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

F noisy observations to extract meaningful information is an old and necessary exer-
cise for engineers and scientists. Filtering affects both the signal and the noise. While the

noise is reduced to a minimum, the filtered observation is a smoothed representation of the true
signal. The amount and type of smoothing required depends on the noise level. The geodetic
satellite mission,  provides heavily contaminated time variable gravity field of the Earth.
Therefore, we have to use a strong smoothing operator before the data can be used. Over the
past decade, many types of filters have been developed for treating the noisy  products,
which damages the signal. Therefore, along with filters, a number of methods to restore the
signal damage have emerged. However, the majority of these methods use hydrological models
to compute correction terms, such as leakage, bias, or scale factors, in a setup that lacks a
detailed mathematical understanding. We fill this gap by studying the convolution integral on
the sphere, with a motivation to revert the signal changes in filtered  products.

Since the dominant time varying signal observed by  comes from mass transports in the
hydrosphere, we analyze the impact of filtering on catchment scale hydrology. We discuss the
convolution integral in the spatial domain, which helps us to break the total impact of filtering
into two parts: leakage and aenuation of catchment-confined signal, where leakage is only the
contribution of signal from outside the catchment. We find that leakage changes the amplitude
as well as the phase of the catchment-confined filtered signal. Previous contributions have
addressed only the amplitude change due to filtering, usually with the help of a hydrological
model. This practice propagates the error and the uncertainties in models to the corrected 
products. Therefore, we advocate avoiding models for computing correction terms.

A mathematical dissection of the convolution integral leads us to two methods for approach-
ing the true regional average: the method of scale and the method of deviation. The method of
scale uses the uniform layer approximation, while the method of deviation avoids any approxi-
mation. In a noise-free closed-loop test, we show that the method of scale is able to approach
the truth, while the method of deviation gives us the true value. These methods need accurate
knowledge of leakage and the deviation integral, which are estimated in a data-driven framework
employing once filtered and twice filtered  fields. In a closed-loop simulation environment
with -type noise, we demonstrate for 32 catchments that we are able to approach the true
leakage and the true deviation integral. The efficacy of data-driven method of deviation is found
to be superior to three popular model dependent approaches.

After being satisfied with data-driven methods for hydrology, we intend to use them for
assessing the ice mass loss in ice sheets such as Antarctica and Greenland, but we find that
they fail for ice sheets. This is due to the physical difference between the spatial mass change
distribution in an ice sheet and in a hydrological catchment: the former suffers from a mass



change concentrated near coast, while the later experiences a mass change throughout the
catchment. Therefore, we tailor a new approximation for ice sheets giving us the data-driven
method for ice sheets. It is tested effective in a noisy closed-loop simulation environment.

The data-driven methods are used to correct the filtered  products and to analyze
the total water mass loss over Aral sea, lake Urmia, lake Victoria, California, Antarctica, and
Greenland. We report and compare our findings with previously reported figures. We find
that the long term trend in mass change is suppressed by filtering, and overestimated by model
dependent approaches.

This thesis explores the signal damage at catchment scale due to filtering of  prod-
ucts, and develops data-driven methods to repair the signal damage. In a realistic closed-loop
simulation environment, we demonstrate that the corrected signal is closer to truth. The per-
formance decays with the catchment size, but is still better than model dependent approaches.
Furthermore, the data-driven method is less accurate over arid regions (desert), however, the
performance is on a par with the model dependent methods. Nevertheless, we extract our con-
fidence from the overall performance of the data-driven methods in closed-loop environments
to believe that we get superior mass change estimates from . This contribution helps us
to reduce the filtering induced uncertainty in  products.
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

D Filtern von verrauschten Beobachtungen, um sinnvolle Informationen zu extrahieren,
ist eine alte und notwendige Übung ür Ingenieure und Wissenschaftler. Die Filterung

wirkt sich sowohl auf das Signal als auch auf das Rauschen aus. Während das Rauschen
auf ein Minimum reduziert wird, ist die gefilterte Beobachtung eine geglättete Darstellung des
wahren Signals. Die Menge und Art der erforderlichen Glättung hängt vom Rauschpegel ab. Die
geodätische Satellitenmission  stellt stark verrauschte zeitvariable Schwerkraftmodelle der
Erde zur Verügung. Daher müssen wir einen starken Glättungsoperator verwenden, bevor die
Daten verwendet werden können. In den letzten zehn Jahren wurden viele Arten von Filtern
entwickelt, um die verrauschten -Produkte zu behandeln, was jedoch das Signal verändert.
Daher sind zusammen mit Filtern eine Anzahl von Verfahren zur Wiederherstellung des Signals
entstanden. Jedoch verwenden die meisten dieser Methoden hydrologische Modelle, um Korrek-
turterme – wie Leakage, Bias oder Skalierungsfaktoren – in einer Konfiguration zu berechnen,
die mathematisch noch nicht im Detail verstanden wurde. Wir üllen diese Lücke, indem wir
das Faltungsintegral auf der Kugel untersuchen, mit der Motivation, die Signalveränderungen in
gefilterten -Produkten wiederherzustellen.

Da das von  beobachtete dominante, zeitlich variable Signal aus Massentransporten in
der Hydrosphäre stammt, untersuchen wir die Auswirkungen der Filterung auf die Hydrologie
auf der Ebene von Einzugsgebieten. Wir diskutieren das Faltungsintegral im Ortsraum, was
uns hilft, den Gesamteffekt der Filterung in zwei Teile zu spalten: Leakage und Dämpfung des
Signals innerhalb eines Einzugsgebiets, wobei Leakage nur der Signalbeitrag von außerhalb des
Einzugsgebietes ist. Wir erkennen, dass Leakage sowohl Amplitude als auch Phase des vom
Einzugsgebiet begrenzten gefilterten Signals ändert. Frühere Beiträge haben nur die Amplitu-
denänderung durch Filtern angesprochen, meist mit Hilfe eines hydrologischen Modells. Dieser
Ansatz propagiert Fehler und Unsicherheiten der Modelle zu den korrigierten -Produkten.
Daher empfehlen wir, Modelle zur Berechnung von Korrekturtermen zu vermeiden.

Eine mathematische Zerlegung des Faltungsintegrals ührt uns zu zwei Methoden zur An-
näherung an das wahre regionale Mittel: dieMethod of Scale und die Method of Deviation. Die
Method of Scale verwendet die Uniform Layer Approximation, während die Method of Deviation
jede Näherung vermeidet. In einem rauschfreien Closed-Loop-Test zeigen wir, dass die Method
of Scale in der Lage ist, sich der Wahrheit zu nähern, während die Method of Deviation den
wahren Wert liefert. Diese Methoden benötigen genaue Kenntnisse von Leakage und Deviation-
Integral, die in einem datenbasierten Rahmen mit einmal und zweimal gefilterten -Feldern
geschätzt werden. In einer Closed-Loop-Simulation mit -typischem Rauschen demonstri-
eren wir ür 32 Einzugsgebiete, dass wir in der Lage sind, uns der wahren Leakage und dem
wahren Deviation-Integral anzunähern. Wir stellen fest, dass die datenbasierte Method of Devi-
ation den drei üblichen modellabhängigen Ansätzen überlegen ist.



Nachdem wir ür die Hydrologie mit den datenbasierten Methoden zufrieden sind, wollen
wir diese ür die Bewertung des Eismassenverlusts von Eisschilden wie in der Antarktis und
Grönland nutzen, stellen jedoch fest, dass sie scheitern. Dies ist auf den physikalischen Unter-
schied zwischen der räumlichen Massenverteilung in einem Eisschild und einem hydrologischen
Einzugsgebiet zurückzuühren: Im ersten Fall erfolgt die Massenänderung konzentriert in der
Nähe der Küste, während im zweiten Fall das gesamte Gebiet eine Änderung erährt. Daher
entwickeln wir eine neue Näherung ür Eisschilde, aus welcher wir die Data-DrivenMethod for
Ice Sheets erhalten. Wir haben dies erfolgreich in einer rauschbehafteten Closed-Loop-Simulation
getestet.

Die datenbasierten Methoden werden verwendet, um die gefilterten -Produkte zu kor-
rigieren und den gesamten Wassermassenverlust von Aralsee, Urmiasee und Victoriasee, sowie
in Kalifornien, der Antarktis und Grönland zu analysieren. Wir berichten und vergleichen un-
sere Ergebnisse mit zuvor veröffentlichten Zahlen. Wir stellen fest, dass der langfristige Trend
von Massenänderungen durch Filterung unterdrückt und durch modellabhängige Ansätze über-
schätzt wird.

Diese Arbeit untersucht die Signalveränderung auf der Ebene von Einzugsgebieten durch
Filterung von -Produkten und entwickelt datenbasierte Methoden, um die Signalschäden
zu reparieren. In einer realistischen Closed-Loop-Simulation zeigen wir, dass das korrigierte
Signal näher an der Wahrheit liegt. Die Leistungähigkeit ällt mit der Größe der Einzugsgebiete
ab, ist aber immer noch besser als modellabhängige Ansätze. Darüber hinaus ist das datenbasierte
Verfahren weniger präzise über ariden Regionen (Wüsten), jedoch ist die Leistung auf einer Stufe
mit den modellabhängigen Methoden. Nichtsdestoweniger ziehen wir unser Vertrauen in die
datenbasierten Methoden aus deren Gesamtleistungsähigkeit in Closed-Loop-Umgebungen, und
nehmen deshalb an, dass wir bessere Massenänderungsschätzungen von  erhalten. Dieser
Beitrag hilft uns, die filterungsbedingte Unsicherheit in -Produkten zu reduzieren.
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  

Symbol Definition first used

l spherical harmonic degree (1.1)

m spherical harmonic order (1.1)

Clm, Slm spherical harmonic coefficients (1.1)

Plm Legendre function of the first kind (1.1)

r radial component of the Earth fixed coordinate system (1.2)

θ co-latitude (1.1)

λ longitude (1.1)

V (·) gravitational potential (1.2)

a mean equatorial radius of the Earth (1.3)

ρ density (1.3)

ρavg average density of the Earth (1.3)

σ surface density (1.4)

kl load Love number for degree l (1.5)

ρwater density of water (1.7)

F (X) Fourier transform of X (1.12)

F −1(X) inverse Fourier transform of X (1.12)

ψ spherical distance (1.13)

w(ψ) weight as a function of spherical distance (1.13)

f (·) a global field (1.14)

f̄ (·) filtered field (1.14)

b(·, ·) two point filter kernel (1.14)

W nk
lm spectral weight (1.16)

R(·) catchment characteristic function (2.1)

Ac area of a catchment (2.1)

fc regional average of the field over a catchment c (2.1)

R∗(·) complement of catchment characteristic function, (1−R(·)) (2.5a)

F(·) catchment confined field, [f (·) · R(·)] (2.6b)



F∗(·) a field only outside the catchment, [f (·) · R∗(·)] (2.6b)

lc regional average of leakage over a catchment c (2.11)

α amplitude of time series (2.14)

ω angular frequency of time series (2.14)

ϕ phase of time series (2.14)

s scale factor (2.22)

δF(·) deviation of field F(·) with respect to the catchment average fc (2.29)

δFc deviation integral (2.31)

k model derived scale factor (2.34)

lmc model derived leakage (2.32)

bc model derived bias (2.33)

g(·)  field (3.1)

n(·) noise field (3.1)

N (·) catchment confined noise field (3.2)

nc catchment aggregated noise (3.5)

nlc the noise in catchment aggregated leakage (3.5)

δN c the deviation integral of catchment confined noise (3.6)

κ(·) R∗(·) · R̄(·) (3.9)

γ(·) R(·) · R̄(·) (3.20)

pc total precipitation in a catchment (4.1)

ec total evapotranspiration from a catchment (4.1)

rc total runoff from a catchment (4.1)

dfc/dt rate of mass change in a catchment (4.1)

general conventions

(·) (θ,λ)

X̄ filtered X

Xc regional average of X over a catchment c

X̂ estimated value of X

∆X long term mean removed (residual o) X

x



 

§.  

G is the science of measuring and mapping the Earth’s surface [Helmert,
10], which requires accurate measurement and understanding of three fundamental

properties of the Earth: its geometric shape, its orientation in space, and its gravity field.
These properties and their evolution in time can be determined by carrying out dedicated
geodetic expeditions, but they are time consuming and costly. Furthermore, a good global
and temporal coverage is a challenge too big to overcome. Therefore, after the launch of the
first man made satellite, -1 on October 4, 1957, researchers realized an opportunity
to overcome this geodetic challenge, and a lot of effort was directed into studying geodesy
with the help of satellites. This gave rise to a whole new discipline, known as satellite
geodesy. It gained a lot of momentum at the start of the cold war because an accurate
knowledge of the geodetic properties of the Earth is vital for calculating the trajectories
of ballistic missiles. Therefore, in the early 1960s, obtaining superior geodetic information
was one of the top priorities of the Department of Defense (), the United States*.
Their first geodetic satellite project  was launched in 1962. It was named after its
four contributors, the Army, the Navy,  and Air force. The idea was to monitor the
motion of the satellite from dedicated ground stations to obtain gravity field information.
 wanted global cooperation so that they can spread the ground stations and improve
the quality of the data. However,  wanted the mission to be classified and this affected
the quality and the glory of the first dedicated geodetic satellite mission †. It was
followed by three  Geodetic Earth Orbiting Satellites (), launched in 1965, 196,
and 1975. G3 was the first satellite to carry a  altimeter, which contributed
towards the mapping of ocean heights. Within the next decade, a number of satellite
missions were launched to explore the global sea surface heights, to determine the Earth’s
shape and size parameters, and to help the military navigation.

In the middle of these numerous developments, a unique idea to determine the Earth’s
gravity field at a spatial scale of 100 km was taking shape: the Geopotential Research
Mission () [Taylor et al, 193; Wagner, 197]. On October 29, 194, in the University
of Maryland, Dr. Burton I. Edelson (then the Associate Administrator, NASA office of
Space Science and Application) was addressing the Geopotential Research Mission Science
conference as the keynote speaker. He said “As for the , I can promise you that it will

*http://nsarchive.gwu.edu/
†http://nsarchive.gwu.edu/NSAEBB/NSAEBB509/
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receive very serious consideration in my office. It is now a new start candidate in fiscal year
. It is an excellent mission - from a scientific standpoint, from the point of view of practical
use of the data, and from the standpoint of feasibility and technological readiness.” Dr. Edelson
was previously associated with the space program , and his words were certainly
a confirmation of the importance of , and a motivation to the geodetic community
working for . The co-chairman of the conference was Prof. William M. Kaula, who,
in his conference summary, described  as a satellite system proposed to determine the
gravitational and magnetic fields to the resolution of about 100 km. In order to achieve
this, the satellite mission was designed to accurately record the range-rate between two
satellites separated by 300 km, moving in a coincident near-polar orbit at an altitude of
160 km. Although a lot of effort and money was spent on , it was never realized. In
an interview to Rebecca Wright, Dr. Byron D. Tapley told that it was due to the first
Space Shuttle disaster on January 2, 196, that most of the satellite missions were delayed
and a few got cancelled‡. For example,  was accepted in 195; it was delayed and
finally launched in 1992, while the ambitious  team was disbanded in 196 only.

I participated in an Autumn School on ‘Global Gravity Field Modeling from Satellite-
to-Satellite Tracking Data’, from October 4–9, 2015, held in Bad Honnef, Germany. The
opening speech was delivered by Prof. Reiner Rummel, who mentioned that the geodetic
community was trying hard since the early 1990s to send a  type mission, but
finding funds was always a challenge. Then someone added climate to the name, which
provided necessary financial wings to the satellite pair, and Gravity Recovery And Climate
Experiment () satellite mission was born. Furthermore, the scientific community was
more interested in the time-variability of the gravity field, which required the satellite
mission to fly for a longer period of time. Therefore, the altitude of  satellites
was increased compared to the  mission and an accurate accelerometer was added to
measure the surface forces due to drag and radiation pressure. These changes eliminated
the cost and mission life limitations associated with . Finally, with a collaboration
between GeoForschungZentrum () in Potsdam, Germany, and , the twin satellite
mission was launched on March 17, 2002.

The  satellite mission is a modified and improved version of . The observations
include precise measurements of the variation in inter-satellite distance, non-gravitational
accelerations, spacecraft attitude,  coordinates, and other vital information. They
constitute the level-1 data, from which one can construct gravity field solutions. There are
many institutes, which have the expertise to process the level-1 information and produce
the level-2 data: spherical harmonic coefficients. The level-2 data provided by most of
the data centers (for example: , , ) is at monthly time scale, which are then
processed to produce maps of mass change, also known as level-3 products. Furthermore,
recently another type of  products have been introduced, known as mascon (mass
concentration) blocks.

A mascon solution provides an estimate of the mass anomalies at a predefined grid,
point, or block. They are computed from the  observations with the help of
constrained regularization. Currently three centers are providing mascon solutions: Jet
Propulsion Laboratory () [Watkins et al, 2015], Goddard Space Flight Center ()

‡http://www.jsc.nasa.gov/history/oral_histories/NASA_HQ/ESS/TapleyBD/TapleyBD_1-12-10.htm
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[Luthcke et al, 2006, 2013], and Center for Space Research () [Save et al, 2016].
The difference between these mascon solutions is in the procedure followed to constrain
the regularization, for example Watkins et al [2015] employ explicit partial derivatives
with analytical expression for mass concentration to relate the intersatellite range-rate
measurements to the individual mascons. [Luthcke et al, 2013] relate the mascons to the
range-rate or the range-acceleration via a spherical harmonic expansion truncated at a
finite degree and order, and Save et al [2016] fit the mascons to the spherical harmonic
coefficients obtained from . These mascon products do not need post-processing, and
hence can be used as level 3 products. Although, these estimates of mass change claim
to retain maximum signal, the signal change due to regularization is still not investigated.

§.  

A square integrable analytic gravitational potential function V (r,θ,λ) can be represented
in the frequency domain by spherical harmonic coefficients with the help of the following
synthesis relation [Kaula, 1966; Chao and Gross, 197; Wahr et al, 199]

V (r,θ,λ) =
GM
r

∞∑
l=0

(a
r

)l l∑
m=0

P̄lm(cosθ) [Clm cosmλ + Slm sinmλ], (1.1)

where G is the gravitational constant, M is the total mass of the Earth, a is the mean
radius of the Earth, P̄lm are the fully normalized Legendre functions of the first kind,
Clm,Slm are the fully normalized spherical harmonic coefficients, l is the degree and m is
the order. The left hand side of the equation (1.1) is the spatial domain (r,θ,λ), and the
right hand side is the spectral domain (l,m). (1.1) is similar to Fourier theory, except for
the fact that the frequency decomposition involves spherical harmonic functions. We can
compute the spatial domain quantity from the spectrum (spherical harmonic coefficients)
and vice versa. The potential V (r,θ,λ) at point P is related to the density distribution at
a point Q as

VP = G

∫ ∫ ∫
v

ρQ
rPQ

dvQ, (1.2)

where v denotes the volume. rPQ is the distance between the points P and Q. The total
mass of the Earth is constant, but a continuous mass redistribution is taking place via
natural processes. For example, water mass is continuously in motion via hydrological
cycle. Therefore, if we want to observe hydrological phenomena with the help of potential,
then we must focus on the change in potential over time.

The gravity potential in (1.1) is static, which means it does not represent the time vari-
ability. However,  is well-known for providing the time-variable gravity information,
which is represented by change in the spherical harmonic coefficients. To calculate the
change in spherical harmonic coefficients we remove a long term mean of the spherical
harmonic coefficients from monthly values. These residual spherical harmonic coefficients
are denoted by ∆Clm and ∆Slm. Since we are interested in mass change, the potential
change reflected by the residual spherical harmonic coefficients must be represented in
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terms of density change ∆ρ(r,θ,λ) [Wahr et al, 199]{
∆Clm
∆Slm

}
=

3
4πaρavg(2l +1)

∫ ∫ ∫
v
∆ρ(r,θ,λ)

( r
a

)l+2
P̄lm(cosθ)

{
cosmλ
sinmλ

}
sinθ dθ dλ dr,

(1.3)

where ρavg is the average density of the Earth (5517kg/m3). One big problem with
the relation (1.3) is that we can not determine how the density varies with the depth
within the Earth. In order to overcome this problem, we assume that most of the mass
redistribution takes place within a thin layer near the Earth’s surface, thus (r/a)l+2 is
approximately equal to 1 and we can replace the volume integral of ∆ρ by the surface
integral of ∆σ , and (1.3) becomes{

∆Clm
∆Slm

}
surf mass

=
3

4πaρavg(2l +1)

∫
Ω

∆σ (θ,λ) P̄lm(cosθ)
{

cosmλ
sinmλ

}
dΩ. (1.4)

Furthermore, the solid Earth responds to the mass redistribution with a deformation, which
also contributes to the total gravity change. This is taken care of by the load Love
numbers kl [Wahr et al, 199]{

∆Clm
∆Slm

}
solid Earth

=
3kl

4πaρavg(2l +1)

∫
Ω

∆σ (θ,λ) P̄lm(cosθ)
{

cosmλ
sinmλ

}
dΩ. (1.5)

The total change in the spherical harmonic coefficients is given by a sum of (1.4) and
(1.5): {

∆Clm
∆Slm

}
=

{
∆Clm
∆Slm

}
surf mass

+
{

∆Clm
∆Slm

}
solid Earth

.

The resulting synthesis equation is

∆σ (θ,λ) =
aρavg
3

∞∑
l=0

l∑
m=0

P̄lm(cosθ)
2l +1
1+ kl

[∆Clm cosmλ + ∆Slm sinmλ]. (1.6)

Since the mass redistribution at monthly time scales is dominated by hydrology, the density
change ∆σ (θ,λ) is expressed in terms of Equivalent Water Height ()

∆σ (θ,λ) = (θ,λ) · ρwater =
aρavg
3

∑
l,m

P̄lm(cosθ)
2l +1
1+ kl

[∆Clm cosmλ + ∆Slm sinmλ].

(θ,λ) =
aρavg
3ρwater

∑
l,m

P̄lm(cosθ)
2l +1
1+ kl

[∆Clm cosmλ + ∆Slm sinmλ]. (1.7)

The aim of the  satellite mission is to obtain ∆Clm and ∆Slm accurately. However,
it was known even before the launch that the spherical harmonic products would be
noisy (cf. Figure 1.1) and the resolution would be coarse [Wahr et al, 199]. There is a
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Figure .: The monthly  product for the month of October, 2004. The top figure
is the noisy product and the lower figure is the filtered product. A Gaussian
filter (cf. 1.15) of half width radius 500 km is used.
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delicate trade-off between the resolution and noise. The spatial resolution depends on the
maximum spherical harmonic degree and order that we can extract with significant signal
to noise ratio (spatial scale ≈ 20000/l km). However, if we aim for maximum attainable
spherical harmonic degree and order, then we suffer from a large amount of noise, because
noise increases with spherical harmonic degree. Therefore, filtering is needed to suppress
noise in the higher degree spherical harmonic coefficients [Jekeli, 191; Wahr et al, 199].
Jekeli [191] studied well known filters from Fourier theory for signal processing in 2
dimensions, and adapted them for data on a sphere. Along with the benefits of filtering,
we have also borrowed the side-effects. In order to understand both faces, we must attain
a basic understanding of filtering from a signal processing perspective.

§. :  

A filter, in day to day life, is used to pass some component and attenuate, if not stop,
the other components of a contaminated commodity (mixture). For example a coffee filter,
an oil filter in an automobile, or a lens filter used in photography. Each one of them
help us to extract the component that we desire. Similarly, in signal processing, a filter
is used to pass certain frequencies and attenuate others.

If we look into the historical development of filters in signal processing, we find that
the first documented effort towards designing an analog filter was from George Ashley
Campbell in 1911. In 1930 Butterworth filters were proposed, followed by Bessel filters in
1949, and Chebyshev filters in the 1950s [Paarmann, 2001]. The process of filter design is
still going on with an aim to improve on previous filters. However, taking an average
of a series of measurements to increase the certainty of the information is a very old
technique, which is simple and effective. The traditional method of taking average and the
modern method of selecting frequencies yield similar results [Hamming, 199], although
the computation is carried out in different domains (the space or the time domain for
traditional method and the spectral domain for contemporary filters).

The freedom to move from the space domain (or the time domain) to the frequency
domain has increased our understanding and revolutionized the developments in signal
processing. The credit goes to Jean Baptise Joseph Fourier, the great French mathematician,
who developed Fourier series and the Fourier integral while investigating the propagation
of heat in solid bodies. His paper éorie analytique de la chaleur was initially rejected,
but after 15 years, in 12, it was accepted and is still a classic. The results from his
contribution are driving the modern day science in a way, which one can not describe in
a few lines. He proposed to represent an arbitrary function defined in a finite interval
as a sum of sinusoids. Thus, opening the gates between the space domain (or the time
domain) and the frequency domain. Since then we have been choosing a domain, where
we are comfortable, and carrying out mathematical operations to extract, to process, or
to modify the signal at our disposal.

To this end, we must admit that for filtering spectral domain operations have been
favored over spatial domain operations. This is due to the fact that in the spatial domain
filtering is performed by computing a convolution integral, while in the spectral domain
filtering is a multiplication of each frequency by a weight. Thus the spectral domain
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operation is simple to apply and is faster. Most importantly, it is easier to understand
and express. For example, if we want a frequency to be extracted from a data, then
in the filter parameters we provide the weight corresponding to that frequency as 1 and
elsewhere 0. We can classify filters depending on the frequency it passes: low pass
filter, band pass filter, or high pass filter. The type of filter chosen for suppressing noise,
depends on the frequency spectrum of the signal and noise. For example, if the signal is
dominated by low frequencies and the noise is a white Gaussian noise or a blue noise
(noise power increases with frequency), then a low pass filter is preferred.

Filtering in the spatial or the time domain is written as a convolution integral between
a function f and filter b, as

f ∗b =
∫ ∞
−∞
f (τ) b(τ − t) dτ. (1.)

The important properties of the convolution integral are:

i. It is commutative: the order of functions does not affects the result

f ∗b = b∗f . (1.9)

ii. It is associative: when we convolve more than two functions, then performing
intermediate convolutions first will not change the result

(f ∗b)∗c = f ∗(b∗c). (1.10)

iii. It is distributive: the sum of signal convolved with a function is equal to the sum
of individual functions convolved separately

f ∗(b+ c) = f ∗b+ f ∗c. (1.11)

iv. The convolution theorem: convolution in the time or the space domain is multiplication
in the frequency domain

F
(
f ∗b

)
= F (f ) F (b). (1.12)

In order to understand how a filter suppresses noise, we can use the fact that the
operation is equivalent to computing a weighted average at each data point, where the
magnitude of weights is described by the design of the filter kernel b. A set of observation
represented by a function f can be written as

f = Signal + Noise,

and its average would yield

Mean{f } = Mean{Signal} + Mean{Noise}.

The output of filtering (the left hand side) is equal to the mean of the signal, only
if the expectation or mean of noise is either equal to zero or is negligible. This is
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achieved by designing an operator which minimizes the mean of noise generated by the
system. Therefore, identifying the statistical properties of noise becomes an important
task. In an electronic system, there are numerous sources of noise (shot noise, thermal
noise, flicker noise, etc.) [Haykin and Moher, 2009]. The central limit theorem helps
us with the problem of noise identification. It states that ”the probability distribution of
the random variable approaches a normalized Gaussian distribution in the limit, as the
number of random variable approaches infinity” [Haykin and Moher, 2009]. Thus, for the
most commonly studied scenarios, when independent random variables are added, their
sum tends toward a normal distribution even if the original variables themselves are not
normally distributed [Rice, 1995]. Therefore the expectation of noise, more often than not,
is negligible.

An important point to be noted here is that, while we reduce noise to a minimum,
we obtain the mean of the signal and the crude details of the signal are compromised.
Thus it has been a big challenge to design a filter which retains maximum signal content
while suppressing the noise to a minimum. The same is true for filters designed to extract
the mass change information from the noisy  products. The information content of
 products is compromised due to filtering. If we want to understand and restore the
lost information, then we must understand the mechanism of filtering  products. It
is slightly different from the conventional planar filters in signal processing, because we
have to work on 2-Sphere. Thankfully, the journey and the route from Euclidean space
to the 2-Sphere was established in the early 190s by Jekeli [191].

§.   

In order to perform the spatial averaging of  products, we need, in its most general
form, a two point filter function b(θ,λ,θ′ ,λ′), where the weights w (scalar values attained
by b) are decided by the filter type and its parameters. The first filter proposed for 
was an isotropic filter, whose weights depend on the spherical distance ψ between the
calculation point (θ,λ) and the data point (θ′ ,λ′) [Jekeli, 191; Wahr et al, 199]. For a
Gaussian spatial averaging the weights are described by

w(ψ) =
β

2π
exp[−β(1− cosψ)]

1− exp−2β
, where β =

ln(2)
(1− cos(rfil/a))

, (1.13)

rfil is known as the averaging radius of the filter, and it is defined as the distance on
the Earth’s surface at which w has dropped to half of its value at ψ = 0. The spatial
domain implementation of Gaussian smoothing is written as

f̄ (θ,λ) =
1
4π

∫
Ω′

f (θ′ ,λ′) b(θ,λ,θ′ ,λ′) dΩ′ , (1.14)

where f̄ (θ,λ) is the filtered field, f (θ′ ,λ′) is the noisy field which we want to smooth, Ω′

represents the domain of the surface of a unit sphere, (θ,λ) are co-latitude and longitude
of the calculation point, (θ′ ,λ′) are co-latitude and longitude of the data point, and dΩ′ is
the infinitesimal surface element sinθ′dθ′dλ′ . The corresponding spectral domain filtering



. Filters for GRACE 9

is written as [Wahr et al, 199]

∆σ (θ,λ) =
2aρavgπ

3

∑
l,m

Wl P̄lm(cosθ)
2l +1
1+ kl

[∆Clm cosmλ + ∆Slm sinmλ]. (1.15)

This is similar to (1.6), except for a multiplication by the spectral weights Wl defined as

Wl =
∫ π

0
w(ψ)Pl(cosψ)sinψdψ, where Pl =

P̄l√
2l +1

.

For a Gaussian filter the weights decay smoothly with the degree (cf. Figure 1.2), and
the filter function depends only on the degree. However, these weights can vary with
location and with both the degree and order. Therefore, in general we must write [Wahr
et al, 199; Devaraju, 2015]

∆σ (θ,λ) =
aρavg
12π

∑
l,m

∑
n,k

W nk
lm P̄lm(cosθ)

2l +1
1+ kl

[∆Clm cosmλ + ∆Slm sinmλ], (1.16)

where W nk
lm are the spectral weights in their most general form. Depending on the

combination of parameters, with which the weight varies, we can classify filters as:
isotropic, anisotropic, homogeneous, and inhomogeneous [Devaraju, 2015]. The spectral
form of these different type of filters is shown in Figure 1.3.
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Figure .: The weights for Gaussian filters in the spatial domain (left) and in the spectral
domain (right) for different averaging radius.

The Gaussian filter is the most popular filter for  post-processing because it is
simple to apply, which is due to the fact that it assumes the noise to be isotropic.
However, the  noise is anisotropic and it varies with both degree and order [Han
et al, 2005; Swenson and Wahr, 2006; Kusche, 2007; Klees et al, 200]. The North-South
linear features (stripes; cf. Figure 1.1) in the  products is due to the fact that the
spherical harmonic coefficients of certain orders are correlated [Swenson and Wahr, 2006].
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Figure .: Different types of filters and their spectral form (courtesy: Balaji Devaraju). l
and n denote degree while m and k denote order of the spherical harmonic
coefficients. The weights of an isotropic filter depend on the spherical distance
between the calculation point and the data point, while the weights of an
anisotropic filter depends on both the spherical distance and the azimuth
between the calculation point and the data point. The homogeneous filters are
same at each point on the sphere, while the inhomogeneous filters change their
shape with respect to colatitude and longitude.
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Swenson and Wahr [2006] proposed a destriping filter that replaces the correlated
coefficients of an order by the residuals obtained after fitting and removing a polynomial.
This technique has a disadvantage of affecting North-South oriented signals, but it is
efficient and widely used. Kusche [2007] proposed an anisotropic filter popularly known
as  filter. The method involves regularization, leading to a series of decorrelation
transformations enabling successive smoothing to treat the noise. The process requires
a-priori signal covariance information, which is derived from a geophysical model. Zhang
et al [2009] proposed a filter: fan filter, whose weights are derived from Gaussian
smoothing but the averaging radius depends on the order of geopotential coefficients. This
filter demonstrated an improvement in resolution along latitude. Apart from these popular
filters, there were many efforts toward designing an optimal filter for . For example,
Klees et al [200] developed a filter that is unique for every month, it incorporates the
variance–covariance information of noise and the full signal of the monthly solution. Duan
et al [2009] proposed a moving window filter, whose width depends on the error pattern
of the spherical harmonic coefficients. Devaraju [2015] developed a regularization filter that
uses the variance information of the signal and noise, and drafted a set of performance
metrics for evaluating filters. Today we have a garden of filters to choose from, and it
raises the question which filter is the best for processing . There have been a few
attempts to find the answer to this question [Werth et al, 2009], but with the ongoing
developments the debate on filter supremacy is still alive.

§.   

While much effort went into designing filters for , a comprehensive effort to
understand the side-effects of filtering has hardly been made. Wahr et al [199] reported
that filtering will introduce leakage between the signal from ocean and the signal from
land, which will affect the amplitude of the signal. Many contributions demonstrated
that filtering has a substantial impact on the  signal. They refer to the change in
the signal and the underlying cause by different names, e.g. bias, scaling, and leakage
[Longuevergne et al, 2010; Klees et al, 2007; Landerer and Swenson, 2012; King et al,
2012]. Although a concern about signal damage due to filtering was prevalent in the
community, a study on the nature of impact and its physical interpretation was missing,
which is necessary to understand the information deficit in filtered  products.

Klees et al [2007] reported an amplitude change of 50% to 70% in the the signal over
Congo-Zambezi and nearby regions in Southern Africa. In order to restore the loss, they
computed a leakage and a bias correction from a hydrological model. Longuevergne et al
[2010] and Landerer and Swenson [2012] also used information derived from hydrological
models to repair the damage to the signal due to filtering. These methods, using a
hydrological model, raise a number of concerns. First there are numerous global and
regional hydrological models and they differ from each other substantially [Werth, 2010].
Hence, choosing a model is a difficult task. Second, these models do not agree with
 in a consistent way [Lorenz et al, 2014]. Thus, using them will propagate their
uncertainties to , which defies the whole initiative of improving filtered .

Apart from model dependent approaches, there were numerous efforts that do not use



12 1 

models to correct the filtered  products. Wahr et al [2007] demonstrated that for
Greenland and Caspian sea (isolated regions) one can approach the true signal by using
a scale factor derived from the information of regional extent and the filter. Similar scale
factors improved the agreement between the altimetry data over the Mediterranean sea
and the  derived water height change [Fenoglio-Marc et al, 2006]. Baur et al [2009]
proposed an iterative scheme to restore the signal change for Greenland without using
any additional information (such as models or information from other satellite missions).
However, these approaches were effective only for isolated catchments.

When I started my PhD research in October, 2013,  was already more than a
decade in orbit. The amount of research contributions towards post processing of 
products was both wide and deep. Nevertheless, the understanding towards the impact
of filtering on the signal was limited. It would not be an overstatement to say that it
was more philosophical than mathematical. The contribution from Klees et al [2007] was
indeed the only candidate which provided a limited but better mathematical understanding
of the problem. Balaji Devaraju, my colleague, was finishing his PhD thesis and he used
the potential signal leakage as a performance metric for comparing filters. His research
fueled my interest in developing a detailed understanding of leakage. In the following
chapters we will accomplish the following:

i. develop the mathematical foundation for understanding the impact of filtering

ii. quantify the signal damage at catchment scale

iii. find the relation to approach the true signal

iv. develop a method to restore the signal loss for  products

v. validate the findings, and discuss the limitations

In order to test the mathematical foundation or the efficacy of method, we use various
global models and data provided by various institutes. An account of these models and
data is provided in Appendix A.

The novelty of  satellite mission has been its ability to sense mass changes
beneath the surface of the Earth (Ground water storage) [Rodell et al, 2009; Tiwari
et al, 2009; Shum et al, 2011], and beyond easily observable regions (ice sheets such as
Antarctica and Greenland, and ocean mass) [Chambers et al, 2004; Velicogna and Wahr,
2005; Luthcke et al, 2006; Baur et al, 2009; King et al, 2012]. The qualitative supremacy of
 is widely acknowledged, but the quantitative aspect has been questioned from time
to time. The stakeholders want a number (linear trend) to portray the rate of ice mass
loss in ice-sheets, or a number that narrates the total ground water deficit in California
or North-West India. But these numbers come with a large uncertainty, which exists due
to  errors and also due to the signal loss from filtering. The expectation of the
community is that the uncertainty is reduced to a minimum. I believe that this research
work is a successful contribution in this direction.
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

A filtering in the spectral domain is popular, we prefer the spatial domain for
a better visualization and for obtaining a different perspective. First we develop an

understanding of convolution at point scale, then we extend it to an entire catchment,
which is more relevant for  observed hydrological signals. Filtering affects both the
signal and the noise. In this chapter, we discuss the impact of filtering on the signal
only. Therefore, the fields used are noise-free hydrological models representing the 
type total water storage change. The impact of convolution on the signal is studied by
breaking the filtered signal into two parts, namely leakage from outside and change of
signal inside. These components are then treated extensively to obtain a relation for the
original signal. The discussion is mathematical, and is followed by a closed-loop test to
verify the findings.

§.    

The relation (1.14) is used for spatial averaging. The basic idea behind filtering is embedded
in this relation, where we compute a weighted average of the field over the entire globe
and allot that value to the calculation point. Therefore, the filtered value f̄ (·) at (θ,λ) is
influenced by the field values from the entire domain. However, due to weighting, the
magnitude of the impact of a data point depends on its distance from the calculation
point and the design of the filter kernel as well. For example, the weights for a Gaussian
filter decay with spherical distance from the calculation point in an isotropic manner.
Therefore, in general nearby points have a stronger impact than distant points.

The  products suffer from limited spatial resolution, therefore we study the
hydrological signal at catchment scale [Swenson, 2002; Velicogna and Wahr, 2006b;
Longuevergne et al, 2010; Lorenz et al, 2014]. In order to understand the impact of
filtering at catchment scale, it is logical to extend the concept of convolution from point
scale to catchment scale, but before we do that, let us understand the mathematical
definition of catchment averages.

The area integral of the field values inside a region of interest O, divided by the area
of the region of interest gives us a scalar value fc, known as the catchment average and
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written as

fc =
1
Ac

∫
O

f (θ,λ)dΩ with the area Ac =
∫
O

dΩ. (2.1)

We can achieve the same goal by introducing a characteristic function R(θ,λ) instead
of the region of interest O, which, when multiplied with the field f (θ,λ), gives us the
field confined to the region O. Integrating this product over the domain Ω gives us the
regional average fc. The characteristic function R(θ,λ) is a mask (step function) with the
value one inside the region of interest and zero elsewhere (cf. Figure 2.1).

R(θ,λ) =

1 , inside O

0 , elsewhere
, (2.2a)

Ac =
∫
Ω

R(θ,λ)dΩ . (2.2b)

Using the characteristic function in (2.1) allows us to evaluate the integral over the globe.
Therefore (2.1) is equivalent to

fc =
1
Ac

∫
Ω

f (θ,λ)R(θ,λ)dΩ . (2.3)

The regional average from a filtered field (denoted by f̄c) can be computed in the same
fashion. We just have to replace the field f (θ,λ) with the filtered field f̄ (θ,λ):

f̄c =
1
Ac

∫
Ω

f̄ (θ,λ)R(θ,λ)dΩ . (2.4a)

Replacing the field f̄ (θ,λ) in (2.4a) with the convolution integral (1.14), we get

f̄c =
1

4πAc

∫
Ω

∫
Ω′

R(θ,λ)f (θ′ ,λ′)b(θ,λ,θ′ ,λ′)dΩ′ dΩ . (2.4b)

We will now evaluate the convolution integral over the domain Ω and then change the
variables from (θ′ ,λ′) to (θ,λ) to get

f̄c =
1
Ac

∫
Ω

f (θ,λ) R̄(θ,λ)dΩ . (2.4c)

In (2.4a) the field is filtered, while in (2.4c) the catchment characteristic function is filtered.
Both equations yield the same result, which is a consequence of the associative property of
the convolution integral. In Figure 2.1, we have shown the filtered catchment characteristic
function R̄(·), which when multiplied with field f (·) and integrated over the globe gives
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us the regional average from filtered field (f̄c), the output of (2.4c). Therefore, f̄c includes
a weighted contribution from the points outside the catchment, while the points inside
the catchments are weighted down. For a deeper understanding, let us break down the
problem further.

R(θ, λ) R̄(θ, λ)

Figure .: The catchment characteristic function R(·) and the filtered catchment characteristic
function R̄(·) for Amazon. A Gaussian filter of half width radius 500 km is
used.

§.      

Breaking down the entire domain in points inside and outside the catchment will help us
focus on the degradation of the signal inside the catchment and the influence of points
outside separately. The catchment characteristic function R(·) represents the points inside,
so we introduce R∗(·), the complement of the characteristic function R(·), to represent the
points outside the catchment

R∗(θ,λ) = 1−R(θ,λ) =

0 , inside O

1 , elsewhere
, (2.5a)

A∗c =
∫
Ω

R∗(θ,λ)dΩ = 4π −Ac . (2.5b)

The field f (·) can be written as the sum of the field inside and outside

f (θ,λ) = f (θ,λ)R(θ,λ) + f (θ,λ)R∗(θ,λ) , (2.6a)

= F(θ,λ) +F∗(θ,λ) , (2.6b)

where the term F(·) contains the signal within the catchment and F∗(·) contains the signal
outside it (cf. Figure 2.2 column 1). Although, in Figures we use a Gaussian filter for
visualization, the discussion is valid for other filters too. We now insert (2.6b) into (1.14),
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and perform the convolution:

f̄ (θ,λ) =
1
4π

∫
Ω

(F(θ′ ,λ′) +F∗(θ′ ,λ′)) b(θ,λ,θ′ ,λ′)dΩ′ , (2.7)

= F̄(θ,λ) + F̄∗(θ,λ) , (2.)

where the filtered field f̄ (·) contains both the signal from the catchment F̄(·) (although
attenuated), and from outside it as well F̄∗(·) (cf. Figure 2.2 column 2). Confining our
analysis to O, which is our goal, (2.) becomes

f̄ (θ,λ)R(θ,λ) = F̄(θ,λ)R(θ,λ) + F̄∗(θ,λ)R(θ,λ) ,

or

f̄O(θ,λ) = F̄O(θ,λ) + l(θ,λ)R(θ,λ) . (2.9)

The term f̄O(·) is the filtered field over the catchment; it is the sum of the attenuated
signal F̄O(·) and the leakage signal l(·) pulled into the region by the filter (cf. Figure 2.2
column 3). Thus, we can write leakage explicitly as follows:

l(θ,λ) =
1
4π

∫
Ω′

f (θ′ ,λ′)R∗(θ′ ,λ′)b(θ,λ,θ′ ,λ′)dΩ′ . (2.10)

Taking the regional average of (2.9) we get

f̄c = F̄c + lc . (2.11)

The filtered signal inside the region of interest is a sum of attenuated inside field F̄(·)
and a leakage field confined to the region l(·)R(·).

The regional average of a quantity can be computed for every epoch. This information
stacked in time gives us a time series, which is used to study the behaviour of that
quantity over time. Since the time variable gravity information from  is mostly used
at time series level, we would treat the problem at hand also at time series level. The
relation (2.11) is true for regional averages at an epoch and also at time series level. To
this end, we seek the answers to the following questions:

i. how are these two components related to the true or original regional average fc?

ii. what is the impact on the regional average computed from the filtered field f̄c?

§.     

We define leakage as the contribution from signal outside the region of interest, due to
convolution only. Beyond this strict definition one can find different perceptions of leakage
in the literature, for example, one may include Gibbs’s effect into leakage [Swenson and
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1Figure .: An illustrative example breaking down the process of filtering. The first and
the second rows are spatial complements of each other. The first row shows
the leakage, and second row shows the loss in catchment-confined signal. The
third row is the sum of the first two rows. Column 1 is filtered to obtain
column 2. The field in column 2 is global, thus we extract the field only inside
the catchment in column 3. Then the catchment average at each epoch of the
field in column 3 constitutes a time series, shown in column 4.

Wahr, 2006], or describe the effect of convolution by different terminology such as bias
[Klees et al, 2007]. Apart from regional average specific definitions, there are also filter
specific definitions [e.g., Devaraju, 2015].

The leakage field l(·) and its catchment average lc, derived in (2.10) and (2.11) respectively,
gives us the total leakage from outside the catchment. However, a catchment is typically
surrounded by a number of catchments, each of them having a different hydrological
behaviour. Therefore, to see if the leakage is contributed evenly by the entire region R∗(·)
or only by certain catchments in R∗(·), we make a small change in the way we define
our R∗(·). We break the region R∗(·) into N individual catchments. Thus we can rewrite
R∗(·) as a sum of the characteristic functions of those smaller regions as

R∗(θ,λ) =
N∑
i=1

R∗i (θ,λ) . (2.12)

Substituting (2.12) in (2.6b), and subsequently deriving the leakage effect, we arrive at

f̄c = F̄c +
N∑
i=1

li , (2.13)

which indicates that the total leakage received is the sum of contribution from all other
catchments. To understand better, let us take the South-American catchments in Figure
2.3.
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The individual leakage contribution, from only one catchment to the other is called inter-
catchment leakage. In order to avoid confusion, let us call the catchment under investigation
as the sink catchment, and the catchment whose impact we want to study as the source
catchment. Thus, the inter-catchment leakage received by Amazon (sink catchment) only
from Orinoco (source catchment), is determined by computing li where i corresponds
to the Orinoco catchment. If we want to understand various aspects of inter-catchment
leakage, such as dependence on catchment size, shape, and location, then we should first
analyze the potential inter-catchment leakage. To obtain that, we take a homogeneous unit
field only over the source catchment and filter it. Smoothing will spread the energy in the
source catchment outside the borders, the portion of spread received by the sink catchment
is the potential leakage field. Figure 2.4 shows the potential inter-catchment leakage among
the 5 river basins in South-America for a Gaussian filter kernel of 400 km filter radius.
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Figure .: The South American catchments
depicted in the inter-catchment
leakage visualization (Figure 2.4).

We observe that the leakage signal in the
sink catchment is strong near catchment
boundaries and it decays as soon as we
move away from the source catchment. A
first impression from Figure 2.4 is that in
comparison to a big sink catchment, rela-
tively more area of a small sink catchment
is affected by leakage. Therefore, the re-
gional average of the leakage follows a rule
of thumb, the bigger the sink catchment the
smaller the leakage li . Catchments which
share a longer border leak more into each
other. In other words, proximity is an
important factor when addressing expected
leakage from a catchment. Apart from
catchment characteristics, the filter function
also plays a vital role. The bigger the filter
radius the larger the leakage. Although here
we have demonstrated the potential leakage
with an isotropic Gaussian filter, the shape
of the filter kernel (anisotropy) will have an impact on the inter-catchment leakage.

Till now, we have discussed the inter-catchment leakage at an epoch under the
assumption that we have a homogeneous field distribution, which helps us to understand
the general behaviour of leakage. However, in reality the hydrological signal is not a
uniform homogeneous layer. The field distribution plays an important role and can not be
neglected. Therefore, beyond catchment characteristics and filter properties, leakage also
depends on the field distribution around the sink catchment. In order to understand this
better, we use a Gaussian filter kernel of 400 km half width radius, and monthly WaterGAP
Global Hydrology Model () fields [Döll et al, 2014], to compute catchment averages
of the inter-catchment leakage field, attenuated field, and the  field at every epoch.
Then we stack them in time, to get a time series, see Figure 2.5. Indeed we can see that
the amplitude of the inter-catchment leakage depends on the proximity of the sink and
the source catchments. For example, Rio Tapajos receives a substantial amount of leakage
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Figure .: Visualization of potential leakage between 5 South American catchments. The
maps on the diagonal represent the catchment characteristic function R(θ,λ).
Each column shows how much leakage the catchment in red receives from
other catchments. While each row shows how much the catchment in red
contributes to other catchments. The colour bar represents the relative signal
strength (dimensionless). Visualizing potential inter-catchment leakage helps us
to obtain a preliminary idea of the relative amount of leakage to be expected.

because of its proximity to the Amazon. Apart from this the size of the sink catchment
is also important, the amplitude of the leakage, relative to the attenuated signal amplitude
in the sink catchment, is small if the area of the sink catchment is large, and vice-versa
(cf. off-diagonal elements of the Figure 2.5).

Each catchment can have a hydrological behaviour different than the others nearby,
which implies that the leakage time series from each catchment can be different. For
instance, in Figure 2.3 Amazon receives a leakage which is a sum total of leakage from all
other individual catchments. Since Amazon, Rio Tapajos, and Parana are in the Southern
hemisphere, they have an out of phase signal with respect to Orinoco and Magdalena
in the Northern hemisphere. Therefore, the leakage from Orinoco and Magdalena will be
out of phase with respect to the leakage from Rio Tapajos and Parana, and vice-versa.
The resultant leakage received by Amazon will have a different phase with respect to the
signal in Amazon. The leakage l(·) added to the filtered confined field F̄(·), gives us the
filtered field f̄ (·). This is true for regional average at an epoch and also for the time
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Figure .: Inter-catchment leakage: Black represents the true time series from .
Red is the time series from the filtered model and blue in off diagonal plots
represents leakage. Each row shows how much leakage the catchment in
diagonal receives from others.

series. Let us understand the impact of leakage on the output of filtering in more detail.

§.    

A hydrological time series, typically, has a seasonal signature. Let us assume that both
the leakage and the attenuated time series are sinusoids of frequency ω and phase ϕ. The
leakage time series is represented by αl sin(ωt +ϕl) and the time series of the attenuated
signal by αa sin(ωt+ϕa). Let us write the time series in the last column of the third row
of Figure 2.2 as ᾱ sin(ωt + ϕ̄), which is equivalent to sum of the leakage time series and
the attenuated time series. Hence

ᾱ sin(ωt + ϕ̄) = αa sin(ωt +ϕa) +αl sin(ωt +ϕl) (2.14)

using the identity sin(x+y) = sinxcosy +siny cosx to expand the right hand side of (2.14),
we get

ᾱ sin(ωt + ϕ̄) = αa[sinωt cosϕa + sinϕa cosωt] +αl[sinωt cosϕl + sinϕl cosωt],

= αa sinωt cosϕa +αa sinϕa cosωt +αl sinωt cosϕl +αl sinϕl cosωt,

= (αa cosϕa +αl cosϕl)sinωt + (αa sinϕa +αl sinϕl)cosωt. (2.15)
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Since the phases and the amplitudes are constants, the terms (αa cosϕa + αl cosϕl) and
(αa sinϕa +αl sinϕl) are also constant. Hence, let us rewrite

(αa cosϕa +αl cosϕl) = ᾱ cos ϕ̄, (2.16)

(αa sinϕa +αl sinϕl) = ᾱ sin ϕ̄. (2.17)

Substituting (2.16) and (2.17) in (2.15), and again using the identity sin(x + y) = sinxcosy +
siny cosx, we get the left hand side of (2.14)

ᾱ sin(ωt + ϕ̄) = (αa cosϕa +αl cosϕl)sinωt + (αa sinϕa +αl sinϕl)cosωt.

Thus the summation of two time series yields another time series with amplitude ᾱ and
phase ϕ̄. To find the relation for amplitude, take the square of both the sides of (2.16)
and (2.17), and then add to get

α2
a cos

2ϕa +α
2
a sin

2ϕa

+α2
l cos

2ϕl +α
2
l sin

2ϕl

+2αaαl[cosϕa cosϕl + sinϕa sinϕl] = ᾱ2, (2.1)

using the identity sin2 x+ cos2 x = 1, we get the amplitude

ᾱ =
√
αa2 +αl2 +2αlαa cos(ϕa −ϕl). (2.19)

It is evident that the resultant amplitude is a function of the cosine of the phase difference
(ϕa −ϕl). Since the cosine function is a symmetric function, the sign of (ϕa −ϕl) can be
ignored. Moreover, the maximum value is obtained for a phase difference of π and the
minimum is for zero. The resultant amplitude can attain any value between a maximum
and a minimum value, given by

ᾱ =

αa +αl , ∆ϕ = 0

αa −αl , ∆ϕ = π
(2.20)

If we divide the equation (2.16) and (2.17), then we get a relation for the resultant phase,
given by

tan ϕ̄ =
αl sinϕl +αa sinϕa

αl cosϕl +αa cosϕa
. (2.21)

From (2.19), we can expect the catchments closer to the equator, receiving leakage
dominantly from the opposite hemisphere, to suffer a large amplitude reduction. For
example, Orinoco lies in the Northern Hemisphere, and it gets leakage from nearby
catchments in the Southern Hemisphere, therefore the time series from filtered fields
should have minimum attainable value. However, according to (2.21) the phase should not
change substantially. Similarly, we can craft an understanding about the impact of filtering
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on the amplitude and phase for many catchments over the globe. The important message
is that both the amplitude and the phase of the signal time series change after filtering.

We recall that the filtered catchment average f̄c, is the sum of the filtered confined-
signal F̄c and the leakage signal lc brought in by the filter. In order to compute the true
signal, we have to remove the leakage first and then counter the signal change inside
the catchment. For that purpose, first we should understand how the signal inside the
catchment is affected due to filtering, and then find a way to reverse it.

§.        

The second row of Figure 2.2 shows that the signal inside the catchment is smothered
by the filter. Since we are interested in the regional average of the filtered signal, we
loose some signal inside the catchment boundary due to attenuation, which leads to
an underestimation of the true regional average. In order to compensate for the loss,
researchers have advocated use of a scale factor derived from the catchment characteristic
function and the filter function [Velicogna and Wahr, 2006a; Wahr et al, 2007; Longuevergne
et al, 2010; King et al, 2012; Vishwakarma et al, 2016].

Method of scale

This approach helps us to mitigate the amplitude loss, but comes with its own problems.
We will now discuss its genesis, underlying assumptions, and limitations. The goal is to
relate the attenuated signal F̄c with the true signal fc, using a scale factor s

s =
fc
F̄c
. (2.22)

It is instructive here to write the explicit expressions for fc and F̄c

s =

∫
Ω

f (θ,λ)R(θ,λ)dΩ

∫
Ω

F̄(θ,λ)R(θ,λ)dΩ
. (2.23)

In order to evaluate (2.23) we need the true signal f (θ,λ), which is an unknown.
However, we are interested in catchment averages only, thus we can replace f (θ,λ) with
the catchment average fc in the numerator, and write it as

1
Ac

∫
Ω

f (θ,λ)R(θ,λ)dΩ =
1
Ac

∫
Ω

fcR(θ,λ)dΩ. (2.24)
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The denominator can be rewritten by using the associative property, demonstrated by (2.4c)

1
Ac

∫
Ω

F̄(θ,λ)R(θ,λ)dΩ =
1
Ac

∫
Ω

F(θ,λ)R̄(θ,λ)dΩ =
1
Ac

∫
Ω

f (θ,λ)R(θ,λ)R̄(θ,λ)dΩ.

(2.25)

If the field f (θ,λ) is nearly uniform inside the catchment, then we can use the uniform
layer approximation in (2.25). The approximation is

1
Ac

∫
Ω

f (θ,λ)R(θ,λ)R̄(θ,λ)dΩ ≈ 1
Ac

∫
Ω

fcR(θ,λ)R̄(θ,λ)dΩ. (2.26)

The total water storage change observed by  is dominated by the long wavelength
component [Swenson, 2002]. Therefore, for most of the regions dominated by hydrology,
the uniform layer approximation is a fair assumption. However, we should remember that
it is still an assumption. Substituting (2.24) and (2.26) in (2.23), we get

s =

∫
Ω

fcR(θ,λ)dΩ∫
Ω

fcR(θ,λ) R̄(θ,λ)dΩ
=

∫
Ω

R(θ,λ)dΩ

∫
Ω

R(θ,λ) R̄(θ,λ)dΩ
. (2.27)

In (2.27) s is a data independent catchment specific quantity for a given filter. With
the scale factor known, we can approach the true catchment average fc from F̄c, i.e.

fc = s F̄c .

We now replace F̄c in (2.11) to get

f̄c =
fc
s
+ lc ⇐⇒ fc = s (f̄c − lc) . (2.2)

As per (2.2), first we should subtract lc from f̄c and then scale up to reach fc. These
entities are defined at an epoch. We can compute them at every epoch and stack them to
get a time series. To avoid additional notation, we would refer the time series and regional
averages at an epoch by the same notation, i.e. without an explicit time argument.

In (2.2), leakage can only be computed accurately, if we know the true field distribution,
which is not possible for  observations. Therefore, most of the research contributions
determine leakage from models [Longuevergne et al, 2010; Klees et al, 2007], which brings
the uncertainty in the model to (2.2). Furthermore, the scale factors are inversely related
to the size of the catchment, which means that the error or uncertainty in smaller
catchments is amplified more in comparison to the big catchments. Therefore, such an
approach can work for big catchments with uniform total water storage change signal,
but for other areas the accuracy will be low and we will not be able to close (2.2).

If we find a way to estimate leakage without using any model, and avoid uniform
layer approximation to find a relation which closes (unlike (2.2)), then we can treat the
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signal degradation due to filtering comprehensively. Let us take the problem at hand, one
by one. Next, we will investigate further to avoid the uniform layer approximation.

Method of averages and deviation

Recalling (2.), we can write the filtered field as

f̄ (θ,λ) =
1
4π

∫
Ω

(F(θ′ ,λ′) +F∗(θ′ ,λ′)) b(θ,λ,θ′ ,λ′)dΩ′

= F̄(θ,λ) + F̄∗(θ,λ) .

Taking the regional average over a region R(θ,λ) we get

1
Ac

∫
Ω

f̄ (θ,λ)R(θ,λ)dΩ =
1
Ac

∫
Ω

F(θ,λ)R̄(θ,λ)dΩ+
1
Ac

∫
Ω

F̄∗(θ,λ)R(θ,λ)dΩ.

Our goal is to get the true regional average fc. Now if we write the catchment limited
field F(·) as a sum of two global fields: the regional average over the catchment fc, and
a deviation δF(·) from fc, i.e. F(·) = fc + δF(·), shown in Figure 2.6, then

f̄c =
1
Ac

∫
Ω

(fc + δF(θ,λ))R̄(θ,λ)dΩ+
1
Ac

∫
Ω

F̄∗(θ,λ)R(θ,λ)dΩ. (2.29)

The last integral on the right hand side of (2.29) is leakage lc, thus the relation becomes

f̄c =
1
Ac

∫
Ω

fcR̄(θ,λ)dΩ +
1
Ac

∫
Ω

δF(θ,λ)R̄(θ,λ)dΩ + lc.

Since fc is a constant we can take it out of the first integral to get

f̄c =
fc
Ac

∫
Ω

R̄(θ,λ)dΩ +
1
Ac

∫
Ω

δF(θ,λ)R̄(θ,λ)dΩ + lc.

Now the total energy under the filter kernel is conserved, which means∫
Ω

R̄(θ,λ)dΩ =
∫
Ω

R(θ,λ)dΩ = Ac. (2.30)

Thus, we can write

f̄c = fc +
1
Ac

∫
Ω

δF(θ,λ)R̄(θ,λ)dΩ + lc .
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Let us write the deviation integral
1
Ac

∫
Ω

δF(θ,λ)R̄(θ,λ)dΩ as δFc, then the true regional

average is written as

fc = f̄c − δFc − lc . (2.31)

Equation (2.31) has no assumptions and approximations. Therefore, the relation must close
and we should be able to determine the true regional average fc from the three terms on
the right hand side. This fulfills our quest for a equation that relates the true regional
average fc with the regional average from filtered field f̄c.

catchment limited field F (·) regional average fc deviation field δF (·)

= +

Figure .: Breaking the catchment confined field F(·) inside Orinoco into two parts: a
global uniform layer with the amplitude equal to the regional average fc and
a deviation field δF(·). Please note that the deviation field attains a value of
−fc outside the catchment.

We have established mathematical relations to approach the true regional average fc,
however, a numerical test of method of scale and method of averages and deviation,
hereafter method of deviation, will demonstrate the accuracy of these relations. But,
before we verify our findings in a closed-loop environment, let us describe a few model
dependent approaches.

§.   

From a number of approaches to correct the filtered  products, we choose the three
most popular model-dependent approaches: multiplicative approach by Longuevergne et al
[2010], additive approach by Klees et al [2007], and the scaling approach by Landerer and
Swenson [2012]. Long et al [2015] compared these three approaches and found that the
additive method performs the best. The basic formulation behind these model dependent
approaches is given in Table 2.1. We can see that the multiplicative approach is equivalent
to the data-driven method of scale, with the difference that the leakage in multiplicative
approach is computed from a model M(θ,λ). The leakage from a model can be written as

lmc =
1
Ac

∫
Ω

1
4π

∫
Ω′

M(θ′ ,λ′)R∗(θ′ ,λ′)b(θ,λ,θ′ ,λ′)dΩ′ dΩ . (2.32)
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approa relation

multiplicative fc = s(f̄c − lmc )

additive fc = f̄c − lmc + bmc

scaling fc = k f̄c

Table .: Mathematical relations behind three popular model dependent approaches.

The leakage in additive approach is also computed with the help of model using (2.32).
However, the catchment-confined signal degradation is treated using a correction term
known as bias bc, which is written as

bc =
1
Ac

∫
Ω

M(θ,λ)(R(θ,λ)− R̄(θ,λ))dΩ . (2.33)

The scale k in scaling approach is estimated with an aim to minimize the difference
between the quantity from model and from filtered model, in a least squares sense. This
approach can be applied to a grid also, which gives us a map of scaling factors [Landerer
and Swenson, 2012]. The concept, can be written mathematically as

k → min{M(θ,λ)− kM̄(θ,λ)} . (2.34)

In addition to these three model dependent approaches, a scaling approach from Wahr
et al [2007] was used for many studies with  [Fenoglio-Marc et al, 2006; Velicogna
and Wahr, 2006b]. The scaling approach amplifies the regional averages from filtered
 by s that is same as the scale in (2.27). Since we have proved in (2.2) that a
leakage removal is essential before scaling, the approach by Wahr et al [2007] will be
effective for catchments receiving negligible leakage, and with a nearly homogeneous and
uniform signal.

§.  

We use the monthly 1◦ gridded total water storage change fields from  to emulate a
-type signal. A description of the model is provided in Appendix A. A Gaussian filter
with half width radius of 400 km is used for filtering, and we perform our computations
for 12 catchments given in Table 2.2, over a span of 6 years, from January 2004 to
December 2009. In order to validate the theoretical understanding obtained, we will answer
the following questions:

i. Is it true, as we found in section 2.4, that leakage affects both the amplitude and
the phase of the true time series? If yes, then by what amount is the phase of the
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time series from filtered fields changed? Is it significant or not? Can scaling alone
help us to recover the true time series?

ii. The uniform layer approximation leads us to (2.2), which has been advocated for
retrieving the true regional average fc. Is this relation accurate enough? What are
the limitations that are brought in by the uniform layer assumption?

iii. We claim that (2.31) approaches the true regional average. How well does relation
(2.31) closes? Is it better than (2.2)?

In order to find answers to these questions, first we compute f̄c, fc, lc, δFc and s. We then
compute s (f̄c − lc) and f̄c − δFc − lc, which we refer to as the retrieved time series from
the method of scale (2.2) and retrieved time series from the method of deviation (2.31)
respectively. These time series are compared with the true time series fc computed from
the model fields. The phase difference between two time series is computed by employing
Hilbert transform [Phillips et al, 2012]. Let us suppose, we want to determine the phase
difference between two time series fc and f̂c, then first we express one of them in terms
of the other as

f̂c = a+ b fc + c Im{ H (fc)}.

The parameters a, b, and c are obtained using least squares estimation. The phase difference
between two time series is then given by

∆ϕ = arctan
( c
b

)
.

The difference between true time series and estimated time series is represented by the
RMS (Root Mean Square), given by

RMS =

√√
1
m

m∑
i=1

(fc − f̂c)2. (2.35)

In addition to that, we also compute the Nash Sutcliffe Efficiency (NSE) given by

NSE = 1−

m∑
i=1

(fc − f̂c)2

m∑
i=1

(fc − f̃c)2
, (2.36)

where fc represents the true value, f̂c is the time series with which we compare the true
time series, f̃c is the mean of the true values and m is the number of epochs (months).
RMS can attain any positive value, a RMS close to zero represents excellent agreement
between fc and f̂c. NSE can attain any value between −∞ and 1. A positive NSE value
indicates that the time series computed is better than the mean of the true time series and
a value close to 1 represents excellent agreement between fc and f̂c [Nash and Sutcliffe,
1970].

Table 2.2 contains ∆ϕ, RMS, and NSE between true time series and a time series
computed from filtered fields or its corrected version. We can see that the phase change
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Figure .: The total water storage time series computed from  fields is the true time
series in our closed-loop simulation. The difference between true time series
fc and that from filtered  fields f̄c is denoted by the gray bars. The
difference between fc and s (f̄c − lc) (2.2) is represented by the black line, and
the difference between the true time series fc and that recovered by (2.31) is
in red.
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introduced by filtering (ϕ − ϕ̄) is significant. For the Highland of Tibet it even amounts
up to 22.6◦(≈ 23 days). Such a huge shift in the phase means that the time series is
shifted nearly by a month. The phase difference for other catchments, such as Rio Tapajos,
Brahmaputra, and Krishna, is also substantial. Since there have been several attempts
to recover the signal loss by scaling alone [Velicogna and Wahr, 2006a; Wahr et al,
2007; Landerer and Swenson, 2012], we also compare a scaled version of the time series
from filtered fields with the true time series. The corresponding scale factors are given
in the last column. We can clearly see that due to non-negligible magnitude of the
phase difference, a simple scaling approach is ineffective. Furthermore, it increases the
disagreement between the corrected time series and the true time series, and we can see
that the time series from filtered fields are better than the scaled time series.

Table .: Absolute phase difference, RMS (cm), and NSE between two total water storage
change time series. These time series are generated from  fields and their
filtered version for catchments in the first column. The last column shows scale
factors for a Gaussian filter with averaging radius of 400 km. Catchments are
sorted according to their area. The best value is in bold.

Between fc and f̄c Between fc and s f̄c Between
fc and s (f̄c − lc)

Between
fc and f̄c − δFc − lc

s

Catchment ∆ϕ RMS NSE ∆ϕ RMS NSE ∆ϕ RMS NSE ∆ϕ RMS NSE

Amazon 0.6◦ 0.79 . 0.6◦ 1.6 0.95 1.9◦ 1.00 0.99 ◦  . 1.32
Parana 2.2◦ 0.41 0.99 2.2◦ 1.61 0.1 0.0◦ 0.20 . ◦  . 1.49
Indus 0.3◦ 0.96 0. 0.3◦ 2.50 0.20 1.0◦ 0.30 0.99 ◦  . 1.2
Ganges 2.6◦ 1.61 0.95 2.6◦ 4.46 0.60 0.5◦ 0.41 . ◦  . 1.9
Orinoco 2.7◦ 4.17 0.9 2.7◦ 5.93 0.7 0.2◦ 1.07 0.99 ◦  . 2.09
Brahmaputra 12.◦ 1.7 0.9 12.◦ 11.40 -0.64 1.0◦ 0.4 0.99 ◦  . 2.69
Highland of Tibet 22.6◦ 1.33 0.5 22.6◦ 2.66 -3.60 0.2◦ 0.12 . ◦  . 2.49
Rio Tapajos 11.3◦ 3.05 0.95 11.3◦ 29.74 -4.01 0.6◦ 0.21 . ◦  . 3.24
Godavari 2.1◦ 0.5 0.9 2.1◦ 12.35 -3.35 1.6◦ 0.27 . ◦  . 3.44
Krishna 11.9◦ 2.24 0.4 11.9◦ 13.35 -4.56 4.0◦ 0.17 . ◦  . 4.05
Magdalena 4.7◦ 2.70 0.73 4.7◦ 14.56 -6.91 0.1◦ 0.23 . ◦  . 4.06
Aravalli 5.6◦ 2.36 0.5 5.6◦ 15.01 -3.95 1.0◦ 0.43 0.99 ◦  . 5.01
Mean 6.6◦ 1.90 0. 6.6◦ 9.62 -1.97 1.0◦ 0.41 0.99 ◦  

The result from the method of scale displays a substantial improvement in the phase
and the amplitude. Thus, removal of leakage prior to scaling is important for the accuracy
of the corrected time series. However, the relation does not close, and a small error in
the phase and the amplitude is still present. The result from the method of averages and
deviation demonstrates a perfect reproduction of both the phase and the amplitude. This
corroborates the correctness and efficacy of the theoretical foundation laid.

We discussed earlier that due to out-of-phase leakage, Orinoco is expected to suffer a
larger deviation in the amplitude. In Figure 2.7, we can indeed see that the difference
between fc and f̄c (the gray bars) is maximum for Orinoco, corresponding to which, in
Table 2.2, the RMS between fc and f̄c is also maximum.

In this chapter we studied the signal damage due to filtering, and established relations
to repair it. However, its realization for  products is a challenge in itself. There are
two stumbling blocks in front of us:

i. The computation of leakage lc and δFc require the knowledge of the true field,
which is unknown in reality. This is the reason, why many researchers advocate
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usage of models to compute leakage, bias or scale factors. However, we want to
refrain from such practice, which motivates us to develop a data-driven method for
determining these quantities.

ii. The  products are contaminated with a large amount of noise. We assume
that it is filtered out, but a perfect filter is fictional. Therefore, we expect to have
some noise left, whose magnitude is dictated by the filter definition. However, noise
should be included and treated in the general mathematical framework established
here, so that we are able to demarcate the limitations pertinent to a filter.

These two aspects are treated in the next chapter, which will help us to come up with
a comprehensive method to correct the filtered  products.



     

I this chapter we aim to develop a comprehensive method to approach the true value
of the regional average from the monthly  products alone. For this purpose, first

of all we introduce noise in the developed mathematical framework to identify its impact,
and then craft a data-driven strategy to estimate leakage lc and the deviation integral δFc.
The method evolves with the support from few assumptions and approximations, which
are tested exhaustively to design a reliable method.

§.   

The relations (2.2) and (2.31) were derived for the noise free case, however,  monthly
products are contaminated with noise. Let us denote a  field by g(θ,λ), which can
be written as a summation of the signal f (θ,λ) and noise n(θ,λ), i.e.

g(θ,λ) = f (θ,λ) +n(θ,λ). (3.1)

The filtered  field can be written as

ḡ(θ,λ) =
1
4π

∫
Ω′

g(θ′ ,λ′)b(θ,λ,θ′ ,λ′)dΩ′ =
1
4π

∫
Ω′

(
f (θ′ ,λ′) +n(θ′ ,λ′)

)
b(θ,λ,θ′ ,λ′)dΩ′ .

This convolution integral can be written in two parts, one for the signal and the other
for noise

ḡ(θ,λ) =
1
4π

∫
Ω′

f (θ′ ,λ′)b(θ,λ,θ′ ,λ′)dΩ′ +
1
4π

∫
Ω′

n(θ′ ,λ′)b(θ,λ,θ′ ,λ′)dΩ′ .

Next, we break both the signal and noise into two spatially complementary parts like
before: one inside and the other outside, to get

ḡ(θ,λ) =
1
4π

∫
Ω′

F(θ′ ,λ′)b(θ,λ,θ′ ,λ′)dΩ′ +
1
4π

∫
Ω′

F∗(θ′ ,λ′)b(θ,λ,θ′ ,λ′)dΩ′

+
1
4π

∫
Ω′

N (θ′ ,λ′)b(θ,λ,θ′ ,λ′)dΩ′ +
1
4π

∫
Ω′

N ∗(θ′ ,λ′)b(θ,λ,θ′ ,λ′)dΩ′ . (3.2)
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The first integral on the right hand side of (3.2) gives us the attenuated catchment-
confined signal, the second integral is leakage, the third integral gives us the attenuated
catchment-confined noise, and the fourth integral is the noise that comes with leakage.
These terms can be abbreviated and written as

ḡ(θ,λ) = F̄(θ,λ) + l(θ,λ) + N̄ (θ,λ) +nl(θ,λ). (3.3)

Taking the regional average of (3.3), we get a relation similar to (2.11), which is

ḡc = F̄c + lc + N̄c +n
l
c. (3.4)

In order to counter the attenuation of catchment-confined quantity, we can follow the
method of scale or the method of deviation. If we follow the uniform layer assumption
for both the signal and the noise then we reach a mathematical relation similar to the
relation obtained by method of scale (2.2)

ḡc =
1
s
(fc +nc) + lc +n

l
c. (3.5)

On the other hand, if we write the inside-field F(θ,λ) and the inside-noise N (θ,λ) in
(3.2) as a sum of the regional average and a deviation from the respective quantity, then
after taking the regional average we reach a mathematical relation similar to the relation
obtained by method of deviation (2.31). It reads as

ḡc = fc +nc +
1
Ac

∫
Ω

δF(θ,λ)R̄(θ,λ)dΩ +
1
Ac

∫
Ω

δN (θ,λ)R̄(θ,λ)dΩ + lc +n
l
c,

or

ḡc = fc +nc + δFc + δN c + lc +n
l
c, (3.6)

where ḡc is the catchment average of the filtered mass change from , nc is the
aggregated noise over the catchment only, nlc is the noise term in the leakage computed
from unfiltered  fields, and δN c is the integral of the catchment-limited noise
deviation. All other symbols have their usual meanings.

Since the noise in  fields is unknown, the noise components in equation (3.5)
and (3.6) can not be determined. However, if we assume that the filter dampens the noise
to a large extent, then the averages of dampened noise over the region (nc and δN c)
can be safely neglected. But the leakage noise nlc brought into the catchment along with
the leakage signal remains a major threat to the accuracy. If we use a noise-free field to
compute leakage, then we can avoid nlc. This is the reason many studies advocated using
a hydrological model to compute leakage lc [Klees et al, 2007; Longuevergne et al, 2010].

In Figure 3.1 and 3.2 we demonstrate that using a model brings in error. We plot the
difference between true time series from  fields and the corrected time series using
(2.2), but computing leakage from  or and model. Similarly, the error in
corrected time series from (2.31) are shown in Figure 3.2, where we compute both the
leakage lc and the deviation integral δFc from a model. Even in this noise-free closed-loop
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test we can clearly see that the difference in models is reflected as error. Furthermore,
for certain catchments one model is better than the other, but one can not declare a
single model superior and use it. This motivates us to develop a data-driven approach for
estimating leakage lc and the deviation integral δFc.

As a first approximation, we propose to use filtered fields for computing leakage or the
deviation integral. In Figures 3.1 and 3.2, we have also plotted the error in corrected time
series using leakage and the deviation integral from filtered fields. It is consistently less
compared to when using a model. However, the magnitude of error is not negligible. This
is due to the fact that filtering affects the original field, thus the leakage time series and
the deviation integral time series from them are also affected. Nevertheless, a modified
information of the original field distribution is present, which helps us to perform better
than models. If we can approach the original leakage and the original deviation integral,
then we can improve our performance even further. In order to achieve this, we must
obtain a better understanding of leakage and the deviation integral from filtered fields.
Let us first analyze the leakage from filtered fields.

§.    

The catchment average of the leakage from the true field, lc, is explicitly given by

lc =
1
Ac

∫
Ω

R(θ,λ)
4π

∫
Ω′

f (θ′ ,λ′)R∗(θ′ ,λ′)b(θ,λ,θ′ ,λ′)dΩ′ dΩ. (3.7)

Using the associative property of the convolution integral yields

lc =
1
Ac

∫
Ω

f (θ,λ)R∗(θ,λ) R̄(θ,λ)dΩ . (3.)

Replacing R∗(θ,λ)R̄(θ,λ) by κ(θ,λ), we can rewrite equation (3.) as

lc =
1
Ac

∫
Ω

f (θ,λ)κ(θ,λ)dΩ . (3.9)

Following the above proposed idea of data-driven leakage correction, let us assess what
happens if the field f (θ,λ) is replaced with the filtered  field ḡ(θ,λ):

l̄c =
1
Ac

∫
Ω

R(θ,λ)
4π

∫
Ω′

ḡ(θ′ ,λ′)R∗(θ′ ,λ′)b(θ,λ,θ′ ,λ′)dΩ′ dΩ .

Using the associative property of the convolution integral we get

l̄c =
1
Ac

∫
Ω′

ḡ(θ′ ,λ′)R∗(θ′ ,λ′) R̄(θ′ ,λ′)dΩ , (3.10)



34 3     

−
2 0 2

Error (cm)

A
m

a
z
o
n
 

−
1 0 1

P
a
ra

n
a
 

−
1 0 1

O
rin

o
c
o
 

−
1 0 1

R
io

 T
a
p
a
jo

s
 

−
1 0 1

M
a
g
d
a
le

n
a
 

−
1 0 1

C
o
ra

n
tijn

 

−
1 0 1

M
a
ro

n
i 

−
2 0 2

R
io

 J
a
ri 

T
im

e
 (2

0
0
4
 −

 2
0
0
9
)

−
1 0 1

In
d
u
s
 

−
1 0 1

G
a
n
g
e
s
 

−
1 0 1

B
ra

h
m

a
p
u
tra

 

−
2 0 2

H
ig

h
la

n
d
 O

f T
ib

e
t 

−
4 0

G
o
d
a
v
a
ri 

−
1 0 1

K
ris

h
n
a
 

−
1 0 1

A
ra

v
a
lli 

−
1 0 1

M
a
h
a
n
a
d
i 

−
1 0 1

O
b
 

−
1 0 1

Y
e
n
is

e
i 

−
2 0 2

L
e
n
a
 

−
1 0 1

G
o
b
i 

−
2 0 2

A
m

u
r 

−
2 0 2

Y
a
n
g
tz

e

−
4 0 4

Y
e
llo

w
 R

iv
e
r 

−
4 0 4

T
a
rim

 

−
2 0 2

C
o
n
g
o
 

−
1 0 1

E
a
s
t A

u
s
tra

lia
 

−
5 0 5

M
is

s
is

s
ip

p
i

−
4 0 4

M
a
c
k
e
n
z
ie

−
2 0 2

Z
a
m

b
e
z
i 

−
1 0 1

O
ra

n
g
e
 

−
8 0 8

D
a
n
u
b
e
 

−
1 0 1

C
o
lu

m
b
ia

Figure
.:

Error
in

the
corrected

tim
e
series

from
(2.2),

w
hich

is
com

puted
by

subtracting
the

original
tim

e
series

from
corrected

tim
e

series.
Th

e
black

line
denotes

the
error

in
corrected

tim
e
series

using
leakage

from


m
odel,

and
gray

line
denotes

the
error

in
corrected

tim
e

series
using

leakage
from


and

m
odel.

Th
e

red
line

denotes
the

error
in

the
corrected

tim
e

series
using

leakage
from

the
filtered





fields.

A
m
ap

of
the

catchm
ents

is
given

in
Figure

3.10



. Leakage from filtered fields 35

−
101

Error (cm)
A

m
a
z
o
n
 

−
101

P
a
ra

n
a
 

−
101

O
ri
n
o
c
o
 

−
101

R
io

 T
a
p
a
jo

s
 

−
101

M
a
g
d
a
le

n
a
 

−
101

C
o
ra

n
ti
jn

 

−
101

M
a
ro

n
i 

−
101

R
io

 J
a
ri
 

T
im

e
 (

2
0
0
4
 −

 2
0
0
9
)

−
101

In
d
u
s
 

−
101

G
a
n
g
e
s
 

−
101

B
ra

h
m

a
p
u
tr

a
 

−
101

H
ig

h
la

n
d
 o

f 
T

ib
e
t 

−
101

G
o
d
a
v
a
ri
 

−
101

K
ri
s
h
n
a
 

−
101

A
ra

v
a
lli

 

−
101

M
a
h
a
n
a
d
i

−
101

O
b
 

−
101

Y
e
n
is

e
i 

−
101

L
e
n
a
 

−
101

G
o
b
i 

−
101

A
m

u
r 

−
101

Y
a
n
g
tz

e

−
202

Y
e
llo

w
 R

iv
e
r

−
202

T
a
ri
m

 

−
101

C
o
n
g
o
 

−
101

E
a
s
t 
A

u
s
tr

a
lia

 

−
202

M
is

s
is

s
ip

p
i 

−
202

M
a
c
k
e
n
z
ie

−
101

Z
a
m

b
e
z
i 

−
101

O
ra

n
g
e
 

−
202

D
a
n
u
b
e
 

−
101

C
o
lu

m
b
ia

 

Fi
gu

re
.
:

Er
ro
r
in

th
e
co
rr
ec
te
d

ti
m
e
se
ri
es

fr
om

(2
.3
1)
,
w
hi
ch

is
co
m
pu

te
d

by
su
bt
ra
ct
in
g

th
e
or
ig
in
al

ti
m
e
se
ri
es

fr
om

co
rr
ec
te
d

ti
m
e

se
ri
es
.
Th

e
bl
ac
k

lin
e
de
no

te
s
th
e
er
ro
r
in

co
rr
ec
te
d

ti
m
e
se
ri
es

us
in
g

le
ak
ag
e
an
d

th
e
de
vi
at
io
n

in
te
gr
al

fr
om





m
od
el
,

an
d
gr
ay

lin
e
de
no

te
s
th
e
er
ro
r
in

co
rr
ec
te
d
ti
m
e
se
ri
es

us
in
g
le
ak
ag
e
an
d
th
e
de
vi
at
io
n

in
te
gr
al

fr
om






an
d
m
od
el
.
Th

e
re
d

lin
e
de
no

te
s
th
e
er
ro
r
in

th
e
co
rr
ec
te
d

ti
m
e
se
ri
es

us
in
g
le
ak
ag
e
an
d

th
e
de
vi
at
io
n

in
te
gr
al

fr
om

th
e
fil
te
re
d





fie
ld
s.

A
m
ap

of
th
e
ca
tc
hm

en
ts

is
gi
ve
n

in
Fi
gu

re
3.
10



36 3     

0

0.2

0.4

0.6

0.8

1

R(·) R̄(·)

κ(·) κ(·)

R(·)R̄(·)

κ(·)

κ(·)
κ(·)

Figure .: (a): 1-D visualisation of R(·), R̄(·), κ(·), κ(·), and κ(·) for Amazon. The
corresponding 2-D functions are shown in subfigures. The 1 dimensional plots
for various quantities are extracted along the black horizontal line dissecting
the catchment.

where we now replace ḡ(θ′ ,λ′) with a convolution integral between the noisy field g(θ,λ)
and the filter kernel b(θ,λ,θ′ ,λ′):

l̄c =
1
Ac

∫
Ω

g(θ,λ)
1
4π

∫
Ω′

[
R∗(θ′ ,λ′)R̄(θ′ ,λ′)

]
b(θ,λ,θ′ ,λ′)dΩ′dΩ . (3.11)

Again replacing [R∗(θ,λ)R̄(θ,λ)] by κ(θ,λ), its filtered version by κ(θ,λ), and g(θ,λ) by
[f (θ,λ) +n(θ,λ)] we can rewrite equation (3.11) as

l̄c =
1
Ac

∫
Ω

[f (θ,λ) +n(θ,λ)] κ(θ,λ) dΩ, (3.12a)

=
1
Ac

∫
Ω

f (θ,λ) κ(θ,λ) dΩ +
1
Ac

∫
Ω

n(θ,λ) κ(θ,λ) dΩ. (3.12b)

The distribution of κ is shown in Figure 3.3. It decays as we go away from the borders of
the catchment. In the second integral of the equation (3.12b), noise is weighted down by
κ and averaged over the globe. Since the global aggregate of dampened noise is negligible
and we can write

l̄c =
1
Ac

∫
Ω

f (θ,λ) κ(θ,λ) dΩ (3.13a)

=
1
Ac

∫
Ω

f̄ (θ,λ) κ(θ,λ) dΩ. (3.13b)
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Similarly, the catchment average of the leakage computed from twice filtered field can be
written as

¯̄lc =
1
Ac

∫
Ω

f (θ,λ) κ(θ,λ) dΩ (3.14a)

=
1
Ac

∫
Ω

f̄ (θ,λ) κ(θ,λ) dΩ (3.14b)

=
1
Ac

∫
Ω

¯̄f (θ,λ) κ(θ,λ) dΩ. (3.14c)

Using (2.) to replace f̄ (θ,λ) in (3.13b), we get

l̄c =
1
Ac

∫
Ω

[F̄(θ,λ) + F̄∗(θ,λ)] κ(θ,λ)dΩ

=
1
Ac

∫
Ω

F̄(θ,λ)κ(θ,λ)dΩ +
1
Ac

∫
Ω

F̄∗(θ,λ)κ(θ,λ)dΩ . (3.15)

We can write the field F̄∗(θ,λ) as the leakage field l(θ,λ), cf. (2.9), and use the associative
property in the first integral to get

l̄c =
1
Ac

∫
Ω

F(θ,λ)κ(θ,λ)dΩ +
1
Ac

∫
Ω

l(θ,λ)κ(θ,λ)dΩ . (3.16)

The catchment-confined field F(θ,λ) can be written as the sum of the regional average fc
and the deviation δF(θ,λ) to get

l̄c =
1
Ac

∫
Ω

[fc + δF(θ,λ)] κ(θ,λ)dΩ +
1
Ac

∫
Ω

l(θ,λ)κ(θ,λ)dΩ ,

=
1
Ac

∫
Ω

fc κ(θ,λ)dΩ +
1
Ac

∫
Ω

δF(θ,λ) κ(θ,λ)dΩ +
1
Ac

∫
Ω

l(θ,λ)κ(θ,λ)dΩ ,

=
fc
Ac

∫
Ω

κ(θ,λ)dΩ +
1
Ac

∫
Ω

δF(θ,λ) κ(θ,λ)dΩ +
1
Ac

∫
Ω

l(θ,λ)κ(θ,λ)dΩ . (3.17)

Similarly, using (2.) to replace f̄ (θ,λ) in (3.14b), we get

¯̄lc =
1
Ac

∫
Ω

[(F̄(θ,λ) + F̄∗(θ,λ)] κ(θ,λ)dΩ .

Following the same procedure as in (3.15) to (3.17), we obtain a relation for leakage from
the fields that have been filtered twice:

¯̄lc =
fc
Ac

∫
Ω

κ(θ,λ)dΩ +
1
Ac

∫
Ω

δF(θ,λ)κ(θ,λ)dΩ +
1
Ac

∫
Ω

l(θ,λ)κ(θ,λ)dΩ , (3.1)
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Observing (3.17) and (3.1) closely, we find that the leakage from once and twice filtered
fields is a sum of damped version of the true leakage (third integral) and a weighted
fraction of the field inside the region of interest (first and the second integral). This is
true for an epoch and also for time series. Now let us examine the deviation integral
from filtered fields and then interpret the physical meaning of these relations.

§.      

The deviation integral from the filtered field can be written as

1
Ac

∫
Ω

δF̄(θ,λ) R̄(θ,λ) dΩ =
1
Ac

∫
Ω

[f̄ (θ,λ)R(θ,λ) − f̄c] R̄(θ,λ) dΩ , (3.19)

where δF̄(θ,λ) is the deviation computed from the filtered field. Using (2.) to replace
f̄ (θ,λ), and writing the left hand side of (3.19) as δF̄c, we get

δF̄c =
1
Ac

∫
Ω

[(F̄(θ,λ) + F̄∗(θ,λ))R(θ,λ) − f̄c] R̄(θ,λ) dΩ .

The constant term f̄c can come out of the integral to give

δF̄c =
1
Ac

∫
Ω

[F̄(θ,λ)R(θ,λ) + F̄∗(θ,λ)R(θ,λ)] R̄(θ,λ)dΩ − f̄c

=
1
Ac

∫
Ω

F̄(θ,λ)R(θ,λ) R̄(θ,λ)dΩ +
1
Ac

∫
Ω

F̄∗(θ,λ)R(θ,λ) R̄(θ,λ) dΩ − f̄c .

Writing R(θ,λ) R̄(θ,λ) as γ , and using the associative property of the convolution integral
in the first integral we get

δF̄c =
1
Ac

∫
Ω

F(θ,λ) γ̄ dΩ +
1
Ac

∫
Ω

F̄∗(θ,λ)γ dΩ − f̄c . (3.20)

We can write the field F̄∗(θ,λ) as the leakage field l(θ,λ) and the field F(θ,λ) as
fc + δF(θ,λ) to obtain

δF̄c =
1
Ac

∫
Ω

[fc + δF(θ,λ)] γ̄ dΩ+
1
Ac

∫
Ω

l(θ,λ)γ dΩ − f̄c . (3.21)

=
1
Ac

∫
Ω

fc γ̄ dΩ +
1
Ac

∫
Ω

δF(θ,λ) γ̄ dΩ +
1
Ac

∫
Ω

l(θ,λ)γ dΩ − f̄c . (3.22)

Similarly, the deviation integral from the twice filtered field reads

δ ¯̄Fc =
1
Ac

∫
Ω

fc ¯̄γ dΩ +
1
Ac

∫
Ω

δF(θ,λ) ¯̄γ dΩ +
1
Ac

∫
Ω

l(θ,λ) γ̄ dΩ − f̄c . (3.23)
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Figure .: (a): 1-D visualisation of R(·), R̄(·), γ(·), γ̄(·), and ¯̄γ(·) for Amazon. The
corresponding 2-D function is shown in subfigures. The 1 dimensional plots for
various quantities are extracted along the black horizontal line dissecting the
catchment.

The relations (3.22) and (3.23) are similar to (3.17) and (3.1). They also contain
a sum of attenuated catchment-confined quantities (deviation integral, regional average)
and outside-catchment quantities (leakage). According to the discussion in section 2.4, a
summation of leakage time series and attenuated catchment-confined time series affects
both the amplitude and the phase of the total water storage change time series from
filtered fields. Following the same line of argument, we can say that both the amplitude
and the phase of leakage time series l̄c and the deviation integral time series δFc will
be different from the corresponding original time series. To this end, we must find out
how significant these amplitude and phase changes are, and how we can revert them to
approach the corresponding original time series.

§.        


Mathematically, we can not determine the original leakage and the original deviation
integral using (3.17), (3.1), (3.22), and (3.23). In Figure 3.5, we have shown the true leakage
field and the leakage fields from once filtered and twice filtered fields. In this figure,
our region of interest is Orinoco (corresponding catchment characteristic function R(·)).
We can see that the strength of the leakage field from twice filtered field is lower than
the strength of the leakage from once filtered field, which has a lower signal strength
compared to the true leakage field. Moreover, the leakage time series suggests that a
scalar ratio will be able to relate the true leakage with the leakage from once filtered
fields. Similarly, a scalar ratio will be able to relate the leakage from once filtered fields
with the leakage from twice filtered fields. The same is true for the deviation integral.

Therefore, in search of any possible pattern, we plot leakage and the true deviation
integral from the  fields, and from filtered model fields, cf. Figure 3.6 and 3.7. We
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Figure .: A visual description of true leakage, leakage from once filtered and twice
filtered fields, true deviation integral, the deviation integral from once filtered
and twice filtered fields. The unit of axes and colour-bars is cm.
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observe that for all the catchments, the leakage from filtered field has a lower amplitude
with respect to the leakage from unfiltered field. We compute the ratio between original
leakage and the leakage from filtered fields, given by

lc
l̄c

=

∫
Ω

f (θ,λ)κ(θ,λ)dΩ

∫
Ω

f (θ,λ)κ(θ,λ)dΩ
=

∫
Ω

f (θ,λ)κ(θ,λ)dΩ

∫
Ω

f̄ (θ,λ)κ(θ,λ)dΩ
. (3.24)

Similarly, the ratio between leakage from once filtered field and leakage from twice filtered
fields is

l̄c
¯̄lc

=

∫
Ω

f̄ (θ,λ)κ(θ,λ)dΩ

∫
Ω

f̄ (θ,λ)κ(θ,λ)dΩ
=

∫
Ω

f̄ (θ,λ)κ(θ,λ)dΩ

∫
Ω

¯̄f (θ,λ)κ(θ,λ)dΩ
. (3.25)

Since the noise free  monthly fields are unknown, the numerator in (3.24) can
not be computed. However, both the numerator and the denominator in (3.25) can be
computed because they require filtered fields. Now if the two ratios are related, then we
can approach the true leakage lc. Similarly, if the ratio between δFc and δF̄c is related

to the ratio between δF̄c and δ ¯̄Fc, then we can approach the true deviation integral δFc.

In Table 3.1 we can observe that these ratios are approximately similar in magnitude.
This is also demonstrated by the scatter plots in Figure 3. and 3.9. However, if we
carefully examine individual catchments time series in Figure 3.6, then we see that for
arid regions such as Highland of Tibet and Gobi the leakage from filtered fields deviates
from original leakage in an inconsistent manner. But for other catchments, we observe
a consistent amplitude dampening. Therefore, it is safe to assume that for catchments
dominated by hydrological signal, these two ratios are approximately equal, and we can
write ∫

Ω

f (θ,λ)κ(θ,λ)dΩ

∫
Ω

f̄ (θ,λ)κ(θ,λ)dΩ
≈

∫
Ω

f̄ (θ,λ)κ(θ,λ)dΩ

∫
Ω

¯̄f (θ,λ)κ(θ,λ)dΩ
⇒ lc

l̄c
≈ l̄c

¯̄lc
. (3.26)

1
Ac

∫
Ω

δF(θ,λ) R̄(θ,λ) dΩ

1
Ac

∫
Ω

δF̄(θ,λ) R̄(θ,λ) dΩ
≈

1
Ac

∫
Ω

δF̄(θ,λ) R̄(θ,λ) dΩ

1
Ac

∫
Ω

δ ¯̄F(θ,λ) R̄(θ,λ) dΩ
⇒ δFc

δF̄c
≈ δF̄c
δ ¯̄Fc

. (3.27)

The approximation in (3.26) and (3.27) is fair for a catchment surrounded by catchments
with similar hydrological signal. A catchment with relatively weak hydrological activity, a



44 3     

−10 0 10

−10

0

10

leakage from once filtered fields

tr
u
e
 l
e
a
k
a
g
e

−10 0 10

−10

0

10

leakage from twice filtered fields
le

a
k
a
g
e
 f
ro

m
 o

n
c
e
 f
ilt

e
re

d
 f
ie

ld
s slope of the linear fit: 1.12slope of the linear fit: 1.16

Figure .: Scatter plot between the original leakage lc and that from once filtered fields l̄c
(left). Scatter plot between the leakage from once filtered l̄c and twice filtered
fields ¯̄lc (right). The best fit line is in black and its slope is written in the
respective plots. The unit of axes is cm.
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and its slope is written in the respective plots. The unit of axes is cm.



. Estimating the original leakage and the original deviation integral 45

Table .: The phase difference, and amplitude ratio between two leakage time series, and
between the deviation integral time series, for 32 catchments. These time series
are generated from  fields and their filtered version for catchments in the
second column. A Gaussian filter with averaging radius of 500 km is employed
for filtering. The ratios are determined by the method of least squares. The
catchments are grouped into a set of  catchments separated by a vertical space.
The spatial location of these catchments is shown in Figure 3.10 through the
index number given in first column. Each group is sorted by area of the
catchment. Catchments below the filter resolution are further separated by a
horizontal line within the group.

∆ϕ between ratio between ∆ϕ between ratio between

# Catchment Area
(km2)

lc & l̄c l̄c &
¯̄lc lc & l̄c l̄c &

¯̄lc δFc & δF̄c δF̄c & δ ¯̄Fc δFc & δF̄c δF̄c & δ ¯̄Fc

1 Indus 112236 -2.0◦ -0.7◦ 1.22 1.07 -2.3◦ -1.5◦ 0.91 1.0
2 Ganges 906200 1.3◦ -0.1◦ 1.04 1.12 -4.4◦ -1.2◦ 1.17 1.16
3 Brahmaputra 5212 0.◦ -0.◦ 1.21 1.09 -16.1◦ -2.◦ 0.7 1.10
4 High. of Tibet 521596 -6.0◦ -1.3◦ 0.90 0.99 34.7◦ 4.1◦ 0.1 0.77
5 Godavari 30695 3.5◦ 1.5◦ 1.11 1.10 3.2◦ 3.2◦ 1.19 1.12
6 Krishna 25475 -1.9◦ 2.3◦ 1.22 1.09 16.6◦ 2.7◦ 1.13 1.1
7 Aravalli 17990 -1.6◦ -0.3◦ 1.09 1.10 5.2◦ 0.1◦ 1.25 1.16
 Mahanadi 123744 2.1◦ 0.◦ 1.12 1.09 7.7◦ 2.7◦ 1.12 1.11

9 Amazon 467276 2.6◦ 2.6◦ 0.5 0.96 5.1◦ 1.◦ 1.01 1.06
10 Parana 264573 -6.1◦ -3.1◦ 0.94 1.01 2.3◦ -1.3◦ 1.02 1.00
11 Orinoco 36021 3.3◦ 5.1◦ 1.01 1.05 4.5◦ 6.9◦ 1.37 1.31
12 Rio Tapajos 36642 -3.1◦ -2.5◦ 1.17 1.16 -15.0◦ -5.7◦ 1.04 1.12
13 Magdalena 25477 1.3◦ 1.9◦ 1.24 1.20 6.2◦ 1.6◦ 0.94 1.22
14 Corantijn 6776 5.7◦ 3.◦ 1.10 1.15 12.3◦ 6.3◦ 1.12 1.11
15 Maroni 61706 3.4◦ 2.3◦ 1.20 1.17 0.3◦ 3.2◦ 1.12 1.17
16 Rio Jari 46354 1.7◦ 1.7◦ 1.29 1.20 9.3◦ 2.0◦ 0.93 1.25

17 Ob 2926321 -2.4◦ -0.2◦ 1.07 1.06 0.2◦ -0.7◦ 0.9 1.05
1 Yenisei 2454961 0.5◦ 0.4◦ 1.22 1.0 -2.9◦ -1.3◦ 0.0 1.02
19 Lena 2417932 -.4◦ -2.3◦ 1.07 0.99 3.0◦ -1.5◦ 0.92 0.99
20 Gobi 2099470 -4.1◦ -0.3◦ 0.92 0.7 -1.9◦ 1.6◦ 0.94 0.5
21 Amur 1949471 4.0◦ 0.1◦ 1.06 1.07 -11.2◦ -7.3◦ 1.07 0.99
22 Yangtze 167601 -3.1◦ -1.7◦ 0.91 1.01 -4.5◦ -2.6◦ 0.93 0.9
23 Yellow River 90246 -0.5◦ -0.4◦ 0.96 0.92 17.7◦ 3.6◦ 0.6 0.2
24 Tarim 4092 -1.9◦ -1.◦ 1.03 1.02 -0.1◦ -1.1◦ 0.59 0.93

25 Congo 3615546 5.1◦ 2.4◦ 1.13 1.11 -1.◦ 0.5◦ 0.93 1.11
26 Mississippi 29353 1.1◦ 0.4◦ 1.09 1.07 -0.1◦ -0.1◦ 1.03 1.04
27 East Australia 14333 -3.9◦ -2.0◦ 1.17 1.09 -5.7◦ -3.1◦ 0.0 1.00
2 Mackenzie 1666073 0.03◦ -0.3◦ 1.22 1.09 0.4◦ -0.1◦ 0.9 1.00
29 Zambezi 1115565 -1.1◦ 0.5◦ 1.17 1.11 2.0◦ 1.9◦ 1.02 1.09
30 Orange 2475 -3.7◦ -0.2◦ 0. 0.9 -4.◦ -3.0◦ 0.94 0.9
31 Danube 771277 -2.1◦ -0.4◦ 1.04 1.04 5.0◦ 1.3◦ 1.16 1.0
32 Columbia 662542 -0.6◦ 0.4◦ 1.07 1.07 2.6◦ 0.7◦ 1.27 1.13
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Figure .: Spatial location of catchments investigated. The four different groups are
represented by four different colours. An index number, allotted to every
catchment, identifies the name and area of the catchment in table 3.1.

desert or an arid region, close to catchments with strong signal, will suffer from error with
this approximation. This is due to the fact that filtering smothers the field, which affects
the field distribution more, when the spatial signal contrast is stronger. For example, the
annual amplitude of Highland of Tibet is below 8 cm but the annual amplitude of its
neighbouring catchment Indus is approximately 25 cm. This is a case of high spatial signal
contrast. Filtering it for the first time will have a larger impact on the spatial distribution
than when filtering it for a second time. Hence, the deviation integral or leakage from
once filtered fields will be related differently with the original value than with the value
from twice filtered fields. The higher the contrast, the stronger this difference. However,
one can argue, that if the ratios are not similar, then for dry catchments we must find
a relation between the ratios in (3.26) and (3.27). This line of thought fails, because the
leakage signal in an arid catchments, such as Highland of Tibet or Gobi, does not have
a dominant annual behaviour. Over time there is no uniform relation (the fluctuation of
leakage signal in time is not uniform, cf. Figure 3.11). In comparison to Godavari, the
leakage time series lc, l̄c, and ¯̄lc for Highland of Tibet are not related by similar ratios
over time.

A high spatial contrast also affects the neighbouring catchments of a dry region. The
impact is small for leakage but significant for the deviation integral. Indus, Brahmaputra,
Yellow river, and Tarim are in close proximity to either Highland of Tibet, or Gobi, or
both. The deviation integral is directly related to the catchment-confined variations. These
catchments, close to a dry catchment, are a case of high spatial signal contrast, which
yields a bigger value of the deviation integral. Filtering for the first time affects the
spatial signal contrast more than it does the second time. Similar is the impact on the
deviation integral and, hence, on the ratios in (3.27). In Figure 3.7, we can see that for
these catchments the deviation integral from models and its filtered version is not of the
same nature and it also varies in time.
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Figure .: Leakage time series from subsequently filtered fields, and true leakage time
series for Godavari and Highland of Tibet. The unit is cm.
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The leakage and the deviation integral from filtered fields suffer from a phase change
as well. In Table 3.1 we have also shown the phase difference between the leakage time
series and the deviation integral time series computed from the model and their filtered
versions. The phase difference between the leakage time series from once filtered fields
and twice filtered fields is, more often than not, similar in sign and smaller than the phase
difference between the original leakage and leakage from once filtered fields. The sign of
phase change is different for Ganges, Brahmaputra, Krishna, and Mackenzie only. It is
to be noted that the magnitude of phase change for these catchments is small. To this
end, we propose that in order to correct for phase change, shift the leakage time series
from once filtered fields by the phase difference between the original leakage and that
from once filtered fields. This will ensure that we move towards a better estimate and do
not overshoot. Similar analysis for the deviation integral shows that there is no general
relation between the phase differences. Hence, we refrain from any phase corrections for
the deviation integral from filtered fields.

In order to approach the true leakage time series, we propose to first calculate the
leakage time series l̄c and ¯̄lc, then the phase difference between them. Shift the ¯̄lc by the
phase difference towards l̄c, and after removing outliers calculate the mean of the ratio
between shifted ¯̄lc and l̄c at each time point. Shifting of time series is performed in the
frequency domain. We first Fourier transform the time series to be shifted, then multiply
each frequency component by the complex exponential of the phase difference, and then
transform back to the time domain. Once we have a phase difference and a mean ratio,
we shift l̄c by the phase difference and multiply it by the mean ratio to get l̂c, which
should be very close to the leakage time series lc. As per the relation (2.2), we remove
l̂c from the time series obtained from filtered field f̄c and then scale up the result by s

to get closer to the original time series.

For the method of averages and deviations, we require an estimate of the deviation

integral ˆδFc also. It is computed by multiplying the deviation integral from filtered fields

δF̄c with a multiplication factor computed by fitting a scale factor between δF̄c and δ ¯̄Fc
using the method of least squares. The corrected time series is given by the following
two equations:

f̂c = s (ḡc − l̂c), method of scale (3.2)

f̂c = ḡc −
ˆδFc − l̂c, method of deviation (3.29)

Both methods are summarized with the help of flow charts in Figures 3.12 and 3.13.
Although,  has a significant contribution towards continental hydrology, it is popular
for revealing the ice mass change in Antarctica and Greenland. In the previous section,
we have clearly mentioned that the data-driven methods are drafted with the help of
approximations that were found true for hydrological signal. If we want to apply them
for ice mass change estimation, then first of all we must investigate whether these
approximation are valid. If not, then which approximation suits our need.
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Figure .: The flowdiagram for data-driven method of scale.
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ˆδFc − l̂c

estimated
leakage

time series
l̂c

filter filter

Figure .: The flowdiagram for data-driven method of deviation.
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§.      

The case of ice sheets is different in comparison to a hydrological catchment. In Antarctica
or Greenland, most of the mass change is occurring near the coastal region, while in
a hydrological catchment, the mass change is occurring throughout the catchment. Thus,
the signal of ice mass change is much more concentrated than the signal of hydrological
mass change over a catchment. These physical differences restrict us from estimating the
leakage and the deviation integral from the filtered fields with the help of approximations
made in (3.26) and (3.27).

In order to understand better, we consider the case of the Antarctic ice sheet. In
Figure 3.14, we have shown the leakage field from a model and its filtered versions. The
model comprises of  fields (hydrology on land) augmented with monthly ice mass
change fields provided by Institute of Planetary Geodesy,  Dresden. Since we have not
included any ocean mass variations, we expect the leakage inside Antarctica to be zero.
However, when we filter the signal in 3.14, it spreads outside the region, and leakage from
this field is significant. When we filter the field once more, it spreads the signal further.
Although leakage from twice filtered field is weaker than the leakage from once filtered
field, it is still significantly larger than the true leakage (zero). In the data-driven methods
(for hydrology), we use the leakage information from filtered fields to estimate the true
leakage (cf. Figure 3.5), which is supported by the approximation given by (3.26). But, for
ice sheets such as Antarctica and Greenland, such an approximation fails. Therefore, we
formulate a different strategy for estimating the true signal for ice sheets.

In Figure 3.14, the leakage from the filtered field is far from the truth, because filtering
spreads the signal outside the region of interest R, which otherwise has no or minimum
signal. Filtering it once again attenuates and spreads the signal furthermore, but still the
signal outside the region of interest is significantly larger than the truth. Similarly, the
true deviation integral and the deviation integral from filtered fields. The deviation integral
from filtered fields is much smaller than the true deviation integral because filtering spreads
the energy outside the region. It is to be noted that this energy is captured as the
leakage from filtered fields. Therefore it belongs to the true deviation integral, and it can
be restored by adding its magnitude to the deviation integral from filtered fields. However,
the leakage from filtered fields are computed by filtering an outside-only field, and this
brings only a portion of the outside signal inside. Therefore, we must tackle the signal
attenuation during this filtering step. We propose to achieve this by amplifying the leakage
from once filtered fields with a ratio given by (3.25). Similarly, the deviation integral is
also amplified to tackle the attenuation due to filtering. These ratios for amplification are
computed in the same manner as they were computed for hydrological catchments. Once
we obtain the amplified leakage, we must add its magnitude to the amplified deviation
integral. Since the sign of leakage and the deviation integral are always opposite, changing
the sign of leakage in (2.31) will fulfill our aim. Thus, the updated relation for ice sheets
is written as

f̂ isc = f̄c −
1
Ac

∫
Ω

δF(θ,λ) R̄(θ,λ)dΩ + lc . (3.30)
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Figure .: A visual description of true leakage, true deviation integral, leakage and
deviation integral from once filtered and twice filtered fields. The unit of axes
and colour-bars is cm. Please note that the scale of color bar is not same.
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The data-driven methods, for hydrology and for ice sheets, are developed with the help
of approximations and assumptions. The efficacy of these methods is yet to be tested.
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T efficacy of the data-driven methods is investigated in this chapter. Since the 
observed mass change can not be validated directly, we perform a closed-loop test

with realistic noisy fields. Within this closed-loop simulation environment, the results are
compared with other popular model dependent approaches, which helps us to evaluate the
improvement over them. Since the method is crafted with the help of a few approximations
and assumptions, we validate them and study their impact to demarcate the limitations of
the correction strategy proposed.

§. ,  ,  

We use monthly 1◦ × 1◦ monthly  model fields [Rodell et al, 2004], from January
2004 to December 2009, as the truth. We contaminate them with noise, extracted from
, to obtain realistic noisy fields. These noisy fields are then filtered and processed to
obtain mass change over a region of interest, which are then corrected with three popular
model dependent approaches and with both the data-driven approaches. In order to use
model dependent approaches, we compute correction quantities (such as bias, leakage, and
scale factors) from  fields available from January 2004 to December 2009. The
corrected time series are then compared with the true time series from  model fields
over 32 catchments. These catchments are distributed over the globe, comprising large to
very small catchments (cf. Figure 3.10 and Table 3.1). This makes the study comprehensive
and brings out the impact of catchment size on the performance.

Addition of realistic noise

In order to emulate  noise in a closed-loop environment, we extract noise from
Release 05,  level 2 monthly products provided by  [Dahle et al, 2012]. The
erroneous C20 coefficient in  is replaced by C20 from Satellite Laser Ranging mission
[Cheng et al, 2013]. For extracting noise, we first filter the  monthly fields with
a destriping filter [Swenson and Wahr, 2006] and a Gaussian filter of half width radius
of 400 km. Then these filtered fields are subtracted from their unfiltered version to get
noise. The  monthly fields are available at 1◦ grids, corresponding to a maximum
degree of 10, while the  fields are available till degree 90. We truncate the 
fields at degree 90 to ensure spectral consistency. Then the monthly noise fields are added
to the monthly  fields, to get noisy  fields. In Figure 4.1, we have shown
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the degree variance and an arbitrary monthly field, before and after adding noise to it.
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Figure .: Degree variance in terms of  in meters, and spatial visualization of the
 model and the noise added  model.
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ferent half width radius (courtesy:
Balaji Devaraju).

Closed-loop validation

The efficiency of the data-driven approach
depends on the ability of the filter to sup-
press noise. A good filter, which suppresses
the noise to a minimum, will minimize the
noise terms nc and δN c. However, it is
also important that the filter does not sup-
presses the signal too much. In order to
characterise whether a filter suppresses the
noise enough, while retaining the maximum
signal, we can use two performance met-
rics: processing gain and processing loss.
Processing gain is the ratio between the signal-to-noise ratios of the unfiltered and the
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filtered fields, while processing loss is the ratio between the difference in the signal energy
before and after filtering and the signal energy before smoothing [Devaraju, 2015]. In
Figure 4.2, the processing gain and processing loss of Gaussian filters with different half
width radii are plotted. We can see that for a radius greater than 400 km, the processing
loss increases rapidly with the radius, while the processing gain increases slowly. On the
other hand, for a radius smaller than 400 km the processing gain increases rapidly with
the radius, while the processing loss increases slowly. Therefore, we choose the optimum
Gaussian filter of half width radius 400 km, to filter the noisy  fields [Devaraju,
2015]. Then we compute the regional average of the filtered field over a catchment for
each epoch to get a time series f̄c. The filtered products are corrected by using three
model dependent approaches: multiplicative [Longuevergne et al, 2010], additive [Klees
et al, 2007], and scaling approach [Landerer and Swenson, 2012] (cf. section 2.6 and
Table 2.1). In order to compute the corrected time series from these model dependent
approaches, we use quantities, such as bias bmc , leakage l

m
c , and a scale factor k, computed

from . We also use the data-driven method of scale [Vishwakarma et al, 2016] and
the data-driven method of deviation to correct the filtered products.

In Figures 4.3 and 4.4, we plot the corrected time series from each approach and the
true time series, the gap between them is filled with red colour. These fill plots are
interpreted as, the less red means better performance. These figures are good for visual
inspection, but a statistical assessment is vital for identifying the relative performance of
these methods. Therefore, in Tables 4.1 and 4.2, RMS and NSE are provided to identify
the best method. We can see that the corrected time series (f̂c) from the data-driven
approaches perform consistently better than model dependent approaches. However, the
performance of the two data-driven approaches is not similar for all the catchments. Let
us discuss them one by one.

The data-driven method of scale given by equation (3.2) loses accuracy for catchments
below the filter resolution [Vishwakarma et al, 2016]. This is due to the use of scale
factor s for amplifying the leakage removed filtered product, which also amplifies the
errors in the estimated leakage. Since the scale factor s increases as the size of the
catchment decreases, the amplification of error in a small catchment is larger than in big
catchments. For example, the scale factor for Aravalli, when using a Gaussian filter of half
width radius of 400 km, is 5.01 (cf. Table 2.2). Thus, the errors in leakage are magnified
5 times. Therefore, the performance of the data-driven method of scaling decays with the
size of catchment. In Table 4.1 and 4.2, we have also computed the mean of the RMS
and NSE with all the 32 catchments and without the small catchments. The impact of the
catchment size on the performance of the data-driven method of scaling is demonstrated
by the change in the mean value after excluding the small catchments. Hence, if we
assess these methods in the light of their promised efficacy, the data-driven methods are
better than the model dependent methods. Apart from small catchments, arid catchments
such as Highland of Tibet and Gobi also suffer from a less accurate leakage estimation.

On the other hand, the data-driven method of deviations performs consistently better
than other methods. Since we are not using a scale factor s, there is no amplification of
the errors in estimated leakage and the deviation integral. Therefore, we obtain relatively
better time series for smaller catchments. However, the less accurate estimation of leakage
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Figure .: Fill plots comparing different approaches for catchment number 1 to 16 in
Table 3.1. The ordinate of each subplot is different. Noisy  is the input
field, and  is used by the model dependent approaches. The amount
of red is the difference between the true time series and the result from the
corresponding approach. Since the ordinate for every method for a catchment
is same (except for multiplicative approach), less red means better performance.
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Figure .: Fill plots comparing different approaches for catchment number 17 to 32 in
Table 3.1. The ordinate of each subplot is different. Noisy  is the input
field, and  is used by the model dependent approaches. The amount of
red is the difference between the true time series and the result from the
corresponding approach. Since the ordinate for every method for a catchment
is same (except for multiplicative approach), less red means better performance.
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and the deviation integral for regions with high spatial signal contrast is reflected by a
relatively poor performance for Highland of Tibet and Gobi. But still, it is at par with
other methods. Tarim is a catchment sharing a long border with both Highland of Tibet
and Gobi, while Indus, Brahmaputra, and Yangtze share borders with Highland of Tibet.
As discussed in the section 3.4, the estimated deviation integral for these catchments is
less accurate. Therefore, the performance in these catchments is not as good as it is for
other hydrological catchments of similar size and signal strength. But overall it is superior
to others.

In Tables 4.1 and 4.2, we have marked the best method and the second best method for
a catchment. The data-driven method of deviation performs better than other methods for
most of the catchments. In Table 4.5, we have listed the number of catchments, out of 32
catchments, for which each method is either the best or second best, and also when the
method is best. We can clearly see that the data-driven methods are performing better
than the model dependent approaches, and among the data-driven methods, the method
of deviation is a better choice.

Although the results demonstrate the efficacy of the data-driven methods, it is important
to check the validity of the assumptions and the approximations made while developing
these methods. It increases the confidence in the approach and helps us to understand
the reason and behaviour of the limitations.

Validity of assumptions and approximations

In reducing the relation (2.2) to (3.2), and (2.31) to (3.29), we assume that

i. the aggregated noise left after filtering, nc is approximately zero.

ii. the leakage term lc can be replaced by l̂c.

iii. the deviation integral term δFc can be replaced by δ̂Fc.

In the closed-loop simulation environment, we can monitor each component of the
mathematical framework behind the data-driven approaches. This gives us the freedom to
investigate the fidelity of these assumptions and approximations. We compute nc, l̂c, lc,

δFc, and δ̂Fc with the noisy  fields.

Figures 4.5 show the box plots of the noise term nc, the error in the estimated leakage

(l̂c− lc), and the error in the deviation integral (δ̂Fc−δFc). These quantities are determined
for 127 catchments, divided into three categories according to their area: white (> 106km2),
light gray (250000km2-106km2), and dark gray (< 250000km2). As the area of the
catchment decreases, the median shows higher fluctuation about zero, and the quartile
generally increases. The whiskers and outliers are small for big catchments, but large for
smaller catchments. Please note that in general the assumptions are valid because the
median is close to zero for all the quantities and for all the catchments. However, the
performance decays with the size of catchment due to increase in the quartiles, which is
responsible for an inconsistent temporal agreement between the corrected time series and
the true time series.
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Table .: RMS (in cm) of the error in the corrected time series computed in the noisy
 simulation environment. Each row corresponds to a catchment and each
column to a method. The smallest value in a row is in bold, and the next
in magnitude is underlined. There are four major groups separated by space.
Each group represents one region, and is sorted by the area of the catchments.
Small catchments, below the filter resolution, are separated within the group by
a horizontal line. Mean∗ denotes the mean value computed excluding the small
catchments.

Gaussian 400 Multiplicative Data-driven
(scale)

Additive Scaling Data-driven
(deviation)

Indus 1.65 2.26 . 1.13 1.6 1.15
Ganges 1.90 2.76 0.96 1.45 0.2 .
Brahmaputra 0.99 4.71 1.15 1.50 1.15 .
High. of Tibet 1.51 2.72 2.17 1.37 1.50 .
Godavari 1.97 7.65 1.4 1.47 1.24 .
Krishna 1.97 5.90 1.21 2.24 1.19 .
Aravalli 0.97 12.22 1.92 2.39 1.56 .
Mahanadi 3.41 23.1 5.19 2.1 2.47 .

Amazon 0.47 1.13 0.79 0.0 0.45 .
Parana 0.62 1.0 0.45 0.40 0.46 .
Orinoco 1.72 2.97 1.20 2.74 0.5 .
Rio Tapajos 1.93 .79 1.49 2.4 2.0 .
Magdalena 2.40 10.31 . 3.26 2.43 1.93
Corantijn 3.65 39.2 11.44 3.46 2.50 .
Maroni 5.10 45.37 9.77 4.2 3.4 .
Rio Jari 6.05 126.1 19.26 9.26 .42 .

Ob 0.22 0.42 0.17 0.2 0.22 .
Yenisei 0.19 0.5 0.23 0.55 0.60 .
Lena 0.33 0.60 0.24 0.55 0.42 .
Gobi 0.29 0.47 0.22 0.31 0.2 .
Amur 0.40 0.69 0.39 0.50 0.27 .
Yangtze 0.45 1.24 0.33 0.56 0.47 .
Yellow River 0.4 2.02 0.43 0. 0. .
Tarim 1.13 1.42 . 1.04 1. 0.92

Congo 0.73 0.90 0.39 0.77 0.61 .
East Australia 0.42 0.72 0.2 0.34 0.66 .
Mississippi 0.40 0.91 0.37 0.43 0.39 .
Mackenzie 0.45 0.76 . 0.51 0.50 0.31
Zambezi 1.35 3.44 0.63 2.22 0.7 .
Orange 0.76 1.36 . 0.70 0.79 0.47
Danube 1.31 1.2 . 0.73 1.07 0.67
Columbia 1.35 1. . 0.9 0.62 0.56

Mean 1.46 9. 2.09 1.65 1.35 .
Mean∗ 1.01 2.5 0.71 1.13 0.90 .
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Table .: NSE values for the corrected time series computed in the noisy  simulation
environment. Each row corresponds to a catchment and each column to a method.
The largest value in a row is in bold, and the next in magnitude is underlined.
There are four major groups separated by space. Each group represents one
region, and is sorted by the area of the catchments. Small catchments, below
the filter resolution, are separated within the group by a horizontal line. Mean∗

denotes the mean value computed excluding the small catchments.

Gaussian 400 Multiplicative Data-driven
(scale)

Additive Scaling Data-driven
(deviation)

Indus 0.75 0.54 . 0. 0.74 0.
Ganges 0.96 0.91 . 0.9 . .
Brahmaputra . -0.00 0.94 0.90 0.94 .
High. of Tibet -0.1 -2.64 -1.41 0.05 -0.17 .
Godavari 0.96 0.43 0.9 0.9 . .
Krishna 0.94 0.43 0.9 0.92 0.9 .
Aravalli 0.95 -4.22 0.2 0.73 0. .
Mahanadi 0.93 -2.45 0.3 0.95 0.96 .

Amazon 0.99 0.97 0.9 0.9 . .
Parana 0.99 0.96 0.99 0.99 0.99 .
Orinoco 0.92 0.77 0.96 0.0 0.9 .
Rio Tapajos 0.9 0.67 0.99 0.97 0.9 .
Magdalena 0.64 -5.5 . 0.35 0.63 0.77
Corantijn 0. -6.2 -0.20 0.9 0.94 .
Maroni 0.4 -7.34 0.43 0.9 0.91 .
Rio Jari 0.5 -40.46 -0.49 0.66 0.71 .

Ob . 0.99 . . . .
Yenisei . 0.94 . 0.9 0.97 .
Lena 0.99 0.97 0.99 0.97 0.9 .
Gobi 0.70 0.22 0.3 0.66 0.73 .
Amur 0.97 0.92 0.97 0.96 0.99 .
Yangtze 0.96 0.65 0.9 0.93 0.95 .
Yellow River 0.91 -0.45 0.92 0.70 0.69 .
Tarim 0.3 0.73 . 0.6 0.53 0.9

Congo 0.9 0.97 0.99 0.9 0.99 .
East Australia 0.95 0.7 . 0.97 0.9 .
Mississippi 0.99 0.95 0.99 0.99 0.99 .
Mackenzie 0.99 0.96 . 0.9 0.9 0.99
Zambezi 0.9 0.90 . 0.96 0.99 .
Orange 0.90 0.6 . 0.91 0.9 0.96
Danube 0.96 0.92 . 0.99 0.97 0.99
Columbia 0.95 0.91 . 0.9 . .

Mean 0. -1.61 0.7 0.6 0.7 .
Mean∗ 0. 0.36 0. 0.7 0.7 .
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Figure .: Box plot of the noise term nc, the error in data-driven leakage, and the error in
the deviation integral estimated by the data-driven approach for 127 catchments
in the noisy  simulation environment. The abscissa is not linear.
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Figure .: Histogram and scatter
plot between the error in
leakage from model and
the error in leakage from
data-driven approach.

The data-driven method of deviation is affected
only by a sum of the error in leakage, the error
in the deviation integral, and noise nc, while the
data-driven method of scaling is affected by an am-
plification of the sum of error in leakage and noise
nc by a scale factor s. Given the behaviour of scale
factor s, the data-driven method of scaling suffers
more over a small catchment in comparison to the
data-driven method of deviation. On the other hand,
the error in the model dependent approaches can
be attributed to the disagreement between the truth
and the model amplified by a scale factor, if used.
In order to compare the leakage from a model with
the data-driven leakage from noisy fields, Figure 4.6
shows a scatter plot of error in leakage along with
their respective histograms for 127 catchments. The
scatter plot is between the error in estimated leak-
age (lc − l̂c), and the error in leakage from a model
(lc − lmc ). It is evident that the leakage estimated by
the data-driven approach is superior to the leakage
from  model.

The overall impact of these assumptions and ap-
proximation can be assessed from Table 4.1, where
the RMS of the total error for all the catchments is
given. We can deduce that in this closed-loop simu-
lation environment, the data-driven methods are able
to approach the true time series with remarkable
accuracy.

§.     
 

One of the novel findings of this work is the change in the phase of the catchment
aggregated time series due to filtering, which is an important constituent of the data-
driven approach. While estimating true leakage, we shift the leakage from filtered fields
with a phase difference between leakage from twice filtered fields and from once filtered
fields. The process of computing the phase change and shifting the leakage time series
involves frequency domain operations (such as Fourier transform, Hilbert transform and
multiplication with complex exponential). Therefore, a periodic time series with dominant
annual signal is an undisputed candidate for better implementation and hence better results.
However, the  products come with their own problems.

First of all,  level 02 monthly products suffers from uneven data acquisition
(number of days of level 1 data available to generate the monthly solution) [Dahle et al,
2012]. Hence, the information content varies from one month to another. Secondly, there
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are gaps in the time series (before 2004 and after 2010) and certain months are poorly
observed (bad months) [Dahle et al, 2012]. Therefore, the time series exhibits a wiggly
characteristic around the dominant signal corresponding to hydrology, which means that
short wavelength signal is also present along with dominant annual and semi-annual
signals. These problems with  products are not covered in the noisy  closed-
loop simulation environment. On the contrary, the simulation is rich in the signal content
and there were no bad months. In order to be critical and conservative about the claims
we made for the data-driven approaches, we seek a more robust examination. For that
purpose, we use a  type closed-loop simulation provided by  [Flechtner et al,
2016]. They use the European Space Agency - Atmosphere Ocean Hydrology Ice Solid-Earth
() models to represent the mass changes near the Earth’s surface, which is used
to simulate the  satellite orbit. Then they introduce errors in orbits and in the
range-rate observations extracted from this set-up, invert them to produce  type
noisy fields for a period of 5 years. A few bad months are introduced intentionally to
emulate a realistic  scenario. Now, we will verify our findings in this closed-loop
simulation environment, hereinafter referred to as the   simulation.

We follow the same procedure as followed for generating the corrected time series
in noisy  simulation. We produce similar fill plots (Figure 4.7 and 4.) and tables
for RMS and NSE (Table 4.3 and 4.4) comparing the two data-driven methods and three
model dependent approaches over the same 32 catchments. The  fields are used
to compute bias bmc , leakage lmc , and a scale factor k for model dependent approaches.
In this simulation also, we can observe that the data-driven method of deviation exhibit
a consistently better performance in comparison to other approaches. It is to be noted
that the performance of data-driven method of scale decays substantially in this more
realistic closed-loop simulation compared to its performance in the noisy  closed-loop
simulation. The limitations with arid regions and the size of the catchments are reflected
here also. Furthermore, the scaling approach demonstrates a better performance, which
may be attributed to good agreement between the background model in the simulation
and . In terms of error RMS, the data-driven method of deviation is either the
best or the second best in 24 catchments out of 32 catchments, and in terms of NSE it
is either the best or the second best for 26 catchments out of 32, cf. Table 4.5. From
the results in both the simulation environment, we can conclude that the data-driven
method of deviation is able to approach the truth consistently, and it is superior to model
dependent approaches.

Throughout the development of data-driven methods we have used a general two point
function as our filter kernel b(θ,λ,θ′ ,λ′). Therefore, the method itself is independent of
the choice of filter, but the performance will vary from one filter to another. This is
due to the fact that the residual noise nc, and the accuracy of estimated leakage l̂c and

the deviation integral δ̂Fc is different for every filter. We have also demonstrated the
data-driven methods with the destriping filter along with a Gaussian filter of 350 km radius
in the   closed-loop simulation environment. The fill plots and tables for RMS
and NSE are given in Appendix B.
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Figure .: Fill plots comparing different approaches for catchment number 1 to 16 in Table
3.1. The ordinate of each subplot is different. The   simulation fields
are the input fields, and  helps the model dependent approaches. The
amount of red is the difference between the true time series and the result
from the corresponding approach. Since the ordinate for every method for a
catchment is same (except for multiplicative approach), less red means better
performance.
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Figure .: Fill plots comparing different approaches for catchment number 17 to 32 in
Table 3.1. The ordinate of each subplot is different. The   simulation
fields are the input fields, and  helps the model dependent approaches.
The amount of red is the difference between the true time series and the result
from the corresponding approach. Since the ordinate for every method for a
catchment is same (except for multiplicative approach), less red means better
performance.
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Table .: RMS (cm) of the error in the corrected time series computed in the  
simulation environment. Each row corresponds to a catchment and each column
to a method. The smallest value in a row is in bold, and the next in magnitude
is underlined. There are four major groups separated by space. Each group
represents one region, and is sorted by the area of the catchments. Small
catchments, below the filter resolution, are separated within the group by a
horizontal line. Mean∗ denotes the mean value computed excluding the small
catchments.

Gaussian 400 Multiplicative Scaling Additive Data-driven
(scale)

Data-driven
(deviation)

Indus 1.93 3.14 1.94 2.00 1.1 .
Ganges 4.42 5.2 3.22 4.35 . 2.64
Brahmaputra 4.94 9.97 6.15 5.55 . 3.22
High. of Tibet 2.93 6.77 3.07 . 3.53 2.79
Godavari 4.55 1.67 . 4.27 .13 4.92
Krishna . 17.23 2.9 3.51 5.4 3.32
Aravalli . 24.95 3.22 3.5 6.2 2.7
Mahanadi 5.93 61.51 5.0 5.24 10.31 .

Amazon 1.41 1.76 . 1.1 1.46 1.03
Parana 1.41 2.50 1.30 1.34 1.53 .
Orinoco 4.96 5.97 2.77 4.7 . 2.43
Rio Tapajos 3.66 27.32 3.65 4. 4.92 .
Magdalena 5.1 17.73 5.20 . 6.47 5.00
Corantijn 6.77 9.12 5.94 6.5 15. .
Maroni 9.62 93.5 .41 9.02 15.14 .
Rio Jari 7.54 201.06 9.46 7.3 21.75 .

Ob 0.74 1.44 . 0.93 0.1 0.7
Yenisei 0.1 1.2 1.19 1.10 0.9 .
Lena 0.6 1.35 . 0.7 0.79 0.72
Gobi 0.65 1.04 . 0.67 1.02 0.0
Amur . 1.54 0.71 1.02 0.1 .
Yangtze . 1.95 0.5 0.9 1.23 0.96
Yellow River . 3.44 1. 1.71 2.00 1.69
Tarim 1.30 3.46 . 1.22 1.77 1.4

Congo 1.16 1.79 1.02 1.26 1.30 .
East Australia 1.60 2.71 . 1.54 1.1 1.1
Mississippi 1.23 2.73 1.23 1.33 . 1.04
Mackenzie . 2.60 0.9 1.10 1.1 0.4
Zambezi 2.60 6.12 1.3 4.06 1.76 .
Orange 1.3 3.2 . 1.2 2.99 2.3
Danube 1.74 4.90 1.36 1.90 1.6 .
Columbia 2.5 6.13 . 2.57 2.69 2.26

Mean 2.5 19.0 2.71 3.00 4.20 .
Mean∗ 2.17 6.04 2.02 2.33 2.39 .
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Table .: NSE values of the corrected time series computed in the   simulation
environment. Each row corresponds to a catchment and each column to a
method. The largest value in a row is in bold, and the next in magnitude
is underlined. There are four major groups separated by space. Each group
represents one region, and is sorted by the area of the catchments. Small
catchments, below the filter resolution, are separated within the group by a
horizontal line. Mean∗ denotes the mean value computed excluding the small
catchments.

Gaussian 400 Multiplicative Scaling Additive Data-driven
(scale)

Data-driven
(deviation)

Indus 0.6 0.63 0.6 0.5 0. .
Ganges 0.9 0.2 0.94 0.90 . 0.96
Brahmaputra 0.6 0.41 0.7 0.2 . 0.94
High. of Tibet -0.72 -.13 -0.9 . -1.49 -0.55
Godavari 0.5 -1.54 . 0.7 0.51 0.2
Krishna . -12.32 0.59 0.43 -0.40 0.49
Aravalli . -13.03 0.76 0.66 -0.05 0.1
Mahanadi 0.4 -15.40 0.9 0. 0.53 .

Amazon 0.9 0.97 . . 0.9 .
Parana 0.95 0.4 . 0.95 0.94 .
Orinoco 0. 0.3 0.96 0. . .
Rio Tapajos 0.94 -2.19 0.94 0.90 0.90 .
Magdalena 0.74 -2.06 0.73 . 0.59 0.75
Corantijn 0.73 -23.59 0.79 0.73 -0.49 .
Maroni 0.67 -24.39 0.75 0.71 0.1 .
Rio Jari 0.0 -139.20 0.69 0.1 -0.65 .

Ob 0.97 0.90 . 0.96 0.97 0.97
Yenisei . 0.9 0.91 0.92 0.95 .
Lena . 0.74 . 0.91 0.91 .
Gobi -0.37 -2.44 -. -0.44 -2.37 -1.07
Amur . 0.44 0. 0.76 0.5 .
Yangtze . 0.79 . 0.95 0.92 0.95
Yellow River . -0.66 0.50 0.59 0.44 0.60
Tarim 0.60 -1.7 . 0.65 0.25 0.4

Congo 0.97 0.94 . 0.97 0.97 .
East Australia 0.03 -1.7 . 0.10 -0.23 -0.23
Mississippi 0.91 0.54 0.91 0.9 . 0.93
Mackenzie . 0.63 0.96 0.93 0.92 0.96
Zambezi 0.96 0.76 . 0.9 . .
Orange 0.5 -0.5 . 0.5 -0.14 0.2
Danube 0.91 0.26 . 0.9 0.91 .
Columbia 0. 0.44 . 0.90 0.9 0.92

Mean 0.74 -7.42 . 0.74 0.42 0.72
Mean∗ 0.73 -0.1 . 0.73 0.51 0.70
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Table .: Comparison of different methods in both closed-loop simulation environments. n∗x
denotes the number of catchment, out of 32, for which the method in respective
column is either the best or second best in terms of the statistical measure x.
nx denotes the same for the case when the method is best.
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Figure .: Comparison of various data-driven methods with the truth in a closed-loop
simulation for Antarctica.
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In order to test the data-driven method for ice sheets, we seek a closed-loop environment
simulating a -type product. We can not use the previous simulation setup because
the  hydrological model is empty in Antarctica. Therefore, we use the 
product as the background signal and contaminate it with the noise extracted from 
monthly products. The corrected time-series from data-driven methods, along with the
true time series and the time series from filtered fields, are shown in Figure 4.9. We can
see that the data-driven method of scale and the data-driven method of deviation are not
able to approach the truth. Furthermore, the data-driven method of scale is poorer than
the time series from filtered fields. It is underestimating the trend signal significantly,
which proves that the uniform layer assumption is indeed inappropriate for the case of
ice sheets. On the other hand, the data-driven approach for ice sheets is able to approach
the truth with much better accuracy. Therefore, we expect better results with this method
for ice mass loss computed from .

§.       

Although we have shown that the data-driven methods, in a closed-loop simulation, are
able to repair the damage due to filtering of , still a validation of corrected 
products is most desirable. Therefore, we follow the strategy proposed by Landerer et al
[2010]; Lorenz et al [2014]; Sneeuw et al [2014], where they close the water balance
equation for validating  observed total water storage change over a number of
catchments. A balance equation, where the sum of all the components in a system is
zero, is helpful in determining a component, given all the other components are known.
In a hydrological catchment, precipitation pc is equal to the sum of runoff rc, actual
evapotranspiration ec, and the time derivative of the total water storage change (dfc/dt).
Therefore, we can write

pc = rc + ec +
dfc
dt

→ pc − rc − ec −
dfc
dt

= 0. (4.1)

An accurate knowledge of precipitation, evapotranspiration, and runoff is essential to
find the total water storage change, which is also recorded by . This gives us an
opportunity to assess the accuracy of  products (in an ideal case). In reality, we
do not have a dense global in-situ measurements of these components of the hydrological
balance equation. Therefore, we have to rely on poor global datasets provided by various
agencies and institutes, such as Global Precipitation Climatology Centre (GPCC), Global
Precipitation Climatology Project (GPCP), Climate Prediction Center (CPC), and many more
[Lorenz et al, 2014]. These global datasets or models have large uncertainties that varies
in space and in time. This limits the efficacy of hydrological balance equation as a tool to
validate . Nevertheless, it is one of the few methods available for validating .

We use 6 different datasets for both precipitation and evapotranspiration. The grided
precipitation data is obtained from , , , ,  and Del, while the grided
evapotranspiration is obtained from , , 16, , and, and
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Interim (a description of these datasets is provided in Appendix A). It gives us 36
different combinations of precipitation and evapotranspiration, which along with runoff
from  and the time derivative of total water storage change from  products
provided by  (either filtered or corrected), are used to close the water balance equation
for 49 catchments. The balance equation is applied at catchment scale, hence we use (2.1)
to compute regional average of precipitation, evapotranspiration, and total water storage
change from . The runoff from  is avaliable as one scalar value, for each epoch,
for whole catchment. The  products are numerically differentiated using three point
central difference to obtain dfc/dt. In order to maintain temporal consistency between
dfc/dt and the time series of precipitation, evapotranspiration, and runoff, we smooth the
later with a moving window suggested by Landerer et al [2010]

X̃i =
1
4
Xi−1 +

1
2
Xi +

1
4
Xi+1, (4.2)

where Xi is the quantity (precipitation, evapotranspiration, or runoff ) at epoch i. Lorenz
et al [2014] demonstrated that in general, for most of the catchments and for most of the
combinations, the  derived runoff exhibits a good agreement with the  observed
runoff. However, the errors in models and datasets prevent a clear strong pattern to
emerge in favour of  or in favour of a combination of models.

In order to investigate whether the data-driven approach offers some improvement in
the  products, we seek a reduction in the misclosure of the water balance equation,
when using the corrected  products in comparison to when using the filtered 
products. These misclosures are written as:

δ̄c = Pc − rc −Etac −
df̄c
dt

misclosure with filtered , (4.3)

δ̂c = Pc − rc −Etac −
df̂c
dt

misclosure with corrected . (4.4)

We have shown the bias and RMS of the misclosure for each combination and for
each catchment in Figures 4.10 and 4.11. We can clearly see that there is no clear pattern,
which favors a combination of model or which suggests a substantial improvement after
correction. There are a few catchments and a few combinations which display either
improvement or degradation, but overall we can not reach a conclusion.

This exercise seems to have been a futile attempt to assess any improvement in closing
the water budget with corrected  products. Nevertheless, it has helped us understand
that in closing the water budget, it is the uncertainty in models, which is the thorn in
the flesh, not the uncertainty in . This is reflected by Figures 4.10 and 4.11, where
we have also shown the bias and RMS of the correction in  (df̂c/dt − df̄c/dt). It
is to be noted that for most of the catchments, the correction is nearly an order of
magnitude smaller than the misclosure that comes from the poor quality of the combined
precipitation and evapotranspiration dataset.

We have established and proved the efficacy of the data-driven methods, in a closed-loop
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Figure .: The bias of the misclosure with respect to zero. The left figure is the bias
when we use the time series from filtered fields, and the right figure is
when we use the time series corrected with data-driven method of deviation.
The ordinate consists of catchments sorted by their area, and the abscissa
denotes the combination of models. The bias of the correction achieved using
data-driven method, for each catchment, is given by the gray bar on extreme
left.
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Figure .: The RMS of the misclosure. The left figure is the RMS when we use the
time series from filtered fields, and the right figure is when we use the time
series corrected with data-driven method of deviation. The ordinate consists
of catchments sorted by their area, and the abscissa denotes the combination
of models. The RMS of the correction achieved using data-driven method, for
each catchment, is given by the gray bar on extreme left.
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simulation, for minimizing the signal damage due to filtering on the sphere. The interest
in this work was enunciated with an aim to improve the mass change estimates obtained
from . In the next chapter we will process the  products and study the impact
of signal improvement from data-driven approaches.



     

T changes in our planet can be monitored through various spaceborne sensors, but
most of them are capable of recording the changes only on or above the Earth’s

surface. Therefore, the unique ability of , to record also the mass changes beneath
the surface, added a new dimension to the satellite based observation of the Earth system.
The total water storage change from  has an everlasting impact on our understanding
of the hydrosphere and cryospheric sciences, both at global and local scale. This is reflected
by the usage of  in determining:

• the amount of water lost by California in recent drought;

• the ground water depletion in North-West India;

• the rate of water loss in endorheic catchments such as Aral and Urmia;

• the hydrological extreme events, such as floods and droughts;

• the magnitude of ice mass loss in Greenland and Antarctica;

• and many more.

In this chapter, we choose a few regions that have shown distinguished signatures of
water mass changes due to human intervention and climate change. We assess the change
in signal magnitude offered by the data-driven method of deviation in comparison to the
filtered  time series. We start with analysis of Aral sea, Victoria lake, Urmia lake,
and California. Then we report the time series for 32 hydrological catchments located in
different continents and climatic zones. After discussing hydrology, we move to the ice
mass loss in Antarctica and Greenland, where we apply the data-driven method for ice
sheets to assess the total ice mass loss from 2003 to 2015.

We use the  level 02 products provided by , Graz [Mayer-Gürr et al, 2016].
The C20 coefficient is replaced by the C20 coefficient from  [Cheng et al, 2013], and
the degree 1 coeffiecients are provided by Swenson et al [2007]. We use a Gaussian filter
of half width radius 400 km to filter the noisy products and then use the data driven
method of deviation to restore the signal lost due to filtering. The upper bound of the
uncertainty in the time series is computed by taking the standard deviation of the residual
obtained after removing a long term behaviour (trend) and an annual signal from the
time series [Schrama et al, 2007; Horwath et al, 2016]. To this end, the trend and the
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annual signal are determined with the help of  (Seasonal and Trend decomposition
using Loess) [Cleveland et al, 1990].

 is a procedure for decomposing a time series into trend (a long term behaviour),
seasonal and remainder components. It consists of a sequence of smoothing operations,
employing the loess (locally weighted regression) smoother. It has several advantages over
conventional decomposition methods such as principal component analysis ().  can
capture a seasonal signal with increasing amplitude, and a non-linear trend signal that
represents the long term behaviour of the signal. It is a popular method for decomposing
the time series in climate science and we adapt it here for time series analysis of 
products. In Figure 5.1, the  decomposition of a time series is shown. We can see
that the amplitude of the seasonal signal is varying with time, the trend signal exhibits
the long term behaviour and the residuals contain most of the noise.
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Figure .: Decomposing a time series of  change over Caspian sea using .

We do not compute a number for indicating linear trend, instead we provide the total
water volume change or the total ice mass change over a certain period of time. The total
volume change is computed by multiplying the area of the catchment with the difference
between the end value and the starting value of the trend component (this difference
is denoted by a vertical bar in respective time series plots). We choose this convention
because different definitions of trend are used by different research groups. Choosing one
of them invites intensive debate [Baur, 2012], and we want to avoid any such discussion.

§.  :   

An endorheic catchment is a closed drainage basin that retains water and does not allow
water to flow out of it to other external bodies of water, such as rivers or oceans.
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Today these catchments host big lakes, but with the water declining in many of them,
we might loose a few of the lakes. Here we analyze two such water bodies: Aral sea
and Urmia lake. Each one of them highlights the influence of anthropogenic activities on
water resources, and the ability of  to capture them.

Aral: from sea to a desert

Figure .: The water extent over
Aral sea in 199 (left) and
in 2014 (right). courtesy:
wikipedia

Aral sea was once one of the four largest lakes
of the world. It is located in central Asia. Its
North border is in Kazakhstan and its South border
is in Uzbekistan. The two rivers Amu Darya and
Syr Darya feed the sea from the South and from
the North respectively. In 1960s, the Soviet govern-
ment decided to divert these rivers for irrigating the
desert region surrounding the Sea. Since then the
water body is shrinking due to large-scale irrigation
abstraction for rice and cotton fields [Singh et al,
2016]. Human intervention has decimated it to a
collection of few small water bodies. In Figure 5.2,
we can see the desiccation of Aral sea within a
period of 3 decades. Since the majority of water
was lost before the launch of  satellites, we
can not observe a large trend in  products.
However,  provides an opportunity to assess the mass change in the past decade.

We have plotted the total water storage change from filtered  products and the
corrected  products in Figure 5.3. We observe that the total volume of water
loss, from filtered fields and from corrected , is 14.4 ± 1.1km3 and 19.7 ± 1.6km3

respectively. The catchment characteristic function used for computation is shown in the
figure 5.3.

Singh et al [2012] demonstrated that  exhibits good agreement with the water
level change obtained from altimetry, but only in terms of temporal evolution. They chose
a rectangular region covering Aral sea. The reason for choosing a rectangular area was
to satisfy the minimum catchment area of ≈ 200000km2 [Longuevergne et al, 2010]. The
filtered products were then treated with the multiplicative approach to repair the signal
damage due to filtering. For that purpose, a leakage computed from  was removed
from the filtered products followed by a scaling (scale factor s = 2.63). Their analysis
yielded a total water volume change of ≈ 35km3 for a time period of 9 years, from 2003
to 2011, which is more than double the volume obtained from the data-driven method. The
reason for this discrepancy is the usage of the multiplicative method to counter impact
of filtering. We have shown in Chapter 3, that the multiplicative approach amplifies both
the errors in leakage (which can be large from a model) and the noise in filtered time
series, by a scale factor that is big for small regions. Hence, the method has a tendency
of overestimating the amplitude of total mass change.

In order to compare our findings with theirs, we also choose the same region, and
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Figure .: Total water storage change time series over Aral sea. The catchment characteristic
function is the black polygon covering the Aral sea.
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Figure .: Total water storage change time series over a rectangular region including Aral
sea. The catchment characteristic function is the black rectangle covering the
Aral sea.
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plot the corresponding corrected time series and time series from filtered fields (cf. Figure
5.4). Since in this region the dominant mass change signal is from Aral sea, the regional
average with a bigger (rectangular) region would yield a lower value of the total water
volume loss in comparison to the water volume loss from the region confined to the
physical boundary of Aral sea. We observe that the volume of water loss for the
rectangular region (16.6 ± 3.1km3) is indeed less than that for the region confined to
the Aral sea (19.7 ± 1.6km3). Furthermore, in a recent contribution Singh et al [2016]
used the  solution from . This time the total water volume loss, from 2003
to 2013, is approximately 20km3, which is close to our estimate from the data-driven
method of deviations. Since the  solutions are shown to be superior to the 
spherical harmonic products [Watkins et al, 2015; Save et al, 2016], we can conclude that
the data-driven approach is reliable.

Desiccation of lake Urmia

Lake Urmia, the largest inland body of salt water in the Middle East, is now endangered.
It is located in the North-West of Iran and is of great socio-economic importance. Its water
level has been reported to decline since 1995 due to various climatic and anthropogenic
reasons [Tourian et al, 2015]. The lake surface water extent is shrinking at an alarming
rate of 220±6 km2/yr since 2000 (cf. Figure 5.5, [Tourian et al, 2015]). The main reason
behind the rapid water loss is extraction of ground water for irrigation aggravated by
climate change.

Figure .: The desiccation of lake Urmia:
snapshot of surface water extent
obtained from  imagery.

Although the size of this lake is below
the spatial resolution of , the mag-
nitude of mass change is large enough to
register itself within the gravimetric reso-
lution of . It is a classical exam-
ple demonstrating that the ability of 
to sense the mass variation is not limited
by the spatial resolution of approximately
200000km2, as suggested by Longuevergne
et al [2010]. Rather, a big mass change can
be seen by  irrespective of the size
of the source. But after filtering, the signal
attenuation and leakage makes it difficult
for us to extract the information available.
Hence minimizing the impact of filtering is
important to observe the declining water
level in the lake. For this purpose, the
scaling approach from Landerer and Swenson [2012] was used by Tourian et al [2015],
where the scaling factor was computed from . They reported a negative linear trend
of 26.9± 1.8mm/yr in equivalent water height, over a period of 11 years. However, we
get a trend of 21.6 ± 0.2mm/yr from the corrected time series. The difference between
the two trend values can be attributed to two factors: first, they used  products
from , while we use  products. Second, the efficacy of the model based scaling
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approach is dependent on the accuracy of the model. We have demonstrated that the
scaling approach performs poor for small catchments in comparison to the data-driven
method of deviation (cf. Table 4.1 and Table 4.3).

Since the  products from different centers should not influence the trend values
by a large magnitude, we suspect and hence investigate the impact of the scaling approach.
The scale factor used by Tourian et al [2015] is 1.4. If we divide their estimate of trend,
26.9± 1.8mm/yr, by 1.4, we get 19.2± 1.2mm/yr. The scale between the filtered product
and corrected product from data-driven method is 1.2. Multiplying 19.2± 1.2mm/yr with
1.2 gives us 23.0±1.4mm/yr, which is closer to the estimate from the data-driven method.
Therefore, we conclude that the trend estimated in Tourian et al [2015] is most probably
overestimated, and the model dependent method of scaling is to be held responsible for
that. In terms of water volume, the total change between 2003 and 2013, from corrected
 and filtered , is 7.4± 0.9km3 and 6.0± 0.6km3 respectively.
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Figure .: Total water storage change time series over Urmia lake in Iran.

§.    

Lake Victoria is situated in Africa, sharing its water with Kenya, Uganda, and Tanzania. It
is the second largest fresh water lake by area, and the largest lake of Africa. It occupies
an important place in the landscape of dwindling water bodies due to human intervention.
The lake started loosing water after a new dam was built on the Nile in 1990s. In 2005,
the lake level dropped to a level, lowest since 1951. In 2006, an independent Kenya–based
hydrologic engineer reported that two dams on the Nile river, in Uganda, were the reason
behind the drying Victoria lake*. These dams were diverting more than allowed volume
of water for irrigation and hydroelectricity, which resulted into more outflow. Since the
lake is shared between three countries, this report and the media ensured a strict action

*https://www.internationalrivers.org/resources/dams-draining-africa-s-lake-victoria-4117
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and in 2006 one of the extensions of the dam was closed. This resulted into more water
for lake Victoria and the water level returned to normal. The fall and rise in water
mass can be seen in the  time series plotted in Figure 5.7. The  from 
shows a steep fall from 2003 to early 2006 and a rise after 2006. In order to study the
period of falling lake level and the period of rising lake level separately, we compute the
total water mass change in two parts: from 2003 to 2005 and from 2006 to 2013. The
total volume of water loss from 2003 to 2005 is 20.1±3.7km3 from corrected  and
13.4±2.4km3 from filtered , while the water volume gained in the period between
2006 and 2013 is 25.6 ± 3.5km3 from corrected  and 15.6 ± 2.3km3 from filtered
. This example emphasizes that man-made problems are bigger than the climate
change alone.
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Figure .: Total water storage change time series over Victoria lake. The catchment
charateristic function used for lake Victoria follows the physical boundary of
the lake shown in the figure.
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The ability of  to monitor ground water change, was first demonstrated over North-
West India [Rodell et al, 2009; Tiwari et al, 2009]. Recently, a severe drought due to
overexploitation of ground water, a case similar to India, was reported in California, a state
located on the Western coast of the United States. Agriculture is a significant contributor
to the economy of the state and in order to keep cultivating a handsome crop, farmers
are harvesting the ground water in this region for more than three decades. The source
of the ground water is the Central Valley aquifer, which has dried up leading to a severe
scarcity of water [Famiglietti, 2014]. Since the ground water system and the surface water
system are coupled, the impact of ground water depletion is reflected in dying water
reservoirs. In Figure 5., we can see that within three years, the water in lake Oroville
has nearly disappeared.
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Figure .: Water level change in lake
Oroville, California. The left pic-
ture is from 2011 and the right
picture is from 2014. courtesy:
http://sanfrancisco.cbslocal.com

In a report published by  in 2014,
a mammoth 42km3 of water deficit haunts
the state of California†. In recent years,
many researchers have analyzed the problem
and calculated the magnitude of heavenly
bliss required to mitigate this man-made
calamity [Scanlon et al, 2012; Griffin and
Anchukaitis, 2014]. The numbers are grow-
ing with time, leaving us with dwindled
hope. We have computed the amount of
water lost by California after 2003. In Fig-
ure 5.9, we have plotted the corrected time
series, the time series from filtered fields
and the corresponding long term trend sig-
nal. We find that the total water lost by the
state of California between 2003 and 2015,
from the corrected  is 84.3± 7.3km3

and from filtered  is 55.0 ± 4.8km3. Over the same period and for the state of
California, the water volume from filtered fields is close to the volume reported by 
in 2014, but we have shown that filtering suppresses the trend signal. Therefore, we can
safely conclude that the real amount is more, and most probably close to the volume
from corrected .
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Figure .: Total water storage change time series over California.

†https://www.nasa.gov/press/2014/december/nasa-analysis-11-trillion-gallons-to-replenish-california-drought-
losses
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We compute the total water storage change over 32 catchments listed in Table 3.1 and
shown in Figure 3.10. The time series from filtered fields and from the data-driven method
of deviation are shown in Figure 5.10. We can see that a substantial amount of amplitude
is restored in small catchments and in Orinoco, which suffers heavily due to out of phase
leakage from the Southern hemisphere. In Ganges, Indus, Godavari, and Zambezi, the
linear trend in the corrected time series is more than that in the time series from filtered
 fields.

In order to ensure that the results obtained from processing  are meaningful, we
compute the Root Mean Square of the difference between the corrected time series and
the time series from the filtered fields, obtained from , the Noisy- simulation,
and the   simulation (cf. sections 4.1 and 4.2). RMS for these 32 catchments and
their mean is given in Table 5.1. The mean of correction for Noisy- is 1.01cm, for
  it is 1.36cm, and for  it is 1.39cm. These numbers are close to each
other, which increases our confidence in the data-driven approach. Since in the closed-loop
simulations the corrected time series was able to approach the truth, we can safely
conclude that the increment in the  signal, shown in Figure 5.10, is improvement in
the signal from .

§.       

The ice masses over Greenland and Antarctica are reported to be decreasing [Velicogna
and Wahr, 2005; Luthcke et al, 2006; Velicogna and Wahr, 2006b; Horwath and Dietrich,
2009; Baur et al, 2009; King et al, 2012]. Consequently, the ocean mass increases with time
[Chambers et al, 2004; Chambers, 2009]. However, each one of these contributions have
reported a different rate of mass change (linear trend) in respective regions. The ice mass
loss in Antarctica varies between −31Gtyr−1 and −246 Gtyr−1 [King et al, 2012]. On the
other hand, the ice mass loss trend over Greenland was reported to be −82±28km3yr−1

in 2004, −248± 31km3yr−1 in 2006 and −258± 41km3yr−1 in 2013, by the same authors
[Velicogna and Wahr, 2005, 2006b, 2013]. This ambiguity in the linear trend estimates
arises from the differences in the data used, the time period chosen, and the choice of
Glacial Isostatic Adjustment () model used in these studies. For example, the mass
change trend for Antarctica and Greenland changes significantly, when we change the 
model [King et al, 2012; Sutterley et al, 2014]. In addition, the  spherical harmonic
solutions from different processing centers, when processed with the same method give
different trend estimates (from   products: −194 ± 24km3yr−1, from  
products: −242±14km3yr−1, and from   products: −96±23km3yr−1) [Baur, 2012].
More recently mascon solutions are preferred [Arendt et al, 2013], which gives us another
set of results. And finally, one can choose different filtering schemes followed by different
methods to minimize signal change due to filtering, increasing the possibility of getting a
different value for linear trend [Baur, 2012].

The permutation and combination of so many choices makes it difficult to identify the
real ice mass loss. The impact of using one of the  solution or a  model can
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Table .: RMS (cm) of the difference between the corrected time series and the time series
from filtered fields. Each row corresponds to a catchment, while the first two
columns represent the closed-loop simulation environment and the third column
represents the  products.

Noisy     

Amazon 0.46 0.9 1.24
Parana 0.50 0.70 0.53
Orinoco 1.5 3.66 4.1
Rio Tapajos 1.54 1.36 1.66
Magdalena 0.1 2.3 1.64
Corantijn 2.73 2.51 2.97
Maroni 3.09 2.2 2.61
Rio Jari 3.7 3.24 3.76
Indus 0.59 1.0 0.91
Ganges 1.3 2.2 2.03
Brahmaputra 0.63 2.59 1.90
High. of Tibet 0.6 1.04 1.34
Godavari 2.04 2.55 2.72
Krishna 1.35 1.27 2.13
Aravalli 0.49 1.61 1.73
Mahanadi 2.9 3.05 3.34
Ob 0.1 0.32 0.35
Yenisei 0.16 0.33 0.2
Lena 0.24 0.21 0.31
Gobi 0.15 0.2 0.16
Amur 0.39 0.35 0.55
Yangtze 0.32 0.45 0.57
Yellow River 0.34 0.63 0.53
Tarim 0.3 0.52 0.45
Congo 0.54 0.7 0.55
East Australia 0.24 0.39 0.49
Mississippi 0.33 0.32 0.51
Mackenzie 0.24 0.4 0.46
Zambezi 1.30 1.57 1.97
Orange 0.3 0. 0.53
Danube 0.0 0.97 1.04
Columbia 0.7 1.6 1.32
Mean 1.01 1.36 1.39
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only be improved by choosing a better data or model. We prefer the widely used 
model from Ivins and James [2005] for Antarctica and the 6 model for Greenland
[Argus et al, 2014; Peltier et al, 2015]. We use  products form  because they
have have been shown to have the lowest noise level in comparison to the products from
, , , and  [Mayer-Gürr et al, 2016; Horwath et al, 2016].

In chapter 2 and chapter 3, we have demonstrated that the data-driven methods are
better than model dependent approaches or a simple scaling. Therefore, we follow the
data-driven method for ice-sheets to estimate the mass change signal over Antarctica and
Greenland from  monthly solutions. The time series of  corrected ice mass
change from  over Antarctica and over Greenland are shown in Figures 5.11 and 5.12
respectively. In Antarctica, we get a total ice mass loss of 1105.3± 96.9 Gt from filtered
 fields and 1460.1 ± 134.3 Gt from corrected  fields, while in Greenland, we
get a total ice mass loss of 1463.6±20.0 Gt from filtered  fields and 2750.8±37.4 Gt
from corrected  fields, over a period of 13 years, from 2003 to 2015.

The ice mass estimates in Antarctica suffer from large uncertainties, which is due to
the fact that the mass change signal is dominated by the post glacial rebound, which
is removed with the help of models. The uncertainty in the  model is around 20%.
Therefore, we get such large uncertainties in the final estimate. On the other hand, the
contribution from post glacial rebound over Greenland is relatively small, which results
into a smaller uncertainty. We conclude that filtering affects the trend signal significantly.
Therefore, it is important to correct the filtered  products before any assessment is
made, and the data-driven methods are a better choice for the aforementioned purpose.

Figure .: Total ice mass change time series over Antarctica.
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Figure .: Total ice mass change time series over Greenland.
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   

F  products, correcting for the signal loss due to filtering, and then inter-
preting the water mass change for improving our understanding of the mass transport

within the Earth system, has been a standard procedure. However, the interpretation comes
with an uncertainty due to errors and the signal loss from filtering. Therefore, designing
a better filter and a method to revert its impact on the signal have been hotspot for the
past decade. Today we have a number of filters with different characteristics and hence
a different amount of impact on the signal quality. However, a detailed mathematical
understanding of the signal damage was missing, and a majority of development promoted
model dependent methods to repair the signal damage. This work aimed at developing a
mathematical understanding of the problem, demarcating the nature of signal loss, finding
a relation to minimize the signal change, and developing a method that is not dependent
on a-priori information, such as hydrological models.

§.  :   

We started the discussion with defining a filter in the spatial domain, where we established
that the process of convolution, along with weighting down the signal inside the catchment,
invites a contribution from outside the catchment, known as leakage. Since the signal
characteristic of a catchment can be different from the signal characteristic of neighbouring
catchments, the leakage signal can have a different nature. When we analyzed the impact
of leakage, we found that both the amplitude and the phase of the times series from
filtered fields are affected, which was not reported before. The change in phase implied
that only a scaling of the filtered products will not help us reach the original signal.
Therefore we suggested that leakage should be removed before we tackle the weighted
down catchment-confined signal. These above mentioned findings were demonstrated with
the help of Table 2.2.

In order to revert the catchment-confined signal loss, we proposed two methods: the
method of scale and the method of deviation. The method of scale, which uses a uniform
layer assumption, requires a scale factor computed with the help of catchment characteristic
function and the filter function. On the other hand, the method of deviation uses a
deviation integral to rectify the signal loss. In an ideal closed-loop environment, where we
can compute every component and there is no noise, we demonstrated that the method
of deviation is able to recover the true signal, while the method of scale is only able
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to approach the truth (cf. Figure 2.7). Nevertheless, application of these methods require
knowledge of leakage and the deviation integral. Since the  fields are noisy, leakage
and the deviation integral from them will also be noisy. This is the reason hydrological
models are employed for computing leakage, bias, scale factors, etc. These hydrological
models are only as good as the data and physical modeling behind them and they tend
to have large uncertainties that vary in space and time. Furthermore, choosing a model
from several models is itself a topic for debate. We showed that using a model propagates
the error in the model to the corrected  product. Therefore, we advocate using
the filtered  products for estimating the leakage and the deviation integral, which
provided better results in comparison to when using a model (cf. Figures 3.1 and 3.2).

We established that filtering changes the nature of the signal. Thus the leakage and
the deviation integral from filtered fields are different from corresponding true values. The
leakage from filtered fields suffers from an amplitude change and a phase change that is
similar to the amplitude and the phase difference between the leakage from once filtered
fields and twice filtered fields. On the other hand, the deviation integral demonstrated
similar pattern for the amplitude but not for the phase. Hence, we proposed to shift the
leakage from once filtered fields by a phase difference between the leakage from once
and twice filtered fields, and then amplify the shifted leakage with an amplitude ratio
between the leakage from once filtered and twice filtered fields. The deviation integral was
estimated by amplifying the deviation integral from once filtered fields with an amplitude
ratio between the deviation integral from once filtered and twice filtered fields. Since the
leakage and the deviation integral are estimated from the  fields only, we call these
methods: the data-driven method of scale and the data-driven method of deviation.

The data-driven methods were tested in a closed-loop environment with  hydrolog-
ical model as the background truth contaminated with -type noise. We compared the
two data-driven methods with three popular model dependent approaches: multiplicative
approach, additive approach and the scaling approach. We found that the data-driven
methods were more accurate as well as consistent in comparison to the model depen-
dent approaches. The methods can be arranged in order of their efficacy (from best to
worst): data-driven method of deviation, data-driven method of scale, scaling approach,
additive approach, and the multiplicative approach. The data-driven method of scale and
the multiplicative method, given by Longuevergne et al [2010], have the same governing
equation (2.2), but their performance differs because the leakage in the former method
is data-driven and in the latter is from a model. Furthermore, for both methods, the
accuracy declined with the size of the catchment. This is due to the dependency of
the scale factor on the size of the catchment: the smaller the catchment the larger the
scale factor. Hence, the error in a smaller catchment gets amplified by a larger value in
comparison to that in a big catchment.

The approximation and assumptions behind the data-driven methods were tested and
found true for hydrology. However, these assumptions fail for ice sheets, such as
Greenland and Antarctica. This is due to the physical differences in the signal distribution:
for hydrology, the mass change is throughout the catchment, while for ice sheets the mass
change is near the coast and is huge in amplitude. Therefore, the method of scale, which
assumes a uniform layer distribution, can not be applied. The method of deviation is
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applicable, but the leakage and the deviation integral can not be determined as they were
determined for hydrological catchments. Hence, we investigated and formulated another
approximation, which paved the path for a data-driven method for ice sheets. The method
was tested in a closed loop simulation environment and was found effective.

The aim of this contribution was to improve the total mass change estimates from
. Although the validation of  products is a research problem of immense
magnitude, we attempted at evaluating the improvement brought in by the data-driven
method of deviation, within the framework of closing the water budget. We could not
conclude anything from that exercise because the correction from the data-driven method
of deviation was an order of magnitude smaller than the misclosure due to errors in
precipitation, evapotranspiration and runoff. However, we extract confidence from the
performance of data-driven methods in a realistic -type closed-loop simulation setup
provided by .

The data-driven method of deviation, which promises better signal quality from ,
was employed to assess the water mass loss in Aral sea, lake Victoria, lake Urmia,
California, Antarctica, and Greenland. We observed that the corrected  products
show a higher amount of mass loss in comparison to the mass loss computed from filtered
 products. We also compare the results with a few published works that have
used model dependent approaches for correction. We concluded that these methods have
estimated a rate of mass loss with large uncertainties. Furthermore, from many research
contributions we can deduce that, more often than not, anthropogenic exploitation of water
resource is responsible for sustained regional droughts [Rodell et al, 2009; Tiwari et al,
2009; Famiglietti, 2014; Tourian et al, 2015; Singh et al, 2016]. If we can regulate the water
use carefully and efficiently, we can ensure water safety and prosperity of the region.

The results from the data-driven method for ice sheets have been contributed to the
Ice sheet Mass Balance Inter-comparison Exercise (). The aim of this exercise is to
compute a reconciled estimates of ice sheet mass balance from different methods [Shepherd
et al, 2012]. We estimated a linear trend of −99.1 ± 40.4Gtyr−1 over Antarctica and
−229.85±7.7Gtyr−1 over Greenland. The previous  exercise in 2012, reported a trend
of −72± 43Gtyr−1 over Antarctica and −232± 23Gtyr−1 over Greenland [Shepherd et al,
2012]. The analysis and inter-comparison of ice mass loss from various institutes and
from various methods is yet to be done. However, through personal communication we
obtained the linear trend estimated by colleagues at Institute of Planetary Geodesy, 
Dresden. They have reported −105.4± 35.3Gtyr−1 for Antarctica and −257.9± 14.6Gtyr−1

for Greenland. They use the same data as we have used, but they minimize noise with
the help of the tailored sensitivity kernel approach [Horwath and Dietrich, 2009]. The
difference between their results and our results is not significant for Antarctica. However,
for Greenland the disagreement is significant, which can be attributed to the differences
in the method employed to tackle noise.

§.   

In the midst of global climate change, and under pressure of anthropogenic over-exploitation,
many regions are suffering from a severe water scarcity. For example, North-West India,
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California, North-West Iran, Aral sea, South Africa, and many more. In order to manage
the water resource, we must know

• how much water we have lost?

• what is the rate at which the exploitation of water is increasing?

• how is it related to the rate of population growth and the agricultural growth?

• how much of the water lost is replenished by precipitation?

• and so on.

Since water is stored in a column including surface water, soil moisture, and groundwater,
optical remote sensing and altimetry offer only a limited insight. Dedicated land surveys
lead us to limited spatial coverage and poor temporal coverage. However, the 
satellite mission enables us to monitor the changes in hydrosphere with a good temporal
and a decent spatial resolution. The information from the  mission can be used
for water resource monitoring and planning. A dedicated group of researchers, under
the umbrella of European Gravity Service for Improved Emergency Management ()
project, are already working to use , in tandem with other satellite information, to
predict floods and droughts. Nevertheless, the reliability of such an experiment and their
possible products depend heavily on the accuracy of  products.

In the past decade, a lot of development has been made in every aspect and in
every dimension of exploring the changes in the gravity field of the Earth via 
satellites. The amount of research findings have increased non-linearly with time. For the
same region we can find a number of publications, each using a different post-processing
method, providing us different numerical values to mark the severity of the problem. This
work itself is guilty of providing one more post-processing strategy, but with a promise
that it has a better potential in comparison to the model dependent approaches.

§.    

Vince Lombardi said “Perfection is not attainable, but if we chase perfection we can catch
excellence”*. Every work suffers from a few caveats and unfinished tasks. Sometimes the
amount of time required is just not available, and sometimes the effort is not worth
the results. Nevertheless, it is important to know the loose ends and limitations of the
finished job.

This contribution has improved our understanding of the signal damage due to filtering,
especially from a mathematical point of view, which has helped us to design the data-
driven methods for repairing the signal damage. These methods can be applied to 
products filtered with any filter, but assuming that the filter suppresses the noise to a
minimum. However, every filter will reduce the noise to a different amount, which makes
the performance of data driven methods vary with the filter definition. Throughout this
work, we have used the optimum Gaussian filter of half width radius 400 km. Nevertheless,

*from BrainyQuote.com
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the impact of changing the filter is yet to be studied. In a preliminary analysis we found
that in general the impact of changing filter is more prominent in smaller catchments.
This is shown in Figure 6.1, where we have plotted the RMS of the error in corrected time
series. The spread in error RMS with respect to filter definition increases as the size of
the catchment decreases. Furthermore, we have discussed in chapter 4 that the accuracy
of the data-driven method of deviation declines with the catchment size. However, the
impact of catchment shape and size is not investigated thoroughly. Such a study might
help us improve the efficacy of data-driven methods even further.
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Figure .: The RMS of error for data-driven
method of deviation over 32 catchments
with different filters. The catchments
are sorted by their area, and we use
5 filter definitions. The filtered fields
are corrected with data-driven method
of deviation and it is compared to the
true time series.

While understanding the signal dam-
age, we encountered three different
scenarios: active hydrological catch-
ments, arid regions or deserts, and the
ice sheets. We have discussed and
drafted the data-driven method, with
case specific approximations, for active
hydrological catchments and ice sheets.
However, a detailed analysis and a ded-
icated method for arid regions, such as
Gobi, Highland of Tibet, Sahara desert,
Thar desert and many more, is still
missing. Furthermore a comparative
analysis of data-driven method for ice
sheets with other sophisticated meth-
ods, such as point mass modeling and
tailored sensitivity kernel approach, is
yet to be done.

Within the past two years, we have
seen the rise of a new type of 
products: mascon solutions, which do
not require filtering at the user end.
However, they are constructed using
constrained regularization, which itself
is a type of filtering. Therefore, the
quality of their signal, although claimed
to be better, and the damage due to regularization is yet to be tested and discussed in
the community. An analysis similar to this work would provide us a better insight.

In conclusion, we believe that this contribution is a valuable addition to the toolkit for
processing  products to obtain better mass change estimates at catchment scale.
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We describe the data and models used. Every data is global except for runoff from ,
which is available for a limited number of catchments.

: WaterGAP Global Hydrology Model, provides global 0.5◦×0.5◦ monthly total
water storage change in mm. We have used it from 2004 to 2009 [Döll et al, 2014].

: Global Land Data Assimilation System, provides global 0.5◦ × 0.5◦ monthly
total water storage change in mm. We have used it from 2004 to 2009 [Rodell
et al, 2004].
source: disc.sci.gsfc.nasa.gov/uui/datasets?keywords=GLDAS

and: Modern Era Retrospective-analysis for Research and Applications - Land,
provides global 0.5◦×0.5◦ monthly total water storage change in mm. We have used
it from 2004 to 2009 [Rienecker et al, 2011].

: CPC Merged Analysis of Precipitation, provides global 0.5◦×0.5◦ precipitation
in mm/month. We have used it from 2004 to 2010.
source: www.esrl.noaa.gov/psd/data/gridded/data.cmap.html.

: Climatic Research Unit, provides global 0.5◦ × 0.5◦ precipitation in mm/month.
We have used it from 2004 to 2010.
source: badc.nerc.ac.uk/data/cru.

Del: Willmott, C. J. and K. Matsuura, provide global 0.5◦ × 0.5◦ precipitation in
mm/month. We have used it from 2004 to 2010.
source: climate.geog.udel.edu/~climate/html_pages/archive.html.

: PRECipitation REConstruction over Land, provides global 0.5◦ × 0.5◦ precipi-
tation in mm/month. We have used it from 2004 to 2010.
source: www.esrl.noaa.gov/psd/data/gridded/data.precl.html.

: Global Precipitation Climatology Project, provides global 2.5◦×2.5◦ precipitation
in mm/month. We have used it from 2004 to 2010.
source: www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html.

: Global Precipitation Climatology Center, provides global 0.5◦×0.5◦ precipitation
in mm/month. We have used it from 2004 to 2010.
source: gpcc.dwd.de.

: Global Land Data Assimilation System, provides global 0.25◦ × 0.25◦ evapo-
transpiration in mm/month. We have used it from 2004 to 2010.
source:disc.sci.gsfc.nasa.gov/uui/datasets/GLDAS_NOAH025_M_V2.0/summary.

disc.sci.gsfc.nasa.gov/uui/datasets?keywords=GLDAS
www.esrl.noaa.gov/psd/data/gridded/data.cmap.html
badc.nerc.ac.uk/data/cru
climate.geog.udel.edu/~climate/html_pages/archive.html
www.esrl.noaa.gov/psd/data/gridded/data.precl.html
www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html
gpcc.dwd.de
disc.sci.gsfc.nasa.gov/uui/datasets/GLDAS_NOAH025_M_V2.0/summary
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: Global Land Evaporation Amsterdam Model, provides global evapotranspiration
in mm/month. We have used it from 2004 to 2010.
source: www.gleam.eu.

: MODIS Global Evapotranspiration Project, provides global evapotranspiration
in mm/month. We have used it from 2004 to 2010.
source: www.ntsg.umt.edu/project/mod16.

 :  Multi-Tree Ensemble, provides global evapotranspiration in
mm/month. We have used it from 2004 to 2010.
source: climatedataguide.ucar.edu/climate-data/fluxnet-mte-multi-tree-ensemble.

and: Modern Era Retrospective-analysis for Research and Applications - Land,
provides global evapotranspiration in mm/month. We have used it from 2004 to
2010.
source: gmao.gsfc.nasa.gov.

 nterim: European Centre for Medium-Range Weather Forecasts (), provides
global evapotranspiration in mm/month. We have used it from 2004 to 2010.
source: apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc.

 runoff: Global Runoff Data Centre provides the river Discharge measurements
for various rivers.
source: www.bafg.de/GRDC.

 spherical harmonic coefficients from : GeoForschungZentrum in Potsdam
provides the level 2  data. These are dimensionless fully normalized spherical
harmonic coefficients upto degree and order 90 [Dahle et al, 2012].
source: ftp://podaac-ftp.jpl.nasa.gov/GeodeticsGravity/grace/L2/GFZ/RL05/

 spherical harmonic coefficients from : Institute of Geodesy in Graz, provides
the level 2  data. These are dimensionless fully normalized spherical harmonic
coefficients upto degree and order 90 [Mayer-Gürr et al, 2016].
source: www.tugraz.at/institute/ifg/downloads/gravity-field-models/itsg-grace2016

www.gleam.eu
www.ntsg.umt.edu/project/mod16
climatedataguide.ucar.edu/climate-data/fluxnet-mte-multi-tree-ensemble
gmao.gsfc.nasa.gov
apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc
www.bafg.de/GRDC
ftp://podaac-ftp.jpl.nasa.gov/GeodeticsGravity/grace/L2/GFZ/RL05/
www.tugraz.at/institute/ifg/downloads/gravity-field-models/itsg-grace2016
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We plot the error in time series in Figures B.1 and B.2, and report the RMS and NSE in
Tables B.1 and B.2. The error is the deviation from truth in the   closed loop
simulation environment. We use a destriping filter along with a Gaussian filter of half
width radius 350 km. We can see that the data-driven method of deviation is performing
better than other approaches in terms of RMS. The scaling approach with this filter
improves and the performance of data-driven method of deviation decays, in comparison
to their performance with the Gaussian 400 km filter.
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Figure B.: Fill plots comparing different approaches for catchment number 1 to 16 in Table
3.1. The ordinate of each subplot is different. The   simulation fields
are the input fields, and  helps the model dependent approaches. The
amount of red is the difference between the true time series and the result
from the corresponding approach. Since the ordinate for every method for a
catchment is same (except for multiplicative approach), less red means better
performance.
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Figure B.: Fill plots comparing different approaches for catchment number 17 to 32 in
Table 3.1. The ordinate of each subplot is different. The   simulation
fields are the input fields, and  helps the model dependent approaches.
The amount of red is the difference between the true time series and the result
from the corresponding approach. Since the ordinate for every method for a
catchment is same (except for multiplicative approach), less red means better
performance.
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Table B.: RMS (cm) of the error in the corrected time series computed in the  
simulation environment. Each row corresponds to a catchment and each column
to a method. The smallest value in a row is in bold, and the next in magnitude
is underlined. There are four major groups separated by space. Each group
represents one region, and is sorted by the area of the catchments. Small
catchments, below the filter resolution, are separated within the group by a
horizontal line. Mean∗ denotes the mean value computed excluding the small
catchments and dry catchments.

G350 + desrt. Multiplicative Data-driven
(scale)

Additive Scaling Data-driven
(deviation)

Indus 2.11 2.67 2.14 1.99 1.94 .
Ganges 4.24 6.43 2.07 4.10 3.31 .
Brahmaputra 5.53 10.00 . 5.79 6.50 4.03
High. of Tibet 3.16 7.43 3.56 2.24 . 3.15
Godavari 6.00 1.40 11.10 . 5.56 6.93
Krishna . 13.77 5.31 2.2 2.54 2.5
Aravalli 2.9 30.51 4.02 4.0 3.93 .
Mahanadi 6.30 69.29 11.31 . 6.14 5.63

Amazon 1.22 2.31 1.61 1.16 1.05 .
Parana 1.2 2.21 1.62 1.75 . 1.55
Orinoco 4.65 5.57 . 4.43 2.43 2.22
Rio Tapajos 2.62 29.00 4.92 3.4 . 2.62
Magdalena 4.75 1.10 4.51 4.53 4.66 .
Corantijn 6.17 7.73 14.42 6.61 4.91 .
Maroni 9.1 77.49 11.12 9.23 7.5 .
Rio Jari 6.55 174.46 17.22 7.53 .73 .

Ob 0.64 1.57 0.73 0.6 0.6 .
Yenisei 0.6 1.53 0.66 1.03 1.0 .
Lena . 1.19 0.2 0.7 0.2 0.74
Gobi 0.0 1.31 1.05 0.79 . 0.97
Amur 0.62 1.51 0.55 1.03 0.61 .
Yangtze 0. 2.44 1.54 0.94 . 1.07
Yellow River 1.52 3.44 1.42 1.54 2.06 .
Tarim 1.50 4.65 1.6 1.54 . 1.73

Congo 1.45 1.72 . 1.3 1.17 1.07
East Australia 1.47 2.65 1.36 1.42 . 1.41
Mississippi 1.13 2.7 . 1.30 1.17 0.94
Mackenzie . 3.23 1.11 1.26 1.02 0.5
Zambezi 2.42 6.53 . 3.2 1.66 1.36
Orange 2.0 4.32 2.71 . 2.14 2.36
Danube 1.9 4.65 1.53 2.06 . 1.55
Columbia 3.2 6.12 2.50 2.1 . 2.49

Mean 2.5 1.63 3.76 2.97 2.6 .
Mean∗ 2.24 6.27 2.31 2.37 2.03 .
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Table B.: NSE values of the corrected time series computed in the   simulation
environment. Each row corresponds to a catchment and each column to a
method. The largest value in a row is in bold, and the next in magnitude
is underlined. There are four major groups separated by space. Each group
represents one region, and is sorted by the area of the catchments. Small
catchments, below the filter resolution, are separated within the group by a
horizontal line. Mean∗ denotes the mean value computed excluding the small
catchments and dry catchments.

G350 + desrt. Multiplicative Data-driven
(scale)

Additive Scaling Data-driven
(deviation)

Indus 0.3 0.73 0.3 0.5 . .
Ganges 0.90 0.7 . 0.91 0.94 0.97
Brahmaputra 0.2 0.41 . 0.0 0.75 0.90
High. of Tibet -1.00 -10.03 -1.53 . -0.6 -0.9
Godavari 0.74 -1.47 0.10 . 0.77 0.65
Krishna . -7.63 -0.31 0.63 0.70 0.62
Aravalli . -19.7 0.63 0.62 0.65 0.2
Mahanadi 0.2 -19.75 0.43 . 0.3 0.6

Amazon . 0.95 0.97 . . .
Parana 0.91 0.7 0.93 0.92 . 0.94
Orinoco 0.9 0.5 . 0.90 0.97 .
Rio Tapajos . -2.57 0.90 0.94 . .
Magdalena 0.7 -2.21 0.0 0.0 0.79 .
Corantijn 0.7 -19.17 -0.23 0.74 . .
Maroni 0.70 -15.99 0.56 0.69 0.7 .
Rio Jari 0.5 -102.03 -0.03 0.0 0.73 .

Ob . 0. 0.97 . . .
Yenisei 0.97 0.5 0.97 0.93 0.92 .
Lena . 0.79 0.90 0.91 0.90 .
Gobi -1.06 -4.47 -2.5 -1.01 -. -2.03
Amur 0.91 0.46 . 0.75 0.91 .
Yangtze . 0.67 0.7 0.95 0.96 0.95
Yellow River 0.6 -0.65 0.72 0.67 0.41 .
Tarim 0.46 -4.17 0.17 0.43 . 0.2

Congo 0.96 0.94 . 0.96 0.97 .
East Australia 0.1 -1.65 0.30 0.24 . 0.25
Mississippi 0.92 0.52 . 0.90 0.92 .
Mackenzie . 0.42 0.93 0.91 0.94 .
Zambezi 0.96 0.72 . 0.91 0.9 .
Orange 0.45 -1.3 0.06 . 0.42 0.29
Danube 0.9 0.33 0.93 0.7 . .
Columbia 0.4 0.44 0.91 0. . 0.91

Mean 0.70 -6.29 0.50 0.72 . 0.6
Mean∗ 0.1 -0.40 0.75 0.1 . .
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Table B.: Comparison of different methods applied with Gaussian 350 km and the destriping
filter in  closed-loop simulation environment. n∗x denotes the number of
catchment, out of 32, for which the method in respective column is either the
best or second best in terms of the statistical measure x. nx denotes the same
for the case when the method is best.

Methods

Gaussian
400

Multiplicative Data-driven
(scale)

Additive Scaling Data-driven
(deviation)








si
m
ul
at
io
n

n∗RMS 10 0 13 5 14 24

nRMS 3 0 5 3 9 12

n∗NSE 16 0 14 12 22 25

nNSE  0 7 6 11 1
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“…Vanishing groundwater will translate into major declines in
agricultural productivity and energy production, with the po-
tential for skyrocketing food prices and profound economic and
political ramifications. Further declines in groundwater avail-
ability may well trigger more civil uprising and international
violent conflict in the already water-stressed regions of the
world, and new conflict in others.

From North Africa to the Middle East to South Asia, regions
where it is already common to drill over 2 km to reach
groundwater, it is highly likely that disappearing groundwater
could act as a flashpoint for conflict. Managing the global
groundwater crisis will require raising awareness of these critical
issues to the level of everyday understanding. The actions
outlined above are important steps in that direction. Once
elected officials, environmental decision-makers and the general
public truly understand the sources of water, and how they
are affected by climate change, overuse and population growth,
the need for action will be clear. Full appreciation of the
importance of groundwater to the global water supply and
security is essential for managing this global crisis, and for
vastly improving management of all water resources for the
generations to come.”

– J. S. Famigliei,
The global groundwater crisis

Nature Commentary, Volume 4, Nov 2014.
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