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§ 1. Introduction. The dual norm of a scalar absolute (L)-norm, 

i. e. an (AL)-norm on a vector lattice, is an absolute (M)-norm 

or an (AM)-norm, and more precisely an order-unit norm. Con- 
versely, an absolute (M)-norm has as its dual an absolute (L)- 

norm. These and other well-known results about (AL)-norms 
and (AM)-norms go back to K akut an i [9] and have been 
generalized in various ways. Two important directions, in which 

generalizations have been made, were shown by Edwards [5] 
and Ellis [6] to the one side and F. L. Bauer [1] to the other. 

Edwards and Ellis introduced the notion of a “cone-base” 
norm, proved theorems concerning the duality of order-unit and 
cone-base norms and there by generalized results of Kakutani 
about norms on vector lattices in the sense of more general 
orderings on the space the norms are defined on. On the other 
hand Bauer considered vector-valued norms on vector lattices. 
He formally carried over the notions of an (AL)-norm and an 

(AM)-norm from the scalar case to the case of vector-valued 
norms, introduced an appropriate notion of regularity for vector- 
valued norms and proved [1] among other things that a regular 
(AL)-norm possesses as its dual a vector-valued “order-interval” 
norm, i. e. the corresponding generalization of order-unit norms 

to the case of vector-valued norms. The introduction of the 
notion of regularity is due to the fact that not every vector- 

valued norm has a reasonable dual norm. A scalar norm always 
possesses a dual norm and therefore is regular. Accordingly, 
F. L. Bauer obtains one of the theorems of Kakutani men- 

tioned above as a special case of his theorem about vector-valued 
norms. Bauer also raised questions, which do not appear in the 
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scalar case. For instance, he asked for a necessary and sufficient 

condition for the regularity of (AL)-norms and proved [1] a 
“pretty good” necessary condition for the regularity of an (AL)-  
norm. We will  show in theorem 8.7 that this condition is also 
sufficient. 

The aim of the present paper is to bring together the two 
directions mentioned above, in which the results of Kakutani 
have been generalized, i. e. to define comprehensive notions and 
to prove corresponding duality theorems. This task is accom- 
plished with the concept of vector-valued absolute-monotone 
(l)-norms and (m)-norms, (al)-norms and (am)-norms in short, 
on ordered vector spaces in the following sense. The (al)- and 
(am)-norms are identical with the classical (AL)- and (AM)-  

norms, respectively, if  the underlying ordered vector space is a 
vector lattice (§ 8). In the case of scalar norms on ordered vector 
spaces we have the following relations. Every (al)-norm is a 
cone-base norm and every cone-base norm which is itself the 
dual of an “approximate order-unit” norm [12] is also an (ab- 

norm. Similarly a scalar (am)-norm is always an approximate 
order-unit norm and every order-unit norm is an (am)-norm. 
The (al)- and (am)-norms can be generalized without difficulty  
in such a way that in the scalar case the (al)-norms are even 
identical with the cone-base norms and the (am)-norms with the 
approximate order-unit norms. To this end one has to substitute 
in some definitions the relation with the relation '<’, i. e. < 

and =r, or to require that some properties usually required for 
the closed norm balls should hold only for “weakly-open” norm 
balls [11]. Corresponding generalizations of (al)- and (am)-norms 
will  be treated in a subsequent paper of the author entitled 
‘Duality of vector-valued monotonie norms on ordered vector 

spaces’, in which duality theorems beyond the above scope are 

proved by topological means. 
Let us summarize the contents of the paper succinctly. From 

§§ 3-5 we develop the new concepts and duality theorems. In § 8 
to the discussion about vector-valued norms on vector lattices 
there will  be added some new results. Before coming to the 
duality theorems we prove new theorems about general regular 
norms and introduce the new notion of a ‘complete regular’ norm 
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(§ 2). The central notion of an order-interval norm is investigated 
in § 6. There the close relation between order-interval norms, 
generalized absolute value operators and also sublattices of 
ordered vector spaces will become apparent. Conditions for 
regularity of (al)- and (am)-norms are the object of § 7. 

Notation. Throughout we use the following notations. V* is the 
space of all linear functionals on a vector space V. If  M C V, 
Lin(M) denotes the subspace of V generated by M. Let (V, Q) 
be an ordered vector space. In context with an order relation 
we use < in the usual meaning. If  x, y, z E V, we frequently 
write x, y < z instead of # < z and y < z. C°g denotes the cone 
of all semipositive functionals contained in V*. V°: — C°e — C°g. 
f < g for /, g £ V* means fix) < g(x), VzG Ce, where CQ: 
~ {x EL V : o < xj. The ordering determined by C°e is called the 
dual ordering of Q in V*, V° the order dual space of (V, Q). The 
composition of mappings f and g is denoted by / • g. The natural 
ordering of functionals on a set M is denoted by <*. We have 

/ g, if  f(x) < g(x)< V * E M. inf, A and inf0 A denote the 
infimum of the elements of a set A with respect to the natural 
and dual ordering, respectively. 
This paper is dedicated to my dear teacher, Professor Dr. Dr. h. c. 
Friedrich L. Bauer, who gave the impulse for it. 

§ 2. Regular and completely regular norms. 

Let V be a vector space over the real scalar field R and {77, a) 
an ordered vector space over R with Ca as its positivity cone. 
A norm p on V with values in 77 is a positive-definite symmetric 
sublinear mapping of V into 77, i. e. a mapping with the follow- 
ing properties. 

(p-d) o < p{x) and (p(x) — ° =%º� x — o), 

(s) p(x) =/>(— x), 

(si) P(x +y) < p(x) + p(y), p (fx) = Ip (x) 

for all x,y E F, 2 G R, o < A. Together with a norm/» one often 
considers the indexed family Kp of its norm balls or [11] inverse 
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predomains Kp[y\ : = {x E V: p(x) < y} for all y EL H. p(x) 
= inf {y E H \ x E Kp [y]}  holds. It is clear that in general a 
norm is not determined by one single norm ball, as it is the case 
for scalar norms. If  y Ca, then Kp[y\ = 0. 

As is usually done for scalar norms, we call a norm pA the 

‘dual’ norm of p, if  it associates to each bounded linear functional 
on Fa linear ‘least upper bound’. We shall see that in the general 
case of vector-valued norms exactly the regular norms have a 
dual norm. 
However one gets to different notions of regularity and corre- 
spondingly to different dual norms, depending on which mappings 

of H or C„  one admits as upper bounds for functionals from V*. 
In the following we define ‘regular’ norms and ‘completely regular’ 

norms. In the first case all the semipositive linear functionals are 

allowed as upper bounds, in the second case all the semipositive 
superlinear mappings of Ca in R. 

We suppose throughout that Ca is generating, i. e. Ca — C„  
= H. Let p be an W-valued norm on V. We call y' E C°a a positive 
linear upper bound of f E V* and correspondingly f bounded 
by y', if  /(x) < y' 'pipe) for all x E V- The set of all positive 
linear upper bounds of / is denoted by Bp[f],  Bp[f]  : = {y'  E Cb : 

f(x) < y' • p(x), \/ x E V). Exactly for all bounded / E V* we 
have Bp [/]  =j= 0. The set of all bounded linear functionals from 
V* forms a subspace Vb of V*. p is called regular, if for all 

/ E Vh the set of bounds Bp [/]  contains a least element with re- 
spect to the dual ordering of a in H°. Since a least element of 

Bp[ f]  is uniquely determined and is itself the infimum of Bp [/],  
we have 

(2.1) p is regular ^ there is a unique mapping pà : Vh —>- C°a, 
such that for all f E Vb 

(i) /(/) = inf0 Bp\f\ and 
(ii) p\f) E Bp[ f], i. e. f{x) < p\f) -plx), VxEV 

(Hôlder inequality) and o <^>d(/). 

That pA is a norm is easily verified. pA is called the dual norm of p. 
The following equivalence is sometimes useful. Let v : Vb —* % � C\. 
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(2.2) p is regular and v is the dual norm of p ^ 

V/ G v\ / e c°a: (v(f) <y'~y' E Bp[ f\), i. e. 

(/ e Kv[y'] <=>/ e 

The next description of regularity does not contain pA explicitly. 

(2.3) p is regular ^ V / E Vh : 3 y' E H° : y' = mf0Bp[ f]  
and / E Bp[ f}. 

Each downwards directed set B of semipositive linear func- 

tionals on H possesses an infimum for which, for all y E Ca, 
(infQB) (y) = inf (y'(y) : y' E B} (c. f. the proof of theorem 
2.4). More generally this means that the order dual space H° of 
H is ‘directed-complete’. An ordered vector space is defined to 
be directed-complete, if  each subset which is directed downwards 
and bounded from below possesses an infimum. Because of the 
above representation of these infima we get from property 2.3 
a convenient necessary and sufficient condition for regularity. 

(2.4) Theorem, p is regular ^ V / E Vh : Bp[ f] is directed 

downwards 

[< : For all y E Ca there exists Uj(y) : = inf (y'(y) : y' E 
Bp [/]}.  The additivity of the functional up on Ca follows from 
u/(y) + uAß) = inf {y'(y) + ß'(ß) %  y', ß' e Bt\f\) < inf 
{y(y + ß) : y' E Bp[f\}  < inf {y'(y)  + ß’(ß) %  /, ß' G B,[f]}  
= Uj(y) + Uy(ß). Here the directedness of Bp[ f] is only needed 
for the proof of the second inequality. up is also positive-homo- 

geneous and possesses therefore a linear extension ^ on H. Since 
for all y' E Bp [/]  and x E V the inequality f(x) < y' • p(x) 
holds, f(x) < inf {y' • p{xr) : y' E Bp[ f\) = uf(p(*)), i. e. 

ü/ E Bp[ f~\. Apparently we also have üp = inf0Bp[ f], i. e. p 
is regular.] 

The notion of ‘complete regularity’ is narrower, but possesses 
many applications. Completely regular are the scalar norms, the 

absolute-value mapping on a vector lattice, the norms with the 
decomposition property [4], „spaltbare“ norms [7] as well as 
regular norms in the sense of Robert [13] or Bode [3]. Inter- 


