Über die Abhängigkeit des Verhältnisses der spezifischen Wärmen $\frac{Cp}{Cv} = k$ in trockener, kohlensäurefreier atmosphärischer Luft von Druck und Temperatur.

Von

Peter Paul Koch.

(Mit 4 Tafeln.)

Ober die Abhängigkeit des Verhältnisses der spezifischen Warmen C. – k in tröckener, kehlensäurefreier atmosphärischer Luft von Druck und Temperatur.

10.77

Peter Paul Koch.

(Mit 4 Tatelna)

Eine im Jahre 1899 veröffentlichte Abhandlung Witkowskis ¹) enthält sehr interessante Ergebnisse in Bezug auf das Verhältnis der spezifischen Wärmen in atmosphärischer Luft bei den Temperaturen von 0° und rund — 79° und Drucken bis 100 Atmosphären. Die vorliegende Untersuchung wurde unternommen auf Veranlassung von Herrn Geheimrat Professor Dr. Röntgen zum Zweck einer möglichst exakten Nachprüfung und Ausdehnung auf ein größeres Druckintervall.

Den Messungen zu Grunde liegt die Beziehung:

$$(1) C = \sqrt{-\frac{v^2}{m} \left(\frac{\partial p}{\partial v}\right) k}$$

Dabei ist C die Schallgeschwindigkelt unter den in Betracht kommenden Bedingungen von Druck und Temperatur, $-v\frac{\partial p}{\partial v}$ ist der isotherme Elastizitätskoeffizient und $\frac{m}{v}$ die Dichte der Luft beim Druck p und der Temperatur t. $k=\frac{Cp}{Cv}$ ist das Verhältnis der spezifischen Wärmen bei konstantem Druck und konstantem Volumen.

Dieser Gleichung zufolge gliedert sich die vorliegende Veröffentlichung in drei Hauptabschnitte. Der erste ermittelt die Schallgeschwindigkeit, der zweite die Isothermen von 0^0 und -79^0 und der dritte verknüpft die so gewonnenen Werte zur Berechnung von k.

¹⁾ A. W. Witkowski. Bulletin international de l'Académie des Sciences de Cracovie. Mars 1899.

I. Teil.

Die Schallgeschwindigkeit in atmosphärischer Luft bei Drucken bis 200 Atmosphären und den Temperaturen des schmelzenden Eises und des Alkohol-Kohlensäuregemischs.

Methode.

Die Schallgeschwindigkeit in Luft unter den angeführten Bedingungen von Druck und Temperatur wird in Beziehung gesetzt zu der Schallgeschwindigkeit in Luft von Zimmertemperatur und Atmosphärendruck mit Hilfe der Kundtschen Staubfiguren.

Ein Stahlstab wird an zwei Stellen auf $^{1}/_{4}$ seiner Länge von den Enden eingeklemmt. Longitudinal angerieben veranlaßt er stehende, durch ein leichtes Pulver sichtbar gemachte Wellen, in zwei über seine Enden geschobenen Röhren. Das eine davon (Untersuchungsrohr) enthält komprimierte Luft von 0^{0} oder — 79^{0} , das andere (Kontrollrohr) Luft unter normalen Bedingungen.

Das Verhältnis der Wellenlängen in beiden Röhren gibt das Verhältnis der Schallgeschwindigkeiten.

Versuchsanordnung.

Schallquelle.

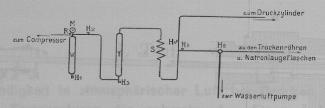
Als Schallquelle diente ein Stahlstab St (Figur 1) von 310 mm Länge und 8,2 mm Durchmesser. Er trug an seinen Enden zum Übertragen der Schwingungen an die Luft in den Wellenrohren kreisförmige Stahlplatten von 24 mm Durchmesser und 1,1 mm Dicke hart aufgelötet. Auf ca. $^{1}/_{4}$ seiner Länge von den Enden befanden sich auf der einen Seite eine Messingplatte M_{1} (Durchmesser 51 mm, Dicke 5,5 mm) zum Befestigen am Druckzylinder D, auf der anderen Seite eine Messinghülse M_{2} zur Befestigung am Kontrollrohr K.

Die richtige Lage von M_1 und M_2 am Stahlstab wurde experimentell ermittelt: Ein Klemmen an dieser Stelle mit einer Zange darf keine merkliche Dämpfung des Longitudinaltones verursachen.

Figur 1.

Druckzylinder und Untersuchungsrohr. Kontrollrohr.

Der Druckzylinder war von Ducretet-Paris geliefert und für die in Betracht kommenden Drucke mit Wasser geprüft.


Er trug einen seitlichen Ansatz S zur Zuführung der Druckluft. Das Festklemmen des Stahlstabs am Zylinder erfolgte mit Hülfe eines Verschlußschraubenstückes V mit viereckigem Kopf und zylindrischer Bohrung durch die am Stahlstab festgelötete Messingplatte M_1 . Abgedichtet wurde durch einen zwischen M_1 und das Auflager des Druckzylinders eingelegten Bleioder Lederring.

Die Innendimensionen des Zylinders bestimmten die Maße des einzuschiebenden Untersuchungsrohrs U. Der verfügbare Raum war zylindrisch, 100 cm lang und hatte 34 mm Durchmesser im Lichten. Deshalb waren die Untersuchungsrohre Glasröhren von ca. 80 cm Länge und ca. 30 mm Durchmesser im Lichten. Die Röhren länger zu wählen hätte keinen Zweck gehabt, weil der Stahlstab etwas über 22 cm in den Druckzylinder hineinragte. Sie trugen um ein Herumrutschen zu verhüten an den Enden Papierstreifen, die bewirkten, daß das Rohr gerade noch mit sanfter Reibung in den Zylinder paßte.

Die Dimensionen der Kontrollrohre waren die gleichen wie bei den Untersuchungsröhren. Sie trugen einen seitlichen Ansatz A zum Durchleiten trockener Luft. Die Befestigung des Stahlstabs am Kontrollrohr und der luftdichte Abschluß des letzteren erfolgte mit Hülfe der Messinghülse M_2 durch einen auf das Kontrollrohr geschobenen Gummiring G_1 und einen über Messinghülse und Kontrollrohr gezogenen Gummischlauch G_2 . Auf der anderen Seite war das Kontrollrohr verschließbar durch einen Gummistopfen.

Homemitegze element dateld Druckluftanlage. nov egal egindein eid

Zur Herstellung der Druckluft wurde der im Kellergeschoß des Instituts aufgestellte Kompressor der Lindeschen Luftverflüssigungsanlage benutzt. (Figur 2.)

Figur 2.

Von einem 7-pferdigen Elektromotor angetrieben preßt er die von außen angesaugte Luft in zwei Stufen auf maximal 200 Atmosphären. Die Druckluft tritt durch ein Rückschlagventil R in den Wasserabscheider W, in dem sich der Hauptteil des zum Schmieren der Kompressorstulpen eingespritzten Wassers absetzt. Es wird durch das Ventil H_1 abgelassen. Auf dem oberen Ende des Wasserabscheiders sitzt das zum Messen des Druckes benutzte Federmanometer M von Schäffer und Budenberg, Magdeburg-Buckau. An dem Ventil H_2 vorbei geht die Luft in das mit einem Auslaßventil H_3 versehene Trockenrohr T und durchstreicht in diesem von unten nach oben eine etwa einen Meter lange Säule (Durchmesser ca. 7 cm) von feinkörnigem Chlorcalcium und Natronkalk zur Absorption von Wasserdampf und Kohlensäure. Schließlich passiert die Luft ein Schlangenrohr S, das mit einem Viehsalz-Eisgemisch auf rund -25° abgekühlt wird, ebenfalls zum Zweck des Festhaltens von Wasserdampf und geht an einem mit zwei Ventilen H_4 H_5 versehenen T-Stück vorbei durch ein ca. 25 Meter langes Kupferrohr zu dem Druckzylinder im zu ebener Erde gelegenen Zimmer des Beobachters.

Vom Ventil H_5 im Keller führt eine Bleileitung zu einem Dreiweghahn H_6 und von dort zu einer Wasserluftpumpe um die ganze Anlage evakuieren und dann trockene kohlensäurefreie Luft einlassen zu können. Die Dichtungen an Ventilen und Verschraubungen erfolgten durch Leder, Vulkanfiber oder Blei. Letzteres erwies sich als besonders zuverlässig. Es machte geringe Mühe in der ganzen Anlage den Druck selbst bei 200 Atmosphären länger als eine Stunde innerhalb der Meßmöglichkeit des Manometers von ca. einer Atmosphäre konstant zu halten.

Temperaturbäder und Temperaturmessung.

Das Kontrollrohr wurde bei den definitiven Versuchen auf Zimmertemperatur gehalten. Der Druckzylinder mit eingelegtem Untersuchungsrohr befand sich bei den Versuchen der ersten Reihe in schmelzendem Eise, bei denen der zweiten in einem Gemisch von absolutem Alkohol und fester Kohlensäure.

Das Kontrollrohr lag in einem oben offenen Zinkkasten von $93 \times 16 \times 16$ cm. Die Befestigung am Kasten erfolgte durch zwei auf das Rohr aufgeschobene Gummistopfen, die in zwei in den Seitenwänden des Kastens angebrachte Löcher hineinpaßten. Der erwähnte seitliche Ansatz des Kontrollrohrs kam außerhalb des Kastens zu liegen. In den Kasten wurde Wasser von Zimmertemperatur eingefüllt. Zur Temperaturbestimmung dienten zwei in ganze Grade geteilte Thermometer, die in zwei am Zinkkasten befestigten Messinghaltern steckten, so daß ihre Kugeln sich dicht neben dem Kontrollrohr befanden.

Bei den ersten Probeversuchen war das Kontrollrohr mit schmelzendem Eis umgeben. Die so erhaltenen Resultate stimmten sehr schlecht untereinander, wie es scheint eine Folge von Luftströmungen, hervorgerufen durch die Temperaturdifferenz zwischen der auf 0° abgekühlten Mitte des Kontrollrohrs und den auf Zimmertemperatur befindlichen Enden.

Der Druckzylinder lag für die 0°-Versuche gleichfalls in einem oben offenen Zinkkasten auf zwei Holzstützen. Die Maaße des Kastens waren $122 \times 25 \times 25$ cm. In der einen Schmalseite befand sich eine kreisförmige Öffnung, die gestattete den Druckzylinder, durch einen Gummiring gedichtet, so einzupassen, daß er wenige Millimeter über die Außenseite des Kastens herausragte. So war es auf bequeme Art möglich, von der Außenseite des Kastens her das Untersuchungsrohr in den Druckzylinder einzuführen, den Stahlstab einzusetzen und den Verschlußkopf zuzuschrauben.

Als Alkohol-Kohlensäuretemperaturbad diente ein bedeutend kleineres Gefäß aus drei ineinandergesteckten spiegelblanken zylindrischen Weißblechkästen, die von einander durch zwei Filzlagen thermisch isoliert waren. Die Gefässe waren oben offen und konnten durch einen Blechdeckel geschlossen werden. Der innerste Kasten war 114 cm lang und hatte 15 cm Durchmesser i. L. Der Druckzylinder lag auf zwei entsprechend geformten Holzstützen und war in der eben beschriebenen Art durch die eine Seitenwand des Kühlgefässes durchgeführt.

Um Klarheit zu gewinnen, ob und in welcher Zeit die Luft im Druckzylinder die Temperatur der umgebenden Bäder annimmt, wurde ein Bolo-

meter eingeführt. Auf ein Glasrohr von 30 mm äußerem Durchmesser und 1,5 mm Wandstärke war ein Gewinde von 0,6 mm Ganghöhe und 32 Windungen eingeätzt und in dieses ein Platindraht von 0,05 mm Dicke, bezogen von Heraeus-Hanau, eingelegt. Der Draht wurde in der üblichen Weise vor und nach dem Aufwickeln elektrisch ausgeglüht. Der Widerstand bei 0° betrug etwa 130 Ohm. Der Draht war vor Beschädigung geschützt durch ein zylindrisch gebogenes Glimmerplättchen, das durch einen aufgeschobenen Messingring gehalten wurde.

Dieses Bolometer (B Fig. 1), das den Stahlstab konzentrisch umfaßte ohne ihn zu berühren, war auf die Platte M_1 aufmontiert, so daß es mit dem Stahlstab als Ganzes in den Druckzylinder eingesetzt werden konnte. Es kam etwa 14 cm von der Platte M_1 entfernt in den Zylinder zu liegen und blieb somit noch etwa 8 cm vom Anfang des Untersuchungsrohrs entfernt.

Folgender Weg wurde gewählt, um beide Zuleitungen zum Bolometer von einander isoliert druckdicht nach außen zu führen.

Der Stahlstab wurde vom Druckzylinder elektrisch isoliert, dadurch, daß M_1 ganz mit isolierendem Material umgeben wurde. Auf der Seite von M_1 , die vom Verschlußstück gefaßt wurde, lag ein Vulkanfiberring F, der Zylindermantel von M_1 war mit einem Hartgummiring H umgeben, und zwischen M_1 und dem Druckzylinderauflager lag ein Lederring L, der zugleich als Dichtung diente. Die eine Zuleitung des Bolometers ging zur Messingplatte M_1 . Eine auf die Messinghülse M_2 aufgesetzte Klemmschraube vermittelte die Weiterleitung nach außen. Die andere Bolometerzuleitung ging zur Bleidichtung Bl zwischen der Lederdichtung L und dem Auflager. Die Bleidichtung wurde durch Zuschrauben des Verschlußstückes energischst gegen das Druckzylinderauflager gepreßt und vermittelte einen exakten metallischen Kontakt mit dem Druckzylinder. Die Weiterleitung nach außen erfolgte durch einen an die Außenseite des Druckzylinders angelöteten Draht.

Gang der Versuche.

Mit der beschriebenen Anordnung wurden nach einer Vorversuchsreihe, bei der Kontroll- und Untersuchungsuhr sich auf Zimmertemperatur befanden, und die zur Orientierung diente, zwei Hauptmeßreihen ausgeführt.

Es ist zuerst eine Beschreibung des Arbeitsverfahrens bei der 0°-Reihe gegeben. Dann folgen Bemerkungen über die —79°-Reihe, soweit Abänderungen gegenüber der 0°-Reihe eintreten mußten.

Vorbereitung der Wellenröhren und des Druckzylinders.1)

Die Wellenröhren wurden ein für allemal sorgfältigst chemisch gereinigt mit Salpetersäure und Kalilauge. Vor jedem Versuch wurden sie mit frischem trockenem Fensterputzpapier ausgewischt, über einem Bunsenbrenner erhitzt und während sie noch heiß waren, etwa eine halbe Stunde lang trockene Luft in langsamem Strome durchgesogen. Dann wurde Lykopodium eingefüllt, das längere Zeit zu dünner Schicht ausgebreitet in einem Schwefelsäure-Exsikkator gestanden hatte. Die Pulvermenge wurde möglichst gering genommen. Durch die mit Lykopedium beschickten Röhren wurde noch einige Stunden trockene Luft durchgesogen.

Während dieser Zeit wurde vom Kompressor her etwa 20 Minuten lang trockene Luft durch den Druckzylinder geblasen.

Einsetzen des Untersuchungsrohrs.

Dann wurde das Untersuchungsrohr, am hinteren Ende durch einen Gummistopfen oder bei tiefen Temperaturen durch eine federnde Metallplatte verschlossen, in den Zylinder eingeschoben. Dabei wurde es einige Grade um seine Längsachse gedreht, so daß das Pulver seitlich etwas erhöht an die Röhrenwand zu liegen kam, die bekannte Maßregel um gute Staubfiguren zu erhalten.

Sehr wichtig ist es die Tiefe, bis zu der das Wellenrohr in den Druckzylinder eingeschoben werden muß, richtig zu treffen, denn weder die Stellung bester Resonnanz, bei der der Abstand von der schallübertragenden Endplatte des Stahlstabs bis zu dem das Rohr abschließenden Pfropfen eine ganze Anzahl stehender Wellen beträgt, noch die um eine halbe Wellenlänge verschobene Stellung schlechtester Resonnanz gibt brauchbare Figuren. Im ersten Fall werden die Staubfiguren verwischt, wie es scheint durch zu große Intensität der Schallschwingungen, im zweiten Fall gibt es überhaupt keine Figuren. Die besten Resultate erzielt man bei einer Zwischenstellung. Da diese im voraus nie genau zu ermitteln ist, weil unter anderem der Ton des Stahlstabs variiert (siehe unten), so ist das Auftreten guter Figuren etwas Glückssache und ein beträchtlicher Prozentsatz der Versuche schlägt ganz fehl.

¹⁾ Die etwas umständlich erscheinenden Vorsichtsmaßregeln sind nötig um dem Lykopodiumpulver seine möglichste Leichtbeweglichkeit zu sichern.

Einsetzen des Kontrollrohrs. Abwarten der Temperaturkonstanz.

Nach dem Einführen des Untersuchungsrohrs in den Druckzylinder wurde der Stahlstab eingesetzt und das Verschlußstück behutsam eingeschraubt. Nun wurde auf der anderen Seite des Stahlstabs das im Zinkkasten liegende Kontrollrohr in der beschriebenen Art befestigt.

Während durch das Kontrollrohr mit Hilfe des seitlichen Ansatzes und eines durchbohrten Gummistopfens trockene kohlensäurefreie Luft durchgesogen wurde, wurde der Druckzylinder zweimal auf etwa 15 mm Quecksilberdruck vom Maschinenraum her ausgepumpt und trockene, kohlensäurefreie Luft eingelassen. Unterdessen wurde in die Zinkwanne des Kontrollrohrs Wasser von Zimmertemperatur eingegossen und die Thermometer eingesetzt. Gleichzeitig wurde der Zinkkasten des Druckzylinders mit gestoßenem Eis und Wasser gefüllt.

Hierauf wurde durch den Kompressor der vorgesehene Druck hergestellt, was, um auf 200 Atmosphären zu kommen, etwa 30 Minuten dauerte. Jetzt wurde auch der Luftstrom durch das Kontrollrohr abgestellt und das ganze System zum Erreichen konstanter Temperatur sich selbst überlassen. Das Wasserbad des Kontrollrohrs wurde öfters energisch umgerührt und der Gang der beiden Thermometer notiert. Ebenso wurde der Widerstand des Bolometers im Untersuchungsrohr verfolgt. Die Zeit, die verstrich, vom Einfüllen des Eises bis zum Konstantwerden des Bolometerwiderstandes, betrug etwa eine Stunde, wobei das Herstellen des Druckes nur bei den ersten Kolbenhüben des Kompressors einen kleinen Einfluß auf den Temperaturgang ausübte. Daß der endgültige Bolometerwiderstand wirklich 0° entsprach, ergab die vorherige Aichung (siehe unten).

Vom Druckpumpen bis zum Erzeugen der Staubfiguren wurde etwa 75 Minuten gewartet, um der Temperaturkonstanz ganz sicher zu sein.

Nachdem die Verhältnisse so festgelegt waren, wurde bei den späteren Versuchen das Bolometer weggelassen, weil es die Handhabung des Stahlstabs immerhin etwas umständlich machte.

Anreiben des Stahlstabs. Druckablesung.

Nun wurde der Stahlstab durch einen kolophoniumbestreuten Bierfilz angerieben. Es wurde darauf geachtet möglichst kurz und möglichst nur einmal anzureiben. Die Intensität des Anreibens wurde so schwach gehalten, daß sich im Kontrollrohr gerade noch Staubfiguren bildeten. Man konnte dann sicher sein, daß auch im Untersuchungsrohr Figuren entstanden waren, wenn überhaupt richtige Resonnanz vorhanden war. Denn in komprimierter Luft bilden sich die Figuren viel leichter wegen der größeren Dichte der schwingenden Luft. Zu intensives Anreiben war zu vermeiden wegen der Bildung unregelmäßiger Staubfiguren.

Sofort nach dem Anstreichen wurde das Manometer nebst danebenhängendem Thermometer abgelesen und dann die Luft aus dem Drucksystem durch Öffnen des Ventils H_3 langsam abgelassen. Schließlich wurde das Untersuchungsrohr aus dem Druckzylinder herausgenommen und mit einem Kork verschlossen stehen gelassen, bis es Zimmertemperatur angenommen hatte.

Ablesen der Wellenlängen.

Zum Bestimmen der Wellenlänge im Kontrollrohr trug der Zinkkasten, aus dem vor dem Ablesen das Wasser entfernt wurde, zwei Messingstutzen, auf die ein Messingmaßstab parallel zum Wellenrohr in einigen Millimetern Abstand so aufgeschraubt werden konnte, daß er mit seiner geteilten Fläche auf die Höhe der Achse des Wellenrohrs zu liegen kam.

Auf das Rohr wurde federnd aufgeschoben eine parallel zur Achse aufgeschlitzte, innen geschwärzte Messinghülse mit scharfem, weißen Strich senkrecht zur Achse. Dieses bekannte Verfahren gestattet ein exaktes Einstellen des Strichs auf die Knoten der Figuren. Ein mit der Messinghülse verbundenes Messingblech mit Index vermittelte die Ablesung der Einstellung auf dem Maßstab. Die Ablesung der Knoten erfolgte je zweimal, indem man die Reihe der Figuren nach der einen und nach der entgegengesetzten Richtung durchlief. Je zwei bis drei Wellen am Stempel des Stahlstabs und am Ende des Wellenrohrs wurden nicht mitgemessen. 1)

Um die Wellen im Untersuchungsrohr abzulesen, wurde es mit Hilfe zweier Klammern direkt auf den Maßstab aufgeklemmt. Die Einstellung auf die Knoten erfolgte mit einer Messinghülse ähnlich der beschriebenen, die Ablesung am Maßstab durch Visieren über den Rand der Hülse.

Damit war der Versuch beendet und es begannen die Vorbereitungen für den nächsten. Ein jeder solcher Versuch dauerte einen halben Tag. Ein Vorteil dabei war die Möglichkeit der Benutzung desselben Kontroll- und Untersuchungsrohrs bei sämtlichen Versuchen der 0°-Reihe.

¹⁾ Kundt, Pogg. Ann. 135, S. 337. 1868.

Abweichungen von dem beschriebenen Verfahren bei den Versuchen der — 79°-Reihe.

Das langsame Arbeiten verbot sich von selbst bei den Versuchen, bei denen der Druckzylinder in einem Bad von absolutem Alkohol und fester Kohlensäure lag, wegen der Kosten. Da die Zeit fehlte, nach jedem Versuch die Wellenröhren zu reinigen, mit neuem Pulver zu beschicken und zu trocknen, wurden zwei Kontrollrohre, jedes in der beschriebenen Art, in einen Zinkkasten montiert und drei Untersuchungsrohre benutzt. Die Vorbehandlung war dann wie oben.

Recht umständlich war das Herstellen und Erhalten des Temperaturbades für den Druckzylinder. Nachdem das dreiwandige Kühlgefäß etwa zur Hälfte mit absolutem Alkohol gefüllt war, wurde feste Kohlensäure zugesetzt, die aus großen, ca. 20 kg flüssige Kohlensäure fassenden Bomben, durch direktes Ausströmen in einen Sammtbeutel erhalten wurde. Ein schlimmer Mißstand war das sehr bald eintretende Verstopfen der Ausströmungsöffnung durch das stets in den Bomben enthaltene und in der Öffnung gefrierende Wasser. Um Zeitverluste möglichst zu vermeiden, wurden deshalb mehrere Bomben gleichzeitig in Anbruch genommen.

Das Kühlgefäß faßte ca. 17 Liter Gemisch. Die Schichtdicke des Bades rings um den Zylinder betrug ca. 3 cm. Der Gesamtbedarf an Kohlensäure für einen Versuchstag, an dem etwa 8—10 Versuche gemacht werden konnten, belief sich auf 120—140 kg, der an absolutem Alkohol auf etwa 15 Liter. 1)

Wie das Bolometer zeigte, dauerte es rund drei Stunden vom Beginn der Badherstellung an, bis die Luft im Untersuchungsrohr Temperaturkonstanz erreichte, und der Stahlstab zum erstenmal angestrichen werden konnte. Nun wurde der Druckzylinder geöffnet, das Untersuchungsrohr möglichst rasch herausgeholt, ein neues inzwischen vorbereitetes eingeschoben, und der Zylinder wieder verschlossen. Gleichzeitig wurden die Kontrollrohre ausgetauscht. Nun, nachdem der Druckzylinder abgekühlt war, dauerte es nur etwa 30 Minuten, bis die Temperatur wieder konstant wurde. Um ganz sicher zu gehen, wartete man bei jedem Versuch vom Druckpumpen bis zum Anstreichen des Stahlstabs mindestens 45 Minuten.

Die Verschraubungen und Dichtungen funktionierten bei — 79° genau so gut wie bei 0°.

¹⁾ Der Institutsmaschinist Georg Eichenseher hatte vollauf zu tun, das Kältegemisch dauernd in richtigem Zustand zu halten. Nur durch sein durchaus selbständiges Vorgehen hierbei war es mir möglich, die ganze Aufmerksamkeit auf die eigentlichen Messungen zu konzentrieren.

Aichungen und Korrektionen. Diskussion der Fehlerquellen.

Chemische Beschaffenheit der Luft. Wasserdampf und Kohlensäure.

Die besonderen Vorsichtsmaßregeln, die getroffen wurden (siehe oben), um die aus dem Kompressor austretende Luft zu trocknen, sind sehr wichtig, weil beim Komprimieren feuchter Luft die relative Feuchtigkeit ungefähr dem Druck proportional zunimmt, so daß Luft, die bei Λtmosphärendruck nur Bruchteile von Prozenten relativer Feuchtigkeit besitzt, auf 200 Atmosphären komprimiert, mit Feuchtigkeit gesättigt sein kann, zumal wenn sie noch abgekühlt wird.

Man überschlägt den Einfluß der Feuchtigkeit auf die Schallgeschwindigkeit, indem man in Gleichung (1) für die Dichte trockener Luft die der feuchten einführt. Der isotherme Elastizitätskoeffizient und k sind für feuchte Luft nur wenig verschieden von den entsprechenden Werten in trockener Luft, so daß man ihre Änderung für den vorliegenden Überschlag nicht in Betracht zu ziehen braucht. Im ungünstigsten Falle, wenn die Luft bei Atmosphärendruck und 0° mit Wasserdampf gesättigt ist, ergibt sich der Einfluß zu $1.1\,^{0}/00$. Dieser Einfluß muß bei wachsendem Druck diesem proportional abnehmen, weil der Sättigungsdruck des Wasserdampfes konstant bleibt. Schon bei 25 Atmosphären beträgt der mögliche Fehler also nur noch etwa $0.04\,^{0}/00$. Für $-79\,^{0}$ entfällt er vollständig.

Der Einfluß etwa nicht absorbierter Kohlensäure nimmt nicht mit wachsendem Druck ab, weil die Kohlensäure sehr weit vom Zustand der Sättigung entfernt ist. Im ungünstigsten Fall könnte er $0.08\,^0/_{00}$ betragen.

Temperaturmessung.

Zur Bestimmung der Temperatur des Wasserbades, in dem das Kontrollrohr lag, dienten zwei in ganze Grade geteilte Quecksilberthermometer (siehe oben). Sie wurden unter allen Vorsichtsmaßregeln verglichen mit einem von der physikalisch-technischen Reichsanstalt beglaubigten, in 0.1° geteilten Normalthermometer, dessen Nullpunkt kontrolliert wurde und innerhalb der Ablesemöglichkeit mit den Angaben des Prüfungsscheins stimmte. Die erhaltenen Korrektionen wurden graphisch aufgetragen und verwertet.

¹⁾ Winkelmann, Handbuch. 1. Aufl., I, S. 794. 1891.

Durch die Verwendung von Wasser von Zimmertemperatur als Bad für das Kontrollrohr wurde der Temperaturgang sehr herabgedrückt. Er betrug selten über 0.1 ° pro Stunde, wodurch die Sicherheit gegeben ist, daß die Luft im Kontrollrohr wirklich die Temperatur hatte, die die Thermometer des Wasserbades anzeigten.

Die Temperaturbestimmung der Luft im Kontrollrohr ist also mindestens auf 0.1° genau. Der davon mögliche Fehler auf das Endresultat beträgt $0.2^{\circ}/_{00}$.

Zur Konstatierung, ob und in welcher Zeit die Luft im Untersuchungsrohr die Temperatur des den Druckzylinder umgebenden Bades annahm, diente das Bolometer (siehe oben). Zur Aichung mußte es vom Stahlstab abmontiert werden. Es bildete den einen Zweig einer Whentstoneschen Brücke, der andere war ein Widerstand von Edelmann-München, der dritte und vierte ein Meßdraht mit Ballastwiderstand. Im Brückenzweig lag ein Drehspulengalvanometer von Siemens und Halske mit objektiver Ablesung (Widerstand 10000 Ohm, Empfindlichkeit 1 Skt = $1 \cdot 4 \cdot 10^{-8}$ Ampère). Um die späteren Temperaturmessungen unmittelbar mit der Aichung vergleichen zu können, wurde nach der Aichung an der ganzen Kombination nichts mehr geändert, auch am Rheostaten wurden dieselben Widerstandsrollen benutzt. Nur das Bolometer mußte wieder auf den Stahlstab aufmontiert werden. Dies geschah so, daß die Zuleitungen sich nur änderten einerseits um das Stück des Stahlstabs zwischen seinen beiden Knoten, andererseits um das in Betracht kommende Stück des Druckzylinders (siehe oben). Eine wahrnehmbare Änderung des Widerstandes trat, wie zu erwarten war, hierbei nicht ein. Die Verschiebung des Schleifkontaktes auf dem Meßdraht betrug 1.13 cm für 1º Temperaturänderung des Bolometers.

Auf diese Art wurde die oben vorweggenommene Tatsache festgestellt, daß eine Stunde nach Einfüllen des Eises in den Zinkkasten der Bolometerwiderstand konstant wurde und innerhalb der Meßfehlergrenze (0.2 mm Verschiebung am Meßdraht, entsprechend 0.02°C.) der Temperatur von 0° entsprach.

Dasselbe ergab sich, wenn der Zylinder komprimierte Luft enthielt. Eine Berücksichtigung des Druckeinflusses auf den Bolometerwiderstand 1) fand nicht statt, weil die Größenordnung dieses Einflusses etwa die der Meßfehlergrenze ist.

In ähnlicher Weise erfolgte Aichung des Bolometers und Temperaturmessung bei der Temperatur des Alkohol-Kohlensäuregemisches. Es wurde die Zeit ermittelt, die man abwarten mußte, um im Druckzylinder Temperaturkonstanz zu erhalten und festgestellt, daß diese Temperatur auf etwa 0.1° die

¹⁾ W. E. Williams, Phil. Mag. May. 1907. Dortselbst auch Literatur.

des Außenbades war. Der davon herrührende mögliche Fehler auf das Endresultat beträgt $0.2^{0}/_{00}$. Die Temperatur des Kältegemisches hierbei und bei den Schallgeschwindigkeitsmessungen wurde aus dem Barometerstand entnommen. Zu Grunde gelegt wurde der von Holborn 1 angegebene Siedepunkt: — $78 \cdot 34^{0}$ für 760 mm Quecksilberdruck, kombiniert mit der von Dubois und Wills 2) ermittelten Abhängigkeit dieser Temperatur vom Druck: $\frac{d\,p}{d\,t}=55$ mm Quecksilbersäule pro Grad. Dazu kommt unter Umständen der Einfluß der Eintauchtiefe des gekühlten Raumes in das Kältegemisch. Nach Bestelmeyer 3) entsprechen 42 cm Tiefe des Gemisches rund 2.7 cm Quecksilberdruck.

Druckmessung.

Die Druckmessung geschah mit dem auf dem Wasserabscheider befestigten Federmanometer von Schäffer und Budenberg. Sein Druckbereich ging bis 400 Atmosphären, der Wert eines Teilstrichs war 10 Atmosphären, die Ablesemöglichkeit also eine und unter günstigen Bedingungen eine halbe Atmosphäre.

Es wurde verglichen mit einem großen Präzisionsinstrument derselben Firma, dessen Verwendbarkeit für exakte Druckmessungen von Wagner⁴) in eingehender Weise mit Hilfe des Amagatmanometers untersucht war. Nach den dort gemachten Erfahrungen war zu berücksichtigen der Einfluß von elastischer Nachwirkung und Temperatur.⁵)

Zur Abkürzung sei das von Wagner auf das Amagatmanometer bezogene Instrument mit M M, das bei den Schallgeschwindigkeitsmessungen verwendete mit L M bezeichnet.

Die Gebrauchsweise des L M, wenigstens bei den 0°-Versuchen, war eine typische im Sinne Wagners, so daß die Berücksichtigung der elastischen Nachwirkung nach den dort gegebenen Vorschriften erfolgen konnte: es wurde stets nach einer Erholungszeit von mindestens sechs Stunden der Druck langsam hergestellt und eine Stunde darnach abgelesen.

Um bei der Vergleichung von $L\,M$ und $M\,M$, die mit Hilfe einer von Schäffer und Budenberg gelieferten Druckpumpe erfolgte, Bedingungen zu haben, die den genannten möglichst entsprächen, wurden beide Manometer

¹⁾ Holborn, Drudes Ann. 6, S. 242. 1901.

²⁾ Dubois und Wills, Verh. d. deutschen phys. Ges. 1, S. 168. 1899.

³⁾ Drudes Ann. 13, S. 968. 1904.

⁴⁾ Drudes Ann. 15, S. 906. 1904.

⁵) Für freundliche Unterstützung bei allen Fragen der Druckmessung sage ich Herrn Dr. Wagner hiermit meinen Dank.

nach einer Erholungspause von einem Tage unter den gewünschten Druck gesetzt und eine Stunde lang stehen gelassen. Die Temperatur dabei betrug 8° , dieselbe, die sehr konstant im Maschinenraume bei der Benutzung des L M geherrscht hatte. Dann wurden beide Manometer abgelesen.

Der Druck, der dabei in den Manometern herrschte, war zu entnehmen aus der von Wagner für das MM gegebenen Tabelle X, S. 951. Dabei ist zu berücksichtigen, daß diese Werte erhalten sind, indem der Druck in 35 Minuten gleichmäßig auf 300 Atmosphären gesteigert und bei jeder Druckstufe sofort abgelesen wurde, während im vorliegenden Fall die Manometer außerdem noch eine Stunde unter Druck gestanden hatten. Die Größe der hierfür an den Werten der Tabelle X anzubringenden Korrektionen ist den Angaben der Seiten 940 und 941 entnommen. Sie ist für unsere Zwecke belanglos und nur der Vollständigkeit halber angebracht.

Zu dieser Korrektion des M M für elastische Nachwirkung kommt die Korrektion für Temperatur. Die Vergleichung der Manometer erfolgte bei 8° , während die Werte der Tabelle X für 15° gelten. Der Einfluß der Temperatur auf die Angaben des M M ist der von Wagner in seiner Dissertation 1°) S. 38 gegebenen Beziehung entnommen:

$$P_t = P_{15} + \frac{(P_{15} - 130)(15 - t)}{2933}.$$

Dabei bedeutet P_{15} den Druck in Atmosphären, den das Manometer bei 15° anzeigt, P_t den bei der Gebrauchstemperatur t.

Nach Anbringung dieser Korrektionen an den Angaben des MM ist der Druck bekannt, der zur Zeit der Ablesung in der Druckpumpe herrschte. Auf diesen kann also die Ablesung des LM einwandsfrei bezogen werden.

Da es sehr zeitraubend gewesen wäre, das ganze L M in typischer Gebrauchsweise durchzuaichen, begnügte man sich mit der Feststellung, daß bei drei Drucken, die den Teilstrichen 90, 150, 210 Atmosphären des M M entsprachen, der Gang der elastischen Nachwirkung beim L M derselbe war. Die Vergleichung bei den anderen Drucken erfolgte, indem bei steigendem und fallendem Druck ein rascher Zyklus durchlaufen wurde. An den so gewonnenen, auf die Angaben des M M bezogenen Ablesungen des L M, waren dann noch die für einstündiges Stehen unter Druck ermittelten Korrektionen anzubringen, die gerade in der Grenze der Meßmöglichkeit lagen.

Die beigegebenen Tabellen enthalten die Zahlendaten. Die korrigierten Werte für andere als in der Tabelle angeführte Drucke wurden aus diesen interpoliert.

¹⁾ Leipzig, Johann Ambrosius Barth.

Die Druckberechnung erfolgte für die — 79° -Versuche in derselben Weise. Es war zwar die Erholungszeit für das L M meist kürzer, wie bei den 0° -Versuchen, jedoch nicht in dem Maß, daß ein für die Messungen merklicher Fehler entstehen konnte.

Tabelle 1.

Vergleich der elastischen Nachwirkung der Manometer.

Datum	Druck	Ablesu	ing am	Zeit	Ables	sung am	
Datum	erzeugt	MM	LM	Zero	MM	LM	
15. XII. 04	10 ^h 38	210	222	11h 43	210	222.5	
16. XII. 04 17. XII. 04	11 2 9 35	150 90	158 95	12 8 10 45	150 90	158.5 95.5	

Alle Drucke in kg/qcm.

Tabelle 2.

Vergleichung der Manometer bei rasch durchlaufenem Druckzyklus.

Der Gang aufwärts dauerte 3 Minuten.

100			
	M M	L M steigender Druck	L M fallender Druck
	30	33	33
	60	65	
	90	95	
	125	132	↑ 132.5
	150	158	Tur Survito
	180	189↓	des Stable
	210	222	222

Nomineller Druckwert	Wirklicher Druck- wert für die bei Wagner, Tabelle X, S.951, definierte Art der Beanspruchung	Druckwert, korrigiert für den Fall, daß das M M vor der Ablesung eine Stunde unter Druck stand	Druckwert, korrigiert für die Benützung des <i>M M</i> bei 8 ⁰
noba 5 oil	4.56	4.56	4.26
30	29.00	28.98	28.74
60	59.16	59.13	58.96
90	89.27	89.22	89.12
125	124.54	124.48	124.47
150	149.60	149.52	149.57
180	179.51	179.42	179.54
210	209.41	209.31	209.50

Abh. d. II. Kl. d. K. Ak. d. Wiss. XXIII. Bd. II. Abt.

 ${\bf Tabelle~4.}$ Korrektionstabelle für das $L\,M$ bei der definierten typischen Gebrauchsweise.

$\begin{array}{c} \text{Angabe} \\ \text{des } LM \end{array}$	Wirklicher Druck
O. in the	0
33.5	28.7
65.5	59.0
95.5	89.1
132.5	124.5
158.5	149.6
189.5	179.5
222.5	209.5

Für die spätere Verwertung der Tabellen 1-4 sei darauf hingewiesen, daß alle Drucke Überdrucke über die Atmosphäre bedeuten. Um den bei den Schallgeschwindigkeitsmessungen im Innern des Druckzylinders vorhandenen Druck zu erhalten, ist zu den Ablesungen des L M der Atmosphärendruck zu addieren. (Siehe Tabellen 5 und 6, Kolonne 3.)

Aussehen der Staubfiguren.

Wie erwähnt, war es zu vermeiden, die komprimierte Luft im Untersuchungsrohr in intensive Schwingungen zu versetzen, entweder durch Resonanz oder energisches Anreiben des Stahlstabes. Die Folge war, besonders bei hohen Drucken, die, daß das Pulver aus den Schwingungsbäuchen weggeblasen wurde und sich in unregelmäßig verteilten Staubhäufchen in der Nähe der Knoten sammelte. Schon Kundt¹) und später Kundt und Warburg²) haben auf diese Folge zu intensiver Schwingungen hingewiesen.

Wie Kundt³) gezeigt hat, kann die starre Verbindung zwischen Schallquelle und Wellenrohr zu Störungen der Staubfiguren Anlaß geben dadurch, daß das Wellenrohr zum Mitschwingen veranlaßt wird. Die starre Verbindung von Stahlstab und Druckzylinder war im vorliegenden Fall aus Dichtungsgründen nicht zu umgehen. Dafür ist die Masse des Zylinders (ca. 50 kg), verglichen mit der des Stahlstabs so groß, daß ein Mitschwingen ausgeschlossen sein dürfte.

¹⁾ Pogg. Ann. 127, S. 497, 1866.

²⁾ Pogg. Ann. 157, S. 362, 1876.

³⁾ Pogg. Ann. 135, S. 351, 1868.

Einige charakteristische Typen von Staubfiguren, besonders aus dem Untersuchungsrohr, sind auf Tafel 1 reproduziert. Sie sind erhalten als direkte Schattenrisse auf lichtempfindliches Papier, das an das Wellenrohr, zylindrisch angebogen wurde, hergestellt mit Sonnenlicht. Trotz ihres meist etwas unregelmäßigen Aussehens sind sie gut auszuwerten und ergeben befriedigende Übereinstimmung der Einzelwellenlängen, wenn man die in den Knoten liegen gebliebenen Staubhäufchen zur Einstellung benutzt, ein von Kundt und Warburg (l. c.) für solche Fälle empfohlenes Verfahren.

Das Aussehen der Wellen im Kontrollrohr war immer sehr regelmäßig, mit engen Knoten und breiten Bäuchen.

Korrektionen für die Wellenlänge.

Der Messingmaßstab, an dem die Ablesung der Staubfiguren erfolgte, wurde mit dem Normalmaßstab des Institutes aus Invar,1) an dem praktisch keine Korrektion anzubringen ist, verglichen. Die Vergleichstemperatur betrug 14.0°, die Meßfehlergrenze 0.02 mm. Der Maßstab erwies sich als für den vorliegenden Zweck fehlerfrei mit Ausnahme der Strecke 0-10 cm, die um 0.08 mm länger war als das entsprechende Stück des Normalmaßstabes und die Strecke 40-50 cm, die um 0.12 mm zu lang war. Auf der Strecke 40 bis 50 cm gelang es mir einen Sprungfehler von rund 0.1 mm nachzuweisen zwischen den Teilstrichen 46.7 und 46.8 cm, um den dieser Millimeter zu groß war. Deswegen wurde zu jeder Ablesung über 46.8 0.1 mm addiert. Auf der Strecke 0-10 cm war ein größerer Sprungfehler nicht nachzuweisen. Da es nicht sicher war, ob mehrere kleinere Sprungfehler vorhanden waren, oder ob sich der Fehler gleichmäßig über die ganze Strecke verteilte, wurde eine Korrektion dafür nicht angebracht. Abgesehen von der Kleinheit ist diese Unterlassung auch deswegen belanglos, weil die Wellen im Kontroll- und im Untersuchungsrohr am selben Maßstab gemessen und daraus das Verhältnis der Wellenlängen berechnet wurde. Diese Bemerkung gilt auch für den Sprungfehler zwischen 46.7 und 46.8 cm.

Weil der Messingmaßstab bei 14.0° mit dem Normalmeter verglichen war und bei einer anderen Temperatur $14 \pm t$ zur Ablesung benutzt wurde, waren zur Wellenlänge λ mm zu addieren bzw. davon zu subtrahieren: $0.000019 \cdot t \cdot \lambda$ mm.

Die Glasrohrausdehnung war in Rechnung zu ziehen, weil die Staubfiguren

¹⁾ Geliefert von der Société génévoise pour la construction d'instruments.

bei verschiedenen Temperaturen erzeugt und abgelesen wurden. 1) Sei die Temperaturdifferenz t, dann ist die mittlere Wellenlänge um $0.000008 \cdot t \cdot \lambda$ zu verkleinern, falls die Ablesetemperatur höher ist als die Entstehungstemperatur der Wellen.

Eine Korrektion wegen des Druckeinflusses auf die Dimensionen des Untersuchungsrohrs wurde als nicht in Betracht kommend vernachlässigt.

Der von Kundt²) experimentell gefundene Einfluß der Röhrenweite auf die Schallgeschwindigkeit wurde von Kirchhoff³) auf die Wirkung von Wärmeleitung und innerer Reibung im Gase des Wellenrohrs zurückgeführt. Die so abgeleitete Beziehung wurde für weite Röhren unter normalen Bedingungen wenigstens annähernd experimentell bestätigt.

Nimmt man die Kirchhoffsche Formel für die im Untersuchungsrohr vorkommenden Bedingungen von Druck und Temperatur auch nur als annähernd gültig an, so wäre daraus zu folgern, daß die Röhrenweitenkorrektion bedeutend geringer sein muß, als bei Atmosphärendruck. Denn Wärmeleitung und innere Reibung ändern sich nur wenig mit dem Druck,4) wogegen die Gasmenge im Untersuchungsrohr ungefähr dem Druck proportional zunimmt. Experimentelle Resultate Witkowskis (s. l. c.) scheinen diese Schlußfolgerung zu bestätigen. Dieser arbeitete mit Röhren von 20.7 bzw. 8.6 mm Durchmesser und Wellenlängen von rund 26 und 46 mm bei 00 und Drucken bis 110 Atmosphären. Aus seinen Messungen scheint hervorzugehen, daß der Einfluß der Röhrenweite bei hohen Drucken sogar den entgegengesetzten Sinn haben kann von dem, den man nach der Kirchhoffschen Formel erwarten sollte, indem die Schallgeschwindigkeit in engen Röhren und für große Wellenlängen größer ist als für weite Röhren und kurze Wellen. Die Größenordnung der Abweichungen deckt sich allerdings nahe mit seiner Meßfehlergrenze. Witkowski vermutet als Ursache dieser merkwürdigen Umkehrung des Röhrenweiteneinflusses eine endliche Amplitude der Schwingungen im Untersuchungsrohr.

Im vorliegenden Fall wurde von einer Anbringung der Röhrenweitenkorrektion überhaupt abgesehen. Den so möglichen Fehler wird man kleiner als 1º/oo schätzen dürfen. Denn es kommt lediglich das Verhältnis der Wellenlängen in Kontroll- und Untersuchungsrohr in Betracht. Die Korrektion beträgt

¹⁾ Strecker, Wiedem. Ann. 13, S. 28, 1881.

²⁾ Monatsberichte der Berliner Akademie S. 858, 1867.

³) Pogg. Ann. 134, S. 177, 1868.

⁴⁾ Die kinetische Gastheorie verlangt Unabhängigkeit vom Druck. Für die innere Reibung von Kohlensäure bei höheren Drucken liegen Untersuchungen von Warburg und Babo (Wiedem. Ann. 17, S. 390, 1882) vor, die eine kleine Abhängigkeit vom Druck ergeben.

für das Kontrollrohr rund 1º/oo,¹) während sie für das Untersuchungsrohr dem eben Gesagten zufolge jedenfalls kleiner ist.

Die Korrektion könnte noch weiter herabgedrückt werden durch Verkleinern der Wellenlänge im Verhältnis zur Röhrenweite. Dem setzt das Auftreten unregelmäßiger und schiefer Staubfiguren eine Grenze. Die in dieser Beziehung gemachten Erfahrungen decken sich völlig mit denen von R. Koenig.²) F. A. Schulze,³) sowie J. Müller,⁴) ziehen zur Erklärung das Vorhandensein von Obertönen heran, ersterer unter Annahme von Intensitätsunterschieden senkrecht zur Röhrenachse.

Experimentell läßt sich feststellen, daß die Staubfiguren bei gleicher Röhrenweite besonders schief werden, wenn man die Röhre lang nimmt und den tongebenden Stahlstab nicht zentrisch parallel zur Röhrenachse, sondern schief dazu einstellt, daß dagegen die Figuren regelmäßig werden, wenn man bei gleicher Röhrenweite die Wellenröhre nur einige Wellen lang macht und den Stahlstab möglichst gut zentriert und der Röhrenachse parallel stellt.

Wie bemerkt, kamen bei allen Versuchen der 0°-Reihe dieselben beiden Röhren als Kontroll- und Untersuchungsrohr zur Verwendung. Dies war bei den Versuchen der — 79°-Reihe nicht möglich. Die dazu benützten Röhren wurden so ausgesucht, daß ihr Durchmesser bis auf Bruchteile von Millimetern übereinstimmte. So war man sicher, daß der Einfluß der Röhrenweite bei allen Versuchen wenigstens derselbe war.

Die für die Staubfiguren nötige Pulvermenge wurde so gering gewählt wie möglich, um gut sichtbare Figuren zu erhalten. Nach den Erfahrungen von Kundt⁵) dürfte bei der relativ großen Röhrenweite ein davon herrührender merklicher Fehler auf das Resultat ausgeschlossen sein.

Unsere zu Grunde gelegte Beziehung (1) ist abgeleitet unter der Voraussetzung, daß die Schwingungsamplitude der die Schallfortpflanzung vermittelnden Luftteilchen unendlich klein ist, verglichen mit der Wellenlänge des Tons.⁶) Für Atmosphärendruck hat Kundt⁷) gezeigt, daß innerhalb seiner Meßfehlergrenze ein Einfluß der Schwingungsintensität des tongebenden Stabes auf die

¹⁾ Valentiner, Drudes Ann. 15, S. 91, 1904.

²) Wiedem. Ann. 69, S. 654, 1899.

³⁾ Wiedem. Ann. 68, S. 880, 1899. Drudes Ann. 13, S. 1067, 1904.

⁴⁾ Drudes Ann. 11, S. 335, 1903.

⁵⁾ Pogg. Ann. 135, S. 527, 1868.

⁶⁾ S. z. B. Voigt, Thermodynamik I, S. 133.

⁷) Pogg. Ann. 135, S. 538, 1868.

Schallgeschwindigkeit im Wellenrohr nicht zu erkennen war. Ebenso hat Kayser ¹) nachgewiesen, daß unter normalen Bedingungen von Druck und Temperatur eine Änderung der Amplitude der Schwingungen im Wellenrohr im Verhältnis 1:8 keine Änderung der Schallgeschwindigkeit hervorbringt, die größer ist als 1½ 0/00.

Experimentelle Untersuchungen bei hohen Drucken liegen nicht vor.

Wäre ein merklicher Einfluß vorhanden, so müßte er mit einiger Wahrscheinlichkeit zu erkennen sein aus der schlechten Übereinstimmung von Resultaten, die unter sonst gleichen Bedingungen gewonnen sind, da die Intensität der Stahlstaberregung sehr verschieden war. Die am Schluß diskutierte Fehlergrenze der Meßresultate ist also wohl auch ein Maß für diesen sonst vorläufig unzugänglichen Einfluß.

Es wurde weiter in Erwägung gezogen die Möglichkeit einer Erwärmung der im Wellenrohr befindlichen Luft durch die hineingesandte Schallenergie. Warburg ²) fand mit Hilfe eines Thermoelements, daß in festen Körpern, wenn in ihnen ein Longitudinalton erregt wird, eine Temperaturerhöhung bis zu 2° eintreten kann, und daß diese in den Knoten größer ist als in den Bäuchen. Für Gase dagegen war eine merkliche Temperaturerhöhung beim Tönen nicht zu konstatieren, obwohl eine Temperaturänderung der Thermoelementlötstelle von ½500° zu erkennen gewesen wäre.

Dvorak³) findet dagegen eine sehr starke Erwärmung der Luft beim Erzeugen stehender Wellen in einer Kundtschen Röhre. Der Nachweis erfolgt durch ein kleines Luftthermometer mit Weingeistindex. Es zeigt sich eine größere Erwärmung, wenn die Thermometerkugel im Bauch einer Welle steht.

Bei den vorliegenden Druckversuchen, bei denen sich ein Bolometer im Druckraum befand, war beim Anstreichen des Stahlstabs eine Temperaturänderung des Bolometers von 0.02^0 mit Sicherheit nicht nachzuweisen. Wegen des großen Wasserwertes des Bolometers und seiner damit verbundenen Unempfindlichkeit für Temperaturschwankungen der umgebenden Luft sind diesem Resultat weitergehende Schlüsse nicht zu entnehmen.

Eine eingehendere Untersuchung mit einem Bolometer von möglichst geringem Wasserwert, das hergestellt wurde durch Aufwickeln von Platindraht von ¹/₂₀ mm Dicke auf ein Gerüst von vier dünnen Hartgummistäbehen, die im Viereck aufgestellt waren, zeigte, daß in Wellenröhren mit Luft von Atmo-

¹⁾ Wiedem. Ann. 6, S. 465, 1879.

²) Pogg. Ann. 137, S. 632, 1869.

³⁾ Pogg. Ann. 153, S. 113, 1874.

sphärendruck unter keinen Umständen eine Erwärmung des Bolometers eintrat, die 0.002° überstieg. Dabei wurden alle in Betracht kommenden Bedingungen, wie Resonanzlänge des Wellenrohrs, Ort des Bolometers, Intensität des Anreibens variiert.

Zur Erklärung der Beobachtungen Dvoraks, die denen Warburgs und den vorliegenden direkt widersprechen, ist es vielleicht nicht ausgeschlossen, daß Dvorak mit seinem Luftthermometer nicht Wärme-, sondern Druckeinflüsse gemessen hat.

Eigenschaften des Stahlstabs.

Die Tonhöhe des schallgebenden Stahlstabs war nicht konstant. Die größten Abweichungen von Einzelwerten untereinander betrugen 8º/00. Ein Einfluß des Druckes auf die Tonhöhe war nicht zu erkennen, wohl aber war die Dämpfung hervorgerufen dadurch, daß das eine Ende des Stahlstabs Luft von bedeutend größerer Dichte in Schwingungen zu setzen hatte, sehr merklich. Der Stahlstab war bei hohen Drucken bedeutend schwerer anzureiben.

Die Inkonstanz des Stahlstabtones kann in den Fällen gefährlich werden, in denen ein mehrmaliges Anreiben erfolgen muß, weil nicht sofort die Wellen im Untersuchungsrohr fallen. Dabei können etwa beim ersten Anreiben die Wellen im Untersuchungsrohr entstehen, beim zweiten mit vielleicht etwas geändertem Ton, die Wellen im Kontrollrohr. Dagegen spricht die Tatsache, daß die Wellen im Untersuchungsrohr wegen der großen Dichte der Luft bedeutend leichter entstehen als im Kontrollrohr. Selbst wenn also beim zweiten Anstreichen der Stahlstab einen anderen Ton geben sollte, ist mit einiger Wahrscheinlichkeit anzunehmen, daß der Ton des zweiten Anstreichens für die Lagerung des Pulvers im Untersuchungsrohr maßgebend ist, daß also die Wellen in beiden Röhren von der gleichen Tonhöhe erzeugt werden.

Jedoch hat man auch hier, wie beim Einfluß der Amplitude, nur in der Übereinstimmung von unter sonst gleichen Bedingungen gewonnenen Resultaten ein Maaß für die Erlaubtheit der Annahme.

Zahlenresultate.

Die Tabelle 5 enthält die Resultate der bei 0° ausgeführten Meßreihe. Es wurde keine Messung verworfen, bei der überhaupt gleichzeitig im Kontrollund Untersuchungsrohr ablesbare Figuren entstanden waren.

Die erste Spalte enthält den Druck, abgelesen am Manometer, in kg/qcm, die zweite den korrigierten Druck in kg/qcm (siehe oben), die dritte den

Tabelle 5. $t=0^{\circ}$.

Druck abgelesen kg/qcm	Druck korrigiert kg/qcm	Druck korrigiert in Atm. à 76 cm <i>Hg</i> im Druck- zylinder	λ in mm im Unter- suchungs- rohr un- korrigiert	λ im Unter- suchungs- rohr korr. in mm	λ in mm im Kon- trollrohr unkorr.	λ in mm im Kon- trollrohr korrigiert	t im Kon- trollrohr Grad Celsius	λ im Kon- trollrohr auf 0° in mm	λ Untersuchungs rohr λ Kontroll rohr
0 2 1 1 1 1 1	2	3	4 (1)	5 1 1 1	6	7	8	9	10
0	0	0.9	29.811	29.809	30.682	30.684	17.0	29.770	1.0013
0	0	0.9	29.819	29.817	30.674	30.675	16.0	29.813	1.0001
0	0	0.9	29.827	29.824	30.648	30.649	15.8	29.797	1.0001
22.0	18.9	19.2	29.947	29.944	30.590	30.591	15.2	29.771	1.0058
33.5	28.7	28.7	30.035	30.032	30.573	30.574	15.6	29.735	1.0100
28.5	24.4	24.5	29.948	29.944	30.528	30.529	14.5	29.748	1.0066
54.5	48.6	47.9	30.390	30.387	30.546	30.547	14.3	29.775	1.0206
54.0	48.1	47.5	30.460	30.457	30.609	30.609	13.5	29.876	1.0195
55.5	49.5	48.8	30.435	30.432	30.577	30.578	13.6	29.842	1.0198
76.0	69.6	68.3	30.833	30.830	30.634	30.635	14.2	29.867	1.0322
77.5	71.0	69.6	30.827	30.824	30.497	30.498	14.0	29.743	1.0363
78.0	71.5	70.1	30.830	30.827	30.553	30.554	14.9	29.751	1.0362
104.5	97.7	95.4	31.586	31.584	30.699	30.700	15.0	29.887	1.0568
101.5	94.8	92.6	31.508	31.505	30.717	30.719	15.9	29.859	1.0551
101.0	94.4	92.3	31.506	31.504	30.713	30.715	15.6	29.871	1.0547
127.0	119.2	116.3	32.020	32.017	30.563	30.564	14.7	29.771	1.0754
128.0	120.2	117.2	32.135	32.132	30.622	30.623	14.9	29.818	1.0776
129.0	121.1	118.1	32.193	32.189	30.599	30.599	14.5	29.816	1.0796
151.0	142.4	138.7	33.097	33.093	30.492	30.492	13.8	29.747	1.1125
150.0	141.4	137.7	33.081	33.078	30.610	30.611	15.5	29.776	1.1109
146.5	138.0	134.4	32.981	32.978	30.632	30.633	15.5	29.797	1.1068
179.0	169.4	164.8	34.337	34.333	30.631	30.631	13.2	29.915	1.1477
181.5	171.8	167.2	34.250	34.247	30.485	30.485	13.9	29.737	1.1517
182.5	172.8	168.1	34.323	34.320	30.444	30.445	13.5	29.717	1.1549
203.0	191.8	186.5	35.489	35.485	30.646	30.647	15.5	29.871	1.1903
202.5	191.3	186.0	35.360	35.356	30.602	30.603	15.2	29.783	1.1871
212.5	200.4	194.8	35.980	35.976	30.772	30.773	15.2	29.949	1.2012
118.0	110.6	107.9	32.021	32.018	30.557	30.558	12.9	29.859	1.0723
128.5	120.7	117.7	32.258	32.254	30.513	30.513	12.9	29.815	1.0818
139.0	130.8	127.5	32.737	32.734	30.569	30.569	13.2	29.855	1.0964
152.5	143.8	140.1	33.200	33.196	30.595	30.595	13.2	29.880	1.1110
		- ESTEN	anbas	ren ents	no Fign	retrialets a	Nosson	redoment	

Druck, umgerechnet auf Atmosphären zu 76 cm Quecksilber von 0°, vermehrt um den Druck der äußeren Atmosphäre, also den wirklichen Druck, der beim Erzeugen der Staubfiguren im Innern des Druckzylinders geherrscht hatte. In der vierten Spalte steht die bei diesem Druck und 0° erhaltene Wellenlänge im Untersuchungsrohr in mm, berechnet aus den doppelt ausgeführten Ablesungen der Knoten mit Hilfe der Methode der kleinsten Quadrate, in der fünften die Wellenlänge korrigiert nach den eben ausgeführten Grundsätzen. In der sechsten und siebenten Spalte stehen die entsprechenden Wellenlängen im Kontrollrohr, in der achten die Temperatur des Kontrollrohrs in Grad Celsius korrigiert. Die neunte gibt die Reduktion dieser Wellenlängen auf 0° mit Zugrundelegung der Beziehung:

$$\lambda_0 = rac{\lambda_t}{\sqrt{1+0.00367 \cdot t}},$$

wo λ_0 die Wellenlänge bei 0^0 und λ_t die entsprechende Wellenlänge bei t^0 bedeutet. Die Zahlen dieser Spalte geben gleichzeitig Auskunft über die Veränderlichkeit des Stahlstabtones. In der zehnten Spalte endlich findet sich das Verhältnis der Wellenlängen in Untersuchungs- und Kontrollrohr und damit das Verhältnis der Schallgeschwindigkeiten in Luft von 0^0 und dem angegebenen Druck zu der in Luft von 0^0 und Atmosphärendruck.

Tabelle 6. $t = -79.3^{\circ}$.

Druck abgelesen kg/qcm	Druck korrigiert kg/qem	Druck korrigiert in Atm. à 76 cm Hg im Druck- zylinder	λ in mm im Unter- suchungs- rohr un- korrigiert	λ im Unter- suchungs- rohr korr. in mm	λ in mm im Kon- trollrohr unkorr.	λ in mm im Kon- trollrohr korrigiert	t im Kon- trollrohr Grad Celsius	λ im Kon- trollrohr auf 0° in mm	λ Unter- suchungs- rohr λKontroll- rohr
1	2	3	4	5	6	7	8	9	10
0 28.0	0 24,0	0.9 24.1	24.982 24.634	24.964 24.617	30.268 30.182	30.264 30.178	11.2	29.661 29.644	0.8416 0.8304
76.5	70.0	68.6	24.835	24.814	30.174	30.170	8.4	29.716	0.8350
131.5	123.5	120.4	27.910	27.886	30.148	30.144	8.0	29.710	0.9386
212.0	200.0	194.4	35.762	35.734	30.122	30.119	7.6	29.707	1.2029
212.5	200.5	194.9	35.852	35.822	30.304	30.300	10.6	29.727	1.2050
171.5	162.1	157.8	31.763	31.736	30.267	30.263	8.6	29.795	1.0652
115.0	107.8	105.2	26.715	26.693	30.368	30.364	8.2	29.917	0.8922
51.0	45.3	44.8	24.685	24.664	30.168	30.164	8.5	29.704	0.8303
-11.0	nonodo;	0.9	25.021	25.000	30.110	30.106	8.4	29.653	0.8431

Tabelle 6 enthält die Ergebnisse der Einzelversuche, die bei der Temperatur des Alkohol-Kohlensäuregemisches ausgeführt wurden. Der Barometerstand an beiden Versuchstagen betrug rund 710 mm. Dem entspricht eine Temperatur des Kältebades von — 79.3°. Die Bedeutung der einzelnen Spalten ist dieselbe wie in Tabelle 5.

In dem beistehendem Diagramm, Tafel II, sind die Resultate beider Tabellen graphisch aufgetragen. Abszisse ist der Druck in Atmosphären à 76 cm Quecksilber von 0°, Ordinate das Verhältnis der Schallgeschwindigkeiten in Untersuchungs- und Kontrollrohr.

Der mögliche Gesamtfehler für dieses Verhältnis ergibt sich als Summe der Einzelfehlermöglichkeiten: Reduziert man die Wellenlängenablesungen eines Einzelversuchs in Kontroll- und Untersuchungsrohr nach der Methode der kleinsten Quadrate und berechnet daraus den wahrscheinlichsten Fehler des Mittelwertes, so findet man Fehlergrenzen von der Größenordnung \pm 0.5 0 /00 für Kontroll- und Untersuchungsrohr, zusammen also \pm 1 0 /00. Dazu kommt für das Kontrollrohr eine Fehlermöglichkeit von \pm 0.2 0 /00, herrührend von der Temperaturmessung. Eine entsprechende Korrektion für das Untersuchungsrohr entfällt, weil dort die Temperatur mit großer Genauigkeit 0° bzw. — 79.3° betrug. Eine Irrtumsmöglichkeit in der Druckablesung, die bis \pm 1 /2 Atmosphäre betragen kann, würde, besonders bei höheren Drucken, wo die Schallgeschwindigkeit stark mit dem Druck variiert, das Resultat etwa um \pm 1 /2 0 /00 fälschen können. Die Gesamtfehlermöglichkeit für das Verhältnis der Schallgeschwindigkeiten für den Einzelversuch beträgt also \pm 1.7 0 /00.

Abweichungen bis zu dieser Größe und darüber kommen bei Versuchen, die unter sonst gleichen Bedingungen gewonnen sind, in der Tat vor. Soweit man übersehen kann, ist der einzige Faktor, über den man nicht mit Sicherheit verfügen kann, die Tonhöhe des Stahlstabs und eventuell davon abhängende Bedingungen. Eine davon herrührende Fehlermöglichkeit ist Seite 399 diskutiert und als unwahrscheinlich ausgeschlossen worden, weil sie die Wellenlängen in Kontroll- und Untersuchungsrohr gleichzeitig und im selben Sinn beeinflussen müßte. Vielleicht hängen die Abweichungen zusammen mit Veränderungen der Resonanzbedingungen von Versuch zu Versuch in den beiden Wellenröhren, eine Fehlerquelle, die wegen der Inkonstanz des Stahlstabtones kaum zu vermeiden wäre.

Versuche zur Aufklärung sind in Aussicht genommen.

Zum Zweck der Kombination der in Tabelle 5 und 6 gegebenen Schallgeschwindigkeitsmessungen mit den im II. Teil veröffentlichten Isothermen,

sowie zur Vergleichung mit schon vorhandenen Messungen früherer Beobachter wurden für Druckstufen von 25 zu 25 Atmosphären graphische Mittelwerte genommen. Die Resultate der 0°-Reihe stehen in Tabelle 7.

Es enthält Kolonne 1 den Druck in Atmosphären, 2 das zugehörige Verhältnis der Schallgeschwindigkeiten. In 3 stehen zum Vergleich die Mittelwerte Witkowskis für ein Verhältnis von Wellenlänge (27 mm) zur Röhrenweite (20 mm), das etwa dem von mir benutzten entspricht. Die Übereinstimmung ist befriedigend.

Tabelle 7. $t = 0^{\circ}$.

		THE RESIDENCE OF THE PARTY OF T	
Druck in Atmosphären à 76 cm Hg	Verhältnis der Schall- geschwindig- keiten	Verhältnis der Schall- geschwindig- keiten nach Witkowski	
u seriob ott A	2	3	l neleiv ni bam eredei
	na and and and and and and and and and a	30000000000	Mittelbildung zur Wei
8.070-1chef	1.000	1.000	
25 020	1.007	1.009	Zolome I der Dinek
50	1.021	1.021	Verhältmis den Schalle
75	1.039	1.038	
100	1.061	1.062	
125	1.091	neaellann s	
150	1.126	mperaturun	
175	1.166	er Berücksi	setragt rund 10. Unt
200	1.212	doon 8 hos	Werte der Heihen 2 :
	n Witkowsk	ing zwische	tier die Übereinstimm

Vielleicht etwas besser verbürgte Mittelwerte sind zu erwarten, wenn man, anstatt für Druckstufen von 25 zu 25 Atmosphären zu mitteln, die Einzelresultate in passende Gruppen zusammenfaßt und für den dem Gruppenmittelpunkt entsprechenden Druck den Mittelwert des Schallgeschwindigkeitsverhältnisses angibt. Man erhält so die Werte der Tabelle 7a. Die Gruppen, in die die Einzelversuche zusammengefaßt sind, wird man aus der graphischen Darstellung unschwer erkennen. In Kolonne 1 steht der dem Gruppenmittelpunkt entsprechende Druck, in 2 der zugehörige aus den Einzelversuchen berechnete Mittelwert des Schallgeschwindigkeitsverhältnisses und in 3 zum Vergleich die Werte, die die zur Tabelle 7 benutzte Kurve für den in 1 angeschriebenen Druck liefert.

Tabelle 7a. $t=0^{\circ}$.

1	2	3
24.1	1.008	1.007
48.1	1.020	1.020
69.3	1.035	1.035
93.4	1.056	1.055
114.9	1.076	-1.078
135.7	1.1075	1.106
166.7	1.1514	1.152
189.1	1.193	1.192

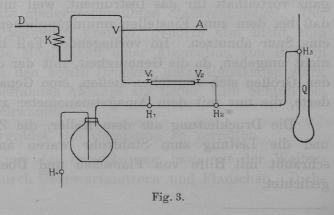
Die Abweichungen der Kolonnen 2 und 3 in Tabelle 7a voneinander liegen innerhalb der eben diskutierten Fehlermöglichkeit, so daß die übersichtlichere und in vieler Hinsicht zweckmäßigere Art der zur Tabelle 7 benutzten Mittelbildung zur Weiterrechnung benutzt wurde.

In Tabelle 8 finden sich die Mittelwerte der — 79.3°-Reihe. Es steht in Kolonne 1 der Druck in Stufen von 25 Atmosphären, in 2 das zugehörige Verhältnis der Schallgeschwindigkeiten und in 3 die entsprechenden Werte Witkowskis. Zum Vergleich der Kolonnen 2 und 3 ist zu berücksichtigen die Verschiedenheit des mittleren Luftdruckes in Krakau und München. Der davon herrührende Temperaturunterschied des Alkohol-Kohlensäuregemisches beträgt rund 1°. Unter Berücksichtigung dieses Umstandes würden sich die Werte der Reihen 2 und 3 noch um etwa 2°/00 nähern. Trotzdem bleibt hier die Übereinstimmung zwischen Witkowski und mir weniger gut als bei der 0°-Reihe.

Tabelle 8. $t = -79.3^{\circ}$.

1	2	3
1	0.842	0.844
25	0.830	0.841
50	0.829	0.837
75	0.841	0.856
100	0.882	0.901
125	0.955	
150	1.040	
175	1.130	
200	1.224	

II. Teil.


Die Isothermen der Luft für 0° und -79° und für Drucke bis 200 Atmosphären.

Zur Bestimmung der Isothermen sind zwei Methoden üblich. Die eine ¹) arbeitet mit einem konstanten Volumen und ermittelt wie viel Luft von Atmosphärendruck und Zimmertemperatur dieses Volumen bei Hochdruck und der Temperatur der gesuchten Isotherme enthielt. Die andere ²) arbeitet mit konstanter Gasmenge und untersucht deren Volumen bei den gewünschten Bedingungen von Druck und Temperatur.

Die vorliegende Untersuchung ist nach der ersten Methode geführt, die gegenüber der zweiten den Hauptvorzug konstanter Empfindlichkeit über den ganzen Druckbereich besitzt: Es wurde ein bestimmtes, genau gemessenes Volumen mit komprimierter Luft von 0° bzw. — 79° gefüllt. Diese ließ man dann aus einem mit Glyzerin gefüllten Ballon so lange Glyzerin verdrängen, bis zum Schlusse des Versuchs im gesamten System wieder Atmosphärendruck herrschte.

Übersicht der Anordnung. (Figur 3.)

Die aus dem Maschinenraum im Keller kommende Druckleitung D (Beschreibung im I. Teil) führt zu einer Kupferspirale K und von dort zu einem Ducretetschen Hahn V, der hier nur als T-Stück dient. Dort teilt sie sich in einen Zweig nach dem Amagatmanometer A und in einen anderen zum Meßvolumen in Form eines Druck-

Natterer, Pogg. Ann. 62, S. 132, 1844. Derselbe, Pogg. Ann. 94, S. 436, 1855. Wroblewski, Wiener Berichte 97, S. 1321, 1888. Witkowski, Phil. Mag. 41, S. 288, 1896.

²) Regnault, Expériences I. Cailletet, Compt. rend. 70, S. 1131, 1870; Journ. de phys. 19, S. 386, 1880. Andrews, Ann. de chim. et de phys. 21, S. 208, 1870. Amagat, in zahlreichen Arbeiten von 1869 an, die an Ort und Stelle zitiert sind. Kammerlingh-Onnes, in den Communications of the laboratory of Leiden.

stahlrohrs, das zwischen den Ventilen V_1 und V_2 liegt. Die Leitungen bis V_2 sind Hochdruckleitungen, die von V_2 ab weiterführenden haben höchstens Überdrucke bis eine Atmosphäre auszuhalten und bestehen größtenteils aus Glas. Die Leitung verzweigt sich beim Dreiweghahn H_2 . Nach der einen Seite geht sie über den Dreiweghahn H_1 , der eine Verbindung mit der Atmosphäre gestattet, zu einem großen Glyzerinballon, aus dem ein Heber mit Hahn H_4 herausführt, nach der anderen gelangt man zu einem weiteren Dreiweghahn H_3 , der einerseits mit der Atmosphäre, andererseits mit dem Quecksilbermanometer Q in Verbindung steht.

Einzelnheiten der Anordnung.

Das Amagatmanometer.

Das zur Druckmessung benutzte Amagatmanometer,¹) von Gindre frères Lyon geliefert, ist von Wagner²) eingehend beschrieben mit Gebrauchsanweisung und ausführlichem Hinweis auf Vorsichtsmaßregeln. Es wurde das kleinere Übertragungsverhältnis von rund 60 benutzt. Die zur Messung von 200 Atmosphären verlangte Quecksilberhöhe betrug nicht ganz 2¹/2 Meter. Steigröhren und Bandmaß waren sorgfältig vertikalisiert und montiert wie bei Wagner. Die Ablesung erfolgte von einer Leiter aus.

Die ständige Benutzung des Manometers ist, falls es mit den einmal bestimmten Kolbenquerschnitten als Drucknormale dienen soll, vielleicht nicht ganz vorteilhaft für das Instrument, weil immerhin die Möglichkeit vorliegt, daß bei dem zum Einstellen unumgänglichen Kolbenrotieren sich die Kolben eine Spur abnutzen. Im vorliegenden Fall ließ sich die dauernde Benützung nicht umgehen, da die Genauigkeit, mit der die anderen in Betracht kommenden Größen sich feststellen ließen, eine Genauigkeit der Druckmessung erforderte, die nur mit dem Amagatmanometer zu erreichen war.

Die Druckleitung aus dem Keller, die Zuleitung zum Amagatmanometer und die Leitung zum Stahlrohr waren an den Ducretetschen Hahn verschraubt mit Hilfe von Flanschen und Überwurfmuttern und mit Blei abgedichtet.

¹⁾ E. H. Amagat, Ann. de chim. et de phys. 29, p. 70-77, 1893.

²) Drudes Ann. 15, S. 906, 1904.

Das Stahlrohrvolumen. (Figur 4.)

Einige Schwierigkeiten machte die endgültige Gestaltung des Meßvolumens. Es bestand schließlich aus einem Stück nahtlos kaltgezogenen Stahlrohr¹) (Länge etwa 205 mm, äußerer Durchmesser 26 mm, Wandstärke 3 mm), an dessen Enden zwei Hochdruckventile Kammerlingh-Onnesscher Konstruktion²) aus Stahl angeschraubt waren. Dazu waren an den Enden des Stahlrohrs auf der Innenfläche Gewinde eingeschnitten und in diese Gewinde Stahlplatten heiß

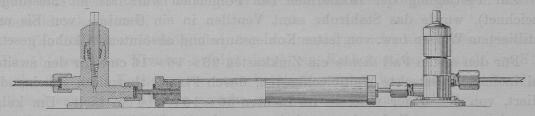


Fig. 4

mit Zinnlot eingeschraubt. In die Platten waren Stahlröhrchen gleichfalls mit Lot eingeschraubt, die an ihren Enden Flanschen mit Überwurfmuttern trugen, zum Verschrauben an die Hochdruckventile. Abdichtung mit Blei. Um das Volumen des Systems durch das bei einer Meßreihe etwa nötig werdende Anziehen der Verschraubungen nicht zu ändern, wurden sie vorher ein für allemal mit aller Sorgfalt festgezogen.

Die Ventile waren so angesetzt, daß das Volumen im Stahlrohr abgegrenzt wurde durch die auf den Ventilsitz niedergeschraubten Stahlventilkegel. Der Raum der Ventile, der an die Packungen grenzte, gehörte also nicht zum Meßvolumen; es wird dadurch die Möglichkeit einer Absorption von Luft in den Packungen vermieden, die bei den hohen Drucken unter Umständen stark stören könnte. Die Packungen bestanden Anfangs aus Leder, zum Schluß bei den — 79°-Versuchen aus Feuerschwamm.

Das Stahlrohr war innen vergoldet, um Oxydation zu verhüten.

Die Verbindung der Ventile mit der Druckleitung bzw. mit der Weiterleitung zu H_2 erfolgte ebenfalls durch Überwurfmuttern und Flanschen. Dichtung durch Blei.

¹⁾ Geliefert von den deutsch-österreichischen Mannesmannröhrenwerken Düsseldorf in hervorragender Vollkommenheit.

²) Geliefert unter freundlicher Vermittlung des Herrn Prof. Kammerlingh-Onnes von Kipp und Zonen in Delft. Beschreibung in Commun. from the Labor. of Leiden, Nr. 46 und 54.

Zu unten ausgeführten Zwecken konnte die Druckzuleitung an V_1 entfernt und an ihre Stelle eine Verbindung zu einer Quecksilberluftpumpe mit Mc Leod-Manometer angesetzt werden.

Um dem ganzen Druckstahlrohrsystem den nötigen Halt zu geben, waren die beiden Ventile durch je vier Schrauben auf eine massive Stahlplatte aufmontiert.

Temperaturbäder.

Zur Festlegung der Isothermen (im Folgenden kurz als p v-Messungen bezeichnet), wurde das Stahlrohr samt Ventilen in ein Gemisch von Eis und destilliertem Wasser bzw. von fester Kohlensäure und absolutem Alkohol gesetzt.

Für den ersten Fall diente ein Zinkkasten $93 \times 16 \times 16$ cm, für den zweiten drei ineinandergesteckte Weißblechkästen, durch Flanell thermisch voneinander isoliert, von denen der innerste im Lichten $56 \times 16 \times 6^{1/2}$ cm hielt. Um keine Wärmeleitung vom Boden her zu haben, wurde die Stahlplatte mit Stahlrohr und Ventilen auf zwei schmale Holzblöcke von etwa 5 cm Höhe gesetzt, so daß beim Umrühren des Bades auch eine Zirkulation unter der Stahlplatte stattfinden mußte.

Vor direkter Berührung mit der Umgebung waren die oberen Teile der Ventile durch übergezogene Schlauchstücke geschützt, besonders um den Alkohol des — 79° Bades von den Packungen fernzuhalten.

Die Ventile funktionierten auch bei — 79°, nachdem die Lederpackungen durch Feuerschwamm ersetzt waren, hervorragend zuverlässig.

Die Möglichkeit, die Ventile ganz im Temperaturbad zu halten, macht jede, stets etwas mißliche Annahme bzw. Messung des Temperaturgefälles von im Bad befindlichen Teilen gegen solche außerhalb überflüssig und vereinfacht die Berechnung der Versuche in hohem Maße.

Die vom Ventil V_2 durch das Temperaturbad wegführende Leitung war eine Kupferkapillare. Außerhalb war sie mit Siegellack in das Glasrohr eingekittet, das zum Hahn H_2 führte.

Der Glyzerinballon faßte ca. 25 Liter. Er stand in einem großen Wasserbad von Zimmertemperatur.

Quecksilbermanometer.

Das empfindliche Organ der Anordnung ist das Quecksilbermanometer. Es dient gleichzeitig zur Messung des Stahlrohrvolumens und als Manometer bei den p v-Messungen.

Die Manometerröhren aus Glas haben etwa 1.1 cm Durchmesser i. L., sind ca. 75 cm lang und tragen je eine Millimeterteilung. Die linke Röhre mit dem Dreiweghahn ist gut vertikalisiert und fest aufmontiert auf ein Holzbrett von etwa 2½ Meter Länge, das auf dem Fußboden aufsteht. Die rechte Röhre sitzt auf einem Holzbrettchen von ca. 30 cm Länge, das in einer Nut des großen Holzbrettes auf- und abgezogen werden kann. Die Verschiebung erfolgt vom Platz des Beobachters aus durch eine Schnur, die über je eine an der Decke und am Beobachtungstisch angebrachte Rolle läuft. Am unteren Ende sind beide Röhren verbunden durch einen übersponnenen, sehr massiven Gummidruckschlauch.

Die Röhren sind möglichst eng aneinandergerückt aus Ablesungszwecken. Die Ablesung der Niveaus erfolgt durch ein Kathetometer. Durch ein Klopfwerk, das vom Kathetometer aus betätigt werden kann, werden die Quecksilberniveaus beim Ablesen zwecks sicheren Einspielens erschüttert.

Bestimmung des Stahlrohrvolumens zwischen den Ventilen.

Eine direkte Auswägung des Stahlrohrvolumens mit Quecksilber war ausgeschlossen, es konnte nur eine volumenometrische Methode in Betracht kommen.

Dazu wurde folgendermaßen verfahren: Das Stahlrohr wurde evakuiert und dann aus dem festen Schenkel des Quecksilbermanometers, in dem Anfangs Atmosphärendruck herrschte, in das Vakuum Luft eingesogen. Nun wurde der bewegliche Schenkel soweit hochgezogen, bis im festen wieder Atmosphärendruck herrschte. Das vom Quecksilber im festen Manometerrohr zwischen Anfangs- und Endstellung eingenommene Volumen ist mit den nötigen Korrektionen gleich dem Volumen des Stahlrohrs.

Ein Vorteil der Methode ist der, daß nur das Volumen des festen Manometerrohrs mit Quecksilber ausgewogen zu werden braucht. Das Volumen der Verbindungsröhren zwischen Stahlrohr und Manometer braucht gar nicht, oder für einige geringfügige Korrektionen nur ganz oberflächlich bekannt zu sein. Man kann deswegen jederzeit das Stahlrohr zum Auswechseln der Temperaturbäder oder Nachsehen der Ventile wegnehmen, ohne irgendwelche Neuaichungen vornehmen zu müssen.

Evakuierung des Stahlrohrs.

An das Ventil V_1 wurde anstatt der Druckleitung ein Verbindungsrohr mit der Quecksilberluftpumpe angeschraubt (siehe oben). Ventil V_1 wurde geöffnet, V_2 geschlossen und das Stahlrohr evakuiert. Man kam dabei leicht

auf einige tausendstel Millimeter Quecksilberdruck, der sich auch bei abgestellter Pumpe nur wenig änderte. Inzwischen wurde der Hahn H_2 so gestellt, daß nur die Verbindung V_2 H_2 H_3 bestand. Durch H_3 blieb zunächst das Röhrensystem von V_2 ab nebst dem Manometer mit der Atmosphäre in Verbindung.

Orientierung des Kathetometers.

Um nach erfolgtem Nachsaugen von Luft ins Stahlrohr erkennen zu können, wann der Innendruck gleich dem äußeren war, wurde das Kathetometer gleich für die im Voraus bekannte Endstellung des Fernrohrs orientiert, da es sich gezeigt hatte, daß die Säule des Kathetometers etwas gekrümmt war.

Dazu wurde der rechte bewegliche Schenkel des Manometers hochgezogen, so daß der Rand des Quecksilbers in ihm am unteren, im linken festen Schenkel also am oberen Ende der Glasröhre einstand. Unter Erschüttern der Quecksilbersäulen durch das Klopfwerk wurde der Faden des Kathetometerfernrohrs so eingestellt, daß er mit den Rändern der beiden Quecksilberniveaus sich deckte, also horizontal stand. Die Kuppenhöhen waren nur in seltenen Fällen voneinander verschieden. Es mußte dann die Fadeneinstellung auf die Kuppen erfolgen. Der Unterschied in den Kuppenhöhen war nie so groß, daß eine Korrektion wegen Kapillardepression nötig war.

An dem so orientierten Faden des Fernrohrs, das bei den Messungen höchstens um etwa einen Zentimeter verschoben zu werden brauchte, wurden die Überdrucke bzw. Unterdrucke im Manometer an der Millimeterteilung der linken Manometerröhre abgeschätzt. Am Schluß jeder Volumbestimmung wurde der Fernrohrfaden unter denselben Bedingungen wie am Anfang kontrolliert.

Nach diesen Vorbereitungen wurde der bewegliche Manometerschenkel wieder tief gestellt, so daß das Quecksilber in der rechten Röhre oben, in der linken unten einstand.

Eigentliche Messung.

Nun wurde die Einstellung des Quecksilberrandes und die Kuppenhöhe im linken festen Schenkel mit einem kleinen Hilfsfernrohr an der aufgeätzten Millimeterteilung parallelaxenfrei abgelesen und der Druck im Stahlrohr am Mc Leod-Manometer der Pumpe festgestellt. Durch Drehen des Schliffes H_3 wurde das Manometer von der Atmosphäre abgeschlossen, so daß es nur noch mit dem System V_2 H_2 in Verbindung stand und hierauf das Ventil V_1 durch Niederschrauben geschlossen, das Ventil V_2 geöffnet. Schließlich wurde der bewegliche Manometerschenkel soweit hochgezogen, bis das Quecksilber in beiden Röhren wieder gleich hoch stand, im ganzen System von V_1 ab also

wieder Atmosphärendruck herrschte. Die genaue Einstellung wurde durch Interpolieren gefunden. Wie erwähnt, ist das Volumen im festen Manometerrohr zwischen Anfangs- und Endstellung des Quecksilbers gleich dem Stahlrohrvolumen zwischen den Ventilen V_1 und V_2 .

Das Verfahren setzt voraus, daß das ganze System sich im thermischen Gleichgewicht befindet, insbesondere, daß Stahlrohr und festes Manometerrohr die gleiche Temperatur haben. Diese Bedingung war nicht immer erfüllt wegen des Temperaturgefälles von der Decke zum Boden, das bei kaltem Wetter, wenn im Zimmer geheizt wurde, Beträge bis zu einigen Grad pro Meter erreichte. Um das äußerst umständliche Einsetzen der ganzen Anordnung in ein Wasserbad zu umgehen, wurde das ganze Zimmer als Luftbad benutzt: die umgebenden Räume wurden auf annähernd gleicher Temperatur gehalten und die Luft im Zimmer durch einen kleinen Ventilator, der in etwa 4 m Entfernung von der Anordnung so orientiert war, daß er einen Luftstrom vom Fußboden schräg nach oben blies, energisch umgerührt. Wenige Minuten nachdem der Ventilator in Gang gesetzt war, zeigten sämtliche in freier Luft befindliche Thermometer innerhalb ihrer Ablesemöglichkeit von 0.1° die gleiche Temperatur an. Frühestens 1½ Stunden nach dem Ingangsetzen des Ventilators wurden die Volummessungen begonnen.

Aichungen und Korrektionen für die Volumbestimmung.

Die Auswägung des festen Manometerrohrs.

Die Millimeterteilung auf dem festen Manometerrohr war im Institut hergestellt. Die Striche dienten in den meisten Fällen nur als Marken, lediglich beim Interpolieren kamen ganz kurze Strecken als Millimeterteilung zur Verwendung.

Die Teilung wurde verglichen mit einem Messingmaßstab, der an dem Normalmeter des Instituts verifiziert war. Für die vorgesehene Meßgenauigkeit von 0.1 mm war an der Röhrenteilung eine Korrektion nicht anzubringen.

Das zur Auswägung bestimmte Quecksilber wurde in dünnem Strahl durch verdünnte Salpetersäure geträufelt, dann im Vakuum destilliert und vor der Benutzung noch einmal auf rund 120° erhitzt und filtriert.

Der Gewichtssatz wurde mit einem Präzisionsgewichtssatz verglichen, der seinerzeit auf ein von der physikalisch-technischen Reichsanstalt beglaubigtes 100-Grammstück bezogen worden war.

Die Auswägung des Manometerrohrs erfolgte dreimal im Laufe der pv-Messungen, das erstemal in Intervallen von 5 zu 5 cm, das zweite und drittemal

mit ganz engem Einschluß der für die Volummessungen in Betracht kommenden Teilstriche am unteren und oberen Ende der Röhre.

Die Ablesung erfolgte am Rand der Quecksilbersäule. War bei einer Auswägungsreihe die Kuppenhöhe nicht konstant (es handelte sich bei einer Kuppenhöhe von ca. 1.3 mm höchstens um \pm 0.1 mm), so wurden alle Randeinstellungen auf gleiche Kuppenhöhe umgerechnet, indem man die Kuppe, wie es auch der Augenschein lehrte, als Teil einer Kugelkalotte ansah.

Ein Druckeinfluß auf das Volumen des Manometerrohrs, hervorgerufen durch das Gewicht des zum Auswägen benutzten Quecksilbers, war nicht wahrnehmbar.

Eine Prismenwirkung der Röhrenwand, die auch bei senkrechtem Anvisieren eine scheinbare Verschiebung des Quecksilberrandes gegen die auf der Außenseite der Röhre angebrachte Teilung hervorrufen könnte, war nicht zu erkennen.

Auf diese Art erhielt man das Volumen des Manometerrohrs zwischen den eingestellten Teilstrichen bei der Auswägungstemperatur. Herrscht bei der Volumbestimmung des Stahlrohrs eine andere Temperatur, so ist das Volumen des Manometerrohrs mit Hilfe des Ausdehnungskoeffizienten des Glases auf die letztere umzurechnen.

Korrektionen für die eigentliche Volumbestimmung.

Hatte vor und nach dem Einsaugen von Luft ins Stahlrohr das Quecksilber bei seiner Einstellung unten bzw. oben im festen Manometerrohr verschiedene Kuppenhöhen, so war die Einstellung des Randes wie oben auf gleiche Kuppenhöhe umzurechnen.

Das Interpolationsverfahren auf Gleichheit des Innendrucks im Gesamtvolumen mit dem Außendruck wurde nach dem Nachsaugen von Luft ins Stahlrohr etwa 1½ Stunden lang alle 20 Minuten wiederholt, um die bei der anfänglichen Druckerniedrigung etwa entstandenen Temperaturdifferenzen sich ausgleichen zu lassen und Temperatur- und Barometergang in Rechnung ziehen zu können (siehe unten). Das Interpolieren erfolgte mit Hilfe des beweglichen Manometerschenkels, den man einmal hochzog, bis ein kleiner Überdruck im festen Manometerrohr vorhanden war und dann herabließ, bis ein kleiner Unterdruck herrschte. Die so interpolierte Einzeleinstellung des Quecksilbers im festen Rohr, bei der der Innendruck gleich dem Außendruck war, stimmte bei Wiederholung mit Sicherheit auf 0.1 mm. Weil nur Über- bzw. Unterdrucke von wenigen Millimetern ins Spiel kamen, war die Temperatur des Quecksilbers

im Manometer gleichgültig. Ein dynamischer Einfluß auf das Einspielen der Quecksilberniveaus, herrührend von dem Luftzug des Ventilators, war nicht zu bemerken.

Der Temperaturgang im Beobachtungszimmer wurde verfolgt mit Hilfe von vier Thermometern, die etwa alle 30 Minuten abgelesen wurden. Sie gestatteten 0.1° mit Sicherheit abzulesen und waren unter den üblichen Vorsichtsmaßregeln mit einem von der physikalisch-technischen Reichsanstalt beglaubigten Thermometer verglichen, dessen Nullpunkt kontrolliert wurde. Ein Thermometer lag am Stahlrohr so, daß seine Kugel das Rohr direkt berührte, das zweite hing am Hahn H_2 in freier Luft und das dritte und vierte neben dem festen Manometerrohr. Der Temperaturgang betrug in den ungünstigsten Fällen bis 0.3° pro Stunde. Es wurde durch besondere Versuche festgestellt, daß selbst bei viel stärkerem Temperaturgang die Temperatur der Luft im Röhrensystem nicht merklich hinter der Außentemperatur nachhinkte. Durch Rechnung und Experiment wurde ermittelt, daß eine Temperaturänderung der Luft im Röhrensystem um 0.1° bei Gleichheit des Innen- und Außendrucks eine Verschiebung des Quecksilberniveaus im festen Schenkel um 0.3, mm verursachte. Damit wurden die beim Interpolieren gefundenen Einstellungen im festen Schenkel auf die Temperatur bei Beginn des Versuchs reduziert.

In derselben Weise wurde der Barometergang in Rechnung gezogen und die Einstellung im festen Schenkel auf den Barometerstand beim Abschließen von der Atmosphäre umgerechnet. 1 mm Außendruckänderung bewirkt bei 710 mm Barometerstand eine Verschiebung des Quecksilbers im festen Schenkel um 1.20 mm. Betreffend Prüfung des Barometers siehe unten bei den pv-Messungen. Hier kommen bloß Barometerstandsdifferenzen in Betracht.

Zu berücksichtigen war die Volumänderung unseres Systems, hervorgerufen durch das Öffnen des Ventils V_2 beim Verbinden des Vakuums im Stahlrohr mit der Luft im Manometer. Ein Öffnen des Ventils V_2 um eine halbe Umdrehung bewirkte eine Volumvergrößerung, die einer Verschiebung des Quecksilbers im festen Manometerrohr um 0.2_3 mm bei gleichem Innen- und Außendruck entsprach.

Eine Korrektion dafür, daß die Luft, die bei Beginn des Versuchs im festen Manometerrohr sich befunden hatte, zum Schluß in dem etwa 30 cm höher gelegenen Stahlrohr also unter niedererem Druck sich befand, wurde wegen der Geringfügigkeit: 0.03 mm nicht angebracht.

Zu achten ist auf gute Trocknung der Luft, die aus dem Manometer ins Stahlrohr nachgesogen werden soll. Andernfalls kann man, besonders bei raschem Öffnen des Ventils V_2 , Volumwerte erhalten, die stark gefälscht sind

dadurch, daß wegen der Abkühlung sich Wasserdampf auf die Röhrenwand niederschlägt, der dann beim Steigen des Quecksilbers an der Wand eingeschlossen wird. Es ist deshalb gut auf alle Fälle das Ventil V_2 nur langsam zu öffnen und gleichzeitig den beweglichen Manometerschenkel hochzuziehen, so daß im festen stets ungefähr Atmosphärendruck herrscht.

Dies empfiehlt sich aus dem ferneren Grunde, weil im oberen Teil des Ventils V_2 zwischen dem Ende der Schraube und der Packung ein kleiner Hohlraum sich befindet, der bei Druckänderungen im Röhrensystem seinen Druck nur langsam dem Schraubengewinde entlang ausgleichen kann. Es wurde deswegen, wenn etwa die ganze Anordnung zur Prüfung auf Dichthaltung evakuiert worden war, mit dem Beginn der Volumbestimmungen einige Stunden gewartet, da an den Ventilen selbst, auf deren sicheres Funktionieren alles ankam, nichts geändert werden sollte.

Eine Aichung des Mc. Leod-Manometers, an dem der Anfangsdruck im Stahlrohr vor dem Einsaugen der Luft abgelesen wurde, war wegen der Kleinheit dieses Druckes, der für die Zwecke der Volumberechnung gleich Null gesetzt werden konnte, nicht nötig.

Zahlendaten zur Volumbestimmung.

Der Gang der Festlegung der Isothermen war so, daß zwischen je einer Reihe von p v-Messungen eine Reihe von Volumbestimmungen ausgeführt wurde. Für die definitiven Werte wurden nur die p v-Messungen von Nr. 16 an benutzt, weil erst von da an alle in Betracht kommenden Bedingungen in einwandfreier Weise festgestellt waren. Die vorherigen Messungen dienten zur Orientierung. Nach dem Versuch 27 brach das Verbindungsrohr zwischen dem Stahlrohr und dem einen Ventil, so daß die Verbindung erneuert werden mußte. Infolgedessen sind die Volumbestimmungen vor und nach dem p v-Versuch 27 nicht miteinander vergleichbar. Die p v-Messungen vor und nach dem Bruch wurden aneinander angeschlossen durch Wiederholung einer Anzahl von Messungen (bei 100 Atmosphären) mit dem neuen Stahlrohrvolumen.

Tabelle 9 gibt die Einzelresultate der Volumbestimmungen.

In Kolonne 1 steht das Datum, in 2 die Nummer der pv-Messungen, zwischen denen die Volumbestimmungen ausgeführt wurden, in 3 die Anfangsstellung des Quecksilbers im festen Manometerrohr vor dem Einsaugen der Luft ins Stahlrohr in cm, in 4 die Endstellung, bei der Innen- und Außendruck wieder gleich war, beide Einstellungen mit sämtlichen Korrektionen, in 5 die Differenz in Zentimetern der Röhrenteilung und in 6 die Temperatur, bei der die Volumbestimmung ausgeführt wurde.

Wie man sieht, stimmen die Einzelmessungen innerhalb der Meßmöglichkeit überein. Das Stahlrohrvolumen blieb also während der ganzen Meßreihe für unsere Zwecke merklich konstant. Es ist somit erlaubt zur Vereinfachung der Rechnung Mittelwerte zu nehmen und diese weiter zu verwerten.

Temperature, berechnet uni. 9 abelle Tabelle 9. in tendoored fraterenme'l

		Marine.			11 12181217
mA mendesemen	about 2 mile	3	4	onië do	6
	1=15 900	em	em	em	
		5.095	69.527	64.432	17.6
	200 41-01	4.680	69.127	64.447	17.5
19.—21. VI. 06	15-16	5.200	69.641	64.441	17.7
13.—21. VI. 00	10-10	4.140	68.573	64.433	17.8
	es viviande	4.010	68.452	64.442	18.0
	18.16 8 806	4.015 ·	68.437	64.422	18.1
	l des Sta	3,600	68.057	64.457	18.2
	Be on the section of	3.600	68.061	64.461	18.4
9.—10. VII. 06	27-28	3.590	68.030	64.440	18.3
		3.790	68.237	64.447	18.9
		4.385	68.847	64.462	19.0
	Statuten	4.715	69.155	64.440	19.1
	Departer :	4.305	68.739	64.434	19.1
		4.045	68.487	64.442	19.5
20. VII. 06	37-381	4.110	68.570	64.460	19.9
	79° wi	4.170	68.605	64.435	19.9
W 00	10 : 10 -	3,420	67.846	64.426	12.1
1. X. 06	$37 - 38_{II}$	3.440	67.870	64.430	12.6
	ite pro Mi	3,420	67.866	64.446	13.8
14. X. 06	58-59	3.380	67.838	64.458	13.9
and W. O.A.	DATA OF	3.575	68.005	64.430	13.1
30. X. 06	Nach 67	3.175	67.631	64.456	13.8
	THE DEEP ST				

Tabelle 10 zeigt die Art der Weiterrechnung. Kolonne 1 enthält die Gruppe, für die das Mittel genommen ist, Kolonne 2 das Mittel der Anfangsstellungen, 3 das der Endstellungen, 4 das der Differenzen, 5 das der Temperaturen. Zur Weiterrechnung sind von hier ab auch noch die Gruppen zusammengezogen in der Art, wie die Klammern zeigen. Die Kolonnen 6 a und 6 b geben das Volumen in ccm zwischen den so ermittelten Teilstrichen

und zwar aus den beiden Auswägungen, die mit engem Einschluß dieser Striche gewonnen sind. In 7 steht das Mittel aus 6 a und 6 b, also das Volumen zwischen den Teilstrichen des festen Manometerrohrs bei der Auswägungstemperatur von 18°. In 8 folgt das Volumen desselben Stückes bei der Temperatur der Volumbestimmung (also auch das Volumen des Stahlrohrs bei dieser Temperatur), berechnet mit dem Ausdehnungskoeffizienten des Glases: $\alpha = 6 \cdot 10^{-6}$. In 9 endlich steht das Volumen des Stahlrohrs bei 0°, berechnet mit Hilfe des durch eine einfache Fühlhebelmethode gemessenen Ausdehnungskoeffizienten des Stahls zwischen 0 und 100° : $\alpha = 11.0 \cdot 10^{-6}$.

Tabelle 10.

1	2	3	4	5	6 a	6 b	7	8	9 -
15—16	4.523	68.960	64,436	17.8	61.303	61.304	61.304	61.304	61.268
27—28 37—38 ₁	3.947 4.158	68.398 68.600	64.451 64.442	18.7 19.6	61.316	61.309	61.312	61.314	61.275
37—38 _{II}	3.430	67.858	64.428	12.4					
58-59 Nach 67	$3.400 \\ 3.375$	67.852	64.452	13.9	61.311	61.296	61.304	61.298	61.272
Nach 67	3.375	67.818	64.443	13.5					

So erhielt man schließlich:

Volumen des Stahlrohrs zwischen den Ventilen für 0° und eine Atmosphäre Innendruck:

für die
$$p \ v$$
-Versuche 16—27: 61.268 ccm , , , 28—67: 61.274 ccm.

Diese Werte dürften auf wenige Zehnte pro Mille verbürgt sein. Bei den p v-Versuchen 38—67 war das Stahlrohr auf rund — 79° abgekühlt. Der mit einer einfachen Fühlhebelmethode zwischen 0° und — 79° gemessene Ausdehnungskoeffizient des benutzten Stahls ergab sich zu $9.7 \cdot 10^{-6}$. Daraus berechnet sich das Volumen des Stahlrohrs bei — 79° und einer Atmosphäre Innendruck zu 61.132 ccm.

Der Druckeinfluß auf das Stahlrohr wurde rechnerisch ermittelt. Als durch den Druck deformiertes Volumen wurde nur das Stahlrohr selbst in Betracht gezogen. Der Einfluß auf die Hohlräume in den Stahlverbindungsröhren zwischen eigentlichem Stahlrohr und Ventil und in den Ventilen selbst wurde vernachlässigt, weil sie an sich nur etwa 2º/o des Gesamtvolumens ausmachten und diese Teile obendrein sehr dicke Wandungen hatten.

Das Stahlrohr wurde als Zylinder mit zwei ebenen Endflächen betrachtet und die Beziehung angewandt:

$$dv = \pi \ a^2 \ l \left[\frac{p_0 \ a^2 - p_1 \ b^2}{b^2 - a^2} \cdot \frac{1}{k} + \frac{b^2}{b^2 - a^2} \frac{p_0 - p_1}{n} \right].$$

Dabei ist:

dv die Änderung des Innenvolumens in ccm durch den Druck.

 $\pi = 3.14$

a = innerer Radius des Zylinders: 1.00 cm,

b = äußerer , , . . . 1.30 cm,

 $p_1 = \text{Innendruck} = 200 \text{ Atmosphären} = 2.03 \cdot 10^8 \text{ c. g. s.},$

 $p_1 = \text{Außendruck} = 71 \text{ cm } Hg = 9.47 \cdot 10^5 \text{ c. g. s.},$

l = lichte Länge des Zylinders zwischen den Endplatten = 19.0 cm,

 $k = \text{Kompressibilität des Stahls} = 17.10^{11} \text{ c. g. s.}$

 $n = \text{Scherungsmodul des Stahls} = 8.8 \cdot 10^{11} \text{ c. g. s.}$

Die beiden letzten Konstanten sind Mittelwerte. Wegen der Kleinheit des Druckeinflusses war eine besondere Messung überflüssig.

Daraus ergibt sich: dv = 0.044 ccm.

Da das Volumen des Stahlrohrs selbst rund 60 ccm betrug, so ist diese Korrektion für 200 Atmosphären etwa $0.7\,^0/_{00}$ des Gesamtvolumens.

Für andere Drucke wurde der Druckeinfluß graphisch interpoliert, indem man ihn als lineare Funktion des Druckes behandelte.

Die Korrektion für — 79° wurde mit denselben elastischen Konstanten berechnet, da diese sich mit der Temperatur in für unsere Zwecke nicht in Betracht kommender Weise ändern.²)

Gang der p v-Messungen bei 0° .

Zu den pv-Messungen wurde vor jedem Versuch die ganze Röhrenanlage sorgfältig von Wasserdampf befreit. Dazu wurde die Druckzuleitung hinter dem Ducretetschen Hahn V abgeschraubt und unter Erhitzung der Kupferspirale K, in der von dem vorhergehenden Versuch noch Feuchtigkeit sitzen konnte, vom Kompressor her etwa 15 Minuten lang trockene Luft durchgeblasen. Inzwischen war mit Hilfe einer Wasserluftpumpe durch das System V_1 V_2 H_2 H_1 mindestens zwei Stunden lang sorgfältig getrocknete Luft durch-

¹⁾ Poynting, Textbook of Physics, I, S. 117, 1903.

Cl. Schäfer, Drudes Ann. 5, S. 220, 1901 und nach im hiesigen Institut ausgeführten Messungen.
 Abh. d. II. Kl. d. K. Ak. d. Wiss. XXIII. Bd. II. Abt.

gesogen worden. Hierauf wurde das Drucksystem wieder zusammengeschraubt und die Kupferspirale mit einem Gemisch von Alkohol und fester Kohlensäure zur letzten Absorption von Wasserdampf während des Druckpumpens umgeben. Gleichzeitig wurde das Kühlgefäß des Stahlrohrs mit Eis und destilliertem Wasser gefüllt. Dann wurde das Ventil V_2 geschlossen, V_1 geöffnet und der gewünschte Druck hergestellt.

Um die Luft im Stahlrohr die Temperatur des Bades annehmen zn lassen, wurde etwa 45' gewartet. Inzwischen wurde, während die Röhren von V_2 ab durch H_1 bzw. H_3 mit der Atmosphäre in Verbindung standen, das Kathetometer orientiert, und der Faden des Fernrohrs unter den bei der Volumbestimmung beschriebenen Vorsichtsmaßregeln auf die Ränder des Quecksilbers im Manometer Q horizontal eingestellt.

Jetzt wurden Amagatmanometer und Barometer abgelesen, das Ventil V_1 geschlosssen und die Hähne H_1 und H_3 von der Atmosphäre abgeschlossen. Sofort darauf wurde das Ventil V_2 und gleichzeitig der Hahn H_4 am Glyzerinballon geöffnet. Die aus dem Stahlrohr kommende Luft drückte dann das Glyzerin aus dem Ballon in ein untergestelltes Glasgefäß.

Der Austritt der Luft aus dem Stahlrohr ließ sich durch das Ventil V_2 sehr gut regulieren. Es wurde stets nur soweit geöffnet, daß der am Quecksilbermanometer Q abzulesende Überdruck höchstens eine halbe Atmosphäre betrug.

Es wurde solange Glyzerin aussließen lassen, bis im System von V_1 ab wieder Atmosphärendruck herrschte. Die dazu genau erforderliche Glyzerinmenge wurde interpoliert, indem man zuerst soviel auslaufen ließ, bis noch einige Millimeter Überdruck herrschten, dann etwa eine Stunde auf Temperaturkonstanz der Luft im Ballon wartete und schließlich noch etwas Glyzerin zapfte, so daß einige Millimeter Unterdruck herrschten.

Das Volumen des so gewonnenen Glyzerins gibt das Volumen der in den Ballon eingetretenen Luft bei Atmosphärendruck und der im Ballon herrschenden Temperatur. Diese Luft hatte sich vorher bei 0° und Hochdruck im Stahlrohr befunden. Damit sind alle Daten gegeben zur Festlegung eines Punktes der 0°-Isotherme.

Zum Schluß wurde das Glyzerin wieder in den Ballon eingesogen und es konnten die Vorbereitungen für den nächsten Versuch beginnen.

Gang der pv-Messungen bei — 79°.

Bei den Messungen der — 79°-Reihe mußte man wegen der Kostspieligkeit des Kältebades, unbeschadet der Genauigkeit der Versuche, rascher arbeiten. Die Anordnung wurde nur vor dem ersten Versuch jedes Versuchstags in der beschriebenen Art getrocknet. Das Kältegemisch um die Kupferspirale K wurde ständig unterhalten. In dem Bad des Stahlrohrs lag ein Bolometer. Falls das Einbringen neuer fester Kohlensäure nötig war, erfolgte es stets vor oder während des Druckpumpens. Auf diese Art konnte man es leicht erreichen, daß während der 40 Minuten, die man nach dem Druckpumpen auf Temperaturkonstanz für die Luft im Stahlrohr wartete, die Temperatur im Kältebad mit Sicherheit um nicht mehr als 0.1° schwankte.

Im übrigen wurde verfahren wie bei der 0°-Reihe.

Aichungen und Korrektionen.

Die Druckmessung mit dem Amagatmanometer.

Zur Berechnung des Drucks im Stahlrohr aus der Steighöhe des Quecksilbers im Amagatmanometer und den Konstanten des Manometers wurde die Reduktionsformel benutzt:

$$p = n \cdot H_{15} \frac{s_{15} + (s_{15} - \sigma) \frac{q}{q_1}}{76 \cdot s_0}.$$

Es ist:

p der im Drucksystem herrschende Überdruck über die Atmosphäre, gerechnet in Atmosphären zu 76 cm Quecksilber von 0° .

nist das Verhältnis der Kolbenquerschnitte, von Wagner (s. l. c.) ermittelt zu: 61 · 45 \pm 0.03.

 H_{15} ist die beobachtete und auf 15° umgerechnete Steighöhe des Quecksilbers, vom Nullpunkt des Manometers an gerechnet, in cm. Das zur Ablesung benutzte Bandmaß wurde mit einem am Normalmeter geaichten Messingmaßstab unter Berücksichtigung der Temperatur verglichen. Die Korrektionen gingen bis 0.4 mm. Die Temperatur der Quecksilbersäule wurde durch ein etwa auf halber Höhe der Säule angebrachtes Thermometer festgestellt. Ein vertikales Temperaturgefälle von hier in Betracht kommender Größe war nicht vorhanden, da sämtliche pv-Messungen in die Sommermonate fielen, während deren das Zimmer nicht geheizt wurde (siehe oben). Der Nullpunkt des

¹⁾ Wagner, Drudes Ann. 15, S. 925, 1904. Ebendort auf S. 916, Figur.

Manometers wurde oft kontrolliert und innerhalb der Ablesemöglichkeit konstant gefunden. Er lag bei 0.61 cm des Bandmaßes.

 s_{15} ist die Dichte des Quecksilbers bei $15^{\circ} = 13.559$,

 s_0 ist die Dichte des Quecksilbers bei $0^0 = 13.596$,

 σ ist die Dichte des Rizinusöls = 0.96,

q, der mittlere Querschnitt der Steigröhren, ergab sich durch Auswägen mit Quecksilber zu 0.252 qcm.

Daß die Steigröhren nicht konisch waren, wurde durch stückweises Auswägen festgestellt.

 $q_{\rm i},$ der Querschnitt des Manometerbassins, wurde zu 77.45 qcm gefunden (Wagner).

Die zu benutzende Reduktionsformel berechnet sich daraus zu:

$$p = H_{15} \cdot 0.8088.$$

Dieses p ist, wie bemerkt, der Überdruck im Drucksystem über den Außendruck. Um den gesamten Innendruck zu erhalten, ist dazu der Barometerstand auf 0° reduziert und auf Atmosphären umgerechnet zu addieren.

Eine Schwerekorrektion und die von Regnault 1) angegebene Korrektion wegen der Abnahme des Luftdrucks auf das freie Ende der Quecksilbersäule bei steigendem Quecksilber wurde nicht angebracht, weil sie sich entgegenwirken und nur die absoluten Werte beeinflussen.

Die Kompressibilität des Quecksilbers wurde gleichfalls vernachlässigt.

Beim Ablesen der Quecksilbersäule wurden die üblichen Vorsichtsmaßregeln beobachtet, bestehend in Kolbenrotieren und Klopfen des Meniskus. Parallaxenfreie Ablesung erfolgte mit Hilfe eines kleinen Spiegels an der Kuppe. Die Kuppenhöhen waren merklich konstant. Kapillardepression war deshalb nicht zu berücksichtigen.

Die bei den Druckmessungen ausgeführten Einzeleinstellungen, zwischen denen stets größere Schwankungen des Quecksilberniveaus in den Steigröhren mit der Ölregulierschraube (R in der Figur Wagners) vorgenommen wurden, ergaben mit Sicherheit Übereinstimmung innerhalb der Ablesegenauigkeit von 0.1 mm. Die daraus genommenen Mittel dürften also auf 0.1 mm sicher sein. Der gleiche Fehler ist beim Ablesen des Nullpunktes möglich. Dies entspricht im günstigsten Fall, bei einer Quecksilbersäule von rund $2^{1/2}$ Metern, einer relativen Genauigkeit der Druckmessung von rund $0.1\,^{0}/_{00}$. Bei niederen Drucken ist die Genauigkeit entsprechend geringer. Dagegen ist zu betonen,

¹⁾ Regnault, Expériences I, (1847), Sixième Mém., S. 360.

daß die absolute Genauigkeit gegeben ist durch das Verhältnis der Kolbenquerschnitte, das von Wagner auf $1^{0}/_{00}$ verbürgt wird.

Das nach der Ablesung des Manometers betätigte Schließen des Ventils V_1 hatte keine feststellbare Druckerhöhung zur Folge.

Das Volumen des ausgeflossenen Glyzerins und das Volumen der aus dem Stahlrohr in den Glyzerinballon eingetretenen Luft.

Das aus dem großen Ballon durch die aus dem Stahlrohr kommende Luft verdrängte Glyzerin floß in große, ca. 7 Liter haltende zylindrische Glasgefäße und wurde auf einer Robervalschen Wage mit Tariermethode gewogen. Die benutzten Gewichte waren auf Normalgewicht bezogen.

Als Temperatur des Glyzerins wurde die an dem Thermometer des großen Wasserbades unter häufigem und anhaltendem Rühren abgelesene angenommen. Das Thermometer war in 0.2° geteilt und mit einem Normalthermometer verglichen (siehe oben). Bei den günstigen Verhältnissen, die zur Zeit der pv-Messungen herrschten, änderte sich die Temperatur des Bades nur in verschwindendem Maße mit der Zeit. Der höchste, nur ein- oder zweimal beobachtete Gang betrug 0.05° pro Stunde. Ein für die übrige Genauigkeit der Versuche in Betracht kommendes Nachhinken der Glyzerintemperatur hinter der des Wasserbades war also nicht zu befürchten.

Die Dichte des Glyzerins wurde Anfangs nach jeder pv-Messung, später weniger häufig, mit dem Pyknometer bestimmt. Sie nahm mit der Zeit etwas ab und zwar während der insgesamt ausgeführten 67 pv-Messungen um rund $1^{0}/_{00}$, wohl infolge der Aufnahme von Wasserdampf aus der Luft. Der Gang der Glyzerindichte, abhängig von der Zeit, wurde graphisch aufgetragen und daraus für jeden Versuch die Dichte entnommen. Die Abhängigkeit der Dichte von der Temperatur ergab sich aus dem mit dem Pyknometer gemessenen Ausdehnungskoeffizienten: $\alpha = 0.00045$.

Das so gemessene Volumen des Glyzerins ist mit den nötigen Korrektionen gleich dem Volumen der aus dem Druckstahlrohr ausgetretenen Luft bei dem herrschenden Barometerstand und der Temperatur des Wasserbades.

Folgende Korrektionen und Vorsichtsmaßregeln wurden berücksichtigt:

1. Die Frage nach der Zeit, innerhalb deren die aus dem Druckrohr ausgetretene kalte Luft die Temperatur des Wasserbades annahm, ließ sich experimentell beantworten, indem man die ganze Anordnung als Luftthermometer benutzte. Wenige Minuten nachdem das Auszapfen des Glyzerins beendet war, was bei 200 Atmosphären Druck etwa 30 Minuten dauerte, wurde

der am Quecksilbermanometer Q festzustellende Druck merklich konstant. Bis zu den definitiven Druckablesungen für die Zwecke der Glyzerininterpolation wartete man dann noch 30-40 Minuten.

2. Der Temperaturgang war im allgemeinen verschieden für die in freier Luft befindlichen Verbindungsröhren zwischen Druckstahlrohr und Quecksilbermanometer bzw. Glyzerinballon, und für den im Wasserbad befindlichen großen Ballon. Die Temperatur im Druckrohr selbst war konstant. Es befand sich ein Thermometer neben dem festen Rohr des Quecksilbermanometers, eines hing am Hahn H_2 , ein weiteres in 0.2^{0} geteiltes (siehe oben), steckte im Wasserbad.

Der Temperaturgang in freier Luft war an sich nicht groß und auch deshalb von verschwindendem Einfluß, weil die Verbindungsröhren selbst in ungünstigen Fällen bei Versuchen mit niedrigem Druck nur etwa 5 % des Gesamtvolumens ausmachten. Der Temperaturgang im Wasserbad des Ballons war ganz unbedeutend, dagegen von relativ großem Einfluß, weil das Hauptvolumen in Betracht kam.

Die Überdrucke bzw. Unterdrucke, die am Quecksilbermanometer zur Interpolation der ausgeflossenen Glyzerinmenge abgelesen wurden, wurden auf die Temperatur, die beim Abschließen der Hähne H_3 und H_1 von der Atmosphäre geherrscht hatte, umgerechnet mit dem thermischen Druckkoeffizienten der Luft und unter Berücksichtigung der Anteile von Ballon und Verbindungsröhren am Gesamtvolumen, sowie ihrer besonderen Temperaturgänge. Diese Korrektionen hatten die Größenordnung von einigen Zehntelmillimetern. Deswegen entfiel auch hier die Notwendigkeit, das Volumen der Verbindungsröhren genauer zu kennen.

- 3. Ein Gang des äußeren Luftdrucks wurde in Rechnung gezogen, indem die Interpolationsüber- und Unterdrucke auf den Barometerstand reduziert wurden, der beim Abschließen der Hähne von der Atmosphäre geherrscht hatte.
- 4. Es war möglich, daß der große Ballon mit Glyzerinfüllung ein anderes Volumen hatte als ohne diese, wegen des Bodendrucks des Glyzerins. In der Tat war ein solcher Einfluß wahrzunehmen. Er wurde nicht berücksichtigt, weil im ungünstigsten Fall die Volumänderung ¹/₁₀₀₀₀₀ des Gesamtvolumens betrug. Noch weniger brauchte also in Rücksicht gezogen zu werden der Einfluß der Interpolationsüber- bzw. Unterdrucke auf das Volumen des Ballons.
- 5. Ein Fehler konnte auftreten dadurch, daß das Glyzerin Luft absorbierte und das Volumen der aus dem Stahlrohr austretenden Luft zu klein erscheinen ließ. Dagegen spricht die geringe Absorptionsfähigkeit des Glyzerins für

Gase, 1) der kleine Überdruck, unter dem die Luft in den Ballon eintrat, und die Tatsache, daß das Glyzerin beim Auszapfen mit großer Oberfläche mit Luft in Berührung kam, so daß es reichlich Gelegenheit hatte, sich zu sättigen. Auch die pv-Versuche selbst geben keinen Anhalt für das Vorhandensein einer solchen Fehlerquelle.

- 6. Auf die Beseitigung der letzten Reste von Wasserdampf aus der in das Druckrohr eintretenden Luft wurde besonderer Wert gelegt. Die zu dem Zwecke auf 79° abgekühlte Kupferspirale K hatte eine Gesamtlänge von ca. 4 Metern und einen Innendurchmesser von 2 mm. Die in das Stahlrohr hineinzupressende Luft durchströmte sie in einem Betrag von 10 ccm pro Sekunde. Dadurch ist, wie auch besondere Versuche mit Glasröhren ergaben, die Sicherheit gewährleistet, daß die Spannung des etwa aus der Spirale austretenden Wasserdampfes nicht größer ist, als der Temperatur von 79° entspricht. Dieser Dampfdruck kommt für die Genauigkeit der vorliegenden Versuche nicht mehr in Betracht.²)
- 7. Gegen das Vorhandensein von Kohlensäure wurde außer der Schicht Natronkalk im Trockenrohr der Druckluftanlage keine Vorsichtsmaßregeln getroffen, weil der Einfluß auf die Dichte der Luft für unsere Endgenauigkeit nicht merklich ist (siehe oben bei den Schallgeschwindigkeitsmessungen).
- 8. Der Glyzerindampfdruck konnte störend wirken, falls er sich während eines pv-Versuchs aus irgend einem Grunde änderte. Es wurde während der Wartezeit zwischen Auszapfen des Glyzerins und Ablesen des Quecksilbermanometers die besondere Aufmerksamkeit auf Druckänderungen gerichtet, die von diesem Einfluß herrühren konnten. Wie zu erwarten, wurde nie eine wahrnehmbare Wirkung beobachtet, denn der Glyzerindampfdruck ist schon an sich unbeträchtlich. Er beträgt für reines Glyzerin 0.24 mm für $118.5^{0.3}$)
- 9. In eingehender Weise wurde die Möglichkeit in Betracht gezogen, daß durch Undichtwerden, besonders des Drucksystems, störende Luftverluste eintreten könnten. Besonderes Augenmerk war deswegen zu richten auf die Packungen der Ventile V_1 und V_2 , auf die Verschraubungen dieser Ventile mit dem Stahlrohr und auf die Absperrkegel, die den Weg sperrten von den Ventilen in die Druckröhrenleitungen. Die anderen Verbindungen und Hähne von V_2 bis zum Glyzerinballon bzw. zum Quecksilbermanometer hatten nur

¹⁾ G. Just, Zeitschr. für phys. Chemie, 37, S. 342, 1901.

 $^{^2)}$ Scheel, Verh. d. d. phys. Ges. 5, S. 287, 1903 gibt unter Diskussion der vorhandenen Messungen den Dampfdruck des Wassers für — 50^{0} zu rund 0.04 mm.

³⁾ Richardson, Journal of the chemical Society, 49, S. 764.

Überdrucke bis eine halbe Atmosphäre auszuhalten und waren mit den gewöhnlichen Vorsichtsmaßregeln leicht dicht zu bekommen. Von dem Dichthalten der unter Hochdruck stehenden Stahlrohrverschraubungen und Packungen konnte man sich während der Versuche dauernd überzeugen, weil sie in einem Flüssigkeitsbad lagen. Das Dichthalten des Ventilkegels in V_2 wurde mit dem Quecksilbermanometer untersucht, während des Abwartens der Temperaturkonstanz im Stahlrohr, das des Kegels in V_1 -dadurch, daß man die Druckleitung abschraubte und ein Glyzerinmanometer ansetzte. Es machte keine Schwierigkeiten, alle Verschraubungen und Ventilkegel mit Sicherheit dicht zu bekommen. Dagegen versagten die Lederverpackungen am Ventil V_1 bei den — 79°-Versuchen bei höheren Drucken, indem trotz schärfsten Anziehens der Packungsschrauben beim Schließen des Ventils nach der Ablesung des Amagatmanometers hörbar Luft auszischte, so daß es unsicher war, welcher Druck im Stahlrohr im Moment des Ventilschließens herrschte. In der Tat gingen die Versuche 46-50 inklusive auf diese Art verloren. Vollständige Abhilfe wurde erzielt, indem man die Lederpackungen im Ventil V1 und gleichzeitig im Ventil V_2 durch Feuerschwamm ersetzte.

10. Es bliebe die Möglichkeit einer Absorption von Luft durch die Stahlrohrwände bei hohem Druck. Mangels jeglicher experimenteller Daten über diesen jedenfalls außerordentlich geringen, wenn überhaupt vorhandenen Einfluß, erübrigt sich das Anbringen einer Korrektion.

Berechnung der Endwerte.

Um aus dem so korrigierten Volumen der aus dem Stahlrohr ausgetretenen Luft ihre Maße zu erhalten, ist es mit ihrer Dichte zu multiplizieren. Als Temperatur der Luft ist dabei die des Wasserbades beim Abschließen der Hähne H_1 und H_3 von der Atmosphäre, als Druck der gleichzeitige Barometerstand zu nehmen (siehe oben). Die Dichte wurde aus den Tabellen von Landolt und Börnstein, 3. Auflage, entnommen. Da hier der absolute Barometerstand in Frage kommt, wurde das benutzte Heberbarometer von Fueß-Berlin auf die Güte des Vakuums nachgeprüft. Die davon herrührende Korrektion betrug einige hundertstel Millimeter und wurde weggelassen. Auch die Schwerekorrektion wurde weggelassen, einmal, weil sie für München blos $^5/_{100000}$ beträgt 1) und dann, weil sie für unseren $p\,v$ -Endwert, der auf Luft von 0 und 1 00 mm bezogen ist, herausfällt. Eine Korrektion für eine etwaige Niveau-

¹⁾ Landolt-Börnstein, 3. Auflage.

differenz zwischen Barometer und freiem Ende des Quecksilbermanometers kam nicht in Betracht.

Um das spezifische Volumen v der Luft im Stahlrohr bei Hochdruck und 0^0 bzw. — 79^0 zu erhalten, ist zu dieser Luftmasse im Glyzerinballon noch die Luftmasse im Stahlrohr bei Atmosphärendruck und 0^0 bzw. — 79^0 zu addieren und die Summe durch das Volumen des Stahlrohrs bei dem Versuch zu dividieren. Daraus ergibt sich schließlich durch Beziehen von v auf Luft von 0^0 und 760 mm und durch Multiplikation mit p, dem am Amagatmanometer abgelesenen Druck, der Endwert $p\,v$, bezogen auf Luft von 0^0 und 760 mm.

Zahlendaten.

Tabelle 11 enthält die Einzelresultate für die pv-Messungen bei 0°.

In Reihe 1 steht die laufende Nummer des Versuchs, in 2 die Steighöhe des Quecksilbers im Amagatmanometer mit Bandmaßkorrektion und auf 15° reduziert in cm, in 3 der Druck im Stahlrohr in Atmosphären zu 76 cm Quecksilber von 0° , in 4 die ausgeflossene Glyzerinmasse in gr, in 5 die Glyzerindichte, in 6 das Volumen des Glyzerins in ccm, alles mit sämtlichen Korrektionen. Es folgen in 7 und 8 Temperatur und Druck der Luft im Ballon, letzterer auf 0° reduziert. Daraus ergibt sich in 9 die Dichte der Luft, in 10 ihre Masse in gr im Ballon, in 11 die Masse in gr im Stahlrohr, in 12 die Summe von 10 und 11, also die Gesamtluftmasse, die bei Hochdruck und 0° im Stahlrohr enthalten gewesen war. In 13 steht das Volumen des Stahlrohrs in ccm für den Versuch mit allen Korrektionen, und in 14 der Wert von pv, bezogen auf Luft von 0° und 760 mm.

Tabelle 12 enthält die entsprechenden Resultate der — 79°-Reihe. Die Bedeutung der einzelnen Reihen von 1 bis 13 ist dieselbe. Im besonderen ist zu bemerken: Zu 11. Die Masse der Luft im Stahlrohr bei — 79° und dem äußeren Barometerstand wurde berechnet, indem man als mittleren Ausdehnungskoeffizienten der Luft zwischen 0° und — 79° den Wert: 0.00367 annahm.¹)

Zu 14. In 14 steht die Temperatur des Alkohol-Kohlensäuregemisches aus dem Barometerstand entnommen (siehe S. 391) und auf 0.1° abgerundet.

In Reihe 16 stehen alle pv-Messungen der — 79° -Reihe, auf — 79.1° reduziert mit Hilfe der mittleren Ausdehnungskoeffizienten zwischen 0° und — 79.1° (siehe unten Tabelle 15).

¹⁾ Holborn und Wien, Wiedem. Ann. 59, S. 213, 1896.

Tabelle 11. $t = 0^{\circ}$.

Lfd.	Steighöhe des Hg	Druck in Atm.	Ausge- flossenes	Glyzerin-	Volumen	Luft in	n Ballon	Dichte	Masse der	Masse der	101	Volumen	
Nr.	im Amagat in cm	à 76 cm Hg	Glyzerin in gr	dichte	Glyzerins in ccm	t	Druck in mm Hg	der Luft	Luft im Ballon gr	Luft im Stahlrohr gr	Summe	des Stahl- rohrs in ccm	p v
1	2	3	4	5	6	7	8	9	10	11	12	13	14
17	31.577	26.485	2199.9	1.2248	1797.6	17.82	719.2	0.0011483	2.0642	0.0750	2.1392	61.273	0.980
18	31.835	26.691	2224.4	1.2246	1818.0	18.05	716.8	11436	2.0790	0.0747	2.1537	61.273	0.981
19	122.736	100.210	8735.5	1.2246	7139.6	18.10	716.1	11423	8.1554	0.0747	8.2301	61.290	0.964
20	62.128	51.195	4345.5	1.2256	3548.7	16.28	718.9	11539	4.0950	0.0749	4.1699	61.279	0.972
21	62.056	51.135	4333.5	1.2258	3538.4	15.82	718.1	11547	4.0858	0.0749	4.1607	61.279	0.973
22	92.543	75.794	6477.2	1.2261	5287.4	15.09	718.8	11585	6.1254	0.0749	6.2004	61.284	0.968
23	91.720	75.127	6430.6	1.2260	5249.4	15.20	718.2	11572	6.0744	0.0749	6.1493	61.284	0.968
24	122.643	100.138	8612.8	1.2258	7032.2	15.64	718.8	11563	8.1315	0.0749	8.2065	61.290	0.966
25	31.721	26.598	2208.6	1.2253	1804.0	16.48	716.2	11488	2.0726	0.0747	2.1472	61.273	0.981
26	122.249	99.810	8713.3	1.2252	7117.1	16.64	711.3	11403	8.1158	0.0742	8.1900	61.289	0.965
27	123.016	100.433	8726.2	1.2253	7127.8	16.38	713.5	11449	8.1605	0.0744	8.2348	61.290	0.966
28	122.706	100.188	8685.8	1.2247	7098.3	17.44	718.2	11482	8.1502	0.0749	8.2251	61.296	0.965
29	123.352	100.713	8710.1	1.2249	7116.8	16.96	719.5	11522	8.2000	0.0750	8.2750	61.296	0.964
30	154.367	125.796	10844.4	1.2255	8856.8	15.90	718.1	11542	10.2225	0.0749	10.2974	61.301	0.968
31	154.542	125.939	10811.3	1.2256	8828.5	15.50	719.4	11579	10.2225	0.0750	10.2975	61.301	0.9692
32	184.180	149.911	12766.1	1.2258	10423.3	15.12	720.1	11605	12.0962	0.0751	12.1713	61.307	0.976
33	185.186	150.725	12830.3	1.2257	10476.5	15.18	720.3	11606	12.1590	0.0751	12.2341	61.307	0.976
34	214.917	174.773	14710.8	1.2254	12014.8	15.62	721.9	11614	13.9540	0.0753	14.0293	61.312	0.987
35	215.581	175.309	14763.8	1.2254	12058.5	15.56	721.3	11608	13.9975	0.0752	14.0727	61.312	0.9874
36	248.734	202.123	16798.4	1.2251	13723.6	16.08	721.0	11582	15.8947	0.0752	15.9699	61.318	1.0038
37	246.214	200.081	16744.6	1.2247	13684.4	16.78	719.1	11523	15.7685	0.0750	15.8435	61.318	1.0011

	Steighöhe des Hq	Druck in	Ausge-	Glyze-	Volumen	Luft im	Ballon	Dichte	Masse der	Masse der Luft		Volumen des	t des		
Lfd. Nr.	im Amagat in cm	Atm. à 76 cm Hg	flossenes Glyzerin in gr	rin- dichte	des Glyzerins in cem	t	Druck in mm Hg	der Luft	Luft im Ballon gr	imStahl- rohr gr	Summe	Stahl- rohrs in ccm	Kälte- bades	pv	$\begin{array}{c c} p v & \text{für} \\ -79.1^{\circ} \end{array}$
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
38	29.967	25.185	3021.0	1.2276	2463.0	11.45	720.8	0.0011767	2.8982	0.1056	3.0038	61.138	-79.1	0.6627	0.6627
39	61.322	50.545	6630.0	1.2276	5405.4	11.46	720.4	11760	6.3567	0.1056	6.4623	61.143	- 79.1	0.6183	0.6183
40	89.809	73.584	10264.0	1.2275	8368.6	11.55	719.7	11744	9.8281	0.1055	9.9336	61.148	-79.1	0.5856	0.5856
41	62.406	51.419	6762.5	1.2275	5513.9	11.63	718.9	11729	6.4673	0.1053	6.5726	61.143	-79.1	0.6184	0.6184
42	32.692	27.386	3319.4	1.2274	2706.7	11.71	718.5	11718	3.1717	0.1053	3.2770	61.138	-79.1	0.6605	0.6605
43	92.068	75.411	10593.0	1.2271	8639.9	12,33	719.8	11714	10 1208	0.1055	10.2263	61.149	- 79.1	0.5830	0.5830
44	123.731	101.019	14886.5	1.2271	12142.1	12.40	719.8	11711	14.2196	0.1055	14.3251	61.154	-79.1	0.5575	0.5575
45	153.953	125.463	18804.5	1.2269	15339.2	12.52	719.4	11700	17.9469	0.1054	18.0523	61.160	-79.1	0.5495	0.5495
51	123.939	101.189	14970.3	1.2263	12217.8	13.53	720.7	11679	14.2692	0.1056	14.3748	61.154	-79.1	0.5565	0.5565
53	154.232	125.689	18908.9	1.2263	15431.9	13.53	720.1	11669	18.0075	0.1055	18.1130	61.160	-79.1	0.5487	0.5487
54	187.228	152.376	22665.2	1.2264	18497.4	13.46	720.3	11676	21.5976	0.1055	21.7031	61.166	-79.1	0.5552	0.5552
55	216.253	175.850	25408.2	1.2264	20735.6	13.41	719.7	11669	24.1964	0.1055	24.3019	61.171	-79.1	0.5722	0.5722
56	217.731	177.044	25568.9	1.2264	20866.8	13.39	718.4	11648	24.3058	0.1053	24.4111	61.171	-79.1	0.5736	0.5736
57	246.570	200.368	27905.1	1.2264	22773.7	13.42	718.0	11640	26.5086	0.1052	26.6138	61.176	-79.1	0.5954	0.5954
58	246.693	200.468	277852	1.2263	22677.0	13.49	718.1	11639	26,3938	0.1052	26.4990	61.176	-79.1	0.5983	0.5983
59	248.333	201.788	28159.8	1.2264	22979.8	13.21	713.9	11583	26.6175	0.1047	26.7222	61.177	-79.2	0.5972	0.5975
60	216.835	176.315	25617.1	1.2264	20905.1	13.21	714.8	11598	24.2457	0.1048	24.3505	61.171	-79.2	0.5726	0.5729
61	189.034	153.830	22981.4	1.2264	18754.4	13.22	715.2	11603	21.7607	0.1049	21.8656	61.166	-79.2	0.5563	0.5566
62	155.523	126.727	19157.3	1.2264	15634.0	13.26	715.4	11605	18.1433	0.1049	18.2482	61.160	-79.2	0.5491	0.5494
63	121.956	99.584	14706.9	1.2265	12001.1	13.08	719.5	11679	14.0161	0.1054	14.1215	61.154	-79.1	0.5575	0.5575
* 64	122 929	100.371	14829.0	1.2265	12100.8	13.03	719.8	11685	14.1398	0.1055	14.2453	61.154	-79.1	0.5571	0.5571
65	91.411	74.879	10572.2	1,2265	8627.1	13.00	719.5	11682	10.0782	0.1054	10.1836	61.148	-79.1	0.5813	0.5813
66	61.949	51.050	6758.4	1.2265	5515.0	12.99	718.7	11669	6.4354	0.1053	6.5408	61.143	-79.1	0.6170	0.6170
67	30.888	25.928	3146.8	1.2265	2567.9	13.00	718.2	11660	2.9941	0.1052	3.0994	61.138	-79.1	0.6612	0.6612

Wie man sieht liegen die Abweichungen der Einzelwerte voneinander im allgemeinen unter $1^{\,0}/_{00}$ und gehen in seltenen Fällen bis zu 2 und $3^{\,0}/_{00}$. Die graphisch gewonnenen Mittelwerte dürften demnach relativ zueinander auf $1^{\,0}/_{00}$ richtig sein. Die absolute Genauigkeit wird wegen der Unsicherheit der Druckmessung und der anderen Fehlermöglichkeiten auf etwa $1^{\,1}/_{2}^{\,0}/_{00}$ zu schätzen sein.

Tabelle 13 enthält die pv-Mittelwerte für 0° . In Kolonne 1 stehen die Drucke in Atmosphären, in 2 die zugehörigen pv-Werte der vorliegenden Untersuchung, bezeichnet als pv_K .

Tabelle 13. $t = 0^{\circ}$.

p Atm.	pv_K	$p v_{AI}$	pv_W
1	2	3	4
1	1.0000	1.0000	1.0000
25	0.9821		0.9869
50	0.9732		0.9754
75	0.9682		0.9694
100	0.9656	0.9730	0.9681
125	0.9685		0.9722
150	0.9762		
175	0.9875		
200	1.0016	1.0100	

Ohne Umrechnung vergleichbar mit diesen Werten sind die Amagats 1) und Witkowskis, 2) die ebenfalls bei 0^{0} gewonnen wurden. Sie stehen in Kolonne 3 und 4 als pv_{AI} und pv_{W} . Amagat maß seine Drucke mit dem Amagatmanometer. Witkowski basierte seine Druckmessung mit Hilfe eines Luftmanometers auf frühere Resultate Amagats, 3) die in der Kirche von Fourvières durch direkte Aichung von Luftmanometern mit Quecksilbersäulen ohne Kolbenübertragung erhalten sind. Diese letzteren pv-Werte Amagats sind bei 16^{0} erhalten und lassen sich durch Vermittlung von Ausdehnungskoeffizienten, die Witkowski (s. l. c.) zwischen 16^{0} und 0^{0} bei den entsprechenden Drucken gemessen hat, auf 0^{0} reduzieren. Tabelle 13 a enthält die auf diese Reduktion bezüglichen Zahlen. In Kolonne 1 steht der von Amagat benutzte Druck in Metern Quecksilber, in 2 die zugehörigen pv-Werte

¹⁾ Ann. de chim. et de phys. 6 s. 29, S. 68, 1893.

²⁾ Phil. Mag. 41, S. 288, 1896.

³⁾ C. R. 1884, II, S. 1154.

Amagats bei 16° , 3 gibt den Druck der Kolonne 1, umgerechnet in Atmosphären à 76 cm Hg von 0° ; in 4 steht der pv-Wert der Kolonne 2, umgerechnet auf 0° mit Hilfe der von Witkowski gegebenen Ausdehnungskoeffizienten, in 5 endlich zum Vergleich die pv_K -Werte für denselben Druck.

Tabelle 13 a.

	Am	agat		.0
Druck Meter Hg	p v 160	Druck in Atm.	$p v_{A \mathrm{II}} = 0^0$	$\begin{bmatrix} p & v \\ 0 & 0 \end{bmatrix}$
1	2	3	4	5
0.76	1.0000	1.00	1.0000	1.0000
20.00	0.9901	26.32	0.9823	0.9816
25.00	0.9876	32.90	0.9784	0.9788
30.00	0.9855	39.47	0.9748	0.9761
35.00	0.9832	46.05	0.9718	0.9741
40.00	0.9824	52.63	0.9699	0.9723
45.00	0.9815	59.21	0.9678	0.9705
50.00	0.9808	65.79	0.9661	0.9691
55.00	0.9804	72.37	0.9646	0.9682
60.00	0.9803	79.08	0.9638	0.9671
65.00	0.9807	85.53	0.9632	0.9662

Wie man sieht, stimmen in Tabelle 13 die pv_w und pv_K -Werte gut überein. Dagegen weichen die pv_M -Werte von den vorgenannten bis zu $8\,^0/_{00}$ ab.

In Tabelle 13 a wiederum stimmen die auf 0° reduzierten $p\,v_{A\,\text{II}}$ -Werte bedeutend besser mit den entsprechenden $p\,v_{K}$ -Werten, wenn auch noch eine kleine systematische Abweichung vorhanden zu sein scheint.

Nun basieren die $p\,v_{\scriptscriptstyle K}$ -Werte wie die $p\,v_{\scriptscriptstyle A\,\rm I}$ -Werte auf Druckmessung mit Hilfe des Amagatmanometers. Beide Meßreihen können deshalb prinzipiell mit einer Unsicherheit behaftet sein, herrührend von der Bestimmung des Kolbenquerschnittsverhältnisses. Amagat hat keine näheren Einzelheiten veröffentlicht über die Art, in der er dieses Verhältnis feststellte. Infolgedessen ist eine Diskussion von dieser Seite aus nicht möglich. Jedenfalls zeigen die meisten der Tabellen Amagats (s. l. c.), in denen die Druckangaben verschiedener Manometersysteme zusammengestellt sind, systematische Abweichungen dieser Angaben voneinander, die groß genug sind, um die Unterschiede der $p\,v_{\scriptscriptstyle A\,\rm I}$ -Werte und der $p\,v_{\scriptscriptstyle K}$ -Werte zu erklären.

Die Druckmessung Amagats in der Kirche zu Fourvières ist von den eben besprochenen Fehlermöglichkeiten frei und verdient somit erhöhtes Zutrauen. Die Übereinstimmung der so gewonnenen $p\,v_{\scriptscriptstyle A\,\rm II}$ -Werte mit den $p\,v_{\scriptscriptstyle K}$ -Werten weist daraufhin, daß das von K benutzte Kolbenquerschnittsverhältnis richtig ist. Als weitere Stütze dieser Folgerung kommt dazu die gute Übereinstimmung zwischen den $p\,v$ -Werten von K und W, welch letztere sich ja auf die $p\,v_{\scriptscriptstyle A\,\rm II}$ -Werte stützen.

Soviel mir bekannt hat Amagat keine Messungen veröffentlicht, die seine mit direkter Quecksilbersäule bestimmten Isothermen, die bis 85 Atmosphären gehen, mit seinen mit dem Amagatmanometer ermittelten verbinden, die bei 100 Atmosphären beginnen. Andernfalls hätte ein etwaiger Sprung in diesen mit zwei verschiedenen Druckmeßmethoden erhaltenen Isothermen zutage treten können.

Tabelle 14 enthält die pv-Mittelwerte der — 79° -Reihe. In Kolonne 1 steht der Druck in Atmosphären, in 2 der zugehörige pv-Mittelwert, bezeichnet als pv_K und zwar für — 79.1° , in 3 der Wert von pv_K für — 79.3° , berechnet zum Zweck der Kombination mit den Schallgeschwindigkeitsmessungen (siehe oben), die bei — 79.3° ausgeführt wurden, in 4 die pv-Werte Witkowskis für — 78.5° und in 5 endlich die letzteren zum Vergleich umgerechnet auf — 79.1° . Die Übereinstimmung zwischen Kolonne 2 und 5 ist befriedigend.

Tabelle 14. $t = -79^{\circ}$.

p	$\begin{array}{c c} p \ v \ \kappa \\ -79.1^{0} \end{array}$	<i>pv_K</i> 79.30	<i>p v W</i> − 78.50	<i>p v _W</i> - 79.10
trivolo	2	oib 3 one	4 179	014 5 6
HITEM	, a dia a la se	t in debue	loesereres.	
1	0.7097	0.7092	0.7119	0.7103
25	0.6628	0.6623	0.6689	0.6670
50	0.6199	0.6194	0.6252	0.6234
75	0.5820	0.5814	0.5863	0.5845
100	0.5572	0.5566	0.5600	0.5582
125	0.5495	0.5489	0.5520	0.5501
150	0.5540	0.5534		
175	0.5715	0.5709		
200	0.5960	0.5954		

Der pv_K -Wert für 1 Atmosphäre ist berechnet mit Hilfe des Ausdehnungskoeffizienten für Luft: $\alpha = 0.00367$.

Die zu den Umrechnungen der Tabelle 14 benutzten mittleren Ausdehnungskoeffizienten der atmosphärischen Luft zwischen 0° und -79.1° finden sich in Tabelle 15. Sie folgen unmittelbar aus der Kombination der $p\,v_{\,{\mbox{\scriptsize K}}^{-}}$ Werte in den Tabellen 13 und 14. Zum Vergleich stehen in der letzten Kolonne die entsprechenden Werte Witkowskis (s. l. c.).

Tabelle 15.

Druck in Atmosphären	$\begin{array}{c} \text{Ausdehnungs-} \\ \text{koeffizient} \\ K \end{array}$	$\begin{array}{c} \text{Ausdehnungs-} \\ \text{koeffizient} \\ W \end{array}$
1	2	3
25	0.00411	0.00411
50	459	457
75	504	503
100	535	537
125	547	551
150	547	
175	533	
200	512	

Die Resultate der Tabellen 13 und 14 sind auf Tafel III graphisch dargestellt. Die kleinen Abweichungen zwischen dieser Darstellung und den Zahlenwerten der Tabellen sind wegen des aus Reproduktionsgründen gewählten, etwas zu kleinen Maßstabes, unvermeidlich.

III. Teil.

Berechnung des Verhältnisses der spezifischen Wärmen.

Aus Gleichung (1) folgt, wenn man die nachfolgende Entwickelung auf die Masseneinheit bezieht:

(2)
$$k = -\frac{c^2}{v^2} \frac{1}{\left(\frac{\partial p}{\partial v}\right)}.$$

Die im II. Teil festgelegten Isothermen setzt man in der Form an:

$$(3) p \cdot v = f(p)$$

und erhält daraus:

Aus (4), (2) und (3) ergibt sich:

(5)
$$k = c^2 \cdot \frac{f(p) - p \frac{df(p)}{dp}}{f_{(p)}^2}.$$

Für Luft von 0° und Atmosphärendruck ist:

$$f(p) = 1$$
 und $\frac{df(p)}{dp} = 0$,

das letztere wegen der für unsere Zwecke genügend genauen Annäherung an den idealen Gaszustand.

Also:

(6)
$$k_0 = c_0^2$$
.

Aus (5) und (6) folgt:

(7)
$$k = k_0 \left(\frac{c}{c_0}\right)^2 \frac{f(p) - p \frac{df(p)}{dp}}{f_{(p)}^2}.$$

In Tabelle 16 sind noch einmal sämtliche Daten zusammengestellt, die nötig sind, zur Berechnung von $\frac{c_p}{c_v} = k$ bei 0°.

In Reihe 1 steht der Druck in Atmosphären à 76 cm Quecksilber von 0° , in 2 das Verhältnis der Schallgeschwindigkeiten aus Tabelle 7, in 3 der Wert von f(p) aus Tabelle 13, in 4 der graphisch ermittelte Wert von $\frac{df(p)}{dp}$, in 5 der Wert von k und in 6 zum Vergleich der k-Wert Witkowskis für die gleichen Bedingungen. Als Wert von k_0 wurde angenommen:

$$k_0 = 1.4053.1$$

Tabelle 16. $t = 0^{\circ}$.

p	c/c_0	f(p)	$\left \frac{df(p)}{dp} \cdot 10^{-5} \right $	k	k Witk.
1	2	3	4	5	6
25	1.007	0.9821	51.3	1.470	1.47
50	1.021	0.9732	- 27.4	1.527	1.53
75	1.039	0.9682	-15.9	1.586	1.58
100	1.061	0.9656	+ 1.6	1.636	1.64
125	1.091	0.9685	+ 22.3	1.677	
150	1.126	0.9762	+ 37.3	1.721	
175	1.166	0.9875	+50.3	1.762	
200	1.212	1.0016	+ 62.7	1.803	

Die Fehlergrenze für die Werte der Reihe 5 ergibt sich als Summe der Teilresultatfehler. Zu den in Teil I und II diskutierten Fehlermöglichkeiten kommt der Fehlereinfluß, herrührend von der Bestimmung von $\frac{df(p)}{dp}$ Dieser Einfluß ist zufolge (7) an sich gering. Die graphisch wiederholt und aus Kurven verschiedenen Maßstabs entnommenen Werte von $\frac{df(p)}{dp}$ stimmten untereinander meist vorzüglich überein. Abweichungen von Prozenten waren selten. Dadurch kann der Wert von k in ungünstigen Fällen um Beträge von der Größenordnung von $1^{0}/_{00}$ beeinflußt werden. Alles zusammen wird man die Endwerte der 0^{0} -Reihe für auf $1/_{2}$ $0/_{0}$ verbürgt halten dürfen.

In Tabelle 17 stehen die Daten zur Berechnung von k für — 79.3°. Die Bedeutung der einzelnen Kolonnen ist dieselbe wie in Tabelle 16. In Anbetracht der erhöhten Schwierigkeiten wird man die Genauigkeit der k-Endwerte hier nur auf etwa 1 0 / $_{0}$ schätzen.

Röntgen, Pogg. Ann. 148, S. 580, 1873.
 Abh. d. II. Kl. d. K. Ak. d. Wiss. XXIII. Bd. II. Abt.

Die Resultate der Tabellen 16 und 17 sind auf Tafel IV dargestellt. Mit den Werten Witkowskis stimmen die k-Werte der Tabelle 16 befriedigend, die der Tabelle 17 weniger gut.

Tabelle 17. $t = -79.3^{\circ}$.

p	c/c_0	f(p)	$\frac{df(p)}{dp} \cdot 10^{-5}$	k	k _{Witk} .
1	2	3	11.014.10	5	6
1	0.842	0.7092	0	1.405	
25	0.830	0.6623	188	1.566	1.58
50	0.829	0.6194	— 162	1.763	1.79
75	0.841	0.5814	- 128	1.992	2.06
100	0.882	0.5566	— 63.1	2.187	2.30
125	0.955	0.5489	- 8.1	2.378	
150	1.040	0.5534	+ 41.8	2.435	
175	1.130	0.5709	80.3	2.370	
200	1.224	0.5954	+ 106	2.277	001
			20000		

Auch mit dem, was von dem Verhalten der spezifischen Wärmen anderer reeller Gase bisher bekannt ist, 1) stimmen die Resultate der vorliegenden Untersuchung qualitativ gut überein.

Schließlich sei kurz hingewiesen auf die Lage des Maximums von c_p/c_v . Die van der Waalssche Zustandsgleichung:

$$\left(p + \frac{a}{v^2}\right)(v - b) - R \cdot T = 0,$$

zusammen mit der für alle homogenen Körper geltenden Beziehung:

$$\begin{pmatrix} \frac{\partial}{\partial p} \end{pmatrix} = - \vartheta \begin{pmatrix} \frac{\partial^2 v}{\partial \vartheta^2} \end{pmatrix}$$

ergibt für das Maximum von c_n die Bedingung:

Endwerte der 0° Keibe für auf
$$v_{\rm K} = 3$$
 $b = v_{\rm K}$, halten dürfen.

wo v_K das kritische Volumen bedeutet. Da dieselben Grundgleichungen verlangen $c_v = \text{const.}$, so folgt für das Maximum von $\frac{c_p}{c_s}$ gleichfalls: $v = v_K$.

¹⁾ Literatur bei Knoblauch und Jakob: Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, Heft 35 und 36. Valentiner, Drudes Ann. 15, S. 74, 1905.

Für Luft liegen sehr gut übereinstimmende Werte von Olszewski und v. Wroblewski vor für die kritische Temperatur T_K und den kritischen Druck p_K . Das Mittel aus den Werten beider Beobachter 1) ist:

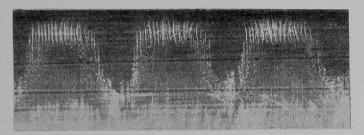
$$T_K = 132.5^{\circ}$$
 abs. $p_K = 39.3$ Atm.

Daraus ergibt sich mit Hilfe der aus der van der Waalsschen Zustandsgleichung folgenden Beziehungen:

$$p_{\scriptscriptstyle K} = \frac{a}{27 \, b^2}; \quad R \cdot T_{\scriptscriptstyle K} = \frac{8 \, a}{27 \, b};$$

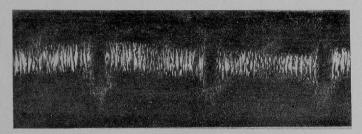
wenn man R = 0.00366 nimmt, der Wert:

$$v_K = 3 \ b = 0.00463.$$

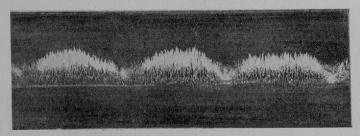

Für — 79° müßte also zufolge der im zweiten Hauptabschnitt gegebenen Isothermen c_p seinen Maximalwert bei rund 120 Atmosphären erreichen, für 0° bei Drucken höher als 200 Atmosphären.

Die qualitativ gute Übereinstimmung dieser aus der van der Waalsschen Zustandsgleichung gezogenen Schlußfolgerung mit den Resultaten der vorliegenden, auf ganz anderen Grundlagen basierenden Experimentaluntersuchung ist immerhin bemerkenswert.

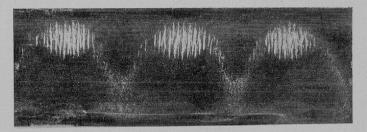
Eine eingehendere Verwertung des gewonnenen Beobachtungsmaterials zur Prüfung thermodynamischer Beziehungen ist in Aussicht genommen.


¹⁾ Landolt-Börnstein, Tabellen, 3. Aufl., S. 186.

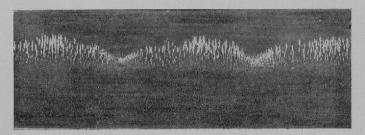
1


Wellen im Kontrollrohr p=1 Atm. t= ca. 15°

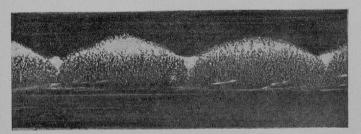
3


Wellen im Untersuchungsrohr $p=29\,\mathrm{Atm}.$ t=0°

5

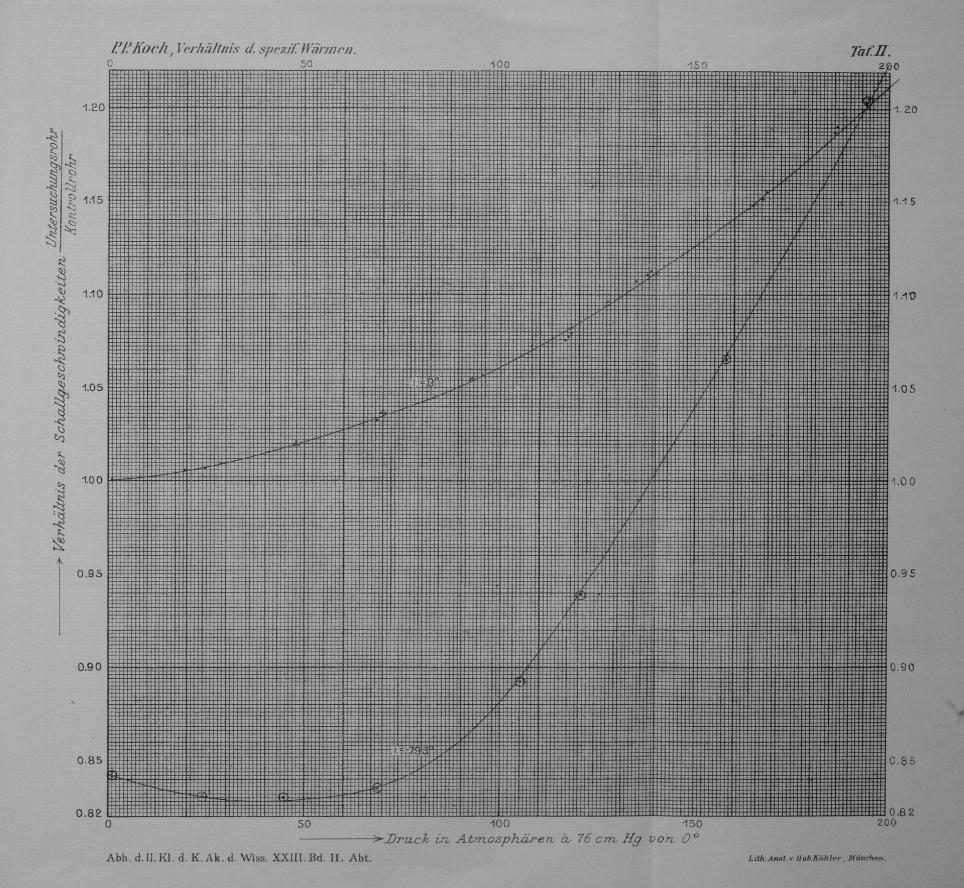

Wellen im Untersuchungsrohr $p=115.5~\mathrm{Atm.}$ $t=-79^{\circ}$

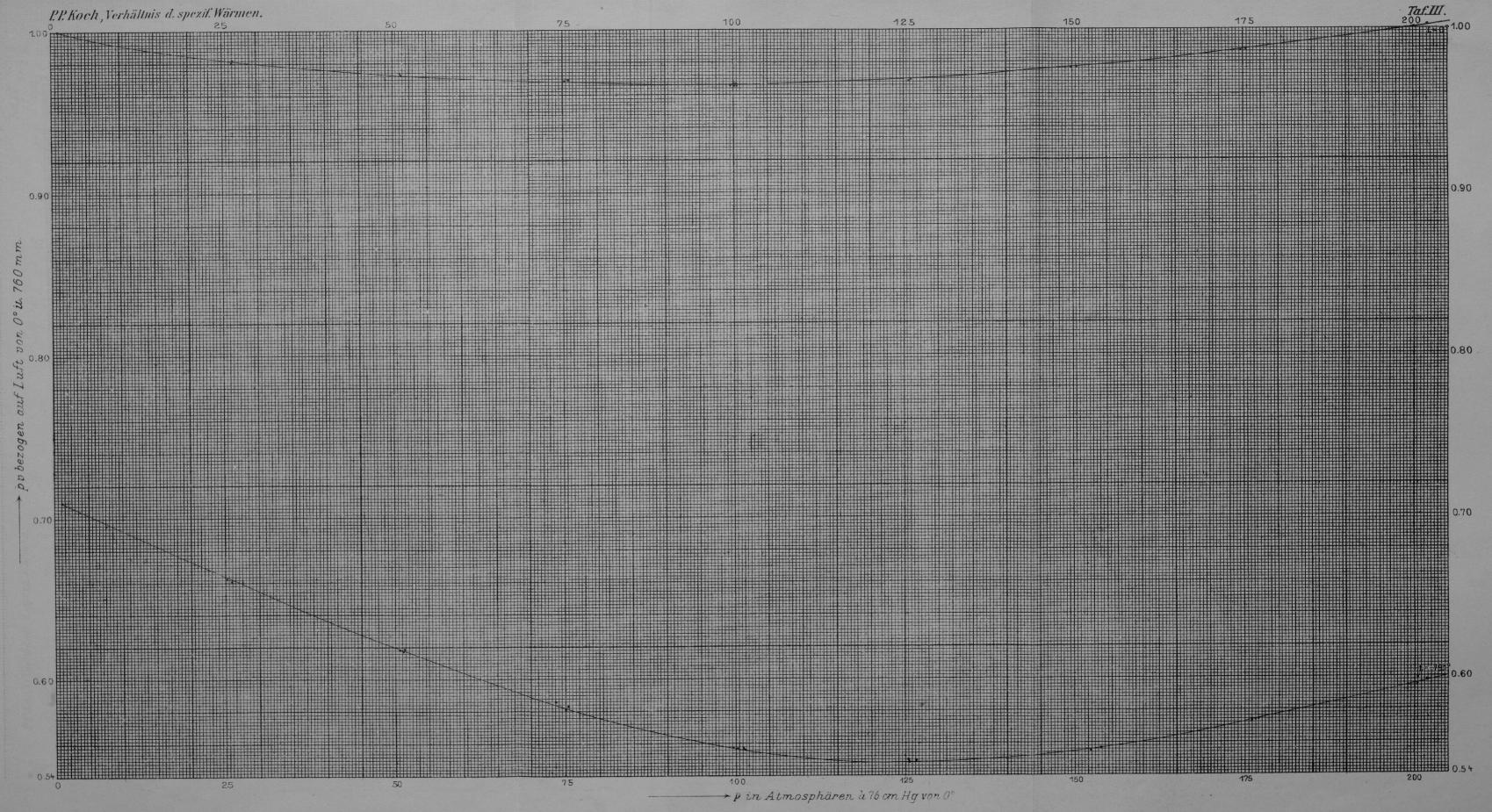
9

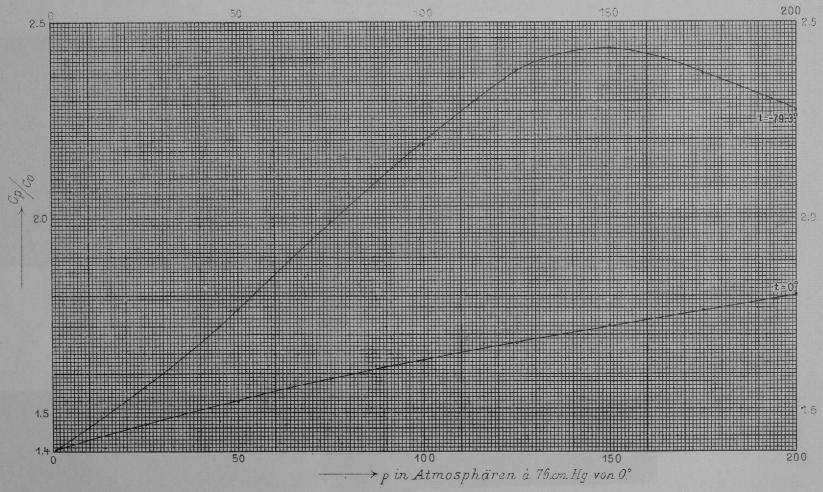

Wellen im Untersuchungsrohr $p=11.5\,\mathrm{Atm}.$ t=0

4

Wellen im Untersuchungsrohr $p=195~\mathrm{Atm}.$ t=0


6




Wellen im Untersuchungsrohr p = 195 Atm. t = -790

Abh. d. II. Kl. d. K. Ak. d. Wiss, XXIII. Bd. II. Abt.

Abh. d.II. Kl. d. K. Ak. d. Wiss. XXIII. Bd. II. Abt.

Lith. Anst. v. Hub. Köhler, München.