimensional information is often higher than the change rate of 

two-dimensional data required for traditional maps (Brenner, 2004). Consequently, to provide 

reliable and up-to-date information, building models need to be updated frequently. For this 

task, currently only manual or semi-automatic reconstruction methods are reasonably 

applicable. However, this is, especially for large areas with thousands of buildings or for areas 

in which many changes occur, up till now very time-consuming and expensive. Thus, the 

demand for automatic approaches that reduce or even completely eliminate the manual effort 

is nowadays of particular interest. 

In addition to that, new possibilities to reconstruct more detailed building models have arisen 

in recent years due to the developments of new sensors that provide point clouds with higher 

accuracy and resolution than before. For this, new methods need to be developed that are able 

to deal with the increased amount of data and that can process them in a reasonable computa-

tional time. Moreover, these methods should be capable of incorporating more comprehensive 

information in the reconstruction process so that more accurate and detailed building models 

can be generated. 
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3D building models reconstructed by an automatic approach with current state-of-the-art 

methods are, however, not able meet the sophisticated demands of the aforementioned 

applications. With recent technologies, only standard and relatively simple buildings can be 

automatically and reliably reconstructed from ALS data. Consequently, many buildings in 

large 3D city models are represented as block models without any detailed roof structures. 

Block models provide, however, for many applications only insufficient information. The 

automatic reconstruction of distinctive roof structures and superstructures on the other hand is 

still coupled with so far unsolved issues. For example, many approaches are limited to certain 

roof types or are still struggling with difficulties to provide consistent and topologically 

correct building models whose roof planes do not unintentionally intersect each other or 

contain unwanted gaps. The reasons for this are manifold and described in section 1.2. In 

order to address the unsolved issues, some hybrid reconstruction approaches have been 

recently proposed that incorporate and combine different types of data sources (e.g., ALS and 

aerial images). However, additional data sets are not always available and their use increases 

usually the costs and the complexity of the hybrid approach. Therefore, a fully automatic 

reconstruction approach needs to be developed that only utilizes ALS data without being too 

dependent on sensor specifications and that provides 3D building models with detailed roof 

structures. 

Besides the geometric information of buildings, also semantic building information is in 

demand nowadays from several users such as public authorities (Gröger and Plümer, 2012). In 

this context, CityGML (Gröger et al., 2008) has been developed to provide an open standard-

ized data model and exchange format for 3D city models that incorporates not only geometric 

but also semantic information. Note, there exist diverse implementations of CityGML so that 

there are multiple valid variants of models within each level of detail (LoD) leading to 

different results in spatial analyses (Biljecki et al., 2016b). For further information about 

CityGML and its applications see, for example, (Kolbe et al., 2005) and (Kolbe, 2009). 

Current building reconstruction approaches are, however, essentially only concerned with 

geometric information. The need for an automatic workflow to derive building models with 

semantic information is therefore great. The availability of semantic information is of interest 

not only for many applications but also for improving, for example, the geometry of building 

models produced by existing building reconstruction processes. Consequently, a robust 

method to automatically extract semantic building information is needed that is flexible 

enough to be integrated into existing reconstruction approaches. 

1.2 Challenges in 3D Building Reconstruction 

The reconstruction of 3D building models is a complex task that requires a workflow 

comprising of several processing steps such as classification, outline extraction, segmentation, 

feature recognition, hypothesis generation and verification, geometric modeling and construc-

tion, and adjustment and refinement. To increase the productivity of each step, a number of 

methods have been developed for the automatic processing of ALS point clouds. Despite the 

acquired knowledge, there is still a significant number of unsolved problems. The primary 

causes for these problems are outlined in the following paragraphs. 
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An issue that makes the automatic reconstruction task challenging results from data gaps 

which are frequently present in ALS point clouds. They are difficult to handle since they can 

be caused by various reasons. Common reasons are, for example, unwanted reflections of 

laser pulses on shiny surfaces, absorption of laser pulses by water, or occlusions. The latter 

one usually occurs close to high building parts or other objects such as high vegetation. A 

possible effect of data gaps in point clouds is that some structures become unrecognizable so 

that for the modeling of buildings only insufficient information can be extracted. In the worst 

case, this can actually cause the whole reconstruction process to fail. But even if sufficient 

information can be extracted, special care has always to be taken to properly close such data 

gaps during the reconstruction process in order to avoid gaps in the final model. This task is 

already challenging in 2D, for example, in the case of precise outline reconstructions of 

buildings that are surrounded and partly covered by high trees. In such a situation, many 

assumptions have to be made to avoid jagged shapes and to guarantee topological correctness. 

In 3D, however, this task becomes even more complex. 

Furthermore, building models that best fit the given point cloud in terms of geometry are not 

necessarily the most accurate models or the best representations of the real buildings because 

ALS data contain noise and outliers. Although the standard deviation of LiDAR data is 

nowadays usually less than 0.3 m (Xiong et al., 2014a), noise and outliers must be always 

considered during the reconstruction process. 

Additionally, the resolution of point clouds is always limited, even with modern sensors that 

can achieve more than 100 points/m². Consequently, sharp features such as break lines cannot 

be directly extracted from point clouds but must be approximated. Particularly in low-density 

point clouds, a strong focus on the point coordinates would often lead to a low model 

accuracy and the missing regularities in the building models would be visually obvious. In 

contrast, a reconstruction framework with a strong focus on geometric regularities would lose 

the capability to deal with the high variability of complex building shapes. Finding the right 

balance between the confidence in data and the confidence in geometric regularities is quite 

demanding and complicates the reconstruction because it varies from situation to situation 

(Oude Elberink, 2008). 

Another challenge arises from the large amount of different building types in urban areas and 

the high variability of combining simple building roofs to more complex rooftops. Generally, 

there are no specific rules to cover the complexity of the structure and shape of buildings so 

that it is impossible to define a universal reconstruction framework based only on predefined 

object models. This becomes particularly apparent during the reconstruction of large urban 

areas that possess a vast number of different building shapes. 

For the reconstruction of detailed building models from low-density point clouds, particularly 

the detection and construction of small roof parts has been repeatedly proven to be very 

difficult due to the low information content of the data. Therefore, many reconstruction 

approaches treat points of small roof parts as outliers and discard them from the whole 

reconstruction process. But by ignoring these outliers they are only capable of providing 
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building models with few details. There is thus still a great demand for automatic reconstruc-

tion workflows that are able to provide detailed building models from low-density point 

clouds. 

The combination of all aforementioned issues makes the fully automatic reconstruction of 3D 

buildings from ALS point clouds extremely challenging. As a consequence, this topic still 

continues to be an active area of research. 

1.3 Research Objectives 

The main research objective of this thesis is the development of an automatic reconstruction 

approach that provides semantic 3D building models from classified low- and high-density 

ALS point clouds of large urban areas. Specifically, the objectives of the proposed workflow 

are defined as follows: 

Accuracy: The resulting building models should represent the actual buildings in terms of 

their geometry as accurately as possible. For this purpose, the process should consider that a 

strict alignment of the model to the input data is not always the best solution to reflect reality. 

Automation: The elimination of mandatory user interaction is especially of great interest for 

the reconstruction of large urban areas. Therefore, a workflow should not require any user 

interactions during the reconstruction process. 

Complexity: The resulting building models should be adequately represented by a set of 

points that is significantly smaller than the original point cloud. Otherwise, the advantage for 

subsequent applications would be low. 

Efficiency: The reconstruction approach should be capable of processing large urban areas 

within a reasonable amount of computational time and with modest hardware resources (e.g., 

less than one second per building with current computer hardware). 

Quality: The reconstruction approach should provide building models of high quality. For 

this, the completeness and the correctness of the reconstructed building models should be both 

at least 85 %. 

Resolution: The resulting building models should generally be as detailed as possible. This 

means that for ALS point clouds as input data the proposed method should strive for building 

models with a level of detail that corresponds to LoD 2, as defined in the CityGML standard 

(Gröger et al., 2012), with detailed roof structures. However, the workflow should also be 

capable of incorporating the fact that different applications require different levels of detail. 

For example, in noise analyses small roof superstructures have often only a small impact on 

the results. Thus, if such details can be omitted, the subsequent analyses can be performed in 

less time. For this, the workflow should be designed to allow users to select the LoD of the 

resulting building models. 
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Robustness: The general workflow should be applicable to any ALS point cloud regardless of 

its characteristics (e.g., point density, amount of noise, etc.). Particularly for sparse or noisy 

point clouds, it is essential that reasonable and conclusive models can still be achieved. For 

this, occluded areas in the input data need to be adequately closed in the final building model. 

Transferability: The reconstruction workflow should be capable of processing data from any 

city without being limited to certain regions or specific building types. 

These are the fundamental objectives of the proposed reconstruction workflow. To reduce the 

complexity of this task, some general assumptions regarding 3D building models are made in 

section 1.4. 

1.3.1 General Framework 

In this subsection, an overview of the developed grammar-guided approach for the automatic 

reconstruction of semantic 3D building models is presented. Its general workflow is illustrated 

in Figure 1.1 and described in the following paragraphs. 

 

Figure 1.1. General workflow of both the grammar-guided reconstruction approach for 

semantic 3D building models and the integration of building knowledge into a 

data-driven reconstruction method to improve the resulting building geometry. 

In order to automatically reconstruct semantic 3D building models in large urban areas, a 

framework has been developed that only requires building points of an aerial LiDAR data set. 

In literature, the distinction between building points and non-building points is usually 
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considered and addressed separately from the automatic reconstruction of 3D building 

models. In this thesis only the automatic reconstruction of 3D building models is covered. For 

the evaluation of the proposed approach, the building points were determined by using 

manually digitized ground plans in combination with a ray casting algorithm in order to solve 

the point-in-polygon problem. Other classification methods are described, for example, in 

(Brenner, 2010) and (Rottensteiner, 2017). 

The proposed grammar-guided building reconstruction approach is a hybrid reconstruction 

approach that keeps the benefits of data-driven (flexibility and completeness) and 

model-driven (robustness and visual attractiveness) reconstruction methods. For this, building 

knowledge is extracted and incorporated during the reconstruction process, on the one hand, 

to guide the recognition of further building features and, on the other hand, to improve shape 

regularization of building roof components. The general framework of the proposed approach 

consists of the following three steps: roof plane segmentation, building knowledge derivation, 

and building model construction. 

In the segmentation step, building points are grouped to a segment if they belong to the same 

roof surface. The resulting set of segments is crucial for the reconstruction process because as, 

inter alia, pointed out in (Perera, 2015), the success rate of building reconstruction approaches 

is in many cases dependent on the segmentation result. Therefore, a new segmentation method 

has been developed that is specially designed to support the modeling and reconstruction 

process of buildings. It starts with a surface growing algorithm to find an initial set of planar 

segments and continues with a sub-surface growing procedure that generates virtual points 

below real measured surface points. In this way, holes in a segment that are caused by 

building superstructures or links are automatically closed. Furthermore, small building details 

are better represented in the final set of segments. 

Afterward, modeling cues in form of building features are recognized during the gram-

mar-guided building knowledge derivation step. In order to reduce the search space, the 

recognition process is initially performed on the segmentation result rather than on the raw 

point cloud. All building features detected in the set of segments are then organized in a 

multi-scale knowledge graph introduced in this thesis. Based on already recognized building 

features, further information about the building is iteratively derived and inserted into a 

multi-scale knowledge graph. The process of recognizing building features is guided by a 

graph grammar so that it is possible to support regularities and to avoid unnatural structures in 

the final building models. Furthermore, the combination of the multi-scale knowledge graph 

with the graph grammar enables the explicit search for building features that are difficult to 

identify. Thus, it serves as a good basis for the reconstruction of detailed building models. 

In the subsequent building model construction step, the recognized building features of the 

previous building knowledge derivation step are utilized together with the principles of 

half-space modeling to construct 3D building models. For the different building features, 

half-spaces are introduced so that the whole building can be described as a combination of 

half-spaces. Since small roof superstructures are, particularly in low-density point clouds, 
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represented only by a small number of points, the recognition of their building features is 

quite challenging. In contrast to the reconstruction of base roofs, special care has therefore to 

be taken in the reconstruction process of such small superstructures. In order to meet this 

challenge, an Iterative Closest Point (ICP) based method is applied in which instances of the 

same roof superstructure are reconstructed not independently from each other but simultane-

ously. Thereby, the point density can be locally increased and information of a roof super-

structure is automatically incorporated in the construction of another instance. Finally, 

divisive clustering techniques are applied in a local and global context to the hyperplanes 

associated with the half-spaces so that frequently occurring regularities in the building models 

are better supported. The resulting building models are expressed in canonical form and then 

directly converted into polyhedral models for visualization purposes. If needed, the polyhedral 

building models can be enriched with semantic information acquired during the building 

knowledge derivation step. 

To show the capabilities of the proposed building knowledge derivation procedure for 

existing data-driven building reconstruction approaches, a further workflow is presented. It 

supports natural regularities in buildings and shows how semantic information can be 

incorporated in an existing data-driven reconstruction method to improve the shapes of the 

building models without significantly lowering its reconstruction capabilities. In order to 

demonstrate this, the data-driven reconstruction approach presented in (Sohn et al., 2008), 

which is based on space partitioning, has been exemplarily selected. In this case, as indicated 

in Figure 1.1, first the derived building knowledge is used for the adjustment of segments. 

Afterward, these adjusted segments are used to obtain a regularized decomposition of the 

space. Finally, polyhedral building models are directly extracted from the regularized space 

decomposition. Using the building knowledge once again, the number of partitions during the 

decomposition of space as well as the merging ambiguity of adjacent partitions during the 

construction of the building model is reduced. 

1.3.2 Contributions 

The major contributions of the presented research can be summarized as follows: 

 A feature-driven reconstruction approach which has to a large extent both the flexibil-

ity of data-driven methods and the robustness of model-driven methods. This approach 

is able to provide not only geometric but also semantic information of the recon-

structed building models. 

 A segmentation method that is especially designed for the segmentation of roof sur-

faces. It keeps segment patches of a common roof surface together, preserves small 

roof details that otherwise would be missed, and automatically closes holes in seg-

ments that are caused by roof superstructures or links. In order to accomplish this, vir-

tual points that are located below roof surfaces are introduced and used together with 

the measured points in the segmentation process. 

 A graph grammar that extracts building features automatically and formalizes the 

description of real rooftops. It is shown how the grammar can be used in combination 
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with the proposed multi-scale knowledge graph to guide the feature recognition pro-

cess and to control the shape of the resulting building models. 

 A modeling and segmentation method that utilizes half-space modeling techniques to 

obtain valid building models. It is able to define complex roof shapes by a rather small 

number of planar half-spaces and guarantees that the resulting models are always 

closed and without any unintentional gaps. 

 An ICP based reconstruction method for the detailed reconstruction of complex roof-

tops. It is especially designed to detect, model, and construct small repetitive roof 

superstructures in low-density point clouds and incorporates regularities in a 

straight-forward way. 

 Local and global regularization rules that improve both the shape of the resulting 

building models and their accuracy. The rules are defined for half-spaces and describe 

how their hyperplanes are to be adjusted. In order to adjust more than one hyperplane 

at a time, a divisive clustering algorithm is applied. 

 Integration of building knowledge into a data-driven reconstruction approach that 

improves the regularities of the resulting models without lessening the flexibility to 

generate any roof shapes occurring in the real world. Additionally, for the data-driven 

reconstruction approach exemplarily selected in this thesis, hyperpolylines are intro-

duced to reduce the number of partitions during the binary partitioning of the space. 

1.4 Restrictions on 3D Building Models 

All reconstructed building models in this thesis are 2.5D models since only ALS point cloud 

data are utilized, which mainly represent 2.5D point information. This means, only a single 

elevation value of the building roof is accepted for any given x-y location. This elevation 

value corresponds to the highest elevation of the object at the given x-y location. The only 

exceptions where more than one elevation value for a given x-y location is accepted are those 

locations that belong to the vertical face of a step edge. Thus, objects located under a roof are 

not considered in the reconstruction process and facades are represented as vertical walls 

without any details. 

Furthermore, it is assumed that surfaces of a building can be described with sufficient 

accuracy by planar faces. This is for most buildings, particularly in residential areas, the case 

and useful because arbitrary shapes usually require computationally intensive surface fitting 

procedures (Wang, 2013). 

Both restrictions are common for most automatic reconstruction methods using data acquired 

by traditional airborne sensors; see, for example, (Dorninger and Pfeifer, 2008), (Sampath and 

Shan, 2010), (Zhang et al., 2011), (Sohn et al., 2013), (Perera and Maas, 2014), and (Xiong et 

al., 2014b). 
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1.5 Outline of the Thesis 

This thesis is organized in nine chapters that are briefly described in this section. After this 

introductory chapter 1, it is structured as follows: 

In chapter 2, literature related to the research topic of this thesis is reviewed. It provides an 

overview of different approaches and techniques concerned with the automatic reconstruction 

of 3D building models from aerial LiDAR data, the reconstruction of small roof superstruc-

tures, and the procedural modeling of buildings. 

In chapter 3, relevant fundamentals are summarized. This includes a description of commonly 

applied segmentation methods, the principles of grammars, different possibilities to model 3D 

objects, data clustering techniques, and point cloud registration techniques. 

In chapter 4, details of the developed procedure to determine planar roof areas from a given 

set of building points and its benefits are described. It is based on a surface growing algorithm 

which is modified so that segments are able to grow also below other segments. This modifi-

cation improves the procedure significantly in many aspects. 

In chapter 5, a multi-scale knowledge graph is introduced to organize and manage meaningful 

building features. Furthermore, it is explained how building features can be automatically 

extracted by applying the proposed grammar-guided building knowledge derivation proce-

dure. 

In chapter 6, a half-space modeling method is utilized for the construction of 3D building 

models and diverse clustering methods are applied for their adjustment. With these proposed 

methods, it is guaranteed that the resulting building models can be converted into watertight 

boundary models. Furthermore, it is explained how small roof superstructures can be recon-

structed in low-density point clouds. 

In chapter 7, an automatic workflow is presented that integrates automatically derived 

building knowledge into an existing purely data-driven reconstruction approach to improve 

the regularities of the resulting building models. 

In chapter 8, experimental results of the proposed grammar-guided building reconstruction 

approach are presented and discussed. For this, different data sets from different locations are 

used to prove the applicability of the proposed approach. 

In chapter 9, the main conclusions of this thesis are drawn and recommendations for future 

research are given. 

Note that over the course of research, parts of this thesis have been presented to renowned 

international scientists and have already been published. The publications of the author that 

have been partly included in this thesis or that are related to the following chapters are: (Kada 
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and Wichmann, 2012), (Kada and Wichmann, 2013), (Wichmann and Kada 2014), 

(Wichmann et al., 2015), (Jung et al., 2016), and (Wichmann and Kada, 2016). 
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2. Related Work 

Since several years 3D city models assume a central role in a vast number of applications. 

Their varied application areas lead at the present time to an increased demand. The challenge 

in the reconstruction of 3D city models is in particular the large number of different and 

complex building forms. Numerous building reconstruction approaches have therefore been 

proposed in the last two decades but the subject still remains as a very active area of research 

in various scientific disciplines. In this chapter, an overview of existing building reconstruc-

tion approaches is given. Reviews of further reconstruction approaches are presented in 

(Brenner, 2005), (Haala and Kada, 2010), (Brenner, 2010) and (Wang, 2013). 

In general, there are several possible ways to categorize existing 3D building reconstruction 

approaches. Typically, building reconstruction approaches are classified according to the 

criteria stated, for example, in (Brenner, 2010): 

 amount of human interaction (manually, semi-automatic, fully automatic) 

 data sources (point clouds, images, multi-sources) 

 reconstructed models (geometric, topologic, semantic description) 

 control (model-driven (top-down), data-driven (bottom-up), hybrid methods) 

With respect to the control criteria, some model- and data-driven building reconstruction 

approaches are summarized in section 2.1 and 2.2, respectively. For a direct comparison 

between model- and data-driven reconstruction approaches see also, for example, 

(Tarsha-Kurdi et al., 2007b). 

Lately, data-driven and model-driven reconstruction approaches have been merged towards 

hybrid reconstruction approaches that try to exploit the advantages of both worlds: the shape 

flexibility of data-driven approaches with the shape regularization capabilities of 

model-driven approaches. In (Satari et al., 2012), for example, a data-driven method is used 

for the reconstruction of the main roof and a model-driven approach is utilized in order to add 

further details such as dormers. The developed reconstruction approach in this thesis can also 

be classified as a hybrid approach because automatically derived building knowledge is 

extensively incorporated during the bottom-up reconstruction. 

A major challenge for most reconstruction approaches is the automatic reconstruction of small 

roof superstructures such as dormers and chimneys. During the last couple of years, different 

strategies have been therefore developed to solve this challenge. An overview of building 

reconstruction approaches with a particular focus on this task is given in section 2.3. 

In addition to the reconstruction of existing buildings, the automatic generation of virtual 

urban areas has become important as well. The virtual areas are used, for example, in movies 
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and games, on the one hand, to keep the production and development costs low and, on the 

other hand, for safety reasons. For this purpose, several approaches have been developed that 

utilize different procedural modeling techniques. These techniques are also for reconstruction 

approaches steadily gaining in importance. Therefore, an overview of so far developed 

procedural building modeling approaches and the utilization of their principles in reconstruc-

tion approaches are finally given in section 2.4. 

2.1 Model-Driven Building Reconstruction Approaches 

In model-driven approaches, building templates are chosen from a predefined catalog and 

then adapted by their parameters to best fit their roof shapes to the given data. This is possible 

due to the fact that a great number of buildings in urban areas are rather simple and feature 

uniform shapes. In order to construct more complex roof structures and to keep the number of 

building templates in the catalog low, building templates are combined. In this way, building 

shapes can be constructed that are not explicitly defined in the template catalog. As stated, for 

example, in (Dorninger and Pfeifer, 2008), an advantage of model-driven approaches is that 

they always generate topologically correct building models if the catalog and the combination 

of its templates are well-defined. Furthermore, the parameterization of the building templates 

ensures that the inherently strong regularization of shape templates is implicitly passed on to 

the reconstructed building models so that they are always well-shaped. Constraints such as 

parallelism and orthogonality in the resulting building geometry are thus already provided by 

the parametric models so that further adjustments become obsolete. The robustness of 

model-driven approaches is of particular advantage if the information content of the input data 

is low (e.g., in low-density point clouds). The resulting building models are well-suited for 

visualization purposes that do not require a high LoD. A major limitation of model-driven 

approaches is, however, that the resulting building shapes are always limited to a predefined 

catalog because only those building shapes can be constructed that are either included in the 

catalog or that can be composed of its templates. Consequently, some buildings can be only 

crudely approximated by model-driven approaches. Furthermore, catalogs in model-driven 

approaches are at risk to become quickly extensive if a large urban area with a large number 

of different building shapes needs to be reconstructed. Some model-driven reconstruction 

approaches are summarized in the following paragraphs. 

In (Verma et al., 2006), a model-driven reconstruction approach is proposed that consists of 

the following three major components: (i) extraction of building points, (ii) roof topology 

inference, and (iii) parametric shape fitting. During the extraction of building points, first all 

those points are discarded from a given point cloud that are not located on a locally flat and 

non-vertical surface. Then, the remaining points are grouped based on their spatial proximity 

to each other and the points of the largest connected component, which is expected to 

represent the ground, is discarded. Further methods are finally carried out to discard also all 

points of small connected components that represent, for example, cars, low vegetation, 

mailboxes, etc. For the subsequent roof topology inference, local planar patches are fitted to 

the identified building points using the ball-pivoting algorithm; see (Medeiros et al., 2003) for 

further details. Based on the set of planar patches, a roof topology graph (RTG) is constructed 
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in which each planar patch is represented by a vertex and the adjacency of two patches by an 

edge. Edges are labeled depending on the normal vectors of the planar patches: orthogonal in 

the x-y plane and pointing away from each other, orthogonal in the x-y plane and pointing 

towards each other, parallel in the x-y plane and pointing away from each other, and no 

constraint. Using a predefined set of roof topology graphs of which each represents a simple 

building component, an iterative subgraph matching procedure is performed to recognize their 

occurrences in the constructed RTG. In order to avoid ambiguities during the subgraph 

matching process, subgraphs are recognized in decreasing order of complexity and vertices 

are not allowed to be part of more than one matched subgraph. After all occurring building 

components are identified, a building geometry fitting procedure is carried out in which first 

initial shapes are estimated and afterward refined to minimize the square error between the 

roof model and the building points based on an energy formulation. Further approaches based 

on RTGs that incorporate an extended catalog of predefined subgraphs are, for example, 

presented in (Oude Elberink and Vosselman, 2009), (Perera and Maas, 2014), (Xiong et al., 

2015), (Xu et al., 2015), and (Jarząbek-Rychard and Borkowski, 2016). In order to correct an 

RTG that has been derived from an erroneous set of planar segments, a graph edit dictionary 

for correcting errors in an RTG is presented in (Xiong et al., 2014b). Although, many RTG 

based approaches achieve good reconstruction results, they are always at risk to become 

time-consuming if a catalog with a large number of predefined subgraphs is required. 

In (Kada and McKinley, 2009), building models are reconstructed based on a cell decomposi-

tion approach from ALS data and existing ground plans. For this, each ground plan is 

decomposed into non-overlapping cells of preferably rhomboid or trapezoid shape. In order to 

keep the number of cells low and to avoid small cells, all building outlines are generalized 

according to the method presented in (Kada, 2007) while the proposed cell decomposition 

procedure is applied. For the resulting cell decomposition of a footprint, parameterized roof 

shapes of all cells are determined. This is realized for each cell by examining the normal 

vectors of all points (estimated based on their local neighborhood) that are horizontally 

located inside the cell and by comparing their direction with a predefined set of roof shapes. 

The set of predefined shapes consists of three different types: basic, connecting and manual. 

In the basic class, basic roof shapes are defined such as flat, shed, gabled, hipped, and Berlin 

roof shape. In order to connect two basic shapes, further shapes that represent specific 

junctions are defined in the connecting class. For the efficient calculation of which shape best 

represents the points of a cell, all basic and connecting shapes are split into eight sections and 

each section is labeled according to its major orientation as follows: up, north, east, south, and 

west. Some examples are shown in Figure 2.1. The shape template for each cell is determined 

by distributing its points to the eight sections and by evaluating the number of corresponding 

directions. The shape template with the highest number of corresponding directions is finally 

selected for a cell. Those cells, however, whose number of corresponding directions is too low 

are assigned to the shape type manual so that they need to be afterward constructed in a 

manual way. The proposed method has been proven to be suitable for the reconstruction of 

large urban areas. However, it still requires manual post-processing because the number of 

combinations that feature different orientations in the eight sections is severely limited and 

building details are thus discarded in this approach. Further problems occur if a major 
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orientation in a section is not present in the input data. This is, for example, particularly often 

the case for buildings with many roof superstructures. 

 

Figure 2.1. Predefined shape templates and the orientation of their sections (Kada and 

McKinley, 2009). 

Similarly in (Lafarge et al., 2010), 2D building outlines are first decomposed into sets of 

connected, non-overlapping quadrilaterals with common edges. Then, a 3D building shape is 

placed in each quadrilateral from a set of predefined shape templates. In contrast to (Kada and 

McKinley, 2009), the selection of the appropriate shape template is not based on the major 

orientation of a further subdivision but it makes use of a Gibbs model to control the block 

assemblage and the fitting to data. In order to determine the optimal configuration of selected 

shape templates, a Bayesian framework using a Markov Chain Monte Carlo sampler is 

applied. The approach has been tested on satellite and aerial digital surface models (DSM) 

with different resolutions (0.7 m, and 0.1 m and 0.25 m, respectively). The altimetric evalua-

tion of the reconstructed buildings has been improved for satellite and aerial DSM as well by 

an interactive decomposition of the building outlines from 2.3 m and 1.3 m to 1.1 m and 

0.8 m, respectively. To achieve higher precision and to decrease the computational time, it is 

suggested in (Lafarge et al., 2010) to improve the optimization step by using, for example, 

belief propagation techniques for graphical models or Jump-Diffusion processes. 

In (Kwak and Habib, 2014), first data-driven methods are applied to determine approximated 

building boundaries using the modified convex hull algorithm presented in (Sampath and 

Shan, 2007). These building outlines are then regularized and decomposed into rectangular 

shapes based on a recursive minimum bounding rectangle process. Afterward, an initial model 

from a predefined catalog is determined whose parameters are then refined through 

least-squares adjustment. 

In (Huang et al., 2013), a pure top-down statistical scheme is proposed in which generative 

modeling is conducted based on a predefined primitive library to reconstruct building roof 

models. In order to keep the computational time low, the library only consists of three groups 

including eleven types of parametric roof primitives. More complex buildings are represented 

by an assembly of primitives that are, in contrast to many other reconstruction approaches, 

allowed to overlap each other. The selection process of roof primitives and their parameters is 

conducted based on reversible jump Markov chain Monte Carlo (RJMCMC) techniques with 
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specified jump mechanism. Although the proposed method has shown its capabilities on 

different data sets, some issues of uncertainty and instability still remain. Furthermore, the 

impact of the scene complexity and the prior knowledge on the completeness of the recon-

structed models as well as the long computation time needs to be further improved for the 

reconstruction of large urban areas. 

Another model-driven reconstruction approach for large urban areas based on building 

footprints and with focus on sparse LiDAR point clouds (1 point/m²) is presented in (Henn et 

al., 2013). The model catalog defined in this approach consists of ten basic primitives that are, 

analogous to (Kada and McKinley, 2009), fitted to a decomposed footprint. Due to the low 

number of input points and the low number of required points that are needed for model 

construction, several hypotheses are first generated using an enhanced version of RANSAC 

(Random Sample Consensus). The hypotheses represent a preselection of the best fitting 

building models from a predefined set of building templates. In order to select for each 

decomposition the most probable building model from the preselection, supervised machine 

leaning methods in form of support vector machine (SVM) techniques are applied. This 

enables, in contrast to other state-of-the-art methods such as minimum description length 

(MDL), the incorporation of further information (e.g., roof inclination, median point cloud 

height, etc.) during the classification process. The results of the supervised classification 

indicate a high accuracy and a good classification quality. However, shed roofs are often not 

well identified due to their small number of points available for model estimation. Further-

more, in some cases, a single gable roof is recognized as two shed roofs that represent one 

plane of its roof surface. 

An approach that automatically fits parameterized roof shapes in 3D point clouds based on 

sequential importance sampling is proposed in (Nguatem et al., 2013). For this, the parameter-

ized roof shapes presented in (Poullis and You, 2009) have been extended. The exploration of 

the search space for roof types is realized by using a likelihood model similar to (Henn et al., 

2013) within a Monte Carlo setting similar to (Huang et al., 2013). But in contrast to many 

Monte Carlo based procedures, the proposed procedure comprises an inherent data paral-

lelism. Their experiments reveal that the proposed approach is well suited to reconstruct 

simple roof shapes such as gable, hipped, pinnacle, and mansard roofs. A limitation of the 

approach is, however, that it can be only applied to roof shapes that feature a quadrilateral 

footprint. More complex roof shapes or combinations of them that feature an arbitrary 

footprint have not been tested. Furthermore, small roof superstructures are treated as noise 

and are therefore not reconstructed. 

2.2 Data-Driven Building Reconstruction Approaches 

In contrast to model-driven reconstruction approaches, data-driven approaches are not 

restricted to a predefined set of building shapes or limited by any restrictions but they 

resemble very closely the input data. Thereby, they are generally able to construct any 

building shape and they are thus well-suited for large areas in which many individual building 

shapes occur. A typical workflow of data-driven reconstruction methods consists of the 
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following three steps: (i) Building points are aggregated to planar segments which represent 

roof faces. For this, several segmentation methods have been developed and adapted during 

the last decades that improve the partitioning of a point cloud into planar regions so that 

under- and over-segmentation errors are decreased. An overview of segmentation methods in 

the context of data-driven building reconstruction approaches is given in subsection 2.2.1. A 

methodological summary of three of the most frequently applied segmentation method is later 

presented in section 3.1. (ii) The resulting segments are then combined to extract building 

modeling cues (e.g., intersection and step lines, building outlines, simple surface primitives, 

etc.). For this, additional data sources such as existing building outlines or images are 

sometimes incorporated as well. Some extraction methods for modeling cues based on a set of 

planar segments are summarized in subsection 2.2.2. (iii) Finally, 3D building models are 

constructed based on the extracted building modeling cues. Note, in order to improve the final 

shape of the building model, many data-driven reconstruction approaches subsequently apply 

regularization operations. The adjustment of a building model as part of the previously 

described workflow or as a subsequent step is particularly important for data-driven methods 

because the model or parts thereof can otherwise easily end up distorted or they can exhibit 

irregularities. An overview of different 3D building construction and regularization methods 

is given in subsection 2.2.3. A methodological summary of the applied modeling techniques 

during the construction is presented in section 3.3. 

2.2.1 Segmentation of Planar Surfaces 

A common segmentation method for the detection of planar areas is the 3D Hough transform. 

It is an extension of the well-known 2D Hough transform which has been initially introduced 

in (Hough, 1962) for the segmentation of lines and which is frequently used in image analysis, 

computer vision, and digital image processing for the extraction of features. For further details 

about the principles of 3D Hough transform, see section 3.1. Early approaches in which 3D 

Hough transform is utilized for the automatic reconstruction of buildings from point clouds 

are presented in (Vosselman, 1999) and (Maas and Vosselman, 1999). Here, planes in the 

object space are directly derived from the Hough space by taking the number of intersecting 

sinusoidal surfaces in a bin into account. Afterward, a connected component analysis (CCA) 

based on the Delaunay triangulation is applied to derive connected components of the points 

in the same plane. This is generally necessary because the segmentation problem is ap-

proached with the 3D Hough transform in a global way. In order to overcome 

over-segmentation problems, a subsequent refinement process is proposed in (Overby et al., 

2004). Here, segments with a similar plane normal and a small perpendicular distance to each 

other are afterward merged if the distance variance of the points to the resulting plane is less 

than a predefined threshold. In addition to a merging step, a splitting process is proposed in 

(Vosselman and Dijkman, 2001) to face the problem of under-segmentation as well. In the 

splitting step, segments are split with the intention that only one planar area is finally left per 

segment. For this, edges of existing ground plans and intersection and height jumps between 

adjacent segments are elongated and used for the segment splitting process. Afterward, all 

adjacent segments that represent the same planar area are merged in the merging step. In 

(Huang and Brenner, 2011), an enhanced version of the 3D Hough transform is proposed for 
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the segmentation of planar areas. Instead of selecting one particular plane and removing its 

associated points from the Hough space in each iteration, all clusters are determined whose 

bins in the Hough space feature a high concentration of surfaces. Thereby, the updating of the 

Hough space after each iteration is avoided and the processing time is reduced. Furthermore, 

points may belong in this implementation to more than one plane, which supports the 

detection of smaller segments. After determining the clusters, planes are not derived by 

averaging all planes in the same cluster but in a top-down way by a rule-based estimation 

process which supports parallel and orthogonal structures in the resulting set of segments. The 

boundaries of the final segments are then determined by estimating ridges (based on plane 

intersections) and eaves (based on an edge sweeping procedure) for each plane. Further 

building reconstruction approaches based on Hough transform segmentation methods are, for 

example, presented in (Oda et al., 2004), (Novacheva, 2008), (Sohn et al., 2008), and 

(Maltezos and Ioannidis, 2016). 

Another frequently applied method for the segmentation of planar roof areas is RANSAC. 

Analogous to Hough transform, the segmentation problem is approached in a global way. A 

comparison between Hough transform and a RANSAC based algorithm for the automatic 

segmentation of planar areas from point clouds is presented in (Tarsha-Kurdi et al., 2007a). 

Early reconstruction approaches that utilize RANSAC in the context of building reconstruc-

tion are presented in (Ameri and Fritsch, 2000) and (Brenner, 2000). In the former approach, a 

region growing segmentation method is first applied to partition an image into 2D regions. 

Afterward, all extreme point outliers are discarded and an initial plane is estimated for each 

2D region using RANSAC. The initial plane is then refined by considering the estimated error 

variance in an iterative reweighting M-estimator algorithm (Huber, 1981; Hampel et al., 

1986). In the second approach, planar regions are derived from a standard RANSAC algo-

rithm and labeled according to their orientation and the edge orientations of an existing 

building outline. Then, based on the sequence of labeled regions along an edge of the building 

outline and a predefined set of transformation rules, segments are either merged or discarded. 

A general drawback of this approach is that all segments that are not adjacent to an edge of 

the boundary cannot be labeled according to the proposed concept and are therefore dis-

carded. In (Forlani et al., 2003; Forlani et al., 2006), RANSAC is applied to correct an initial 

set of segments, which is obtained by clustering the building points of each building accord-

ing to their gradient orientation. For this, RANSAC is applied in each cluster to split segments 

that include several adjacent roof segments with slightly different orientations or slopes. An 

extended RANSAC variant for the detection of planar roof areas is presented in (Tarsha-Kurdi 

et al., 2008) that often results in improved planar segments. For this, not only the number of 

points close to a plane candidate is taken into account as condition during the plane detection 

validation but also the standard deviation of the point distances to the estimated plane. 

Afterward, points of a segment that belong to other roof planes are eliminated from the 

segment and remain unassigned if they are not inside another detected plane to which they can 

be assigned by mathematical morphology procedures. A further variant of RANSAC based on 

a grid structure is applied in (Chen et al., 2012). Here, point normal directions, point distances 

and standard deviations to estimated planes are incorporated to guarantee topological 

consistency between the rooftop segments. 
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A third common method for the segmentation of planar roof areas from point clouds is surface 

growing. In contrast to Hough transform and RANSAC, surface growing is a segmentation 

method which only considers a local neighborhood. Thus, segments are usually derived that 

each represent one roof face so that the subsequent determination of connected components 

becomes obsolete. In (Alharty and Bethel, 2004), surface growing is applied to a regularized 

raster of building points to construct planar segments by a cell aggregation technique. Instead 

of a single seed point, a group of adjacent cells is selected whose points feature a low RMSE 

(Root Mean Square Error) to a plane that can be directly derived from them. Then, further 

adjacent cells are assigned to the group of seed cells if they feature similar properties in terms 

of the slope in x-direction, the slope in y-direction, and the height intercept. In (Rottensteiner, 

2003) and (Rottensteiner et al., 2005), surface growing is applied on a DSM. Here, segments 

are initialized with homogeneous regions of connected points whose normal vectors feature a 

similar direction and further neighboring points are added if they are close to the initial plane 

of the segment. With particular focus on high resolution data sets, an adapted surface growing 

method is presented in (Dorninger and Nothegger, 2007). In order to reduce the computational 

time to determine appropriate seed clusters, a hierarchical clustering of local planes is carried 

out in a 4D feature space. Afterward, neighboring points are added to a seed cluster if they 

meet the distance and the normal vector direction criteria of the growing segment. In 

(Dorninger and Pfeifer, 2008) planar segments are derived by making use of surface growing 

and the mean shift based algorithm presented in (Melzer, 2007). Further surface growing 

based segmentation methods in the context of 3D building reconstruction are, for example, 

used in (Park, et al., 2006), (Zhou and Neumann, 2008), (Zhou and Neumann, 2012), (Sun 

and Salvaggio, 2013), (Abdullah et al., 2014), and (Awrangjeb and Fraser, 2014). 

Further segmentation methods have been proposed in the context of data-driven building 

reconstruction approaches. In (Kim and Shan, 2011), for example, planar roof segments are 

determined by minimizing an energy function formulated as a multiphase level set; for further 

information about level set methods that describe surfaces, see (Osher and Sethian, 1988). A 

fuzzy k-means method based on the surface normal of points that are derived from a planar 

Voronoi neighborhood is carried out in (Sampath and Shan, 2010). A new initialization 

method for the k-means algorithm is proposed in (Kong et al., 2013) that determines the 

number and coordinates of the initial clusters by applying mathematical morphology and 

Hough transform techniques on an elevation image of the building rooftop to be segmented. 

Two robust statistical approaches (i.e., DetRD-PCA and DetRPCA) that utilize the determin-

istic minimum covariance determinant estimator and robust PCA (Principle Component 

Analysis) are introduced in (Nurunnabi et al., 2014). Two parameter-domain clustering 

approaches for the segmentation of planar and linear/cylindrical features are presented in 

(Lari and Habib, 2014). A segmentation method based on a Gaussian mixture model is 

presented in (Xiao et al., 2015). An optimization approach to further improve the resulting 

segments from an automatic segmentation process is proposed in (Yan et al., 2014). It is 

based on a global energy function consisting of the number of planes, the spatial smoothness 

between points, and the point distances to the initial planes. Two octree based segmentation 

methods are introduced in (Vo et al., 2015) and (Su et al., 2016). 



2. Related Work 

21 

 

2.2.2 Modeling Cue Extraction 

After a set of segments has been determined, modeling cues can be extracted for the subse-

quent construction of 3D building models. For this, intersection lines, step lines, and building 

outlines are frequently extracted. Although building outlines can be considered as a special 

type of step lines, they are often determined in a separate processing step. There are several 

approaches that focus, on the one hand, on the generation of a rough building outline and, on 

the other hand, on their simplification or regularization. These approaches are, for example, 

based on RANSAC (Neidhart and Sester, 2008; Jarzabek-Rychard, 2012), alpha shape 

(Dorninger and Pfeifer, 2008; Albers et al., 2016), graphs with shortest path search (Neidhart 

and Sester, 2008), structured grids (Zhou and Neumann, 2008; Sun and Salvaggio, 2013), or 

line simplification methods (Neidhart and Sester, 2008) such as Douglas-Peucker (Douglas 

and Peucker, 1973). 

For the detection of step edges, height discontinuities between adjacent segments are searched 

in (Vosselman, 1999). In (Rottensteiner et al., 2005), step edges are determined based on 

statistical tests and robust estimation. A so-called compass line filter (CLF) is proposed in 

(Sohn et al., 2008) which determines the local edge orientation for each step edge. In contrast 

to the development of special procedures for the extraction of modeling cues that are based on 

height discontinuities, intersection lines are usually directly obtained by the intersection of 

two planes that are derived from a pair of adjacent segments. 

Other modeling cues are, for example, extracted in (Overby et al., 2004). Here, segments are 

enlarged to roof faces by intersecting all segments, regardless of their adjacency to each other, 

and vertical wall planes generated from the building outline with each other. The vertical wall 

planes are, however, only incorporated in cases where their resulting intersection line is 

within a predefined distance to the point cloud and if the resulting face is located inside the 

building outline. An approach to detect modeling cues in form of ridge lines utilizing 

RANSAC is presented in (Fan et al., 2014). 

2.2.3 Model Construction 

The extracted building modeling cues, including inter alia a set of segments, their boundaries, 

and a set of intersection and step lines, are then used for the automatic construction of 3D 

building models. In many data-driven reconstruction methods (e.g., (Rottensteiner et al., 

2005), (Park et al., 2006), (Novacheva, 2008), (Dorninger and Pfeifer, 2008), (Zhou and 

Neumann, 2008), and (Xiao et al., 2015)), a 3D polyhedral model is directly generated based 

on the modeling cues. For this, the extracted lines are extended and connected with each other 

so that each roof surface is bounded by a closed sequence of connected line segments. Further 

faces with a vertical orientation are then added at step edges so that each edge in the polyhe-

dral model becomes part of two surface defining line segment sequences. The implementation 

of such a direct polyhedral model generation method often comes, however, with quite a few 

problems because there are usually some ambiguities how the line segments are to be 

connected to guaranty the planarity of each polyhedral face without any gaps in between. 
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Another common approach for the construction of a polyhedral model includes the generation 

of a mesh model. In (Rau and Lin, 2011), for example, a construction method based on TIN 

(Triangular Irregular Network) merging and reshaping is applied. The construction of a 

polyhedral model based on a mesh model resulting from the intersection of all detected roof 

and wall planes is presented in (Overby et al., 2004). It includes a filtering of faces, a 

removing of degenerated parts, and a filling of holes, which might result from the previous 

step, utilizing the filling holes method described in (Barequet and Kumar, 1997). A construc-

tion method that is based on a mesh model resulting from a given set of building points is 

presented in (Zhou and Neumann, 2010). It can be generally applied on a set of segments and 

guarantees watertight polyhedral building models, even for buildings with arbitrarily shape. It 

extends the classical dual contouring as proposed in (Ju et al., 2002) into a 2.5D approach so 

that a simultaneous optimization of the surfaces and the roof layer boundaries is achieved 

while keeping connecting wall faces vertical. The topological precision in the proposed 2.5D 

contouring approach is, however, not guaranteed so that distorted building outlines might be 

generated or roof pieces might be missing. In order to overcome this drawback, an extended 

2.5D contouring approach with topology control is presented in (Zhou and Neumann, 2011). 

A reconstruction approach based on binary space partitioning, in which building modeling 

cues are used to partition the space into homogeneous convex polygons, is presented in (Sohn 

et al., 2008). Due to its relevance to this thesis, a description of this approach with more 

details is given in section 7.1. 

Since building models derived from data-driven reconstruction approaches resemble very 

closely the input data, several regularization and optimization methods have been developed. 

For this, most of the above described reconstruction methods incorporate the main orientation 

of the building and support orthogonal and parallel structures. An adjustment model that 

considers the building topology by Gestalt observations to improve the shape of a building 

model is, for example, proposed in (Rottensteiner, 2006). In (Zhou and Neumann, 2012), 

global regularities are incorporated during the construction. This includes orientation and 

placement regularities between two roof surfaces, parallelism and orthogonality between 

building outlines and the normal of their owner planes, and regularities between two boundary 

edges in terms of their height and position. In order to automatically determine independent 

and consistent constraints, a greedy algorithm is proposed in (Pohl et al., 2013) while Gröbner 

bases are utilized in (Meidow and Hammer, 2016). In (Sohn et al., 2013) and 

(Jarzabek-Rychard and Maas, 2017), a refinement of building models reconstructed in a 

data-driven way is proposed based on aerial images from which building edges are detected 

and incorporated in the reconstruction process. An implicit regularization process in the 

framework of MDL in combination with hypothesize and test (HAT) is, for example, 

proposed in (Jung et al., 2017). 
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2.3 Reconstruction of Roof Superstructures 

The automation rate of building reconstruction methods has nowadays increased so that many 

buildings can be automatically reconstructed from airborne point cloud data. Depending on 

the building shape complexity and the data quality (e.g., density, accuracy, completeness, 

etc.), modern reconstruction approaches are sometimes even able to generate realistic looking 

3D building models with roof and facade structures. However, problems with existing 

automatic reconstruction approaches often occur if the given input data does not meet the 

desired or required quality. In such a case, only coarse and generalized models without details 

can be created. Measured points from roof superstructures (e.g., chimney, dormers, etc.) are 

thereby usually considered as noise and are therefore ignored during the reconstruction 

process. Several approaches have been developed that offer users the possibility to add them 

in a semi-automatic way or that utilize additional data sources like images (Rottensteiner and 

Briese, 2003; Habib et al., 2010). But most of them are not applicable in practice for a fully 

automatic large-scale reconstruction process due, for example, to a limited amount of 

available reconstruction time or to missing additional data sources. 

Up to now, not much research deals explicitly with the automatic reconstruction of smaller 

roof objects. One reason might be the fast development of sensors that provide nowadays 

denser and more accurate point clouds than before. However, if an urban area from a certain 

time needs to be reconstructed, these new sensors cannot be utilized. Therefore, there will be 

always a demand for automatic reconstruction approaches that are able to handle and to 

reconstruct as many details as possible from low-density point clouds. 

A simple reconstruction approach that tackles this problem for flat superstructures on flat 

building roofs is described in (Stilla and Jurkiewicz, 1999). It creates a histogram and makes 

use of the peaks to segment the height data and to recognize areas of possible superstructures. 

Minor peaks with a certain gap to the main and to other minor peaks are then examined 

regarding their extent and compactness. Afterward, points of an accepted minor peak are 

approximated by a prismatic object. This approach is usually robust but in practice only 

applicable to a small number of building roofs in an urban area and strongly depends on 

predefined parameters. 

Therefore, most research effort has been put to the following strategy: first, an initial model 

that consists of the main building components is reconstructed and then the best fitted 

parametric shapes from a predefined library are added during the (model-driven) reconstruc-

tion of smaller roof objects. An example is given in (Brédif et al., 2007), in which the 

problems of reconstructing smaller objects on rooftops are discussed and which can be 

extended to point clouds. It presents a parametric roof superstructure reconstruction that 

makes use of an MDL energy minimization technique. Further examples that define different 

dormer shapes as superstructures, which are then placed on top of a base model, are presented 

in (Milde and Brenner, 2009) and (Vosselman and Dijkman, 2001). These model-driven 

approaches are generally better suited than data-driven methods. But on the one hand, they 

fail if the point density is too low and on the other hand the reconstruction capability is always 
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limited to a predefined library. To weaken the latter disadvantage, the number of shapes in the 

predefined library can be extended by causing an increased computational time. 

To reduce the impact of the exhaustive search on the computational time, some approaches 

integrate a coarse superstructure detection step to detect the shape type before a shape 

refinement step is carried out. For example, in (Satari, 2012) and (Satari et al., 2012) a support 

vector machine is used for the recognition of three predefined dormer types. It utilizes the 

gradient and azimuth values of the normal vectors of the superstructure and the underlying 

roof plane as discriminating factors. Afterward, the initial superstructure model is refined and 

added. Another example for a coarse superstructure detection step is given in (Dornaika and 

Brédif, 2008). 

For point clouds with a very high density, a generative statistical top-down approach for the 

reconstruction of superstructures is presented in (Huang et al., 2011). It searches for super-

structures in the area above a base roof by using two simple parametric primitives (flat and 

gable roofs). The success of the method is, however, highly dependent on the point density. 

Summarizing the previous research, it deals mainly with model-driven approaches because 

they are usually more stable for sparse point clouds than data-driven approaches. To over-

come the computational time caused by an exhaustive search technique, a coarse detection of 

the superstructure type can be performed. However, a more or less high density is required to 

get an accurate model because superstructures are independently reconstructed from each 

other. 

2.4 Procedural Building Modeling 

Since several years, procedural modeling techniques have been utilized to generate large 

urban environments; an overview is, for example, given in (Smelik et al., 2014). A 

well-known technique is the Lindenmayer-System (L-system) which has been successfully 

adapted to generate realistic street networks and buildings with simple shapes. In (Parish and 

Müller, 2001), for example, a system called CityEngine is proposed for the procedural 

modeling of cities based on L-systems. The presented system mainly consists of the following 

three steps: Firstly, a street network is generated that divides an area according to image maps 

and their proposed L-system into smaller blocks so that each block is surrounded by streets. 

The blocks are then further subdivided to define the allotments for the placement of individual 

buildings. For this, a recursive algorithm, which considers that most buildings feature a 

convex and rectangular outline, divides the block areas into smaller lots until each lot covers 

an area under a predefined threshold. Finally, a stochastic, parametric L-system is used to 

generate one building for each lot that has both direct access to a street and a proper area. For 

this, lots are utilized as building outlines and further modified by the L-system. The proposed 

L-system consists, on the one hand, of transformation, extrusion, branching, and termination 

modules and includes on the other hand geometric templates for different building compo-

nents. Depending on the zone in which a lot is located, different sets of production rules are 

applied that describe the style of either skyscrapers, commercial buildings, or residential 
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houses. Thus, the resulting building models basically consist of simple scaled and translated 

boxes on which facade details are added with a shader. The generation of geometric facade 

details, however, has not been addressed. A similar strategy, strongly influenced by CityEn-

gine, is also presented in the interactive city editor CityGen (Kelly and McCabe, 2007). 

With the objective to generate complex city models in reasonable time, a modification of a 

context-free L-system has been presented in (Marvie et al., 2005). In the so-called FL-system 

(Functional Lindenmayer-System), terminal symbols are replaced by functions that can be 

executed during the rewriting process to instantiate or modify generic objects on the fly. By 

extending the L-system language, these generic objects can be used as rule parameters. 

Another amendment concerns the natural parallelism of a rewriting process in L-systems. In 

order to provide the possibility of controlling the parallel rewriting process, a synchronization 

operator has been introduced, which cuts the parallel derivation and first completes the 

rewriting of all nonterminal symbols on the left side of the marked rules before their rewriting 

starts. 

As stated in subsection 3.2.2, L-systems are generally well suited to model the growth of 

plants because they were initially designed for the description of a natural growth process. 

Street networks, analogous to that of plants, can be considered as the result of a natural 

growth process which starts in open space with main roads followed by side streets. The 

increasingly dense network can therefore be conveniently simulated with L-systems as it has 

been also shown in (Coelho et al., 2007), (Chen et al., 2008), and (Weber et al., 2009). In 

contrast, the construction of buildings usually does not follow a typical growth process but a 

sequence of partitioning steps in a coarse to fine fashion (Wonka et al., 2003). Furthermore, 

geometric conditions as they frequently occur in buildings are difficult to integrate and lead to 

intricate production rules (Becker et al., 2013). Consequently, L-systems cannot be easily 

adapted to the modeling of buildings, particularly if their shapes are complex. 

In order to explore different designs in urban planning applications, split grammars for 

building facades are proposed in (Wonka et al., 2003). Split grammars are a specialized type 

of set grammars (Stiny, 1982) operating on basic shapes but they circumvent the sub-shape 

matching problem of shape grammars (Stiny and Gips, 1972); for further details see subsec-

tion 3.2.3. These basic shapes are simple geometric objects such as parameterized cuboids and 

prisms which represent simple building blocks. More precisely, a split grammar is a set 

grammar over the vocabulary 𝐵 = {𝑓(𝑠)}, where 𝑠 is a basic shape and 𝑓 an affine transfor-

mation, where two rule types of the form 𝑎 → 𝑏 are allowed: split rules and conversion rules. 

In a split rule, 𝑎 is a connected subset of 𝐵 that is split into multiple shapes so that 𝑏 contains 

the same elements as 𝑎 with the exception of the element to which the rule is applied. In a 

conversion rule, 𝑎 contains a basic shape that is in 𝑏 transformed to another basic shape on 

conditions that it is enclosed in the volume of the basic shape in 𝑎 and all other elements in 𝑏 

remain the same as in 𝑎. A major difference between split and conversion rules is that a split 

rule always preserves the total volume of its elements, whereas it can be smaller after 

applying a conversion rule. The restrictions on these two types of rules simplify the derivation 

process in contrast to general shape grammars and enable an effective modeling of buildings. 
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An example of split grammar rules and their derived building facade is illustrated in 

Figure 2.2, in which nonterminal and terminal shapes are represented as white and colored 

areas, respectively. In combination with a separate control grammar that controls the attribute 

propagation and rule selection of the split grammar, objects in urban areas can be modeled so 

that they correspond to architectural principles. The proposed split grammar is suitable for the 

modeling of objects with repetitive structures as this is particularly the case for building 

facades. 

 

 

Figure 2.2. A set of simple split grammar rules (left) and their derived building facade (right) 

(Wonka et al., 2003). 

In (Müller et al., 2006b), one of the most frequently used grammar for procedural building 

modeling is introduced as the so-called CGA (Computer Generated Architecture) shape. It 

basically combines and extends the work presented in (Parish and Müller, 2001) and (Wonka 

et al., 2003) by making use of transformation operations similar to L-systems and split 

operations to generate large and detailed urban environments. Note, although CGA shape 

features characteristics of L-systems and split grammars, it is a sequential grammar similar to 

Chomsky grammars and does not follow the parallel derivation of L-systems. Major objec-

tives of CGA shape are the creation of sufficient geometric details in mass models, which is a 

limitation in (Parish and Müller, 2001), and the reduction of an excessive number of splits that 

are required in (Wonka et al., 2003) for complex mass models. Additionally, CGA shape 

addresses the problem of both approaches that facade elements (e.g., windows, doors, etc.) are 

often cut in an unnatural way whenever different volumes of a building model intersect each 

other. This is the case, for example, if a volume is placed in front of another volume so that 

elements on the partially occluded facade become partially occluded as well. The reason for 

this is that volumes in (Parish and Müller, 2001) and (Wonka et al., 2003) are not aware of 

each other. In order to overcome these issues, the CGA shape framework defines a shape as a 

set consisting of a terminal or nonterminal symbol to unambiguously identify the shape and 

geometric and numeric attributes. The geometric attributes include the position and three 

orthogonal vectors, defining the local coordinate system of the shape, and a size vector which 

represents the extent of the shape in all three dimensions. These geometric attributes define 

the so-called scope of a shape which can be considered as an oriented bounding box that 

contains the shape. For the modification of a shape with CGA shape, four types of production 

rules are used: (i) Scope rules are used to modify the scope of a shape by translating, rotating 
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or resizing the shape. (ii) Basic split rules are equivalent to the split rules in split grammars 

with the addition that they are able to deal with both absolute and relative values. (iii) Repeat 

rules tile a specific element along an axis of the local coordinate system with as many 

instances of another element as there is space. (iv) Component split rules divide a shape into 

its geometric components based on keywords such as faces or edges. With this, a shape can be 

split into shapes of lesser dimensions to access, for example, the faces of a mass model. In 

order to address the problem of partially occluded facade elements, an occlusion query test for 

intersecting shapes is carried out that differentiates between no, partial, and full occlusions. 

This information is considered whenever a facade element is placed. Furthermore, snap lines 

are introduced to alter existing shape rules in order to snap elements to a dominant line or face 

in the shape configuration so that the facade layout is further improved. Besides the recon-

struction of building facades, some special shapes are defined that can be placed on top of a 

flat shape to generate different roof shapes. 

Due to its simplicity and powerful expressiveness several applications, extensions and 

variants of shape grammars in general and CGA shape in particular have been developed. 

Some are outlined in the following. In (Müller et al., 2005), for example, the practical 

applicability of (Parish and Müller, 2001) and (Wonka et al., 2003) is demonstrated to 

automatically reconstruct Roman housing architecture for the famous Pompeii site. Similarly, 

CGA shape grammar is used in (Müller et al., 2006a) to procedurally generate archaeological 

sites in Mexico consisting of Puuc-style buildings which is a style of Pre-Columbian Mayan 

architecture and in (Dylla et al., 2009) to reconstruct the entire city of ancient Rome. An 

interactive visual editing framework based on the language elements of CGA shape is 

presented in (Lipp et al., 2008) to provide direct and persistent local control over generated 

instances. In (Hohmann et al., 2009), Cityfit is presented to fit shape grammars to images and 

derived point clouds in order to reconstruct detailed facades that include all significant 

elements larger than 50 cm. For this, the Generative Modeling Language (Havemann, 2005) 

as grammar description language and the main concepts of CGA shape is combined in the 

shape grammar system of CityFit. In the procedural modeling language G2 (Generalized 

Grammar) proposed in (Krecklau et al., 2010), various concepts in the field procedural 

modeling are adapted to increase the freedom of simple boxes in CGA shape and thus its 

descriptive power. For this, the use of nonterminal symbols for procedural modeling is 

generalized in G2. On the one hand, multiple classes of nonterminal objects with 

domain-specific attributes and operators are introduced to encapsulate different modeling 

strategies such as box-like modeling or freeform deformations. On the other hand, G2 enables 

the definition of abstract structure templates for flexible reuse within the grammar by 

accepting nonterminal symbols as rule parameters. The capability of the G2 framework is 

demonstrated in (Krecklau and Kobbelt, 2011a) in which bridges, roller coasters, and 

wall-mounted catenaries are exemplarily generated. In (Müller Arisona et al., 2013), a 

methodology that combines CGA and photogrammetry to create building models with 

detailed facade structures and textured roof geometry is shown. More recently, CGA++ was 

presented in (Schwarz and Müller, 2015). A major objective of the advanced CGA version is 

to enhance the interaction between shapes. Thereby, it can be ensured that, for example, 

certain elements like doors are generated for each building in an appropriate number, masses 
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can be merged to avoid overlapping geometries, and partially occluded elements are not 

necessarily omitted but adjusted together with their contextual related elements. The latter is 

often the case for those windows of a floor where only some of them are partially occluded. 

Instead of removing all partially occluded windows, CGA++ is able to adjust all windows of 

the floor accordingly. 

In (Vanegas et al., 2010), another grammar-based reconstruction method for buildings with 

flat rooftops is presented that follows the Manhattan-world assumption (Coughlan and Yuille, 

1999), i.e., the predominance of three mutually orthogonal directions in the scene. Here, 

buildings are decomposed into floors with a constant height value and the outline of each 

floor is defined by a two-dimensional polyline. Since Manhattan world assumption is 

assumed, each polyline can be formulated as a string based on the turtle graphics formulation 

using the alphabet {𝑓(𝑙),+,−}, where 𝑓(𝑙) reflects the length of a line segment 𝑙, and + and 

− the angle between successive line segments (i.e., either +90° or -90°). The rectangular 

outline of the first floor shown in Figure 2.3 is, for example, defined by 𝑓(𝑙0) − 𝑓(𝑙1) −

𝑓(𝑙0) − 𝑓(𝑙1). Successive floors are then generated by applying rewriting rules that represent 

the changes, observed in multiple calibrated aerial images, to the previous floor string. The 

transitions are formulated as rewriting rules that replace a letter with a sequence of new letters 

and follow the generalized rewrite rule (GRR) 

𝑓(𝑙) → 𝑓(𝑎) − 𝑓(𝑐) + 𝑓(𝑙 − 𝑎 − 𝑏) + 𝑓(𝑐) − 𝑓(𝑏), (2.1) 

such that 𝑎 + 𝑏 < 𝑓(𝑙) and 𝑐 ≥ 0. As shown in Figure 2.3, this is the case for transitions  

of the type L-shape ( 𝑎 = 0  or 𝑏 = 0 ), U-shape ( 𝑎 ≠ 0, 𝑏 ≠ 0, 𝑐 ≠ 0 ), and push-back  

(𝑎 = 𝑏 = 0, 𝑐 > 0). Additionally, in order to ensure a plausible structure, several intra- and 

inter-floor constrains are considered during the application of GRR (e.g., the size of a 

successive floor must be either equal or smaller than the size of the previous floor). 

 

Figure 2.3. The representative strings of the second floors generated with the rewriting rules 

presented in (Vanegas et al., 2010). 

The presented procedural modeling techniques thus far are very well suited to generate large 

urban environments with realistic looking buildings in a reasonable amount of time. But a 
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general problem of procedural modeling frameworks is that production rules are frequently 

assumed to already be available from the outset (van Gool et al., 2013). In order to provide a 

variety of complex buildings, a large number of sophisticated production rules is needed 

which is often done in a manual way. The manual set up of rules is, however, often not only 

laborious and time-consuming but also requires expert knowledge (Becker et al., 2013). To 

overcome this issue, techniques for the inverse procedural modeling have been invented 

which automatically derive rules from observations. In (Aliaga et al., 2007) style grammars, 

an extension of the grammars presented in the Build-by-Number system (Bekins and Aliaga, 

2005), are presented that facilitate the interactive creation of new buildings in a style compa-

rable to already generated buildings. For the generation of the grammar, images are manually 

mapped to simple geometric building models, which in turn are then decomposed into smaller 

facade features (e.g., floors, doors, windows, etc.). Based on the decompositions, repetitive 

patterns are detected and a style grammar is formulated. Applied on a composition of building 

blocks, new buildings can be created in a style of existing buildings. Methods for the auto-

matic derivation of shape grammar rules for building facades from single facade images are 

shown in (Müller et al., 2007) and (van Gool et al., 2007). In (Becker, 2009), first a 

data-driven reconstruction procedure is performed on terrestrial LiDAR data. The result is 

then used as a knowledge base from which production rules are automatically defined for 

further processing of partially or completely occluded facades. Another inverse procedural 

method is proposed in (Bokeloh et al., 2010) that automatically extracts general rewriting 

systems, context free hierarchical rules, and grid-based rules from a given model to create 

objects with a similar shape. A machine learning approach based on Inductive Logic Pro-

gramming (ILP) is applied in (Dehbi and Plümer, 2011) to automatically derive grammar 

rules for building parts. Note, logic programs and attribute grammars, which extend con-

text-free grammars by attributes and semantic rules, can basically be considered as the same 

language with syntactic differences. The capability of ILP and its limitations have been 

demonstrated for straight stairs. In (Vanegas et al., 2012), an interactive framework is 

presented that combines forward and inverse procedural urban modeling strategies to alter the 

input parameters according to the desired output. A framework that automatically extracts 

split grammars and evaluates their meaningfulness is illustrated in (Wu et al., 2014). In 

(Dehbi et al., 2017), a statistical relational learning approach is proposed for the automatic 

derivation of grammar rules. Here, a weighted context-free grammar is generated based on 

SVM techniques and it is further extended by parameters and constraints learned by a 

statistical learning method using Markov logic networks. Another algorithm that automati-

cally derives formal grammar rules to describe the structure of building footprints and facades 

in a compact way based on information about symmetry, regular patterns, and palin-

drome-like structures is presented in (Dehbi et al., 2016a). 

For some time, research also focusing on parallelizing shape grammars has been carried out to 

reduce the computational time for the generation of large urban areas within procedural urban 

modeling. In (Marvie et al., 2012), GPU shape grammars are proposed for the interactive 

generation of large urban areas with modern graphics hardware. They enable the creation of 

massive, detailed models within a short period of time. One limitation is, however, that the 

roof generation does not preserve the overall footprints. Therefore, roof structures are 
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generated on CPU, caching only the output within GPU buffers. To overcome this issue, GPU 

roof grammars (Buron et al., 2013) have been proposed. They extend the GPU shape gram-

mars with further rules to guide the roof creation and thus bring parallelism to grammar based 

roof generation. 

Another significant step forward in parallel evaluation of procedural shape grammars on GPU 

has been presented in (Steinberger et al., 2014a). The proposed schema for parallel generation 

of architecture (PGA) explicitly expresses independence in the grammar and introduces 

intra-rule parallelism which distributes the evaluation of a single rule to more than a single 

thread. Furthermore, PGA avoids slow global memory access by local rule grouping strategies 

and intelligent rule scheduling, and provides full modeling capabilities. The expressive power 

is assured since PGA is compatible with CGA shape grammars in the sense that existing rule 

sets can be ported with little effort to PGA. The amount of generated geometry, however, 

exceeds in practice for large urban areas the common storage capabilities of consumer 

graphics hardware. Therefore, an extension of PGA is presented in (Steinberger et al., 2014b) 

that considers the visibility and different levels of detail in the evaluation so that the amount 

of generated geometry is reduced. Furthermore, the combined generation and rendering 

approach further decreases the processing time and overcomes the limitations of streaming 

pre-generated data. Another extension of PGA is presented in (Dokter, 2014), in which the 

focus is on exploring different strategies to execute procedural modeling on GPU. In this 

regard, methods of controlling the GPU rule evaluation process as well as the benefits and 

drawbacks of deriving precompiled rule sets and interpreting them at runtime are investigated. 

With particular focus on real-time generation of flat building facade textures, a gram-

mar-driven method has been proposed in (Krecklau and Kobbelt, 2011b). Analogous to the 

F-shade procedure presented in (Haegler et al., 2010), procedural facade textures are not 

explicitly generated but implicitly archived on-the-fly on the graphics card by a per-pixel 

evaluation. For this, facades are initially subdivided along a certain axis by a split grammar so 

that the pixel evaluation starts with the full facade that is traced down until a terminal symbol 

is found. The terminal symbol in turn is associated with a texture and thus defines the color of 

the pixel. The proposed grammar evaluation method has been extended in (Krecklau et al., 

2013) to render textured facades in a view dependent manner so that the number of polygons 

is reduced. Furthermore, 3D geometric details are introduced in addition to flat textures. 

Although most procedural modeling approaches for buildings focus on facades, some research 

has been carried out that integrates procedural modeling techniques in the generation or 

reconstruction process of other building parts. With respect to indoor modeling, for example, 

grammar supported automatic reconstruction methods of two-dimensional indoor maps are 

presented in (Becker et al., 2013) and (Philipp et al., 2014). Examples for the procedural 

generation of three-dimensional indoor maps are given in (Gröger and Plümer, 2010) and 

(Becker et al., 2015). In addition, some approaches for the incremental refinement of building 

models have been proposed using, for example, string grammars (Kada, 2014) or weighted 

attribute context-free grammars (Dehbi et al., 2016b). Furthermore, an engine with the 

primary objective to provide building models in multiple LODs by generating them with 
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procedural modeling techniques has been presented in (Biljecki et al., 2016a). Regarding roof 

modeling based on procedural modeling techniques, however, not much research has been 

carried out. As, for example, recently stated in (Edelsbrunner et al., 2016), numerous proce-

dural modeling systems have been proposed that allow the creation of immense and realistic 

details, but roofs still pose a problem. A majority of procedural frameworks are either limited 

to flat roofs (e.g., (Parish and Müller, 2001)) or they use a basic roof shape from a predefined 

library that is, for example in (Müller et al., 2006b), obtained by a straight skeleton computa-

tion (Aichholzer et al., 1995). In contrast, a building reconstruction approach is proposed in 

(Milde et al., 2008) that first detects simple roof sub-shapes in a model-driven way. Then, a 

context free, attributed grammar is used in which five basic sub-shapes correspond with 

nonterminal symbols and that can be derived from the start symbol in the first derivation step. 

In order to combine these basic sub-shapes, three different connectors are introduced in the 

grammar. A major limitation of the proposed approach is, however, that the selection of rules 

is carried out manually. One of the first approaches with particular focus on procedural 

modeling of roofs for arbitrary building outlines is presented in (Kelly and Wonka, 2011). 

With the proposed interactive procedural roof modeling framework, more complex roof 

shapes such as curved and overhanging roofs can be interactively created. 
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3. Fundamentals 

In this chapter a methodological overview is given on methods and techniques used in this 

thesis. More precisely, section 3.1 is related to chapter 4 and summarizes three groups of 

frequently applied segmentation methods of planar areas. In section 3.2, different types of 

grammars are described that form the basis for the building knowledge derivation procedure 

presented in chapter 5. The remaining subsections are related to chapter 6 and 7 and summa-

rize different solid modeling techniques which are generally applicable for building model 

reconstruction purposes, different types of data clustering methods, and a commonly used 

method to register point clouds. 

3.1 Segmentation of Planar Areas 

In the context of data-driven reconstruction approaches, automatic detection of planar areas is 

a crucial operation. Many segmentation methods have been therefore developed of which 

three groups are briefly summarized in this section. A more detailed review of these methods 

is, for example, given in (Vosselman et al., 2004) and (Vosselman and Klein, 2010). 

For the detection of planes in point clouds, the principles of 2D Hough transform (Hough, 

1962) can be extended to the three-dimensional space. For this, a plane in the object space 

(𝑋, 𝑌, 𝑍) is defined as 

𝑑 = 𝑋 cos 𝛼 cos 𝛽 + 𝑌 sin 𝛼 cos 𝛽 + 𝑍 sin 𝛽. (3.1) 

In addition to the object space, a 3D parameter space (𝛼, 𝛽, 𝑑), also called a Hough space, is 

defined by the plane parameters 𝛼, 𝛽, and 𝑑 so that each point in the parameter space defines 

a plane in the object space. For each point in the object space, all possible planes that have 

this point in common are translated into the parameter space. As a result, each point in the 

object space is transformed into a sinusoidal surface in the parameter space. Points in the 

object space that are coplanar feature a common intersection in the parameter space. Thus, the 

values of this intersection represent the parameters of the plane in the object space on which 

the coplanar points are located. A simple example is shown in Figure 3.1. Here, the three 

black points in the object space (1, 0, 0), (0, 1, 0), and (0, 0, 1) are transformed into the three 

sinusoidal surfaces in the parameter space. The values of their intersection define in the object 

space the parameter values of the orange plane on which the three points are located. In order 

to keep the computational time low, the parameter space is usually discretized into bins and 

defined in a local coordinate system whose origin is located in the center of the given point 

cloud. The discretization of the space is also needed to deal with noise in the measured point 

coordinates which causes that the sinusoidal surfaces of coplanar points do not exactly 

intersect in one point. By iteratively determining the bin with the largest number of intersect-
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ing surfaces and removing these surfaces from the parameter space, planes and their corre-

sponding points in the object space can be detected. For the determination of the plane 

parameters based on a single bin, often either the parameter values of the bin in the parameter 

space are used or a least-squares fitting to its corresponding points in the object space is 

applied. The iterative procedure stops if no further bin with a minimum number of surfaces 

can be selected in the parameter space. For a survey of Hough transform with more details 

see, for example, (Mukhopadhyay and Chaudhuri, 2015). The principles of the 3D Hough 

transformation to determine planar regions in point clouds have been extended in (Rabbani 

and van den Heuvel, 2005) for the segmentation of simple primitives such as cylinders as well 

as in (Khoshelham, 2007) for 3D objects with arbitrary shapes. 

object space: parameter space: 

 

 

Figure 3.1. Transformation of three coplanar points in the object space (left) into the parame-

ter space (right). 

Another frequently applied group of methods that iteratively detect planes in point clouds 

makes use of RANSAC, which was originally introduced in (Fischler and Bolles, 1981) as a 

general approach to robust model fitting. Analogous to Hough transform, it determines in 

each iteration the best-fitting plane. For this, first three points are randomly selected from the 

data and the parameter values of the corresponding plane are calculated. Then, the consensus 

set of it is identified which consists of all points of the point cloud that can be assigned to this 

plane according to a predefined distance threshold. These two steps are applied several times 

until all possible planes and their consensus sets have been determined. By determining the 

plane with the largest consensus set out of this group of planes and consensus sets, the best 

fitting plane can be extracted. By repeating this procedure and ignoring during the next 

iterations all those points that were assigned to an extracted plane, all planes in a point cloud 

can be determined. The procedure stops if the number of points in the largest consensus set of 

an iteration is less than a predefined threshold. Several variants have been proposed to reduce 

the computational time. A common method is, for example, to limit the number of repetitions 

in an iteration which causes, however, that not always the best-fitting plane is determined. A 

more advanced optimization method of RANSAC is presented in (Schnabel et al., 2007). 

Here, an octree (see section 3.3.1) is utilized to organize the point cloud and to reduce the 

overall computational cost. In (Bretar and Roux, 2005), a normal-driven RANSAC approach 
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is proposed in which not all possible triples of points are selected to determine a plane but 

only those whose points share the same orientation of normal vectors with respect to a 

predefined threshold. Thereby, a lower number of consensus sets needs to be tested. 

Hough transform and RANSAC are global approaches that ignore local point neighborhood. 

Thereby, both segmentation methods are generally robust against local outliers and can 

provide good results even in noisy point clouds. However, their segmentation result is 

sensitive to their chosen parameter values which is, for example, the minimum number of 

points that is required to extract a plane. Additionally, the bin size of the parameter space in 

Hough transform based segmentation methods needs to be carefully chosen. On the one hand, 

if the bin size is too small, sinusoidal surfaces of actually coplanar points might pass through 

different nearby bins due to some noise in their coordinates so that their plane cannot be 

detected. On the other hand, the use of a large bin size causes that estimated plane parameters 

might become less accurate or that incorrect planes are detected. This analogously applies in 

RANSAC based segmentation methods to the parameter value that defines the tolerance range 

during the determination of the consensus sets. Another disadvantage of both segmentation 

methods is that due to their global approach, it has to be considered that coplanar points 

belonging to different (non-coplanar) planes might be segmented together. A typical case 

which might appear is exemplarily illustrated in Figure 3.2. Here, the incorrectly detected 

plane features more corresponding points than each plane of a single roof plane. Thereby, 

only one instead of five roof planes is extracted. For roof plane extraction purposes, it also has 

to be considered that coplanar segment patches are extracted together without any distinction 

between them. As a consequence, additional effort in form of a connected component analysis 

needs usually to be carried out to derive all planar areas of neighboring points. 

 

Figure 3.2. Side view of an incorrectly detected plane (black line) which is supported by the 

points in the grey area (Vosselman and Klein, 2010). 

In the third group of segmentation methods, surface growing segmentation techniques are 

used to iteratively detect planar areas or other smooth types of surfaces. For this, the princi-

ples of the well-known region growing algorithm are extended to the three-dimensional space. 

For further details about the two-dimensional region growing see, for example, (Pratt, 2007) 

and (Gonzalez and Woods, 2008). In surface growing approaches, the spatial proximity of 

points is, in contrast to Hough transform and RANSAC, already taken into account during the 

segmentation process so that coplanar patches are separately extracted. An iteration of the 

surface growing algorithm basically consists of two parts: seed detection and segment 

growing. In the seed detection step, small sets of nearby points are examined in terms of their 
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properties to decide whether or not they constitute a part of a surface. If an initial surface is 

identified, surface growing continues with the growing step. Otherwise, the set of nearby 

points is discarded as the initial surface and another set of nearby points is examined. In the 

case that no initial surface can be identified, the iterative segmentation procedure stalls. In the 

growing step, all so far unassigned neighboring points of the previously detected seed surface 

are examined. If they share similar properties as the seed surface they can be added to the 

currently processed surface. Typical properties that are taken into consideration during the 

growing step are, for example, local surface normal direction, intensity, color, and distance 

between the currently grown surface and the point to be examined. If a neighboring point is 

assigned to a segment, then its neighboring points need to be examined as well if they can be 

assigned to the grown segment. Additionally, in order to improve the accuracy, properties of 

the currently grown segment can be updated before further neighboring points are tested. But 

in order to keep the computational time low, properties of the segment are often only updated 

if the surface has grown by a certain percentage. Once no further neighboring points can be 

added to the segment, the growing process stalls and the next iteration starts to detect the next 

surface. 

3.2 Grammars 

Grammars are a branch of linguistics and deal with morphology, the study of word structure 

and word formation, and syntax, the study of sentence structure. They have been studied for 

many years and became important in computer science as well. Particularly in theoretical 

computer science, formal grammars are used as base of compilers, regular expressions, 

parsers, state machines based on Markov chains, and many others. They have emerged from 

various origins of which the main root is mathematics (in particular combinatorics and algebra 

of semigroups and monoids). Probably the best-known pioneers in this research field are Axel 

Thue, who investigated in (Thue, 1906; Thue, 1912) avoidable and unavoidable patterns in 

long and infinite words, and Alan Turing together with Emil Post, who proposed in (Turing, 

1936) and (Post, 1936) independently from each other a mathematical model of computation 

(i.e., Turing machine and Post-Turing machine) which defines in computability theory and 

computational complexity theory the set of allowable operations used in computation and 

their respective costs. A special type of formal grammar is the Lindenmayer system 

(L-system) which was invented in the 1960s. It represents a parallel rewriting system and is 

thereby particularly suitable to model the growth process in cellular biology. Other 

well-known types of grammars are the shape and the set grammar which were introduced in 

the 1970s and 1980s, respectively. They are both typically used for the generation of two- or 

three-dimensional geometric shapes. All previously mentioned grammars have in common 

that they operate either on strings or shapes and are thus not suited to model transformations 

of graphs. In order to overcome this issue, graph grammars were introduced in the late 1960s. 

The main aspects of these four different types of grammars are summarized in the following 

subsections. For some further details see (Ehrig, et al., 2006), (Rozenberg and Salomaa, 

1997), and (Rozenberg, 1997). 
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3.2.1 Formal Grammars 

In formal language theory, a formal grammar is a rewriting system over a finite sequence of 

symbols, so-called strings, from an alphabet that consists of a finite set of discriminable 

symbols. Analogous to semi-Thue systems (Thue, 1914), formal grammars define an alphabet 

and production rules for strings. But in contrast to a semi-Thue system, a distinction is made 

between terminal and nonterminal symbols. Additionally, a start symbol is specified in formal 

grammars amongst nonterminal symbols. More formally, a formal grammar 𝐺 , as first 

proposed by Noam Chomsky (Chomsky, 1956; Chomsky, 1957), is defined as a 4-tuple 

(𝑉, 𝑇, 𝑃, 𝑆), where 

 𝑉 is a non-empty, finite set of nonterminal symbols. 

 𝑇 is a non-empty, finite set of terminal symbols that is disjoint from 𝑉. 

 𝑃 is a finite set of production rules of the form 𝛼 → 𝛽 where 𝛼 ∈ (𝑉 ∪ 𝑇)∗𝑉(𝑉 ∪ 𝑇)∗, 

𝛼 ≠ 𝜀, and 𝛽 ∈ (𝑉 ∪ 𝑇)∗. Note, * denotes the Kleene star, 𝜀 is the empty string, and 𝛼 

and 𝛽 are respectively called the left-hand side (LHS) and the right-hand side (RHS) 

of a production rule. 

 𝑆 ∈ 𝑉 is the start symbol. 

A sequence of applied production rules is called a derivation. The set of all possible strings of 

terminals that can be derived from a formal grammar 𝐺 is called its language, denoted as 

𝐿(𝐺) and defined as 

𝐿(𝐺) =  {𝑤 | 𝑆
𝑃∗

→𝑤,𝑤 ∈ 𝑇∗}. (3.2) 

The simple grammar 𝐺1 with 𝑁 = {𝑆},  𝑇 = {𝑎,  𝑏}, and 𝑃 = {𝑆 → 𝑎𝑆𝑏,  𝑆 → 𝑎𝑏} defines, for 

example, the language 𝐿(𝐺1) = {𝑎
𝑛𝑏𝑛 | 𝑛 ∈ ℕ+} in a compact way. 

In (Chomsky, 1959), formal grammars are categorized in terms of their production rules into 

four different types of grammars. An overview of the so-called Chomsky hierarchy is given in 

Table 3.1. The grammar classes are ranked by decreasing order of expressive power. More-

over, the relationship between the derived languages of the four grammar types can be 

described as 

𝐿3 ⊂ 𝐿2 ⊂ 𝐿1 ⊂ 𝐿0. (3.3) 

Although grammars of classes with a lower rank are more powerful, they are in practice 

generally less useful because they cannot be efficiently parsed. For example, the languages 

that are generated by type-0 grammars may be semi-decidable. In contrast, languages are 

decidable if they belong to the class of context-sensitive grammars. In order to decide whether 

a string belongs to a language, exponential time is required for type-1 languages, polynomial 

time for type-2 languages, and linear time for type-3 languages. Since the parser complexity 
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of type-1 grammars is PSPACE-complete, mainly type-2 and type-3 grammars are applied in 

practice. 

Table 3.1. Chomsky hierarchy. 

Type Grammars Form of production rules Languages Generative power 

0 Unrestricted 𝛼 → 𝛾, where 

𝛼 ∈ (𝑉 ∪ 𝑇)∗𝑉(𝑉 ∪ 𝑇)∗,  

𝛼 ≠ 𝜀, and 𝛾 ∈ (𝑉 ∪ 𝑇)∗ 

Recursive 

enumerable 

Turing machines 

1 Context-

sensitive 

𝛼𝐴𝛽 → 𝛼𝛾𝛽, where 

𝐴 ∈ 𝑉, 𝛼, 𝛽 ∈ (𝑉 ∪ 𝑇)∗, and 

𝛾 ∈ (𝑉 ∪ 𝑇)+ 

(𝑆 → 𝜀 allowed if 𝑆 does not 

appear on the RHS) 

Context-

sensitive 

Linear bounded 

automata 

2 Context-free 𝐴 → 𝛾, where 

𝐴 ∈ 𝑉, and 𝛾 ∈ (𝑉 ∪ 𝑇)∗ 

(𝑆 → 𝜀 allowed if 𝑆 does not 

appear on the RHS) 

Context-free Pushdown 

automata 

3 Regular 𝐴 → 𝑎𝐵 (right-linear), 

𝐴 → 𝐵𝑎 (left-linear), and 

𝐴 → 𝑎,  where 

𝐴, 𝐵 ∈ 𝑉, and 𝑎 ∈ 𝑇∗ 

Regular Finite automata 

3.2.2 Lindenmayer Systems 

A rewriting system with particular focus on the development of filamentous organisms is 

presented in (Lindenmayer, 1968). Similar to a formal grammar, an L-system can be defined 

as a three-tuple (𝑉, 𝑃, 𝜔), where 

 𝑉 is a non-empty, finite set of symbols. 

 𝑃 is a finite set of production rules. 

 𝜔 is the initial string, so-called axiom, from which the rewriting starts. 

Starting from the axiom, production rules are iteratively applied. But in contrast to formal 

grammars, L-systems can apply in each iteration more than one production rule in parallel. 

Therefore, formal grammars are referred to sequential rewriting systems while L-systems are 

considered as parallel rewriting systems. Thereby, the natural growth of a biological organ-

ism, where many cell divisions may occur simultaneously at different positions, can be 

modeled in an appropriate way. A further significant difference to formal grammars is that 

L-systems do not differentiate between terminal and nonterminal symbols. Therefore, the 

termination of an L-system derivation is usually defined by a predefined number of iterations. 
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Similar to formal grammars, L-systems are categorized in terms of their production rules. 

Here, a distinction is made between context-free L-systems (0L-systems) and context-

sensitive L-systems (1L-system). In contrast to 0L-systems, neighboring symbols of a symbol 

that is to be modified are incorporated in 1L-systems. For this, the symbols “<” and “>” are 

introduced to separate the left and the right context from the symbol that is to be modified. 

Both types of L-systems do not follow the categorization of the Chomsky hierarchy, but the 

relations between Chomsky classes of languages and language classes generated by L-systems 

can be described as shown in Figure 3.3. 

 

Figure 3.3. Relations between Chomsky classes of languages and language classes generated 

by L-systems according to (Prusinkiewicz and Lindenmayer, 1990). 

For the geometric interpretation of strings, turtle geometry (Abelson and diSessa, 1981), as 

proposed in (Prusinkiewicz, 1986), can be adapted. The state of a turtle is a triplet (𝑥, 𝑦, 𝛼), 

where the coordinates (𝑥, 𝑦) represent the position of the turtle and 𝛼 the direction in which 

the turtle is facing. According to a predefined step size 𝑑 and an angle increment 𝛿, the turtle 

follows the basic turtle commands represented by the symbols 

 F: Move forward so that the current 𝑠𝑡𝑎𝑡𝑒𝑖 = (𝑥, 𝑦, 𝛼)  changes to 𝑠𝑡𝑎𝑡𝑒𝑖+1 =

(𝑥 + 𝑑 ⋅ 𝑐𝑜𝑠(𝛼), 𝑦 + 𝑑 ⋅ sin (𝛼), 𝛼)  and draw a line segment between 𝑠𝑡𝑎𝑡𝑒𝑖  and 

𝑠𝑡𝑎𝑡𝑒𝑖+1. 

 f: Move forward as defined for F but without drawing a line. 

 +: Turn right by angle 𝛿 so that the current 𝑠𝑡𝑎𝑡𝑒𝑖 = (𝑥, 𝑦, 𝛼) changes to 𝑠𝑡𝑎𝑡𝑒𝑖+1 =

(𝑥, 𝑦, 𝛼 + 𝛿). 

 -: Turn left by angle 𝛿  so that the current 𝑠𝑡𝑎𝑡𝑒𝑖 = (𝑥, 𝑦, 𝛼) changes to 𝑠𝑡𝑎𝑡𝑒𝑖+1 =

(𝑥, 𝑦, 𝛼 − 𝛿). 

 |: Turn away so that the current 𝑠𝑡𝑎𝑡𝑒𝑖 = (𝑥, 𝑦, 𝛼)  changes to 𝑠𝑡𝑎𝑡𝑒𝑖+1 =

(𝑥, 𝑦, 𝛼 + 180°). 

For all other symbols, the turtle preserves its state. There are several variants that extend the 

list of basic turtle commands. Useful extensions are, for example, the symbol “[”, which 

pushes the current state of the turtle into a stack, and the symbol “]”, which pops a state from 

the stack and makes it to the current state of the turtle without drawing a line between the last 

and current state. With these two symbols, the growth of more complex structures can be 
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compactly described that frequently occur in nature. In order to describe, for example,  

the growth of algae, a simple L-system can be defined, where 𝑉 = {𝐹,+,−, [, ]} ,  

𝑃 = {𝑝1: 𝐹 → 𝐹[+𝐹]𝐹[−𝐹]𝐹}, and 𝜔 = 𝐹. The geometric interpretation of the first iterations 

with 𝛿 = 25° is shown in Figure 3.4. For further details regarding the modeling of plants with 

L-systems, see (Prusinkiewicz and Lindenmayer, 1990). 

       
Generation 0 Generation 1 Generation 2 Generation 3 Generation 4 Generation 5 Generation 6 

Figure 3.4. Growth modeling of algae with an L-system and its geometric interpretation for 

the first iterations. 

3.2.3 Shape and Set Grammars 

A widely applied formal description of designs is a shape grammar (Stiny, 1975). The concept 

of shape grammars was originally introduced in (Stiny and Gips, 1972) for painting and 

sculptures and since then often utilized in the context of architecture. In contrast to formal 

grammars and L-systems which define a grammar over an alphabet of symbols and generate 

one-dimensional strings of symbols, shape grammars operate on an alphabet of shapes and 

generate n-dimensional shapes. According to (Stiny, 1980), a shape is a finite set of so-called 

maximal lines, each defined by a set of two distinct points, that form an entity. More formally, 

a shape grammar is a four-tuple (𝑆, 𝐿, 𝑅, 𝐼), where 

 𝑆 is a finite set of shapes. 

 𝐿 is a finite set of symbols. 

 𝑅 is a finite set of shape rules (productions) of the form 𝛼 → 𝛽, where 𝛼 is a labeled 

shape in (𝑆, 𝐿)+, and 𝛽 a labeled shape in (𝑆, 𝐿)∗. 

 𝐼 is a labeled shape in (𝑆, 𝐿)+ called the initial shape. 

A labeled shape is defined in (Stiny, 1980) as an ordered pair 〈𝑠, 𝑃〉, where 𝑠 is a shape and 𝑃 

a finite set of labeled points, which are located with respect to the shape 𝑠 but do not neces-

sarily have to coincident with the lines in 𝑠. A labeled point 𝑝: 𝐴 in turn is a point 𝑝 with a 

symbol 𝐴 associated with it. 

Production rules in shape grammars may be applied both serially as in Chomsky grammars or 

parallel as in L-systems. In order to apply a shape rule, all possible locations of the shape on 
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the LHS of the rule, taking into consideration geometric transformations (scale, translation, 

rotation, mirror image), need to be determined in the current shape. The derivation process of 

shape grammars thus involves a sub-shape matching problem which is much more intricate 

than the one-dimensional sub-string matching problem in formal grammars and L-systems. 

Therefore, around 50 % of the implementation effort of shape grammars is according to 

(Gips, 1999) related to this issue. 

A simple variant of the shape grammar formalism that circumvent the sub-shape matching 

problem is presented in (Stiny, 1982). Here, designs are treated as symbolic objects and not as 

spatial objects so that the sub-shape matching problem of shape grammars is reduced to a 

simple symbol matching problem. Thereby, rules in set grammars are applied to subsets of 

sets of labeled shapes to produce other such sets while rules in shape grammars are applied to 

sub-shapes of labeled shapes to produce other such labeled shapes. This usually makes set 

grammars more suitable for computer implementation because designs in languages defined 

by set grammars consist of shapes in 𝑆 and not of shapes and sub-shapes of shapes in 𝑆 as in 

the case of shape grammars. 

3.2.4 Graph Grammars 

Graph grammars (GG) were introduced in the late 1960s (Pfaltz and Rosenfeld, 1969; 

Schneider, 1970) and since then they have been applied in several domains such as logic 

programming, pattern recognition, model transformation, compiler construction, modeling of 

concurrent systems, and many others. They can be considered as a natural generalization of 

classical Chomsky grammars where strings are replaced by graphs and thus they can be used 

for the formal description of transforming an original graph into a new graph. Note, the term 

graph grammar and the terms graph replacement system and graph rewriting system are 

sometimes equivalently used in literature. The main components of a GG are an initial graph 

and a finite set of production rules. According to (Engelfriet and Rozenberg, 1997), a 

production rule is, in general, a triple (𝑀,𝐷, 𝐸) where 𝑀 is the so called mother graph, 𝐷 the 

so called daughter graph, and 𝐸 an embedding mechanism. A production rule is applied to a 

given host graph 𝐺 by removing all occurrences of the mother graph 𝑀 in 𝐺, replacing each 

of them by an isomorphic copy of the daughter graph 𝐷, and finally applying the embedding 

mechanism 𝐸 to attach 𝐷 to the remainder graph 𝐺− of 𝐺. Two prominent basic examples of 

graph grammars are the node replacement graph grammar in which a node of a given graph is 

replaced by a new subgraph and the (hyper)edge replacement graph grammar in which a 

(hyper)edge of a given (hyper)graph is replaced by a new sub(hyper)graph; for further details 

see (Engelfriet and Rozenberg, 1997) and (Habel, 1992; Drewes et al., 1997). 

During the last decades, several approaches to GG have been developed. Traditionally, there 

are two main groups of approaches that can be distinguished by their embedding mechanism: 

set-theoretic (or algorithmic) approaches (Nagl, 1987) and algebraic approaches (Ehrig et al., 

1973). In set-theoretic approaches, a so called connecting mechanism is carried out, which 

embeds 𝐷 in 𝐺− by establishing edges between certain nodes of 𝐷 and certain nodes of 𝐺− 

according to the connection instructions from 𝐸, while in algebraic approaches, a so called 
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gluing mechanism is applied in which certain parts of 𝐷 are identified in 𝐺− and accordingly 

glued together. 

In algebraic approaches, there are two main approaches for the replacement of 𝑀 in 𝐺 that 

were introduced in (Ehrig et al., 1973) and (Löwe, 1993): the double pushout (DPO) approach 

and the single pushout (SPO) approach. Both are based on category theory in which a pushout 

is defined for two given morphisms 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐴 → 𝐶 as a triple (𝐷, 𝛼, 𝛽) that consists 

of an object 𝐷 , the two morphisms 𝛼: 𝐵 → 𝐷  and 𝛽: 𝐶 → 𝐷 , and that meets the universal 

property 𝛼 ∘ 𝑓 = 𝛽 ∘ 𝑔. For further details of pushouts in category theory, see, for example, 

(Mac Lane, 1998) and (Awodey, 2010). According to (Corradini et al., 1997), pushouts in 

suitable categories with graphs as objects and graph homomorphisms as arrows can be used to 

model direct derivations in DPO and SPO approaches. Other approaches to GG are, for 

example, logic based approaches (Schürr, 1997), algebraic and logic based approaches 

(Courcelle, 1990), and double-pullback based approaches (Ehrig et al., 1998). 

In DPO approaches, a production is specified by 𝐿𝐻𝑆
𝑙
←  𝐾

𝑟
→𝑅𝐻𝑆, where 𝑙 and 𝑟 are graph 

homomorphisms from a common interface graph (or gluing graph) 𝐾 , so that a direct 

derivation consists of two gluing diagrams of graphs and total graph morphisms as illustrated 

on the left side of Figure 3.5. The interface graph of a production represents elements that 

should be preserved by its application while elements of 𝐿𝐻𝑆 − 𝐾 are deleted to obtain the 

context graph 𝐷  and elements of 𝑅𝐻𝑆 − 𝐾  are added. The deletion of 𝐿𝐻𝑆 − 𝐾  can be 

described via diagram (1) as an inverse gluing operation while the adding of 𝑅𝐻𝑆 − 𝐾 is 

modeled in the second gluing diagram. In order to avoid conflicts during the replacement of 

subgraphs, each match 𝑚  in a DPO approach must satisfy the so called gluing condition 

which consists of the following two parts: dangling condition and identification condition. 

The dangling condition states that the deletion of a vertex of 𝐺 requires the deletion of all 

incident edges of that node. The identification condition ensures that only one pre-image is 

present for every element of 𝐺  that should be deleted. In DPO approaches, rewriting is 

forbidden in all cases where the gluing condition in not met. 

Figure 3.5. Schematic representation of a direct derivation based on (Corradini et al., 1997). 

Once for DPO approaches (left) and once for SPO approaches. 

In contrast, a production in a single pushout approach is a partial graph homomorphism so 

that a direct derivation is given by a single gluing diagram as illustrated on the right side of 

Figure 3.5, where the match 𝑚 must be total. For the application of a production rule, no 
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gluing condition needs to be satisfied. Here, deletion has in a case of conflict always priority 

over preservation. Moreover, an edge is automatically removed if one or both of its nodes is 

deleted even if this is not explicitly specified in the production rule. As a consequence, the 

co-match 𝑚∗  might become a partial homomorphism. For a more detailed comparison 

between DPO and SPO approaches see (Ehrig et al., 1997). 

3.3 Solid Modeling 

Solid modeling deals with the geometric modeling of three-dimensional physical solid objects 

with the aim of providing a representation that can be utilized to algorithmically solve 

arbitrary geometrical problems in an automatic way. There are several techniques for 

modeling solids that generally dictate the reconstruction process of buildings from point 

clouds and that have an impact on their resulting shapes. Regarding (Mäntylä, 1988), there are 

three major approaches to solid modeling: decomposition models, constructive models, and 

boundary models. The first two techniques describe solids as a closed point set of a 

three-dimensional Euclidean space. While decomposition models generally combine basic 

building blocks from a fixed collection of simple primitives with gluing operations, construc-

tive models include more general operations than mere gluing. Boundary models, on the other 

hand, represent the bounding surfaces of solids and can be described as a collection of faces. 

The main aspects and common data structures of these three major groups of solid modeling 

techniques are described in the following subsections. For some further details see 

(Hoffmann, 1989), (Mortenson, 1997), (Samet, 2006), (de Berg et al., 2008), (Stroud and 

Nagy, 2011), and (Elias, 2014). In addition, a good comparison between several representa-

tions is given in (Requicha, 1980), (Foley et al., 1990), and (Agoston, 2005). 

3.3.1 Decomposition Models 

Decomposition models describe solids as a collection of primitives that are glued together. 

Different variations arise out of the kind of used primitives and allowed gluing operations. 

Some decomposition models are summarized in the following paragraphs. 

In spatial-occupancy enumeration, which is also known as exhaustive enumeration, solids are 

represented as a collection of non-overlapping volume elements with the same size and 

orientation so that the result is a regular subdivision of space. Depending on whether a 

subspace belongs to the solid it is marked as occupied and otherwise as vacant. To obtain the 

represented solid, all volume elements marked as occupied have to be glued together. The 

most common volume element for this purpose is a regularized cube which makes just one 

coordinate sufficient enough for each cube; for example the coordinate for the center or a 

corner of the cube. This representation form is similar to the binary pixel representation in a 

two-dimensional space, why such volume elements are often referred to voxels. Since 

exhaustive enumeration is an approximative modeling technique, it is able to represent all 

kinds of solids within a certain granularity. The representation of a valid solid is unambiguous 

and unique for a fixed volume element and space of interest. However, their validity depends 

on the connections between the volume elements because they may intersect at a common 
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vertex, edge, or face. A major advantage of exhaustive enumeration is that it is well suited for 

manipulation operations because the occupation of a cell can be efficiently determined. 

Hence, closed operations such as Boolean set operations can be easily implemented. The 

storage space, on the other hand, increases significantly with high resolutions due to the 

approximative nature of this modeling technique. 

To overcome the huge memory consumption and the approximative accuracy of exhaustive 

enumeration, adaptive subdivision schemes were introduced. They replace the regular space 

partitioning by an adaptive space partitioning and make use of a lossless data compression 

scheme. The compression scheme is based on the observation that neighboring cubes tend to 

be part of the same class. Instead of keeping each cube separate, neighboring cubes of the 

same class are treated as a single subdivision of the space. This principle is for example also 

applied in run-length encoding, which belongs to the group of entropy encoding. A typical 

representative for this kind of encoding is the well-known Huffman coding (Huffman, 1952). 

Common representatives of adaptive space subdivision schemes are the octree representation 

(Jackins and Tanimoto, 1980; Meagher, 1982) and the quadtree representation (Finkel and 

Bentley, 1974) for the three-dimensional and two-dimensional space respectively. The basic 

idea of an octree is the recursive subdivision of the space along the coordinate axes into eight 

octants that are organized in a tree of degree eight. Thereby, the root of an octree represents 

the whole space and each child node represents an octant of the space defined by its parent 

node. Depending on the overlap with the solid to be modeled, only those octant nodes that are 

either entirely within or completely outside the solid compose the leaf nodes of the octree. 

Consequently, all internal nodes represent octants with a partial solid overlap. The whole solid 

results from the gluing of the space represented in the leaf nodes of the tree that are entirely 

within the solid. The properties of octree and quadtree representations are essentially similar 

to those of the exhaustive enumeration with the exception of reduced storage space. Several 

variants have been introduced such as Bintree (Tamminen, 1984; Samet and Tamminen, 

1985), which recursively divides the space of partially overlapping nodes along a single axis 

into two equal-sized subspaces, and ATree (Bogdanovich and Samet, 1999), which enables to 

vary the number of subdivisions for all partial overlapping nodes in each level and allows for 

unequal-sized subspaces. 

However, even with the relaxed partitioning conditions of ATrees, solid surfaces that are not 

coplanar with any of the coordinate planes of a subdivision can be only approximately 

represented. To overcome this issue, binary space partitioning (BSP) trees can be utilized. 

BSP recursively subdivides an n-dimensional space into convex subspaces by a set of 

(n-1)-dimensional hyperplanes of arbitrary position and orientation. To minimize the height of 

a BSP-tree, usually the faces of the solid to be modeled are formulated and used as the 

dividing hyperplanes. Similarly to octrees, only leaf nodes represent space that is either 

entirely within or completely outside the solid. Based on an approach first utilized by 

Schumacker et al. (1969), BSP-trees were originally developed in the context of 3D computer 

graphics for determining the visibility of surfaces during the rendering process of static scenes 

(Fuchs et al., 1980). Since then they have been adapted for a variety of applications such as 
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ray-tracing (Naylor and Thibault, 1986), shadow generation (Chin and Feiner, 1989), solid 

modeling (Paterson and Yao, 1990), and image compression (Radha et al., 1996). A drawback 

of BSP-trees is that solids can have several different valid representations depending on the 

sequence in which the hyperplanes are applied. In the worst case, a solid is represented by a 

heavily unbalanced tree. Another drawback in 2D and analogous in 3D is that non-convex 

faces are decomposed during the BSP-tree construction and remain as part of more than one 

leaf node. To minimize these drawbacks, much research effort has been carried out, such as in 

(Naylor, 1993), to find an optimal splitting sequence. 

Another approach that tackles the problems of exhaustive enumeration is cell decomposition. 

It is similar to exhaustive enumeration but allows a certain variety of the used volume 

elements. For this, basic cell types are defined whose instances are parameterized and 

topologically equivalent to a sphere. This allows, for example, the direct modeling of curved 

surfaces. However, solids that contain a hole or that are complex have to still be decomposed 

and their cells afterward glued together. In this regard, cells usually have to be completely 

disjoint and are not allowed to touch each other except in exactly one corner, an edge or a 

face. Compared to exhaustive enumeration, cell decomposition is generally able to represent 

the exact surface of all kind of solids even though in practice the appropriate trade-off 

between the exact surface representation and the complexity of a cell has to be determined. 

The variety of the volume elements also causes some additional effort for certain tasks. In 

order to proof the validity of a cell decomposition, every pair of cells must potentially be 

tested for an intersection because of the disappeared regularized structure. Furthermore, the 

direct creation of a cell decomposition is generally very hard. Nevertheless, it is crucial for 

many computational analysis algorithms and for example an essential ingredient of the finite 

element method (FEM); for further details of FEM see for example (Reddy, 2006) and 

(Zienkiewicz et al., 2013). Therefore, cell decompositions are usually created by a conversion 

from another representation. 

A solid modeling technique that can be considered as a special case of decomposition models 

is primitive instancing. It is closely related to parametric modeling and group technology, 

since a fixed set of parameterized primitives is used to create instances of them that may not 

only differ in terms of affine transformations but also on other descriptive characteristics of a 

solid. Complex solids, especially if they consist of repetitive structures whose number may 

vary for different instances, can often be defined by a few characteristics. In (Foley et al., 

1990), an example of gears with different number of teeth is given. In primitive instancing all 

gears can be defined by a few parameters such as diameter, thickness, hole size and number of 

teeth, whereas other modeling techniques would require a more complex data structure. To 

guarantee the validity of the represented solid, it is sufficient to define a range of values for 

each parameter. A main drawback of primitive instancing is, however, that generally no 

gluing or other operations are supported. The only possibility to modify a solid in primitive 

instancing is by changing its parameter values. The expressive power is therefore limited to a 

fixed collection of primitives and to their parameters, which are not always obvious and 

uniquely to define. 
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In summary, decomposition models are generally suitable for numerical problems and 

analyses that passively examine the model without modifying it. The direct creation to best 

represent a solid, however, is not always unique and obvious to humans. Therefore, they are 

mainly converted from other representations. Additionally, expressive power generally and 

precision particularly are often directly related to the required storage space. A more con-

venient group of solid modeling techniques for the automatic reconstruction of complex 

building shapes and their compact representation is given in the following subsection. 

3.3.2 Constructive Models 

In contrast to decomposition models, solids in constructive modeling are considered as point 

sets that can be represented by one simple point set or a combination of many simple point 

sets. For the latter, constructive modeling techniques generally provide more powerful 

operations for the construction of solids than just simple gluing operations. 

In sweep representations for example, solids are considered as point sets moving through 

space that can be defined by a moving object and its trajectory. There are different types of 

sweep representations. Distinctions are usually made on the one hand between different kinds 

of allowed trajectories and on the other hand between different kinds of allowed moving 

objects. In translational sweeping, a planar shape, which generates a valid surface, is moved 

along a linear path that starts on the shape and that is perpendicular to it. The resulting 

extrusion of the planar shape defines the solid to be modeled. Analogously, in rotational 

sweeping, solids are defined by a planar shape and its rotation around an axis. Some sweep 

representations also allow the use of arbitrary trajectories which combine translations and 

rotations. In general, the moving objects used in sweep representations are not necessarily 

required to be planar shapes. Extruded objects created by milling machines and that thus 

represent a rigid solid are therefore typically used as well in a solid sweep representation. 

Furthermore, general sweep representations may involve nonrigid shapes and objects that may 

change their orientation, size and shape on the trajectory. The advantage of sweep representa-

tions is that they are unambiguous and especially suited to represent many mechanical parts or 

manufacturing objects with translational or rotational symmetry. However, the creation of 

general solids is entailed with additional effort because the application of regularized Boolean 

set operations to sweep representations without converting them first to another representation 

is generally difficult. Furthermore, it is not guaranteed that the resulting solid can be again 

represented in a sweep representation. 

Another constructive modeling technique is half-space modeling in which a solid is repre-

sented as a combination of simple point sets, each specified by a closed half-space. A closed 

half-space is the set of solutions to a non-strict inequality of a characteristic function. For 

example, given a characteristic function 𝑓(𝑝)  that divides the infinite space 𝑈  at  

𝑓(𝑝) = 0 into two subsets, the two closed half-spaces 𝐻+ and 𝐻−asssociated with 𝑓(𝑝) are 

defined as𝐻+ = {𝑝 ∈ 𝑈 | 𝑓(𝑝) ≥ 0}  and 𝐻− = {𝑝 ∈ 𝑈 | 𝑓(𝑝) ≤ 0} . Two commonly used 

inequalities that describe closed half-spaces of the three-dimensional space are 
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𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 ≥ 0, (3.4) 

𝑥2 + 𝑦2 − 𝑟2 ≤ 0 (3.5) 

where the planar half-space in Equation (3.4) consists of all points on or in front of the plane 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 and where the cylindrical half-space in Equation (3.5) consists of all 

points on or in an infinite cylinder with the rotation axis z and the radius 𝑟 . Because 

half-spaces are point sets, they can be combined with the Boolean set operations union, 

intersection, and difference. The Boolean combination of two valid half-space models always 

defines a new valid model. Solids that consist of convex point sets can be described as the 

intersection of half-spaces. In order to represent nonconvex solids, a decomposition of convex 

sub-solids that compose the entire solid can be united with the Boolean union operation. In 

general, any valid solid 𝑆 that is constructed by the combination of the half-spaces 𝐻𝑖𝑗 can be 

expressed in the canonical form 

𝑆 =⋃⋂𝐻𝑖𝑗
𝑗𝑖

. (3.6) 

The expressive power of half-space modeling is limited to the set of available half-spaces and 

operators. A real benefit is that fairly complex shapes can be readily represented with a small 

number of half-spaces. However, as half-spaces specify infinite point sets, half-space 

modeling is not very intuitive to humans and, moreover, special care must be taken that a 

resulting solid is valid in terms of finiteness. 

A technique that avoids such problems by modeling solids with only bounded point sets as 

primitives, is constructive solid geometry (CSG). Here, a solid is represented as a Boolean 

combination of primitives on which rigid motions can be applied. To guarantee that the 

resulting solids are always regular (in the sense that they do not contain any isolated point, 

line or face), regularity-preserving variants of the Boolean set operations are usually used. For 

this, the regularized set operations of union, intersection, and difference are defined as 

𝐴 ∪∗ 𝐵 = 𝑐(𝑖(𝐴 ∪ 𝐵)), (3.7) 

𝐴 ∩∗ 𝐵 = 𝑐(𝑖(𝐴 ∩ 𝐵)), (3.8) 

𝐴 \∗ 𝐵 = 𝑐(𝑖(𝐴 \ 𝐵)) (3.9) 

where 𝑐(𝑋) and 𝑖(𝑋) denote the closure and the interior of a point set 𝑋. A CSG model is 

usually represented in a tree structure whose leaf nodes represent the primitives and whose 

internal nodes represent either a regularized Boolean set operation as defined in the equa-

tions (3.7) to (3.9) or a rigid motion in form of a translation or rotation. For CSG trees, set 

operations are algebraically closed and represent valid solids, as long as their leaf nodes 

define valid primitives. 
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In summary, constructive modeling offers an easy and natural way to define many objects 

with low and high complexity. It is especially suited to describe mechanical engineering parts 

and other man-made objects precisely and compact without a large storage space. Further-

more, every half-space or CSG model represents a valid solid object, assuming that the 

comprising primitives are valid. For rendering purposes, however, constructive modeling is 

less suitable because the boundary evaluation is intricate so that local blending operations are 

not easy to implement. Thus, it is appropriate to convert constructive models for visualization 

purposes in a polygonal form as described in the following subsection. 

3.3.3 Boundary Models 

In boundary representation (B-rep), solids are modeled through the representation of their 

bounding surfaces. For this purpose, a B-rep model is composed of the two basic parts: 

topology and geometry. The topological description defines the structure of the shape by the 

connectivity and orientation of faces, edges and vertices. These topological elements are 

embedded in space by the geometric description such that a face is a bounded portion of a 

surface, an edge is a bounded portion of a curve and a vertex is located at a point. For the 

modeling of a closed 2-manifold solid, a B-rep is valid if it defines the complete boundary of 

the solid and satisfies the following conditions: 

1. Each face has at least three edges, a boundary that consists of a simple polyline which 

is closed and located in a plane, and no intersection with any other face except at 

common vertices or edges. 

2. Each edge has exactly two vertices, no intersection with another edge except at a 

common vertex, and belongs to exactly two faces. 

3. Each vertex of a face belongs to exactly two edges of the face. 

A boundary model that only consists of connected planar faces is the polyhedral model. Every 

simple 2-manifold polyhedron, which is topologically equivalent to a sphere, satisfy the Euler 

characteristic 

𝑉 − 𝐸 + 𝐹 = 2 (3.10) 

where 𝑉, 𝐸, and 𝐹 are the number of vertices, edges, and faces, accordingly. Many different 

data structures have been developed to represent polyhedral models and that utilize the Euler 

characteristic to reduce the storage space or to enable an efficient access to certain infor-

mation. 

The simplest form to represent a simple polyhedron is a set of faces, each defined by a 

sequence of coordinates that form a planar polygon. Models of this kind of B-rep data 

structures are called polygon-based boundary models. The orientation of a face in a poly-

gon-based boundary model is often implicitly determined by the order of the coordinates in 

the sequence. 
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The representation of a set of faces as sequences of coordinates has the drawback that a 

coordinate appears as often as the vertex appears in the set of faces. To eliminate this 

redundancy, vertices in vertex-based boundary models are explicitly represented as inde-

pendent entities with distinct identifiers. As a result, faces are specified by a sequence of 

vertex identifiers so that each coordinate appears only once in the representation. There are 

many variants of vertex-based boundary models that mainly differ in which further connec-

tivity information, for example incident edges or faces, are explicitly stored in the vertices and 

which are left implicit. 

Analogously, edges are explicitly represented as independent entities in edge-based boundary 

models. Therefore, a face is no longer defined by a sequence of vertices but by a closed 

sequence of edges. If all faces are consistently oriented, the face orientation can be implicitly 

determined by the edge order. Three of the most common data structures for edge-based 

B-reps are summarized in the following paragraph. 

One well-known edge-based B-rep is the winged-edge data structure (Baumgart, 1972; 

Baumgart, 1975). It utilizes the fact that each edge in the polyhedral B-rep of a 2-manifold 

solid occurs in exactly two faces, once in its positive orientation and once in its opposite 

orientation. In addition to the start and the end vertex, each edge explicitly keeps the infor-

mation on its two incident faces and the four adjacent edges that occur in the incident faces 

and form thus the so-called wings. Moreover, each vertex and each face is linked to exactly 

one of its incident edges. This data structure is especially suitable for certain questions 

concerning adjacency relations between vertices, edges and faces. For instance, the 

winged-edge data structure can efficiently provide the adjacency information between two 

faces, which is often needed in hidden surface removal and shading algorithms. Furthermore, 

it provides a data structure whose storage space can be calculated in advance and remains 

fixed and that is also sufficient to model curved surfaces. Another common edge based B-rep 

is the half-edge data structure (Weiler, 1985). It decomposes each edge into two directed 

half-edges with opposite orientations. Thereby, the orientation issue of the winged-edge data 

structure, i.e. that the vertices of an edge have to be traversed for some faces in the opposite 

direction, is solved. The consistent traversing among the edges of any face makes some 

operations more efficient. In addition to the start vertex and the companion half-edge, each 

half-edge keeps the information on the face that traverses the half-edge in a positive direction 

and the two adjacent half-edges that belong to this face. Analogous to the winged-edge data 

structure, each vertex and each face is linked to exactly one of its incident edges. A data 

structure for edge-based B-reps that follows a similar approach as the winged-edge data 

structure by splitting each edge into four quad-edges is the quad-edge data structure (Guibas 

and Stolfi, 1985). In contrast to the two previously mentioned data structures, quad-edges are 

able to model non-orientable 2-manifolds as well. A comparison between these three data 

structures is presented in (Kettner, 1999). 

Compared to decomposition and constructive models, boundary models are particularly 

suitable for the accurate description of free-form surfaces and for efficient rendering algo-

rithms. In addition, local modification of a model can be directly implemented in B-reps. 
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Since B-reps are usually not closed under the Boolean set operations, Euler operators 

(Baumgart, 1972) are widely used, which are closed and satisfy the generalized 

Euler-Poincaré formula 

𝑉 − 𝐸 + 𝐹 = 2(𝑆 − 𝐻) + 𝑅 (3.11) 

where 𝑉, 𝐸, 𝐹, 𝑆, 𝐻, and 𝑅 are the number of the vertices, edges, faces, shells, holes and 

rings, respectively. However, the object definition tends to be complicated and the verification 

of validity in terms of geometric correctness is difficult. Furthermore, the storage space may 

become large because both geometric and topological constrains have to be stored. 

3.4 Data Clustering 

With the advances in hardware technology and the collection of large amounts of data, the 

reduction of data without losing relevant information becomes of particular importance. One 

technique for this purpose is data clustering which has been extensively investigated in data 

mining, pattern recognition and machine learning communities since several decades. The 

basic problem of clustering can be formulated as the partitioning of a given set of data objects 

into a set of groups in which the data objects share common characteristics. In this section, a 

brief overview of different data clustering types and their characteristics are presented. For a 

more detailed description and concrete standard clustering algorithms see, for example, (Gan 

et al., 2007), (Xu and Wunsch, 2009), and (Everit et al., 2011). 

Generally, data clustering methods can be categorized as either hard clustering or fuzzy 

clustering. In fuzzy clustering, which is based on the fuzzy set theory as introduced in (Zadeh, 

1965), data objects can be assigned to several clusters. More specifically, given a data object 

set 𝑋 and a cluster set 𝐶, each data object 𝑥𝑗 ∈ 𝑋, where 1 ≤ 𝑗 ≤ |𝑋|, is assigned to a cluster 

𝑐𝑖 ∈ 𝐶, where 1 ≤ 𝑖 ≤ |𝐶|, with a certain membership coefficient 𝑝𝑖,𝑗 that indicates the degree 

of membership of the data object 𝑥𝑗  to the cluster 𝑐𝑖 . The resulting memberships of fuzzy 

clustering can be described by the |𝐶| × |𝑋| membership coefficient matrix 

𝑃 =  (

𝑝
1,1

𝑝
1,2

… 𝑝
1,|𝑋|

𝑝
2,1

𝑝
2,2

… 𝑝
2,|𝑋|

⋮ ⋮ ⋱ ⋮
𝑝|𝐶|,1 𝑝|𝐶|,2 … 𝑝|𝐶|,|𝑋|

). (3.12) 

Usually, but not necessarily, membership coefficients in fuzzy clustering follow the following 

two rules of probability theory: 

𝑝𝑖,𝑗 ∈ [0, 1], (3.13) 

∑𝑝
𝑖,𝑗

|𝐶|

𝑖=1

= 1,∀𝑥𝑗 ∈ 𝑋. 
(3.14) 



3. Fundamentals 

51 

 

Since fuzzy clustering allow for overlapping clusters, their algorithms are usually advanta-

geous in cases in which cluster boundaries are ambiguous and in which clusters are difficult to 

separate from each other. In addition, the membership coefficient matrix can easily be 

updated if further information is to be considered. For example, in cases in which the 

membership coefficients follow the rules of probability theory, the Bayes’ theorem, as 

mathematically stated in Equation (3.15), can be directly applied if the current membership 

probability does not equal zero. 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)
 (3.15) 

Furthermore, fuzzy clustering algorithms provide a sufficient functionality for the description 

of uncertainties that often occur in real data. However, the amount of generated information in 

the membership coefficient matrix increases rapidly with an increasing number of clusters and 

data objects so that the interpretation may take considerable computation time. A survey of 

fuzzy clustering methods and their application are presented in (Baraldi and Blonda, 1999; 

Höppner et al., 1999; Sato et al., 1997; de Oliveira and Pedrycz, 2007). 

In contrast, each data object in hard clustering is assigned to exactly one cluster. Conse-

quently, it can be considered as a limiting case of fuzzy methods where the membership 

coefficients follow the constraints represented in Equation (3.14), 

𝑝𝑖,𝑗 ∈ {0,1}, (3.16) 

∑𝑝
𝑖,𝑗

|𝑋|

𝑗=1

> 0,∀𝑐𝑖 ∈ 𝐶. (3.17) 

These more restrictive constraints ensure that no empty clusters occur (each cluster contains at 

least one data object) and that, at most, as many clusters exist as there are data objects. In 

general, hard clustering methods can be further categorized as either partitional methods or 

hierarchical methods. In partitional methods, a set of data objects is partitioned into a 

predefined number of disjoint clusters so that the distance between each data object and the 

center of the cluster to which it belongs is minimal according to a distance function. One of 

the best-known partitional clustering method is the k-means algorithm (Lloyd, 1957; 

MacQueen, 1967) whose objective is to iteratively find a partitioning that assigns data objects 

to 𝑘 clusters while minimizing the equation 

𝐸 =∑∑‖𝑥𝑗 − 𝜇𝑖‖
2

|𝑋|

𝑗=1

|𝐶|

𝑖=1

 (3.18) 

where 𝜇𝑖 represents the center of the i-th cluster. Partitional clustering is usually applied if a 

set of data objects should be assigned to a fixed number of disjoint clusters because the 
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computational time and the storage space is usually less than for hierarchical clustering 

algorithms. 

In hierarchical clustering, clusters are represented in a hierarchical structure so that the result 

can be illustrated in a binary tree, which is called dendrogram. There are two major types of 

hierarchical clustering methods: agglomerative clustering and divisive clustering. Both have 

in common that particular care has to be taken during the iterative generation of the hierar-

chical structure because a wrong cluster fusion or merging can never be repaired during the 

subsequent iterations. In contrast to standard k-means algorithms, however, hierarchical 

clustering algorithms are deterministic so that they always provide the same clustering results 

on the same data set (Aggarwal and Reddy, 2014). 

In agglomerative clustering, a bottom-up approach is used for the construction of the cluster 

hierarchy, whereas divisive clustering is based on a top-down approach. Agglomerative 

clustering methods starts therefore with each data object in a single cluster. Subsequently, 

clusters are iteratively merged based on a linkage metric which indicates the distance between 

clusters. There are several ways to define the distance between two clusters. A common one is 

the single linkage method (Florek et al., 1951; Sneath, 1957) that defines the distance 𝑑 

between two clusters 𝐶𝑖1 and 𝐶𝑖2 by 

𝑑(𝐶𝑖1 , 𝐶𝑖2) =  min 𝑑(𝑎, 𝑏) (3.19) 

where 𝑎 ∈ 𝐶𝑖1 and 𝑏 ∈ 𝐶𝑖2 .  Because 𝑑  represents the minimum of all pairwise distances 

between two clusters, it is also called the nearest neighbor method. Other common linkage 

metrics are, for example, the complete linkage method (McQuitty, 1960), which uses the 

largest distance between 𝑎 and 𝑏, Ward’s method (Ward Jr., 1963), which uses the minimum 

variance, and further metrics based on the cluster centroids or their medians. In practice, the 

computational effort of agglomerative clustering has to be taken into account because the 

number of merge combinations in the first iteration amounts to 
|𝑋|⋅(|𝑋|−1)

2
. Thus, the computa-

tional complexity of agglomerative hierarchical clustering algorithms is generally at least 

𝑂(𝑛2) and therefore not particularly suitable for large sets of data objects. 

In divisive clustering methods, on the other hand, all data objects are initially assigned to the 

same cluster. Then, a cluster is split in each iteration based on the resulting distance between 

the resulting clusters until each cluster contains only a single data object. It is interesting to 

note that agglomerative and divisive hierarchy do not necessarily have to coincide. In the 

literature and in practice, divisive clustering techniques are often neglected (Kaufman and 

Rousseeuw, 2005) because the computational effort is even greater than for agglomerative 

clustering methods. An obvious reason for this is that all data objects belong in the first 

iteration to the same cluster so that 2(|𝑋|−1) − 1 split combinations have to be considered. 

Consequently, the computational complexity of divisive hierarchical clustering algorithms is 

generally at least 𝑂(2𝑛). It is therefore rather important to reduce the computational time, for 

example, by reducing the number of possible divisions in each iteration. 
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3.5 Registration of Point Clouds 

For several decades, laser scanners have been used in an efficient way for the acquisition of 

point clouds that represent the surface of 3D objects (Vosselman and Maas, 2010). To cover 

the entire surface of an object, data from multiple standpoints are often collected. Because 

each standpoint is defined in its own local coordinate system, all data sets have to be trans-

ferred into a common coordinate system after collection. The alignment of one data set to 

another data set is a common problem in 3D scanning and is called registration. Many 

registration methods have been developed to register surfaces with an overlapping area so that 

the resulting transformation best represents their relative displacement; examples are given in 

(Silva et al., 2005). In general, those registration approaches that neither rely on the position 

and orientation of the laser scanner (direct geo-referencing) nor on manually placed targets, 

can be roughly divided into coarse and fine registration techniques. 

In coarse registration methods no initial transformation or other prior knowledge of the 

relative spatial position is required. The general workflow consists of three steps: First, certain 

key points or features are detected from the input data sets to reduce the number of points that 

have to be considered during the registration process. Then, local shape descriptors assign 

values to the detected key points and features by taking into account their own properties and 

the properties of the shape around them. Finally, a search strategy is carried out to find 

correspondences between the key points and features of different data sets. Based on the 

detected correspondences, a transformation for each data set can be determined that optimally 

aligns the data set with respect to the others. A qualitative review on 3D coarse registration 

methods and some implementations of each step are given in (Díez et al., 2015; Salvi et al., 

2007). Depending on the number of detected key points and features and the assignment 

certainty, these registration techniques usually provide only rough alignments and are 

therefore used as initial estimations. For a more precise alignment, this prior knowledge 

regarding initial transformations is then further used in fine registration approaches. 

In contrast, fine registration methods first need a rough initial transformation before the 

transformation matrix is iteratively refined until the value of a predefined distance function, 

which considers distances between temporal correspondences, converges to a local minimum. 

One of the most common methods is summarized in the following paragraphs. Some further 

well-known fine registration methods are among others Chen’s method (Chen and Medioni, 

1991), which minimizes the distance between point and planes, and methods that are based on 

genetic algorithms (Chow et al., 2004) or signed distance fields (Masuda, 2002). 

Iterative Closest Point (ICP) is an algorithm employed to register two (partially) overlapping 

point sets in a common coordinate system (Besl and McKay, 1992). For this purpose, it 

iteratively minimizes the mean squared error (MSE) between point sets by applying rigid 

transformations. Compared to other fine registration techniques, an exact point-to-point 

correspondence between the point sets is not required. Today, there exist many variants of 

ICP. An overview is given in (Rusinkiewicz and Levoy, 2001), (Grün and Akca, 2005), and 

(Pomerleau et al., 2015). 
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Essentially, for two given point sets 𝐴 and 𝐵 , which are already roughly registered, each 

iteration in ICP is composed of the following steps: 

1. For each point, find in 𝐴 the closest point in 𝐵. 

2. Estimate a transformation that minimizes the MSE of the point pairs from the previous 

step. 

3. Transform all points in 𝐵 by applying the obtained transformation. 

4. Start the next iteration from the first step if a predefined stopping criteria is not ful-

filled. 

In the first step, the correspondence search between points of 𝐴  to 𝐵  is performed by a 

nearest-neighbor search. To improve the speed of ICP, several approaches have been devel-

oped to increase the performance of computing corresponding points, because this is the most 

time-consuming part of ICP. Usually k-d trees (Bentley, 1975) are used to accelerate the 

search. Several variants of the k-d tree have been developed to improve the performance like 

a cached (Nüchter et al., 2007) or a GPGPU (Wu et al., 2015) version. 

For the second step of each iteration, a rotation and translation is computed that minimize the 

MSE between both point sets. The objective function that has to be minimized for two given 

point sets 𝐴 = {𝑎𝑖} and 𝐵 = {𝑏𝑗} with 𝑖 = {1,… , 𝑛} and 𝑗 = {1, … ,𝑚} is therefore 

𝑓(𝑅, 𝑡) =  
1

𝑛
∑‖𝑎𝑖 − 𝑅𝑏𝑗 − 𝑡‖

2
𝑛

𝑖=1

 → 𝑚𝑖𝑛 (3.20) 

where 𝑏𝑗 is the closest point in 𝐵 to the point 𝑎𝑖 ∈ 𝐴, 𝑅 the rotation matrix, and 𝑡 the transla-

tion vector. For the minimization of the objective function and the calculation of the rigid 

transformation, several methods exist; for example, singular value decomposition is used in 

(Arun et al., 1987), orthonormal matrices in (Horn et al., 1988), and dual quaternions in 

(Walker et al., 1991). 

Afterward, the resulting rotation and translation can be directly applied in the third step to all 

points in 𝐵. Then, the algorithm starts again from the beginning if a lower MSE value than in 

the iteration before could be received. Otherwise the algorithm terminates and a sequence of 

transformations is given that can be merged to a single rigid transformation, which minimizes 

the MSE with the final point correspondences at once. 

Due to the greedy nature of the ICP algorithm, it converges always to a local minimum but 

not necessarily to the global minimum. Therefore, to get useful results, it requires a good 

coarse a priori alignment of the given point clouds. Furthermore, the method as presented 

above is limited to rigid transformations (rotations and translations), so that, for example, it is 

not capable of handling shape morphing as shown in (Alexa, 2002) or scaling as shown in 

(Jiang et al., 2009). For further nonrigid registration methods see (Kumar et al., 2001), (van 

Kaick et al., 2011), and (Tam et al., 2013).  
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4. Roof Plane Segmentation 

Since most buildings consist of approximately planar roof surfaces, several methods have 

been developed to segment building points into planar roof areas (see section 3.1). The 

resulting roof patches are generally well suited to support the reconstruction process of 

buildings, especially if only simple buildings without any roof superstructures (e.g., dormers 

or chimneys) are present. However, these patches increase in number, while becoming 

smaller, and at the same time more intricate in their shapes as the complexity of the roof 

structure increases. Each roof superstructure adds a hole or a concavity to the underlying roof 

segment or even divides it into two parts so that roof features become difficult to recognize. In 

great numbers, this could cause subsequent steps to fail in generating well-shaped building 

models even at their most basic level of detail. Therefore, a new segmentation method has 

been developed that overcomes these problems and supports the modeling and reconstruction 

process of buildings. 

Current research activities concentrate on improving the quality of point cloud segmentation 

in order to get precise and consistent roof segments, which eases the interpretation and 

modeling stages. However, the obvious assumption that the captured points are surface 

measurements of an underlying volumetric object is rarely exploited. For the reconstruction of 

base roof shapes, it greatly helps if no roof superstructures are present at data collection. The 

point cloud would feature only large roof segments without any holes, which would make the 

reconstruction of a valid 3D building model a lot easier. Illustrated in the example of an 

airborne laser scanning measurement: if roofs would not feature any roof superstructures, then 

the laser would instead hit underlying roof faces, thus resulting in uniform roof segments. 

Changing reality is for obvious reasons not feasible, but the effect can be simulated in the 

segmentation process. The basic idea of the developed sub-surface segmentation method is 

therefore that virtual points may be added to any segment if this supports the reconstruction 

tasks. Although the number of points is generally unrestricted, they must be located under real 

point measurements. Meaning that they have the same horizontal coordinates as real surface 

points of the point cloud, but must be positioned at a lower elevation within the modeled 

volume. These virtual points are therefore called sub-surface points. 

The proposed sub-surface segmentation has been implemented as an extension of the 

well-known surface growing approach; for details, see e.g., (Vosselman and Klein, 2010), 

thus the reason for introducing the term sub-surface growing. However, segmentation 

algorithms based on the 3D Hough transform in conjunction with a connected component 

analysis can also be extended in a similar way. The general workflow of the implemented 

sub-surface growing process consists of two major phases that are illustrated in Figure 4.1. 
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Figure 4.1. The sub-surface segmentation process (P = set of building points, S = set of 

segments, SP = seed point, S' = segment, t = thresholds for surface growing). 
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The details of the surface and the sub-surface growing phase are explained as well as some 

segmentation results for a large urban area are shown in sections 4.1 and 4.2, respectively. A 

more detailed investigation of the benefits of sub-surface growing is then presented in 

section 4.3. 

4.1 Surface Growing 

The surface growing process of planar areas starts with the selection of a suitable seed point 

from which segment growing can be initiated. A point is generally suited as seed point if it 

can be located on a plane so that its nearby points essentially fit to this plane. In order to 

determine such a point, all building points are initially considered as potential seed points. For 

each of them, the set of nearby points is identified based on a fixed radius and their natural 

neighborhood as defined by the two-dimensional Voronoi diagram. Thus, points are defined 

as natural neighbors if they are connected by an edge in the corresponding dual graph of the 

Voronoi diagram, which is the Delaunay triangulation. Since Delaunay triangulation only 

considers the empty circle property, which is that the circumscribing circle of any triangula-

tion facet encloses no other points, the minimum angle of all triangles in the triangulation is 

maximized without considering the edge length of the triangles. Consequently, adjacent points 

may have a greater distance to each other than in a neighborhood with only a fixed radius. 

This is, for example, the case if gaps in the input data are present. Thereby, it is also taken 

into account that a point cloud might have different point densities, for example, due to some 

overlapping strips, and that neighboring points might be separated by a step line which causes 

a great distance. Once the set of nearby points is determined for each potential seed point, all 

those points are discarded as potential seed points whose set of nearby points feature only a 

small number of points. In this way, the subsequent estimate of planes becomes more reliable 

because sets with a small number of points usually provide in practice insufficient information 

for this task. As a consequence, points close to the building outline are removed from the set 

of candidate seed points so that the seed points are enabled in the next stage to grow in any 

direction. 

In order to select the most suitable seed point from the set of potential candidate points, an 

evaluation process is started that rates each potential seed point according to the standard 

deviation of its set of nearby points to a plane that passes through the seed point and whose 

normal vector is determined by the plane with the least average distance to the set of nearby 

points. The normal vector of such a plane is calculated by utilizing PCA (Pearson, 1901; 

Hotelling, 1933); for further details about PCA see, for example, (Jolliffe, 2002). Generally, 

PCA is a multivariate statistical procedure to identify the smallest number of uncorrelated 

variables from a set of data that explains the maximum amount of variance. These uncorre-

lated variables are called principal components and are the eigenvectors of the covariance 

matrix of a data set. The covariance matrix for a set of three-dimensional points is defined as 

𝐶 =  (
𝑐𝑜𝑣(𝑋, 𝑋) 𝑐𝑜𝑣(𝑋, 𝑌) 𝑐𝑜𝑣(𝑋, 𝑍)

𝑐𝑜𝑣(𝑌, 𝑋) 𝑐𝑜𝑣(𝑌, 𝑌) 𝑐𝑜𝑣(𝑌, 𝑍)

𝑐𝑜𝑣(𝑍, 𝑋) 𝑐𝑜𝑣(𝑍, 𝑌) 𝑐𝑜𝑣(𝑍, 𝑍)
) 

(4.1) 
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where the covariance for any two random variables 𝑋 and 𝑌 is 

𝑐𝑜𝑣(𝑋, 𝑌) =  
1

𝑛
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

𝑛

𝑖=1

 (4.2) 

and �̅� and �̅� the mean values of 𝑋 and 𝑌, respectively. Since 𝑐𝑜𝑣(𝑋, 𝑌) is equal to 𝑐𝑜𝑣(𝑌, 𝑋), 

the covariance matrix is symmetric positive (semi-)definite, hence the eigenvectors are 

orthogonal to each other. By taking into account that the corresponding eigenvalue of a 

principal component indicates the amount of variance in the direction of the eigenvector, the 

normal vector of the sought plane corresponds to the eigenvector with the lowest eigenvalue. 

For a given point and its nearby points, the direction of this eigenvector is called the normal 

direction of the given point. 

All candidate seed points that feature point normal directions with low z-values are at this 

point discarded as potential seed points because they are assumed to be part of a vertical 

plane, i.e., a facade, which are not needed for the further reconstruction process. For the final 

seed point selection, the squared standard deviation 𝜎2  is calculated for each remaining 

candidate seed point based on the perpendicular distances 𝐷 of its neighboring points to the 

plane that is defined by the point itself and its point normal direction as 

𝜎2 =
1

𝑛 − 1
∑(𝑑𝑖 − 𝜇)

2

𝑛

𝑖=1

 (4.3) 

where 𝑑 ∈ 𝐷, 𝑛 = |𝐷|, and 𝜇 = 𝐸(𝐷) = 0. The potential seed point with the lowest squared 

standard deviation that has not been selected as seed point and that has not been assigned to 

any segment before is then selected as seed point for the next step. 

In the subsequent surface growing step, the selected seed point is grown to a planar segment 

by gradually adding neighboring points if they do not already belong to any other segment 

and if they fit some geometric criteria. For the latter, both a distance criterion and an angle 

criterion are used. The distance criterion ensures that the perpendicular distances of all added 

points are close to the plane that is defined by the seed point and its point normal direction. 

The angle criterion, on the other hand, guarantees that all point normal directions of a segment 

point in the same direction. This is especially reasonable if greater distances are accepted in 

the distance criterion. With appropriate thresholds, both criteria are able to deal with small 

inaccuracies of data points and with the fact that roof areas are usually not exactly planar. 

Once no more neighboring points can be added, the resulting segment is checked and 

discarded in cases in which it consists of too few boundary points or in which it reflects a 

degenerated shape. For the investigation of the first condition, the boundary points of each 

segment are computed by utilizing the alpha shape algorithm (Edelsbrunner et al., 1983). An 

alpha shape can be regarded as a generalization of the convex hull of a point set but it has the 

advantages of being able to be used for both convex and concave shapes and for extracting 
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polygons with interior and exterior boundaries (Shen et al., 2011). As mentioned in 

(Dorninger and Pfeifer, 2008; Shahzad and Zhu, 2015), the alpha shape value can be adjusted 

to adapt the algorithm to different point cloud densities so that small details are preserved. In 

those rare cases where an alpha shape includes a topological irregularity (i.e., a boundary 

point has more than two incident edges), 𝜒-shapes as proposed in (Duckham et al., 2008) are 

used as an alternative to alpha shapes. Here, special care has to be taken because outlines of 

𝜒-shapes become more sensitive to outliers than alpha shape outlines. For the second condi-

tion, an oriented bounding rectangle is calculated in the x-y plane for each segment. For this, a 

convex hull is first computed for each segment based on the extracted boundary surface 

points. It is implemented as Andrew’s variant of the Graham scan algorithm (Andrew, 1979) 

and follows the presentation of (Mehlhorn, 1984). The algorithm requires 𝑂(𝑛 log 𝑛) time in 

the worst case for n input points. The resulting convex hull is then used to determine the 

minimum area enclosing rectangle of all boundary points based on a rotating caliper algorithm 

(Toussaint, 1983), which requires 𝑂(𝑒) time in the worst case for 𝑒 edges of the convex hull. 

Shapes of segments are afterward classified as degenerated if one side of their oriented 

bounding rectangle is very short while the other is very long. 

Subsequently, the surface growing procedure starts again with the selection of a seed point 

until no more segments can be detected. Note, the calculation of the point normal directions 

and the standard deviation values for the seed point selection step can be skipped in the next 

iterations because they only need to be calculated once. At the point when the segmentation 

process ceases, there are usually many unassigned points left, particularly in areas where a 

transition between planar roof surfaces is present. Points are still unassigned because their 

point normal directions do not meet the angle criteria of any adjacent roof surface. The reason 

for this is that these points feature sets of nearby points that belong to more than one planar 

roof surface so that they cannot be properly assigned to only one adjacent segment. Therefore, 

surface growing continues again for each segment, but the angle criterion is gradually relaxed 

from iteration to iteration until it reaches a defined limit. This allows the already detected 

segments to uniformly grow towards each other and points that are around edges are reliably 

assigned to the correct segments. 

A key problem of segmentation methods is that planar regions are split into either too few 

(under-segmentation) or too many segments (over-segmentation). In both cases, the resulting 

segments need to be further processed. However, as for example mentioned in (Sigut et al., 

2015), under-segmentation is often considered a more serious problem compared to 

over-segmentation because it usually requires the splitting of large regions in order to recover 

the true segments. Therefore, to avoid under-segmentation during the surface growing step, so 

that segments belonging to different roof surfaces are assigned to the same segment, strict 

thresholds are generally preferred. This causes, however, an over-segmentation where a 

planar roof surface may be segmented into several small roof patches. To overcome this issue, 

segments have to be merged afterward if they feature similar properties. For this, all segment 

pairs of close proximity are tested if their point sets feature similar plane normal vectors. In 

such a case, both segments are merged if the resulting normal vector has also not changed too 

much and if a sufficient number of points are still close enough to the plane of the merged 
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segment. Segments whose area remain small even after the merging process are finally 

discarded. The area of each segment, which is the area enclosed by the linearly connected 

boundary points, is calculated according to the so-called shoelace formula, also known as 

Gauss’s area formula, which determines the area 𝐴 of an arbitrary simple 2D polygon by 

𝐴 =
1

2
∑𝑥𝑖(𝑦𝑖+1 − 𝑦𝑖−1)

𝑛

𝑖=1

 (4.4) 

where (𝑥𝑖, 𝑦𝑖)  is a corner point of the boundary that are defined cyclically (i.e., 

(𝑥𝑛+1, 𝑦𝑛+1) = (𝑥1, 𝑦1)), and 𝑛 the total number of corner points. For further details see, for 

example, (Braden, 1986). Performed on the Vaihingen data set (see section 8.1), the surface 

growing procedure provides the segmentation result shown in Figure 4.2. 

Figure 4.2. Segmentation result of surface growing performed on the Vaihingen data set. 
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4.2 Sub-Surface Growing 

Once surface growing is completed, segmentation continues for each segment at a sub-surface 

level. For this purpose, virtual points are generated below real points as required in order to 

facilitate further growth of segments. Each virtual point must have the exact same horizontal 

position, but a lower elevation than a real point. This elevation is computed so that it lies 

exactly planar to the currently grown segment. The angle criterion is not checked during 

sub-surface growing, so the virtual points need only be located nearby the segment in order to 

be included. If more than one segment is to grow beneath a real point, then several virtual 

points may be generated. But sub-surface growing is also not unrestricted. Tests revealed that 

letting a segment grow too far above the maximum height or too far below the minimum 

height of the segment’s real points does not reveal any valuable information and just slows the 

process down. The segment of a sloped roof face is therefore restricted to grow mainly 

sideways. Consequently, flat segments can spread unrestricted through the building as long as 

there are real points above it. 

After adding virtual points to the segments, another segment merging step is carried out. 

Without differentiating between virtual and real points, two neighboring segments are merged 

if they are in close proximity to each other and if their normal vectors point roughly in the 

same direction. However, the merging is repealed either if the normal vector direction of the 

new segment is too dissimilar to the normal vector directions of the original segments or if too 

many points are too far away from the plane of the new segment. 

Due to the greedy nature of surface growing, the order in which segments are generated 

during the surface growing phase usually affects the assignment of points around edges where 

segments meet. A typical example is shown on the left side of Figure 4.3, where the last 

detected red segment became small due to the first detected blue and orange segments. 

Therefore, all points of a segment that are close to its border are finally tested in a refinement 

step if they would better fit to a neighboring segment than to the current one. For this, each of 

these points is tested against its current and neighboring segment, on the one hand, in terms of 

its distance to both planes and, on the other hand, in terms of the angle between its normal 

direction and the normal vector of both segments. Additionally, if the point and both segments 

are part of a sloped surface, then the x-y directions of their normal vectors are also taken into 

account. This particularly helps to determine to which of the opposing segments a point 

should be assigned to. The proposed refinement step usually increases the processing time but 

the borders of the final segments become more accurate and reliable than before as shown on 

the right side of Figure 4.3. 

 

 

 
Figure 4.3. Segmentation results without (left) and with (right) reassignment of segment 

points; based on (Vosselman and Klein, 2010). 
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Performed on the Vaihingen data set, sub-surface growing provides the segmentation result 

shown in Figure 4.4. Compared to the surface growing segmentation result presented in 

Figure 4.2, there does not seem to be a big quality gain that would justify the additional 

computational time. But a closer look on the result as presented in the following section 

demonstrates the capabilities of sub-surface growing. 

 
Figure 4.4. Segmentation result of sub-surface growing performed on the Vaihingen data set. 

 



4. Roof Plane Segmentation 

63 

 

4.3 Benefits of Sub-Surface Growing 

An obvious gain from sub-surface growing is the fact that holes in segments and gaps 

between disconnected roof sections that are the result of roof superstructures or other roof 

elements get filled with virtual points. The benefit of it becomes apparent, in particular during 

the identification of base roof shapes. As for example shown in Figure 4.5, base roof seg-

ments grow much larger than before, often by getting merged with other coplanar segments 

that are otherwise separated from one another due to superstructures or crossing roof parts. 

The resulting segments imply a higher accuracy of their estimated plane parameters as the 

points extend over a larger area and the merging of segments automatically establishes 

consistency between nearly coplanar segments. 

  

Figure 4.5. Planar segments of the front roof surface of the base roof as a result of surface 

growing (left) and sub-surface growing (right). 

Additionally, the subsequent model construction is significantly simplified if it involves fewer 

and larger segments. With sub-surface growing and CSG for example, the construction of the 

building in Figure 4.6 is just the union of two elementary shape primitives: one gable and one 

barrel-arched roof. Thus, symmetries in building shapes are implicitly modeled. Regular 

segmentation, on the other hand, would result in two saddleback primitives, one to either side 

of the barrel-arched center. If model construction is performed in a B-rep, each primitive 

intersection can produce a significant amount of small faces if they are not properly aligned. 

This in turn can become tedious for complex buildings. 

  

Figure 4.6. Segmentation of planar regions as a result of surface growing (left) and 

sub-surface growing (right). 
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Another important aspect is that points making up small details are now part of larger 

segments. Due to their low number, these points would usually not make up segments of their 

own, and the details are lost from reconstruction. An example for this is depicted in 

Figure 4.7. The points to the right side of the protruding hip are assigned to the adjacent seg-

ments, but sub-surface growing adds these points to the red segment at the back. As a result, 

the four segments can now reliably be identified and modelled as a hipped roof. Although in 

the end, the large perpendicular roof section to the right will occlude a large portion of the 

right side of the hipped roof part. 

   

Figure 4.7. Building model overlaid with surface points (left), surface growing segmentation 

result (middle), and sub-surface growing segmentation result (right). 

Due to sub-surface growing, segments are now closer to each other, share longer common 

boundaries or even intersect one another. The differences between surface growing and 

sub-surface growing segments are exemplarily shown for a hip and a mansard roof in 

Figure 4.8. Especially close to ridge and step lines, there is usually an increasing uncertainty 

as to which segment a point should be assigned to. Later stages of the reconstruction process 

strongly rely on adjacency information between roof segments, which is generally derived 

from the position and orientation of the segments using distance and angle thresholds and 

sometimes also a required minimum length for the potential intersection or step-edge lines. 

Erroneous point assignments can hinder finding such relations reliably without relaxing the 

values of the above-mentioned thresholds. However, this is generally not a viable solution as 

it also introduces the potential for false interpretations. But by adding virtual sub-surface 

points, all segments grow further towards the intersection lines and therefore closer towards 

each other. This enables a more reliable detection and precise tracing of ridge and step lines 

than without sub-surface points so that a reliable shape identification of roof elements is 

supported. Consequently, more complex and stringent rules with much higher certainty can be 

applied to define adjacencies between segments or roof parts. 
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Figure 4.8. Resulting segments of surface growing (left) and sub-surface growing (right) from 

perspective (top) and top view (bottom) for a hip and a mansard roof. 

It is also important to stress that segments from sub-surface growing might become adjacent 

below surfaces. As, for example, shown in Figure 4.9, without sub-surface points, the 

segmentation of the red and the blue segment would stop in front of the tower-like superstruc-

ture. Consequently, their adjacency would be rarely exploited and each of the saddleback 

roofs independently constructed. In contrast, with sub-surface points the corner configuration 

can be reliably identified and constructed even though the tower-like superstructure (olive 

green points) occludes all of the corner itself. Thus, gaps between the gable roofs and the 

tower-like superstructure are already closed in the segmentation level. 

As with segments, ridge lines become continuous and are not broken into shorter line 

segments. With sub-surface growing, intersection lines are in general longer and if a lower 

gable roof or a dormer adjoins a larger roof face, then its ridge line does now in fact intersect 

the segment of the base roof. It does not end in front of it, which would require the use of a 

distance threshold and leads to difficulties to tell the case apart where the roof is not adjoin-

ing. An example that illustrates the differences between surface and sub-surface growing is 

given in Figure 4.10. 
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Figure 4.9. Segmentation result for an occluded building part. Once with surface growing 

(left) and once with sub-surface growing (right) from perspective (top) and top 

view (bottom). 

  

Figure 4.10. In contrast to dormer segments derived from surface growing (left), sub-surface 

growing dormer segments (right) intersect the underlying segment. 

Moreover, many buildings possess dormers of the same type that are symmetrically arranged 

on their rooftops. The segmentation of dormer roof areas is usually difficult because they 

comprise only a small number of points. Common segmentation methods are therefore often 

either not able to detect them or the resulting segments can feature only unstable planes. In 

contrast, sub-surface growing connects coplanar dormer roof surfaces of the same base roof 

by growing through the common base roof. The resulting segments therefore feature more 

points so that more reliable planes can be derived than without sub-surface growing. In this 

way, typical regularities in a building are directly supported. The example in Figure 4.11 
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illustrates the differences between surface and sub-surface growing for coplanar dormer 

segments. 

  

Figure 4.11. Dormer segments from surface growing (left) and sub-surface growing (right). 

In conclusion, the presented sub-surface growing method enables lower segments to grow 

beneath higher ones. Thereby, fewer and larger segments are generated that grow closer 

together, preserve small roof details, and implicitly support typical building regularities. Thus, 

the identification of roof elements and their composition to more complex shapes becomes 

more reliable in later stages. 
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5. Building Knowledge Derivation 

In the task of automatic 3D building model reconstruction from airborne laser scanning point 

clouds, the problem has to be faced that the set of planar roof areas might be only inade-

quately represented by the set of planar segments resulting from an automatic roof plane 

segmentation process. Therefore, building models are not directly constructed in this thesis 

from a set of planar segments but by additionally taking further building knowledge into 

consideration. Here, the focus is on topological and semantic building information rather than 

only on geometric information. In this way, invalid building models and unnatural roof shapes 

are avoided during the reconstruction stage. The automatic derivation process of building 

knowledge is presented in this chapter. 

For the automatic extraction of building knowledge from a set of building points that are 

assigned to planar segments, several building features are defined that commonly occur in 

rooftops. Their presence and recognition in the set of planar segments supports, on the one 

hand, the detection of further building features and, by incorporating their semantic infor-

mation, significantly helps to avoid the reconstruction of building parts that do not occur in 

reality. On the other hand, regularities in the final building model can be easily emphasized 

with regard to both geometric and semantic information so that the resulting building models 

are pleasing to the human eye. Generally, the set of predefined building features can be 

adapted to specific buildings or locations. Further building features can be added or ignored at 

any time without the need for changing other existing building features to guarantee that the 

resulting models still represent valid solids. However, in cases where only an incomplete 

subset of building features is considered, it is not guaranteed that the resulting model repre-

sents the entire building. In order to organize all recognized building features and their 

relationships to each other, the multi-scale knowledge graph has been developed. It provides a 

model for knowledge representation and object categorization in which all recognized 

building features are organized and in which their relationships and interdependencies are 

well represented. The details of the proposed multi-scale knowledge graph and some building 

feature examples are described in section 5.1. 

In order to automatically recognize building features and to derive a multi-scale knowledge 

graph from a set of planar segments, a graph grammar has been developed. The proposed GG 

is defined for an RTG and applied in a bottom-up/top-down manner. Since grammars are 

well-known for their expressive power in generating a very large set of configurations from a 

relatively much smaller set of components (see section 3.2), a number of different building 

models can be derived from a rather small number of predefined building features. By 

formalizing the derivation process of a multi-scale knowledge graph, it is also ensured that 

only realistic building models are derived from the set of segments. Furthermore, since 

hierarchic and structural composition is one of the key concept behind grammars, production 

rules do not need to be applied in all possible configurations to detect all occurring building 
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features. Moreover, from the application side, the multi-scale knowledge graph in combina-

tion with the GG offers not only the possibility to receive the geometry of a building but to 

enhance the final building models with semantic information. The increased demand for 

semantically structured building models is thereby easily met with the developed fea-

ture-driven reconstruction process. As a further result, certain building details with regard to 

their semantic meaning can be optionally masked in order to decrease the computational 

complexity of later analyses or due to privacy issues. The details of the automatic multi-scale 

knowledge graph derivation process including the proposed GG are explained in section 5.2. 

5.1 Multi-Scale Knowledge Graph 

The multi-scale knowledge graph as introduced in this thesis is used to organize and manage 

meaningful building information during the reconstruction process. It represents a hierarchical 

decomposition of a building in a five-level graph structure. Each level of the multi-scale 

knowledge graph represents a different information level of the building to be reconstructed: 

 Level 1: building model 

 Level 2: super-primitives 

 Level 3: primitives 

 Level 4: primitive components 

 Level 5: semantically labeled roof topology 

Analogous to a scene graph in computer vision that describes a scene consisting of a single 

building, leaf nodes of the multi-scale knowledge graph represent the most basic building 

parts, interior nodes a grouping of lower-level building parts, and the root the building as a 

whole. Nodes of the same information level are “horizontally” connected in the multi-scale 

knowledge graph if their corresponding building parts are in spatial proximity to each other. 

“Vertical” edges, in turn, reflect the decomposition of a higher-level building part into its 

components or, conversely, the aggregation of lower-level objects to a higher-level object. 

Note, a node in the multi-scale knowledge graph can be more than one time vertically 

connected to a higher-level node if it belongs to several building features. Since the collection 

of building features is semantically interconnected, the occurrence of building features can be 

defined both by the segments and the context of the connected features. Thereby, only 

semantically compatible features are connected to higher-level building features, which 

prevents the misuse of features. The multi-scale knowledge graph of an example L-shaped 

building is shown in Figure 5.1. The details of each level, starting with the lowest level, are 

described in the following subsections. Generally, the set of node and edge labels can be 

adapted according to the building shapes to be reconstructed without changing the structure of 

the multi-scale knowledge graph. Thus, the multi-scale knowledge graph can be seen as a 

general model for the representation of building knowledge. 
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5.1.1 Roof Topology Graph 

The lowest level of the multi-scale knowledge graph consists of an RTG which is based on 

the obtained segments of the roof plane segmentation process. In roof topology graphs, 

segments are represented as nodes and two nodes are connected by an edge if their segments 

are adjacent to each other. In order to distinguish between different types of nodes and edges, 

they are labeled according to different criteria. In the last couple of years, RTGs as initially 

presented in (Verma et al., 2006) became popular for the automatic reconstruction of build-

ings. Since then, several extensions and more recently automatic correction procedures have 

been proposed (Oude Elberink and Vosselman, 2009; Perera and Maas, 2014; Xiong et al., 

2014b; Xiong et al., 2015; Xu et al., 2015; Jarząbek-Rychard and Borkowski, 2016). One 

reason for their popularity is that RTG based reconstruction methods usually keep the 

robustness of traditional model-driven reconstruction approaches while reducing the search 

effort and the computational time. This can be realized because the search for predefined 

models is no longer performed directly on the input data but on higher-level information in 

the so-called topology space. 

The presented RTG in this thesis is especially designed to deal with segments gained from 

sub-surface growing. This is necessary because these segments are enlarged with virtual 

points so that they may grow below other segments and have thus different properties than 

segments from common surface growing methods. The proposed RTG defines, therefore, the 

existence of an edge different from other common RTGs and consists of an extended set of 

node and edge attributes. The node and edge attribute values are determined according to 

geometrical, topological and locational properties of their related segments. This includes, 

inter alia, the information about each edge if the related segments of its incident nodes feature 

only a two-dimensional adjacency or a three-dimensional adjacency as well, if their intersec-

tion results in a horizontal or a sloped intersection line, and if their normal vectors feature in 

the x-y direction a specific configuration such as parallel or orthogonal. Furthermore, the 

developed RTG deals with directed edges so that also one-sided relationships between nodes 

can be directly represented in the graph structure (e.g., the enclosure of a segment by another 

segment). The attributes of the nodes and edges are described in more detail in subsec-

tion 5.2.1. 

In addition to geometrical, topological and locational features, nodes and edges are semanti-

cally labeled as well. Some examples of semantic features in the model space are illustrated in 

Figure 5.2. In contrast to the attributes, semantic features are not determined by functions but 

they are formulated as part of the proposed GG presented in subsection 5.2.2 and 5.2.3. 
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Figure 5.2. Examples of semantic labels in the model space. 

5.1.2 Primitive Components 

On the next higher level of the multi-scale knowledge graph, nodes represent primitive 

components. A primitive component belongs either to the group of basic components or to the 

group of ending components. 

There are basically three different types of basic components. Each of them reflects in the x-y 

plane one of the central geometry in the basic component: plane, line, and point. In Figure 5.3, 

three different examples of basic components are illustrated as part of primitive instances. 

 

Figure 5.3. Examples of basic components as part of primitive instances. 

Ending components, on the other side, represent possible endings of a primitive. Some 

examples of possible ending components are shown in Figure 5.4. 
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gable ending: 

 

 

hip ending: 

 

gambrel ending: 

 

 

mansard ending: 

 

Dutch gable 

ending: 

 

 

gullwing ending: 

 

Bonnet ending: 

 

 

…  

Figure 5.4. Examples of ending components. 

Note, both primitive and ending components cannot exist alone but must be composed to 

higher-level objects. These higher-level objects are called primitives and are represented in 

the next higher level of the multi-scale knowledge graph. 

5.1.3 Primitives 

In the third level of the multi-scale knowledge graph, nodes represent frequently occurring 

building primitives. In contrast to the elements of the previous levels, primitives represent 

valid solids so that they can be converted into watertight B-rep models. Here, each building 

primitive consists of one basic element and four further elements that define the endings of 

the basic element. There are three different types of basic elements that each reflects one of 

the following central geometry in the basic element: point, line, and plane. By selecting four 

ending elements, specializations of these basic elements are derived. This approach offers the 

following advantages: 

 Some ending elements can be used for different basic elements so that frequently oc-

curring ending elements do not need to be individually defined for each specialization. 

 The combination of different ending elements to derive a specialization from a basic 

element enables a very compact description of a large number of building primitives 

that are most common in reality. 

 The types of primitives that can be represented in the multi-scale knowledge graph is 

semantically restricted so that unnatural primitives are avoided in the resulting build-

ing models. 

Some examples of primitives in the third level of the multi-scale knowledge graph are shown 

in Figure 5.5. Here in the first row, the central geometry of each basic element is a plane. By 
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selecting different sets of ending types, different roof primitives are derived. As for example 

shown, by only changing the two opposing ending elements of a gambrel roof that each 

represent a gable ending, a mansard roof can be derived. Similar statements can be made 

about the primitives d) to l), whose central element reflects a line geometry. Note, as for 

example shown in the butterfly roof in l), the central geometry of a basic element does not 

necessarily have to be the highest geometric feature of a primitive. A representative of a point 

reflecting central geometry is finally shown in m). 

 
   

a) Flat (left) and shed (right) roof  b) Gambrel roof (i) c) Mansard roof (i) 

  
 

 
d) Saddleback (left) and saltbox (right) roof e) Gambrel roof (ii) f) Gullwing roof 

    

g) Hip (left) and half-hip (right) roof h) Dutch gable roof i) Mansard roof (ii) 

  
  

j) Bonnet roof k) Clerestory roof l) Butterfly roof m) Pyramidal roof 

Figure 5.5. Some primitive examples that are of interest in the third level of the multi-scale 

knowledge graph. 

Two nodes are connected in the third level of the multi-scale knowledge graph if their 

primitive components are adjacent to each other. A distinction is made between neighboring 

adjacencies and enclosing adjacencies, which means in the latter case that one primitive is 
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completely located on the other primitive (i.e., located within the other primitive in the x-y 

plane). The latter is, for example, particularly the case for roof superstructures. 

5.1.4 Super-Primitives 

In the next higher level of the multi-scale knowledge graph, nodes represent links between 

adjacent primitives of the third level to model more complex roof shapes. There are three 

different types of nodes to distinguish between the three most common types of links: 

T-shaped, L-shaped, and X-shaped links. For each type of link, different cases can be 

distinguished based on the height difference of the linked primitives. These cases are pre-

sented in the following on the basis of saddleback primitives but the differentiation is valid for 

other primitive types as well. 

As illustrated in Figure 5.6 for two linked saddleback primitives that form a T-shape, three 

different cases can be differentiated depending on the height of the intersecting ridge com-

pared to the height of the other ridge. In all of them, one of the ridges intersects a segment 

associated with the other ridge so that the segments form two sloped valleys. Due to the 

subsequent solid modeling technique described in chapter 6, all cases can be modeled during 

the construction step in the same way so that a distinction between them becomes obsolete in 

the multi-scale knowledge graph. 

   

Figure 5.6. Three distinct cases of a T-shaped ridge intersection. 

In an L-shaped link, there are essentially two cases that can be distinguished. Both cases are 

illustrated in Figure 5.7. In the first case, the ridges feature the same height so that they 

intersect each other, whereas this is not the case in the second one. Analogous to T-shaped 

links, both cases are constructed in later stages in the same way so that a distinction between 

both cases in the multi-scale knowledge graph becomes obsolete as well. 
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Figure 5.7. Two distinct cases of an L-shaped ridge intersection. 

The same applies for the four distinct cases of an X-shaped link that are exemplarily shown in 

Figure 5.8. Note, generally it is not necessary to explicitly represent X-shaped links because 

they can be treated as multiple L-shaped links. However, their explicit presence in the 

multi-scale knowledge graph enables in later stages to further improve the regularities where 

sub-surface points are no longer sufficient for this task. 

    

Figure 5.8. Four distinct cases of an X-shaped ridge intersection. 

Two super-primitive nodes of the multi-scale knowledge graph are horizontally connected by 

an edge if they share a common primitive. 

5.1.5 Building Model 

The top level of the multi-scale knowledge graph consists of a single node that represents the 

whole building and completes the multi-scale knowledge graph. It is vertically connected to 

all super-primitive nodes that compose the building. 

5.2 Multi-Scale Knowledge Graph Derivation 

In this section, the derivation of the multi-scale knowledge graph based on a set of planar 

segments is described. For each building, a multi-scale knowledge graph is not 

pre-determined but iteratively constructed in a dynamic way. The whole generation process 

consists of two main phases: initialization phase and bottom-up/top-down phase. An overview 

of the whole derivation process is depicted in Figure 5.9. 
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Figure 5.9. Workflow of the building knowledge derivation process. 

In the initialization phase, an RTG is determined from a given set of planar segments. Since 

segments are here obtained from a sub-surface segmentation process, node and edge attributes 

of the RTG need to be specifically defined. Otherwise, the RTG would become ambiguous in 

cases in which, for example, a distinction between real surface and virtual sub-surface points 

is not made. The construction details of the RTG and its attributes are described in subsec-

tion 5.2.1. 

Once all adjacencies between segments are determined and classified in terms of their 

geometrical, topological and locational properties, production rules of a GG are applied 

during the subsequent bottom-up/top-down phase to recognize higher-level building features 

(bottom-up phases) and to detect missing lower-level building features (top-down phases). 

For this, an iterative rule-based procedure is presented that selects and matches production 

rules via subgraph matching so that the initial RTG is finally transformed into the multi-scale 
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knowledge graph. The set of production rules defines the set of applicable graph transfor-

mations and each production rule represents the derivation of a particular building feature that 

supports the modeling process of a building. In order to deal with different point densities and 

to provide an appropriate degree of flexibility, each production rule is parameterized so that 

thresholds can be easily adapted to the properties of the input data. Note, however, that the 

developed rules rely more on the size of features than on the point cloud density itself; as long 

as the point cloud is dense enough to actually represent the building feature. 

In general, the production rules can be defined for and applied to segments of any segmenta-

tion method. However, to perform the building feature recognition procedure on segments 

gained from sub-surface growing entails several advantages because in contrast to conven-

tional surface growing, the segmentation process continues below other surfaces. As a result, 

segments have the property to be much more intertwined compared to segments from other 

segmentation methods. Consequently, strict thresholds can be applied during the building 

knowledge derivation process. Additionally, the enlargement of segments helps to better 

recognize adjacencies, intersections, and also the sub-shapes of building roofs. Moreover, the 

use of sub-surface growing segments leads to a reduced number of rules because some 

problems, as described in subsection 4.3, are already implicitly solved by sub-surface growing 

and do not have to be regarded as special cases in additional production rules. Consequently, 

also intricate rules can be applied to recognize more complex building features by keeping the 

number of rules small. Furthermore, small segments from roof superstructures can be omitted 

in the case that the reconstruction method is unable to form well-shaped roof parts thereof. 

The sub-surface points ensure that the remaining segments still cover the area of the missing 

segments in a coherent way. 

As depicted in the overview of the whole multi-scale knowledge graph derivation process in 

Figure 5.9, the GG is alternately applied in bottom-up and top-down phases to derive the 

different levels of the multi-scale knowledge graph. In the bottom-up phases, building 

features are determined by aggregating subgraphs of lower-levels to nodes of higher-levels. If 

the multi-scale knowledge graph construction is only based on the bottom-up phases, it might 

be incomplete due to unrecognized lower-level features, which is usually caused by (partial) 

occlusions, too strict thresholds or a combination thereof. Therefore, further building features 

are detected in the top-down phases using top-down methods. For this, production rules are 

used that decompose higher-level nodes into a set of lower-level nodes so that missing 

lower-level nodes and edges can be specifically searched. The conjunction of both different 

kind of phases enables the recognition of important building features. The details of the 

bottom-up and top-down phases are described in subsection 5.2.2 and 5.2.3, respectively. 

In some cases, a segment can be part of more than one building feature of the same type that 

is going to be derived. In order to ensure that all instances are adequately represented in the 

multi-scale knowledge graph, a segment splitting procedure has been developed. During this 

procedure, each segment that is part of a matched subgraph is split into patches until each 

segment patch belongs to at most one new derived building feature instance. As a result, the 

segment splitting process internally changes the shape and size of segments, making them 
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more applicable to other feature recognition rules. Note, segment splitting is not a specific 

problem caused by sub-surface segmentation but it is needed whenever a roof segment is part 

of many features. The details of the segment splitting process are explained in subsec-

tion 5.2.4. 

5.2.1 Initialization Phase 

In the initialization phase, the obtained segments from the roof plane segmentation process 

are organized in a roof topology graph structure. The proposed RTG is defined as  

𝐺 = (𝑉, 𝐸, 𝜇𝑉, 𝜇𝐸 , 𝑠, 𝑡)  where 𝑉  is the finite set of attributed vertices (nodes),  

𝐸 ⊆ {(𝑣𝑖, 𝑣𝑗) | 𝑣𝑖, 𝑣𝑗 ∈ 𝑉, 𝑣𝑖 ≠ 𝑣𝑗} the finite set of attributed edges, 𝜇𝑉 the finite set of vertex 

attributes, 𝜇𝐸  the finite set of edge attributes, and the two unary operations 𝑠  and 𝑡  with  

𝑠 ∶ 𝑒 → 𝑣1 and 𝑡 ∶ 𝑒 → 𝑣2 for a given 𝑒 ∈ 𝐸. Segments are represented in the directed RTG as 

attributed nodes so that there is a bijection 𝑓: 𝑆 → 𝑉, where 𝑆 is the set of obtained segments. 

The relationship between two adjacent segments is represented as two directed attributed 

edges connecting the nodes with each other. In the following, node and edge features of the 

RTG are described. For this, let 𝑣1 = 𝑠(𝑒), 𝑣2 = 𝑡(𝑒), 𝑣. 𝑝𝑜𝑖𝑛𝑡𝑠 the set of points that belongs 

to the segment 𝑓−1(𝑣) , 𝑣. 𝑝𝑙𝑎𝑛𝑒  the plane that is defined by the segment 𝑓−1(𝑣) , and 

𝑣. 𝑛𝑜𝑟𝑚𝑎𝑙 the normal vector of 𝑣. 𝑝𝑙𝑎𝑛𝑒. 

𝑂𝑧(𝑣): Each node of the RTG has an attribute that describes the z-orientation of its segment in 

space. For this, four different classes are defined: horizontal, vertical, sloped, and unknown. 

The latter is assigned to those nodes whose segments feature an insufficient number of points 

to calculate a robust normal vector. Otherwise, a vertex is essentially classified based on the 

z-value of the normal direction of the plane that can be directly derived from the points of its 

segment: 

𝑂𝑧(𝑣) =

{
 
 
 
 
 

 
 
 
 
 
𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙, 𝑖𝑓 |𝑣. 𝑝𝑜𝑖𝑛𝑡𝑠| > 𝑡1  ∧

𝑃𝐻(𝑣) < 𝑡2 ∧

𝑣. 𝑝𝑙𝑎𝑛𝑒. 𝑐 < 𝑡3
ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙, 𝑖𝑓 |𝑣. 𝑝𝑜𝑖𝑛𝑡𝑠| > 𝑡1  ∧

𝑃𝐻(𝑣) < 𝑡2 ∧

𝑣. 𝑝𝑙𝑎𝑛𝑒. 𝑐 > 1 − 𝑡3 ∧

𝑣. 𝑝𝑜𝑖𝑛𝑡𝑠. ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑡4
𝑠𝑙𝑜𝑝𝑒𝑑, 𝑖𝑓 |𝑣. 𝑝𝑜𝑖𝑛𝑡𝑠| > 𝑡1  ∧

𝑃𝐻(𝑣) < 𝑡2 ∧

𝑡3 ≤ 𝑣. 𝑝𝑙𝑎𝑛𝑒. 𝑐 ≤ 1 − 𝑡3
𝑢𝑛𝑘𝑛𝑜𝑤𝑛, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.1) 

where 

𝑣. 𝑝𝑙𝑎𝑛𝑒. 𝑐: slope in z-direction of the plane 𝑣. 𝑝𝑙𝑎𝑛𝑒, 

𝑣. 𝑝𝑜𝑖𝑛𝑡𝑠. ℎ𝑒𝑖𝑔ℎ𝑡: difference between the maximum z-value and the minimum z-value  

         of all points that belong to 𝑣. 𝑝𝑜𝑖𝑛𝑡𝑠, 

𝑃𝐻(𝑣): MSE of 𝑣. 𝑝𝑜𝑖𝑛𝑡𝑠 to 𝑣. 𝑝𝑙𝑎𝑛𝑒 which reflects the plane homogeneity, 

𝑡1 ∈ ℕ
+, 𝑡2 ∈ ℝ0

+, 0 ≤ 𝑡3 ≤ 1, and 𝑡4 ∈ ℝ0
+. 
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At this point, segments with a small number of points are not discarded but classified as 

unknown so that they can be still taken into account in higher levels of the multi-scale 

knowledge graph. The presence of their surfaces in the final building model has, however, a 

low priority. To differentiate between horizontal and sloped segments, it is important to have 

in addition to the normal vector criterion also a height criterion. The latter is especially 

needed for large segments because already small gradients may lead to non-horizontal 

surfaces. 

Two nodes are connected in the first level of the multi-scale knowledge graph if their 

segments are adjacent to each other. In contrast to commonly used RTGs, the existence of an 

edge is independent from the length of a hypothesized intersection line segment. Instead, two 

segments are adjacent to each other if at least one point exists in each segment so that the 

distance between them is less than a predefined threshold: 

𝐸 = {(𝑣𝑖 , 𝑣𝑗) | ∃𝑝𝑖 ∈ 𝑣𝑖. 𝑝𝑜𝑖𝑛𝑡𝑠, ∃𝑝𝑗 ∈ 𝑣𝑗 . 𝑝𝑜𝑖𝑛𝑡𝑠,

𝑣𝑖 ∈ 𝑉, 𝑣𝑗 ∈ 𝑉, 𝑣𝑖 ≠ 𝑣𝑗 ∶ |𝑝𝑖𝑝𝑗⃗⃗ ⃗⃗ ⃗⃗  ⃗| < 𝑡} 
(5.2) 

where 

 𝑡 ∈ ℝ+. 

In order to distinguish between different types of adjacencies, each edge has a set of attributes 

that characterizes the relationship of its incident nodes. There are in total seven edge attributes 

that are described in the following. 

𝐴𝐷(𝑒): In order to distinguish between potential step and intersection lines at a later stage, a 

distinction is made between two- and three-dimensional adjacency, ignoring in Equation (5.2) 

the z-coordinates of the points in the two-dimensional distance calculation. 

𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒(𝑒): Due to the proposed sub-surface growing procedure presented in chapter 4, a 

further distinction is made between adjacencies that require sub-surface points in 

Equation (5.2) and those adjacencies that are connected through their surface points. The 

differentiation is necessary because roof surfaces of the former kind of adjacencies are 

actually not adjacent in reality but only virtual below the roof surface. Without this distinc-

tion, virtual adjacencies could misguide the building knowledge derivation process. 

𝐶𝑉(𝑒): To indicate the reliability of an adjacency relation, each edge is further attributed with 

a confidence value. For the confidence value calculation of a three-dimensional adjacency, 

first an intersection line 𝑙ℎ𝑖  between both segments is hypothesized that results from the 

intersection of those two planes that can be directly derived from the points of each 

sub-surface growing segment. Then, the confidence value is determined as follows: 
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𝐶𝑉(𝑒, 𝑙ℎ𝑖) = 𝑚𝑖𝑛

(

 
 
1,

𝛼 (𝑚𝑎𝑥(0,1 − 𝑎 ⋅ 𝑃𝐻(𝑒))) +

𝛽 (𝑚𝑖𝑛(1, 𝑏 ⋅ 𝑆𝑃(𝑒, 𝑙ℎ𝑖))) +

𝛾 (𝑚𝑖𝑛(1, 𝑐 ⋅ 𝑂𝐿(𝑒, 𝑙ℎ𝑖))) )

 
 

 (5.3) 

where 

0 ≤ 𝛼, 𝛽, 𝛾 ≤ 1, 𝛼 + 𝛽 + 𝛾 = 1, 

𝑎, 𝑏, 𝑐 ∈ ℝ+, and 0 < 𝑏 ≤ 1. 

The confidence value is based on three terms whose influence is balanced by the weight 

factors 𝛼, 𝛽, and 𝛾 and which can be adapted to different input data characteristics by 𝑎, 𝑏, 

and c. In the first term, the average distance of the segment points to their related segment 

plane is taken into account to determine the plane homogeneity: 

𝑃𝐻(𝑒) =
1

2
(𝑃𝐻(𝑣1) + 𝑃𝐻(𝑣2)) (5.4) 

where 

𝑃𝐻(𝑣): MSE of 𝑣. 𝑝𝑜𝑖𝑛𝑡𝑠 to 𝑣. 𝑝𝑙𝑎𝑛𝑒 which reflects the plane homogeneity. 

The second term considers the number of supporting points, which are close to the hypothe-

sized intersection line: 

𝑆𝑃(𝑒, 𝑙ℎ𝑖) = |𝐴| + |𝐵| (5.5) 

where 

𝐴 = {𝑝 ∈ 𝑣1. 𝑝𝑜𝑖𝑛𝑡𝑠 | 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑙ℎ𝑖) < 𝑡}, 

𝐵 = {𝑝 ∈ 𝑣2. 𝑝𝑜𝑖𝑛𝑡𝑠 | 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑙ℎ𝑖) < 𝑡},  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑙): distance between a given point 𝑝 and a given line 𝑙, and 

𝑡 ∈ ℝ+. 

In the third term, the overlap length of both segments with regard to the hypothesized 

intersection line is determined: 

𝑂𝐿(𝑒, 𝑙ℎ𝑖) = 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝐿𝑒𝑛𝑔𝑡ℎ(𝑓
−1(𝑣1), 𝑓

−1(𝑣2), 𝑙ℎ𝑖). (5.6) 

The calculation of the overlap length is illustrated in Figure 5.10. First, all points of the two 

segments that are within a maximum distance to the hypothesized intersection line are 

projected onto the hypothesized intersection line (black). Then, for each segment all line 

segments (blue and green) are determined that are supported by a continuous sequence of 

points on the intersection line that initially belong to the segment. The intersection length of 

the set of blue and green line segments yields the overlap length of the segments (red). The 

overlap length of two adjacent segments is thus the summed length of all line segments that 

are supported by a continuous point sequence of both segments. 
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Figure 5.10. Overlap length of two adjacent segments represented by the red line segment. 

The confidence values for two-dimensional adjacencies, which feature potential step lines, are 

estimated for sloped segments in a similar way. First, a hypothesized line is determined 

between two adjacent segments. For this, the intersection line is initially calculated that results 

from the intersection of those two planes that can be directly derived from the points of each 

sub-surface segment. Due to the height gap of these segments, the intersection line is then 

horizontally translated along its perpendicular x-y direction so that it best separates the 

surface points of the segments from each other. To determine this specific location, the 

principles of a support vector machine are adapted in a way that the x-y direction of the 

hyperplane normal is set to the normal of the initially calculated intersection line. To consider 

that the points of the sets are not always linearly separable, slack variables as used in a 

soft-margin SVM are incorporated. For the details of SVM see, for example, (Vapnik, 2000). 

Then, the confidence value is calculated in the x-y plane, ignoring the z-coordinates, based on 

the above mentioned three terms and assigned to the edge that represents the two-dimensional 

adjacency. 

𝑂𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑒)  and 𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑒) : In addition to two- and three-dimensional adjacency 

information, common RTGs utilized in building reconstruction approaches usually incorpo-

rate the relative x-y orientation of two adjacent segments. Here, a distinction is often made, on 

the one hand, whether the segment faces form a convex (+) or a concave angle (-) and, on the 

other hand, between edges whose segments feature horizontal intersections (H) and edges 

whose segments feature sloped intersections (S): 

𝑂𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑒) =  {
𝐻, 𝑖𝑓 − 𝑡 < 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑣1. 𝑝𝑙𝑎𝑛𝑒, 𝑣2. 𝑝𝑙𝑎𝑛𝑒). 𝑛𝑜𝑟𝑚𝑎𝑙. 𝑧 < 𝑡
𝑆, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.7) 

where 

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑝1, 𝑝2). 𝑛𝑜𝑟𝑚𝑎𝑙. 𝑧: z-value of the normal vector of the intersection line

            that results from the intersection of the two given

            planes 𝑝1 and 𝑝2, and 

0 ≤ 𝑡 ≤ 1. 

As shown on the left side of Figure 5.11, the corresponding RTG of a T-shaped building 

gained from a common segmentation method includes three H+ and two S- classified edges. 

However, the expressive power of these attribute values is limited and especially for segments 

gained from sub-surface growing not always sufficient. An example for this is given for the 

same building shape on the right side of Figure 5.11. Here, the red and the blue segment are, 
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due to sub-surface points, adjacent to each other. Their common edge can be classified with 

S+ if the left part of the blue segment is ignored. This however results in loss of information 

so that a distinction to other S+ adjacencies is not discernible anymore. An analogous 

problem occurs for the edge between the yellow and the blue segment. Moreover, the green 

and the orange segment are merged to one segment in sub-surface growing so that the 

relationship between the red and the green segment becomes S+ and S- at the same time. 

Similar problems still occur in RTGs that do not differentiate between convex and concave 

adjacencies but between adjacencies whose segment normals projected on the x-y plane point 

either away or towards each other. 

  

Figure 5.11. Corresponding topology graph of a T-shaped building based on segments gained 

from surface (left) and sub-surface (right) segmentation. 

To avoid these problems, a visibility attribution concept, which indicates the relative surface 

point positions of one segment to another adjacent segment, is introduced in addition to the 

slope characterization of the intersection. Since edges are implemented as directed edges, the 

visibility of a segment to another adjacent segment is classified as either visible (+), partially 

visible (○), or not visible (-): 

𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑒) =  

{
 
 

 
 +, 𝑖𝑓 

1

|𝐴|
∑𝟙{𝑝∈𝐴 | 𝑝⋅𝑣1.𝑛𝑜𝑟𝑚𝑎𝑙+𝑣1.𝑝𝑙𝑎𝑛𝑒.𝑑>0}(𝑝)

𝑝∈𝐴

> 𝑡1

−, 𝑖𝑓 
1

|𝐴|
∑𝟙{𝑝∈𝐴 | 𝑝⋅𝑣1.𝑛𝑜𝑟𝑚𝑎𝑙+𝑣1.𝑝𝑙𝑎𝑛𝑒.𝑑<0}(𝑝)

𝑝∈𝐴

> 𝑡1

○, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.8) 

where 

𝐴 = {𝑝 ∈ 𝑣2. 𝑝𝑜𝑖𝑛𝑡𝑠 ∶ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑝𝑙𝑎𝑛𝑒) > 𝑡2}, 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑝𝑙𝑎𝑛𝑒): distance of a given point 𝑝 to a given plane 𝑝𝑙𝑎𝑛𝑒, 

𝑣1. 𝑝𝑙𝑎𝑛𝑒. 𝑑: distance of the plane 𝑣1. 𝑝𝑙𝑎𝑛𝑒 to the origin (with a negative sign if the  

           origin is in front of the plane), 

0 < 𝑡1 ≤ 1, and 𝑡2 ∈ ℝ0
+. 

Thereby, an edge 𝑒 ∶  𝑣1 → 𝑣2 is classified as visible if all surface points that belong to the 

segment 𝑓−1(𝑣2) are in front of the plane 𝑣1. 𝑝𝑙𝑎𝑛𝑒 . If all surface points of 𝑓−1(𝑣2) are 
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behind this plane, then the edge is classified as not visible. Otherwise it is classified  

as partially visible because points from 𝑓−1(𝑣2)  are both in front and behind the plane 

𝑣1. 𝑝𝑙𝑎𝑛𝑒. To incorporate the uncertainty of the input data points and possible faulty assign-

ments of border surface points during the segmentation process, points that are  

located in a close distance to 𝑣1. 𝑝𝑙𝑎𝑛𝑒  are in all of these three cases not considered.  

With respect to a minimum number of points, edges are classified according to  

the three visibility classes. In combination with 𝑂𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑒) , the corresponding  

edges of the T-shaped building from the previous example are obtained as shown in 

Figure 5.12. 

 

Figure 5.12. Corresponding topology graph of a T-shaped building attributed according to the 

intersection and visibility attribution concept. 

𝑂𝑥𝑦(𝑒): For the direct recognition of some regularized structures, which are often present in a 

building, a further attribute is assigned to each edge that meets the condition  

𝑂𝑧(𝑣1) = 𝑂𝑧(𝑣2) = "𝑠𝑙𝑜𝑝𝑒𝑑" . It mainly represents parallel and orthogonal structures of 

sloped roof surfaces in the x-y directions: 

𝑂𝑥𝑦(𝑒) =

{
 
 

 
 ⇉, 𝑖𝑓 𝐴𝑛𝑔𝑙𝑒𝑥𝑦(𝑣1. 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑣2. 𝑛𝑜𝑟𝑚𝑎𝑙) < 𝑡

⊥, 𝑖𝑓 90° − 𝑡 < 𝐴𝑛𝑔𝑙𝑒𝑥𝑦(𝑣1. 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑣2. 𝑛𝑜𝑟𝑚𝑎𝑙) < 90° + 𝑡

⇆, 𝑖𝑓 𝐴𝑛𝑔𝑙𝑒𝑥𝑦(𝑣1. 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑣2. 𝑛𝑜𝑟𝑚𝑎𝑙) > 180° − 𝑡

¬(∥∨⊥), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.9) 

where 

𝐴𝑛𝑔𝑙𝑒𝑥𝑦(𝑛1, 𝑛2): angle between the two given vectors 𝑛1 and 𝑛2 in the x-y plane, and 

0° ≤ 𝑡 ≤ 45°. 

For the calculation of 𝑂𝑥𝑦 , first the normal vectors of each adjacent segment pair, whose 

incident nodes are both classified as sloped, are projected onto the x-y plane. Then, the angle 

formed by the projected normal vectors is analyzed. With respect to a predefined threshold, 

edges whose angles are close to 0˚, 90˚, and 180˚ are classified as parallel with same  



5. Building Knowledge Derivation 

86 

 

direction (⇉), orthogonal (⊥), and parallel with opposite direction (⇆), respectively. All other 

edges that connect sloped segments are classified as neither parallel nor orthogonal (¬(∥∨⊥)). 

In higher levels of the multi-scale knowledge graph, this attribute is frequently considered for 

the extraction of higher-level information. 

𝐶𝑃_𝑃𝐶(𝑒): Furthermore, it is useful for later stages to represent the information for each 

segment if its surface points are enclosed in the x-y plane by another segments. The relation-

ship in such a case is called a child-parent relationship (𝐶𝑃 ). Conversely, if a segment 

encloses the surface points of another segment, then the relationship is called a parent-child 

relationship (𝑃𝐶): 

𝐶𝑃𝑃𝐶(𝑒) = {
𝐶𝑃, 𝑖𝑓 𝑓−1(𝑣1) 𝑖𝑠 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 𝑏𝑦 𝑓

−1(𝑣2)

𝑃𝐶, 𝑖𝑓 𝑓−1(𝑣2) 𝑖𝑠 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 𝑏𝑦 𝑓
−1(𝑣1)

𝑛𝑜𝑛𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (5.10) 

In order to check if a segment is enclosed by another segment, it is tested with a simple ray 

casting algorithm based on (Shimrat, 1962) if its surface points are all enclosed by the slightly 

enlarged boundary of the other segment. Note, a segment might be enclosed by several 

segments at the same time if the segments result from sub-surface growing. Consequently, to 

determine the set of segments that encloses the surface points of a segment, all its adjacent 

segments need to be separately checked with respect to their 𝐶𝑃_𝑃𝐶 relationships. 

5.2.2 Bottom-Up Phases 

For the recognition of semantic building features, a set of production rules is defined. Each 

production rule formulates the derivation of one particular type of building feature and 

consists of two graphs which represent the LHS and RHS of the production. These production 

rules are applied during the bottom-up phases to recognize the semantic building features 

described in section 5.1. For this, production rules are sequentially selected and matched 

against the so far constructed multi-scale knowledge graph to determine all occurrences of the 

LHS via subgraph matching and to replace them by the RHS of the production rule if they 

fulfill the preconditions and postconditions. 

In theoretical computer science, the recognition of a graph in another graph is  

referred to the subgraph isomorphism problem. An isomorphism from a graph  

𝐺 = (𝑉,  𝐸)  to a graph 𝐺′ = (𝑉′, 𝐸′)  is a bijective mapping ℎ: 𝑉 → 𝑉′  such that  

(𝑣1, 𝑣2) ∈ 𝐸 ⟺ (ℎ(𝑣1),  ℎ(𝑣2)) ∈ 𝐸
′. Since the subgraph isomorphism problem is a general-

ization of both the problem of testing whether a graph contains a Hamiltonian cycle, which is 

a closed path in the graph that visits each node exactly once, and the maximum clique 

problem, which finds a complete subgraph with the maximum number of nodes in a given 

graph, subgraph matching is NP-complete and can therefore probably not be efficiently solved 

(Garey and Johnson, 1979). In the presented building knowledge derivation process, however, 

the computational time for subgraph matching is in practice generally acceptable even for 

complex buildings due to the low number of nodes and edges. Moreover, by considering the 
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hierarchical structure of the multi-scale knowledge graph and the structural nature of gram-

mars, the set of applied production rules can be divided into five subsets according to the five 

levels of the multi-scale knowledge graph. Since production rules are defined so that the 

occurrence of higher-level features depends on the existence of lower-level features, features 

of a lower-level need to be recognized first before higher-level features can be detected. Thus, 

production rules of only one of these five subsets need to be considered in each bottom-up 

phase. 

In addition to the subgraph isomorphism constraint, preconditions and postconditions  

are additionally defined to dictate if a production rule is finally applied to a matched subgraph 

or not. While preconditions are conditions or predicates that must always be true just prior to 

the graph transformation of the applied production rule, postconditions must always be true 

just after the graph transformation. Both preconditions and postconditions are individually 

defined for each production rule. A precondition, however, that have all production rules in 

common is that they are only applied to a matched subgraph if they have not been applied to it 

before. 

Since production rules are iteratively applied during bottom-up and top-down phases, a 

production rule is selected in each iteration and as many matches in the multi-scale 

knowledge graph are detected via subgraph matching according to the LHS of the selected 

production rule. If the subgraph matching process stalls, i.e. no more instances of the LHS can 

be detected in the so far derived multi-scale knowledge graph, and the set of matched 

subgraphs is not empty, then those matched subgraphs that meet the preconditions and 

postconditions are transformed to the RHS of the selected production rule and their geometry 

is adjusted with regard to other features. For example, ridges and eaves become horizontal, 

the direction of intersecting ridges are rectified with regard to the intersected ridges by 

favoring orthogonal orientations, eaves are adjusted that they become parallel or orthogonal to 

each other, etc. The adjustments can be enforced in a straight-forward way due to the 

semantic information accompanied by the feature rules themselves. The adjustment step is 

carried out to support the recognition of further features during the next iterations.  

In particular for point clouds with a low-density, this step is essential to detect a  

sufficient number of features so that a reasonable building model can be constructed. In the 

following, some production rules and their preconditions and postconditions are described in 

more detail. 

In the first bottom-up phase, production rules are applied to label nodes and edges of the 

initial RTG with semantic labels based on their geometrical, topological, and locational 

attributes. For this, production rules are defined whose preconditions take the node and edge 

attributes of the initial RTG into account and whose RHS introduce semantic labels. Some of 

these production rules are exemplarily presented in the following. 

Some frequently occurring building features are, for example, the hip and the valley features. 

Both features represent an intersection of two adjacent roof sides. The only difference 

between a hip and a valley is that the internal angle of the hip forming roof sides is less than 
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180° so that they form a convex subcomponent while the internal angle of the valley forming 

roof sides is greater than 180° so that they form a concave subcomponent. Thus, the produc-

tion rules for hips and valleys are defined in a similar way. According to the slope of their 

intersection, there are two different variants of hips and valleys: sloped and horizontal hips 

and valleys. The production rule for the recognition of sloped hip features is, for example, 

defined as: 

  
 

Precondition: 

𝑂𝑧(𝑣1) = "𝑠𝑙𝑜𝑝𝑒𝑑" ∧ 𝑂𝑧(𝑣2) = "𝑠𝑙𝑜𝑝𝑒𝑑" ∧ 𝐴𝐷(𝑒) = "3D " ∧ 

𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒(𝑒) = "𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑃𝑜𝑖𝑛𝑡𝑠" ∧ Ointersection(e) = "𝑠𝑙𝑜𝑝𝑒𝑑" ∧ 

𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑒) = " − " ∧ 𝐶𝑃_𝑃𝐶(𝑒) = "𝑛𝑜𝑛𝑒" ∧ 

(𝑂𝑥𝑦(𝑒) = " ⊥ " ∨ 𝑂𝑥𝑦(𝑒) = " ¬(∥∨⊥) ") ∧ 𝐶𝑉(𝑒) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

By changing the value of the visibility attribute from “−” to “+”, sloped valley features  

are derived. In order to derive horizontal hips and horizontal valleys, the value of 

Orientationintersection need to be changed to “horizontal” and Orientationxy is not allowed to  

be “⊥” or “¬(∥∨⊥)”. Thus, the production rule for the derivation of horizontal hips is defined 

as: 

  
 

Precondition: 

𝑂𝑧(𝑣1) = "𝑠𝑙𝑜𝑝𝑒𝑑" ∧ 𝑂𝑧(𝑣2) = "𝑠𝑙𝑜𝑝𝑒𝑑" ∧ 𝐴𝐷(𝑒) = "3D " ∧ 

𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒(𝑒) = "𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑃𝑜𝑖𝑛𝑡𝑠" ∧ Ointersection(e) = "ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙" ∧ 

𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑒) = " − " ∧ 𝐶𝑃_𝑃𝐶(𝑒) = "𝑛𝑜𝑛𝑒" ∧ 

(𝑂𝑥𝑦(𝑒) = " ⇆ " ∨ 𝑂𝑥𝑦(𝑒) = " ⇉ ") ∧ 𝐶𝑉(𝑒) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

Further production rules are defined in a similar way for each semantic label of the first level. 

Note, the presented recognition framework is not limited to a particular set of production 

rules. Depending on the building characteristics of the input data region, existing production 

rules can be adapted or discarded and new ones can be added to the building knowledge 

derivation process. Furthermore, a building feature can be defined in several different ways so 

that there can be more than one production rule for the recognition of the same building 

feature. 

In contrast to the first bottom-up phase, in which only already existing nodes and edges are 

semantically labeled, production rules are applied in the remaining bottom-up phases to 

introduce new nodes in higher levels of the multi-scale knowledge graph. For this, building 
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features of a lower level are aggregated to a higher-level building feature in the next higher 

level of the multi-scale knowledge graph. For the aggregations, production rules are defined 

whose LHS consists of nodes and edges of the same level while the RHS introduces a further 

node in the next higher level. In order to represent an aggregation between two consecutive 

levels of the multi-scale knowledge graph, all building features of the lower level are verti-

cally connected to the higher-level building feature of which it is composed. Since nodes of 

the same level need to be horizontally connected if their associated building features are in 

spatial proximity, further production rules are defined that horizontally connect higher-level 

nodes with each other. Some production rule examples of the remaining bottom-up phases are 

given in the following. 

In the second bottom-up phase, for example, nodes of the fifth level are aggregated to a  

node of the fourth level if they compose a primitive component. As described in subsec-

tion 5.1.2, a primitive component is either a basic component or an ending component. One 

frequently occurring basic component in rooftops is the ridge feature. According to common 

definitions and to the National Roofing Contractors Association2  (NRCA), a ridge is the 

“highest point on a roof, represented by a horizontal line where two roof areas intersect, 

running the length of the area”. The production rule for the recognition of its occurrence is 

defined as: 

 

 

 

Precondition: 

𝑂𝑧(𝑣1) = "𝑠𝑙𝑜𝑝𝑒𝑑" ∧ 𝑂𝑧(𝑣2) = "𝑠𝑙𝑜𝑝𝑒𝑑" ∧ 𝑂𝑥𝑦(𝑒) = " ⇆ " ∧ 𝐶𝑉(𝑒) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

Postcondition: 

𝑂𝐿(𝑒, 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑣1. 𝑝𝑙𝑎𝑛𝑒, 𝑣2. 𝑝𝑙𝑎𝑛𝑒)) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

In order to avoid short ridge line fragments that would result in unnatural details in the final 

building model, a postcondition is defined for this production rule. The postcondition states 

that a ridge must have a minimum overlap length (see subsection 5.2.1) and it must be located 

on the hypothesized intersection line between both segments. In this way, it is ensured that the 

geometries of all ridge lines in the multi-scale knowledge graph have a minimum length. 

Another basic component is the peak. In contrast to the basic components flat and ridge, a 

peak may originate from different numbers of roof surfaces. Therefore, several production 

                                                 
2 http://www.nrca.net/ 
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rules are defined to derive different kinds of peak primitives. In cases where the peak is 

originated from four adjacent roof surfaces, the LHS of the production rule consists of  

four sloped nodes that are connected with each other. Four of these connections are semanti-

cally labeled as sloped hips whereas the remaining two connections do not feature any 

semantic label. The production rule for the recognition of this kind of peak features is thus 

defined as: 

 

 

 

Precondition: 

𝑂𝑧(𝑣1) = "𝑠𝑙𝑜𝑝𝑒𝑑" ∧ 𝑂𝑧(𝑣2) = "𝑠𝑙𝑜𝑝𝑒𝑑" ∧ 

𝑂𝑧(𝑣3) = "𝑠𝑙𝑜𝑝𝑒𝑑" ∧ 𝑂𝑧(𝑣4) = "𝑠𝑙𝑜𝑝𝑒𝑑" ∧ 

𝑂𝑥𝑦(𝑒1) = " ⊥ " ∧ 𝐶𝑉(𝑒1) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∧ 

𝑂𝑥𝑦(𝑒2) = " ⊥ " ∧ 𝐶𝑉(𝑒2) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∧ 

𝑂𝑥𝑦(𝑒3) = " ⊥ " ∧ 𝐶𝑉(𝑒3) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∧ 

𝑂𝑥𝑦(𝑒4) = " ⊥ " ∧ 𝐶𝑉(𝑒4) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∧ 

𝐶𝑉(𝑒5) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∧ 𝐶𝑉(𝑒6) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

Postcondition: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑒𝑎𝑘, 𝑣1. 𝑝𝑙𝑎𝑛𝑒 ) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∧ 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑒𝑎𝑘, 𝑣2. 𝑝𝑙𝑎𝑛𝑒 ) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∧ 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑒𝑎𝑘, 𝑣3. 𝑝𝑙𝑎𝑛𝑒 ) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∧ 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑒𝑎𝑘, 𝑣4. 𝑝𝑙𝑎𝑛𝑒 ) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 

where 

𝑝𝑒𝑎𝑘: average point that results from the intersection points of the elements in  

           {𝑈 ⊂ {𝑣1. 𝑝𝑙𝑎𝑛𝑒 , 𝑣2. 𝑝𝑙𝑎𝑛𝑒 , 𝑣3. 𝑝𝑙𝑎𝑛𝑒 , 𝑣4. 𝑝𝑙𝑎𝑛𝑒 } ∶  |𝑈| = 3} 
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Beside the three basic component types, the nodes in the fourth level may represent different 

ending components. Note, the LHS of the production rules that derive ending components 

take only subgraphs of the fifth level into account. Thus, ending components may be intro-

duced even without any main component node in their spatial proximity. One example of an 

ending component is the hip ending, which can be used in later stages to limit a ridge feature 

by a sloped roof surface. Due to the selected solid modeling technique described in chapter 6, 

a distinction between different kinds of hip endings (e.g., to a half-hip end) is not needed 

because they are all constructed in the same way. The production rule for hip endings is 

defined as: 

 

 

 

Precondition: 

𝑂𝑧(𝑣1) = "𝑠𝑙𝑜𝑝𝑒𝑑" ∧ 𝑂𝑧(𝑣2) = "𝑠𝑙𝑜𝑝𝑒𝑑" ∧ 𝑂𝑧(𝑣3) = "𝑠𝑙𝑜𝑝𝑒𝑑" ∧ 

𝑂𝑥𝑦(𝑒1) = " ⇆ " ∧ 𝐶𝑉(𝑒1) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∧ 

𝑂𝑥𝑦(𝑒2) = " ⊥ " ∧ 𝐶𝑉(𝑒2) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∧ 

𝑂𝑥𝑦(𝑒3) = " ⊥ " ∧ 𝐶𝑉(𝑒3) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

A further frequently appearing ending component is the Dutch gable ending. It combines 

elements of a hip ending and a gable ending by possessing a small gable at the top of a hip 

ending. Consequently, to be recognized as a Dutch gable ending, both horizontal hip forming 

segments have to be, in contrast to a hip ending, partly in front of the hip segment. The 

corresponding graph consists thus of a segment node that is connected to both segment nodes 

of a horizontal hip feature. The nodes and edges are labeled as 
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Precondition: 

𝑂𝑧(𝑣1) = "𝑠𝑙𝑜𝑝𝑒𝑑" ∧ 𝑂𝑧(𝑣2) = "𝑠𝑙𝑜𝑝𝑒𝑑" ∧ 𝑂𝑧(𝑣3) = "𝑠𝑙𝑜𝑝𝑒𝑑" ∧ 

𝑂𝑥𝑦(𝑒1) = " ⇆ " ∧ 𝐶𝑉(𝑒1) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∧ 

𝐴𝐷(𝑒2) = "3D " ∧ 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒(𝑒2) = "𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑃𝑜𝑖𝑛𝑡𝑠" ∧ 

Ointersection(𝑒2) = "𝑠𝑙𝑜𝑝𝑒𝑑" ∧ 𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑣1 → 𝑣3) = " − " ∧ 

𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑣3 → 𝑣1) = " ○ " ∧ 𝐶𝑃_𝑃𝐶(𝑒2) = "𝑛𝑜𝑛𝑒" ∧ 

𝑂𝑥𝑦(𝑒2) = " ⊥ " ∧ 𝐶𝑉(𝑒2) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∧ 

𝐴𝐷(𝑒3) = "3D " ∧ 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒(𝑒3) = "𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑃𝑜𝑖𝑛𝑡𝑠" ∧ 

Ointersection(𝑒3) = "𝑠𝑙𝑜𝑝𝑒𝑑" ∧ 𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑣2 → 𝑣3) = " − " ∧ 

𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑣3 → 𝑣2) = " ○ " ∧ 𝐶𝑃𝑃𝐶(𝑒3) = none ∧ 

𝑂𝑥𝑦(𝑒3) = " ⊥ " ∧ 𝐶𝑉(𝑒3) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

In order to horizontally connect two nodes of the same level of the multi-scale knowledge 

graph if they are in spatial proximity to each other, further production rules are defined. The 

LHS of these production rules ensure that their sets of vertically connected lower-level nodes 

have at least one node in common. This criteria alone is, however, not always sufficient, 

which is why production rules with individual preconditions and postconditions are specifi-

cally defined for most kinds of horizontal edges. For example, in order to horizontally connect 

a ridge and a hip ending node, their sets of vertically connected lower-level nodes must have 

two nodes in common as shown in the following production rule. 
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Postcondition: 

Hip ending segment must be close to one ending of the ridge 

In reality, however, a hip limits a ridge by a sloped roof surface. For this, the ridge must 

intersect the segment of the hip ending node. As this intersection is not always actually 

happening, a postcondition is defined to ensure that the intersection point of the elongate 

straight line of the ridge and the plane defined by the hip ending segment is at least close to 

one ending of the ridge feature. If the distance is, however, greater than a predefined thresh-

old, then the production rule is not applied to the matched subgraph. In contrast, the post-

condition of the production rule that introduces horizontal edges between a ridge and a Dutch 

gable ending node ensures that the intersecting point is not close to the surface points of the 

Dutch gable ending segment. In similar way, further production and postconditions are 

defined to derive horizontal edges between different building features of the same level that 

are in spatial proximity. 

For the subsequent three bottom-up phases, further production rules are analogously defined. 

Nodes that are horizontally connected in the multi-scale knowledge graph are aggregated to a 

higher-level node if they compose a primitive, super-primitive, or the whole building model. 

The LHS of a production rule that derives a primitive always consists of five horizontally 

connected nodes of which one represents a basic component and the others ending compo-

nents. Two primitive nodes become generally horizontally connected if their segments of 

which they are composed are horizontally connected. In order to derive super-primitives, 

production rules are defined whose LHS consists of two horizontally connected primitive 

nodes. Note, due to the applied solid modeling technique described in chapter 6, all distinct 

cases of a T-, L-, or X-shaped as described in subsection 5.1.4 can be derived with the same 

production rule. A distinction in the multi-scale knowledge graph between them is thus not 

necessary. In order to avoid abnormal acute or straight connections between two connected 

primitives, postconditions are defined that test the x-y angle between their main orientations 

to decide whether or not the production rule is finally applied to a matched subgraph. In the 

last bottom-up phase, the GG is applied to aggregate the maximal connected subgraph of the 
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second level of the multi-scale knowledge graph with the largest number of nodes to a 

building model node. This ensures that the building model is only composed of a single 

connected component and that building primitives are thus not disconnected in a single 

building. 

In general, it is not necessary for the recognition of building features to differentiate between 

building features that belong to a roof superstructures and those that are part of a base roof. 

However, the recognition of roof superstructure features is usually more difficult because 

their segments consist often only of a low number of surface points. This can result in inexact 

orientations of the involved segments and in features with a short geometric extent. Therefore, 

the orientation and length thresholds in the recognition rules are relaxed for those features that 

are part of a roof superstructure. A feature is in this context defined to be part of a superstruc-

ture if the surface points of the segments that form the feature are contained within other 

larger roof segments regarding their 2D geometry. 

5.2.3 Top-Down Phases 

The derived multi-scale knowledge graph based on the bottom-up phases alone might be 

incomplete due, for example, to (partial) occlusions, too strict thresholds or a combination 

thereof. Therefore, a top-down phase is initiated after each bottom-up phase to add weak or 

only partly recognizable higher-level building features and missing edges to the so far derived 

multi-scale knowledge graph. For this, production rules of the GG are selected and applied in 

a top-down manner by specifically searching for certain unrecognized lower-level building 

features and connections. The general workflow of a top-down phase is illustrated in 

Figure 5.13. 

A top-down phase is initiated after the building features of level 𝑖  of the multi-scale 

knowledge graph have been detected in a bottom-up manner based on the building features of 

level 𝑖 − 1. First, the node subset 𝑉∗ is determined that consists of all detected nodes of the 

next lower level 𝑖 − 1 that have not been aggregated to a higher-level building feature during 

the previous bottom-up phase. If 𝑉∗ is empty, then it is assumed that all building features of 

level 𝑖  have been detected and the top-down phase is already stalled. In this case, the 

multi-scale knowledge graph derivation process is either continued with the next bottom-up 

phase or ended if the top level of the multi-scale knowledge graph has been already derived. 

Otherwise, the nodes in 𝑉∗ are further examined to ensure whether or not they belong to any 

unrecognized higher-level building feature of the actual building. Without the top-down 

phases, these nodes and thus their associated building features would otherwise not be 

incorporated in the subsequent recognition stages and in the later reconstruction process 

because they are not part of the aggregations that compose the building model node. 
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Figure 5.13. General workflow of a top-down phase. 

With the intention to decide if nodes in 𝑉∗ are part of a higher-level building feature, the 

production rule subset 𝑅∗ is determined. It consists of all production rules whose matched 

LHS have an equivalent node in 𝑉∗. Consequently, they can be potentially applied to aggre-

gate these nodes to a higher-level building feature. The thresholds in the resulting subset of 

production rules 𝑅∗ are then relaxed, which mainly decreases the required confidence values 
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and the thresholds in the postconditions. Depending on the number of nodes in 𝑉∗ and the 

defined set of production rules, 𝑅∗ usually consists of a number of different production rules. 

In order to keep the number of production rules low that have to be tested during a top-down 

phase, all production rules in 𝑅∗ are determined whose LHS comprise the highest number of 

nodes from 𝑉∗. From this resulting subset 𝑅⊆
∗ , the production rule 𝑟∗ is selected whose RHS is 

most likely to be present in the actual building. 

In order to apply 𝑟∗ so that nodes in 𝑉∗ become part of a higher-level building feature, weak 

and miss-detected parts that are part of 𝑟𝐿𝐻𝑆
∗  are specifically searched and temporally added to 

the multi-scale knowledge graph. If 𝑟𝐿𝐻𝑆
∗  can be afterward successfully matched, 𝑟∗ is applied 

and the top-down phase continues again with the determination of 𝑉∗ . Consequently, the 

remaining production rules in 𝑅∗ are not further tested for the formerly node set 𝑉∗. Other-

wise, if 𝑟𝐿𝐻𝑆
∗  cannot be matched by incorporating the added weak nodes, then all temporally 

added building features are removed, the tested production rule 𝑟∗ is discarded, and the next 

most likely production rule with the highest number of nodes from 𝑉∗ in its LHS is tested. 

Once all production rules in 𝑅∗ have been tested but there are still some lower-level building 

features in level 𝑖 − 1 left that have not been aggregated to a higher-level building feature, 

then a new subset of production rules 𝑅∗ is determined for the remaining nodes in 𝑉∗. Note, 

by each redetermination of 𝑅∗, the thresholds in the production rules are lowered until they 

reach their limit so that new higher-level building features can be derived. Thus, the top-down 

phase is stalled either if all lower-level building features are aggregated to a higher-level 

building feature, i.e. 𝑉∗ is empty, or if all possible higher-level building features are discarded 

to be derived, i.e. the thresholds of their production rules cannot be further lowered. 

A major aspect of the above described workflow is the selection of the most likely production 

rule 𝑟∗ . As mentioned before, subgraph matching is NP-complete and therefore not well 

suited to large input. It would cause much processing time, especially for large buildings with 

many superstructures, if all productions in 𝑅⊆
∗  need to be successively tested and applied via 

subgraph matching to determine the most likely production rule. In order to overcome this 

problem, each production rule is assigned with a score that refers to the expected likelihood of 

occurrence for its RHS in the input data set. Building features that are represented in the RHS 

of a production rule with a high score are thus more likely to be present in the data set than 

building features that are derived by a production rule with a low score. During the top-down 

phases, the score dictates the order in which productions are tested. Consequently, production 

rules with a high score are more likely to be applied during the top-down phase than produc-

tions with a low score. Analogous to the probabilities of a stochastic (context-free) grammar, 

the score of a production rule thus indicates the likelihood of the production to be applied. 

However, in contrast to a stochastic (context-free) grammar, not the probabilities of all 

productions with the same LHS must sum to one (i.e., ∑ 𝑝(𝐿𝐻𝑆 → 𝑅𝐻𝑆𝑖)
|𝐿𝐻𝑆|
𝑖=1 = 1, where 

𝐿𝐻𝑆 → 𝑅𝐻𝑆1 | 𝑅𝐻𝑆2 | … | 𝑅𝐻𝑆|𝐿𝐻𝑆|) but the scores of all production rules of the proposed 

GG. 
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The initial production rule scores are empirically determined based on the previous 

knowledge about the reconstruction area. For the adaption of the scores during the multi-scale 

knowledge graph derivation process, reinforcement learning is applied to the GG. Thereby, 

the score of a production rule is adapted according to its number of matches during the 

bottom-up/top-down phase. Furthermore, in order to satisfy the observation that neighboring 

buildings often feature the same roof type, knowledge of already derived multi-scale 

knowledge graphs is incorporated in subsequent derivations. The production rule scores are, 

therefore, not only based on the current building to be reconstructed but also on already 

derived multi-scale knowledge graphs. For this, the initial scores of matched production rules 

are increased for the next building while the initial scores of unmatched production rules are 

decreased. As a result, the recognition of similar building parts is supported for neighboring 

buildings. 

5.2.4 Segment Splitting 

After a set of matched subgraphs is determined according to the LHS of a production rule, a 

segment splitting procedure is carried out for certain building features. This is to take into 

account that more than one building feature of the applied production rule could potentially be 

derived from a single subgraph and that a segment may generally be part of several building 

features. In order to ensure that all building features are adequately represented in the 

multi-scale knowledge graph, segment splitting is applied to a segment if it is part of the 

surface of a building component but also has surface points that are outside this component. 

In this way, the segment splitting procedure supports the feature recognition step because the 

applied feature recognition rules can be better tailored to specific feature types, if it is safe to 

assume that segments with regard to their surface points meet certain size and shape criteria; 

making rules more effective for recognizing smaller roof structures. For example, two 

segments of a gable end dormer might not form a distinct ridge due to a slight skewness in 

their orientation. But if the dormer segments have the typical size of dormers, are located 

above segments of the base roof and no other segments are in their adjacency, than it is almost 

safe to assume that they do form a dormer. However, if one side of the dormer is part of a 

larger segment, than such a rule does not apply. Segment splitting is not a specific problem 

caused by sub-surface segmentation, but is needed whenever a roof segment is part of many 

features. Two examples where segment splitting is required for the green segment are 

presented in Figure 5.14. On the left side, two adjacent flat roofs of the same height feature 

canopies with different slopes. Analogously, on the right side, two adjacent gable roofs 

feature only on one side a coplanar plane that requires thus a segment splitting. 
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Figure 5.14. Examples where segment splitting is required. 

In Figure 5.15, another example is given that requires a segment splitting. The blue building 

components in this subsection are included solely for illustration purposes. Those surface 

points that are already part of a feature defining building component that is going to be 

derived are colored in black, otherwise in red. As shown in Figure 5.15a, sub-surface 

segmentation provides instead of four only three distinct planar segments. This is because the 

smaller segments are coplanar and they are therefore merged whenever virtual sub-surface 

points are taken into account. Thereby, the grey segment becomes part of two dormer 

features. Once, a flat top dormer on the left side of the building has been detected as shown in 

Figure 5.15b, segment splitting checks if the grey dormer segment contains further surface 

points that are outside the detected dormer feature. If this is the case, it needs to be split. 

Otherwise the segment splitting procedure would stall. 

  
(a) (b) 

Figure 5.15. Example of segment splitting needed to model the two dormers originating from 

the same sub-surface segment (part 1). 

The segment splitting operation itself is composed of a cloning step and a reclassification step 

with regard to surface and sub-surface points. In Figure 5.16, the general workflow is 

illustrated on the basis of the example in Figure 5.15. In the cloning step, an exact copy of the 

segment is constructed. Then the surface points of both segments are reclassified. All surface 

points of the original segment are turned into sub-surface points if they are located outside of 
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the building component. Consequently, it is not used anymore for the detection of further 

features in the next iteration. Vice versa, all surface points of the cloned segment are turned 

into sub-surface points if they are located inside the building component. Consequently, these 

surface points are part of not yet modeled components and can be still used to identify further 

features. 

 

Figure 5.16. General workflow of segment splitting. Light and dark color gradation represent 

surface and sub-surface areas respectively. 

After the grey segment in the example of Figure 5.15 has been split, another dormer can be 

recognized as shown in Figure 5.17a. At this point, no more split operation is required 

because all surface points of the segment are now located inside features. The reconstructed 

building model is shown with (Figure 5.17b) and without overlaid (Figure 5.17c) segments. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.17. Example of segment splitting needed to model the two dormers originating from 

the same sub-surface segment (part 2). 
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The reason why segments are not actually split into two parts is that surface points are often 

part of more than one building component. If segments are just geometrically split, points are 

assigned to one segment and information is lost to the other segment. Therefore, these points 

are kept in all segments even if the new segment considers them only as sub-surface points. 

On the other side, if the segment splitting operation just consists of a cloning step without a 

subsequent reclassification step, the cloned segment would be used to generate the same 

feature over and over again. With the proposed segment splitting approach, no new surface 

points are created, but the cloned segments have the information of all points available to 

generate features and building components.  
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6. Building Model Construction Using 

Half-Spaces 

A crucial aspect of any automatic reconstruction workflow is the selected solid modeling 

technique for the geometric construction of building models. A general overview of the most 

common solid modeling techniques was given in section 3.3. Regarding building model 

construction, many automatic reconstruction approaches have generated 3D models directly in 

boundary representation (Oude Elberink and Vosselman, 2009; Sampath and Shan, 2010), 

using Boolean operations on (parameterized) solids with basic roof shapes (Haala and 

Brenner, 1999), cell decomposition (Kada and McKinley, 2009), binary space partitioning 

trees (Sohn et al., 2008) or a combination thereof (Lafarge and Mallet, 2012). Generally, any 

solid modeling technique can be used to convert the segments based on the semantic infor-

mation of the multi-scale knowledge graph into a geometric model. In this reconstruction 

framework, however, half-space modeling is selected because it provides several advantages 

for the reconstruction of building models such as, among others: 

 Segments can be directly used to define the hyperplanes of half-spaces. The fact that 

these hyperplanes coincide with building roof surfaces makes half-space modeling to a 

natural choice when it comes to building reconstruction. 

 Half-space modeling, as it is applied, guarantees that the resulting building models are 

always closed solids without unintentional gaps between roof surfaces. 

 Occluded parts and holes in the input data are automatically filled. Buildings are, 

therefore, completely constructed even if they are partly covered by vegetation or 

high-rise constructions. 

 With half-space modeling, buildings can be defined in a compact way. The number of 

half-spaces needed to construct a complex building is rather low. 

 Half-space modeling is generally not limited to any shapes and thus provides a high 

flexibility. 

 The construction based on half-spaces opens up the possibility to test the location of 

points with regard to building components that might be still incomplete. If points are 

in front of any single half-space, it is also outside the component despite the fact that 

more half-spaces could be included in the future. Therefore, there is no need for this 

purpose to intermediately convert the model into another representation such as B-rep. 

 All building types can be represented in the same way, which is the canonical form. 

 Building components that are combined to define more complex buildings do not need 

to be disjoint and may intersect just like the segments obtained from sub-surface seg-

mentation. 

 The reuse of hyperplanes in connected building components provides a high degree of 

flexibility if one component needs to be adjusted. 
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The use of half-space modeling for the reconstruction of a base roof (a roof without any kind 

of roof superstructures) is stated in detail in section 6.1. Here, the planar segments, in 

combination with the derived building knowledge, are utilized to introduce and adjust 

half-spaces that define a closed building model. For visualization purposes only, these models 

can afterward be directly converted to B-reps. Most CAD kernels offer such functionality. 

This guarantees that not only the half-space model but also the B-rep of a building is always 

closed. The so far presented reconstruction framework is well suited to generate realistic 3D 

building models for large urban areas because it is also quite robust against partial occlusions, 

which cause gaps in the input data set, as long as sufficient building features can be recog-

nized. 

Generally, the so far presented reconstruction framework is able to recognize and reconstruct 

not only base roofs but also roof details, such as roof superstructures if the aerial LiDAR input 

data meets the required quality (e.g., in terms of density, accuracy, and completeness). 

However, if this is not the case, only an insufficient set of building features might be derived 

so that coarse and generalized building models are created. Here, roof superstructures are 

especially affected because they are usually represented by only few point measurements so 

that they are often discarded during either the segmentation or the building knowledge 

derivation step. Consequently, the resulting level of detail is reduced in the building models. 

However, today’s requirements for building models are demanding so that building models 

are expected to include detailed roof superstructures regardless of the input data quality. 

Current automatic reconstruction approaches quickly reach their limits in this context because 

measured points from roof superstructures such as chimneys and dormers are, due to their low 

number of points, usually considered as noise in low-density point clouds and are therefore 

ignored during the reconstruction process (see section 2.3). Some approaches have been 

developed that offer users the possibility to add them in a semi-automatic way or that utilize 

additional data sources like images (Rottensteiner and Briese, 2003; Habib et al., 2010). But 

most of them are not applicable in practice for a fully automatic large-scale reconstruction 

process due, for example, to an associated timescale or missing additional data sources. 

In order to solve this problem, an advanced automatic recognition and reconstruction 

approach for small roof superstructures is presented in section 6.2. It makes use of the ICP 

principles to identify and simultaneously reconstruct regularized roof superstructures of 

similar shape. Thereby, it is able to handle not only partially occluded roof superstructures but 

also small roof superstructures in point clouds with low density. Thus, both the robustness of 

the reconstruction approach and the completeness of the resulting building models are 

increased. Additionally, because roof superstructures are reconstructed in groups, also those 

roof areas can be reconstructed in detail where either the segmentation process fails or only an 

insufficient number of building features are recognized in the building knowledge derivation 

step. Moreover, symmetries, alignments, and regularities can be enforced in a straight-forward 

way. Integrated into the so far presented reconstruction approach, the extension is able to 

reconstruct small roof superstructures in point clouds with less than 5 points/m². The exten-

sion is generally independent of the so far presented reconstruction approach so that roof 

details can be optionally added to a building model according to its purpose. 
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Finally, a 3D adjustment process is presented in section 6.3 that improves both the shape of 

the reconstructed building models and their accuracy. For this, natural regularities, as they are 

common in most man-made objects, are further incorporated in the reconstruction framework. 

Thus far, building regularities are individually defined for each feature of the multi-scale 

knowledge graph. In this way, semantic information is utilized to emphasize innate building 

regularities in the models. This approach, however, makes it cumbersome to adapt the rule set 

of the building derivation process to different data sets. Moreover, the regularities defined by 

a feature only have a local impact on a building model. In order to increase the flexibility of 

the reconstruction framework and to emphasize not only local but also global regularities, an 

adjustment procedure for the half-space representation of building models has been developed 

based on divisive clustering techniques. 

6.1 Base Roof Reconstruction 

For the geometric construction of building models, half-space modeling is selected, as it 

enables a one-to-one relation of planar segments to planar half-spaces and it therefore seems 

to be a natural choice for the construction of rooftops. This means that, in general, one 

half-space is generated for every segment. Thereby, the plane equation of a segment is 

directly used to define the parameters of a half-space. However, to avoid the misuse of 

segments during the reconstruction process, half-spaces are not directly created based on the 

presence of segments but they are introduced by certain features of the multi-scale knowledge 

graph. In this way, building regularities can be also directly enforced in the final building 

model according to the semantic meaning of a feature to which a segment belongs. Addition-

ally, taking the interconnections of building features into account, further common building 

regularities can be easily emphasized, for example, by reusing previously defined half-spaces 

from other features. 

Whenever half-space modeling is applied, some care has to be taken so that the generated 

objects always represent closed point sets. Since rooftop half-spaces originating from planar 

segments limit the space in the positive z-direction only, additional half-spaces are needed to 

limit the space in the x-y direction as well. If vertical wall segments of a convex building 

were available in the data, then both rooftop and wall segments could be mapped one-to-one 

to half-spaces and their collection, in combination with a ground plane, would be a complete 

description of a building. Therefore, half-space modeling is a very natural way to translate 

segments to the 3D model construction. However, vertical wall segments are only rarely 

present in airborne LiDAR data. To overcome this issue, certain features of the multi-scale 

knowledge graph are used instead to define half-spaces with vertical hyperplanes, which 

represent wall surfaces in the final building model. Thereby, special care has to be taken so 

that the set of wall half-spaces limits the space in any x-y direction. The set of rooftop and 

wall half-spaces in combination with a half-space that represents the ground plane always 

defines a closed point set. Here, the ground plane is defined as a half-space with a horizon-

tally oriented hyperplane whose height is determined by the average height value of those 

non-building points that are close to the building. 



6. Building Model Construction Using Half-Spaces 

104 

 

By applying the Boolean set operation intersection to a collection of planar half-spaces, 

convex building models can be directly constructed. In Figure 6.1, an example is given for 

how a saddleback roof is constructed by seven half-spaces. The construction details of 

detected convex sub-shapes from the previous building derivation step are explained in 

subsection 6.1.1. 

    

S = H1 ∩ H2 ∩ H3 ∩ H4 ∩ H5 ∩ H6 ∩ H7 

Figure 6.1. Required hyperplanes to define a saddleback roof building S with half-spaces. 

For the construction of concave building sub-shapes, a building generally needs to first be 

split into convex components that are then united with a Boolean union operation. An 

example as to how a Dutch gable roof is created based on two convex components is pre-

sented in Figure 6.2. In this regard, sub-surface segmentation forms a good basis to find a 

preferably small number of meaningful convex components as the segments are enlarged as 

much as possible and therefore opens up many opportunities for the building knowledge 

derivation step to group them together to form convex shapes. An advantage of half-space 

modeling is that these convex components do not need to be disjointed and they may intersect 

like the segments from sub-surface segmentation. Thus, the construction of a building model 

consists generally of only unions of half-space intersections so that any building can be easily 

expressed in a canonical form. In this way, many features and complex building shapes can be 

defined by a rather small number of planar half-spaces while still allowing for a certain 

flexibility. 

 

Figure 6.2. General approach for the construction of a building model with concave shape. 
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In order to reduce the number of half-spaces and Boolean operations, an enhanced version for 

the construction of some buildings with concave shapes is presented in subsection 6.1.2. For 

this, the number of decompositions for the construction of concave shapes is reduced by 

utilizing the Boolean difference operation. As a result, frequently occurring decompositions 

are avoided, as they are often caused by intrusions and extrusions. 

For the geometric construction of detected links from the multi-scale knowledge graph, 

certain half-spaces from one sub-shape are reused for the construction of the other sub-shape 

and vice versa. The advantage of reusing half-spaces is not just the reduction of their overall 

number, but also that adjacent components become connected without any unintentional gaps 

between them. In addition, unwanted extrusions, which are present if the extent of one 

sub-shape is modeled so large that one component grows through the other component, are 

avoided. Moreover, if half-space parameters of one sub-shape are changed during the building 

adjustment step, then the other sub-shape is automatically changed as well. The details for the 

construction of connected sub-shapes are explained in subsection 6.1.3. 

When the whole building is defined in half-space representation, a B-rep model is directly 

created for visualization purposes based on the half-space model. This also guarantees that the 

B-rep of the final building model is always closed. Some reconstructed buildings of the 

Vaihingen data set and their geometry producing building features are exemplarily shown in 

Figure 6.3. As demonstrated in the last row of this figure, the proposed reconstruction 

procedure is not only able to reconstruct base roofs but also roof superstructures if their 

segments and sufficient building features are recognized. 

 

Figure 6.3. 3D point cloud with planar segments, some recognized features, and reconstructed 

building models. 
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6.1.1 Construction of Convex Sub-Shapes 

To define a convex building shape with half-spaces, a collection of half-spaces needs first to 

be determined on which the Boolean intersection operation is then applied. As described 

before, building features in the multi-scale knowledge graph are not isolated entities but are 

interconnected and form a network. However, only semantically compatible features may be 

connected, which prevents the misuse of features. Once the semantic connections are 

established, the information from connected features can be used to determine the collection 

of half-spaces to define the building. Here, only primitive components, depending on their 

type and context, are allowed to introduce half-spaces for the construction process. The 

half-space parameters themselves are computed by the plane equation and extent of segments, 

and they also consider the geometric and semantic information of connected features. For 

example, the normal vectors of the two saddleback roof surfaces usually point in the x-y plane 

into the opposite direction so that their intersection forms a horizontal ridge line. By keeping a 

set of such constraints for each feature that defines a half-space, regularities are explicitly 

emphasized in the final building model. The half-space defining features can generally be 

grouped into geometry producing and geometry refining features. Examples of both are 

presented in the following paragraphs. 

Geometry producing features constitute the basis of the construction stage by providing initial 

collections of half-spaces defining elementary convex building components. There are mainly 

three different features for this purpose. Firstly, the flat feature, which represents a locally 

elevated single surface and therefore defines one half-space. It is used as the basis for both 

simple flat and shed roofs, but also for more complex roof shapes like the platform roof, 

which is a horizontal roof with steeply sloped surfaces to its sides. Secondly, the ridge feature, 

which defines two half-spaces. A ridge feature is used as a common ground for a number of 

roof shapes with two or more sloped surfaces like the gable, saltbox, hip, gambrel, mansard, 

gull wing, or saddleback roof. Thirdly, the tip feature, which defines at least four half-spaces. 

This feature is used for roof shapes with at least four sloped surfaces like pyramidal, tented, 

helm, or cone-type roofs. The hyperplanes defining half-spaces, which are introduced by these 

three geometry producing features, are exemplarily shown in Figure 6.4. 

   

Figure 6.4. Rooftop half-spaces defined by geometry producing features. 
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Geometry refining features, in contrast, add details to coarse building blocks by inserting one 

or more half-spaces to the geometry producing feature it is associated with. For example, a 

gable end feature adds a vertical half-space that delimits the geometric extent of the roof in 

that direction. Another geometry refining feature for a building with a ridge line is the hip end 

feature. As illustrated in Figure 6.5, it adds one half-space H1 with the plane parameters of the 

(half-)hip segment to limit the geometric extent of the ridge feature and one vertical 

half-space H2 to further limit the extent of the building in x-y direction. Note, that all kinds of 

hip ends are constructed in the same way. For this, the hyperplane H1 is either moved along 

its normal vector or its slope is changed. In this regard, the hip end half-spaces are directly 

adjusted so that their normal vectors point in the same x-y direction as the horizontal intersec-

tion of the two half-spaces that are defined by the ridge feature. Consequently, the hip end 

surface of the final building model is always orthogonal in the x-y plane to both roof surfaces 

that form the ridge. 

   

Figure 6.5. Half-spaces defined for different kinds of hip endings. 

In a similar way, gambrel and mansard roof sides are constructed. Both building types have 

on each side a shallower slope above a steeper one so that their surfaces still form a convex 

object. The two half-spaces defining the shallower sloped roof surfaces are already introduced 

by the ridge feature. For their refinement, each feature that represents a sharp transition 

between both slopes introduces as a geometry refining feature one half-space to refine the 

rooftop and one half-space from an adjacent eave feature to limit the extent of the building in 

the x-y direction. As shown in Figure 6.6, these additional half-spaces refine the coarse 

building block that is already defined by the two half-spaces of the geometry producing 

feature to which they are associated with. Thus, four half-spaces are defined in total to 

construct the rooftop of a gambrel roof and two further half-spaces for its sides. In this 

respect, the x-y orientations of the half-space normal vectors are adjusted by taking into 

account the geometry of the geometry defining feature so that parallel structures are supported 

in the final building model. 
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Figure 6.6. The four refining half-spaces of a gambrel roof. 

6.1.2 Construction of Concave Sub-Shapes 

The construction of buildings using Boolean intersections of planar half-spaces can only 

result in convex buildings. Therefore, the construction of a building with a concave shape is 

usually accomplished by partitioning the building into convex components, modeling each 

component separately, and finally uniting them by a Boolean union operation. According to 

this procedure, a gable roof building with a simple intrusion as shown on the left side of 

Figure 6.7 must be partitioned into three components. In particular, the ridge feature and each 

of its two segments have to be split into three parts. The rooftop half-spaces of these parts 

often become unstable due to their small number of supporting points. As a result, roof parts 

originated from the same segment are sometimes modeled with different slopes or shifted 

ridge lines. Furthermore, due to the fact that each convex component is constructed sepa-

rately, further effort is required to ensure that parallel and coplanar walls and roof surfaces 

keep these properties in the final building model. Also, considering the computational time, 

the number of required half-spaces and Boolean operations to construct the building in 

Figure 6.7 is, with 21 half-spaces and 20 Boolean operations (each component requires six 

intersections and two unions are needed to combine all components), rather high. Even 

considering the option to construct the bottom of all convex components together at the end 

would decrease their number only by two. 

  

Figure 6.7. Two different approaches to model a gable roof with an intrusion. 
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In order to avoid such kind of anomalies and to reduce the number of required half-spaces and 

Boolean operations, another variant is proposed. Here, buildings are first modeled without any 

intrusions. Then, in a subsequent step, all intrusions are defined and removed by a Boolean 

difference as exemplarily shown on the right side of Figure 6.7. Note, the effort of a Boolean 

difference operation is in this case almost the same as a Boolean intersection or Boolean 

union operation because the Boolean difference of two elements 𝐴 and 𝐵 can be defined by 

Equation (6.1) or Equation (6.2). 

𝐴 − 𝐵 = 𝐴 ∩ 𝐵𝐶 (6.1) 

𝐴 − 𝐵 = (𝐴𝐶 ∪ 𝐵)𝐶 (6.2) 

Both equations are, due to De Morgan’s laws, obviously equivalent. By considering that the 

complement of a closed half-space 𝐻+  can be for practical reasons defined as the closed 

half-space 𝐻− (see subsection 3.3.2), the effort of applying a Boolean difference is almost the 

same compared to a Boolean intersection or union operation. As a result of making use of a 

Boolean difference operation, the roof surfaces on each side of the ridge remain coplanar and 

the number of required half-spaces and Boolean operations is decreased from 21 to ten and 

from 20 to nine, respectively. For this, some features like the eave feature are allowed to 

decompose so that an intrusion part can have a vertical half-space parallel to the original 

vertical half-space of the eave. The intrusion parts for a saddle back building are, for example, 

determined by utilizing the divisive clustering principle as follows: 

1. For all alpha-shape points of a ridge segment, calculate their perpendicular distance to 

the ridge and sort them accordingly. 

2. Find all clusters containing a number of points greater than a predefined threshold. 

3. Each of these clusters – except the minimum and maximum cluster – is partitioned 

into a minimal number of subsets such that the consecutive distance of any two neigh-

boring points in a subset does not exceed a predefined threshold. 

Each subset of points determined in this way defines the length and the position of an 

intrusion so that three half-spaces can be defined per intrusion. 

A similar principle is applied when it comes to the construction of a building part with a 

concave rooftop whose complement forms a convex shape. For example, instead of decom-

posing a gullwing roof into three convex components as shown on the left side of Figure 6.8, 

the whole building is constructed at one time, as illustrated on the right side of Figure 6.8. For 

this, each of the two building features that represent the sharp transitions between the two 

slopes on the roof sides defines the space in front of their related segments. Thereby, the 

complement of the half-spaces that have been introduced by the ridge feature are reused. 

Consequently, only one further rooftop half-space needs to be introduced for each side. Once 

the convex outside of the gullwing roof is defined on each side, they are removed by a 

Boolean difference operation. As a result, the total number of Boolean operations used to 

construct a building with a gullwing roof is decreased from 18 to eight. In this way, simple 
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concave components that frequently occur are also directly constructed without decomposing 

them into convex components. 

  

Figure 6.8. Construction of a gullwing roof. Once based on a decomposition (left) and once 

constructed with Boolean difference (right). 

The capabilities to model and to construct buildings in this way become even more apparent 

for more complex buildings where both presented enhancements are applied together. 

6.1.3 Construction of Connected Sub-Shapes 

To construct links between sub-shapes in a building model, hip and valley features that are 

associated with two or more geometry producing features are used as geometry refining 

features. In contrast to a hip end feature, these features do not introduce new half-spaces but 

they cross-link already existing half-spaces. In this way, building links are not constructed as 

separate components but as part of sub-shapes. As, for example illustrated in Figure 6.9, the 

three distinct cases of a T-shaped link are all constructed in the same way. Only the two 

half-spaces H1 and H2 from component C2 are added to the intersecting roof part of compo-

nent C1 while the intersected roof part is not changed. One half-space with the plane equation 

of the sloped segment of the intersected roof part that is located on the opposite side of the 

intersecting ridge is needed to model the broken hip, and a vertical half-space that is a vertical 

half-space of C2 further delimits the intersecting roof part. 

   

Figure 6.9. Half-spaces H1 and H2 from component C2 are used to delimit component C1. 
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Analogous, the components of an L-shaped intersection are symmetrically delimited by the 

half-spaces of the other component. As shown in Figure 6.10, component C1 is delimited by 

the two half-spaces H3 and H4 of component C2, and component C2 is delimited by the two 

half-spaces H1 and H2 of component C1. The construction is thus again independent of the 

two ridge heights. 

  

Figure 6.10. Construction of L-shaped intersections performed by a pairwise interconnection 

of half-spaces of the two components. 

Note, since all building components are subsequently combined by Boolean union operations, 

they do not need to be disjoint to form well-shaped and valid building models. In similar way, 

further links between sub-shapes are defined. 

6.2 Roof Superstructure Reconstruction 

For the reliable recognition and reconstruction of small roof superstructures in low-density 

point clouds, an enhancement of the automatic building reconstruction approach is presented 

in this section. The basic idea is to take advantage of the fact that often more than one 

instance of the same superstructure occurs on the same roof as, for example, mentioned in 

(Oude Elberink, 2008). Instead of reconstructing each superstructure independently from one 

another, the proposed approach first detects all instances of a superstructure and reconstructs 

them afterward concurrently. Thus, information of one instance can be used for the construc-

tion of another instance so that a more accurate model is generated. The general workflow is 

illustrated in Figure 6.11 and consists of the following three steps: (i) detection of appropriate 

roof superstructure candidate points; (ii) grouping of similar roof superstructures; (iii) roof 

superstructure modeling and construction. 
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Figure 6.11. Reconstruction workflow of small roof superstructures. From top to bottom: 

segmentation result (unsegmented points colored in black); segmentation result 

after adding virtual points (colored in red), and estimation of candidate areas; 

transformation result of the candidate points; superstructure reconstruction re-

sult; reconstruction result of the whole building. 

In order to determine appropriate candidate points from the input data, the approach makes 

use of virtual sub-surface points that are assumed to lie on the base roof faces below the 

measured points. In conjunction with those surface points that either do not belong to any 

segment or that do belong to already detected roof superstructure segments, candidate areas of 

roof superstructures and their surface points are identified. The details of this procedure are 

explained in subsection 6.2.1. Once all surface points from potential roof superstructures are 

collected, candidate areas with similar roof superstructures are detected, extracted, grouped 

together, and registered to one another. For this, a point cloud registration technique based on 
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the ICP algorithm (see section 3.5), which considers basic building knowledge, is applied as 

shown in subsection 6.2.2. As an outcome, the joint point density of each detected group is 

increased whenever more than one instance of the same roof superstructure is present in the 

real building. The higher point density, in turn, enables the building knowledge derivation 

process presented in chapter 5 to recognize the shape of the roof superstructure in a second 

attempt more reliably and in more detail. Afterward, only one roof superstructure model is 

created for each superstructure type and instances of it are then transformed back to their 

original position. Finally, the whole building model is checked for overlapping instances and, 

if necessary, corrected. The recognition and construction details are explained in subsec-

tion 6.2.3. The presented method for the reconstruction of roof superstructures is integrated in 

the automatic building reconstruction workflow as shown in Figure 6.12. 

 

Figure 6.12. Overview of the proposed reconstruction approach of regularized roof super-

structures in low-density point clouds that has been integrated in the building re-

construction approach. 

For evaluation purposes, the proposed enhancement has been particularly tested both on 

several buildings located in residential parts of the Vaihingen test data set (4–6 points/m²) and 

on generated data with a lower density (1.5–4 points/m²) but with similar properties. At the 

moment, the implementation is limited to those roof superstructures that are located on a 

single roof plane. As shown in Figure 6.13 and Figure 6.14, for this dominant kind of roof 

superstructures, the approach presented in this section is generally suitable for their automatic 

reconstruction in low-density point clouds. In particular, the reconstructed buildings of the 

generated data feature rooftop details that would otherwise be missed. 
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Figure 6.13. Some reconstructed buildings of the Vaihingen test data set. 

 

 

 

  

 

Figure 6.14. Some reconstructed buildings from artificial data. Top: Top view of the segmen-

tation results (unsegmented points colored in black). Bottom: The resulting 

building models reconstructed as proposed in this section. 
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The presented approach, in particular, provides accurate models if many instances of the same 

roof superstructure type are present. In this case, also partially occluded roof superstructures 

can be reconstructed, as shown in Figure 6.15. These models are furthermore always topo-

logically correct and reflect regularities that are usually present in man-made objects. 

  

Figure 6.15. Reconstruction result of a building with partly occluded roof superstructures. 

Left: Top view of the segmentation result (unsegmented points colored in black). 

Right: The resulting building model reconstructed by the proposed approach. 

However, special care has to be taken, so that a roof superstructure model is not placed in an 

area of point outliers. The size of a candidate area is often a quite sufficient indication but it 

cannot deal with an accumulation of outliers that might occur in reality. 

6.2.1 Candidate Points Detection 

A crucial element for the automatic reconstruction of roof superstructures is the detection of 

those points that belong to a roof superstructure. This task is challenging because it deals with 

a small number of points so that their surface shape is often not clearly recognizable during 

the reconstruction process of the base roof. Therefore, many problems might occur if the 

given point cloud is sparse and noisy. To improve the visualizing capabilities, the presented 

examples in this subsection are shown in a higher point density than in reality. 

For the detection of appropriate candidate points, the proposed approach utilizes virtual points 

as they are defined in the sub-surface segmentation method presented in chapter 4. Here, not 

all virtual points are taken into account but only those that are located below unsegmented 

surface points or that are associated with an already recognized roof superstructure. Since 

these virtual points are always located below measured surface points, they can be used as an 

indicator for areas where roof superstructures are present in the x-y plane. Some examples are 

given in Figure 6.16. 
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Figure 6.16. Segmented surface points enriched with virtual points (red). Unsegmented 

surface points are colored in black. 

However, virtual points as defined before cannot be used alone as a reliable criterion for the 

presence of roof superstructures as shown in Figure 6.17. In fact, their related surface points 

can be considered as a superset of points that are located on a roof superstructure. Therefore, a 

selection of these points is mandatory. 

  

Figure 6.17. The result of sub-surface segmentation. Virtual points are colored in red. 

For this purpose, a CCA is carried out to separate the virtual points into different sets so that 

neighboring virtual points belong to the same point set. The number of point sets can be 

considered as the maximum number of roof superstructures on a base roof. Afterward, a 

minimal bounding rectangle is calculated in the x-y plane for each point set. It represents the 

approximate area and location of the potential roof superstructure, wherefore the term 

candidate area is used instead in the following. Point sets with a small candidate area are 

treated as outliers and discarded at this point. 

In order to verify whether a candidate area of a point set comprises a roof superstructure, the 

candidate area is slightly enlarged inversely to the point density of the given input data. Then, 

all those surface points are selected that are located within the enlarged candidate area. Based 

on the selected surface points, another minimal bounding rectangle is calculated in the x-y 
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plane and slightly enlarged. A candidate area is only considered as the location of a roof 

superstructure if the enlarged bounding rectangle of the surface points encloses all the virtual 

points of its point set. All other candidate areas and their point sets are discarded. Two 

examples of the selection workflow are given in Figure 6.18. 

 

 

Figure 6.18. Two examples for the selection process of roof superstructure points. From left 

to right: building overlaid with surface points and the CCA result; bounding rec-

tangles (virtual points); bounding rectangles (surrounding surface points). 

In the first example, all virtual points are enclosed by the enlarged minimal bounding 

rectangle of those surface points that are located within the enlarged minimal bounding 

rectangle of the virtual points. Therefore, the candidate area of this point set is considered as a 

location of a superstructure. In contrast, the point set in the second example is discarded 

because the enlarged bounding rectangle of the selected surface points does not enclose all 

virtual points in the candidate area. 
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6.2.2 Grouping of Similar Roof Superstructures 

Once all appropriate point sets are detected, all those sets are assigned to the same group  

that belong to the same type of roof superstructure. For this task, typically keypoints,  

which are also referred to as interest points, are extracted for each point set. In  

combination with a local feature descriptor at each keypoint, correspondences between  

two point sets can be detected. In computer vision, one of the best-known algorithm for  

this purpose is the SIFT (Scale-Invariant Feature Transform) method (Lowe, 1999). For 3D 

point clouds, there have also been several methods proposed such as intrinsic shape signatures 

(ISS) (Zhong, 2009) and normal aligned radial feature (NARF) (Steder et al., 2011). How-

ever, due to the low point density and the small size of the candidate areas, an automatic 

extraction of these keypoints is usually not feasible to complete this task. Also, shape fitting 

algorithms as commonly used in model-driven reconstruction approaches often fail at 

automatic extraction. 

Therefore, the presented approach utilizes the ICP principles as explained in section 3.5 to 

increase the point density for each roof superstructure type. For this purpose, all remaining 

virtual points from the previous subsection are replaced by their related surface points and 

those candidate areas that feature a similar size are initially assigned to the same group. To 

start the ICP iterations for a group, an initial rough transformation in form of a rigid transfor-

mation is carried out for each of its point sets. The translations ensure that the centroids of the 

candidate areas of a group meet at one point. Furthermore, the rotations ensure that the x-y 

normal vectors of the base roof segments, on which the point sets of a group are located, point 

afterward in the same direction. Thereby certain angles are preferred for two point sets of the 

same group if they are located on the same base roof; e.g., 0 degree if both point sets belong 

to the same segment and 180 degree if the point sets belong to opposite segments. Addition-

ally, the direction of the base roof is taken into account if two point sets are not located on the 

same base roof. An example of the initial rough transformation process is shown in 

Figure 6.19. 

  

Figure 6.19. An example of the initial grouping and the initial rough transformation process. 
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The fine registration process starts thereafter in each group to estimate the point corre-

spondences of the point set with the highest and the second highest number of surface points. 

Then, a transformation that minimizes the MSE of the point correspondences is calculated and 

applied. But instead of a rigid transformation, the method restricts ICP to use only transla-

tions. Rotations are not considered during the fine registration process. The objective function 

to be minimized in each iteration for two given point sets 𝐴 = {𝑎𝑖} and 𝐵 = {𝑏𝑗} with 𝑖 =

{1,… , 𝑛} and 𝑗 = {1, … ,𝑚} is defined as 

𝑓( 𝑡) =  
1

𝑛
∑‖𝑎𝑖 − 𝑏𝑗 − 𝑡‖

2
𝑛

𝑖=1

 → 𝑚𝑖𝑛 (6.3) 

where 𝑏𝑗 is the closest point in 𝐵 to the point 𝑎𝑖 ∈ 𝐴 and 𝑡 the translation vector. Both point 

sets are merged if the final MSE value is lower than a predefined threshold and the fine 

registration process starts again. Otherwise the group is split and each of the point set is 

assigned to one group before starting the process again. In the latter case, the remaining point 

sets of the original group have to be tested for both groups but only the registration result with 

the lower MSE value is taken into account. Once all point sets of a group are merged, the final 

groups whose point sets originated from the same group are registered and merged if the MSE 

value is lower than a predefined value. A reduced threshold is applied if the merging of the 

group supports the symmetric distribution of the original point sets on the base roof. An 

example is given in Figure 6.20. 

  

Figure 6.20. Example workflow of the fine registration process. 
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First, all point sets in the given example are assigned to the same group because their 

candidate areas feature a similar size. Then, the surface points of the yellow and the purple 

point sets are tested if they belong to the same roof superstructure type. Due to their final 

MSE value, they are separated into different groups. Therefore, the remaining pink point set 

has to be tested for both groups and is finally assigned to the group of the yellow point set. 

This results in the final grouping because the registration of both groups results in a high MSE 

value. 

6.2.3 Roof Superstructure Modeling and Construction 

The resulting groups of the previous subsection are considered during the subsequent 

modeling process as different roof superstructure types and the number of merged point sets 

in a group as the number of instances of it. Instead of reconstructing the superstructure of each 

original point set independently, all instances of a group are constructed at once. Caused by 

the previous merging process, a higher point density than in the input data is already achieved 

if more than one roof superstructure instance has been detected. Furthermore, in this case, 

single gaps in the surface points of an instance, which might occur due to partially occluded 

areas, are automatically closed by the surface points of other instances. 

Therefore, several features like ridge lines can now be directly extracted in each group with 

less strict thresholds than in chapter 5. Considering the extracted features, points of planar 

regions are segmented and planes estimated. An adjustment of these planes is carried out to 

emphasize on the one side rectangularity, if the direction of the normal vector projected onto 

the x-y plane is close to a certain angle, and on the other side symmetries, which are for 

example often present in the rooftop slope of a saddleback roof superstructure. Afterward, 

half-space modeling as described in section 6.1 is carried out for the construction of the roof 

superstructure model. Then, instances of the so far defined model are created and placed in 

each candidate area of the original point set of the group. The location of an instance is 

defined by the inverse rigid transformation of the previous subsection, which consists of the 

initial rough transformation and the translations during the iterations. In conjunction with the 

surface of the base roof, the final roof superstructure model is created. Special care has to be 

taken so that the roof superstructure models do not overlap with each other. In such a case, 

those half-spaces that represent the vertical facades of the overlapping models are translated 

accordingly. 

6.3 Building Adjustment 

As man-made objects, most buildings have strong regularities in their shape and structure. A 

discussion on the regularity of building structures is, for example, given in (Xiong, 2014). 

Incorporated in the reconstruction process, this can significantly increase the quality of 

building models. In practice, its impact on the quality of a model is particularly noticeable if a 

purely data-driven reconstruction approach is performed that does not incorporate any 

common regularities. This method often leads to abnormal structures, so that a further 

adjustment of the building models becomes crucial. Some typical problems with automati-
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cally reconstructed building models are shown in Figure 6.21. Here, for example, roof 

surfaces do not align well with each other, especially if they are comprised of a small number 

of points. Furthermore, adjacent building components are sometimes modeled with abnormal 

overlaps. Another frequently occurring issue is that components of buildings and their 

coplanar facades are often modeled with a small gap between each other resulting in un-

wanted intrusions and extrusions. 

   

   

Figure 6.21. Typical problems in the automatic reconstruction of building models from point 

clouds. 

To avoid abnormal structures in building models, some data-driven methods take building 

characteristics into account during the reconstruction process to reflect building regularities. 

These, for example, can include the main orientation of a building in order to emphasize 

parallel and orthogonal structures (Vosselman, 1999; Alharthy and Bethel, 2004). The 

reconstruction process is thus enhanced by incorporating building knowledge to improve the 

shape of the building models while still preserving the flexibility of a data-driven approach. 

However, building regularities are comprised of more than just parallelism and orthogonality, 

including, but not limited to, co-planarity and repetitive structures. When considering all types 

of building regularities, a large number of complex constraints guiding the reconstruction 

process need to be explicitly defined. Thus, their implementation is at risk of becoming 

protracted and cumbersome. On the other hand, building regularities are automatically 

ensured in model-driven approaches due to the use of parameterized building templates. 

Consequently, the resulting models are usually well-formed. The capabilities of a 

model-driven approach become especially apparent when considering noisy point clouds and 

segments with a small number of points. However, more complex shapes are usually not 

defined by a single building template in order to keep the number of templates at a minimum. 
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Therefore, they are composed of simpler roof shapes on which regularities are individually 

ensured. Further regularities are, then, only considered between adjacent roof shapes. In this 

situation, adjustment methods for building models are only performed in a local context. 

Recent methods, however, have shown that global regularities can also significantly improve 

the modeling quality in terms of both fitting accuracy and human vision judgment (Zhou and 

Neumann, 2012). 

Thus far, a reconstruction method has been presented where adjustment rules are individually 

defined for each building feature of the multi-scale knowledge graph in order to emphasize 

innate regularities in the final building models. For instance, the ridge feature enforces that 

the ridge-forming roof surfaces, in the final building model, always point in the opposite x-y 

direction. The resulting building models are therefore, in many cases, aesthetically pleasing. 

However, the use of purely feature-driven building adjustments to support building regulari-

ties has its drawbacks, namely: 

 There are many different kinds of features in a building model and each of them re-

quires a well-defined set of adjustment rules. 

 Adjustments are performed on every feature individually so that one adjustment might 

result in subsequent adjustments. 

 Adjustments are only performed locally to retain a small number of features while 

building regularities on the global context are not considered. 

 In order to consider global regularities, a large number of dependencies and interde-

pendencies, usually of high complexity, between features need to be considered. Con-

sequently, an easy adaptation of the applied feature set, which confirms to the recon-

struction area, is no longer realizable because existing adjustment rules need to be 

adapted as new features are added or removed. 

In conclusion, the feature-driven adjustment is limited to local regularities and requires a large 

number of complex rules that make building construction laborious and inflexible. In order to 

overcome these issues, an enhanced 3D building adjustment process is presented in this 

section, which reduces the number of feature adjustment rules to a minimum. For this, 3D 

building adjustment rules are defined for a planar half-space representation of a building 

rather than for individual building features. Thus, once all half-spaces are defined by the 

recognized features, the adjustment rules can be directly applied. In this context, the adjust-

ment of half-spaces will, from this point forward, be referred to the adjustment of their 

hyperplanes. The new half-space adjustment rules utilize planar half-space regularities and 

take into account advanced knowledge of buildings, among others, their local and global 

building regularities including symmetry, co-planarity, parallelism and orthogonality, thus 

emphasizing common building regularities in the final building models. This, in turn, 

improves in most cases the accuracy and shape of the resulting building models. 

To ensure that those half-spaces which directly contribute to a building feature have a higher 

impact on its adjustment than half-spaces that are introduced by other building features, a 

distinction is made between local and global adjustments. Local adjustments mainly concern 
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regularities that are within single building components. The details of the local adjustment 

procedure are explained in subsection 6.3.1. Global adjustments, on the other hand, ensure 

that building parts are combined accordingly so that they fit well together and do not cause 

any unintentional ex- or intrusions and overlaps. Here, principles from the local adjustment 

step are adapted for the use in a global context. Further details of global adjustments are 

described in subsection 6.3.2. Both, local and global regularization rules employed in this 

section, are based on methods presented in (Thrun and Wegbreit, 2005) and (Li et al., 2011) 

and are modified for building reconstruction purposes. Common issues, as shown in 

Figure 6.21, frequently occur if, for example, half-spaces are directly obtained from segments 

without adjustment, and are easily solved by applying the proposed half-space adjustment 

rules on the final building models. 

Compared to the feature-driven adjustment process, the proposed half-space adjustment 

method has the advantages that more than one building feature can be adjusted simultane-

ously, while special consideration of dependencies between different features is not needed. 

Furthermore, global regularities are incorporated and the set of features remains flexible. 

Therefore, when integrated into the fully automatic building reconstruction framework, the 

half-space-driven adjustment process is also well suited for the automatic reconstruction of 

large urban areas. A reconstructed segment of the Vaihingen data set is shown in Figure 6.22 

as an example, which integrates the half-space adjustment procedure, emphasizing common 

regularities in the reconstructed building models so that they are aesthetically pleasing and do 

not possess abnormal structures. 

 

Figure 6.22. Building models reconstructed in accordance with the presented local and global 

adjustment rules. 
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A closer look at some adjusted building models reveals that buildings consisting of several 

components are reconstructed without unwanted in- or extrusions but feature coplanar facades 

as shown in Figure 6.23. In the resulting models, when only one facade is expected to be 

present, adjacent building components share that facade. Also, wherever possible, different 

components are modeled in such a way that they share common building features like a ridge, 

eave, and gable. It is also interesting to note that, due to global regularities, the first and the 

last roof surface on the left side of the building in Figure 6.23c have the same slope and eave 

height. 

 
(a) 

 
(b) 

 
(c) 

Figure 6.23. Reconstructed buildings consisting of adjacent gable roofs and wall dormers. 

A difficult challenge for a fully automatic building reconstruction approach is the reconstruc-

tion of dormers and other small roof superstructures that belong to other building components. 

Many reconstruction approaches do not consider the interrelationships between such small 

components. They reconstruct each component separately and individually whereas the 

presented half-space adjustment procedure takes these interrelationships into account. 

Figure 6.24 shows some building models with different roof dormer types obtained as a result 

of the method presented. From base roof and dormer surfaces as well as between dormer 

surfaces, global adjustment leads, accordingly, to parallel or coplanar structures. Additionally, 

because their ridge forming segments are enforced by local position adjustment to indicate an 

opposition in the x-y direction and global adjustment ensures orthogonality, ridge lines 

become horizontal and orthogonal to each other. One further result of the combination of the 

local and global half-space adjustment is that dormer hip ends and the roof plane on which 

they lay likely share the same x-y orientation. 
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Figure 6.24. Reconstructed buildings with different roof dormer types (gabled, eyebrow, 

partial hipped, and shed). 

6.3.1 Local Adjustments 

In this subsection, the central concept for the local adjustment of half-spaces is presented. A 

half-space adjustment is considered local if the adjustment is only performed on the 

half-spaces that define a building component, not on other half-spaces. In local half-space 

adjustment, it is observed that man-made objects, such as buildings, often possess components 

that are symmetric and regular (Rosen, 1975). To support the occurrence of symmetries and 

regularities, the half-space adjustment of a building component roughly consists of the 

following steps: 

1) Slope adjustment: a group of half-spaces, whose hyperplanes feature similar slopes, 

are adjusted to their average value. 

2) Orientation adjustment: a group of half-spaces, whose hyperplanes feature similar x-y 

directions, are adjusted to their average angular value. Here, orientation is regarded as 

the 2D rotation around the z-axis. 

3) Position adjustment: half-spaces with vertical hyperplanes are shifted to further im-

prove symmetries and regularities. 

Slope and orientation adjustment are accomplished by similar procedures and are therefore 

jointly explained. The details of position adjustment follow thereafter. Note that, in this 

context, the phrase “adjustment of half-spaces” is always in reference to the adjustment of the 

hyperplanes that define the half-spaces. 
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The impact of the entire local half-space adjustment procedure is illustrated on a half-hip 

building in Figure 6.25. The roof surfaces are oriented as strictly orthogonal or opposite to 

each other, while opposite surfaces have the same slope. The ridge and eave lines are 

horizontal, where the latter feature the same height on both sides, so there is symmetry with 

respect to a vertical plane that passes through the ridge. 

  

Figure 6.25. Reconstructed building model before (left) and after the local half-space 

adjustment step (right). 

Slope and Orientation Adjustment 

A substantial aspect of slope and orientation adjustment is the clustering of half-spaces. The 

scheme for this procedure is presented in Figure 6.26 and consists of the following four 

sub-steps: (i) calculation of clustering criterion and sorting of half-spaces accordingly, 

(ii) cluster determination, (iii) weighted averaging, and (iv) rotation of half-spaces. 

The slope and orientation adjustment process each start in the local half-space adjustment step 

with the sorting of all half-spaces according to the respective clustering criterion. For this, a 

value for the slope and orientation adjustment is calculated for each half-space based on 

Equations (6.4) and (6.5) respectively, where ℎ is a given half-space whose hyperplane is 

used to calculate its slope and orientation. To support the occurrence of symmetry, the 

absolute values of half-space slopes are used as clustering criterion for the slope adjustment. 

Thus, for example, it is taken into account that the two rooftop half-spaces of a gable roof 

often have the same absolute slope value but face in opposite directions. And to support 

parallel and orthogonal structures, the orientation angle modulo π/2 is used as clustering 

criterion for the orientation adjustment. The orientation angle is defined as the counterclock-

wise angle between the x-axis and the normal vector of the half-space that is projected onto 

the x-y plane. 

𝑐𝑐(ℎ) = |𝑠𝑙𝑜𝑝𝑒(ℎ)| (6.4) 

𝑐𝑐(ℎ) = 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(ℎ) % (𝜋 / 2) (6.5) 
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Figure 6.26. Overview of the local half-space adjustment process (F = set of features, H = set 

of half-spaces, C = cluster of half-spaces, t = threshold for cluster determina-

tion). 
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For the subsequent clustering of half-spaces, there are already several general clustering 

techniques as shown in section 3.4. For the presented building adjustment, a divisive method 

is implemented that starts with one sorted cluster, including all half-spaces. If the distance 

between the first and the last element of a cluster is greater than a predefined threshold, then 

the cluster is split into the two adjacent elements that have the greatest distance to each other. 

The algorithm is recursively applied to the two elements until no further split is necessary – 

this is when the distance between the first and the last element of each cluster is not greater 

than a predefined threshold. Note, a cluster may only contain a single half-space. In order to 

reduce the number of clusters caused by noisy data, a conditional merge is performed on the 

clusters obtained as such. To accomplish this, every isolated cluster is merged with the 

nearest, adjacent, non-isolated cluster and its number of supporting points is set to zero. A 

cluster is considered isolated if it only contains one half-space estimated by points, whose 

average distance to the plane defining half-space is greater than a predefined threshold. 

After clusters are determined in this way, the calculation of the weighted average value for 

each is performed by taking into account the number of points that support a half-space (i.e. 

those that are close to the hyperplane of the half-space). In order to maintain the slopes of 

vertical and horizontal half-spaces in the slope adjustment step, an infinite weight is assigned 

to these half-spaces. This has the effect that half-spaces with a sloped hyperplane are adjusted 

towards the vertical and horizontal half-spaces in the next sub-step and not vice versa. The 

overall weighting function for the slope adjustment of half-spaces is presented in 

Equation (6.6). In contrast, a zero weight is assigned in the orientation adjustment to all 

vertical half-spaces as shown in Equation (6.7). This is justified by the fact that vertical 

segments have been discarded during the segmentation process so that they do not have any 

supporting points from the input data. 

𝑤(ℎ) = {
∞,  𝑠𝑙𝑜𝑝𝑒(ℎ) = 0 ∨ |𝑠𝑙𝑜𝑝𝑒(ℎ)| = 𝜋/2

|𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖𝑛𝑔𝑃𝑜𝑖𝑛𝑡𝑠(ℎ)|,  𝑒𝑙𝑠𝑒
 (6.6) 

𝑤(ℎ) = {
0,  𝑠𝑙𝑜𝑝𝑒(ℎ) = 0

|𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖𝑛𝑔𝑃𝑜𝑖𝑛𝑡𝑠(ℎ)|,  𝑒𝑙𝑠𝑒
 (6.7) 

Because the half-spaces of the slope adjustment are sorted according to the absolute values of 

their slope, there are, for every cluster, two possible slopes, differing only in their sign. 

Similarly, because of the use of modulo π/2 in the orientation adjustment, there are, for every 

cluster, four possible orientation values. In the subsequent rotation of the half-spaces, the 

most probable value of the slope, respectively orientation, is chosen. 

For the rotation of a half-space during the slope and the orientation adjustment, a rotation axis 

is defined for each step. For the slope adjustment, a horizontal line is chosen whose direction 

is orthogonal to the normal vector of the half-space. And, for the orientation adjustment, a 

vertical line is selected. These two lines are chosen so that they have an intersection point that 

satisfies the following conditions: 
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 For any non-vertical half-space, the intersection point of the two lines is the center 

point of the segment, which originally defines the half-space. Therefore, this point re-

mains unaltered by the local half-space adjustment. 

 For any vertical half-space, the intersection point of the two lines is the center point of 

the feature. For example, the intersection point of the two lines for a shed roof is the 

intersection point of the two lines of the rooftop half-space, and for a gable roof it is 

the center point of its ridge. 

The horizontal and vertical lines chosen this way are the rotation axis in the last sub-step. 

Position Adjustment 

During position adjustment, vertical half-spaces are translated along their normal vector to 

improve symmetries and regularities. It is further divided into two sub-steps. Firstly, all 

vertical half-spaces are sorted by their clustering criterion, which is the shortest distance to the 

feature (e.g., a ridge line) that originally defines the geometry. Clusters are, then, determined 

and a weighted average distance is calculated for each cluster. Thereafter, all half-spaces are 

translated along their normal vector so that the shortest distance to the feature corresponds to 

the weighted average distance of the cluster to which they belong. If more than one position is 

possible, the position nearest to the original is used. 

Secondly, all pairs of adjacent half-spaces that consist of a vertical and a non-vertical 

half-space intersecting in a horizontal line (e.g., an eave) are considered. Two half-spaces are 

considered adjacent if a sufficient number of their points supports the intersection (i.e. those 

that are close to the intersection line). These half-space pairs are clustered according to the 

height of their horizontal intersection lines. Now, in order to reduce the number of different 

intersection heights, the vertical half-spaces are translated in a cluster along their direction 

within a strict, predefined threshold. 

The advantages of implementing these two sub-steps of the position adjustment are as 

follows: 

 The first sub-step ensures that, for example, eaves can be assigned the same height in 

the second sub-step even if the angle between the two half-spaces of the eave is close 

to 0. 

 The threshold in the second sub-step prevents the translation of a vertical half-space 

that is far from its original position if the angle between the two adjacent half-spaces 

of a pair is close to π/2. 

Other approaches often directly adjust eave heights without considering the context of how 

they were generated. The effects include that heights of eaves, which are actually the same, 

are not adjusted in the model and that features might get severely shifted. 
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6.3.2 Global Adjustments 

As described in the previous subsection, local half-space adjustment is performed for each 

building component individually and independently from other components. This allows the 

use of rules with soft thresholds to support local regularities. In global half-space adjustment, 

attention is given to global regularities and symmetries, which are usually also present in 

man-made objects (Kazhdan et al., 2004). For example, two adjacent gable roofs can share the 

same ridge line as shown in Figure 6.27. Therefore, the aim of global half-space adjustment is 

to adjust the half-spaces of building components in order to support the occurrence of global 

regularities and symmetries between them while preferably also maintaining local regularities 

and symmetries within each component. This step automatically eliminates global 

asymmetries caused by the previous local half-space adjustment step. The following four 

steps illustrate the implementation of the global half-space adjustment procedure: 

1. Global slope adjustment is performed on the half-spaces of all building components 

analogous to the local slope adjustment, but with a more stringent threshold. 

2. Global orientation adjustment is performed on the half-spaces of all building compo-

nents analogous to the local orientation adjustment, but with a more stringent thresh-

old. 

3. Feature growing translates half-spaces of building components within a strict prede-

fined threshold so that some building features of the same type are merged. 

4. Translation of vertical half-spaces is done to support global coplanarity and symmetry 

of facades in a building model. 

To translate vertical half-spaces, the set of all vertical half-spaces is initially determined for 

each x-y direction. Then, half-spaces of each set are sorted by their distance to a fixed point 

(e.g., the origin). Afterward, clusters are identified analogous to the divisive clustering 

method explained in the slope and orientation adjustment of the previous subsection. Finally, 

for each resulting cluster, a weighted distance average is calculated and each half-space in the 

cluster is translated along its normal vector according to the calculated average. 

Figure 6.27 illustrates a reconstructed 3D model, where the local half-space adjustment of 

each component has produced several global asymmetries. For example, the half-spaces 

belonging to the top left of the gable roof have different normal vectors and distances to the 

origin that were originally the same. In this case, the first and second step of the global 

half-space adjustment restore the original number of differing normal vectors. 
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Figure 6.27. The segments of two adjacent gable roofs overlaid with surface points (left), the 

reconstructed building after local (middle) and after global half-space adjustment 

(right). 

In addition, the second global adjustment step improves the incidence of parallel and orthogo-

nal alignment between building components. As shown in Figure 6.28, the half-spaces of 

connected building components, such as L-, T- or cross gables, are automatically fitted to the 

half-spaces of the building components they connect. 

  

Figure 6.28. With global half-space adjustment reconstructed L-shaped gable roof (left) and a 

more complex building (right). 

In the third step, the half-spaces of some building components are translated in all three 

directions within a strictly predefined threshold. Therefore, shown in Figure 6.27, the two 

adjacent gable roofs are translated so that they share the same ridge. Here, feature growing 

through other building components is allowed. Therefore, features of building components 

that are not adjacent, but connected to each other by a chain of pairwise adjacent building 

components, can be merged. For example, all components of a cross gable roof can be 

adjusted pairwise, even if the two main ridges have different heights. By restricting features to 

grow only through other building components, misalignments can be reduced. 
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In addition to growing the 3D feature, a 2D feature growing is performed in the x-y plane. 

This allows for the alignment of buildings, as shown in Figure 6.29a. Here, the ridge of each 

of the two building components is adjusted so that their projection on the x-y plane lie on the 

same line, as demonstrated in Figure 6.29b. Because 2D feature growing is being performed 

only in the x-y plane, all translations have to be parallel to the x-y plane. 

 
(a) 

 
(b) 

 
(c) 

Figure 6.29. The result of local half-space adjustment (left) and global half-space adjustment 

with performing 2D feature growing (right). 

The fourth step of global half-space adjustment results in, among others, the following effects. 

It eliminates misalignments between adjacent building components so that the two adjacent 

gable roofs in Figure 6.29b share the same facade on each side as shown in Figure 6.29c. In 

addition, it eliminates undesired extrusions and intrusions in a building facade. These are 

especially pronounced if roof structure components, like dormers, are present, as shown in 

Figure 6.30. 

   

Figure 6.30. Extrusions in different building facades that can be automatically eliminated by 

global half-space adjustment. 
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7. Building Knowledge Integration Into 

a Data-Driven Reconstruction Method 

As stated in chapter 2, approaches for 3D building reconstruction can be roughly divided into 

data-driven and model-driven approaches, depending on the degree of contextual knowledge 

they integrate about the general shape of buildings. Besides the assumption that almost all 

roofs consist of planar surfaces, pure data-driven approaches often do not integrate any other 

building knowledge at all. The shapes of the resulting 3D models are, therefore, not limited by 

any restrictions and they resemble very closely the input data. Thereby, not only areas with 

common roof structures can be constructed but also areas that include buildings with individ-

ual shapes. Without regularization, however, the building models or parts thereof can easily 

end up distorted and exhibit small irregularities if the constructed planar surfaces do not 

precisely meet in common points or lines. In contrast, model-driven approaches are more 

restricted towards the shapes that they are able to reconstruct. They often use a library of 

parameterized templates that can be combined to generate more complex shapes. The 

inherently strong regularization of shape templates is implicitly passed on to the reconstructed 

building models. Because not all buildings in the real world can be described by a finite set of 

shape templates, some buildings can only be crudely approximated by model-driven ap-

proaches. 

Lately, data-driven and model-driven approaches have been merged towards hybrid recon-

struction approaches that try to exploit the advantages of both worlds: the shape flexibility of 

a data-driven approach with the regularization capabilities of a model-driven approach. For 

this, they integrate prior knowledge of roof shapes with the intention to improve the regulari-

zation of the resulting models without lessening the flexibility to generate all real-world 

occurring roof shapes. In order to exemplarily demonstrate that the developed graph grammar 

in combination with the proposed multi-scale knowledge graph can also serve as a good basis 

for this purpose, a method has been developed to integrate building knowledge from the 

multi-scale knowledge graph into an existing data-driven reconstruction approach. 

The automatic 3D building reconstruction approach presented in (Sohn et al., 2008) is in its 

core purely data-driven. It uses the concept of binary space partitioning to decompose the 

horizontal space according to the planar regions resulting from 3D point cloud segmentation. 

By assigning each resulting 2D region with its respective plane equation, a 3D building model 

is specified; see subsection 7.1 for specifics. The BSP based building reconstruction approach 

is generally suitable for the reconstruction of planar building roofs. It handles the missing data 

problem and is not limited to certain roof types. The resulting building models, however, do 

not follow any shape regularities and exhibit the same characteristics as models from 

data-driven reconstruction approaches. In order to improve their shape, a retrospective 

regularization of polygons that emerge from the BSP tree can be performed. But its imple-
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mentation is not without difficulty because it has to deal with the 2D BSP subdivision itself 

and the plane definitions of the resulting partition regions to ensure topological correctness. 

This is aggravated by the use of hyperplanes during the binary subdivision that often splits 

planar roof regions into several parts that are stored in different subtrees of the BSP tree. In 

the proposed approach, building knowledge is, therefore, instead already incorporated during 

the construction of the BSP tree so that a regularized partitioning of the space is ac-

complished. The quality of a polyhedral building model obtained by such a partitioned space 

depends mainly on the quality of the hyperlines, the sequence in which the hyperlines are 

applied (partitioning score), and the merging conditions for adjacent partitions. These three 

aspects should thus particularly be taken into account in a BSP based reconstruction process. 

Therefore, the proposed method to integrate building knowledge into binary space partition-

ing specifically aims to 

 improve the geometric accuracy of hyperlines, 

 enhance the partitioning score, 

 reduce the number of merge operations. 

In order to achieve these objectives, an enhanced BSP-driven reconstruction approach has 

been developed that additionally takes building knowledge during the BSP construction into 

account. Analogous to data-driven approaches, it is not limited to a predefined set of shapes 

but their recognition supports the regularization of the partitioned space and thus the quality 

of the resulting models. Its general workflow is illustrated in Figure 7.1. 

As proposed in (Sohn et al., 2008), the workflow starts with a height clustering in which a 

given set of building points is decomposed into clusters to reduce the shape complexity. The 

height clustering procedure is implemented as a connected component analysis based on the 

Delaunay triangulation. Thereby, it is ensured that the height discrepancy between a point and 

its neighboring points in each height cluster is less than a predefined threshold. Based on the 

partitioning, the 2D boundary is detected for each height cluster. In cases where only one 

point set can be obtained the boundary represents the initial building outline. For the subse-

quent segmentation of planar areas, sub-surface segmentation, as described in chapter 4, is 

performed for each height cluster. Thereby, smaller segment patches, which are usually 

disconnected due to superstructures, are implicitly merged to larger segments so that the 

subsequent extraction of building knowledge is improved. Based on the result of sub-surface 

segmentation, building knowledge is derived by applying the proposed GG in combination 

with the multi-scale knowledge graph as described in chapter 5. Afterward, the derived 

building knowledge is used for adjustment purposes. Here, those segments are first adjusted 

that are part of the extracted semantic information. After this all other segments which are not 

part of a recognized building feature are adjusted according to the properties of the extracted 

building knowledge. These two adjustment steps emphasize the natural structure in the 

geometry of a building so that a regularized space partitioning can be performed in the next 

step. The details of the adjustment step are further explained in section 7.2. After adjustments 

have been carried out, intersection and step lines are extracted. But instead of formulating 
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Figure 7.1. Overview of the extended BSP based reconstruction approach which integrates 

building knowledge for the construction of regularized models. 

these lines directly to hyperlines and applying them to partition the space, the concept of 

hyperpolylines for the binary partitioning of the space in the context of building reconstruc-

tion is introduced. It reduces the number of partitions and supports the unambiguity during the 

merging process of adjacent partitions. For example, the number of partitions for a hip roof 

without any superstructures can be reduced from six to four so that no further merging is 

needed. Since the merging process is a possible failure source, the reduction of the partition 

number has a big impact especially on buildings with small superstructures such as dormers 

which usually cause a large number of small partitions. Also, concave point sets can be 

directly expressed by the use of valid hyperpolylines. This allows a more natural partitioning 

of the space if such a partition can be determined. The details of the line extraction and the 
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space partitioning are explained in subsection 7.3. In the last step of the reconstruction 

process a regularized 3D polyhedral building model is directly obtained from the BSP as 

explained in (Sohn et al., 2008). 

The enhancement has been tested on several selected buildings of the Vaihingen test data set. 

In general, the approach presented in this section is suitable for the reconstruction of buildings 

with individual shapes. For complex buildings with many sub- and superstructures in 

particular, a big improvement in the resulting polyhedral building model is identified due to 

fewer partitions and the more regularized structure of the BSP. The quality of a resulting 

building model depends mainly on the building knowledge extraction. The more knowledge 

that can be derived from the input data, the more regularized the BSP and its resulting model 

will be. But the method is neither limited to the number of building features nor to the 

extractable building knowledge. Analogous to data-driven approaches, the amount of 

available building knowledge affects only the quality of the resulting model. Also, it handles 

the missing data problem, and always produces closed and regularized building models which 

can be directly obtained from the BSP. A further advantage of the integration of building 

knowledge into BSP is that the merging criteria for two adjacent partitions are not limited 

anymore to the information of their own points. For example, similar nonadjacent sub-parts of 

a building with the same semantic information can be taken into account. The final result of 

the BSP based reconstruction approach for the two segmented point clouds in Figure 7.6 and 

Figure 7.9 is shown in Figure 7.2 once separately in magnified form, and once as part of the 

reconstructed test area 1 of the Vaihingen data set. Note, in order to demonstrate the capabili-

ties of the proposed extension for their reconstruction, only a minimum set of production rules 

has been used during the building knowledge derivation step. 

An important advantage as well as limitation of the reconstruction method presented in the 

previous chapters is the recognition and incorporation of building features during the auto-

matic reconstruction process. By taking into account the most common building features, 

abnormal geometric shapes in the final building models are avoided. Furthermore, certain 

details with regard to their semantic meaning can be switched off for further analyses. This 

advantage, however, automatically comes with the drawback that only those models can be 

created whose features are well-defined in the GG. Consequently, the set of production rules 

becomes quickly large in size if every building feature needs to be defined. Particularly in 

areas that include buildings with many individual shapes, the production rule set is at risk to 

become cumbersome although the presence of some building features might be only rarely 

detected. To keep the size of the production rule set low and to increase the flexibility of the 

presented automatic 3D building reconstruction framework so that also unknown roof shapes 

can be constructed, the enhanced BSP-driven reconstruction approach presented in this 

chapter can be applied afterward. For this, only a limited number of frequently occurring 

building features is defined in the GG. As a result, some planar segments are sometimes not 

meaningfully assigned to a building feature so that they are ignored during the reconstruction 

process. This results, as shown in Figure 7.3, in buildings that are still valid but not complete. 
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Figure 7.2. Resulting building models reconstructed by the BSP based reconstruction 

approach. 

 

  

Figure 7.3. Two examples of unrecognized roof parts. 
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The presented enhanced BSP-driven reconstruction approach in this chapter can be then 

afterward applied to incorporate roof areas that were not reconstructed by the grammar based 

reconstruction approach. The focus is here in particular on larger roof areas whose shape do 

not frequently appear in the data set but that would be, due to their size, obviously missed in 

the resulting model. With the intention to improve the regularization of the resulting models 

without lessening the flexibility to generate all real-world occurring roof shapes, building 

knowledge of already reconstructed roof shapes is integrated in the partitioning process of the 

missing space as explained in this chapter. In this way, the number of production rules in the 

GG can be reduced and those parts of a building where only an insufficient number of 

building features were recognized can be reconstructed as well. Thus, the presented 

reconstruction approach can be considered as an optional extension to increase the geometric 

completeness of the resulting building models from the previous chapters. 

7.1 Data-Driven Reconstruction Method 

In the context of data-driven building reconstruction a BSP based approach has been intro-

duced in (Sohn et al., 2008). It generates a polyhedral building model by applying the 

following three steps: point-wise clustering, building cue extraction, and BSP-driven rooftop 

topology construction. The main aspects of each step are roughly summarized in the next 

paragraph. 

The first step starts with a height clustering of all previously identified building points. It 

decomposes the initial set of points into clusters to reduce the shape complexity. Thereby, 

each cluster has the property that the height discrepancy between a point and its neighboring 

points, as defined by the Delaunay triangulation, is less than a predefined threshold. Then a 

plane clustering algorithm is independently applied to each height cluster in order to estimate 

segments. In the second step, intersection lines and step lines are extracted. The intersection 

lines are obtained for each height cluster by calculating the intersections of all pairs of 

adjacent segments in a height cluster. The extraction of the step lines is based on the bound-

aries of adjacent segments and a CLF (Sohn et al., 2008). For the rooftop topology reconstruc-

tion in the third step a 2D binary space partitioning is performed. Therefore, the extracted step 

lines and intersection lines from the previous step are formulated as hyperlines. Due to the 

recursive nature of the BSP, the resulting space partitioning depends on the order in which the 

hyperlines are applied. For this reason a partitioning score, which takes into account the plane 

homogeneity, the geometric regularity, and the edge correspondence for each hyperline, is 

calculated in every recursion. Finally, a merging process is performed based on the BSP tree 

that merges all those adjacent partitions whose planar equations have similar normal vectors. 

This method is able to produce polyhedral building models even in complex urban settings 

where buildings are comprised of a number of sub-shapes. Additionally, it handles the 

presence of the missing data problem. However, due to the data-driven nature of this approach 

the quality of such a polyhedral model depends mainly on the extraction quality of the 

intersection and step lines. Even the devised geometric regularization of the CLF, which 

quantizes line slopes in a limited number of angular ranges, cannot always avoid irregular and 
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sharp corners. Therefore, in (Sohn et al., 2012) a method is introduced to rectify errors in a 

polyhedral building model. It considers the resulting vectors from a BSP as noisy model 

boundaries and progressively rectifies them based on MDL. The presented method is, on the 

one hand, able to produce building models which consider certain 2D regularizations. 

However, on the other hand, the solidness of the models is not guaranteed anymore, which 

means that an x-y coordinate can have more than one z-value due to unintentional gaps 

between adjacent roof planes. Some typical examples of this phenomenon are shown in 

Figure 7.4. 

Top view: Perspective view: 

 

 

 

 

 

Figure 7.4. Two examples of unintentional gaps between roof planes after applying the MDL 

based optimization method presented in (Sohn et al., 2012). 

A further optimization is presented in (Sohn et al., 2013). It takes additional hyperlines into 

account which are extracted from a single image. To connect these hyperlines with the already 

extracted hyperlines, different hypotheses based on CLF are generated and evaluated. An 

overview of the whole BSP based building reconstruction process is given in Figure 7.5. 
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Figure 7.5. Overview of the reconstruction process based on BSP presented in (Sohn et al., 

2008; Sohn et al., 2012; Sohn et al., 2013). 

7.2 Adjustment of Segments 

Based on the intrinsic information about a building gained from the derived multi-scale 

knowledge graph, segments are adjusted to emphasize regularities in the resulting building 

model. The proposed adjustment procedure is divided into two separate sub-steps. In the first 

sub-step, only those segments of building parts that are represented by the multi-scale 

knowledge graph are adjusted where meaningful building knowledge could be extracted. 

Then, in the second sub-step all other parts are adjusted according to the results of the first 

sub-step. In the following, both sub-steps are further explained. 

In analogy to the adjustment methods presented in section 6.3, a distinction is made in the 

first sub-step between local and global adjustments. Instead of half-spaces, the adjustment 

rules are applied to segments and their plane equations. A local adjustment is performed on a 
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set of adjacent segments that are aggregated in the multi-scale knowledge graph to a 

higher-level building feature. Thus, local adjustments are individually applied for every 

building feature and independent from other building features that are not part of it. In the 

subsequent global adjustment special care is taken of the relation between the recognized 

building features, even if they are not adjacent to each other. The two-step adjustment ensures 

that those segments which are part of the same building feature have a higher impact on its 

segments than the segments of other building features. 

The adjustments in this approach change mainly the slope and the orientation of segments in a 

local and global context. By using a divisive clustering method, as explained in section 6.3, 

those segments which feature similar slopes or x-y directions are adjusted to their average 

value. Additionally, all segments of a recognized building component are translated within a 

strict predefined threshold during the global adjustment so that building features in the 

multi-scale knowledge graph can be merged together. It is important to stress that the 

topological information of each segment as well as its semantic information is considered 

during the local and global adjustment process. For example, the adjustment of the segments 

of a subgraph, which is surrounded by a segment of another subgraph, is restricted to remain 

in their respective segment. Therefore, roof superstructures such as dormers always remain on 

the same roof plane so that a possible degeneration of the building model is reduced. Fur-

thermore, by taking building knowledge into account, it is ensured that the x-y direction of a 

subgraph that represents a dormer, is mainly influenced by the main direction of its connected 

substructure. 

Subsequently, more divisive clustering algorithms are carried out in the second sub-step to 

adjust also those segments in the multi-scale knowledge graph that are not part of a recog-

nized building feature. The adjustment of these segments is performed according to the 

adjustment result of all those segments that are already part of a building component. In this 

way, information from already recognized building parts are incorporated in the reconstruc-

tion of the remaining parts. For this purpose the global adjustments are repeated but this time 

including all segments and by considering the following three conditions: 

 If more than one adjusted segment of an already recognized building part occurs in a 

cluster with differing cluster criterion values, the cluster is split again. 

 If exactly one adjusted segment of an already recognized building part occurs in a 

cluster, all unadjusted segments are adapted to its cluster criterion value. 

 If no adjusted segment of an already recognized building part occurs in a cluster, all 

segments are adjusted to their average cluster criterion value. 

The combination of all adjustment steps exposes the natural structure in the geometry of a 

building so that a regularized space partitioning can be generated. 
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7.3 Regularized Space Decomposition 

In this section, the integration of building knowledge into BSP for the generation of regular-

ized building models is explained. For demonstration purposes, the construction of the 

multi-scale knowledge graph has been limited to the effect that the feature recognition ends 

with a basic set of primitives so that more complex primitives and links between primitives 

are not detected. Without considering any building knowledge, binary space partitioning can 

be performed based solely on the segmentation and boundary detection results, from which 

intersection and step lines are then formulated as hyperlines. The quality of such a partitioning 

is especially low for low density point clouds because the real orientations of the hyperlines 

are difficult to determine. Furthermore, this approach usually produces numerous  

small partitions as shown in Figure 7.6 which leads to ambiguities during the merging 

process. 

  

Figure 7.6. Left: The result of the segmentation. Right: The result of the binary space 

partitioning without considering building knowledge. 

In order to overcome this issue, intersection and step lines are determined in the following 

four steps: First all inner intersection and step lines are collected that are part of a recognized 

primitive that compose the building. Due to the performed adjustments, these lines are 

regularized and support the occurrence of symmetrical, parallel and orthogonal structures. 

Then, all building features in the multi-scale knowledge graph that were not considered in the 

previous step are used for the estimation of additional lines. Afterward, also those parts of the 

building where no knowledge has been extracted are considered as follows: The segments are 

first categorized into different groups. Two groups are merged together if they are part of the 
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same substructure or if they belong to two different groups which are connected by a building 

feature. Then, the intersection and step lines between two groups are added. Finally, the lines 

of the boundary are also added. 

An example of the line generation can be found on the left side of Figure 7.7 where the input 

points that belong to the building are separated into four height clusters represented by 

different colors. The building feature recognition step detects a total of three one-sided hip 

roofs whose inner lines are colored in red. Two of them are in the same height cluster and 

lower-level building features in the multi-scale knowledge graph indicate an L-connection 

relationship between them. Due to the different ridge line heights of the two  

connected one-sided hip roofs, the three green intersection lines are extracted based  

on the plane equations of the segments. Additional lines between two segments which belong 

to different groups are colored in blue. The black lines are derived from the boundary 

detection. 

  

Figure 7.7. Left: Point cloud overlaid with extracted line segments originating from substruc-

tures (red), additional building knowledge (green), and segment groups (blue). 

Right: Point cloud overlaid with accumulated polylines colored for each height 

cluster according to their priority. 

To reduce the number of partitions in the BSP tree, the use of hyperpolylines in the generation 

of the BSP tree is proposed to avoid unnecessary spatial subdivisions, so that the spatial 

integrity of planar roof regions is better maintained. For this, all intersection and step lines are 

treated as line segments and they are connected to form polylines. The start and end points for 

line segments that are inside a recognized primitive are already well defined through their 
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building features. The two end points for other lines are determined based on segment 

intersections and the outmost points on them. The polylines are estimated for each height 

cluster separately as follows: Choose the longest line segment that is not yet part of any 

polyline and repeatedly add the longest line segment (that is also not yet part of any polyline) 

that connects to either end point of the polyline to this new polyline until no more line 

segments can be added. Repeat until no more polylines can be generated in this way. The 

result of the polyline estimation is shown on the right side of Figure 7.7. The first extracted 

polyline of each height cluster in this figure is highlighted in red, the second in dark green, the 

third in brown, and so on. As shown, because of the polyline formulation as the partitioning 

element, the binary partitioning can now also be realized with concave borders which often 

occur in rooftops. 

For the binary partitioning of a height cluster, all polylines are used and formulated as 

hyperpolylines. The order in which they are recursively applied has an impact on the result. 

Therefore, a partitioning score 𝑃𝑆 is calculated for each hyperpolyline ℎ𝑝𝑙 and its correspond-

ing set of polylines 𝑝𝑙 as defined in Equation (7.1), where 𝛼, 𝛽, 𝛾, and 𝛿 are weight factors. 

The partitioning score is updated during every iteration of the partitioning  

process after the hyperline with the highest score has been selected and applied to partition the 

space. 

𝑃𝑆(𝑝𝑙, ℎ𝑝𝑙) = 𝛼 ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝑙) + 𝛽 ⋅ 𝑙𝑖𝑛𝑒_𝑛𝑢𝑚𝑏𝑒𝑟(𝑝𝑙) +

                      𝛾 ⋅
𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝑙)

𝑙𝑒𝑛𝑔𝑡ℎ(ℎ𝑝𝑙)
+ 𝛿 ⋅ 𝑃𝐻(𝑝𝑙𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠)

 (7.1) 

The partitioning score prioritizes hyperpolylines that are long, have a large number of line 

segments, and where the ratio of the polyline length and the length of the corresponding 

hyperline is close to 1. As the points at the two sides of a partition should preferably be 

homogenous, the score also incorporates a plane homogeneity factor 𝑃𝐻 that considers the 

number of points with similar planar properties in each partition. The result of the binary 

space partitioning with incorporated building knowledge is shown on the left side of 

Figure 7.8. Compared to the original partitioning in Figure 7.6, the number of partitions is 

now less than half. 
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Figure 7.8. The result of the binary space partitioning which takes building knowledge into 

account before (left) and after (right) the merging process. 

After space partitioning, adjacent partitions with similar properties are merged and the plane 

equations of the new partitions are re-estimated. Note, due to the adjustment step, the 

resulting plane equation of a partition depends not only on the points in it. Once all partitions 

with similar normal vectors are merged together, the outline of the regularized building can be 

extracted directly. During the conversion of the BSP tree into a boundary representation, the 

outline will result in facade polygons. 

For a better comparison with the data-driven reconstruction method presented in (Sohn et al., 

2008), the RANSAC plane extraction method that was originally used has been applied in the 

following examples instead of sub-surface segmentation. In Figure 7.9, the planar segmenta-

tion result of a building is presented. Based on this, the BSP is constructed once with (as 

shown in the bottom row) and once without (as shown in the top row) the integrated building 

knowledge in the BSP. As shown in the second column of Figure 7.9, the number of partitions 

before applying the merging process is now reduced from 23 partitions to only 14 partitions. 

The main difference after the merging process is that the left roof plane on which the two 

dormers are located could not be merged together in the first case. This also has an impact on 

the quality of the bottom dormer because the black partition implies a longer ridge line than 

the orange one. Therefore, the resulting model of the BSP without considering any building 

knowledge has a gap. In contrast to this, the solidness of the reconstructed building model of 

the presented approach is shown in Figure 7.10. 
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Figure 7.9. Top: The result of the segmentation using a RANSAC plane extraction method 

and the BSP without considering building knowledge before and after the merging 

process. Bottom: The result of the line extraction based on building knowledge 

and the building knowledge considering BSP before and after the merging pro-

cess. 

  

Figure 7.10. The resulting regularized building outline of the automatic reconstruction 

approach which is directly extracted from the BSP in top and perspective view. 

An unsolved issue which still occurs in the resulting outline is shown in Figure 7.10 and in its 

partitions in Figure 7.9. The dormer in the back misses a small part that is close to the 

building outline. It is incorporated in the roof plane because the hyperline from the other 

dormer cuts this part away. Similar problems also occur without the integration of building 

knowledge, as can be seen in the dark segment in the top right image of Figure 7.9, and is an 

unavoidable glitch in the greedy strategy of the partitioning process. 
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8. Results and Discussion 

The proposed reconstruction approach has been applied to a benchmark data set to evaluate 

the resulting building models. The benchmark consists of several test areas that are located at 

two different continents and of which each features different building characteristics. The 

benchmark is thus well suited to evaluate the reconstruction result and to verify how well the 

research objectives stated in section 1.3 are met. A description of the test areas and their 

characteristics is given in section 8.1. Afterward, the applied main quality metrics are 

described in section 8.2. Finally, the result of the evaluation is presented and discussed in 

section 8.3. 

8.1 Data Sets 

In this thesis, the freely available benchmark data set for urban classification and 3D recon-

struction provided by the International Society of Photogrammetry and Remote Sensing 

(ISPRS), German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF), 

and Teledyne-Optech was used to evaluate the results of the proposed reconstruction method. 

This benchmark data set has been chosen to make the results of the proposed reconstruction 

approach comparable to other existing reconstruction approaches. As shown in Figure 8.1, the 

benchmark consists of two different test sites with five test areas (= areas of interest (AOIs)) 

in total. The first test site was captured in Vaihingen (Germany) and has three test areas 

consisting of different types of buildings. The second test site was acquired over the down-

town of Toronto (Canada) and features two different test areas. The details of both test sites 

and their data sets are described in subsection 8.1.1 and 8.1.2, respectively, and essentially 

summarizes the information presented in (Rottensteiner et al., 2013). 

  

Figure 8.1. The Vaihingen (left) and Toronto (right) test sites (blue) and their AOIs (yellow). 
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8.1.1 Vaihingen Test Site 

The ALS data of the Vaihingen test site was provided by DGPF. It was acquired on 

21 August 2008 and consists of 10 strips of which 5 overlap with the test site. An overview of 

the overlapping ALS strips is given in Figure 8.2. The data set was captured by a Leica 

ALS50 system with 45° field of view and a mean flying height above ground of 500 m. The 

average point density of each strip is approximately 4 points/m². Due to an average strip 

overlap of 30 %, the average point density is 6.7 points/m² (i.e., ~ 0.39 m point spacing). In 

order to correct systematic errors in georeferencing, the original point clouds were 

post-processed by strip adjustment. 

 

Figure 8.2. ALS data of the Vaihingen test site with a reduced point density. 

For the evaluation of the automatically reconstructed building models, three different test 

areas were selected whose buildings were manually modeled by stereo plotting based on 

aerial high-resolution pan-sharpened color images. The images were captured on 24 July and 

6 August 2008 with 65 % forward lap and 60 % side lap using an Intergraph/ZI DMC (Digital 

Mapping Camera) with a GSD (Ground Sampling Distance) of 8 cm and a radiometric 

resolution of 11 bits. The resulting 3D building models correspond to the level of detail LoD 2 

according to the CityGML standard (Gröger et al., 2008) and have an accuracy in planimetry 

and height of about 10 cm. The three test areas are magnified shown in Figure 8.3 and their 

characteristics are summarized in Table 8.1. For further details, see (Cramer, 2010), (Haala et 

al., 2010), and (Rottensteiner et al., 2012). 
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Figure 8.3. The three test areas 1 (left), 2 (middle), and 3 (right) of the Vaihingen test site. 

 

Table 8.1. Characteristics of the three test areas in the Vaihingen test site according to 

(Rottensteiner et al., 2014). 

 Description Size 

IDs of 

Overlapping 

Strips 

Number 

of 

buildings 

Area 1: 

“Inner City” 

Historic buildings with 

complex shapes in the 

center of the city. 

125 m x 200 m 9 and 10 37 

Area 2: 

“High Riser” 

Few high-rising residen-

tial buildings with mixed 

flat and sloped roof types. 

170 m x 190 m 3 and 5 14 

Area 3: 

“Residential 

Area” 

Purely residential area 

with small detached 

houses. 

150 m x 220 m 3 and 5 56 

8.1.2 Toronto Test Site 

The ALS data of the Toronto test site was provided by Teledyne-Optech, First Base Solutions, 

GeoICT Lab at York University, and ISPRS WG III/4. It was acquired in February 2009 and 

consists of 6 strips. An overview of the strips is given in Figure 8.4. The data set was captured 

with Optech’s ALTM-Orion M, which operates at a wavelength of 1064 nm and scans the 

underlying topography with a scan frequency of 50 Hz and a scan width of 20 degrees. A 

sampling rate of 100 kHz was used to digitize the reflected echoes. The mean flying height 

above ground was 650 m. The average point density with the overlap is approximately 

6 points/m² (i.e., ~ 0.41 m point spacing). 
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Figure 8.4. ALS data of the Toronto test site with a reduced point density. 

For the evaluation of the automatically reconstructed building models, two different test areas 

were selected whose buildings were manually modeled by stereo plotting based on aerial 

high-resolution pan-sharpened color images. The images were captured with 60 % forward 

lab and 30 % side lap using an UltraCam-D with a GSD of 15 cm and a radiometric resolution 

of 8 bits. The resulting 3D building models correspond to LoD 2 according to the CityGML 

standard (Gröger et al., 2008). The planimetry and height accuracy of well-defined points is 

about 20 cm and 15 cm, respectively. The two test areas are magnified shown in Figure 8.5 

and their characteristics are summarized in Table 8.2. For further details, see (Rottensteiner et 

al., 2012). 

  

Figure 8.5. The two test areas 4 (left) and 5 (right) of the Toronto test site. 
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Table 8.2. Characteristics of the two test areas in the Toronto test site according to 

(Rottensteiner et al., 2014). 

 Description Size 

IDs of 

Overlapping 

Strips 

# of 

buildings 

Area 4:  

“Inner City” 

Mixture of low and 

high-storey buildings 
530 m x 600 m 

1, 2, 3,  

and 4 
58 

Area 5:  

“High Riser” 

Cluster of high-rise 

buildings in a typical 

central business district of 

North Amerika. 

530 m x 600 m 
2, 3, 

and 4 
38 

8.2 Evaluation Methods 

For a better comparison with other building reconstruction methods that were applied to the 

same benchmark data set, the same quality metrics were used to evaluate the resulting 3D 

building models of the developed reconstruction approach. The metrics are therefore equiva-

lent to the evaluation methods of the ISPRS benchmark project (Rottensteiner et al., 2012) 

and incorporate metrics described in more detail in (Rutzinger et al., 2009). In the following, a 

brief description of the main quality metrics is given: 

 Completeness (Comp, Comp10), which is also referred to as producer’s accuracy, 

represents the percentage of roof planes in the reference that were detected. It is de-

fined as 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =  
‖𝑇𝑃‖

‖𝑇𝑃‖ + ‖𝐹𝑁‖
 (8.1) 

where 𝑇𝑃 and 𝐹𝑁 are, from the point of view of the reference, the numbers of true 

positives and false negatives, respectively. In contrast to Comp, Comp10 considers 

only roof planes larger than 10 m². 

 Correctness (Corr, Corr10), which is also referred to as user’s accuracy, indicates how 

well the detected roof planes correspond to the reference. It is defined as 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =  
‖𝑇𝑃‖

‖𝑇𝑃‖ + ‖𝐹𝑃‖
 (8.2) 

where 𝑇𝑃 and 𝐹𝑃 are, from the point of view of the result, the numbers of true posi-

tives and false positives, respectively. In contrast to Corr, Corr10 considers only roof 

planes larger than 10 m². 
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 Quality (Q, Q10) represents a compound performance metric that balances complete-

ness and correctness. It is defined as 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =
1

1
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠

+
1

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 − 1
 

(8.3) 

where 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 and 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 are defined as in Equation (8.1) and Equa-

tion (8.2), respectively. In contrast to Q, Q10 considers only roof planes larger than 

10 m². 

For a detailed analysis of the automatically reconstructed building models, completeness, 

correctness, and quality were determined on a per-area level as well as on a per-roof-plane 

level. As stated in (Rutzinger et al., 2009), both evaluation methods have advantages and 

disadvantage. The area-based evaluation has, for example, the advantage that it can be easily 

applied by comparing the labels of homologous pixels of a raster. The decision whether an 

area is classified as 𝑇𝑃 is thus unambiguous. However, differences between the reference and 

the result data may be caused not only by errors in the result but also by quantization and 

sampling effects, differences in the semantic definition of which objects belong to a building, 

inaccuracies in the reference, and others (Foody, 2002). Note, in this thesis, a pixel size of 

0.2 m was chosen. The object-based evaluation, on the other hand, is generally less sensible to 

errors in the outline of a roof plane because a roof plane is classified as 𝑇𝑃 if it substantially 

overlaps with a roof plane in the reference. For this, however, it introduces a threshold to 

decide whether or not a substantial overlap exists. The object-based evaluation has therefore 

the disadvantage that a subjective aspect is introduced into the evaluation (Shufelt, 1999). A 

further disadvantage of the object-based evaluation is that the relation to the covered area is 

lost. In this thesis, an overlap of at least 50 % was required for a reference and a result roof 

plane to be counted as a true positive. 

In addition to completeness, correctness, and quality, the following quality metrics were 

incorporated in this thesis: 

 RMS (root mean square) (RMSXY, RMSZ) represents a value for geometrical errors. 

The errors of planimetric distances of extracted roof plane boundary points to their 

nearest neighbors on the corresponding reference boundaries are represented in 

RMSXY, which is defined as 

𝑅𝑀𝑆𝑋𝑌 = √
∑𝑑2

𝑁
 (8.4) 

where 𝑑 is the Euclidian distance in x-y direction between corresponding points and 𝑁 

the number of detected correspondences. Note, distances between corresponding 

points larger than 3 m were discarded. Furthermore, a corresponding point on a 
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reference roof plane boundary does not necessarily correspond to a vertex of that poly-

gon. In contrast, the errors of height differences that are represented in RMSZ are not 

calculated from the boundaries but by comparing two synthetic DSMs generated from 

the extracted building models and the reference. For this, the vertical distances be-

tween corresponding planes at all pixels that are assigned to them are considered. It is 

thus defined as 

𝑅𝑀𝑆𝑍 = 
√∑(𝑧𝑟𝑒𝑓𝑖 − 𝑧𝑟𝑒𝑠𝑗)

2

𝑁
 

(8.5) 

where 𝑧𝑟𝑒𝑓𝑖 and 𝑧𝑟𝑒𝑠𝑗 are two height values with the same planimetric position but lo-

cated in the reference plane 𝑟𝑒𝑓𝑖 and in the result plane 𝑟𝑒𝑠𝑗. 

 Topology represents the number of 1:1, 1:N, N,1, and N:M relations between roof 

planes in the reference and in the automatically reconstructed building models. 

8.3 Evaluation of the Semantic 3D Building Models 

The proposed grammar-guided reconstruction approach has been applied on the ISPRS 

benchmark data set to evaluate its reconstruction capabilities. The resulting building models 

of the three test areas in Vaihingen and the two test areas in Toronto are shown in Figure 8.6. 

All reconstructed buildings are represented as valid 3D models that can be used for different 

applications. Since these models are semantically labeled, certain building details or building 

types can be optionally hidden if they are not required for a specific application. The average 

processing time for the reconstruction of a single building with current hardware of an 

ordinary computer was less than one second. A summary of the evaluation result is given in 

the following. A more detailed discussion and a comparison to other reconstruction ap-

proaches is presented for each test area separately in the subsequent subsections. Note, for a 

better comparison with the evaluation results of other building reconstruction approaches, the 

choice of colors and their descriptions were essentially adopted in this section from  

(ISPRS, 2017). Furthermore, although the evaluation revealed that some building parts are  

missing in the reference, the reference building models have not been changed so that  

the comparability with other semi- or fully automatic reconstruction approaches was main-

tained. 
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Figure 8.6. Reconstruction result of the three test areas in Vaihingen (top row) and the 

reconstruction result of the two test areas in Toronto (bottom row). 

The result of the area-based evaluation with a pixel size of 0.2 m is summarized in Table 8.3. 

As can be seen, the proposed reconstruction approach achieved for all test areas an average 

completeness, correctness, and quality of 96.0 %, 94.8 %, and 91.1 %, respectively. Further-

more, the completeness, correctness, and quality within each test site varied only slightly (less 

than 3 %) so that they are for each test area at least 94.3 %, 89.6 %, and 89.1 %, respectively. 

It can be thus stated that the area of the resulting building models properly overlaps with the 

area of the reference building models. The result of the area-based evaluation further shows 

that, in relative terms, less area of buildings was reconstructed on average in the Vaihingen 

test site than in the Toronto test site (94.3 % compared to 98.7 %) but that the reference 

correspond better to the reconstructed areas of the Vaihingen test site than to the reconstructed 

areas of the Toronto test site (97.2 % compared to 91.1 %). For further investigations, it is 

interesting to note that, on the one hand, the highest completeness was achieved in AOI 5 

(99.4 %) while it features with 89.6 % at the same time the lowest correctness of all recon-
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structed AOIs. On the other hand, the highest correctness was achieved in AOI 1 (97.7 %) 

while it features, together with the other AOIs in Vaihingen, with 94.3 % the lowest com-

pleteness. 

Table 8.3. Evaluation result on a per-area level (pixel size: 0.2 m). 

Data set Area 
Comp 

[%] 

Corr 

[%] 

Q 

[%] 

Vaihingen 

1 94.3 97.7 92.3 

2 94.3 97.5 92.1 

3 94.3 96.5 91.2 

Sub-total 94.3 97.2 91.9 

Toronto 

4 97.9 92.5 90.7 

5 99.4 89.6 89.1 

Sub-total 98.7 91.1 89.9 

Total 96.0 94.8 91.1 

 

In the object-based evaluation, the proposed reconstruction approach achieved for all test 

areas an average completeness, correctness, and quality of 83.9 %, 93.1 %, and 78.8 %, 

respectively (see Table 8.4). The completeness and the quality of the object-based evaluation 

is thus significantly lower than the average completeness and quality of the area-based 

evaluation. This indicates that particularly small roof planes are missing in the result. This 

assumption is supported by the significant increase of the average completeness and quality of 

all test areas that considers only roof planes larger than 10 m² (from 83.9 % to 93.5 % and 

from 78.8 % to 89.2 %, respectively). It becomes especially apparent in AOI 2 for which the 

completeness is raised from 72.5 % to 91.5 %. But the impact of ignoring small roof planes 

on the completeness is also apparent in the other AOIs, for which the completeness still 

increases between 3.4 % and 11.4 %. In contrast, the average correctness of all test areas is 

essentially stable against different roof plane sizes and increases for all AOIs only slightly 

from 93.1 % to 95.3 % and for each AOI only between 0.2 % and 3.8 %. The high correctness 

values and the small increase indicate that there is in general a high correspondence between 

the reference and the result roof planes regardless of their area. Only AOI 5 features with 

82.2 % (or 86.0 % if only roof planes larger than 10 m² are considered) a significantly lower 

correctness than the other AOIs. Furthermore, the result of the object-based evaluation shows 

analogous to the area-based evaluation result that, in relative terms, less roof planes were 

reconstructed on average in the Vaihingen test site than in the Toronto test site (82.3 % 

compared to 86.4 %) but that the reference roof planes correspond better to the reconstructed 

roof planes of the Vaihingen test site than to the reconstructed roof planes of the Toronto test 

site (96.6 % compared to 87.8 %). 
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Table 8.4. Evaluation result on a per-roof plane level (threshold for classification as a true 

positive is 50%). 

Data set Area 
Comp 

[%] 

Corr 

[%] 

Q 

[%] 

Comp10 

[%] 

Corr10 

[%] 

Q10 

[%] 

Comp 
balanced 

by area 

[%] 

Corr 
balanced 

by area 

[%] 

Q 
balanced 

by area 

[%] 

Vaihingen 

1 89.2 95.9 86.0 92.6 98.6 91.3 94.2 99.0 93.4 

2 72.5 97.1 70.9 91.5 100 91.5 94.9 99.7 94.7 

3 85.1 96.7 82.7 92.7 98.3 91.3 95.9 99.6 95.6 

Sub-

total 
82.3 96.6 79.9 92.3 99.0 91.4 95.0 99.4 94.6 

Toronto 

4 88.1 93.4 83.0 94.7 93.6 88.9 98.2 95.3 93.7 

5 84.7 82.2 71.6 96.1 86.0 83.0 99.4 91.5 90.9 

Sub-

total 
86.4 87.8 77.3 95.4 89.8 86.0 98.8 93.4 92.3 

Total 83.9 93.1 78.8 93.5 95.3 89.2 96.5 97.0 93.7 

 

As mentioned in section 8.2, the relation to the covered area is basically lost in object-based 

evaluations. In order to overcome this disadvantage, completeness, correctness and quality 

were also balanced by area in the sense that each roof plane was weighted by its total area. 

For many applications, these quality metrics are therefore most meaningful. As shown in 

Table 8.4, the completeness, correctness, and quality balanced by area are for all test areas on 

average 96.5 %, 97.0 %, and 93.7 %. Additionally, it can be stated that the reconstructed test 

areas feature a higher average completeness in Toronto than in Vaihingen (98.8 % compared 

to 95.0 %). The same still applies to each test area within Toronto and Vaihingen. But, 

analogous to the previously described pixel- and object-based evaluation results, the average 

correctness of the automatically reconstructed building models is in Vaihingen higher than in 

Toronto (99.4 % compared to 93.4 %). Since the completeness, correctness and quality are 

also within each AOI respectively at least 94.2 %, 91.5 %, and 90.9 %, it can be stated that all 

reconstructed test areas can serve as a good basis for many different applications. 

The evaluation result of the geometric accuracy is summarized in Table 8.5 and has to be seen 

in relation to the ALS point spacing (Vaihingen: ~ 0.39 m, Toronto: ~ 0.41 m) and to the 

accuracy of the reference models (Vaihingen (planimetry and height accuracy): ~ 10 cm, 

Toronto (planimetry and height accuracy): ~ 20 cm and ~ 15 cm, respectively). It shows for 

the extracted roof plane boundaries of the test areas in Vaihingen and Toronto an average 

RMSXY of 0.60 m and 0.95 m, respectively. The geometric accuracy in planimetry is thus 

lower for the automatically reconstructed building models in Vaihingen than in Toronto. This 

still applies if the RMSXY of each test area is separately compared with each other because 

they differ from the average RMSXY values only by up to 0.07 m and 0.02 m, respectively. 

The same applies to the RMSXY of the reference boundaries, which is on average for 

Vaihingen 0.58 m and for Toronto 1 m. Additionally, the deviation of each test area is from 
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these average values only less or equal than 0.10 m and 0.05 m, respectively. Since the 

RMSXY of the extracted boundaries and the RMSXY of the reference boundaries are for all test 

areas on average with 0.74 m and 0.75 m less than twice the ALS point spacing, they confirm 

a good geometric accuracy of the reconstructed building models. 

Table 8.5. Evaluation result of geometric accuracy. 

Data set Area 

RMSXY 

of extracted 

boundaries 

[m] 

RMS 
of centers of 

gravity of 

extracted 

objects (X / Y) 

[m] 

RMSXY 

of reference 

boundaries 

[m] 

RMS 
of centers of 

gravity of 

reference 

objects (X / Y) 

[m] 

RMSZ 

of planes 

[m] 

RMSZ 

of planes found 

to correspond 

[m] 

Vaihingen 

Area 1 0.54 
0.52 / 

0.59 
0.68 

0.56 / 

0.63 
0.78 0.74 

Area 2 0.67 
0.39 / 

0.55 
0.55 

0.46 / 

0.47 
0.77 0.36 

Area 3 0.58 
0.36 / 

0.47 
0.51 

0.58 / 

0.65 
0.36 0.21 

Sub-

total 
0.60 

0.42 / 

0.54 
0.58 

0.53 / 

0.58 
0.64 0.44 

Toronto 

Area 4 0.93 
0.78 / 

0.81 
0.95 

0.62 / 

0.69 
3.71 3.04 

Area 5 0.97 
0.62 / 

0.78 
1.04 

0.84 / 

0.84 
8.33 0.94 

Sub-

total 
0.95 

0.70 / 

0.80 
1.0 

0.73 / 

0.77 
6.02 1.99 

Total 0.74 
0.53 / 

0.64 
0.75 

0.61 / 

0.66 
2.79 1.06 

 

In order to weaken the strong influence of those roof planes that feature a large number of 

vertices in their boundary, RMSX and RMSY of the centers of gravity were calculated as well 

for each roof plane. The average RMSX and RMSY of the extracted and the reference bound-

aries support for Vaihingen (0.42 m / 0.54 m and 0.53 m / 0.58 m) as well as for Toronto 

(0.70 m / 0.80 m and 0.73 m / 0.77 m) the statements that the reconstructed building models 

have a good geometric accuracy in relation to the point spacing of the input data. Further-

more, the geometric accuracy of the reconstructed buildings is generally higher in Vaihingen 

than in Toronto. This also becomes apparent when their average RMSZ values are compared 

with each other. If all planes are considered, the average RMSZ is significantly lower for the 

test areas in Vaihingen than in Toronto (0.64 m compared to 6.02 m). Particularly AOI 5 

features with 8.33 m a very high RMSZ that is, however, significantly reduced to 0.94 m if 

only pairs of corresponding planes are considered. The same applies to the other test area in 

Toronto for which the average RMSZ of Toronto is decreased from 6.02 m to 1.99 m. 

Compared to this, the decrease of the RMSZ is significantly lower in Vaihingen (from 0.64 m 
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to 0.44 m) than in Toronto. Consequently, there is a better roof plane correspondence for the 

test areas in Vaihingen than in Toronto. However, it has to be considered that the height 

variance and the geometric inaccuracy of the reference models are significantly higher in 

Toronto than in Vaihingen. Further reasons are explained in the subsequent subsections. 

A similar pattern can be observed in the result of the topological evaluation in which 1:1, 1:N, 

N:1, and N:M relations between roof planes in the reference and the result were detected. As 

shown in Table 8.6, the percentage of 1:1 relations is for the test areas in Vaihingen with 

73.6 % on average clearly dominant whereas this is less discernable for AOI 4 and AOI 5 in 

Toronto (64.5 % and 54.3 %, respectively). A general trend that shows if either under- or 

over-segmentation is the dominant type of topologic error is, however, not clearly recog-

nizable. In AOI 2 and AOI 4, for example, over-segmentation might be the dominant type of 

topologic error, whereas under-segmentation might be a major issue of AOI 3 and AOI 5. 

Note, some topologic errors are due to different approximations or due to missing building 

parts in the reference and do not necessarily represent errors in the automatically recon-

structed building models. Therefore, a perfect match between the result and the reference, in 

which only 1:1 relations are present, is only barely possible and not really wanted. 

Table 8.6. Evaluation result of the roof plane topology (reference : result). 

Data set Area Topo 1:1 Topo 1:N Topo N:1 Topo N:M 

Vaihingen 

1 163 24 22 14 

2 29 14 3 1 

3 128 6 23 8 

Toronto 
4 401 104 52 65 

5 134 17 61 35 

 

In the following subsections, a more detailed evaluation of the automatically reconstructed 

building models is presented. 

8.3.1 Vaihingen: AOI 1 

The 37 buildings of AOI 1 consist of historic buildings with complex shapes in the center of 

the city Vaihingen. In order to determine the areas in which buildings were reconstructed, a 

pixel-based building detection was carried out once for the manually reconstructed building 

models of the reference and once for the automatically reconstructed building models of the 

result. As shown in Figure 8.7, all buildings of the reference greater than a certain size have 

been automatically reconstructed in AOI 1. Furthermore, their area and their outer 2D shape 

closely resemble to each other. However, there are also some buildings with a rather small 

area in the reference that are not represented in the result. This is, for example, the case for the 

two buildings in the southwest and the building in the courtyard of the dark brown building in 

the east of the test area. Furthermore, some building components that are in the reference 
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attached to large buildings are missing in the result. This is, for example, the case for the large 

L-shaped building in the northwest and the blue building in the east. 

  

Figure 8.7. Pixel-based building detection result of the building models in the reference (left) 

and in the result (right). 

To highlight the differences between the areas of reconstructed buildings in the reference and 

the result, 𝑇𝑃, 𝐹𝑁, and 𝐹𝑃 were calculated pixel by pixel based on the building detection 

result. The resulting image is shown in Figure 8.8. As can clearly be seen, the area of true 

positive pixels is dominant which means that most manually reconstructed areas in the 

reference were also automatically reconstructed. However, there are several pixels classified 

as false negative of which most of them comprise the aforementioned small buildings and 

attached building components that are missing in the result. The reason for this is that most of 

their points have been wrongly classified as non-building points during the classification 

procedure so that they were not considered as input of the proposed reconstruction approach 

(e.g., the two buildings in the southwest). Conversely, also several points were assigned to the 

class of building points during the classification that are not part of the reference. These 

points primarily belong to facades which explains why the majority of false positive pixels are 

located close to building outlines. As a consequence, facades in the result are compared to the 

reference sometimes slightly shifted or rotated. However, there are also some false positive 

pixels that represent small intrusions in the reference. These missing intrusions are often due 

to the proposed adjustment step which was initially introduced to support natural regularities 

and to avoid small jagged fractures. Thereby, small intrusions were in some cases discarded 

so that the resulting building shapes represent a generalization of the reality and thus become 

in many cases more pleasant to the human eye. Consequently, the impact of the proposed 
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adjustment procedure has to be weaken if the shape of the resulting 3D building models needs 

to closer resemble the reality. 

 

Figure 8.8. Evaluation result of the pixel-based building detection result (yellow: true positive 

pixels, blue: false negative pixels, and red: false positive pixels). 

For a more detailed analysis, building detection was carried out on a roof plane level as well. 

As can be seen in Figure 8.9, there is a high correspondence between detected roof planes in 

the reference and in the result. Particularly large roof planes were reliably reconstructed. The 

areas of corresponding roof planes and those in which differences occur are highlighted in 

Figure 8.10. Here, most areas that are classified as false negative in Figure 8.8 were assigned 

to the dark blue colored class. This indicates that planes in the reference are missing in the 

result and that it would be insufficient to change only the shape of existing planes in the 

result. In contrast, many pixels that are classified as false positive in Figure 8.8 were not 

assigned to the dark red colored class. This supports the previously made statement that these 

false positive pixels basically belong to facades and thus do not introduce additional roof 

planes. Additionally, some roof planes can be still identified in the result that are outside all 

reference buildings. This is, for example, the case for the curved L-shaped building in the 

north. A closer look on this building reveals that some details of this building were not 

manually reconstructed in the reference (see Figure 8.11). Furthermore, some pixels in 

Figure 8.10 are colored in yellow which means that they are not part of a building in the 

reference and in the result although a sufficient overlap between a roof plane in the reference 

and in the result was found. These areas mainly represent either automatically reconstructed 

intrusions that are not present in the reference or intrusions that are discarded in the result due 

to generalization purposes; particularly the latter one prevails. Further differences between the 
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roof planes in the reference and in the result are colored in Figure 8.10 in bright blue and 

bright red. In the building ensemble in the southwest, for example, it can be seen that a further 

dormer was reconstructed in the result and that the overlap of the underlying roof plane 

becomes thereby insufficient. 

  

Figure 8.9. Roof plane detection result of the building models in the reference (left) and in the 

result (right). 
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Ochre: Pixels available in both the reconstruction 

results and the reference and belonging to a reference 

plane found to have sufficient overlap with planes in 

the roof reconstruction results. 

Yellow: Pixels that belong to a reference plane found 

to have sufficient overlap with planes in the roof 

reconstruction results but that are not inside a building 

in the reconstruction results. 

Dark blue: Pixels in reference roof planes not having 

sufficient overlap with detected roof planes and not 

being inside a building in the reconstruction results. 

Bright blue: Pixels in reference roof planes not having 

sufficient overlap with detected roof planes, but being 

inside a building in the reconstruction results. 

Ochre: Pixels available in both the reconstruction 

results and the reference and belonging to a detected 

roof plane found to have sufficient overlap with planes 

in the reference. 

Yellow: Pixels that belong to a detected roof plane 

found to have sufficient overlap with planes in the 

reference but that are not inside a building in the 

reference. 

Dark red: Pixels in detected roof planes not having 

sufficient overlap with roof planes in the reference and 

not being inside a building in the reference. 

Bright red: Pixels in detected roof planes not having 

sufficient overlap with reference planes, but being 

inside a building in the reference. 

Figure 8.10. Evaluation result of the roof plane detection result once from the point of view 

of the reference (left) and once from the point of view of the result (right). 
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Figure 8.11. Magnified image of a building where details are missing in the reference (left) 

but not in the result (right). 

In order to determine further differences between the roof planes of the reference and the 

result, topological differences between them were detected. As can be seen in Figure 8.12, 

most of the roof plane pixels feature a 1:1 relation. However, there are also some roof planes 

that feature a 1:N, N:1, or N:M relation. 1:N and N:1 relations often indicate that dormers, 

chimneys, or other small roof superstructures are either missing in the reference or in the 

result. In contrast, N:M relations often indicate that a building component features a different 

shape in the result than in the reference so that a sufficient overlap between their roof planes 

does no longer exist. The reason for most areas that are colored in dark magenta is that some 

roof superstructures have been considered as outliers either during the segmentation or during 

the building knowledge derivation procedure and they were thus discarded from the subse-

quent reconstruction process. Even the proposed ICP based roof superstructure reconstruction 

approach was not able to detect them due to their low number of points or instances in a 

single building. The three large roof planes of the curved L-shaped building in the north that 

are colored in bright magenta indicate that roof planes in the reference were split in the result. 

As pointed out above, this is caused by the missing balconies in the reference. The fact that 

also the reference roof planes of the two dormers on top of its hip endings correspond to 

several roof planes in the result indicates that they were modeled as simple shed dormers in 

the reference ignoring the fact that each of them is composed of four roof planes with 

different slopes as in the reconstruction result (see Figure 8.11). An issue of the topologic 

evaluation that becomes apparent in AOI 1 is the evaluation of non-planar roof surfaces that 

are approximated by planar roof segments. An example is given for the conical shape of the 

building part in the southeast. Although it has been correctly detected, its approximation in 

the result is different from the reference and thus causes several 1:N, N:1, and N:M relations. 
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Yellow: Pixels inside reference planes having a 1:1 

relation to planes in the reconstruction results. 

Blue: Pixels inside reference planes that have no 

corresponding plane in the extraction results. 

Dark magenta: Pixels in reference roof planes that are 

merged with other planes in the reconstruction results 

(N:1 relation). 

Bright magenta: Pixels in reference roof planes split 

into two or more planes in the reconstruction results 

(1:N relation). 

Dark cyan: Pixels in reference roof planes being part 

of a plane cluster having N:M relations between planes 

in the reference and planes in the reconstruction 

results. 

Yellow: Pixels inside reconstructed planes having a 

1:1 relation to planes in the reference. 

Red: Pixels inside reconstructed planes that have no 

corresponding plane in the reference. 

Dark magenta: Pixels in reconstructed roof planes that 

correspond to several planes of the reference (1:N 

relation). 

Bright magenta: Pixels in reconstructed roof planes 

that are the result of a split of a plane in the 

reconstruction results (N:1 relation). 

Dark cyan: Pixels in reconstructed roof planes being 

part of a plane cluster having N:M relations between 

planes in the reconstruction results and planes in the 

reference. 

Figure 8.12. Assessment of the topological differences between the reference and the 

reconstruction result once from the point of view of the reference data (left) and 

once from the point of view of the detected roof planes (right). 

In Figure 8.13, the evaluation result of the completeness is shown. The assessment was 

carried out once for all roof planes and once for all roof planes larger than 2.5 m². Thereby, it 

is taken into account that larger building structures are usually easier to reconstruct and that 

small building structures cause often many differences although they might be less important 

for many applications. Those buildings that are colored in ochre indicate that all considered 

reference planes were reconstructed in the result. In contrast, blue colored buildings indicate 

that some reference roof planes are missing in the result. Since both assessments feature the 

same result, it can be stated that the differences between the building models in the reference 
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and the result are not only caused by building structures that are composed of small roof 

planes. 

  

Ochre: Pixels in buildings for which all reference roof planes were found to have correspondences of sufficient 

overlap in the reconstruction results, but only if the pixel is inside a building both in the reference and in the 

reconstruction results. 

Yellow: Pixels in buildings for which all reference roof planes were found to have correspondences of sufficient 

overlap in the reconstruction results; however, these pixels are not inside a building in the reconstruction results. 

Bright red: Pixels in correctly detected roof planes that are not inside a building in the reference. 

Dark blue: Pixels in buildings for which at least one reference roof plane was not detected in the reconstruction 

results and which are inside a roof plane in the reconstruction results. 

Bright blue: Pixels in buildings for which at least one reference roof plane was not detected in the reconstruction 

results and which are not inside a building in the reconstruction results. 

Figure 8.13. Assessment of the completeness once for all detected roof planes (left) and once 

for roof planes covering an area larger than 2.5 m² (right). 

Analogous, two assessments were carried out to evaluate the correctness once for all roof 

planes and once for all roof planes larger than 2.5 m². The result is presented in Figure 8.14 

and shows those buildings in ochre whose automatically reconstructed roof planes are all 

correct. As can be seen, only three buildings that were reconstructed feature roof planes larger 

than 2.5 m² that are incorrect with regard to the reference. The other blue colored buildings 

represent buildings whose points have not been used as input of the automatic reconstruction 

approach and which are thus not present in the result. 



8. Results and Discussion 

166 

 

  

Ochre: Pixels in buildings for which all automatically reconstructed roof planes were found to have 

correspondences of sufficient overlap in the reference, but only if the pixel is inside a building both in the 

reference and in the reconstruction results. 

Yellow: Pixels in buildings for which all automatically reconstructed roof planes were found to have 

correspondences of sufficient overlap in the reference; however, these pixels are not inside a building in the 

reconstruction results. 

Bright red: Pixels in correctly detected roof planes that are not inside a building in the reference. 

Dark blue: Pixels in buildings for which at least one automatically reconstructed roof plane was not correct and 

which are inside a roof plane in the reconstruction results. 

Bright blue: Pixels in buildings for which at least one automatically reconstructed roof plane was not correct and 

which are not inside a building in the reconstruction results. 

Figure 8.14. Assessment of the correctness once for all detected roof planes (left) and once 

for roof planes covering an area larger than 2.5 m² (right). 

For a further investigation of the completeness, correctness, and quality, the roof plane 

evaluation was also carried out as a function of the roof plane size. As illustrated in 

Figure 8.15, correctness is already greater than 95 % if all roof planes are taken into account 

while completeness and quality become greater than 95 % if only roof planes larger than 

55 m² are considered. Thus, large roof planes tend to be well represented in the result while 

small roof planes cause some problems. Furthermore, the lowest completeness was achieved 

for roof planes of an area between 55 and 65 m² (80 %), although this would be usually the 

case for smaller roof planes because they are often more difficult to detect. This, however, is 

due to the low overall number of roof planes that feature such an area so that the absence of a 

small number of roof planes has already a great impact. As a consequence, the completeness 

in the cumulative histogram is only slightly increased if planes of such an area are ignored. In 
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general, it can be stated that the completeness, correctness, and quality become greater if more 

small and medium-sized roof planes are ignored in the roof plane evaluation of AOI 1. 

  
Figure 8.15. Histograms of the roof plane evaluation result as a function of the roof plane size 

once for area intervals (left) and once for roof planes larger than a certain area 

(cumulative) (right). 

With regard to the geometric accuracy, histograms were calculated once along the reference 

and once along the result to visualize the RMS error distribution of the roof planes. As shown 

in Figure 8.16, more than 50 % of the roof planes feature along the reference boundaries and 

along the result boundaries an RMS error less than 0.3 m. For more than 75 % of the refer-

ence and the result roof planes, the RMS error is still less than 0.6 m and 0.8 m, respectively. 

The median RMS error is thus much lower than the above stated average RMS error (see 

Table 8.5). The reason for this is that there are some roof planes that have a rather great RMS 

error. For example, there are four roof planes that feature an RMS error greater than 2 m 

along the reference and three roof planes that feature an RMS error greater than 2.5 m along 

the result boundaries. Consequently, it can be stated that most reconstructed roof planes 

feature a lower RMS error than the aforementioned average RMS error but that there are a 

few outliers with a great RMS error. 

  
Figure 8.16. Histograms of RMS errors once along reference boundaries (left) and once along 

result boundaries (right). 

In order to illustrate the height differences between the 3D building models of the reference 

and the result, digital surface models and their differences were calculated as shown in 

Figure 8.17. Most of the areas feature a height difference less than 0.5 m and thus represent  
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the building heights very well. However, those building details that were not reconstructed 

cause height differences larger than 1.2 m which explains the above stated RMSZ value of 

around 0.75 m. 

  

 

 
< 1.27 m 0 m > 1.27 m 

 

 

Figure 8.17. Digital surface models derived from the roof planes of the reference (left), from 

the roof planes of the result (middle), and the difference of these models where 

planes were found in both data sets (right). 

A comparison of the evaluation result to other fully and semi-automatic reconstruction 

approaches is presented in Table 8.7. As can be seen, the proposed grammar-guided recon-

struction approach TUB provides with 89.2 % the highest completeness. The highest correct-

ness was achieved with 100 % by ITCE2 and TUD2. Their high correctness, however, is to 

the detriment of their completeness, which is only 65.3 % and 73.3 %, respectively. Addition-

ally, their lead in the correctness is further reduced from 4.1 % to 1.4 % if only roof planes 

larger than 10 m² are considered. Furthermore, roof planes of most other reconstruction 

approaches feature considerably more frequently N:1 relations than 1:N relations which 

indicates that under-segmentation might be their major problem. In contrast, 1:N and N:1 

relations are balanced in TUB and it features with 22 N:1 relations the lowest value compared 

to the other approaches so that it can be stated that neither under- nor over-segmentation is a 

general problem of TUB. A comparison of the RMSXY accuracy reveals that TUB features 

with 0.6 m the lowest RMSXY error while the average RMSXY error of the other reconstruc-

tion approaches is around 0.86 m. 
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Table 8.7. Evaluation result (TUB) of AOI 1 in comparison to other evaluated (fully/ 

semi-automatic) reconstruction approaches presented in (ISPRS, 2017). 

Abbrev. 
Comp 

[%] 

Corr 

[%] 

Comp10 

[%] 

Corr10 

[%] 

Topo 

1:N 

Topo 

N:1 

Topo 

N:M 

RMSXY 

[m] 

CKU 86.8 98.9 88.4 99.2 10 36 3 0.9 

ITCE1 60.8 96.6 64.6 97.2 16 26 17 1.0 

ITCE2 65.3 100.0 68.0 100.0 0 38 3 0.9 

ITCX1 76.0 99.2 73.5 99.0 2 40 2 0.9 

ITCX2 84.7 96.2 87.8 99.2 13 41 6 0.8 

ITCX3 89.2 96.4 93.2 97.7 5 39 6 0.8 

TUD 67.4 96.2 68.0 97.8 1 33 1 0.8 

VSK 72.2 96.7 80.3 95.9 7 42 6 0.9 

YOR 88.2 98.5 94.6 99.2 5 36 14 0.8 

MON 76.4 83.3 84.4 84.9 6 42 7 1.0 

MON_mod 75.0 95.3 84.4 98.2 9 32 9 1.0 

MON2 66.0 91.7 85.7 97.5 17 22 11 0.9 

TUD2 73.3 100.0 70.7 100.0 1 36 3 0.8 

MEL_HE 88.2 99.5 95.2 99.2 3 40 2 0.7 

BNU2 84.7 99.3 89.8 99.2 2 42 3 0.8 

MON5 74.3 98.7 89.8 100.0 15 32 10 0.8 

TUB 89.2 95.9 92.6 98.6 24 22 14 0.6 

 

In summary, the proposed grammar-guided reconstruction approach is generally suitable to 

reconstruct historic buildings with complex shapes. However, the automatic reconstruction of 

small roof structures is still challenging, especially if their number of instances within a 

building is low. 

8.3.2 Vaihingen: AOI 2 

AOI 2 comprises 14 high-rising residential buildings with mixed flat and sloped roof types. 

The pixel-based building detection result shown in Figure 8.18 reveals that all large buildings 

are represented in the result. There are only four small buildings that were not automatically 

reconstructed. The reason for this is that their points were assigned to the class of 

non-building points during the classification. Consequently, these points were not used as 

input points of the proposed reconstruction approach why they are not represented in the 

result. Further differences regarding the automatically reconstructed building models and their 

references are highlighted in Figure 8.19. As can be seen, there is an attached building part 

missing in the south. This area was also not classified as building because the height to the 

terrain is rather low for a building and by taking the images into account, it seems to be a 

garden surrounded by a wall. Since the overall number of buildings in this AOI is with 14 
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rather low compared to the other AOIs, these missing areas have a strong impact on the 

evaluation result. Further false negative or false positive pixels are analogous to AOI 1 

located close to the building outlines. Those that feature small rectangular shapes essentially 

represent canopies whose points were not assigned to the building class during the classifica-

tion procedure. The small rectangular ensemble of red colored pixels in the northeast are due 

to a reconstructed balcony in the result that is missing in the reference. Other false negative 

and false positive essentially represent slight shifts or rotations of building facades. 

  

Figure 8.18. Pixel-based building detection result of the building models in the reference 

(left) and in the result (right). 

 

 

Figure 8.19. Evaluation result of the pixel-based building detection result (yellow: true 

positive pixels, blue: false negative pixels, and red: false positive pixels). 
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The roof plane detection result of the reference and the result reveals that the roof planes of 

high-rising residential buildings with mixed flat and sloped roof types are generally well 

represented in the result (see Figure 8.20). This applies even for the chimney and the small 

dormers on the building in the northeast. Additionally, the evaluation result of the roof plane 

detection result in Figure 8.21 shows that there is only one area from the point of view of the 

reference that is located within a building of the result and that features an insufficient 

overlap. This area consists of a horizontal and a sloped roof plane which were differently 

reconstructed in the result so that they feature an insufficient overlap with the reference roof 

planes. The reconstruction of this kind of roof structure is, however, not a general problem of 

the proposed reconstruction approach. Similar roof structures are present in the two buildings 

that are located in the southwest and they were for both buildings successfully reconstructed 

with sufficient overlap to the reference roof planes. 

  

Figure 8.20. Roof plane detection result of the building models in the reference (left) and in 

the result (right). 
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Ochre: Pixels available in both the reconstruction 

results and the reference and belonging to a reference 

plane found to have sufficient overlap with planes in 

the roof reconstruction results. 

Yellow: Pixels that belong to a reference plane found 

to have sufficient overlap with planes in the roof 

reconstruction results but that are not inside a building 

in the reconstruction results. 

Dark blue: Pixels in reference roof planes not having 

sufficient overlap with detected roof planes and not 

being inside a building in the reconstruction results. 

Bright blue: Pixels in reference roof planes not having 

sufficient overlap with detected roof planes, but being 

inside a building in the reconstruction results. 

Ochre: Pixels available in both the reconstruction 

results and the reference and belonging to a detected 

roof plane found to have sufficient overlap with planes 

in the reference. 

Yellow: Pixels that belong to a detected roof plane 

found to have sufficient overlap with planes in the 

reference but that are not inside a building in the 

reference. 

Dark red: Pixels in detected roof planes not having 

sufficient overlap with roof planes in the reference and 

not being inside a building in the reference. 

Bright red: Pixels in detected roof planes not having 

sufficient overlap with reference planes, but being 

inside a building in the reference. 

Figure 8.21. Evaluation result of the roof plane detection result once from the point of view 

of the reference (left) and once from the point of view of the result (right). 

Although the evaluation result of the roof plane detection result indicates a high corre-

spondence between the roof planes in the reference and the result, the assessment of their 

topological differences shows several discrepancies (see Figure 8.22). Generally, it can be 

stated that the number of 1:N relations is from the point of view of the reference dominant in 

AOI 2. For example, the five roof planes on the left of the saddleback buildings in the north 

feature a 1:N relation. The reason that the number of roof planes is larger in the result than in 

the reference is that roof terraces were reconstructed in the result as vertical intrusions of the 

roofs but they are missing in the reference (see Figure 8.23). The same reason, however, does 

not apply on the buildings with complex flat rooftops in the southwest. These 1:N relations 

are essentially caused by over-segmentation. Contrary, under-segmentation it the reason why 

the roof plane of the building in the south is colored in dark magenta. As a result, a chimney is 

missing in the automatically reconstructed building model. 



8. Results and Discussion 

173 

 

  
Yellow: Pixels inside reference planes having a 1:1 

relation to planes in the reconstruction results. 

Blue: Pixels inside reference planes that have no 

corresponding plane in the extraction results. 

Dark magenta: Pixels in reference roof planes that are 

merged with other planes in the reconstruction results 

(N:1 relation). 

Bright magenta: Pixels in reference roof planes split 

into two or more planes in the reconstruction results 

(1:N relation). 

Dark cyan: Pixels in reference roof planes being part 

of a plane cluster having N:M relations between planes 

in the reference and planes in the reconstruction 

results. 

Yellow: Pixels inside reconstructed planes having a 

1:1 relation to planes in the reference. 

Red: Pixels inside reconstructed planes that have no 

corresponding plane in the reference. 

Dark magenta: Pixels in reconstructed roof planes that 

correspond to several planes of the reference (1:N 

relation). 

Bright magenta: Pixels in reconstructed roof planes 

that are the result of a split of a plane in the 

reconstruction results (N:1 relation). 

Dark cyan: Pixels in reconstructed roof planes being 

part of a plane cluster having N:M relations between 

planes in the reconstruction results and planes in the 

reference. 

Figure 8.22. Assessment of the topological differences between the reference and the 

reconstruction result once from the point of view of the reference data (left) and 

once from the point of view of the detected roof planes (right). 

 

 

Figure 8.23. Magnified image of buildings where roof terraces are missing in the reference 

(left) but not in the result (right). 
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The assessment of the completeness is presented in Figure 8.24. As can be seen, all saddle-

back roofs in the north were completely reconstructed whereas the other buildings, which 

feature complex flat rooftop structures, are missing some building parts. This is essentially 

due to the aforementioned points that were classified as non-building or due to missing 

chimneys in the result. Particularly the former reason explains why these buildings are still 

incomplete if only roof planes larger than 2.5 m² are considered. The great number of 

incomplete buildings explains furthermore the low completeness value of 72.5 % for AOI 2 

(see Table 8.5). 

  

Ochre: Pixels in buildings for which all reference roof planes were found to have correspondences of sufficient 

overlap in the reconstruction results, but only if the pixel is inside a building both in the reference and in the 

reconstruction results. 

Yellow: Pixels in buildings for which all reference roof planes were found to have correspondences of sufficient 

overlap in the reconstruction results; however, these pixels are not inside a building in the reconstruction results. 

Bright red: Pixels in correctly detected roof planes that are not inside a building in the reference. 

Dark blue: Pixels in buildings for which at least one reference roof plane was not detected in the reconstruction 

results and which are inside a roof plane in the reconstruction results. 

Bright blue: Pixels in buildings for which at least one reference roof plane was not detected in the reconstruction 

results and which are not inside a building in the reconstruction results. 

Figure 8.24. Assessment of the completeness once for all detected roof planes (left) and once 

for roof planes covering an area larger than 2.5 m² (right). 

The presented assessment of the correctness in Figure 8.25 reveals that a large majority of 

automatically reconstructed buildings feature roof planes of sufficient overlap in the refer-

ence. However, there is one building in the result which features at least one automatically 

reconstructed roof planes of an area greater than 2.5 m² with insufficient overlap to the 

reference roof planes. The low number of automatically reconstructed roof plains with 

insufficient overlap to a reference roof plain explains the high correctness value of 97.1 % for 

AOI 2. 
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Ochre: Pixels in buildings for which all automatically reconstructed roof planes were found to have 

correspondences of sufficient overlap in the reference, but only if the pixel is inside a building both in the 

reference and in the reconstruction results. 

Yellow: Pixels in buildings for which all automatically reconstructed roof planes were found to have 

correspondences of sufficient overlap in the reference; however, these pixels are not inside a building in the 

reconstruction results. 

Bright red: Pixels in correctly detected roof planes that are not inside a building in the reference. 

Dark blue: Pixels in buildings for which at least one automatically reconstructed roof plane was not correct and 

which are inside a roof plane in the reconstruction results. 

Bright blue: Pixels in buildings for which at least one automatically reconstructed roof plane was not correct and 

which are not inside a building in the reconstruction results. 

Figure 8.25. Assessment of the correctness once for all detected roof planes (left) and once 

for roof planes covering an area larger than 2.5 m² (right). 

In order to determine the impact of the roof plane area on the completeness, correctness, and 

quality, the roof plane evaluation were also carried out as a function of the roof plane size. As 

illustrated in Figure 8.26, completeness and quality are analogous to AOI 1 greater than 95 % 

if only roof planes larger than 55 m² are considered whereas the correctness is already greater 

than 95 % if all roof planes are taken into account. It can be furthermore stated that the 

greatest challenge for the proposed reconstruction approach was to detect and reconstruct 

small roof planes that feature an area less or equal than 15 m². However, there are also some 

roof planes of greater area (between 45 m² and 55 m² or between 85 m² and 95 m²) that were 

not automatically reconstructed. 
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Figure 8.26. Histograms of the roof plane evaluation result as a function of the roof plane size 

once for area intervals (left) and once for roof planes larger than a certain area 

(cumulative) (right). 

The two histograms of RMS errors shown in Figure 8.27 reveal that more than 50 % of the 

roof planes feature along the reference boundaries and along the result boundaries an RMS 

error less than 0.4 m and 0.3 m, respectively. Additionally, there are only a few planes with an 

RMS error greater than 1 m why the median RMS error becomes much lower than the above 

stated average RMS error (see Table 8.5). For more than 75 % of the reference and the result 

roof planes, the RMS error is still less than 0.8 m and 0.9 m, respectively. Consequently, it 

can be stated that most reconstructed roof planes feature a lower RMS error than the average 

RMS error but that there are also a few outliers with a rather large RMS error compared to 

other reconstructed roof planes. 

  
Figure 8.27. Histograms of RMS errors once along reference boundaries (left) and once along 

result boundaries (right). 

The height differences between roof planes in the reference and in the result are presented in 

Figure 8.28. It shows that most automatically reconstructed areas feature a height difference 

less than 0.25 m. The roof planes of the result thus represent the building heights of the 

reference very well. However, missing details in the reference (e.g., balconies) and the 

adjustment of facades to support natural building regularities cause in some areas height 

differences larger than 1.2 m. The latter becomes particularly apparent in buildings that 

feature complex flat rooftop structures. 
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< 1.27 m 0 m > 1.27 m 

 

 

Figure 8.28. Digital surface models derived from the roof planes of the reference (left), from 

the roof planes of the result (middle), and the difference of these models where 

planes were found in both data sets (right). 

A comparison of the evaluation result to other fully and semi-automatic reconstruction 

approaches is presented in Table 8.8. It has to be considered that the number of buildings in 

this area is lower than in the other AOIs so that a change of only a few roof planes might have 

a visible change in the evaluation result. As can be seen, the completeness of the proposed 

reconstruction approach TUB is only on average for AOI 2 which is basically due to misclas-

sified building points. However, it is still competitive for both Comp and Comp10 if ITCE1 

and ITCE2, which feature significantly high completeness values but also significantly high 

RMSXY error values compared to all other approaches, are excluded. Analogous to other 

reconstruction approaches (e.g., ITCX2, Mon2, Mon5, etc.), over-segmentation could be 

assumed to be the major segmentation issue of TUB in AOI 2. However, the high number of 

1:N relations is caused by several balconies that were reconstructed in the result but that are 

not present in the reference. If they are ignored, then the 1:N relations are not dominant 

anymore compared to the N:1 and N:M relations. With the exception of ITCE1 and ITCE2, all 

reconstruction approaches have a high geometric accuracy in x-y direction of less or equal 

than twice of the point spacing. Therefore, it is not surprising that TUB features an RMSXY 

value that is only slightly better than the average. 
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Table 8.8. Evaluation result (TUB) of AOI 2 in comparison to other evaluated (fully/ 

semi-automatic) reconstruction approaches presented in (ISPRS, 2017). 

Abbrev. 
Comp 

[%] 

Corr 

[%] 

Comp10 

[%] 

Corr10 

[%] 

Topo 

1:N 

Topo 

N:1 

Topo 

N:M 

RMSXY 

[m] 

CKU 78.3 93.1 93.8 100.0 8 4 0 0.5 

ITCE1 79.7 73.7 97.9 73.7 0 7 0 1.2 

ITCE2 79.7 95.0 97.9 100.0 0 7 0 1.2 

ITCX1 62.3 95.1 77.1 94.9 2 4 0 0.5 

ITCX2 75.4 98.2 91.7 100.0 15 3 1 0.5 

ITCX3 71.0 100.0 89.6 100.0 3 4 1 0.5 

TUD 68.1 98.1 85.4 100.0 5 3 0 0.6 

VSK 73.9 100.0 91.7 100.0 3 5 1 0.7 

YOR 66.7 100.0 83.3 100.0 5 3 0 0.5 

CAS 63.8 100.0 79.2 100.0 3 3 0 0.7 

MON 73.9 91.9 93.8 92.6 7 3 1 0.7 

MON_mod 69.6 96.8 85.4 100.0 8 3 2 0.8 

MON2 71.0 90.7 85.4 100.0 11 2 0 0.7 

TUD2 71.0 100.0 89.6 100.0 2 3 0 0.3 

MEL_HE 71.0 98.1 91.7 100.0 2 2 0 0.6 

BNU2 73.9 100.0 93.8 100.0 2 9 0 0.5 

MON5 72.5 94.8 89.6 100.0 27 1 2 0.7 

TUB 72.5 97.1 91.5 100.0 14 3 1 0.6 

 

In summary, the proposed grammar-guided reconstruction approach is generally suitable to 

reconstruct high-rising residential buildings with mixed flat and sloped roof types. However, 

some difficulties have been encountered on the automatic reconstruction of all details 

belonging to large flat rooftops that feature a complex agglomeration of several roof planes. 

8.3.3 Vaihingen: AOI 3 

AOI 3 comprises with 56 buildings the largest number of buildings of all AOIs in the 

Vaihingen test site. They are located in a purely residential area and most of them feature 

either a flat or a saddleback roof with small dormers or attached canopies. The pixel-based 

building detection result presented in Figure 8.29 shows that most of the buildings are 

represented in the result. A closer look reveals, however, that several small buildings were not 

automatically reconstructed at all. In total, there a 12 buildings missing in the result of which 

most of them represent arbors or gazebos. As it is typically for these kind of buildings, they 

are, on the one hand, represented by only a small number of points and, on the other hand, 

surrounded by vegetation that covers and hides several parts. Some of the missing buildings 

are, therefore, only recognizable in the images, which were used to manually reconstruct the 
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reference buildings, but not in the ALS data. The classification of their points as building 

points is thus rather challenging which explains why all points of the missing buildings were 

classified as non-building points so that they have not been incorporated in the automatic 

reconstruction process. 

  

Figure 8.29. Pixel-based building detection result of the building models in the reference 

(left) and in the result (right). 

Further differences in the pixel-based building detection result become visible in Figure 8.30. 

Similar to AOI 1 and AOI 2, they are mainly close to building facades and caused either by 

the resolution of the point cloud, which does not allow to precisely detect them, or by the 

adjustment step of the automatic reconstruction approach, which tries to support natural 

regularities. Additionally, there were also two small areas classified as false positive that are 

attached to the building in the north. Both areas represent awnings which are visible in the 

point cloud but missing in the manually reconstructed reference. 
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Figure 8.30. Evaluation result of the pixel-based building detection result (yellow: true 

positive pixels, blue: false negative pixels, and red: false positive pixels). 

The roof plane detection result of the reference and the result is presented in Figure 8.31. As 

can be seen, the majority of automatically reconstructed rooftops feature the same roof 

surface distribution as their corresponding rooftops in the reference. A closer look on the roof 

plane detection result reveals, however, that several small roof planes that consist of only a 

few pixels are not present in the result. They essentially represent chimneys that can be only 

hardly recognized in the ALS data or that are only visible in the images. In contrast, larger 

roof planes in buildings that have been reconstructed are well represented in the result. 
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Figure 8.31. Roof plane detection result of the building models in the reference (left) and in 

the result (right). 

As illustrated in Figure 8.32, a large majority of the reconstructed areas have pixels that 

feature a sufficient overlap between roof planes in the reference and in the result. The 

previously made statement that most automatically reconstructed rooftops feature the same 

roof surface distribution as their corresponding rooftops in the reference is thus confirmed by 

the evaluation result of the roof plane detection result. Furthermore, it can be seen that from 

the point of view of the reference some canopies are missing in the result in addition to the 

above mentioned missing arbors and gazebos. This is particularly the case for buildings on the 

western side of AOI 3. Contrary, there are only two roof planes in the result within the 

buildings of the reference that have no corresponding reference roof plane. As the small areas 

already imply, these roof planes belong to chimneys that are missing in the reference. Their 

presence can be clearly seen in the images but they are only hardly to detect in the point 

cloud. The proposed ICP based reconstruction of small roof superstructures, however, was 

able to correctly identify and to reconstruct the missing chimney in the northeast because 

there are six other chimneys on the same rooftop that feature a similar shape. The same also 

applies to the missing chimney in the southeast. 
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Ochre: Pixels available in both the reconstruction 

results and the reference and belonging to a reference 

plane found to have sufficient overlap with planes in 

the roof reconstruction results. 

Yellow: Pixels that belong to a reference plane found 

to have sufficient overlap with planes in the roof 

reconstruction results but that are not inside a building 

in the reconstruction results. 

Dark blue: Pixels in reference roof planes not having 

sufficient overlap with detected roof planes and not 

being inside a building in the reconstruction results. 

Bright blue: Pixels in reference roof planes not having 

sufficient overlap with detected roof planes, but being 

inside a building in the reconstruction results. 

Ochre: Pixels available in both the reconstruction 

results and the reference and belonging to a detected 

roof plane found to have sufficient overlap with planes 

in the reference. 

Yellow: Pixels that belong to a detected roof plane 

found to have sufficient overlap with planes in the 

reference but that are not inside a building in the 

reference. 

Dark red: Pixels in detected roof planes not having 

sufficient overlap with roof planes in the reference and 

not being inside a building in the reference. 

Bright red: Pixels in detected roof planes not having 

sufficient overlap with reference planes, but being 

inside a building in the reference. 

Figure 8.32. Evaluation result of the roof plane detection result once from the point of view 

of the reference (left) and once from the point of view of the result (right). 

The assessment of the topological differences presented in Figure 8.33 shows that 1:1 

relations are dominant in AOI 3 but that there are also several roof planes in the reference that 

have been merged to a single roof plane in the result. Most of them are caused by chimneys 

which are either not recognizable in the ALS data or represented by only a few points. 

Consequently it can be said that regarding chimneys, the problem of under-segmentation is in 

AOI 3 particularly apparent. Also the ICP based roof superstructure reconstruction approach 

was not able to recognize them because their number of instances on a single building is too 

low or often only one. 
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Yellow: Pixels inside reference planes having a 1:1 

relation to planes in the reconstruction results. 

Blue: Pixels inside reference planes that have no 

corresponding plane in the extraction results. 

Dark magenta: Pixels in reference roof planes that are 

merged with other planes in the reconstruction results 

(N:1 relation). 

Bright magenta: Pixels in reference roof planes split 

into two or more planes in the reconstruction results 

(1:N relation). 

Dark cyan: Pixels in reference roof planes being part 

of a plane cluster having N:M relations between planes 

in the reference and planes in the reconstruction 

results. 

Yellow: Pixels inside reconstructed planes having a 

1:1 relation to planes in the reference. 

Red: Pixels inside reconstructed planes that have no 

corresponding plane in the reference. 

Dark magenta: Pixels in reconstructed roof planes that 

correspond to several planes of the reference (1:N 

relation). 

Bright magenta: Pixels in reconstructed roof planes 

that are the result of a split of a plane in the 

reconstruction results (N:1 relation). 

Dark cyan: Pixels in reconstructed roof planes being 

part of a plane cluster having N:M relations between 

planes in the reconstruction results and planes in the 

reference. 

Figure 8.33. Assessment of the topological differences between the reference and the 

reconstruction result once from the point of view of the reference data (left) and 

once from the point of view of the detected roof planes (right). 

The assessment of the completeness shown in Figure 8.34 reveals that there are in total 18 

reference buildings with a corresponding building in the result that feature at least one 

reference roof reference plane that is missing in the result. As previously stated, this large 

number is essentially due to missing chimneys and canopies. Therefore, their number is 

already decreased from 18 to 13 if only roof planes larger than 2.5 m² are considered. In order 

to examine also the impact of missing canopies on the completeness, a further investigation 

on the roof plane evaluation is carried out later as a function of the roof plane size. 
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Ochre: Pixels in buildings for which all reference roof planes were found to have correspondences of sufficient 

overlap in the reconstruction results, but only if the pixel is inside a building both in the reference and in the 

reconstruction results. 

Yellow: Pixels in buildings for which all reference roof planes were found to have correspondences of sufficient 

overlap in the reconstruction results; however, these pixels are not inside a building in the reconstruction results. 

Bright red: Pixels in correctly detected roof planes that are not inside a building in the reference. 

Dark blue: Pixels in buildings for which at least one reference roof plane was not detected in the reconstruction 

results and which are inside a roof plane in the reconstruction results. 

Bright blue: Pixels in buildings for which at least one reference roof plane was not detected in the reconstruction 

results and which are not inside a building in the reconstruction results. 

Figure 8.34. Assessment of the completeness once for all detected roof planes (left) and once 

for roof planes covering an area larger than 2.5 m² (right). 

In contrast to the completeness, the correctness of the automatically reconstructed roof planes 

is significantly higher as shown in Figure 8.35. A great majority of the pixels in the automati-

cally reconstructed buildings were found to have correspondences of sufficient overlap in the 

reference. There are only two buildings in the result whose roof planes have not all a corre-

sponding roof plane in the reference. As discussed before, missing chimneys in the reference 

are in both cases the reason. This statement is supported by the fact that corresponding roof 

planes were found for all automatically reconstructed roof planes larger than 2.5 m². 
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Ochre: Pixels in buildings for which all automatically reconstructed roof planes were found to have 

correspondences of sufficient overlap in the reference, but only if the pixel is inside a building both in the 

reference and in the reconstruction results. 

Yellow: Pixels in buildings for which all automatically reconstructed roof planes were found to have 

correspondences of sufficient overlap in the reference; however, these pixels are not inside a building in the 

reconstruction results. 

Bright red: Pixels in correctly detected roof planes that are not inside a building in the reference. 

Dark blue: Pixels in buildings for which at least one automatically reconstructed roof plane was not correct and 

which are inside a roof plane in the reconstruction results. 

Bright blue: Pixels in buildings for which at least one automatically reconstructed roof plane was not correct and 

which are not inside a building in the reconstruction results. 

Figure 8.35. Assessment of the correctness once for all detected roof planes (left) and once 

for roof planes covering an area larger than 2.5 m² (right). 

The previously made statement that particularly small roof structures cause problems during 

the automatic building reconstruction of AOI 3 is confirmed by the two histograms shown in 

Figure 8.36. As can be seen, all roof planes in the reference that feature an area greater than 

45 m² were successfully reconstructed with the proposed approach. Moreover, all automati-

cally reconstructed roof planes greater than 25 m² were correctly reconstructed. As can be 

further seen, most problems are caused by reference roof planes that feature an area between 5 

and 15 m². Therefore, the completeness is increased from 87.6 % to 93.9 % if in addition to 

all roof planes smaller or equal than 5 m² also all roof planes smaller or equal than 15 m² are 

ignored. 
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Figure 8.36. Histograms of the roof plane evaluation result as a function of the roof plane size 

once for area intervals (left) and once for roof planes larger than a certain area 

(cumulative) (right). 

Regarding the geometric accuracy, the two histograms of RMS errors presented in Figure 8.37 

show that more than 50 % of the roof planes feature along the reference boundaries and along 

the result boundaries an RMS error less than 0.3 m. For more than 75 % of the reference and 

the result roof planes, the RMS error is for both still less than 0.5 m. By taking the point 

spacing in the ALS data (~ 0.4 m) into account, it can be thus stated that the automatically 

reconstructed building models feature a high geometric accuracy. Compared to the other 

evaluated AOIs, the proposed reconstruction approach achieved in AOI 3 its best performance 

regarding the RMS error. 

  
Figure 8.37. Histograms of RMS errors once along reference boundaries (left) and once along 

result boundaries (right). 

A comparison of the height differences reveals that most areas where a correspondence 

between roof planes in the reference and the result was found feature a height difference less 

than 0.25 m. However, as can be seen in Figure 8.38, there are also a few buildings that 

partially exhibit areas with a height difference of more than 1 m. The blue colored area in the 

building in the southwest, for example, is caused by an actually present step edge that was 

detected during the automatic reconstruction but that have been differently reconstructed in 

the reference. The same applies to the rectangular area colored in red in the building that is 

located in the center of the AOI. 
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Figure 8.38. Digital surface models derived from the roof planes of the reference (left), from 

the roof planes of the result (middle), and the difference of these models where 

planes were found in both data sets (right). 

As can be seen in Table 3.1, compared to other fully and semi-automatic building reconstruc-

tion approaches, the proposed grammar-guided approach TUB generally provides high 

completeness and correctness. There are only three other approaches out of 22 evaluated 

reconstruction approaches that have a slightly higher completeness than TUB (between 0.9 % 

and 3 % higher). Two of them feature, however, a significantly lower completeness compared 

to TUB (8.5 % and 12.3 % lower). The other one is BNU whose completeness value is only 

2.1 % higher than TUB. Regarding the correctness, there are several reconstruction ap-

proaches that feature a slightly better correctness than TUB (max. 3.3 % higher). However, 

with the exception of BNU, all of them have a lower completeness compared to TUB 

(between 0.4 % and 20.8 % lower). An increase of the completeness if only roof planes larger 

than 10 m² are considered can be still identified for TUB (from 85.1 % to 92.7 %) but it is 

lower than for many other reconstruction approaches (e.g., YOR and MEL_HE). By consider-

ing only Comp, Corr, Comp10, and Corr10 it can be stated only BNU is slightly better in all of 

these metrics than TUB. However, if the topological differences between the roof planes in 

the reference and in the result are examined, it has to be stated that the number of N:1 

relations is in BNU as well as in TUB dominant but their number is with 52 in BNU signifi-

cantly higher than the 23 detected N:1 relations in TUB. In general, there seems to be a 

serious problem for all proposed reconstruction approaches in this AOI regarding N:1 

relations which might be caused by the large number of chimneys which are difficult to 

recognize in the ALS data. With regard to the geometric accuracy in x-y direction, there is 

only one reconstruction approach (TUD2) that features with 0.5 m a 0.1 m smaller RMSXY 

than TUB. 
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Table 8.9. Evaluation result (TUB) of AOI 3 in comparison to other evaluated (fully/ 

semi-automatic) reconstruction approaches presented in (ISPRS, 2017). 

Abbrev. 
Comp 

[%] 

Corr 

[%] 

Comp10 

[%] 

Corr10 

[%] 

Topo 

1:N 

Topo 

N:1 

Topo 

N:M 

RMSXY 

[m] 

CKU 81.3 98.4 91.9 99.1 4 48 2 0.8 

FIE 82.6 83.1 88.7 93.4 7 44 5 1.1 

ITCE1 67.7 100.0 72.6 100.0 0 47 2 0.8 

ITCE2 64.3 100.0 64.5 100.0 0 46 0 1.0 

ITCX1 70.2 100.0 72.6 100.0 1 48 0 0.7 

ITCX2 86.0 84.4 93.5 95.0 5 48 2 0.7 

ITCX3 88.1 88.2 96.8 95.8 3 50 2 0.7 

TUD 74.5 93.0 83.1 98.0 0 42 1 0.7 

VSK 76.6 99.1 86.3 100.0 3 50 0 0.8 

YOR 84.7 100.0 97.6 100.0 2 51 1 0.6 

CAS 73.2 100.0 83.1 100.0 0 48 0 0.8 

MON 82.1 93.9 92.7 96.7 5 45 0 0.9 

KNTU 80.4 96.7 91.9 97.7 0 52 0 0.9 

BNU 87.2 100.0 96.0 100.0 2 52 0 0.6 

MON_mod 74.5 96.2 91.1 100.0 5 39 2 0.8 

MON2 73.2 89.2 91.9 99.1 7 34 2 0.8 

TUD2 73.6 100.0 81.5 100.0 0 42 0 0.5 

MEL_HE 82.6 97.8 96.0 100.0 2 44 1 0.7 

WROC 80.4 98.2 89.5 100.0 0 49 3 0.8 

WROC_2a 81.3 100.0 91.9 100.0 2 54 0 0.7 

WROC_2b 81.7 100.0 92.7 100.0 3 52 3 0.6 

MON5 80.9 99.3 91.1 99.1 7 36 4 0.8 

TUB 85.1 96.7 92.7 98.3 6 23 8 0.6 

 

In summary, it can be stated that the proposed reconstruction approach is generally suitable to 

reconstruct residential area with small detached houses if their points can be identified as 

building points. However, the automatic reconstruction of small roof superstructures like 

chimneys which are only difficult to recognize in the point cloud is still challenging. 

8.3.4 Toronto: AOI 4 

The 58 buildings of AOI 4 represent a mixture of low and high-storey buildings of which 

most of them feature flat rooftops on multiple levels. A major challenge for their automatic 

reconstruction is the large number of ventilations, cooling systems and other complex roof 

structures that are either located on top of the base roof or embedded in the base roof. The 
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pixel-based building detection result of AOI 4 presented in Figure 8.39 shows that most 

reference buildings were automatically reconstructed. There are only two small buildings in 

the northeast whose points were not correctly classified as building points and that were 

therefore not used as input data for the automatic reconstruction. Similarly, the points of the 

small gazebo with the conical shape in the center of the park in the east have not been 

classified as buildings during the classification process. This might be due to the reason that 

its shape is only difficult to distinguish from the shape of the surrounding trees. 

  

Figure 8.39. Pixel-based building detection result of the building models in the reference 

(left) and in the result (right). 

A closer look on the evaluation result of the pixel-based building detection result which 

highlights the differences between the reference and the result supports the impression that 

most building areas were automatically reconstructed (see Figure 8.40). In contrast to the 

AOIs of the Vaihingen test site, areas of false positive classified pixels predominate the areas 

of false negative pixels. In order to explain the reason for this, various aspects have to be 

considered. Firstly, those false positive classified pixels that are located close to the building 

outline are essentially due to the facade adjustment procedure. Secondly, there are several 

narrow alleyways in AOI 4 that need to be represented as intrusions in the resulting building 

models. However, the proposed reconstruction approach did not recognize them as alleyways 

that need to be maintained but tried to close these gaps in the buildings. Note, this is not a 

general problem of the proposed reconstruction approach as it can be seen in the building in 

the northeast that features some small alleyways. Thirdly, some non-building points were 

classified as building points why the automatic reconstruction approach tried to incorporate 

them in the resulting building models. This is, for example the case for the narrow alleyway 

of the building in the southwest, the backyard of the building in the southeast, the M-shaped 

area of false positive classified pixels in the center, and the backyard in the northeast of 



8. Results and Discussion 

190 

 

AOI 4. Fourthly, one building in the center next to the false positive classified M-shaped area 

is missing in the reference. This building, in which the Mozart Project Orchestra is currently 

located, is recognizable in the ALS data and the images as well and is therefore reasonably 

present in the result. 

 

Figure 8.40. Evaluation result of the pixel-based building detection result (yellow: true 

positive pixels, blue: false negative pixels, and red: false positive pixels). 

The roof plane detection result presented in Figure 8.41 shows a large number of small roof 

planes that are located on top of the buildings and that represent the aforementioned small 

roof structures which are challenging to automatically reconstruct. As can be seen, some of 

these small roof planes are either present in the reference or in the result but not in both. 

Particularly these roof planes cause the large number of 1:N, N:1, and N:M relations that 

become visible in the assessment of the topological differences. In contrast, roof planes 

belonging to base roofs and other large roof planes are generally well represented in the 

result. The advantage of applying sub-surface growing becomes particularly visible in this 

AOI. Several small roof details that would be otherwise lost were maintained and became part 

of larger roof planes. Gaps in lower level roof structures that were caused by upper level roof 

structures have been automatically closed by sub-surface growing so that their identification 

and reconstruction became straightforward. 
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Figure 8.41. Roof plane detection result of the building models in the reference (left) and in 

the result (right). 

By taking only the evaluation result of the roof plane detection result into account (see 

Figure 8.42), the impression is given that there is a high correspondence between roof planes 

in the reference and in the result. Besides those areas where a misclassification of points is 

present, there are only a few pixels in the reference roof planes that have an insufficient 

overlap with the roof planes of the result or vice versa. The circular roof plane in the center of 

the squared building in the west, for example, is only present in the result but not in the 

reference and represents a missing chimney in the reference. 
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Ochre: Pixels available in both the reconstruction 

results and the reference and belonging to a reference 

plane found to have sufficient overlap with planes in 

the roof reconstruction results. 

Yellow: Pixels that belong to a reference plane found 

to have sufficient overlap with planes in the roof 

reconstruction results but that are not inside a building 

in the reconstruction results. 

Dark blue: Pixels in reference roof planes not having 

sufficient overlap with detected roof planes and not 

being inside a building in the reconstruction results. 

Bright blue: Pixels in reference roof planes not having 

sufficient overlap with detected roof planes, but being 

inside a building in the reconstruction results. 

Ochre: Pixels available in both the reconstruction 

results and the reference and belonging to a detected 

roof plane found to have sufficient overlap with planes 

in the reference. 

Yellow: Pixels that belong to a detected roof plane 

found to have sufficient overlap with planes in the 

reference but that are not inside a building in the 

reference. 

Dark red: Pixels in detected roof planes not having 

sufficient overlap with roof planes in the reference and 

not being inside a building in the reference. 

Bright red: Pixels in detected roof planes not having 

sufficient overlap with reference planes, but being 

inside a building in the reference. 

Figure 8.42. Evaluation result of the roof plane detection result once from the point of view 

of the reference (left) and once from the point of view of the result (right). 

The difficulties for building reconstruction approaches to automatically reconstruct buildings 

in AOI 4 become particularly apparent if topological differences between roof planes in the 

reference and in the result are examined. As can be seen in Figure 8.43, in comparison to the 

AOIs in Vaihingen, there is a large number of roof planes that do not feature a 1:1 relation. 

This are primarily caused by the aforementioned large number of small roof structures. It is, 

however, important to note that not all N:1 and 1:N relations indicate a missing roof plane in 

the result or in the reference but some of them are due to the implementation of the topologi-

cal test itself. As a result, only a few buildings consist of roof planes that all feature a 1:1 

relation. This is, for example, the case for the two buildings that are once located in the 

northwest and once in the southeast. 
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Yellow: Pixels inside reference planes having a 1:1 

relation to planes in the reconstruction results. 

Blue: Pixels inside reference planes that have no 

corresponding plane in the extraction results. 

Dark magenta: Pixels in reference roof planes that are 

merged with other planes in the reconstruction results 

(N:1 relation). 

Bright magenta: Pixels in reference roof planes split 

into two or more planes in the reconstruction results 

(1:N relation). 

Dark cyan: Pixels in reference roof planes being part 

of a plane cluster having N:M relations between planes 

in the reference and planes in the reconstruction 

results. 

Yellow: Pixels inside reconstructed planes having a 

1:1 relation to planes in the reference. 

Red: Pixels inside reconstructed planes that have no 

corresponding plane in the reference. 

Dark magenta: Pixels in reconstructed roof planes that 

correspond to several planes of the reference (1:N 

relation). 

Bright magenta: Pixels in reconstructed roof planes 

that are the result of a split of a plane in the 

reconstruction results (N:1 relation). 

Dark cyan: Pixels in reconstructed roof planes being 

part of a plane cluster having N:M relations between 

planes in the reconstruction results and planes in the 

reference. 

Figure 8.43. Assessment of the topological differences between the reference and the 

reconstruction result once from the point of view of the reference data (left) and 

once from the point of view of the detected roof planes (right). 

The result of the assessment of the completeness shown in Figure 8.44 reveals that, on the one 

side, the majority of buildings (~ 57 %) feature roof planes for which corresponding roof 

planes with sufficient overlap were detected in the result. On the other side, a significant 

proportion (~ 43 %) of the reference buildings seems to be incomplete in the result. Their 

number is only decreased by two if only roof planes greater than 2.5 m² are considered. In 

fairness, it has to be considered that the average number of roof planes of which a building in 

AOI 4 consists is significant larger compared to the buildings in the Vaihingen test site. This, 

in turn, makes the complete reconstruction of a building more difficult. 
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Ochre: Pixels in buildings for which all reference roof planes were found to have correspondences of sufficient 

overlap in the reconstruction results, but only if the pixel is inside a building both in the reference and in the 

reconstruction results. 

Yellow: Pixels in buildings for which all reference roof planes were found to have correspondences of sufficient 

overlap in the reconstruction results; however, these pixels are not inside a building in the reconstruction results. 

Bright red: Pixels in correctly detected roof planes that are not inside a building in the reference. 

Dark blue: Pixels in buildings for which at least one reference roof plane was not detected in the reconstruction 

results and which are inside a roof plane in the reconstruction results. 

Bright blue: Pixels in buildings for which at least one reference roof plane was not detected in the reconstruction 

results and which are not inside a building in the reconstruction results. 

Figure 8.44. Assessment of the completeness once for all detected roof planes (left) and once 

for roof planes covering an area larger than 2.5 m² (right). 

A similar pattern can be seen in Figure 8.45 which shows the correctness of the roof planes. 

The majority of automatically reconstructed buildings (~ 59 %) feature pixels for which all 

roof planes were found to have correspondences of sufficient overlap in the reference. 

Conversely, a significant proportion (~ 41 %) of the automatically reconstructed buildings 

feature at least one roof plane that is not correct according to the reference. It is interesting to 

note, that 60 % of the buildings that have been identified as incomplete belong also to the 

class of buildings that feature at least one incorrect roof plane. Particularly these buildings 

(~ 26 % of the buildings in AOI 4) are difficult to reconstruct with all their details. 
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Ochre: Pixels in buildings for which all automatically reconstructed roof planes were found to have 

correspondences of sufficient overlap in the reference, but only if the pixel is inside a building both in the 

reference and in the reconstruction results. 

Yellow: Pixels in buildings for which all automatically reconstructed roof planes were found to have 

correspondences of sufficient overlap in the reference; however, these pixels are not inside a building in the 

reconstruction results. 

Bright red: Pixels in correctly detected roof planes that are not inside a building in the reference. 

Dark blue: Pixels in buildings for which at least one automatically reconstructed roof plane was not correct and 

which are inside a roof plane in the reconstruction results. 

Bright blue: Pixels in buildings for which at least one automatically reconstructed roof plane was not correct and 

which are not inside a building in the reconstruction results. 

Figure 8.45. Assessment of the correctness of all detected roof planes (left) and assessment of 

the correctness of roof planes covering an area larger than 2.5 m². 

The statement that particularly small roof structures caused problems during the automatic 

building reconstruction is confirmed by the two histograms shown in Figure 8.46. As can be 

seen, the completeness of roof planes that feature an area less or equal than 5 m² is only 

72.9 %. Due to their large number in AOI 4, the cumulative completeness is significantly 

increased from 88.1 % to 95 % if these roof planes are ignored. Further low completeness 

values were detected for roof planes that feature an area around 65 m². However, their total 

number is low why each of these roof planes has a high impact on the completeness values. 

This is reflected by the rather small change in the cumulative histogram that becomes visible 

if these roof planes are ignored. It can be thus once again concluded that particularly small 

rooftop details cause major problems but that there are also a few rather large roof planes in 

AOI 4 that are incomplete in the automatically reconstructed building models. Additionally, 

by considering the large number of small roof planes in AOI 4, it is interesting to note that the 
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correctness of roof planes smaller or equal than 5 m² is with 94.3 % rather high why it 

changes in the cumulative histogram only between 93.1 % and 97.5 %. 

  
Figure 8.46. Histograms of the roof plane evaluation result as a function of the roof plane size 

once for area intervals (left) and once for roof planes larger than a certain area 

(cumulative) (right). 

As can be seen in Figure 8.47, more than 50 % of the roof planes feature along the reference 

boundaries and along the result boundaries an RMS error less than 0.6 m and 0.5 m, respec-

tively. For more than 75 % of the reference and the result roof planes, the RMS error is still 

less than 1.1 m and 1.0 m, respectively. It is furthermore interesting to note that there is a 

remarkable large number of roof planes in both the reference and the result of AOI 4 that 

feature an RMS error less than 0.1 m whereas this is usually the case for roof planes in the 

AOIs of the Vaihingen test site that feature an area between 0.1 m and 0.3 m. In spite of this, 

the average RMS error of roof planes is significantly larger in AOI 4 than in the AOIs of the 

Vaihingen test site. This is mainly due to the roof planes that feature an RMS error larger than 

1.5 m because their number is significantly larger in AOI 4 than in the AOIs of the Vaihingen 

test site. 

  
Figure 8.47. Histograms of RMS errors once along reference boundaries (left) and once along 

result boundaries (right). 

The comparison of the height differences shown in Figure 8.48 reveals a more heterogeneous 

picture than for the AOIs of the Vaihingen test site. Several areas are clearly recognizable that 

feature a height difference larger than 1 m. These areas do not only belong to small roof 

planes but to base roofs as well. For example, the building located in the northwest features a 

large area that indicates with its blue color a height difference of more than 1 m. This building 
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has a parking lot on the rooftop that was differently reconstructed in the reference and in the 

result. In the result, the parking lot it represented as a horizontal plane whereas a height 

change can be detected in the reference. Furthermore, some small dome roofs can be identi-

fied that are missing in the manually reconstructed building models but they are present in the 

result of the automatic reconstruction. This is, for example the case for the building in the 

northwest as well as for the building in the southeast that feature both a circular red area in 

their center. 
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Figure 8.48. Digital surface models derived from the roof planes of the reference (left), from 

the roof planes of the result (middle), and the difference of these models where 

planes were found in both data sets (right). 

Due to the challenges of AOI 4, the number of submitted fully and semi-automatically 

reconstructed building models is significantly lower than for the AOIs of the Vaihingen test 

site. As can be seen in Table 8.10, the automatically reconstructed buildings of the proposed 

grammar-guided reconstruction approach TUB provides with 88.1 % a significantly higher 

completeness than the others (12.6 % higher than the second best completeness value). By 

taking into account the difficulties of AOI 4, it can be stated that the completeness of TUB is 

rather high. The latter applies to the correctness of TUB as well although YOR provides with 

97.5 % a higher completeness than TUB with 93.4 %. A similar pattern can be seen if only 

roof planes larger than 10 m² are considered. The large number of roof plane relations that do 

not feature a 1:1 relation has to be seen from the point of view that some details are difficult 

to detect in the input data or are even missing in the manually reconstructed building models. 

Therefore, it would be unfair to conclude that over-segmentation is the major problem of TUB 

for the reconstruction of AOI 4. The geometric accuracy of the resulting building models of 

TUB is slightly greater than twice the ALS point spacing but it is with 0.9 m still 0.35 m 

lower than the average and thereby among the best approaches. 
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Table 8.10. Evaluation result (TUB) of AOI 4 in comparison to other evaluated (fully/ 

semi-automatic) reconstruction approaches presented in (ISPRS, 2017). 

Abbrev. 
Comp 

[%] 

Corr 

[%] 

Comp10 

[%] 

Corr10 

[%] 

Topo 

1:N 

Topo 

N:1 

Topo 

N:M 

RMSXY 

[m] 

CKU 68.6 80.2 72.9 79.1 42 74 86 1.7 

YOR 75.5 97.5 86.0 97.6 27 109 19 0.8 

FIE 52.3 91.5 60.4 91.9 56 62 36 1.4 

MON2 70.2 78.3 87.1 89.0 180 30 84 1.1 

TUB 88.1 93.4 94.7 93.6 104 52 65 0.9 

 

In summary, since AOI 4 consists of low and high-storey buildings that feature a lot of small 

roof structures which are not always recognizable in the point cloud due to their low point 

density, the proposed grammar-guided reconstruction approach reaches its limit if all details 

are required. However, the same applies for the manually reconstruction which also produces 

in many cases only incomplete building models. Therefore, by taking the manual effort and 

the quality of the resulting building models into account, the proposed reconstruction 

approach still provides good results. 

8.3.5 Toronto: AOI 5 

AOI 5 comprises 38 buildings that represent high-rise buildings in a typical central business 

district of North Amerika. As can be seen in Figure 8.49, most buildings of the reference were 

automatically reconstructed but there are also some small areas that are either missing in the 

reference or in the result. Most of them are located between Richmond Street West and King 

Street West. The differences are caused by several reasons. Firstly, some reference buildings 

were wrongly manually reconstructed. They can neither be detected in the data nor in reality 

so that they should be excluded from the reference. This applies, for example, to the L-shaped 

brown and the U-shaped magenta colored buildings in the northern center of AOI 5 and to the 

small circular shaped building colored in blue that is located in the northwest. Secondly, some 

differences are caused by missing building parts in the reference that can be only hardly 

recognized from the ALS data and the images. For example, the three reference buildings that 

are located between the three magenta colored buildings in the west were merged to a single 

building in the result that features a significantly larger area than the three separated build-

ings. A closer look exposes that it is a one-storeyed building whose flat roof is used as a 

passageway with green plants and as a resting area which includes a hotel pool. Therefore, 

this building is not wrongly present in the result but it is missing in the manually recon-

structed reference. Note, the rectangular gap in the automatically reconstructed building is due 

to an accumulation of several skylight windows which did not reflect the laser beams during 

the capturing of the ALS data. Similarly, the building in the north of AOI 5 features a large 

backyard in the reference. Due to the high vegetation in this area, it cannot be seen from the 

images if the vegetation is located on top of a roof or on ground level. Only the heights of the 

points in the ALS data indicate that a building might be below the vegetation. Consequently, 
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this area is again missing in the manual reconstruction. The same applies to the backyard of 

the dark colored reference building in the east. The high discrepancy between the reference 

and the result already shows the high degree of difficulty to reconstruct the buildings of 

AOI 5. 

  

Figure 8.49. Pixel-based building detection result of the building models in the reference 

(left) and in the result (right). 

Further differences of the pixel-based building detection results are highlighted in 

Figure 8.50. For example, the squared area in the north that is completely surrounded by a 

building is represented as a building component with a flat roof in the result but it is not part 

of the reference. Based on the images and due to the high-rise buildings around this area, it 

cannot be determined if it is a one-storeyed building with a flat rooftop and a single tree on it 

or if it is a small forecourt. A closer look on the ALS data reveals, however, that its points are 

around 2 m above the points of the streets that surround the building why it is correctly 

represented in the result but not in the reference. Further differences between the reference 

and the result are visible close to the building facades. In contrast to the evaluation results of 

the AOIs in Vaihingen, they are not all due to the adjustment procedure. Some of them are 

caused by lower-level building details that are visible in the ALS data but not in the images 

because they are hidden by high-rise buildings. An example for this is given for the building 

in the west that features in front of the high-rise facade which is facing southwest, three 

lower-level flat rooftops with different heights that compose a stepped shape. Another 

example is given east of this building where an additional U-shaped building part is present in 

the result. This part represents the partly open entrance area of the high-rise building and it is 

thus missing in the reference. Overall, it can be concluded that particularly high-rise buildings 

caused some errors in the manually reconstructed reference so that some lower-level building 

details are missing in the reference but not necessarily in the result of the automatic recon-

struction. 
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Figure 8.50. Evaluation result of the pixel-based building detection result (yellow: true 

positive pixels, blue: false negative pixels, and red: false positive pixels). 

The roof plane detection result shown in Figure 8.51 reveals that the buildings in AOI 5 

feature numerous roof details similar to AOI 4. Additionally, there is a good correspondence 

between large roof planes in the reference and in the result. However, several differences can 

be detected, particularly if small roof planes are taken into account. These small roof planes 

are challenging to reconstruct and cause several topological differences, as will be shown 

later. As can be further seen, sub-surface growing is able to reconstruct many small roof 

details that would be otherwise missed. Analogous to the reconstruction of AOI 4, segments 

were able to grow below upper level roof structures so that lower-level roof structures consist 

of larger roof segments. This in turn supports their unambiguous identification and helps to 

significantly reduce the number of production rules of the grammar-guided roof structure 

recognition step. 

  

Figure 8.51. Roof plane detection result of the building models in the reference (left) and in 

the result (right). 
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The evaluation result of the roof plane detection result presented in Figure 8.52 shows a high 

correspondence between the reference and the result roof planes. Besides those areas that are 

missing in the reference, a large majority of pixels belong to a reference and a result plane 

that feature a sufficient overlap. It can be thus stated that the essential building characteristics 

are adequately reflected in the automatically reconstructed building models. 

  

Ochre: Pixels available in both the reconstruction 

results and the reference and belonging to a reference 

plane found to have sufficient overlap with planes in 

the roof reconstruction results. 

Yellow: Pixels that belong to a reference plane found 

to have sufficient overlap with planes in the roof 

reconstruction results but that are not inside a building 

in the reconstruction results. 

Dark blue: Pixels in reference roof planes not having 

sufficient overlap with detected roof planes and not 

being inside a building in the reconstruction results. 

Bright blue: Pixels in reference roof planes not having 

sufficient overlap with detected roof planes, but being 

inside a building in the reconstruction results. 

Ochre: Pixels available in both the reconstruction 

results and the reference and belonging to a detected 

roof plane found to have sufficient overlap with planes 

in the reference. 

Yellow: Pixels that belong to a detected roof plane 

found to have sufficient overlap with planes in the 

reference but that are not inside a building in the 

reference. 

Dark red: Pixels in detected roof planes not having 

sufficient overlap with roof planes in the reference and 

not being inside a building in the reference. 

Bright red: Pixels in detected roof planes not having 

sufficient overlap with reference planes, but being 

inside a building in the reference. 

Figure 8.52. Evaluation result of the roof plane detection result once from the point of view 

of the reference (left) and once from the point of view of the result (right). 

Similarly to AOI 4, the assessment of the topological differences reveals that only a few roof 

planes feature a 1:1 relation in AOI 5 (see Figure 8.53). Large areas that were both manually 

and automatically reconstructed have often an N:1 or N:M relation while 1:N relations are 

more rarely. The ambiguities are basically caused by the large number of small roof struc-

tures. The topological differences thus illustrate once again the difficulties and challenges for 

automatic reconstruction approaches to reconstruct high-rise buildings that feature a number 

of complex roof structures. 
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Yellow: Pixels inside reference planes having a 1:1 

relation to planes in the reconstruction results. 

Blue: Pixels inside reference planes that have no 

corresponding plane in the extraction results. 

Dark magenta: Pixels in reference roof planes that are 

merged with other planes in the reconstruction results 

(N:1 relation). 

Bright magenta: Pixels in reference roof planes split 

into two or more planes in the reconstruction results 

(1:N relation). 

Dark cyan: Pixels in reference roof planes being part 

of a plane cluster having N:M relations between planes 

in the reference and planes in the reconstruction 

results. 

Yellow: Pixels inside reconstructed planes having a 

1:1 relation to planes in the reference. 

Red: Pixels inside reconstructed planes that have no 

corresponding plane in the reference. 

Dark magenta: Pixels in reconstructed roof planes that 

correspond to several planes of the reference (1:N 

relation). 

Bright magenta: Pixels in reconstructed roof planes 

that are the result of a split of a plane in the 

reconstruction results (N:1 relation). 

Dark cyan: Pixels in reconstructed roof planes being 

part of a plane cluster having N:M relations between 

planes in the reconstruction results and planes in the 

reference. 

Figure 8.53. Assessment of the topological differences between the reference and the 

reconstruction result once from the point of view of the reference data (left) and 

once from the point of view of the detected roof planes (right). 

As can be seen in Figure 8.54, there are only five automatically reconstructed buildings for 

which at least one reference roof plane is missing. Their number remain unchanged if only 

roof planes larger than 2.5 m² are considered. Consequently, some details in the result are 

either missing or were differently modeled. By taking into account the number of complex 

building structures that are present in AOI 5, it can be stated that the proposed automatic 

reconstruction approach shows a very good performance with regard to the completeness. 
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Ochre: Pixels in buildings for which all reference roof planes were found to have correspondences of sufficient 

overlap in the reconstruction results, but only if the pixel is inside a building both in the reference and in the 

reconstruction results. 

Yellow: Pixels in buildings for which all reference roof planes were found to have correspondences of sufficient 

overlap in the reconstruction results; however, these pixels are not inside a building in the reconstruction results. 

Bright red: Pixels in correctly detected roof planes that are not inside a building in the reference. 

Dark blue: Pixels in buildings for which at least one reference roof plane was not detected in the reconstruction 

results and which are inside a roof plane in the reconstruction results. 

Bright blue: Pixels in buildings for which at least one reference roof plane was not detected in the reconstruction 

results and which are not inside a building in the reconstruction results. 

Figure 8.54. Assessment of the completeness once for all detected roof planes (left) and once 

for roof planes covering an area larger than 2.5 m² (right). 

The evaluation of the correctness presented in Figure 8.55, in turn, shows that twelve of the 

automatically reconstructed buildings feature each at least one roof plane that is not correct 

regarding the reference roof planes. Its number is only decreased by one if only roof planes 

larger than 2.5 m² are considered. As can be seen, particularly rooftops of large buildings are 

affected or those that feature multiple levels. 
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Ochre: Pixels in buildings for which all automatically reconstructed roof planes were found to have 

correspondences of sufficient overlap in the reference, but only if the pixel is inside a building both in the 

reference and in the reconstruction results. 

Yellow: Pixels in buildings for which all automatically reconstructed roof planes were found to have 

correspondences of sufficient overlap in the reference; however, these pixels are not inside a building in the 

reconstruction results. 

Bright red: Pixels in correctly detected roof planes that are not inside a building in the reference. 

Dark blue: Pixels in buildings for which at least one automatically reconstructed roof plane was not correct and 

which are inside a roof plane in the reconstruction results. 

Bright blue: Pixels in buildings for which at least one automatically reconstructed roof plane was not correct and 

which are not inside a building in the reconstruction results. 

Figure 8.55. Assessment of the correctness of all detected roof planes (left) and assessment of 

the correctness of roof planes covering an area larger than 2.5 m². 

For a more differentiated analysis of the completeness and the correctness, roof planes of 

certain sizes were separately analyzed from each other. As can be seen in Figure 8.56, the 

completeness is already greater than 95 % if only roof planes larger than 15 m² are taken into 

account whereas a correctness greater than 90 % is achieved if only roof planes greater than 

115 m² are considered. It can be thus stated that particularly small reference roof planes are 

not always properly represented in the result. This is, for example, the case for 30.8 % of the 

reference roof planes that are smaller or equal than 5 m². Additionally, it is interesting to note 

that the correctness of the planes that feature an area smaller or equal than 5 m² is with 64.3 % 

low but that similar values were achieved for larger area ranges as well. The latter, however, 

have a low impact on the overall correctness (cp. cumulative histogram) due to their low 

number in AOI 5. 
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Figure 8.56. Histograms of the roof plane evaluation result as a function of the roof plane size 

once for area intervals (left) and once for roof planes larger than a certain area 

(cumulative) (right). 

Regarding the geometric accuracy, the two histograms of RMS errors presented in Figure 8.57 

show that more than 50 % of the roof planes feature along the reference boundaries and along 

the result boundaries an RMS error less than 0.5 m and 0.6 m, respectively. For more than 

75 % of the reference and the result roof planes, the RMS error is still less than 1.1 m and 

1.0 m, respectively. Additionally, a remarkable large number of roof planes in both the 

reference and the result feature an RMS error less than 0.1 m. However, there are still some 

roof planes that have an RMS error larger than 1.5 m. A similar pattern was already seen in 

AOI 4. 

  
Figure 8.57. Histograms of RMS errors once along reference boundaries (left) and once along 

result boundaries (right). 

The comparison of the height differences shown in Figure 8.58 reveals that several areas 

feature a height difference greater than 1 m. These areas do not only belong to small roof 

planes of roof superstructures but to base roofs as well. Some of them are partly covered by 

vegetation (e.g., trees) on their rooftop which makes it difficult to determine the actual height 

of the building. This is, for example, the case for the two blue areas of the building complex 

in the north. Further differences are due to ventilation shafts which are difficult to recognize 

in the ALS data or to other installations that were differently reconstructed in the reference. 
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Figure 8.58. Digital surface models derived from the roof planes of the reference (left), from 

the roof planes of the result (middle), and the difference of these models where 

planes were found in both data sets (right). 

Due to the challenges of AOI 5, the number of submitted fully and semi-automatically 

reconstructed building models is lower than for all other AOIs. As can be seen in Table 8.11, 

the automatically reconstructed building models of the developed reconstruction approach 

TUB provides with 84.7 % a significantly higher completeness than the others (14.4 % higher 

than the second best completeness value). By taking into account the difficulties of AOI 5, it 

can be stated that the completeness of TUB is rather high. If only roof planes larger than 

10 m² are considered, it is increased to 96.1 % which is still 7.9 % higher than the second best 

approach. The correctness of TUB is, however, only average but not significantly lower than 

the best achieved correctness. In general, the number of automatically reconstructed roof 

planes that do not feature a 1:1 relation to the reference roof planes is for TUB not signifi-

cantly greater than for the other reconstruction approaches if the high completeness value is 

taken into account. However, the large number of N:1 relations indicates that several building 

details are still missing in the automatic reconstructed building models. 

Table 8.11. Evaluation result (TUB) of AOI 5 in comparison to other evaluated (fully/ 

semi-automatic) reconstruction approaches presented in (ISPRS, 2017). 

Abbrev. 
Comp 

[%] 

Corr 

[%] 

Comp10 

[%] 

Corr10 

[%] 

Topo 

1:N 

Topo 

N:1 

Topo 

N:M 

RMSXY 

[m] 

CKU 70.3 83.3 85.2 83.6 11 45 42 1.8 

YOR 64.5 85.8 86.8 86.6 4 58 24 0.9 

MON2 67.9 80.7 88.2 84.3 96 26 57 1.1 

TUB 84.7 82.2 96.1 86.0 17 61 35 1.0 

 

In summary, the automatic reconstruction of AOI 5 is the most challenging task with respect 

to all selected AOIs because it consists of several high-rise buildings that feature many 
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complex roof structures. Furthermore, these high-rise buildings are often connected by 

low-storey buildings to large building complexes why their complete reconstruction often 

becomes difficult. However, the same applies to the manually reconstructed building models 

which seems to be not always complete or correct. Therefore, by taking the manual effort and 

the quality of the reference into account, the proposed reconstruction approach still provides 

good results.  
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9. Conclusions and Outlook 

The automatic reconstruction of 3D city models has become a topic of increasing importance, 

as they already assume for quite some time a central role in a wide variety of applications. 

Particularly the reconstruction of building models, as one of the major components of 3D city 

models, has proven to be difficult. Therefore, there is a great demand for an automatic 

building reconstruction approach. In this thesis, a new approach to automatically reconstruct 

3D building models from ALS data has been proposed. It combines the benefits of data-driven 

(flexibility and completeness) and model-driven (robustness and visual attractiveness) 

reconstruction approaches and is able to provide not only geometric but also semantic 

information. The presented hybrid reconstruction approach consists of three major steps: 

(i) segmentation of roof planes, (ii) derivation of building knowledge, and (iii) construction of 

3D building models. 

For the first step, a new method was proposed that is especially designed to segment suffi-

ciently planar roof surfaces. It was implemented as an extension of the well-known surface 

growing method. But in contrast to surface growing, segments are in the extension addition-

ally able to grow below other segments. It was shown that this segmentation strategy provides 

for the subsequent steps of the presented reconstruction process several advantages, such as: 

(i) Holes in roofs that are caused by other overlying roofs are automatically closed in the 

resulting segments. (ii) Segment patches that belong to the same roof plane but that are 

separated from one another due to superstructures or crossing roof parts are merged. Thereby, 

the following problem is solved: If the complexity of roof structures increases, then segments 

usually increase in number, while becoming smaller, and at the same time more intricate in 

their shapes. (iii) Merged segments imply a higher accuracy of their estimated plane parame-

ters as the points extend over a larger area. (iv) Consistency is automatically established 

between nearly coplanar segments that belong to the same roof plane. (v) Segments are closer 

to each other, share longer common boundaries or even intersect one another so that a reliable 

detection and precise tracing of intersection and step lines is enabled at a later stage. 

(vi) Points of small roof details that would usually not make up segments of their own are part 

of larger segments so that their information is maintained in the reconstruction process. 

(vii) Segment adjacencies below roofs are detected as well so that roof configurations below 

roof surfaces can be incorporated at a later stage. 

In order to take into account that roof surfaces might be only inadequately represented by the 

determined segments, building models were not directly constructed from them. Instead it was 

proposed to first derive building knowledge which is then in addition to the segments used in 

the construction of models. For the automatic derivation of building knowledge, a multi-scale 

knowledge graph was introduced as a model for knowledge representation and object 

categorization. In it building features, their relationships, and their interdependencies are best 

organized and represented. Furthermore, in order to derive building knowledge in the 
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different levels of the multi-scale knowledge graph, a graph grammar was proposed which is 

alternately applied in bottom-up and top-down phases. The experiments showed that the 

application of the graph grammar in this manner together with the multi-scale knowledge 

graph enables a reliable derivation of building knowledge. Additionally, it was demonstrated 

that the presented graph grammar is a good tool to describe a large set of valid building 

configurations in a very compact way. Due to its expressive power, the developed graph 

grammar can be easily adapted to different purposes (e.g., to obtain only specific building 

types or LOD) so that the transferability of the whole building knowledge derivation proce-

dure generally is very good. Furthermore, it was demonstrated how reinforcement learning 

can be applied to support the detection of repetitive building features during the gram-

mar-guided derivation of building knowledge. The experiments showed that the applied 

reinforcement learning technique significantly supports the recognition and reconstruction of 

symmetric building parts. 

In the final step, half-space modeling was proposed for the construction of 3D building 

models. For this, building knowledge was used to define half-spaces whose hyperplanes 

coincide with the determined segments. It was shown that the presented construction strategy 

provides several advantages, such as: (i) Partly occluded building components are completely 

constructed. (ii) Building components that are combined to define more complex buildings do 

not need to be disjoint and may intersect just like the segments obtained from sub-surface 

segmentation. (iii) The number of half-spaces needed to construct a complex building is rather 

low so that buildings can be defined in a compact way. (iv) The resulting building models are 

always closed solids. (v) All building types can be represented in canonical form. (vi) The 

reuse of hyperplanes in connected building components provides a high degree of flexibility if 

one component needs to be adjusted. It can be thus concluded that half-space modeling 

automatically solves several problems that usually occur during the direct construction of 

B-rep models. If B-rep models are needed, building models defined by half-spaces can be 

directly converted with a common CAD kernel to B-rep models that are always guaranteed to 

be closed. 

In order to improve the resulting building models, two extensions of the presented reconstruc-

tion workflow were introduced in the construction step. One extension was introduced to add 

further details to the building models. It was demonstrated that the proposed ICP based 

approach is able to automatically recognize and reconstruct even in low-density point clouds 

building details that usually would otherwise be discarded. A major limitation of it is, 

however, that it can be only used for roof details that feature several instances of the same 

shape on the same roof. The other extension was introduced to improve the geometry of the 

resulting building models so that they become more accurate and pleasing to the human eye. 

It was shown that the proposed local and global regularization rules are well suited to support 

frequently occurring regularities in the building models. Depending on the intended use of the 

resulting building models, parameters of the divisive clustering procedure can be adjusted so 

that the building models either resemble more closely the input data or become more regular-

ized. 
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In addition to the proposed automatic reconstruction workflow, it was also shown how 

building knowledge can be integrated into an existing data-driven reconstruction approach to 

improve the regularization of the building models without lessening the flexibility to generate 

all roof shapes occurring in the real-world. It was thereby proven that the presented graph 

grammar in combination with the multi-scale knowledge graph is in its use not limited to the 

proposed reconstruction workflow. The experiments with the selected BSP based data-driven 

reconstruction approach showed that the proposed concept of hyperpolylines, which are 

defined based on building knowledge, can significantly reduce the number of partitions of the 

partitioned space. This simplifies the merging of partitions considerably. Thus, it can be 

concluded that the automatic derivation and incorporation of building knowledge is essential 

for the improvement of automatically reconstructed building models. 

The application of the proposed grammar-guided reconstruction approach on the five AOIs of 

the ISPRS benchmark dataset has demonstrated that it is effective for the reconstruction of 3D 

building models from aerial LiDAR data. Moreover, it was proven that all research objectives 

(accuracy, automation, complexity, efficiency, quality, resolution, robustness, and transfer-

ability) set out in section 1.3 of this thesis have been achieved. The evaluation of the auto-

matically reconstructed building models confirmed that the proposed approach is in many 

respects better suited for the reconstruction of buildings than other state-of-the-art reconstruc-

tion approaches. Particularly the incorporation of automatically derived building knowledge 

significantly helped to avoid the construction of unrealistic building parts. Furthermore, the 

multi-scale knowledge graph in combination with the graph grammar offers the possibility not 

only to improve the geometry of building models but also to enhance them with semantic 

information. The increased demand for semantically enriched building models is therefore 

met by the proposed reconstruction method. However, during the experiments some deficien-

cies have been encountered that are mainly related to the details of very complex rooftops or 

to the reconstruction of small roof superstructures. The evaluation showed that similar 

deficiencies occurred in the manually reconstructed reference building models. Although the 

automatically obtained models do not perfectly agree with these reference models, it can be 

concluded that the automatically reconstructed building models represent the real buildings 

very well in terms of to the applied evaluation metrics. 

Despite the fact that the proposed reconstruction approach provides good results, some 

recommendations for future research to improve the proposed reconstruction approach and the 

resulting building models can be made: (i) The proposed reconstruction workflow should be 

extended to also reconstruct non-planar building shapes such as spheres, cylinders, cones, etc. 

For this, the sub-surface segmentation needs to be enhanced so that continuous surfaces can 

be segmented as well. The subsequent reconstruction steps can be easily adapted by making 

minor modifications. This basically means that additional production rules need to be defined 

for the building knowledge derivation step and hypersurfaces instead of hyperplanes need to 

be used for the model construction. (ii) To further improve the quality and accuracy of the 

resulting 3D building models, additional data sources (e.g., terrestrial laser scanning data, 

images, outdated building models, etc.) should be optionally incorporated. (iii) A drawback of 

the proposed approach is that the building knowledge derivation procedure highly depends on 
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production rules that need to be defined in advance. In future work, methods should be 

developed that are able to automatically define these production rules either in advance or 

during the derivation of building knowledge. (iv) The proposed building reconstruction 

method requires many parameters whose values are adapted during the reconstruction process 

(e.g., through reinforcement learning). In order to reduce the computational time, further 

methods should be developed that also automatically initialize the parameters with reasonable 

values depending on the input data and the prior knowledge of the area to be reconstructed. 

(v) The three major steps of the proposed reconstruction method have been implemented as 

separate modules so that any of them can be replaced by another suitable procedure. A greater 

interaction between these modules could, however, be beneficial. Specifically, if the results of 

a module are not conclusive, then the procedure should be able to return to a previous module 

in order to further improve the results. For example, if a recognized building feature indicates 

a missing segment, it should be able to activate a local segmentation with specific parameter 

values.  
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