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Abstract

Feature based image matching aims at finding matched features between two or more images. It is one of
the most fundamental research topics in photogrammetry and computer vision. The matching features are
a prerequisite for applications such as image orientation, Simultaneous Localization and Mapping (SLAM)
and robot vision. A typical feature based matching algorithm is composed of five steps: feature detection,
affine shape estimation, orientation, description and descriptor matching. Today, the employment of deep
neural network has framed those different steps as machine learning problems and the matching performance
has been improved significantly.

One of the main reasons why feature based image matching may still prove difficult is the complex change
between different images, including geometric and radiometric transformations. If the change between images
exceeds a certain level, it will also exceed the tolerance of those aforementioned separate steps and, in turn,
cause feature based image matching to fail. This thesis focuses on improving feature based image matching
against large viewpoint and viewing direction change between images. In order to improve the feature based
image matching performance under these circumstances, affine shape estimation, orientation and description
are solved with deep learning architectures. In particular, Convolutional Neural Networks (CNN) are used.

For the affine shape and orientation learning, the main contribution of this thesis is twofold. First, instead of
a Siamese CNN, only one branch is needed and the loss is built based on the geometric measures calculated
from themean gradient or secondmomentmatrix. Therefore, for each of the input patches, a global minimum,
namely the canonical feature, exists. Second, both the affine shape and orientation are solved simultaneously
within one network by combining the loss used for affine shape and orientation learning. To the best of the
author’s knowledge, this is the first time these two modules are reported to have been successfully trained
simultaneously.

For the descriptor learning part, a new weak match is defined. For any input feature patch, a slightly
transformed patch that lies far from the input feature patch in descriptor space is defined as a weak match
feature. A weak match finder network is proposed to actively find these weak match features. In a following
step, the found weak matches are used in the standard descriptor learning framework. In this way, the
intra-variance of the appearance of matched feature patch pairs is explored in depth and, accordingly, the
invariance of feature descriptors against viewpoint and viewing direction change is improved.

The proposed feature based image matching method is evaluated on standard benchmarks and is used to
solve for the parameters of image orientation. For the image orientation task, aerial oblique images are taken



into account. Through analysis of the experiments conducted for small image blocks, it is shown that deep
learning feature based image matching leads to more registered images, more reconstructed 3D points and a
more stable block connection.

Keywords feature-based image matching, image orientation, descriptor learning, feature orientation, affine
shape estimation, deep learning, CNN, oblique aerial images
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Kurzfassung

Die merkmalsbasierte Bildzuordnung zielt darauf ab, übereinstimmendeMerkmale zwischen zwei oder mehr
Bildern zu finden. Es ist eines der grundlegendsten Forschungsthemen in Photogrammetrie und Computer
Vision. Übereinstimmende Merkmale sind eine Voraussetzung für Anwendungen wie Bildorientierung, Si-
multaneous Localization and Mapping (SLAM) und maschinelles Sehen. Ein typischer merkmalsbasierter
Zuordnungsalgorithmus besteht aus fünf Schritten: Merkmalserkennung, Schätzung der affinen Form, Ori-
entierung, Beschreibung und Deskriptorzuordnung. Heutzutage bilden tiefe neuronale Netze den Rahmen,
um die verschiedenen Schritte als Probleme des maschinellen Lernens zu verstehen, dabei wurde die Qualität
der Bildzuordnung erheblich verbessert.

Einer der Hauptgründe, warum sich die merkmalsbasierte Bildzuordnung immer noch als schwierig erweisen
kann, ist der komplexe Unterschied zwischen verschiedenen Bildern, einschließlich geometrischer und ra-
diometrischer Transformationen. Wenn der Unterschied zwischen Bildern bestimmte Größen annimmt,
überschreitet er die Grenzen der in den genannten separaten Schritten verwendeten Lösungen und führt dazu,
dass die merkmalsbasierte Bildzuordnung fehlschlägt. Diese Arbeit konzentriert sich auf die Verbesserung
der merkmalsbasierten Bildzuordnung bei großen Basislängen und unterschiedlichen Blickrichtungen zwis-
chen Bildern. Um die merkmalsbasierte Bildzuordnungsleistung unter diesen Umständen zu verbessern,
werden affine Formschätzung, Orientierung und Beschreibung mit Deep Learning Architekturen genutzt.
Insbesondere werden Convolutional Neural Networks (CNN) verwendet.

Für das Lernen von affiner Form und Orientierung liegt der Hauptbeitrag dieser Arbeit in zwei Bereichen.
Einerseits wird anstelle eines siamesischen CNN nur ein Zweig benötigt, und die Verlustfunktion wird
basierend auf den geometrischen Maßen aufgebaut, die aus dem mittleren Gradienten oder der Matrix der
zweiten Momente berechnet werden. Daher existiert für jedes der Eingabefenster ein globales Minimum,
nämlich das kanonische Merkmal. Andererseits werden sowohl die affine Form als auch die Orientierung
gleichzeitig in einem Netzwerk bestimmt, indem die Verlustfunktionen beiden Teiloptimierungen kombiniert
werden. Nach Kenntnis des Autors ist es das erste Mal, dass diese beiden Module gleichzeitig erfolgreich
trainiert wurden.

Für dasAnlernen desDeskriptorswird eine neue schwacheÜbereinstimmung definiert. Für jedes Eingabefen-
ster wird ein leicht transformiertes Fenster, das im Deskriptorraum weit vom Eingabefenster entfernt liegt,
als schwaches Übereinstimmungsmerkmal definiert. Zum Auffinden dieser schwachen Übereinstimmungen
wird ein eigenes Netz entwickelt. In einem folgenden Schritt werden die gefundenen schwachen Überein-
stimmungen im Standard-Deskriptor-Lernframework verwendet. Das Erscheinungsbild übereinstimmender



Fensterpaare wird eingehend untersucht und die Invarianz vonMerkmalsdeskriptoren gegenüber Blickwinkel
und -richtungsänderungen verbessert.

Das vorgelegtemerkmalsbasierte Bildzuordnungsverfahrenwird an Standardbenchmarks evaluiert und für die
Bildorientierung genutzt. Für die Aufgabe der Bildorientierung werden Schrägluftbilder verwendet. Durch
die Analyse der für kleine Bildblöcke durchgeführten Experimente wird gezeigt, dass eine auf Deep Learning
Merkmalen basierende Bildzuordnung zu mehr registrierten Bildern, mehr rekonstruierten 3D-Punkten und
einem stabileren Blockverband führt.

Schlagworte merkmalsbasierteBildzuordnung, Bildorientierung, Deskriptorlernen,Merkmalsorientierung,
Schätzung der affinen Form, Deep Learning, CNN, Schrägluftbilder
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1. Introduction

1.1. Motivation

Feature based image matching, also called feature matching, is a method to solve the correspondence problem
between two or more images. Feature matches are a requirement for the estimation of image orientation
parameters (also called pose parameters), which, in turn, are a prerequisite of all geometric appplications
in photogrammetry, robotics and computer vision which involve three dimensions. 3D reconstruction from
multiple images, Simultanesous Localisation And Mappig (SLAM), Structure-from-Motion (SfM) and the
generation of image mosaics all rely on image coordinates of matched conjugate features. Therefore, the
quality of matching algorithms is vital for the stability and quality of the solution to those problems.

For applications such as 3D reconstruction from multiple images, a large enough number of well-distributed
matching points is critical to the orientation of involved images. First, the number of correct matching points
between two images must be as large as the minimum required number of matches to solve the relative
orientation between images. To ensure that enough matches can be derived, hundreds or sometime thousands
of features are detected for each image, mainly relying on the image size, the level of texture contained in
the images and the required number of matching points for the specific application involved. Second, the
matching points should be well distributed in the image and object space. In view of using the coordinates of
matching features as observations to solve the parameters of image geometry, the localization accuracy of the
detected features is vital to the precision of reconstructed 3D points. For applications such as a vision-based
robot navigation system, delivering matching points in real time is required.

For some of the aforementioned applications, there are already several well-engineered feature matching
techniques in use. For instance, SIFT (Scale Invariant Feature Transform) [Lowe, 2004] is used to match
images containing a certain scale and a slight viewpoint and viewing direction change and only few cases of
failure have been reported for matching these types of images. An example for the matching two images for
this case is illustrated in figure 1.1. On the other hand, large relative changes between images, i.e., illumination
change or large viewpoint and viewing direction change, still render feature matching a challenging task.
In addition, strong repetitive patterns and texture-less regions contained in images also pose a challenge to
feature matching. Although feature matching has been studied for several decades, the question of how to
solve these challenging cases still remains.
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(a) The input image pair

(b) Verified matches for the input image pair

Figure 1.1.: An example of matching a pair of images. The first row (a) shows the two input images containing
slight scale as well viewpoint and viewing direction change, while the second row (b) shows
the matches obtained after running SIFT (with affine shape estimation) and two-view geometry
(fundamental matrix) verification. The matches are represented by the green lines linking the
features detected in the first image to the matched features detected in the second image.

As is widely known, feature based image matching is composed of five steps: feature detection, affine shape
estimation, orientation, description and descriptor matching. Among those steps, affine shape estimation is
optional, it is used to decrease the appearance change caused by large relative geometric transformations,
which in turn, is a result of considerable viewpoint and viewing direction change between images. Therefore,
the affine shape estimation of features plays a key role when the viewpoint and viewing direction change
between images are large. The goal of this thesis is to improve the performance of feature matching for
images containing large viewpoint and viewing direction change, so affine shape estimation forms one of the
research focuses.

In essence, detecting and describing features is an alternative way to represent an image. Compared to
the number of pixels contained in an image, only a fraction of features and descriptors are extracted as a
compressed representation of the input image. The most essential requirements for a feature based image
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matching algorithm are the following two aspects: Firstly, the detected features must be distinctive and
invariant to changes between different images may occur. Secondly, with application of a similarity measure
(e.g., the Euclidean distance between vectors), the final representation of features (descriptors) should be
capable of differentiating features despite complex changes. As the appearance of local features obtained
from different images can be very different, each of the components in feature based image matching has a
tolerance for change between images. If changes exceed the tolerance of one or more modules, the feature
matching algorithm tends to fail. This is the starting point of this work.

Among the five steps of feature based image matching, this thesis will take a closer look at feature affine
shape estimation, orientation assignment and description. By casting the design of those three modules as a
machine learning problem using deep neural networks, those three modules are trained and then applied to
real image matching tasks.

First, the feature affine shape estimation, a step after feature detection, is explored in this thesis. By
estimating the features’ affine shape, the estimated transformation parameters are used to resample the
image patch surrounding detected features. In this way, the appearance of resampled feature patches is less
influenced by the viewpoint and viewing direction change of images. To avoid over-parametrization, for a
feature containing specific contents, the estimated affine shape parameters should be unique. This thesis
utilizes some constraints for learning the feature affine shape. Consequently, the whole network strives to
reach a canonical feature patch by optimizing the training loss built based on the utilized constraints.

Similarly, to estimate the orientation of local features, a unique solution should exist for each input feature,
so that the estimated rotation can be used to resample the input patch to its canonical form. This, too, is
explored in this study and a corresponding loss in the feature orientation stage is proposed so that the final
predicted orientation can be used to resample the patch to its canonical form. In addition, the affine shape and
orientation of features should be jointly solvable. However, the existing works failed to jointly estimate those
two modules. In this thesis, the issue of jointly learning those two parts is solved by using a combination of
the loss used in the orientation and feature affine shape estimation network learning.

Feature description is a problem of learning a feature embedding. By using the learned feature embedding,
the output features are more discriminative and robust against viewpoint and viewing direction change. This
thesis uses the Siamese CNN architecture as its starting point and explores ways to use the training data in
a better way. With regard to application, this thesis uses oblique aerial image blocks as test datasets. The
learning based modules are combined and tested on the orientation of those image blocks. Also, the proposed
method is compared to more traditional algorithms and other deep learning based variants.

1.2. Main Contributions

In this thesis, feature description, feature orientation and affine shape estimation are studied. Each of those
modules are first solved separately, by training corresponding neural networks. Then, the trained networks
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are combined to detect and describe features from input images. Also, the trained networks are assessed with
a real image orientation task using images containing large viewpoint and viewing direction change. The
main contributions of this thesis are as summarized here:

• To train the feature descriptor, a Siamese CNN is employed. A novel weak match branch is proposed
to actively find feature patches which have undergone a slight geometric transformation with regard to
a feature patch, but which lie far away from the feature patch in the descriptor space. Then, the found
patches are integrated into the descriptor learning framework. Consequently, the intra-variance of the
appearance of matched features is explored, strengthening the invariance of feature descriptors against
viewpoint and viewing direction change.

• For feature orientation and affine shape estimation, three major contributions are provided. First, to
train the orientation of a local feature, a novel feature orientation learning architecture is proposed.
Instead of using Siamese CNN branches to train the feature orientation, the architecture proposed here
uses only a single branch network. The rotation of a predicted patch is calculated using its mean
gradient in x and y direction. In this way, a unique global minimum solution is present as long as
the included feature patch does not contain symmetric patterns. Second, also to train the affine shape,
only a single branch network is needed instead of using a Siamese CNN. The affine shape of a patch
predicted by the affine shape network is measured by the skew and stretch calculated using the second
moment matrix. Similar to feature orientation, a unique global minimum which corresponds to the
canonical feature patch is derived. Third, affine shape and orientation are learned simultaneously in
one network. To the best of the author’s knowledge, this is the first time that those two modules have
been reported to be successfully learned simultaneously.

• Concerning applications this thesismakes use of oblique aerial image blocks to test the real performance
of the feature matching method composed by the proposed learned modules. In these oblique aerial
image blocks, challenging viewpoint and viewing direction change are included. Additionally, different
types of landscape are studied and compared. First, the experiments based on image orientation tasks
serve to check the performance of the proposed image matching method. Second, the image orientation
tasks conducted in the experiment are seen as a pilot study which allows the extension of the proposed
method to larger and more complete aerial image blocks in which challenging viewpoint and viewing
direction change are included, e.g., oblique aerial image blocks.

1.3. Thesis Outline

The thesis is structured as follows. Chapter 2 introduces the theoretical groundwork the proposed feature
matching method relies on, including the steps in a feature based image matching algorithm, the general and
concise concept of Convolutional Neural Network (CNN) as well as Siamese CNN. Chapter 3 contains the
state of the art. The present work on feature detection, orientation, affine shape estimation and description is
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reviewed in Sections 3.1 through 3.3. A typical application that deals with the orientation of oblique aerial
images is reviewed in section 3.4. The research issues are identified in section 3.5. In the next chapter,
the main contribution of this thesis is explained in detail. In particular, section 4.1 provides an overview
of the proposed feature matching method, followed by a demonstration of the proposed feature description,
feature affine shape and orientation as well as the full affine shape estimation module from section 4.2 to 4.5.
Section 4.6 explains how the trained networks are combined into an inference pipeline that can detect and
describe features of an input image. The model assumptions, theoretical limitations as well as other closely
related issues of the method proposed in this thesis are discussed in Section 4.7. The results for four different
experimental tasks designed in this thesis are shown in Chapter 5. The implications of the results as well
as the advantages and limitations of the methodology are discussed in Chapter 6. Finally, conclusions are
drawn and future work directions are sketched in Chapter 7.
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2. Basics

In this chapter, necessary basic knowledge for understanding the classical feature based image matching
framework and deep learning feature based image matching are discussed. First, the concept of a classical
feature based image matching pipeline is explained. Second, convolutional neural network (CNN) [LeCun
et al., 1989] and Siamese CNN [Bromley et al., 1994] are illustrated, for both parts are used in descrip-
tor learning and other related modules in this thesis to improve the local feature based image matching
performance.

2.1. Feature based Image Matching

This section first provides an overview of the feature based image matching algorithm, followed by the
desired properties for features and descriptors. Afterwards, the different components of a feature based
image matching algorithm are explained.

2.1.1. Overview: What is Feature based Image Matching?

Feature based imagematching is composed of five steps: feature detection, affine shape estimation, orientation
assignment, feature description, and feature matching [Szeliski, 2010]. The basic pipeline of a feature based
image matching algorithm is shown in figure 2.1. Before discussing each step in detail, a brief overview
describing the process of feature based image matching is necessary.

feature
detection

affine shape
estimation

orientation
assignment

feature
description

descriptor
matching

input:
image

position
and scale

affine
shape

rotation
angle

feature
descriptor

feature
matches

Figure 2.1.: Feature detection and description pipeline.
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Local features are corners or blobs appearing in a distinctive position in the image, robust to small trans-
formations between images. They are not necessarily salient image corners to the human eye, but they are
distinctive based on some mathematical model. Since scale differences between overlapping images are
common, in particular for close-range imagery, features are normally detected in scale space to retrieve their
characteristic scale. Once those features are determined, their position and scale (size) are known.

In the next step, an affine shape correction of the feature is used to decrease the influence of skew and unequal
scale in the two image coordinate axes. In this context, it is important to note that the affine transformation
models perspective distortions and is typically required for large-baseline image pairs with convergent viewing
directions. It is valid as an approximation of central perspective for small image windows. Subsequently,
the principal orientation of the detected feature is estimated, taking into account different rotations of the
two images around the viewing direction. Through those steps, the position, scale, affine shape and rotation
of features are determined. According to these geometric elements, a (usually square) window around the
detected feature is resampled to remove the geometric distortion, yielding a canonical description of the grey
value neighbourhood. The size of the resulting feature support window is normally set to be several times its
characteristic scale. This window is then used as input for feature description. During feature description, a
high-dimensional feature vector is derived from the feature support window. This vector is used to represent
the detected feature. Descriptors are normally designed to be invariant against a limited level of geometric
and illumination changes. One example showing the application of these aforementioned steps is illustrated
in figure 2.2.

After descriptors are derived independently for each image, the correspondence problem can be cast as a
neighbourhood search in the high dimensional feature space of the feature descriptors. Two related issues
are essential: the similarity between potentially conjugate vectors and the computational complexity of
finding these conjugate features. Based on the similarity measure, e.g., the Euclidean distance of the vectors,
strategies like the search for the nearest neighbour, the ratio between the distance to the nearest and the second
nearest neighbour [Lowe, 2004], and a distance threshold are employed to find matches. The problem of
efficiently finding nearest neighbours in descriptor space is normally solved by indexing high-dimensional
data, as seen e.g. in Beis and Lowe [1997].

2.1.2. Desired Properties for Detected Features and Descriptors

In order to understand how features are detected, it is necessary to first discuss the properties required of
good local features.

What is a Good Local Feature?

In general, desired properties for a good local feature are distinctiveness, seldomness, repeatability, invariance,
precise localization, and speed, as discussed in Barnard and Thompson [1980]; Förstner and Gülch [1987];
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(a) detected features (b) with affine shape estimation

(c) step b with orientation (d) feature support window

Figure 2.2.: An example of features. (a) illustrates two selected detected features; green circles are used to
show their positions and scales (radius of circle); (b) shows the detected features with affine shape
estimation and the final features are then ellipses; (c) shows the assigned orientation for features
after affine shape is estimated; (d) shows the feature support window extract with the correction
from estimated affine shape and orientation with a range of six times the detected scale.

Shi et al. [1994].

A good local feature extracts points or blobs that are different from surrounding pixels. To yield useful
results, the algorithm needs to avoid focusing on image areas containing pixels of homogeneous grey values.
This property is called the distinctiveness of features and it forms the centre measure for most mathematical
models of feature detection. Distinctiveness of features ensures that only features whose surrounding intensity
patterns show high variance are selected. Also, distinctive features tend to be more easily matched, as they
can be distinguished from other pixels in an image.

Another important factor that should be taken into consideration is the number of detected features. The
complexity of feature matching is closely related to the number of features involved. When more features are



18 2. Basics

used for matching, more discriminative descriptors are preferable, largely owing to the fact that the descriptor
space is more crowded as more features are described. However, several thousands of matched features may
be too many to be adequate for many applications related to feature based image matching, e.g., estimating
two-view geometry. Correspondingly, the number of detected features should not exceed a certain range;
this is called seldomness of detected features. Compared to the number of pixels in an image, the number of
detected features in this very image should be only a fraction. Therefore, detected features are considered
compressed representations of an image. Normally, for an image of 1000 x 1000 pixels, only several hundred
distinctive features are extracted.

When two images containing the same scene or objects are taken under different viewing conditions, e.g.,
from different viewpoints and with different illumination, in many cases the same detected features show up in
the part both images have in common: They are repeated. This is called repeatability, which is a prerequisite
for feature matching, on account of the fact that no matches between images can be retrieved when no
corresponding features are detected in those images in the first place. In order to guarantee repeatability,
feature detectors need to be designed invariant against geometric and radiometric deformations such as a
wide baseline, rotation, etc., and robust to image noise, blur, and other factors that might conceal repetitive
features. To achieve the necessary degree of invariance, mathematical models describing the underlying
transformations are built. These are then used to design methods that are insensitive to the mathematical
transformations [Tuytelaars and Mikolajczyk, 2008].

If the detected features are to be applied in further applications, such as calibrating cameras and 3D recon-
struction, the location of these features should be determined as precisely as possible. Estimating the camera
parameters and calculating the orientation between images relies on the precision of feature coordinates. In
general, detecting features on edges, in this case, should be avoided. Along the edge, the variance of local
image window is too low, making the localization of those features infeasible.

Another important aspect for feature detectors is their speed, especially for applications like real-time
mapping, which are meant to be run with high processing speed. Improving the speed normally decreases
the performance of features in one or several aspects, for example repeatability, robustness, or localization
accuracy. Designing feature detectors for maximum efficiency therefore is a highly specific task that must
take into consideration which properties of features may be sacrificed under which circumstances.

What is a Good Feature Descriptor?

A good descriptor should have discriminability, invariance and an adequate level of locality. However,
discriminability and invariance can be competing properties when invariance requires descriptors to be
stable facing deformations, whereas discriminability requires descriptors to be sensitive to the change of
patch contents surrounding features. Invariance of descriptors is usually achieved by proper aggregation
or integration, e.g, through histograms of feature response. Discriminability, in turn, is often acquired by
amplification of the changes, i.e., by application of differential methods such as calculating gradients.
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Another pair of competing properties is the distinctiveness and locality. A larger support window improves
distinctiveness. However, using larger windows also increases the probability of introducing content with
occluded areas, which counteract the increasing discriminability of larger context windows. Moreover, the
increasing range of feature support windows also decreases the locality of features.

2.1.3. Scale-Invariant Feature Detection

Feature Detection in Scale Space

The determinant of the Hessian matrix computed in image plane can be used to measure the distinctiveness
of pixels under a specific scale [Mikolajczyk et al., 2005]. The Hessian matrix is defined as

� =

[
!GG (G, f�) !GH (G, f�)
!GH (G, f�) !HH (G, f�)

]
(2.1)

where !8 9 (G, f�) is the second order Gaussian smoothed image derivative in 8 and 9 direction with scale f� .

The determinant of the Hessian �� measures the extent of the change in local image content with respect to
scale f� in two orthogonal directions. It is extended to multiple scales by changing scale factor f� , creating
a scale-space. Within this scale space, the response of features is calculated on multiple scales. The response
extrema in both image dimensions and in the scale dimension are collected as candidate features. The scale
on which they achieve these extreme values are their characteristic scales. The localization is further refined
by Taylor expansion of the scale space.

The trace of � equals !GG (G, f�) + !HH (G, f�), which is also known as Laplacian. Alternatively to the
determinant of the Hessian, Laplacian is used to measure the distinctiveness of features. This is approximated
by subtracting adjacent layers in Gaussian scale space [Lindeberg, 1994], which is known as Difference of
Gaussian (DoG), used e.g. in Lowe [2004] as the detector of SIFT (Scale Invariant Features Transform). The
Laplacian of Gaussian (LoG) responds when the sum of !GG (G, f�) and !HH (G, f�) is large. In this way,
the danger of locating features on the edges where only one of the two second derivatives is large still exists.
This is why an extra edge response elimination step is applied after DoG extreme extraction in SIFT [Lowe,
2004], and also in the Förstner operator [Förstner and Gülch, 1987].

Compared to the Laplacian of Gaussian, the determinant of the Hessian only responds strongly where large
variations occur along any two orthogonal directions. It also penalizes the elongated structure where the
second derivate along one direction is small [Mikolajczyk et al., 2005]. The determinant of theHessian creates
a more restricting condition and performsmore reliably than the Laplacian when facing affine transformations
[Lindeberg, 2015; Mikolajczyk et al., 2005] between images.

In order to be invariant against scale change, a scale space representation [Lindeberg, 1994] with different
feature responses is constructed. The characteristic scale, as stated already, is selected for a point where its
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feature response attains a local extremum over scales, namely larger or smaller than responses at adjacent
finer and coarser scales. To achieve this, the Laplacian of Gaussian is used as response since it yields the
best experimental result compared to other choices, such as Mikolajczyk and Schmid [2001]. In SIFT [Lowe,
2004], the scale selection uses Difference of Gaussian (DoG) response directly in DoG scale space, as DoG
is an approximated version of LoG.

2.1.4. Feature Affine Shape Estimation

In order to cope with affine transformations in images, the affine shape of local features can be estimated to
correct affine distortion of local features. The second moment matrix is defined as follows:

" = f2
�6(f� ) ∗

[
!2
G (D, f�) !G (D, f�)!H (D, f�)

!G (D, f�)!H (D, f�) !2
H (D, f�)

]
(2.2)

where !G (D, f�) is image first order derivative in G direction computed with Gaussian kernels on scale
f� in position D.6(f� ) is the Gaussian window function with standard deviation f� . The ratio of the two
eigenvalues of " measures the level of isotropy. As a result, " is used to create a correction matrix which is
then applied to normalize a local image pattern. A practical way of achieving this affine shape correction is
to apply the inverse of the second moment matrix in an iterative way until the smaller and larger eigenvalues
of " are close to each other. This normalization brings the anisotropic scale change to a uniform change. A
more detailed description of affine shape adaption theory is to be found in the appendix A.

2.1.5. Feature Orientation Assignment

Up to this point, the feature’s position, scale and affine shape have been identified. This already determines
the geometric frame of a feature, but only in rotation-free cases. To achieve the invariance against rotation
for detected features, the next parameter to be detected is the orientation (rotation) of a local feature.

To solve this, a sampling pattern in a range proportional to the characteristic scale around the detected features
is applied. One possible strategy for assigning the feature orientation using the sampling pattern is suggested
in Lowe [2004]: the image gradients are quantized and a gradient histogram is obtained. Then, the peak of
the gradient bin is chosen as the principal direction.

Completing all of the above steps, a feature’s position G, H, scale X, two affine parameters 01, 02, and orientation
\ are obtained. With the help of position and by using the inverse transformation determined by the scale,
affine parameters and rotation, a patch surrounding each detected feature is resampled to a canonical patch
representing a local feature. This canonical patch is then defined as the feature support window for calculating
a descriptor, which, in turn, is a representation of the feature.
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2.1.6. Feature Description

Calculating a descriptor for a feature is in essence amapping process that uses an input feature support window
to create a vector which represents the feature. The plot line for a descriptor design can be summarized as
follows: transformation, aggregation, optional normalization and dimension reduction [Brown et al., 2011].
Transformation refers to the magnification of a signal, i.e., gradients in the SIFT descriptor [Lowe, 2004]
or simple pattern comparisons. The result of this transformation is then aggregated by some statistical
measures, e.g., a histogram of gradients (HoG) for the SIFT descriptor [Lowe, 2004] or a histogram of simple
Haar wavelet response for the SURF descriptor [Bay et al., 2008]. Moreover, the calculated output each
aggregation step creates can be normalized as well, and the dimension can be further compressed through
algorithms like Principle Component Analysis [Ke et al., 2004].

Alternatively, this mapping process can be also conducted by a deep neural network, i.e., using a CNN which
takes images as input and outputs a compressed feature vector through a series of linear and non-linear
transformations. The advantage of using CNN is that the descriptor design problem can be transformed into
a machine learning problem, as shall be explained in later sections.

2.1.7. Descriptor Matching

When descriptors are obtained, matching is converted into finding correspondences in a high dimensional
feature space. The next question is how to measure the similarity of two descriptors. The distance, e.g.,
the Euclidean distance, between any two features in the space is often taken as a measure of their similarity.
Shorter distance indicate higher similarity and higher distance, in turn, mean lower similarity. A k-d tree
is normally built for space partition and thus data can be efficiently structured and indexed. Algorithms
like best-bin-first [Beis and Lowe, 1997] are used to speed up the search for nearest neighbours in higher-
dimensional space. There are, however, more ways to measure similarity, e.g., the use of the Hamming
distance for binary descriptors or the learned similarity measure of two features.

After the descriptors of two images and the similarity measure for features are given, corresponding pairs,
i.e., matches, can be found. For image 1 and 2 containing #1 and #2 descriptors, �4B218 , �4B22 9 [8 ∈
{1, 2, ..#1}, 9 ∈ {1, 2, .., #2}] represent their descriptors. Three common strategies for descriptor matching
are:

• Distance Threshold: Descriptor pairs calculated from different images that lie below a certain distance
are judged as matching pairs.

• Nearest Neighbour: Each descriptor’s nearest neighbour, i.e., the closest descriptor within the de-
scriptor space of different images is identified as a matched feature.

• Nearest Neighbour Ratio: The descriptor’s nearest neighbour as identified in different images must
be significantly closer than the second nearest neighbour. Considering the distance between the
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feature and its nearest neighbour 3=40A4BC and that distance between the features to its second nearest
neighbour 32=3=40A4BC , this means that if the ratio between 3=40A4BC and 32=3=40A4BC is lower than a
certain threshold, e.g., 0.8, the feature and its nearest neighbour are judged as a matching pair.

This thesis will not address the descriptor matching algorithm, but concentrates on the feature description,
orientation and affine shape estimation.

2.2. Convolutional Neural Network (CNN)

A Convolutional Neural Network [LeCun et al., 1989] is a kind of neural network which contains multiple
layers of convolution, activation, pooling and, optionally, fully connected layers. In fully connected neural
networks, a transformation connects each input and output unit, whereas a CNN shares the transformation
parameters across the whole input image or feature maps by sliding the convolution kernel. This parameter
sharing strategy decreases the number of parameters significantly.

2.2.1. Architecture of CNN

In CNN, convolution, point-wise non-linear activation, pooling and batch normalization form one layer.
Before exploring how this layer is used in feature based image matching, the three aforementioned basic
modules it contains are shortly explained.

Convolution: The input is first convolved with one or more convolution kernels, including bias. As more
than one convolution kernel can be used, a corresponding number of feature maps can be obtained. Training
parameters are the elements of the convolution kernel matrix and bias; super parameters are the size of the
convolution kernel, as well as stride and padding. Stride indicates how far each step of sliding moves the
kernel. Padding indicates if zeroes need to be added at the borders of input images before convolution.

Activation: Point-wise non-linear activation, e.g., Sigmoid function or Rectified Linear Units (ReLU) [Nair
and Hinton, 2010] are applied to convolution outputs. This step brings non-linearity to the network and acts
as the key to increasing the modelling complexity of CNN.

Pooling: Afterwards, a statistical operation, i.e., applying the average or maximum function in a local
neighbourhood, may be used to down-sample the feature maps. This optional procedure is called pooling.
It compresses signals from lower level convolutions and decreases the spatial resolution of feature maps in
both height and width. Alternatively, increasing the stride of the convolution operation can also decrease the
spatial resolution of feature maps in height and width.
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Batch Normalization: Batch Normalization [Ioffe and Szegedy, 2015] is another optional step widely
used after each convolution operation to speed up the training process. The basic idea is to normalize the
feature maps with mean and standard deviation, thereby preventing the feature maps from being influenced
by covariate shift [Ioffe and Szegedy, 2015], which means that the distribution of variables differs from one
dataset to another.

Figure 2.3.: Typical structure of a Convolutional Neural Network (CNN) for descriptor learning. The input
images are first convolved (shown in green input and output in the first feature map) and activated
by the point-wise non-linear activation function, followed by a pooling operation (as shown
by the orange input grid in the first feature map, and the output grid in the second feature
map) to decrease spatial resolution. Another layer of successive convolution-activation-pooling
operations is applied, and after the third convolution layer, the output feature map is compressed
into a high-dimensional vector where the width and height of the output feature map decrease to
one.

An example of this architecture used in descriptor learning is shown in figure 2.3. More than one layer is
applied to the input image, each sequence decreasing spatial resolution while increasing the depth of the
feature maps involved as the network moves from lower layers to higher ones. The training parameters of the
entire CNN are the convolution kernels in each convolution layer.

Finally, a loss function is defined. This function is often related to the task, e.g., it can be based on cross
entropy loss for image classification problems, or on the norm distance of descriptors for feature descriptor
learning. The learning objective for the entire network is to minimize the loss function through training.

2.2.2. Training of CNN

There are two basic forms of data flow in CNN: forward propagation and backward propagation. In between,
the gradients of parameters are calculated and employed to update the training parameters.

Forward Propagation: The input image is fed into the network, and the output of each layer is computed
in a successive way. The output of one layer is then taken as the input for its successive layer. The forward
propagation ends when the loss is obtained. In supervised CNN learning problems, the loss is usually
calculated with the ground truth labels of training samples, which are part of the training data. In forward



24 2. Basics

propagation, the data flows from layers, which are closer to input data, to those closer to the loss function.

Backward Propagation: After loss calculation, the partial derivatives of loss with regard to the training
parameters of each layer are calculated. As the whole network is active in a nested way, the gradient
calculation follows a chain rule. Specifically, it starts with calculating the gradients of loss with regard to
the output of the final layer, then moves on to the gradients of loss concerning the training parameters of the
second-to-last layer until it reaches the gradients of loss connected to the training parameters in the first layer.
In this way, the gradients of all unknowns (training parameters in all layers) are calculated. As the gradient
computation propagates from the output of a network to the input layer of the network, this process is called
backward propagation. Once backward propagation is complete, the partial derivatives of loss with regard
to all of the training parameters in the network are all completed. Those gradients are further used in the
parameter updating step.

Forward
Propagation

Loss

Backward
Propagation

Gradients of
Parameters

Parameters
update

Figure 2.4.: Running circle of the CNN training algorithm. Through forward propagation, loss is calculated,
followed by backward propagation to derive the gradients of training parameters, which are
then used to update parameters according to the updating rules of the selected optimizer. A
new iteration starts again, once the training parameters have been updated. This ceates the
characteristic circular process of training loops shown in the figure, until the network reaches its
stop criteria, e.g., the maximum amount of iteration steps.

Parameter Update: After obtaining the derivatives of loss with regard to training parameters, those training
parameters are updated following the rules of optimizers. One standard among these is the so-called standard
gradient descent, which subtracts the gradient of corresponding parameters from the current parameter by
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application of a small learning rate. This updating aims at “moving” parameters to a place where the loss
decreases. However, this is not always guaranteed because of the highly non-convex shape of the loss
function. The updating rules contain many variants, e.g., gradients with momentum, adaptive momentum,
or Nesterov gradient descent [Nesterov, 2013].

The whole training process is circular, as shown in 2.4. This circle can run individually for each training
sample. On the one hand, the gradients computed from only one training sample are highly variable and
sensitive to noise. On the other hand, averaging gradients from all training samples (full-batch) in one training
iteration is not realistic because memory is always a limited resource in computation. Instead, mini-batches
containing a smaller number of training samples, i.e. 256 or 512 training samples per batch, are used for
each iteration. Apart from that, the learning rate is an important hyper parameter to set, as it basically tells
the optimization how far each step should “move” the parameters. Setting a too large learning rate renders
the approximation of the loss function curve and the gradients at current estimated value unreliable, whereas
a too low learning rate significantly increases the computation time to reach a feasible solution.

In order to reduce the risk of overfitting, a fraction of units (activation) are randomly assigned to be zero and
their connections (linear combination) to the units in the next layer are dropped in the training stage. This
is called dropout. When the trained model is applied during test phase, all the connections are used, but
reduced by the fraction factor that has been used for switching off neurons in training stage. This strategy is
later used in all the networks related to the methods proposed in this thesis.

2.3. Siamese Convolutional Neural Network

For learning descriptors based onmatching and non-matching pairs, Siamese Convolutional Neural Networks
have proven to be very suitable. “Siamese” refers to the fact that two branches of CNN feature extractors,
one for each input sample containing complex differences, share the same parameters. Already in Bromley
et al. [1994], Siamese CNN were proposed to extract descriptors for the verification of human signatures.
Their structure aims at learning a function by mapping from an input image patch to a feature vector, In this
context, Siamese CNN are able to recognize the writing style of individuals and make the output feature
vectors be invariant against the differences between signatures provided by a same person. By completing
both branches, two descriptors are obtained. The loss function is constructed based on the similarity of output
descriptors. A typical Siamese network is shown in figure 2.5.

By calculating the descriptors for both input patches, namely �4B21 and �4B22, the distance metric of them
is obtained. Further loss is built to ensure that the descriptors of matched (same class) patches can move
close to each other, and the descriptors of unmatched patches to be far from each other. Since complex
transformations can be obtained in the pairs for matched features, high-level invariance is expected to be
achieved through training within this framework. This framework is widely used in applications to include
complex transformations in the data, e.g., pedestrian re-identification [Chung et al., 2017; Blott et al., 2019],
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Figure 2.5.: A typical Siamese Convolutional Neural Network (CNN). The input images normally contain
the transformation the network is learning and will become invariant against after training.
Through two branches of CNN with shared parameters, the obtained descriptors �4B21, �4B22
are constrained based on their distance. This causes the learned descriptors to be invariant against
the transformations contained in the input data.

perdestrain tracking [Nguyen and Heipke, 2020] and feature based image matching [Chen et al., 2016;
Zagoruyko and Komodakis, 2015].

In this thesis, two types of input image pairs are used for training the descriptor. One is a matched image pair
containing transformations, as shown in figure 2.5. The other type of input used are unmatched pairs of images
containing dissimilar features, for which descriptors correspond to different coordinates in high-dimensional
space and should be far away from each other.
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3. Related Work

As introduced in section 2.1, the feature based image matching framework contains feature detection, affine
shape estimation, feature orientation, feature description and descriptor matching. With the exception of
feature matching, these different parts are reviewed in this chapter. Descriptor matching algorithms are not
reviewed for two reasons: Firstly, compared to other modules, the descriptor matching solution used in this
thesis is relatively standard. Secondly, focussing on descriptor matching would only distract from the main
focus of the research documented in this thesis. This chapter, therefore, offers an overview of state-of-the-art
local image feature detection in section 3.1, and a review of feature orientation and affine shape estimation in
3.2, while description is discussed in section 3.3. A brief review of the applications of feature based image
matching in the orientation of oblique aerial images is presented in section 3.4. The final section of this
chapter, 3.5, revisits the findings presented in previous research and summarizes open questions. Part of this
chapter have been published in [Chen et al., 2021].

3.1. Local Feature Detection

3.1.1. Translation and Rotation Invariant Features

The development of so-called interest operators to detect the position of features can be traced back to the
Morevac detector [Moravec, 1979] and the Dreschler operator [Dreschler and Nagel, 1981]. Moravec [1979]
assesses average quadratic gradients in the four main directions (horizontal, vertical and both diagonals) of
a local window. If the minimum of these four values is larger than a given threshold, the window centre is
chosen as an interest point. This reflects the simple idea that a local feature should differ from its surroundings.
Dreschler and Nagel [1981] on the other hand determine pairs of maximum and minimum curvature of the
grey value function in the vicinity of corners. The interest point is then defined as the zero crossing of the
curvature between the two points.

The Moravec detector is not rotation invariant because gradients are estimated in four pre-defined directions.
A better idea is to analyse the auto-correlation matrix (also known as second moment matrix) " [Lucas
et al., 1981]. The two eigenvalues of " contain information on the curvature of the grey value function. If
both of the eigenvalues are small, the region does not show much grey value variation. If one eigenvalue
is large and the other one small, a strong change in one direction and thus an edge is present. If, however,
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both eigenvalues are large, then the local correlation function peaks sharply and represents either a corner
or a certain circular signal [Föstner, 1991]. Förstner calculates the eigenvalues based on the inverse of the
auto-correlation matrix and suggests two indicators related to the size and roundness of the two eigenvalues
[Förstner and Gülch, 1987]. Harris and Stephens [1988] propose a cornerness value, which is computed as
�4C (") − U)A024(")2, where U is a variable balancing determinant and trace. Interest points are found
by comparing the computed cornerness with a threshold. According to Rodehorst and Koschan [2006], the
Förstner operator behaves slightly better than the Harris operator in terms of localization accuracy, detection
and repeatability rate. Instead of the auto-correlation matrix, the Hessian matrix can also be used to detect
features [Lindeberg, 1998]. Based on the determinant and trace of the Hessian matrix, feature selection
criteria similar to the auto-correlation matrix are derived.

The detectors discussed so far are all based on local shift-invariant windows and therefore invariant to
translation of the images. In addition to this, the use of eigenvalues instead of grey value changes in the
direction of the image coordinate axes x and y makes both the Förstner and the Harris operator invariant
against rotations. Detectors based on auto-correlation and the Hessian matrix are also robust against small
scale change. However, with increasing scale change the performance considerably drops [Rodehorst and
Koschan, 2006; Aanaes et al., 2012]. As is widely known, however, scale differences are common, especially
in close-range photogrammetric applications or photo community collections, e.g., downloaded from the
internet [Agarwal et al., 2011].

3.1.2. Scale Invariant Features

Multi-scale interest operators detect features on multiple scales, and then match them across scales. An
example for this process is shown in Brown et al. [2005]. However, this approach only works if the scale
difference between images is not too large or the scale ratio is approximately known a priori. A more
advanced method is to analyse the features using scale-space theory [Lindeberg, 1998] which describes the
scale space at some scale C as a convolution of the original image with the two-dimensional Gaussian function
with a variance of C. When changing C continuously rather than in discrete steps, scale becomes a variable
of a function that maps the original image to scale space. The sum of the second-order derivatives of the
Gaussian function in x and y direction, i.e., the Laplacian of Gaussian (LoG) is used to compute local extrema
in scale space and those extrema are selected as features, which are now scale-invariant.

In the scale invariant feature transform (SIFT) [Lowe, 2004], the LoG is approximated by the Difference of
Gaussian (DoG). Sub-pixel localisation is obtained by fitting a local 3D quadratic to the surroundings of
the extrema in scale space. Today, SIFT is one of the most well-known operators for feature detection (and
description, see below) and performs well in matching images with scale change. Furthermore, SIFT can
also tolerate a certain amount of affine transformation between images.

In Mikolajczyk and Schmid [2004], a scale selection mechanism is added to the Harris corner detector; the
LoG over scale is evaluated at each detected Harris point and those points for which the LoG is an extremum
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are preserved, followed by an optional iterative refinement for both scale and position. The Hessian Laplace
detector [Mikolajczyk, 2002; Mikolajczyk and Schmid, 2004] is similar in spirit to this work, but starts from
points detected using the Hessian matrix.

3.1.3. Detectors based on a Comparison of Grey Values or Saliency

In this category, the grey value of the central pixel is compared with that of the pixels in its neighbourhood.
If the difference is lower than a given threshold, the pixels are considered to be similar. In SUSAN (Smallest
Univalue Segment Assimilating Nucleus) [Smith and Brady, 1997], if the proportion of similar pixels in a
local neighbourhood is a local minimum and below the threshold, the central pixel is selected as a feature.
Another approach, FAST (Features from Accelerated Segment Test) [Rosten et al., 2010], uses machine
learning to accelerate the comparison process. Since comparisons are only run on discrete pixels, the
localization accuracy cannot be refined to sub-pixel level. This category of operators is primarily employed
in applications for which speed is essential, but high localization accuracy is not required.

3.1.4. Detectors based on Machine Learning

Due to different illumination conditions, the 3D shape of the object surface and potentially complex reflection
functions, analysing grey value differences between images using explicit mathematical transformations or
designing features in an intuitive manner may become infeasible. An alternative is to consider feature
detection as a machine learning task.

To take into account changes in illumination, a regressor is trained to predict a score map whose maxima
are points with high repeatability in spite of challenging illumination changes, as suggested in Verdie et al.
[2015]. Afterwards, the features that have proven stable against illumination changes are extracted by non-
maximum suppression. LIFT (Learned Invariant Feature Transform) [Yi et al., 2016b] contains similar
ideas for detectors, but motivates the detection to have good global discrimination between matched and
non-matched feature pairs.

The core idea of the covariant detector is that features detected in the original image patch and then transformed
using some geometric transformation, should be identical to features detected after applying the geometric
transformation to the original image patch. This is used as the covariance constraint of Lenc and Vedaldi
[2016], in which a regressor is employed as a detector to map an image patch to a feature.

An input image can be converted to a response map through trainable models. Then, features are detected as
the top/bottom quantiles in those response maps. As considered in Savinov et al. [2017], the order of those
top/bottom quantiles should be kept constant before and after the input image is geometrically transformed.
A quad-network, composed of two original and two transformed image patches, is used to learn an order-
preserving feature detection network. As mentioned above, Rosten et al. [Rosten et al., 2010] use machine
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learning to improve the speed and repeatability of feature detection based on the grey value comparison of
pixels in the neighbourhood.

3.2. Feature Orientation and Affine Shape Estimation

After a feature is detected with location and scale on the image plane, an image patch surrounding the detected
feature is typically extracted with a size proportional to its scale. This patch reflects the appearance of the
underlying feature and is used as input for descriptor computation. However, due to potentially different
rotations around the viewing direction and also different viewing directions, patches of conjugate features
can be distorted with respect to each other. As mentioned above, these distortions can be modeled as rotation
and affine distortion, i.e., as skew and scale differences between the two axes of the image coordinate system.

Simply requiring the descriptor to be invariant against these relative distortions of the feature support windows
decreases the discrimination power of the descriptors. Alternatively, the rotation difference can be determined
by finding a principal orientation for each image patch surrounding a detected feature, and computing the
descriptor based on that principal direction. Similarly, the affine shape can be estimated. The patches are
then resampled to compensate for rotation and affine distortion between image patches.

3.2.1. Orientation Assignment

Once features have been detected, the orientation of a feature can be estimated by calculating a principal
direction using the gradients calculated in a local window surrounding the detected feature. In SIFT [Lowe,
2004], a histogram of oriented gradients is calculated; the bin with the maximum count is then chosen, and
the corresponding direction is refined by fitting a parabola to the peak and adjacent bins. Other bins with high
values, i.e., larger than 80% of the maximum bin, are retained as secondary principal orientations. Features
with multiple peaks in the support window can be better matched in this way. In SURF (Speeded-Up Robust
Feature) [Bay et al., 2008], Haar wavelet responses in horizontal and vertical direction inside a circular
window surrounding the detected feature are computed and plotted as points in 2D. Responses within a
rotating cone of size c/3 are summed and the principal direction is assigned to the cone direction with the
highest result. Also, the mean gradients in x and y direction in a small window surrounding the detected
feature in the image plane have proven to be helpful in aligning features [Brown et al., 2005].

In Yi et al. [2016a] and Yi et al. [2016b], orientation is estimated by deep learning. The principal direction
for an input patch surrounding a detected feature is predicted by a Siamese convolutional neural network
(CNN), which maximizes the similarity of descriptors calculated for input matched feature patches. A similar
idea is used in Mishkin et al. [2018] and Chen et al. [2020a] to learn the orientation of local features. This
strategy achieves significantly better performance than the aforementioned methods based on handcrafted
features.
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3.2.2. Affine Shape Estimation

Detecting local features in scale space and assigning them an orientation is basically equivalent to normalizing
rotation and scaling of local features before description. However, this transformation is not sufficient to
model the geometric transformations between local image patches in case of large changes in viewpoint
and viewing direction between images. Therefore, perspective changes, which for small windows can be
compensated by an affine transformation, should also be estimated and taken into account before feature
description.

Invariance against affine transformations has also been investigated. The method of Edge-Based Regions
(EBR) [Tuytelaars et al., 1999] uses edges starting from detected Harris points to construct affine invariants.
This method can only be applied to features surrounded by edges, limiting its range of applications. The
approach called Intensity Based Region (IBR) [Tuytelaars and VanGool, 2000, 2004] starts from one detected
feature point and constructs lines in different directions. In each of these directions, the line ends at the local
maximum of grey value change in a pre-defined neighbourhood. Then, an ellipse is fitted through all end
points, and, in turn, used to represent the underlying feature. In Matas et al. [2004], the watershed algorithm
is used to find local extrema employed for ellipse fitting. As reported inMikolajczyk et al. [2005], the features
extracted in this way are sensitive to scale change.

Affine shape estimation theory using the second moment matrix is studied in Lindeberg and Garding [1997];
Baumberg [2000]; Mikolajczyk [2002]; Mikolajczyk and Schmid [2004]. Here, affine Gaussian scale space
is generated by convolution of the image patch with a non-uniform Gaussian kernel, which is represented
by a 2 × 2 covariance matrix Σ. As indicated in Lindeberg and Garding [1997], in an affine Gaussian scale
space, the response of two image patterns related by a particular affine transformation � will be equal if
for the underlying Gaussian kernels Σ1 and Σ2 the following relation holds: Σ2 = �) Σ1�. The second
moment matrix " measures a feature’s level of isotropy and is thus used to describe the covariance matrices,
thus "2 = �)"1�. Based on that, an iterative procedure is proposed to derive features for which the
shape is approximately circular. In Baumberg [2000], the patch surrounding the features is normalised by
multiplying the patch with "−1/2 and then, the second moment matrix for the normalized patch is iteratively
calculated and normalized with "−1/2, until the two eigenvalues of " for the normalized patch are close
enough to each other. As a result, the affine transformation between two image patches is removed and only
a rotation remains. In Mikolajczyk and Schmid [2004], this approach is extended to Gaussian scale space
and Harris-Affine and Hessian-Affine detectors are employed to select the features.

However, a considerable amount of features is removed after the application of the iterative affine adaptation
algorithm, because the ratio of the two eigenvalues remains to be too different from 1. According to
Mikolajczyk and Schmid [2004], only 20-30% of the initially detected features are preserved for further
feature matching. To tackle this problem, affine shape estimation based on a deep neural network is proposed
in Mishkin et al. [2018], where the shape parameters are estimated by minimizing the distance between
the matched descriptors. Affine shape is also learned and used to match images taken from oblique aerial
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cameras in Chen et al. [2020a], in which a notable performance improvement is achieved when compared
to handcrafted algorithms for removing affine distortion. ASIFT (Affine SIFT) [Morel and Yu, 2009], on
the other hand, first simulates the input image with different versions of affine transformations. In a second
step, the DoG features and SIFT descriptors detected in each transformed image are combined for descriptor
matching, a process that makes ASIFT computationally expensive. ASIFT thus does not take algorithmic
measures to estimate local affine shape for each feature, but makes matching more invariant towards affine
distortions by applying a standard algorithms to different simulated views.

A literature summary graph for feature detection, orientation and affine shape estimation is shown in Figure
3.1.

3.3. Local Feature Description

In essence, the description of features is a problem of representation. It transforms the detected features into a
new feature descriptor space, where different features can be more easily discriminated and matched. A local
context window surrounding the feature is typically used to build the descriptor. The simplest descriptor is
the combination of pixel grey values in this feature support window. However, this description is sensitive to
photometric and geometric changes. In the new space, the description should be as invariant as possible to
geometric and photometric transformations between images.

Designing descriptors is difficult because there are many factors influencing the grey values in the feature
support window. A descriptor should be invariant to different types of limited change, e.g., illumination
change, rotation or affine distortions. Therefore, the central challenge of descriptor design is to achieve
invariance against those transformations.

Descriptors are divided into two groups: floating point descriptors and binary descriptors, based on the
value type used. Floating point descriptors are designed for better discriminability, but they usually are
computationally more expensive. Binary descriptors are designed for applications with sparse computational
resources, e.g., real time SLAM or tracking.

The framework of descriptors can be summarized as containing several steps, as suggested by Brown et al.
[2011]: transformation, aggregation, normalization, and dimension reduction. Transformation is often
achieved by a basic filtering operation, such as calculating gradients or the Haar feature response. Filters
are usually designed to preserve and magnify some special local patterns. They can be applied either to the
whole feature support window or only to special positions. Aggregation comprises an integration procedure,
e.g., maximum or mean value computation or histogram generation. As it is based on small regions in the
feature support window, the arrangement of those small regions, i.e., pooling, needs to be determined a priori.
Aggregation also increases the robustness against noise and provides invariance against a limited level of
transformations between images. Normalization transforms a particular value to a fixed range and eliminates
the influence from the absolute response. This improves the robustness against illumination change. As some
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of the descriptors are high-dimensional and different dimensions can have strong correlations, e.g., due to
spatial correlation in the original feature support window, dimension reduction such as principle component
analysis is applied to a number of descriptors in order to obtain a more compressed and less redundant
description.

In this section, handcrafted descriptors are reviewed in subsection 3.3.1, while the machine learning based
descriptors are discussed in subsection 3.3.2.

3.3.1. Hand Crafted Descriptors

Classical Feature Descriptors

This group contains the well-known descriptors SIFT (scale invariant feature transform [Lowe, 2004]) and
SURF (speeded-up robust feature [Bay et al., 2008]). These descriptors integrate a large scope of knowledge
concerning feature description which researchers had already accumulated before SIFT and SURF were
proposed. SIFT first calculates the gradients in the feature support window, followed by Gaussian filtering
to assign the central pixel a larger weight, and then aggregates the gradients in square grids. In contrast to
this, SURF uses the Haar wavelet response as basic transformation, followed by a process of aggregation that
also takes place in grids. Variants of these descriptors are DAISY [Tola et al., 2009], which uses steerable
filters and aggregates in circular patterns, and PCA-SIFT [Ke et al., 2004], which decreases the correlation
between SIFT descriptor dimensions by employing principle component analysis (PCA)where the projection
basis is trained using a large number of collected SIFT descriptors.

Binary Descriptors based on Gray Value Comparison

Comparing pairs of pixel grey values inside the feature support window, then storing the result as a binary
number forms the basic creation steps for binary descriptors. BRIEF (Binary Robust Independent Elementary
Features, [Calonder et al., 2010, 2012]) employs different pixel positions in the smoothed feature support
window under different distributions. ORB (ORiented BRIEF [Rublee et al., 2011]) adds orientation estima-
tion and computes the descriptor in a greedy search selecting 256 pairs that can best discriminate homologous
features in a training set.

BRISK (Binary Robust Invariant Scalable Keypoints [Leutenegger et al., 2011]) identifies the orientation of
keypoints detected in scale-space and conducts the grey value comparison in concentric circles, a pattern
similar to DAISY. The radius of the circles increases with the distance between the sampling point and the
centre of the patch. The comparison is performed between the pairs of circles, the distance of which must
be smaller than a threshold (short-distance pairing). Finally, FREAK (Fast REtinA Keypoint [Alahi et al.,
2012]) selects the pairs for comparison based on knowledge of the human retina. FREAK also samples in a
circular pattern, but comparisons concentrate in the region near the centre of the feature support window.
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3.3.2. Machine Learning based Descriptors

The design of a descriptor can be defined as a machine learning problem in which the descriptor is a model
with trainable parameters and the learning objective is to increase the similarity of conjugate pairs of features
while decreasing the similarity of non-conjugate pairs. The way of mapping the feature support window to
the descriptor space can vary widely. To provide an overview of different methods, some commonly used
types of models are reviewed in the remaining part of this section.

Transformation-embedding-pooling Form

Descriptors trained for feature based matching were first proposed in Winder and Brown [2007]; Brown
et al. [2011], in which different combinations of transformation, embedding and pooling are learned jointly
to achieve a discriminative descriptor. The experiments of these authors indicate promising performance
improvements compared to hand-crafted features. However, for each of the four aforementioned parts, a
separate loss is designed, which leads to difficulties in the optimization of the model. Consequently, rather
complex optimizing strategies are needed to find a feasible solution. To tackle this problem, a convex version
objective function which notably improves performance was proposed in Simonyan et al. [2014].

Another important contribution to descriptor learning by Winder and Brown [2007]; Brown et al. [2011] is
a training dataset, the so-called Brown dataset, which is widely used in later works. Within the community
dealing with feature description, the term “Photo Tourism” dataset [Snavely et al., 2008] is sometimes used
as a synonym for the Brown dataset, although the former contains many more images that the latter, which
was derived from the original set. The Brown dataset relies on 3D reconstruction from multiple view images.
For each image in the dataset, dense stereo matching and image orientation results are utilized to retrieve
ground-truth matches1. Therefore, the training data contains realistic uncertainties for the conjugate features.

Comparison based Feature Descriptors

In Lepetit and Fua [2006], multiple random trees are trained to recognize matched features, using grey value
comparisons at different positions of the feature support window as node tests. The so-called random fern
[Ozuysal et al., 2010] uses a naive Bayesian combination of classifiers to achieve even better performance.
Another category of descriptors is based on boosting. In Trzcinski et al. [2013, 2015], boosting is used to
select carefully designed weak features which rely on grey value gradients over rectangular image regions.
Then, each of those features is compared to a trainable threshold and converted into a binary value that forms
one dimension of an output descriptor. Chen et al. [2014] learn Haar-like features which best classify the

1For a feature 5! in image �! , a small grid surrounding 5! in �! is extracted and transferred to image �' through the depth map
estimated from the stereo image pair �! , �' . The transferred grid is then used to estimated the scale and pixel localization for the
transferred feature point in �' . If the difference between the estimated scale and the pixel localization for the transferred features
point is close to the scale and localization of a feature point 5' in �' , then 5' and 5! are considered to be a ground truth match.
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matching and non-matching pairs using adaptive boosting [Viola and Jones, 2004]. Those works can also be
classified as binary learned descriptors since they deliver descriptors in a binary form.

Deep Neural Network based Descriptors

For learning descriptors based on matching and non-matching pairs, Siamese convolutional neural networks
(CNNs) have proven to be very suitable. As already mentioned, “Siamese” refers to the fact that two branches
of CNN feature extractors - one for each input sample - share the same parameters. Already in Bromley
et al. [1994], Siamese CNN was proposed to extract descriptors for the verification of human signatures.
A Siamese CNN is also used in Hadsell et al. [2006] to extract a compact descriptor for the recognition of
digits. In descriptor space, identical digits form clusters, removing the effect of appearance change caused
by different writing styles and thus achieving invariance for representing those digits.

Jahrer et al. [2008] treated a Siamese CNN as a recognition network which outputs a class label for the
support window of each detected feature in one image. Thus, the number of classes is determined by the
amount of detected features in the image. Geometric transformations are simulated for both branches of the
Siamese CNN to encourage the CNN to become invariant against geometric distortions. However, when
matching images from a new scene, the class labels change and thus the Siamese CNN must be retrained.

Similar to the changes of identical digits written by different people, feature support windows of conjugate
features from different views can also contain complex geometric and/or radiometric differences against
which the descriptor should be invariant. Therefore, Siamese CNN are especially suited to the task of feature
matching. Among the first, if not the very first, to use a Siamese CNN to train descriptors for feature
matching, is Osendorfer et al. [2013], although this work concentrates on comparing four different types
of loss functions. Carlevaris-Bianco and Eustice [2014] employ a Siamese CNN to achieve illumination
invariance. Images with severe illumination changes are fed into the Siamese branches. The invariance
obtained in this way exceeds that of hand-crafted descriptors. Siamese CNN as a way to learn descriptors are
further used in Zagoruyko and Komodakis [2015]; Han et al. [2015]; Simo-Serra et al. [2015]; Chen et al.
[2016].

Instead of measuring the similarity of descriptors with Euclidean distance, an additional metric network
can be attached on top of a learned descriptor to directly predict the probability of a correct match for an
input patch pair [Zagoruyko and Komodakis, 2015; Han et al., 2015]. Not surprisingly, the work based
on metric learning performs better in discriminating feature pairs, as its similarity measure is not a simple
distance measure but a more advanced trained similarity score. However, for an actual matching task, the
metric network needs to be run for every possible combination of feature pairs computed from the different
images. As a consequence, the computation is expensive and its usage is restricted. Therefore, most of the
work concentrates only on learning the descriptors, i.e., on finding a good embedding that can discriminate
features by simple distance measures. As stated in Simo-Serra et al. [2015], most of the negative pairs cannot
contribute to the loss used for descriptor learning after the training process has run for a while. The solution
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given in Simo-Serra et al. [2015] is hard mining, which means that only a small number of the samples that
contribute a higher amount of loss are selected for parameter updating in each iteration during training.

The triplet architecture proposed by Chechik et al. [2010], was first used for training descriptors in Kumar
et al. [2016]. Triplet networks are composed of three branches, namely an anchor (0), a positive (?), and a
negative (=) branch. Anchor and positive branch correspond to a matching pair, anchor and negative branch
to a non-matching pair. The distances 3 (0, ?) and 3 (0, =) are used to build the loss function. Compared to
a Siamese CNN that optimizes matched and unmatched parts independently, the triplet architecture pushes
unmatched features away from similar features in descriptor space, thereby working equally for similar and
dissimilar features. The triplet loss used in Hoffer and Ailon [2015] suggests that 3 (0, =) should not be
larger than 3 (0, ?). Furthermore, Balntas et al. [2016b] apply a margin between 3 (0, =) and 3 (0, ?), which
is identical to the suggestion given in Chechik et al. [2010]. A soft version of negative loss is proposed in
Balntas et al. [2016a]: It is created by using the smaller one of 3 (0, =) and 3 (?, =) as negative loss.

Instead of checking each triplet separately, Kumar et al. [Kumar et al., 2016] build a global loss function to
separate the distribution of distances for matched and unmatched pairs. In a global loss function, the variance
of the distances for matched and unmatched pairs is minimized, as is the mean of the distances for matched
pairs, whereas the mean for unmatched pairs is maximized. The authors test the proposed loss with different
architectural details and achieve noticeable improvements compared to normal loss.

One of the major concerns in Siamese and triplet CNN for descriptor learning is that typically very few
unmatched pairs are seen in training, which is in contrast to the typical application scenario for a trained
descriptor, such as feature matching or retrieval, where much larger numbers of unmatched pairs need to be
checked in comparison to matched pairs. To improve the situation, progressive sampling in L2-Net [Tian
et al., 2017] uses the hardest unmatched pair to calculate the loss. The main loss is the ratio between 3 (0, ?)
and 3 (0, ℎ0A34BC=), with a smaller distance as desirable outcome for a matched pair and a larger one for
an unmatched pair. Another constraint is the need to minimize the correlation between different dimensions
of descriptors. Also, the similarity of feature maps in the descriptor network is encouraged to be high for
matched features, but low for unmatched pairs. L2-Net achieves a remarkable performance improvement.
Similar ideas of finding the hardest unmatched pair are explored in Mishchuk et al. [2017], where the closest
non-matching patch to 0 and ? in the triplet is found and a margin between the distance for a matched pair
and the closest unmatched pair is included in the loss. In Mishchuk et al. [2017], a slightly better result than
the one yielded by the application of L2-Net is reported, while the aforementioned additional constraints
used by L2-Net [Tian et al., 2017] are ignored.

Although the distance of a matched pair and the hardest unmatched pair in a triplet is restricted by either
setting a relative ratio or a margin between them, it might result in a larger cluster radius for matched features
in descriptor space. As reported in Keller et al. [2018], the distance for both matched and hardest unmatched
pairs and the "soft" margin or ratio between the distance for matched and hardest unmatched pairs in triplets
must be balanced in order to avoid a too-large cluster radius for matched features. The result of their method
shows a consistent improvement compared with Tian et al. [2017] and Mishchuk et al. [2017]. Alternatively,
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SOSNet (Second Order Similarity Network) [Tian et al., 2019] suggests that the distance of different matched
features should be as identical as possible, which is defined as the second order similarity (SOS). By applying
this constraint, the clusters for different matched features should have a similar clustering radius within the
descriptor space. SOSNet is used to regularise the standard margin based triplet loss. An improvement on
Tian et al. [2017]; Mishchuk et al. [2017] is also reported in Tian et al. [2019].

A recent work called GeoDesc [Luo et al., 2018] concentrates on generating more realistic yet challenging
matched pairs for L2-Net. The angle between two intersecting rays pointing at the same 3D point from
different views (matching features) and the incident angle difference between each ray (angle between local
normal and the ray) are used to model the difficulty of matching homologous features. The authors discard
easier pairs and only use more difficult matching pairs for sampling. This method achieves better performance
in matching and retrieval benchmarks.

A literature summary graph for the presented research regarding feature description is shown in Figure 3.2.

3.4. An Application: Orientation of Oblique Aerial Images

In this section, the application of feature based image matching is reviewed with focus on the orientation of
imagery taken from oblique aerial camera systems. For nadir or near nadir images, classical feature based
image matching algorithms such as SIFT and SURF work well. The focus on image orientation for oblique
imagery stems from the fact that this is a more challenging task due to extensive changes in viewing direction
and viewpoint between the different images, exceeding the invariance threshold of classical feature based
image matching algorithm as reported in Verykokou and Ioannidis [2018, 2016]; Jacobsen and Gerke [2016].

Several different methods for matching oblique images have been published. In Smith et al. [2008], conjugate
points between the oblique and vertical images are collected interactively. The reason, as stated by the
authors, is that the differences in illumination and viewing directions led to the failure of automatic tie
point generation. An attempt to automatically match oblique and nadir images reported in Verykokou and
Ioannidis [2016] used SURF; most of the resulting conjugate points lie on a planar surface within a limited
degree of viewpoint change only. The method is bound to fail when the imaged area contains larger elevation
differences. The idea of running multiple homographies is used in Onyango et al. [2017] to obtain tie points
between UAV and oblique camera images. In this strategy, a first homography is computed and outliers of
the result are then iteratively used to compute further homographies.

Kim et al. [2019] propose a deep neural network to estimate the rotation and affine transformation between
a pair of images. A qualitative performance using nadir and oblique images from the ISPRS multi-platform
photogrammetry dataset given in Nex et al. [2015] shows that the method can roughly align those images
from different view points. However, the estimated transformation angles are discretized into large steps,
e.g., 45 degrees, which restricts its practical usage. Moreover, from the theoretical standpoint, the method
can yield correct results only for scenes containing small changes in height.
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Matching of nadir to oblique camera images can also rely on view sphere simulation of images using ASIFT,
as seen in Wang et al. [2018]. The idea of view sphere simulation is to simulate a lot of images with different
levels of affine transformation between two images which need to be matched. Feature detection, orientation
and description are then run based on all of the transformed images. Not surprisingly, for some pairs the
geometric distortions are decreased to a level which can be handled by classical matching algorithms. Once
those pairs are successfully matched, their conjugate points are transformed back to the original images, thus
matching relationships are obtained.

Finally, a recently published approach successfully matches images taken from different cameras in an
oblique penta camera system through optimizing the affine shape estimation, orientation assignment and
feature description directly by using a deep neural network [Chen et al., 2020a].

Unfortunately, only limited information is reported for the matching algorithms used in commercial software,
e.g., Pix4D or Photoscan. For open source software of 3D image reconstruction from multiple images, such
as Bundler2 [Snavely et al., 2006], VisualSFM3 [Wu et al., 2011; Wu, 2013] and COLMAP4 [Schönberger
and Frahm, 2016], SIFT is the main algorithm used for feature based image matching.

3.5. Discussion

Before presenting this thesis’ main contribution in the next chapter, this section summarizes some open
questions in the related work that arise when working with descriptor, affine shape estimation and orientation
assignment learning. Targeted solutions developed in this thesis will be provided in the next chapter in order
to tackle the identified research issues.

3.5.1. Orientation Assignment and Affine Shape Estimation

When assigning orientation to a feature support window for image matching, only the relative orientation
between the two images is relevant, as they can be matched in any absolute orientation. The same is true for
the two parameters of affine distortion (different scale on the two axes of the image coordinate system and
skew). Therefore, there is no single correct solution for orientation assignment and affine shape estimation for
a single patch . In Yi et al. [2016a] and Yi et al. [2016b], it is claimed that orientation parameters optimized
only by using descriptor distance loss contribute to finding the best possible solution for image matching.
However, an underlying assumption that ensures this idea works is that there must be a distinctive descriptor
distance minimum whenever two feature support windows are aligned. This means there is a unique solution
for the problem. Of course, as far as the computation of image coordinates of tie points for image orientation

2http://www.cs.cornell.edu/ snavely/bundler/
3http://ccwu.me/vsfm/
4https://demuc.de/colmap/
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is concerned, any of the solutions provided by the network is as good as any other. Nonetheless, the numeric
stability and convergence properties of the computations should be investigated.

In current work on orientation and affine shape estimation, descriptors are needed to build a descriptor distance
based loss. However, in classical feature based image matching, e.g., SIFT [Lowe, 1999, 2004], orientation
assignment and affine shape estimation [Baumberg, 2000; Mikolajczyk and Schmid, 2004] depend only on
geometric measures calculated on individual patches surrounding features. Thus, patches are transformed
in some canonical form in which matching can be performed unambiguously and independent of descriptor
distance. An open question is whether this idea can be transferred to deep learning based approaches as well.
This issue will be explored and answered in sections 4.3 and 4.4.

3.5.2. Descriptor Learning

To learn descriptors from data, matched and unmatched pairs or triplets are fed into the learning framework.
The loss function is designed to make the similarity, often measured by the inverse Euclidean distance
between descriptors, a maximum for matched pairs and a minimum for unmatched ones. An identical
number of positive and negative pairs are typically used in the training procedure to update the parameters
of the descriptor models. However, in real applications, e.g., image matching or image retrieval, far more
negative than positive pairs must be compared, as the process of finding correspondences by comparison
uses a “one against many others” approach. Taking this imbalance into consideration, the unmatched pairs
are mined by comparing and selecting difficult ones from a pool containing large numbers of unmatched
pairs. Therefore, the descriptor sees a significantly larger number of negative samples (unmatched pairs) than
positive samples (matched pairs) during training. Typical works concerning the search for more unmatched
pairs are Mishchuk et al. [2017]; Simo-Serra et al. [2015]; the descriptors reported in these papers show
notable improvements for discriminability through seeking more unmatched pairs during training.

On the other hand, the appearance of matched patches has not been explored in-depth in descriptor learning.
Compared to “seeing” unmatched pairs, the descriptor has a limited chance to explore the intra-variation of
matched pairs. In other words, for each patch the descriptor has a much lower chance of seeing the possible
patches which match the patch but contain a limited level of distortion. In current research, only a couple
of matched patches are contained for each feature and during training the matched pairs are sampled from
those matched patches. Naturally, those patches can only cover a small part of the space formed by possible
patches where a descriptor should be built close to the one for reference. To improve the coverage of possible
matched features, a weak match network is proposed in section 4.2 in order to actively find the matched
patch which is most distant from a reference patch during descriptor learning. By inserting this module in
descriptor learning, the invariance of the descriptor against changes in viewpoint and viewing directions is
improved.
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3.5.3. An Aerial Photogrammetric Benchmark

To evaluate the different variants of descriptors, results from 3D reconstruction of images are used, e.g.,
Fan et al. [2017, 2019], and Jin et al. [2020]. The test dataset used in Fan et al. [2017, 2019] is a dataset
composed of images containing consecutive change of viewpoint and viewing directions, i.e., although some
overlapping images are indeed wide baseline pairs, for each image an overlapping partner can be found with
only small changes in viewing direction and viewpoint position. In Jin et al. [2020], the Photo Tourism
dataset is used as a wide baseline dataset for the 3D image reconstruction task. A check revealed that this
dataset also contains a large number of consecutive views.

In aerial photogrammetry, matching of oblique images has been an attractive research area in the last years,
partly due to its practical needs. While the images taken by different cameras belonging to an oblique camera
system contain distinct and large viewpoint and viewing direction changes, consecutive images as seen in
the aforementioned datasets typically do not exist. In order to evaluate the learned modules in an application
involving more challenging changes in viewpoint and viewing direction, image blocks taken from oblique
aerial camera systems should be used to evaluate the deep learning methods. In this thesis, image blocks
taken from oblique aerial cameras are used for the performance evaluation of the methods proposed in this
thesis, as illustrated in Sections 5.2 and 5.6.

3.5.4. Ability to Transfer Learned Modules

It has not been properly investigated yet how the learned modules for descriptors, orientation assignment
and affine shape estimation might be transferred between different imaging domains. Thus, unlike for other
machine learning tasks such as semantic segmentation and person re-identification, it is unclear how well
the deep learning features for image matching can be transferred from the trained dataset, e.g., a close-range
scene, to a test scenario, e.g., a set of aerial images.

Feature based image matching related deep learning tasks, especially affine shape estimation, orientation
assignment and descriptor learning, are based on simple networks and a simple form of distance based loss
functions which should be beneficial to the generalisation of learned models. In addition, all the context
windows involved in those tasks are “local” and several times the size of the detected characteristic scale of
features. Consequently, a limited range of context is involved, which also increases the possibility of wide
generalisation. In order to obtain a better understanding of this question, the capability of deep learning
based featurematching algorithms of transferring the results across imaging domains should be systematically
analysed, e.g., based on a series of datasets containing significant differences such as street view images and
aerial images. The experiment presented in this thesis uses distinctively different datasets for training and
evaluation tasks, thereby gaining a better understanding of the ability to transfer deep learning based feature
matching algorithms across different domains.
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4. Deep Learning Feature Representation

This thesis aims at improving the performance of feature based image matching by solving the problem
of feature affine shape estimation, feature orientation and feature description in deep learning frameworks.
After features are detected with positions and scales in an image, a context window is extracted surrounding
each detected feature. The problem of affine shape estimation, as shown in section 2.1.4, is solved by a self-
supervised affine shape estimation network proposed in this thesis. In the following step, the orientation of
local features is derived via an orientation network trained by a self-supervised orientation estimation network
proposed in this thesis. Alternatively, the orientation and affine shape of local feature are simultaneously
estimated by a full affine shape estimation network, also proposed in this thesis. To compute descriptors for
detected features, principal orientation and optional affine shape are used to extract feature support windows.
In those windows, the influence of rotation and affine transformations caused by changes in viewpoint and
viewing direction is reduced. Using the windows as input, the features are described by applying the feature
descriptor network, which, in turn, is trained using the new descriptor training framework proposed in this
thesis. Through combining those trained networks, features are detected and described for any input image.
This is called the inference of the learned modules, i.e., how to apply them for real applications where feature
matching is required. In the next step, features detected and described in different images are matched in
descriptor space.

Before diving into the details of different networks in this thesis, an overview of the proposed methodology
is given in section 4.1. Sections 4.2 through 4.5 offer a closer look at the innovation created by the models
original to this thesis, with particular regard to learning feature description, orientation assignment, affine
shape estimation and full affine shape estimation. In section 4.6, the inference of trained modules is explained
before, finally, the assumptions underlying the experiments and theoretical limitations are discussed in section
4.7.

4.1. Overview of the Methodology

Overall, the framework proposed in this thesis contains two parts: training and inference. In the training part,
four networks, for affine shape estimation, orientation assignment, full affine shape estimation and feature
description respectively, are trained. To train the descriptors, the matching relationship between local feature
patches is required, whereas for the other three modules this relationship is not needed. In the inference part,
the trained modules are used in a feature detection and description framework to detect features and compute
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Figure 4.1.: Overview of the methodology. The training data containing local feature patches is used in
descriptor, orientation, affine shape and full affine shape learning modules. The orientation and
affine shape of local feature can be estimated separately (variant A) or simultaneously via the full
affine shape learning (variant B). The trained descriptor, orientation and affine shape network (or
Full affine shape network) are combined in the inference pipeline of the method, the input and
output of which are images and corresponding detected features and descriptors.
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descriptors for input images. An overview of the method used in this thesis is illustrated in figure 4.1.

The functions of each training module are as follows:

• Affine shape estimation network: given an image patch, it predicts the affine shape of the underlying
patch. Only one degree of rotation remains once patches have been corrected with predicted affine
shape.

• Orientation assignment network: given a patch, it predicts the principal direction of said patch, which
allows image patches of arbitrary rotation to be aligned to the predicted principal rotation.

• Full affine shape network: given a patch, it predicts the principal direction and the affine shape of said
patch simultaneously, which allows image patches of arbitrary affine shape and rotation to be corrected
with predicted full affine shape.

• Descriptor network: given a feature support window of a feature as input, it outputs a descriptor which
is the final representation of the feature.

As mentioned before, the inference pipeline combines the trained affine shape, orientation, full affine shape,
and description networks. Through running the inference pipeline the local features and corresponding
descriptors for input images are extracted as shown in the bottom of figure 4.1. In the chapter describing the
experiment itself, the inference is applied to image blocks in order to obtain features and descriptors. In this
way, image orientation and bundle adjustment results are obtained. These will be used as the main test for
the performance of the proposed method.

4.2. Descriptor Learning using Active Weak Match Finder - WeMNet

Descriptors are computed based on feature support windows. The core idea of descriptor learning is to pull
descriptors of matched features to be as close as possible while pushing descriptors of unmatched features
to be far away from each other in the feature descriptor space. Also, feature descriptors should be robust to
slight geometric transformations in the feature support window.

In this section, the descriptor learning architecture is first introduced. Then the generation of training pairs,
augmentation rules and the loss function used in training are explained. This is followed by the introduction of
an optional weak match branch which actively finds hard matched samples that can be used in the descriptor
learning as well. Finally, the analysis of descriptor distance for matched feature pairs undergoing different
types of geometric transformations is proposed.
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4.2.1. Descriptor Learning Architecture

To train descriptors, matched and unmatched patch pairs are used in a Siamese CNN which is composed of
two branches, %1 and %2. The architecture is illustrated in figure 4.2. The patches are support windows of
features. After applying a descriptor network to those patches, the related descriptors 31 and 32 are obtained.
As the pair of patches is either matched or unmatched, the corresponding descriptor distances are used to
build the loss function using the matching relationship of the pair of patches.

Figure 4.2.: Descriptor Learning Architecture. The Siamese CNN is composed of two branches, %1 and %2.
Each branch takes one patch (feature support window) as input and runs it through the descriptor
network to obtain the descriptors 31 and 32. This process is repeated for each input patch. The
descriptor networks in the two branches share the same weights. The input pairs of patches
are matched or unmatched pairs of features. Loss based on the calculated descriptors is then
constructed.

Descriptor Network: Details on the descriptor network used to generate descriptors are provided in table
4.1 and illustrated in figure 4.3. This network is identical to the one used in Mishchuk et al. [2017] and
Mishkin et al. [2018], and was originally proposed by Tian et al. [2017]. Through a series of convolution
layers, a 32×32 pixel single channel image patch is transformed and compressed into a 128-dimensional
descriptor which is then scaled to unit length. This rescaling, in turn, results in the fact that the maximum
Euclidean distance between any two descriptors is 2.

4.2.2. Generation of Training Pairs

Following Mishchuk et al. [2017], the training data is composed of image patches. These patches are derived
from image blocks with known interior and exterior orientation, depicting a 3D scene in which a dense
description surface is given as well. For each patch it is already known which other patches are correct
matches. This is realised via a 3D point index for each patch, thus patch tuples are represented as 3D point
indices. Working with this data, a set of N 3D points is first sampled without replacement from the training
data. Then, two different patches associated with the same 3D point index are randomly selected to form a
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Layer Filter #In-Out Stride Size of feature map Activation BN
1 3x3 1-32 1 32 × 32 × 32 ReLU Yes
2 3x3 32-32 1 32 × 32 × 32 ReLU Yes
3 3x3 32-64 2 16 × 16 × 64 ReLU Yes
4 3x3 64-64 1 16 × 16 × 64 ReLU Yes
5 3x3 64-128 2 8 × 8 × 128 ReLU Yes
6 3x3 128-128 1 8 × 8 × 128 ReLU Yes

Dropout with rate=0.1
7 8x8 128-128 1 1 × 1 × 128 ReLU Yes

Table 4.1.: Descriptor Network architecture. #In-Out: number of input and output channels. ReLU: Rectified
Linear Unit, which works as 6(I) = <0G(0, I) for an input I. BN: batch normalization.

Figure 4.3.: Architecture of the Descriptor CNN. An input 32×32 pixel feature support window is convolved
and processed according to the operation indicated in the green boxes, in which C means the size
of convolution kernel, S stands for stride, BN means batch normalization and ReLU indicates
the rectified linear unit. The feature map size in each layer is indicated in the orange boxes on
the top of each layer. Finally, a 128-dimensional descriptor is obtained.

pair of patches. Then, a mini batch (with size N) of training data is generated. This process continues to
generate pairs until the number of samples reaches the required size for training.

The training process also needs counter examples, i.e., non-matching pairs. For a patch ?1, patches associated
with a different 3D point index belong to the unmatched patches (see Figure 4.4). The use of the 3D index
thus ensures that these pairs, when sampled randomly from the training data, do not by chance contain correct
matches. Obviously, the number of possible unmatched pairs is much higher than that of matched pairs, due
to the fact that any combination of pairs that have a different 3D index within a mini-batch can be used as a
unmatched pair. To properly train the network, however, an equal number of matched and unmatched pairs is
needed. Therefore, unmatched pairs used in training have to be selected from the larger set. For this selection
step, the hardest mining strategy [Mishchuk et al., 2017] is employed.

Hardest Mining of Negative Pairs

The hardest unmatched pair is the unmatched pair with the smallest distance between two corresponding
descriptors. It is selected (“mined”) during training. For the 8Cℎ patch in the branch %1 (?81), its distance to



48 4. Deep Learning Feature Representation

the hardest unmatched patch is defined as �ℎ0A34BC
8

, which is calculated as follows:

�ℎ0A34BC8 = <8=(<8= 9≠8�(381, 3
9

1), <8= 9≠8�(3
8
1, 3

9

2)) (4.1)

where 381 = the 8Cℎ descriptor of the branch %1

3
9

2 = the 9 Cℎ descriptor of the branch %2

�(:, :) = Euclidean distance of two descriptors
8, 9 ∈ [1, 2, ..., #]

<8= 9≠8�(381, 3
9

1) and<8= 9≠8�(3
8
1, 3

9

2) compute the hardest unmatched pairs with the smallest distance within
the same branch %1, and between the two branches %1 and %2, respectively. The selection of the hardest
unmatched pair is illustrated in figure 4.4. Through seeking the hardest samples, the network “sees” far more
unmatched training pairs than matched ones, which corresponds to the fact that matching means “searching
for a needle in a haystack,” due to the fact that a lot more unmatched pairs than matched pairs need to be
compared for real image matching applications. After mining, a triplet containing a pair of matched patches
as well as the most difficult unmatched patch is obtained for each training patch within a mini-batch passed
to the first branch of the network.

Augmentation of Patches: In order to increase the number of matched pairs and make the network to see
more samples during training, the matched pairs are augmented by flipping or rotating them with a value
randomly chosen from the set [90◦, 180◦, 270◦]. The square feature support window rotated by those three
angles does not introduce zero grey value in the border. In addition, a random brightness change of 10% is
applied, which means the pixel grey values in the original patch are scaled by a value randomly selected in
the range of [0.9, 1, 1]. All the aforementioned simulations are applied online.

4.2.3. Loss Function

To calculate the loss, the triplet margin-based loss function [Chechik et al., 2010; Hoffer and Ailon, 2015] is
used.

Triplet Margin based Loss: In a batch of N sampled triplets, the loss is defined as:

!CA8 ?;4C =

#∑
8=1

<0G(0, �8 (381, 3
8
2) + V − �

ℎ0A34BC
8 ) (4.2)

where �8 (381, 3
8
2) is the distance between the 8Cℎ matched pairs and �ℎ0A34BC

8
is the hardest negative distance

computed for the 8Cℎ triplet inside the batch. V is a margin formed between the distance of matched and
unmatched pair. In this thesis, V is set to be 1, as suggested in Mishchuk et al. [2017]. This loss concentrates
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Figure 4.4.: Hardest mini batch mining. The two patch sets {?1
1, ?

2
1...?

=
1 , ..., ?

#
1 } and {?

1
2, ?

2
2...?

=
2 , ..., ?

#
2 },

as indicated in the top of the figure, are fed into the two branches Siamese descriptor network to
compute descriptors {31

1, 3
2
1 ...3

=
1 , ..., 3

#
1 } and {3

1
2, 3

2
2 ...3

=
2 , ..., 3

#
2 }, both of which are indicated

in the bottom part of the figure, separately. Take patch ?=1 as example, its descriptor, 3=1 , is
compared with all the descriptor of patches within branch %1, between branch %1 and %2. Each
green arrow indicates a comparison. The pair with the smallest descriptor distance is selected
(“mined”) for calculating the loss for unmatched pairs.

on forming a margin and does not care how large the distance of matched pair is. Considering that all the
descriptors are normalized, the maximum distance between any two descriptors is 2.

4.2.4. Weak Match Branch

During the training process, the patches of matched features are aligned. However, it is useful to involve
possible matched patches containing a limited range of geometric transformations, so that the descriptor
network can see enough intra-class variance, i.e., various possible appearances of matched patches caused
by geometric transformations. The idea of involving weak matches is illustrated in figure 4.5. The feature
patch used for descriptor training in a normal configuration is called a reference patch here. In descriptor
space, patches containing a certain level of geometric transformation when compared to a reference patch -
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while still being close to the reference patch - are defined as “weak matches” (see the patch 38
F40:

in figure
4.5). When care is not taken for those patches, they may be located far from the reference patch in descriptor
space. Through finding weak matches and feeding them into the descriptor network, the descriptor distance
between the descriptor of a reference patch and its weak match is pulled to be closer, therefore the trained
descriptor is then made more invariant against a certain range of geometric transformation.

Figure 4.5.: The idea of weak matches. Here the descriptor space is simplified as a two dimensional space.
In descriptor space, the descriptors 381 and 382 represent a pair of matched features, the feature
support window of which is shown as two image patches with green borders. The other two
features represented by 3 9 and 3: are unmatched features to 381 and 382. Through geometric
transformation of the feature support window of 382, another patch - the descriptor of which
is 38

F40:
- is found with the condition that the distance between 382 and 38

F40:
is maximized.

Although the feature represented by 38
F40:

is a weak match, it should still be closer to 381 when
compared to any unmatched features. Therefore, the border of the descriptor space dominated by
381 is 3

8
F40:

, and a threshold VF40: is proposed to form a margin between the feature space of 381
and the space of any other unmatched features. This means that the minimum distance between
3 9 and each one of 381, 3

8
2 and 38

F40:
is made to be larger than the sum of 38BC (381, 3

8
F40:
) and

the threshold margin VF40: .

This work proposes an additional branch to actively find weak matches. To illustrate the weak matched patch
finding process, refer to figure 4.6. The two patches ?81, ?

8
2 form a pair of matched feature patches. After fed

into the network, their descriptors 381, 3
8
2 are obtained and used to compute the descriptor loss, as explained in

equation 4.2. This corresponds to the normal configuration of descriptor learning. In the weak match branch,
patches ?81•2A>? and ?82•2A>? are cropped from the centring part of ?81, ?

8
2. Then ?

8
2•2A>? is fed into a weak
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match network to predict geometric transformation parameters, which are used to sample ?8
F40:

from ?82.
The geometric transformation parameters are generated through the weak match net, which is explained in
the next paragraph. The patch ?8

F40:
is the most distant patch from ?81•2A>? in terms of descriptor distance,

found by maximizing the descriptor distance between ?81•2A>? and ?8
F40:

, namely ;>BBF40:_<0C2ℎ_ 5 8=34A .
For this maximum distance optimizing problem, only the network parameters in the weak match network are
trainable. In the next step, the descriptors of ?8

F40:
and ?81•2A>? are used to build ;>BBF40:_<0C2ℎ, in which

weakly matched patches are made to lie close to its reference patch in descriptor space.

Figure 4.6.: Process of finding weakly matched patches and applying them into descriptor learning.

Weak Match Network (WeMNet): For each anchor patch, a small network is built to find the most difficult
match and then this patch is used to train the model. This network is designed as illustrated in figure 4.7, and
the details are also shown in table 4.2. The output of the weak match net are affine geometric transformation
parameters. For the meaning of different parameters, refer to formula 4.7. The three parameters predicted
from weak match network are only given in a relatively small range (this is why the arctan values in Table
4.2 are dived by the empirically found denominators to compute the angles of affine transformation k, \, q).
Thus the found weak match patch is guaranteed to be only a transformed version in a certain range. As a
consequence, themain purpose of this weakmatch network is to actively increase the invariance of descriptors
against a limited range of affine transformations.
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Figure 4.7.: Weak match network. The input cropped feature support window and the output is a set of
predicted affine transformation parameters, which is composed of three angles (translation and
scale are not considered).

Layer Filter #In-Out Stride Size of feature map Activation BN
1 3x3 1-16 1 32 × 32 × 16 ReLU Yes
2 3x3 16-16 1 32 × 32 × 16 ReLU Yes
3 3x3 16-32 2 16 × 16 × 32 ReLU Yes
4 3x3 32-32 1 16 × 16 × 32 ReLU Yes
5 3x3 32-64 2 8 × 8 × 64 ReLU Yes
6 3x3 64-64 1 8 × 8 × 64 ReLU Yes

Dropout with rate=0.25
7 8x8 64-6 1 1 × 1 × 6 TanH Yes
8 k = 0C0=($1, $2)/6, \ = 0C0=($3, $4)/8, q = 0C0=($5, $6)/8

Table 4.2.: Weak match network architecture. #In-Out: number of input and output channels. ReLU:
Rectified Linear Unit, which works as 6(I) = <0G(0, I) for an input I. BN: batch normalization.
TanH: hyperbolic tangent defined as )0=� (G) = (4G − 4−G)/(4G + 4−G).

Loss: There are two different losses related to the usage of weak match networks. The first one is
!F40:_<0C2ℎ_ 5 8=34A , which accounts for finding the weak match; the parameters used to optimize it are
the training parameters of the weak match network. The second one is !F40:_<0C2ℎ, which aims to form
a margin between the weakly matched patch and the unmatched patch to help separate the patches, which
contain only a limited amount of geometric transformation, within descriptor space.

The first loss is defined as

!F40:_<0C2ℎ_ 5 8=34A =

#∑
8=1
(2 − �8 (381•2A>?, 3

8
F40:)) (4.3)

where 381•2A>? = the descriptor of the feature patch cropped from the 8Cℎ patch in the first branch
38
F40:

= the descriptor of the weak match for the 8Cℎ patch in the first branch; this descriptor is
resampled from ?

9

2, using a transformation predicted by the weak match net
�(:, :) = Euclidean distance between two descriptors
8, 9 ∈ [1, 2, ..., #] where # stands for mini-batch size
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The central idea of this loss is to maximize the distance between 381 and 38
F40:

, thereby finding the most
difficult weak match for 381. Once this weak match has been found, it is used in the second loss !F40:_<0C2ℎ,
which is defined as:

!F40:_<0C2ℎ =

#∑
8=1

<0G(0, �8 (381•2A>?, 3
8
F40:) + VF40: − �

ℎ0A34BC′
8 ) (4.4)

where VF40: = the threshold for the margin between a weak match and the most difficult unmatched
patch in descriptor space, which is smaller than V

�ℎ0A34BC
′

8
= the distance between the descriptor of the most difficult unmatched pair and the
8Cℎ input feature of the Siamese network.

�ℎ0A34BC
′

8
is defined as:

�ℎ0A34BC
′

8 = <8=(<8= 9≠8�(381•2A>?, 3
9

2•2A>?), <8= 9≠8�(3
8
1•2A>?, 3

9

F40:
), <8= 9≠8�(382•2A>?, 3

9

F40:
)) (4.5)

Similar to the hardest unmatched pair mining introduced before, the most difficult unmatched patch inside a
mini-batch is found with the three cases to form unmatched feature pairs:

• the cropped patches from the first and second branch - <8= 9≠8�(381•2A>?, 3
9

2•2A>?).

• the cropped patch from the first branch and the weak matches - <8= 9≠8�(381•2A>?, 3
9

F40:
).

• the cropped patch from the second branch and the weak matches - <8= 9≠8�(382•2A>?, 3
9

F40:
).

Among the three different combinations of unmatched pairs, the !F40:_<0C2ℎ aims to find the most difficult
one and put this found feature into the descriptor training process. Consequently, a more concentrated
distribution of descriptors for features containing intra-class variance can be achieved. For descriptor
training, the loss is now extended:

!34B2A8?C>A = !CA8 ?;4C + _F<!F40:_<0C2ℎ (4.6)

Here _F< controls the relative importance of the weak match loss.

Training Strategy: In each training iteration, the training works in the following order:

• Finding the weakest match: The weak match network is trained with !F40:_<0C2ℎ_ 5 8=34A , then the
weak match patch is found and sampled. During this step, the descriptor network is fixed.

• Descriptor training: The weak match network is fixed and the descriptor network is trained with
!34B2A8 ?C>A .
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Through consecutive training, !F40:_<0C2ℎ_ 5 8=34A will gradually increase as the descriptor attains more
invariance against geometric transformations modelled by the weakmatch network, until it reaches an approx-
imately constant value. Correspondingly, !34B2A8?C>A will gradually decrease and then stay approximately
constant once the networks are sufficiently trained.

4.3. Self Supervised Feature Affine Shape Learning - MoNet

In this section, the distortion parameters for affine shape are discussed. In central projection, a circle on a
plane parallel to the image plane is imaged as a circle. When the image is taken from an oblique direction,
however, its image turns to an ellipse. In that case, the image scale varies in different directions. The oblique
direction is defined by two parameters, q and \ (see figure 4.8). In addition to that, the in-plane rotation k
of the feature is still unknown.

This part first presents the affine transformation parametrization in section 4.3.1 and then proposes a self-
supervised affine shape estimation network to estimate the affine shape for each input feature context window
in section 4.3.2.

4.3.1. Affine Transformation Decomposition

The linear part of an affine transformation in 2D is a 2 × 2 matrix. It can be decomposed into the following
form, as illustrated in figure 4.8, according to [Morel and Yu, 2009]:

� = '(k)�'(q) = _'(k)� ′'(q)

= _

[
2>Bk −B8=k
B8=k 2>Bk

] [
1/
√
2>B\ 0
0

√
2>B\

] [
2>Bq −B8=q
B8=q 2>Bq

]
= _

[
2>Bk −B8=k
B8=k 2>Bk

] [√
C 0

0 1/
√
C

] [
2>Bq −B8=q
B8=q 2>Bq

] (4.7)

where _ = detected feature scale
'(·) = a rotation matrix whose parameter is the rotation angle
\ = angle in the range of [0, c/2), which controls the amount of unequal scale
C = stretch, equal to 1/2>B(\), indicating the level of anisotropic scale change
q = longitude, which controls the direction in which two orthogonal directions are scaled

according to stretch
k = in plane rotation angle

The first line of the above equation stands for a SVD decomposition and then the overall scale (_) in the
diagonal matrix � is separated out. _ is determined during feature detection and is subsequently kept
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constant. k is estimated during the orientation assignment process. Thus, the two degrees of freedom of
affine shape transformation are \ and q (or, alternatively C and q). Note that while '(k) and '(q) represent
rotation matrices, � ′ does not. However, the determinant of � ′ equals 1.

Figure 4.8.: Affine transformation decomposition employed in Morel and Yu [2009]. q is defined as the
longitude. The anisotropic scale change is applied in the direction of q and the one orthogonal
to q. \ is called "latitude" by the authors of Morel and Yu [2009] (in astronomy and geodesy,
this angle is called zenith angle), which controls the amount of anisotropic scale change. q and
\ determine the viewing direction of the camera. The camera’s in-plane rotation is defined as k
and the scale factor of imaging is controlled by _.

To create an affine transformation, a canonical feature is first rotated by q and then elongated by applying
a scale change of

√
C and 1/

√
C in the direction of q and the one orthogonal to q, respectively. The pixels

contained in the neighbourhood of the feature forms the content of that feature. This step is followed by
a rotation of k to indicate the orientation of the feature content. q and \ control the viewing direction, \
controls the anisotropic scaling. In SIFT, \ is set to zero, thus the determination of k and q degenerates to
the determination of one angle only, and _ is estimated as the characteristic scale of detected features. To
cope with images which show a higher level of affine transformations, \ and q should both be estimated to
compensate the affine transformations in images. An example of affine distortion in real image patches is
shown in figure 4.9. As shown there, only \ and q affect the content of transformed features. Applying a
different k only changes the orientation of the image content contained in the feature.
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(a) k = 0◦

(b) k = 45◦ (c) k = 90◦

Figure 4.9.: Example of transformed angles in affine decomposition with different k, \, q. An image of a
Euro coin is used as the test image in this figure. To better visualize the result after applying
different transformations, the boarder of the coin is circled in green and the upright direction is
indicated with a red arrow. (a), (b) and (c) present the case for k = 0◦, k = 45◦ and k = 90◦,
respectively.

As employed by Mishkin et al. [2018] and also by Perd’och et al. [2009], an affine transformation, as applied
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to each patch individually, is decomposed into the following form:

� = _'(k ′)�

= _

[
2>Bk ′ −B8=k ′

B8=k ′ 2>Bk ′

] [
011 0
021 022

]
= _

[
2>Bk ′ −B8=k ′

B8=k ′ 2>Bk ′

] [
0
′
11 + 1 0
0
′
21 0

′
22 + 1

] (4.8)

where � = a matrix of affine shape parameters with 34C (�) = 1
_ = the detected feature scale, kept constant during estimation of affine shape parameters
011, 021, 022 = affine shape parameters. Since 34C (�) = 1, 011 = 1/022

0
′
11, 0

′
21, 0

′
22 = the residual form of affine shape parameters, computed during affine shape estimation

k ′ = feature rotation angle, also kept constant during estimation of affine shape parameters

Setting 012 = 0 enables the affine shape estimation to preserve the vertical direction for a local image patch
because the affine shape matrix then always has one eigenvector equal to (0, 1)) . As a consequence, the
rotation matrix '(k) of the equation 4.7 must e split into two consecutive rotation matrices '(k ′) and '(k′′)
such that '(k) = '(k ′)'(k′′). The role of '(k′′) is to rotate � so that the vertical direction of the feature is
preserved, i.e. 012 = 0. This relationship is explained by equation 4.9.

� = _

[
2>Bk −B8=k
B8=k 2>Bk

] [
1/
√
2>B\ 0
0

√
2>B\

] [
2>Bq −B8=q
B8=q 2>Bq

]
= _

[
2>Bk ′ −B8=k ′

B8=k ′ 2>Bk ′

] [
2>Bk

′′ −B8=k′′

B8=k
′′

2>Bk
′′

] [
1/
√
2>B\ 0
0

√
2>B\

] [
2>Bq −B8=q
B8=q 2>Bq

]
= _

[
2>Bk ′ −B8=k ′

B8=k ′ 2>Bk ′

] [
011 0
021 022

]
= _'(k ′)�

(4.9)

The rotation matrix with the angle '(k ′) will be discussed in the orientation assignment part. The matrix
A contains the affine shape parameters. The affine shape estimation network (the same network as used in
Mishkin et al. [2018]) is used to estimate the affine matrix elements for each input patch. This network has a
similar structure as the descriptor network, outputting affine shape parameters 0′11, 0

′
21, 0

′
22. Note that since

34C (�) = 1, A has two degrees of freedom, which is in accordance with equation 4.7.

4.3.2. Self Supervised Affine Shape Estimation Module

Instead of using a Siamese architecture where the matching relationship is needed to sample matched and
unmatched pairs for training, the second moment matrix is used here to measure the shape of local features
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during the training of affine shape. Stretch and skew of a local patch, derived from the second moment
matrix, are used as the loss for affine shape training.

An overview of affine estimation is shown in figure 4.10. For the input image patches, different affine shapes
are first simulated. Then these patches are fed into the affine shape estimation network to estimate their
affine shape parameters. In the following step, the estimated affine shape parameters are used to re-sample
input affine simulated patches and obtain an output patch, and the stretch and skew of the output patches
are calculated based on the second moment matrix. The whole network is then trained to minimize the loss
derived from the predicted stretch and skew. This is an extension of classical affine shape estimation theory
as presented in Baumberg [2000]; Mikolajczyk and Schmid [2004], in which the affine shape is estimated and
the root of the second moment is used to resample the patch after each iteration (see section 3.2.2). However,
in this work, the measurement of stretch and skew is preserved, and the iteration process is replaced by the
steps of training the affine shape estimation network with the proposed loss.

Figure 4.10.: Overview of the affine shape estimation network. The simulated patch is first fed into the affine
shape estimation network, which predicts the affine shape parameters. Afterwards, the patch is
resamplled using the predicted affine shape parameters. Then, the second moment computation
block takes the resampled patch and computes stretch and skew, which are used to form the
training loss.

SecondMoment Matrix Computation Block: For the resampled patch, the elements of the secondmoment
matrix are calculated by the 2=3 moment computation block, as shown in figure 4.10. The process itself is
illustrated in figure 4.11. For the input patch with a size of F × ℎ, the gradients in x and y direction, 6G and
6H , are calculated. Then, the squared terms of the gradients 62

G , 6
2
H and 6G6H are obtained, which, in turn,

are weighted by a Gaussian function with standard deviation F/2. The weighted values are accumulated by
deriving the mean values of the weighted 62

G , 6
2
H and 6G6H . The second moment matrix is then computed as:

" =

[
62
G_<40= 6G_<40=6H_<40=

6G_<40=6H_<40= 62
H_<40=

]
(4.10)

Through eigenvalue decomposition of " , the stretch and skew in the local image patch are derived. All
layers of the second moment computation block are differentiable so that the partial derivatives of the loss
w.r.t the different elements of the estimated second moment matrix can be back-propagated to the affine shape
estimation network.
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Figure 4.11.: The second moment matrix computation process. Taking an image patch of size F × ℎ pixels
as input, the final output are the elements of the second moment matrix " of the input patch.

Affine Shape Estimation Network: A structure very similar to the descriptor network is utilized for the
affine shape estimation network. It differs from the descriptor network in only two aspects: A) the number
of input and output units is halved from the layer Aff-1 to Aff-6; B) the output layer is composed of 3-
element units activated by a hyperbolic tangent function. The three output units correspond to the affine
shape parameters 0′11, 0

′
21, 0

′
22. To fix the overall scale of a feature, the three affine shape parameters are

subsequently divided by its determinant (0′11 + 1) (0′22 + 1). The affine estimation network is used to estimate
the affine matrix for each input affine simulated patch, the details of this network are explained in table 4.3.
The affine network is illustrated in figure 4.12. The output of ReLU (rectified linear unit) is larger or equal
to zero, while the output of TanH (the hyperbolic tangent function) lies in the range of (-1,1). This range
copes well with the range of affine shape parameters. Consequently, for the final layer (Aff-7), TanH (the
hyperbolic tangent function) is used for non-linear activation.

Layer Filter #In-Out Stride Activation BN
Aff-1 3x3 1-16 1 ReLU Yes
Aff-2 3x3 16-16 1 ReLU Yes
Aff-3 3x3 16-32 2 ReLU Yes
Aff-4 3x3 32-32 1 ReLU Yes
Aff-5 3x3 32-64 2 ReLU Yes
Aff-6 3x3 64-64 1 ReLU Yes

Dropout with rate=0.1
Aff-7 8x8 64-3 1 TanH No

Table 4.3.: Structure of the affine shape estimation network. #In-Out: number of input and output channels.
TanH stands for the hyperbolic tangent function.
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Figure 4.12.: Affine matrix estimation network. The final output are the elements of the affine matrix for each
input patch. An input 32×32 pixel patch around a detected features is convolved and processed
according to the operation indicated in the green boxes, in which C means Convolution, S
stands for Stride, BN means Batch Normalization, ReLu stands for rectified linear unit and
TanH stands for hyperbolic tangent function. The feature map size in each layer is shown in the
orange boxes on top of each layer. Finally, the affine shape parameters 0′11, 0

′
21, 0

′
22 are obtained

and divided by (0′11 + 1) (0′22 + 1).

Data Augmentation: Affine augmentation is applied for each input patch. Both the longitude q and rotation
angle k are randomly sampled (generated from a uniform distribution) in range of [0, 2c), while the stretch
(C) is gradually increased from the first to later epochs. During sampling, only the centre part of a patch
transformed in the affine simulation is cropped to avoid “black” pixels, which have a detrimental effect on
the generalization ability of the network to be trained.

Loss Function: To measure the stretch and skew of the resampled patch using the estimated affine transfor-
mation, the result of the eigenvalue decomposition of the second moment matrix " is used. Before deriving
the eigenvalue of " , normalization by dividing through the root of the determinant of " is carried out:

"=>A< =

[
0/

√
|" | 1/

√
|" |

1/
√
|" | 2/

√
|" |

]
= '

[
486<0G 0

0 486<8=

]
')

(4.11)

where 486<8= and 486<0G are the smaller and larger eigenvalue, and ' is a 2×2 rotation matrix. The absolute
value of the ratio between the two eigenvalues measures the stretch of the local affine shape. Accordingly,
the stretch loss is constructed as:

!BCA4C2ℎ = 1−
���� 486<8=486<0G

���� (4.12)

which drives the magnitude of the two eigenvalues to be close to each other. Therefore, a shape containing
no anisotropic scale change is preferred during training.

Also, 'measures the skew of the local affine shape, namely the direction in which the two orthogonal unequal
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scale changes happen. During training, ' is gradually changed towards a 2 × 2 identity matrix. In turn, this
makes "=>A< to have a diagonal form and thus the skew loss is defined as:

!B:4F =

���� 1√
|" |

���� (4.13)

A lower skew loss !B:4F is obtained when 1√
|" |

is close to zero. This causes "=>A< to become close to a
diagonal matrix. In addition, when the two eignevalues are identical to each other, !BCA4C2ℎ is minimized.
This, in turn, brings "=>A< to an identity matrix, which is the underlying shape of the canonical feature.

For the affine shape, !BCA4C2ℎ and !B:4F are combined to form the training loss and a relative importance
factor _B:4F is set for !B:4F :

!0 5 5 = !BCA4C2ℎ + _B:4F ∗ !B:4F (4.14)

In the experimental chapter of this thesis, different magnitudes of _B:4F are tested in order to identify the
magnitude most useful for feature matching. Due to the fact that the secondmoment matrix is used to measure
the shape of the resampled patch using predicted affine shape parameters, the affine shape network proposed
in this thesis is named asMoNet (2nd Moment Network).

In [Mishkin et al., 2018], a Siamese CNN is used to train the affine shape network using descriptor distance
based loss. However, the involvement of descriptor distance based loss leads to the requirement of pre-known
matching relationships among patches. Compared to descriptor distance based loss, the proposed loss term
does not rely on any pre-known matching relationship among patches, thus it works in a self supervised way.
Also, the difficulty of generating training data is decreased and, in theory, every feature detected with location
and scale can be fed into this framework for training of affine shape.

4.4. Self Supervised Orientation Assignment Module - MGNet

As feature pairs can not only exhibit affine distortion but also can be rotated in an arbitraryway, there still exists
the (unknown) rotation angle k for each patch. This is called feature orientation and this section describes
how to estimate it. Note that as rotations of windows containing features are generated by simulation, explicit
matching relationships are not required, which explains the term “self supervised” module.

Orientation Learning Architecture: An orientation assignment network is set up for the estimation of
orientation in a local feature patch. The overview of this method is illustrated in figure 4.13. The input
feature patch is simulated with different rotations, and the orientation assignment network is used to estimate
its orientation, which is used to resample the input simulated patch. Subsequently, the resampled patch is
fed into mean gradient computation block to calculate its mean gradients. Using all the calculated mean
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gradients, the orientation loss is then calculated. In the following the orientation network, gradient layers,
the augmentation strategy as well as the training loss are presented in detail.

Figure 4.13.: An overview of the orientation estimation network architecture. After rotation simulation, the
feature orientation of the simulated patch is estimated using the feature orientation network
and then resampled with the estimated rotation angle. The resampled patch is subsequently
used as input for the mean gradient computation block to calculate the orientation of the
predicted feature and then the corresponding loss.

Feature Orientation Network: The orientation network contains blocks similar to the ones used in the
affine shape estimation network. The only exception are the last layers, which use the two normalized output
units to predict the rotation matrix. The details of the orientation network are explained in table 4.4 and
figure 4.14. The final layer outputs a regressed rotation matrix for each input feature patch.

Layer Filter #In-Out Stride Activation BN
Ori-1 3x3 1-16 1 ReLU Yes
Ori-2 3x3 16-16 1 ReLU Yes
Ori-3 3x3 16-32 2 ReLU Yes
Ori-4 3x3 32-32 1 ReLU Yes
Ori-5 3x3 32-64 2 ReLU Yes
Ori-6 3x3 64-64 1 ReLU Yes

Dropout with rate=0.25
Ori-7 8x8 64-2 1 Tanh No
Ori-8 rotation matrix using elements of (Ori-7)

Table 4.4.: Structure of the orientation assignment network used in this thesis.

To calculate the output rotation matrix, 2D quaternions with the two elements @0 and @1 are used and
normalized so that @2

0 + @
2
1 = 1, producing a unit quaternion. The final rotation matrix is constructed as:

' =

[
1 − 2@2

1 −2@0@1

2@0@1 1 − 2@2
1

]
(4.15)
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Figure 4.14.: Orientation estimation network. The final output is the predicted rotation matrix for each
simulated input patch. An input 32 × 32 pixel patch around the detected feature is convolved
and processed according to the operation indicated in the green boxes, in which C means
Convolution, S stands for Stride, BN means Batch Normalization, ReLu stands for rectified
linear unit and TanH stands for hyperbolic tangent function. The feature map size in each layer
is indicated in the orange boxes on the top of each layer. Finally, the rotation matrix for the
input feature is obtained.

Mean Gradient Computation Block: For each patch, similar to [Brown et al., 2005], the mean gradient is
calculated and used to estimate the principal orientation of the resampled patch in figure 4.13. The calculation
process of mean gradient is illustrated in figure 4.15. The gradients in x and y direction of a local feature
patch are first calculated and then weighted by a Gaussian kernel with a standard deviation of half the input
patch size. This weighting process assigns pixels closer to centre higher weights and, vice versa, pixels more
distant to the centre a lower weights. In the next step, the mean values are computed using an average pooling
operation and the results in two directions are normalized to form a unit vector, which is used as the input of
arctangent function to derive the rotation angle ([) of the input patch. It is worth noting that the weights in
those layers are predefined and kept constant.

As the orientation network proposed in this thesis relies on mean gradients of local patches, it is abbreviated
toMGNet (Mean Gradient Network).

Augmentation: Uniformly distributed random online rotation augmentation in a range of [0, 2c) is applied
for each patch during training.

Loss Function: The training loss is built on the estimated principal orientation of the patch, which is
resampeled using the predicted orientation from the orientation assignment network. The loss is defined as:

!>A8 = |[ | (4.16)

where [ is the result computed by the mean gradient computation block. This loss drives the canonical
feature to the one whose mean gradient in y direction is zero, which corresponds to the canonical feature,
too.
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Figure 4.15.: The mean gradient computation process. For each feature patch of size F × ℎ pixels, the final
output is the predicted rotation angel of the input feature patch.

4.5. Full Affine Estimation Network - Full-AffNet

In the previous sections, the affine shape and orientation are trained separately. This section describes the
simultaneous training of affine shape and orientation parameters, called full affine estimation, and proposes
a new training loss for the corresponding network.

A full affine network (Full-AffNet) is used to regress the affine transformation of a local patch with three
degrees of freedom, i.e., stretch, skew and rotation. As before, the input are simulated image patches
transformed using different affine parameters. The full affine network is then used to predict the three
parameters of the full affine shape. Afterwards, those predicted full affine shapes are used to resample the
image patch. The sum of stretch loss, skew loss and rotation loss, which are proposed in the previous two
sections, measures how close the current estimated patch is to the canonical form of the employed feature.

First, the overall architecture that is used to learn the stretch, skew and rotation is explained. In the next step,
the training loss, as well as data augmentation are discussed.

4.5.1. Full Affine Network

The full affine network contains a network structure similar to the one used by the affine shape network, except
for the output layer. The details of the network architecture are provided in table 4.5. After the computation,
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the four output values are interpreted as (reshaped to) a 2×2 matrix and then normalized by the square of its
determinant, eliminating the effect of the overall scale change. In other words, the degree of freedom for the
output patch is three.

Layer Filter #In-Out Stride Activation BN
FullAffine-1 3x3 1-16 1 ReLU Yes
FullAffine-2 3x3 16-16 1 ReLU Yes
FullAffine-3 3x3 16-32 2 ReLU Yes
FullAffine-4 3x3 32-32 1 ReLU Yes
FullAffine-5 3x3 32-64 2 ReLU Yes
FullAffine-6 3x3 64-64 1 ReLU Yes

Dropout with rate=0.25
FullAffine-7 8x8 64-4 1 No No

Table 4.5.: Structure of the full affine estimation network

4.5.2. Training Loss

As the full affine network treats the stretch, skew and rotation simultaneously, the shape of the output
resampled patch is measured by the orientation and affine shape loss. In particular, the full affine shape loss
is defined as:

! 5 D;;−0 5 5 = _>A8 ∗ !>A8 + !BCA4C2ℎ + _B:4F ∗ !B:4F (4.17)

In the above formula, _>A8 and _B:4F are used to control the relative importance of !>A8 and !B:4F ,
respectively. The process of computing the three different loss components is given in the previous two
sections. Section 4.3.2 and 4.4 provide the details.

When optimizing ! 5 D;;−0 5 5 , the desired shape for the output patches is expected to be isotropic with zero
skew and zero mean gradient in y direction, which corresponds to the canonical patch.

4.5.3. Data Augmentation

Affine augmentation is conducted for the input pair. The rotation angle and skew are simulated within a
range of [0, 2c) with a uniform distribution sampler, whereas the stretch factor is gradually improved from
the beginning to later stages of training.

4.6. Inference based on the Trained Networks

Once the four aforementioned modules are learned, they are integrated into a feature and descriptor extraction
pipeline which outputs detected features and their descriptors for an input image. The whole process is shown



66 4. Deep Learning Feature Representation

in figure 4.16 with regard to how the proposed networks in this thesis are used in real feature detection and
description tasks. First, the Hessian matrix determinants of each pixel in the input image are calculated for
each sample scale of the input image in scale-space. Then, the local extrema of the Hessian determinant are
detected in scale-space, followed by the refinement of image coordinates and characteristic scale.

Figure 4.16.: Inference of the whole pipeline. The input image first goes through a scale-space feature
detection module to obtain its features, represented by position and scale. Then, the trained
affine shape network is applied to predict affine shape parameters, through which the patches
around features are resampled and further applied to the trained orientation network. Then, the
patches are resampled to remove the rotation ambiguity and used as the input for the trained
descriptor network to obtain descriptors. Alternatively, the affine shape and orientation are
estimated with the trained Full Affine network in one step, as indicated by variant B which is
shown with a grey background box.

Subsequently, a patch is resampled around the detected feature position with a size proportional to the
characteristic scale. This patch is regarded as input for the affine shape network to predict its estimated
affine shape, which, in turn, is used in the next step to compensate for the affine distortion of local patches.
In the following step, the orientation network is applied to the patch corrected for affine distortion in order
to estimate rotation. The patch is then further corrected by the estimated rotation angle and forms the
feature support window for the local feature. Those two steps correspond to the variant A in figure 4.16.
Alternatively, the resampled patch after feature detection is fed into the trained Full AffineNet, then the full
affine shape for the input feature patch is predicted and further corrected in scale-space. The corrected patch
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is used as feature support window to compute descriptors.

In the next step, the trained descriptor network is applied to the obtained feature support windows and
descriptors for the underlying local features are computed. It should be noted that whenever resampling is
necessary, all related parameters are combined and only a single resampling step is carried out.

If the image size is too large, the image is divided into several tiles without overlap and the inference pipeline
is run on each image tile, followed by a combination of all features and descriptors computed from each tile
of the image.

4.7. Discussion

The model assumptions of each module are discussed in this section, as well as the advantages and limitations
of the proposed method.

4.7.1. Descriptor Learning

The quality of the descriptor trained in this thesis depends on the assumption that after training the descriptor
network, the trained descriptors can achieve invariance against a certain level of transformation, which is
contained in the data fed into the descriptor network for training. When homologous features from different
images are described and matched, certain difference are normally present, mainly owing to the fact that
the detected feature locations and the estimated orientation and affine shape are not perfectly aligned since
they always contain some errors. Those errors must be taken into consideration when shaping the descriptor
learning process. One way of achieving this is to use data containing real feature detection noise, for instance
the Brown dataset. However, obtaining this type of data is expensive, because it requires necessary data
such as the ground truth three-dimensional point cloud derived through multi-view dense matching and
exterior orientation parameters of involved images. In order to improve the required invariance, this thesis
suggests using the weak match branch to find challenging patches containing a certain level of geometric
transformation in each iteration. Those patches are used to optimize the parameters of the descriptor network
in each iteration. By using this active weak match finding strategy, the dependence on the variation contained
in the training patch is alleviated.

In addition to invariance, the descriptor should be capable of differentiating features imaged from different
three dimensional positions, namely achieving good discriminability. To achieve this, it is crucial for the
descriptor to “see” enough variance among the image patterns contained in feature support windows, i.e., in
training patches. This means that the dataset used for training should contain scene with an abundance of
texture and variations of local features. During the learning stage, whether a feature can be differentiated
from others is reflected through the Euclidean distance based loss regarding unmatched pairs. Thus, it also
depends on the model assumption according to which the used Euclidean distance in feature descriptor space
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is an adequate similarity measure for feature matching. In order to be consistent with this similarity measure,
all the later evaluation tasks in the experimental chapter use the Euclidean distance of descriptors to measure
the similarity between features as well.

If the images which to be matched contain repetitive patterns, non-conjugate input patches look similar
which in turn, leads to the fact that also the output descriptors are similar to each other. Consequently,
matching those features will be a challenging issue. This is also due to the fact that the learned descriptor
only considers local patterns. One possible way to cope with this situation is to incorporate constraints that
ensure the consistency in the order in which matched features appear in the images. This challenging case,
however, will not be addressed in this thesis and is left to future work.

4.7.2. Affine Shape Estimation

An important dependence is that both stretch and skew loss are well-trainable within a deep learning
framework. In the classical theory dealing with affine shape estimation, iterative procedures based on
applying the transformations determined by the inverse of the square root of the second moment matrix
are used, e.g., Mikolajczyk and Schmid [2004]. However, as stated in Mikolajczyk and Schmid [2004], a
considerable number of features is removed after the iterative affine adaptation algorithm and only 20-30% of
the initially detected features are preserved for further feature matching. In this thesis, the iteration process in
the above mentioned method is replaced by the optimization of the affine shape estimation network, whereas
the objective function of both ways remains very similar to each other.

Another one of the most notable advantages of this method is that a clear goal for affine shape correction
is defined. For any patches, the number of constraints designed in the loss term is equal to the degree of
freedom contained in the corresponding transformations. Therefore, a canonical solution exists for each
feature. Compared to the previous work [Mishkin et al., 2018; Chen et al., 2020a], descriptor distance is
not utilized as similarity measure for the suggested method in this thesis. This contributes to a simpler,
yet comparable solution. The matching relationship used for pair sampling in training is not needed. In
consequence, only image patches surrounding features are required, which significantly lowers the difficulty
of obtaining training data.

4.7.3. Orientation Assignment Learning

The core assumption of orientation assignment is that the vector built by the mean gradients in x and y
direction is reliable enough to indicate the rotation of a feature and is well-trainable, too. Although the
mean gradient in x and y direction is calculated in a simple way, it is a powerful indicator for most local
image patches. After applying rotation transformations to patches, an angle can be derived by using the
0A2C0= function with normalized mean gradients in x and y direction on the rotated patches. Through this
experiment, it is found that the mean gradients can effectively and sensitively indicate the orientation of
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image patches. Moreover, the calculated mean gradients change continuously with respect to different angles
(except for angle ±c/2). In comparison, the more widely used histogram of gradients based orientation
assignment strategy, as suggested in Lowe [1999], is not differentiable because gradients are quantized for
calculating the histogram. This differentiable property plays a key role for the learning procedure.

Similar to the affine shape estimation module, a canonical form of feature is achieved. Therefore, the
optimized solution of feature orientation for different patches is unique, corresponding to the canonical
feature patch. The dependence on feature descriptor distance, as employed in Yi et al. [2016b,a]; Mishkin
et al. [2018]; Chen et al. [2020a], is eliminated.

If the patches contain radial symmetric patterns, the mean gradients derived in x and y direction are less
sensitive to rotations of the patches. This means the training data should not be dominated by symmetric
patterns.

4.7.4. The Inference Pipeline

The inference pipeline shares all of the aforementioned assumptions for the different modules. For the feature
detection in scale space, it relies on the Hessian detector, which has been proved a better invariance against
viewpoint and viewing direction change, in comparison to other hand crafted feature detectors [Mikolajczyk
et al., 2005]. Extensions of the approach to learn the feature detector, similar to the work in Lenc and Vedaldi
[2016]; Yi et al. [2016b], can be integrated into this approach to further improve the invariance of feature
detection against viewpoint and viewing direction change. This part of feature detector learning, however,
will also be left to future work.
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5. Experiments and Results

The focus of this research is to apply deep learning methods to improve the image matching performance
of local features against large viewpoint and viewing direction change. To address this topic, descriptors
are designed to tolerate a limited level of affine distortion in local features, whereas a higher level of affine
distortion is designed to be handled by the trainable affine shape and orientation assignment module. This
chapter presents a series of experiments designed to evaluate and analyse the performance of the method
proposed in this thesis.

The last chapter explained the method for training descriptor, affine shape and orientation assignment as well
as the full affine shape estimation module, which aims at boosting the matching performance against large
viewpoint and viewing direction change. This chapter assesses the performance of the learned modules.
With this in mind, four different experimental tasks are included in this chapter and the goal for each of them
are listed below:

• Task A - Patch based Image Matching: Test how the trained descriptor performs when different levels
of transformation are contained in a patch based image matching task1. The module involved in this
experiment is the learned descriptor network.

• Task B - Descriptor Distance Analysis: Find out how the descriptor distance of matched feature pairs
changes when different kinds of transformations are applied to the features. The module involved in
this experiment is again the learned descriptor network.

• Task C - Feature based Image Matching: Compare how well the inference pipeline can match images
in two different cases: A) imagery containing a full range of in plane rotation change; B) images
including large viewing direction change, resulting in large affine distortions and a limited level of
in-plane rotation. In both cases, ground truth results are available. The modules involved are the
learned descriptor, affine shape, orientation and full affine shape network.

• TaskD - ImageOrientation: Small blocks of oblique aerial images are utilized to assess the performance
of the proposed method in image orientation tasks. The bundle adjustment results are used to analyse
and assess the performance. The modules involved are the same as in task C.

A summary of the listed experiments is illustrated in figure 5.1. As can be seen, for the affine shape and
1Patch based image matching means that image patches are provided as the input for running description and descriptor matching.
Those image patches are extracted surrounding features, which can be either detected or projected from other image views.
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orientation of features, both options of separating them into two steps (variant A) and combining them into
one full affine network (variant B) are tested.

First, the learned descriptor is evaluated to reflect its performance for patch based image matching. A
descriptor, as a fundamental part of several of the tasks of this thesis, is designed to be discriminative
and robust against certain amount of geometric deformation in image patch data. In order to evaluate the
performance of the learned descriptor, the dataset HPatches [Balntas et al., 2017] is selected as the test
benchmark for task A.

Second, the descriptor distance of patch pairs under different kinds of transformation is computed and
analysed. Through this analysis, more knowledge about how the descriptor distance change with respect to
different geometric transformations is gained. The dataset used in this task requires the matching relationship
between feature patches, so that patch pairs are sampled according to the provided matching relationship.

Third, the proposed feature and descriptor extraction pipeline is evaluated on standard image matching
benchmarks containing large viewpoint and viewing direction change with known matching relationships. In
addition to the descriptor part, the influence of the affine shape estimation and orientation assignment modules
is also included. Standard image matching benchmarks provided with ground truth geometric relationships
are used for testing the performance. The whole pipeline is used to extract features and descriptors for images
contained in the test benchmark.

Finally, as standard image benchmarks providedwith ground truth geometric relationship represent a relatively
ideal case, the performance of the whole pipeline in real applications remains unknown. Among all the real
applications with local image features, image orientation is one of the most attractive and fundamental tasks
in the photogrammetry and computer vision. Small image blocks taken from an aerial penta-camera system
including nadir and oblique images with significant changes in viewpoint and viewing direction, the features
and descriptors of which are extracted with the whole pipeline, are selected for assessing the proposed
method. In a full block of images captured by aerial penta-camera systems, images with larger differences in
viewpoint and viewing direction can often be matched, because the block contains images in between so that
features can be tracked across the block. To decrease this influence, some adjacent views in the full block
are removed and only small blocks of images are used to form the test blocks. Therefore, compared to the
coverage of a full block of images, a smaller number of viewpoints and viewing directions is covered. The
quality of image orientation parameters and the computed 3D points after bundle adjustment with the derived
features as input are used to assess the results. Note that since the overlap of the images used is partly less
than the standard for aerial triangulation, the precision of the orientation parameters and the 3D coordinates
of the tie points is expected to be larger than in normal cases also. This part forms the main assessment of
the proposed method.

Additionally, necessary hyper-parameters for the descriptor and affine shape network are studied. Specifically,
the relative weight of the weak match loss in descriptor learning is studied in section 5.3 and the relative
weight of skew loss is studied in section 5.5.
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The following section 5.1 introduces the datasets used for descriptor, affine shape, orientation assignment, as
well as full affine shape module learning. In the next section, the evaluation criteria of the aforementioned
evaluation tasks (Task A, B, C and D) are explained. Sections 5.3 through 5.6 provide the evaluation results
for Task A, B, C and D, as well as the training details and the result of the hyper-parameter study.

Figure 5.1.: Overview of the experiments. The four designed experiments (Task A, B, C and D) are shown in
the orange boxes. Task A and B rely only on the trained descriptor while Task C and D rely on
all of the trained modules. For task C and D, Variant A and Variant B are treated as alternative
variations of the method.
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5.1. Datasets

In this section, all the datasets used in this research are introduced. It contains two parts: the dataset for
training and that for evaluating the result of Tasks A, B, C and D. A summary of all involved datasets in this
research is provided in table 5.1.

Main
Usage

Dataset Name Cameras and Imaging Platform Patch or
Image?

Notes

Train
Brown Dataset consumer camera, street view patch 3 subsets
Aerial-Graz oblique camera, aerial view patch –

Test

Hpatches consumer camera, close range view patch 2 subsets
Aerial-Dortmund oblique camera, aerial view patch –
Hpatches Image Sequence consumer camera, close range view images 2 subsets
Oblique Aerial Image Blocks oblique camera, aerial view images 4 subsets

Table 5.1.: Datasets involved in this research.

5.1.1. Datasets for Training

Datasets for the training of descriptor, affine shape, orientation assignment and full affine shape network are
introduced in this subsection.

Brown Dataset

To train the descriptor proposed in this thesis, i.e. WeMNet, the Brown Dataset 2 [Brown et al., 2011] is used.
To generate the Brown Dataset, multi-view datasets that contain large numbers of images (community photo
connections) [Goesele et al., 2007] are utilized. Through structure from motion and dense multi-view stereo
matching for the community photos [Snavely et al., 2008], image orientation results and dense surface models
are obtained. In the following step, as mentioned in section 3.3.2 and explained in Brown et al. [2011], for a
feature 5! on image �! , a small, uniform and dense grid surrounding 5! is sampled and transferred to image
�' through the depth map estimated between the stereo image pair �! , �'. The transferred grid is a group
of image points which represent the extent of matched features point 5' on �'. The localization, scale and
orientation of 5' are estimated by least square which minimizes the fitting error of sample grid points on �',
i.e., computing the best fitted local feature frame represented by translation, rotation and scale. By running
this process for each of the feature points on �! , the ground truth matching feature on �' is obtained. If the
estimated scale and pixel localization for the transferred features point are close to3 the scale and localization

2http://matthewalunbrown.com/patchdata/patchdata.html (accessed on Jan 26,2021)
3Specifically, 5 pixels for position, 1/4 octaves for scale and c/8 for rotation.



5.1. Datasets 75

of a detected feature point 5' on �' , 5' and 5! are judged as a ground truth match pair.

By running the process mentioned above, true matches between any two connected images during stereo
matching are collected and, finally, matched features from different visible images are tracked to form the
training patch dataset. It contains a large number of 3D points, each of which has several visible features
from different views. The patch extent is extracted with a size of 6 times the characteristic scale and rescaled
to 64 × 64 pixels. One of the most important advantages of this method is that it models the true interest
point noise in the data [Brown et al., 2011].

In total, there are three different subsets: NotreDame, Liberty and Yosemite. For each subset, there are two
versions of dataset generated by using different feature detectors. Concretely, one version uses the features
detected by Difference of Guassian (DoG) detector and the other one uses the Harris detector. One sample
of a matched feature for a same 3D point is shown in figure 5.2. A limited level of transformation among
different patches, as shown in figure 5.2, is contained in this dataset.

Figure 5.2.: Feature patches that corresponds to a 3D point in the NotreDame set of the BrownDataset [Brown
et al., 2011]. This 3D point contains 6 different visible match feature patches, i.e., 6 different
views of images.

In order to better compare and analyse the performance ofMGNet, MoNet and Full-AffNet trained on different
datasets, the brown dataset is also used to train MGNet, MoNet and Full-AffNet in task C and D.

Aerial-Graz Dataset

To generate the training image patches for affine shape and orientation estimation, large blocks of images are
used to generate training pairs. An image block containing 721 images was collected and provided for this
research by the company Vexcel under the framework of VOLTA4 (innoVation in geOspatiaL and 3D daTA)
project. The images are taken using the Vexcel UltraCamera Osprey camera5, which is an aerial oblique
camera system with one nadir camera and four side looking cameras (forward, backward, right, left camera).
The side looking cameras have oblique angles of 45 degrees. The data used was taken in Graz, Austria, and
the flying height was 1000m. The ground sampling distance (GSD) for the nadir view is 6.5cm and it varies
from 5.0 to 7.5cm for oblique views.

The images are matched and put through the open-source Structure-from-Motion (SfM) software COLMAP6

4https://volta.fbk.eu/
5https://www.vexcel-imaging.com/ultracam-osprey-4-1/
6https://github.com/colmap/colmap
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[Schönberger and Frahm, 2016] to obtain the image orientation result. Using this SfM, 712.000 3D points
are obtained. Each of those 3D points has at least two visible views and thus at least two image features
from different images. The average number of visible views distributed over all 3D points is called the mean
track length, which indicates the redundancy level of collected 2D feature points. For the processed 712.000
3D points, a mean track length of 3.56 is obtained. For each detected feature that is also matched and
reconstructed by SfM, a surrounding context window with a radius of 12 times the detected scale is cropped
and resampled to a 96 × 96 pixels patch. This dataset is named as Aerial-Graz in the following sections of
this thesis. An exemplary feature track of this dataset is shown in figure 5.3.

Figure 5.3.: An exemplary feature track of the Aerial-Graz dataset. The three feature patches correspond to
one identical 3D world point and are taken from different views.

Once patches have been generated, mini-batches are sampled for the training of affine shape, orientation
and the full affine network. As mentioned before, the sampling process does not rely on the matching
relationship. In theory, the training of affine shape, orientation and the full affine shape network only requires
image patches surrounding detected features, as all the relevant networks (MoNet, MGNet and Full-AffNet)
are only trained with one branch and the matching relationship is not needed to compute the training loss. In
contrast, in the other closely related work on AffNet [Mishkin et al., 2018], a Siamese CNN is used and only
the feature patches that survive image orientation (or SfM) are used for training. To make the comparison
between those two methods as fair as possible, the same type of feature patches, i.e., those which survived
SfM, is used. Undoubtedly, using detected features without any further processing via SfM would do just as
well for training the proposed MoNet, MGNet and Full-AffNet.

In this thesis, Aerial-Graz is also used to train the AffNet and OriNet proposed in Mishkin et al. [2018], in
order to compare those two networks to the networks proposed in this thesis using the identical dataset.

5.1.2. Datasets for Testing

Dataset for Patch based Image Matching (Task A)

To evaluate the learned descriptor, the Hpatches benchmark 7 [Balntas et al., 2017] is used. This dataset
contains image patches that are generated from two groups of images: illumination (57 subsets) and viewpoint

7https://github.com/hpatches/hpatches-benchmark
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(59 subsets). In the illumination group, images are taken with the same camera parameters (related by identity
homography matrix) but varying illumination. The viewpoint group of images depicts planar scenes acquired
from different viewpoints. A horizontal tilt constitutes the major transformation between images. In each
subset of these images, there are one reference image and five target images. The matching relationship is
provided by a ground truth homograph matrix between each target image and the reference image. According
to Balntas et al. [2017], once features have been detected in the reference images by a DoG feature detector,
they are perturbed with different amounts of rotation, anisotropic scaling and translation to simulate the noise
in feature detection facing viewpoint change. Based on the level of perturbation, the noise is classified into
three categories, namely easy, hard and tough. The level of perturbation increases gradually from images
in the easy category to the tough ones. Those perturbed features are then projected from the reference
image to target images through ground truth homographies before being resampled. In this context, it should
be noted that the features from the target images are not obtained by feature detection. Instead, they are
the result of projection of perturbed features in reference image onto the target images. Then, features are
scaled to five times their characteristic scale in order to extract patches which may be used for descriptor
computation. The patches are all rescaled to 65 x 65 pixels and the features with a scale smaller than 1.6
px are discarded because larger scaling factors are needed for those small scale features to generate patches
and thus re-sampling artefacts can be involved. Exemplary pairs are shown in figure 5.4. An increasing level
of distortion can be observed in the image as the perturbation level increases from easy to tough. Based on
those patches, patch verification, image matching and patch retrieval tasks are designed in order to evaluate
the performance of different feature descriptors [Balntas et al., 2017]. In this thesis, only the image matching
task is taken into use, as feature matching is the topic of this work.

Dataset for Descriptor Distance Analysis (Task B)

To analyse how the descriptor distance is changed by different kinds of geometric transformation applied to
input patch pairs (Task B), two different datasets are used. The first one is the Brown Dataset, which is also
used in descriptor learning. The second one is a patch dataset generated in a similar way as Aerial-Graz,
but with different aerial image blocks taken by an IGI penta camera. This dataset was provided by the IGI
company, Germany. The employed oblique camera system comprises one nadir camera and four side cameras
(forward, backward, right, left camera). The side looking cameras have oblique angles in range of 42 to
45 degrees. In total, 181 images are contained in this dataset. The images in this block were mainly taken
at a flying height of 620m. Some additional photos were taken at a flying height of 370m and 960m. For
the images taken at the height of 370m, the GSD in nadir and average oblique views are 1.9cm and 2.7cm,
respectively. For images with the flying height 620m, the GSD is 3.2cm for nadir views and 4.5cm on average
for oblique views, and for images taken at the flying height of 960m, the GSD for nadir views is 4.9cm and
the average GSD for oblique views is 6.9cm.

The same process used to generate Aerial-Graz, as mentioned in section 5.1.1, is employed to compute the
image orientation result for this second dataset. 157.000 3D points with a mean track length of 4.32 are
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Figure 5.4.: An example of Hpatches dataset [Balntas et al., 2017]. Each row represents one patch from
the reference image (in the first column) and different easy (E1-E4), hard (H1-H4), and tough
(T1-T4) matched patches from other target images.

obtained. To generate pairs for task B, 3D points are first picked and then two corresponding features for
each of these selected 3D points are randomly chosen to form a pair. Those pairs are further used for the
descriptor distance analysis experiment (Task B).

Dataset for Feature-based Image Matching (Task C)

The dataset used in this task is Hpatches image sequence8 [Balntas et al., 2017], which contains the same
images as the aforementioned Hpatches dataset. Compared to Hpatches, the images, instead of feature
patches, are used as input for image matching. In this task, only images from the viewpoint change subset
are used. The viewpoint subset is composed of 59 small groups of images taken for planar scenes. Each
of the small datasets contains homography matrices, which describe the geometric relationship between the
reference image and each target image. Two groups of Hpatches image sequences from the viewpoint subset
are shown in figure 5.5.

Two cases are tested in task C, i.e. the rotation and affine transformation. For the first case, the reference image
in each subset is transformed with 12 different rotation degrees, therefore 12 rotated images are obtained for

8http://icvl.ee.ic.ac.uk/vbalnt/hpatches/hpatches-sequences-release.tar.gz (accessed on Nov 13, 2020)
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(a) azzola image 1 (b) azzola image 3 (c) azzola image 6

(d) blueprint image 1 (e) blueprint image 3 (f) blueprint image 6

Figure 5.5.: Two examples of Hpatches sequence images taken from the viewpoint subset . The first column
(a) (d) shows the reference image [image 1] of subset “azzola” and “blueprint”; the second
column (b) (e) and the third column (c) (f) are the second [image 3] and fifth [image 6] target
image in these two subsets.

each subset. This dataset is called Hpatches-Rot. To generate the rotation set for each subset in Hpatches
image sequence, the full rotation range is first equally divided into 12 regions from −180◦ to 180◦ and then
a rotation angle in each region is randomly sampled with a uniform distribution. In addition, a random
scale factor in the range of [0.9 − 1.1] is uniformly sampled and applied to the input image. Therefore, the
major transformation in this dataset is rotation, but a small range of scale change is also contained. For the
second case, namely affine transformation, only the reference image and the “image6” in each subset, i.e., the
one containing most challenging viewpoint and viewing direction changes, are used. This dataset is called
HPatches-Aff. As the ground truth homography matrix is always available, the ground truth matches can be
derived for the rotation and affine set.

Dataset for Image Orientation Tasks (Task D)

Apart from testing the performance of learned descriptors, feature affine estimation, orientation and the full
affine shape network on patch-based benchmarks and image matching benchmarks, its performance in real
image orientation tasks is assessed. This part of the assessment is defined as Task D in this thesis. Image
blocks containing images taken by an oblique aerial camera system, again, are used for Task D, mainly due
to the fact that the obtained images contain large viewpoint and viewing direction changes, which serve as a
suitable test-bed for the method proposed in this thesis.

The datasets used in Task D are composed of four different image blocks. All of these image blocks are
taken from the airborne oblique images contained in the ISPRS/EuroSDR benchmark for multi-platform
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photogrammetry 9 [Nex et al., 2015]. An IGI penta camera system was used to take the images for this
benchmark (note that it was an older version than the one used for acquiring the Aerial-Dortmund data
mentioned before). It provides two different sets of image blocks: “Zeche Zollern” and “Dortmund”. In
“Zeche Zollern”, terrestrial objects forest, farmland and low buildings, are depicted in this set, whereas
“Dortmund” was taken in Dortmund and the images are dominated by dense city blocks. In order to
investigate the performance of the method proposed in this thesis considering different types of landscape,
both datasets are used. Two image blocks (block1 and block2) are taken from the “Zeche Zollern” dataset
and another two (block3 and block4) from the “Dortmund” dataset. The ground sampling distance for the
two blocks is identical: it is 10cm for the nadir view and varies from 8cm to 12cm for the oblique views [Nex
et al., 2015]. Also, the flying height for both datasets is identical: it is 830m. The image dimension is 8176 ×
6132 pixels for all four blocks. An example of five images of block4 is shown in figure 5.6, which highlights
distinctive viewing directions and viewpoints for images in the image block.

As stated before, both city and suburban imagery are used to investigate the performance of the proposed
method for different types of landscapes. Specifically, the first block covers farmland, forest and low buildings
while the second block is dominated by residential areas and low buildings but also contains a few forest and
some farmland. The third and fourth block contain dense building blocks, road and some trees, which are
typical terrestrial objects in a city scene. For a closer look of the typical nadir image used in each block,
please see the figure 5.7.

The types of content and the configuration of each block are shown in table 5.2. For each block, three to five
images of each viewing direction are used, a closer look at the selected views of each block is illustrated in
figure 5.8.

block
name

Dataset #images #nadir #front #right #back #left main scene
contents

block1 Zeche Zollern 18 4 4 3 3 4
farmland, forest,
low buildings

block2 Zeche Zollern 19 4 4 4 4 3
residential area,

low buildings, forest

block3 Dortmund 17 3 3 4 4 3
buildings,
city center

block4 Dortmund 20 4 4 4 4 4
buildings,
city center

Table 5.2.: Details about the image blocks used for determining image orientation. #images stands for the
amount of images; #nadir, #front, #right, #back, #back represent for the amount of image taken
from nadir, front, right, back and back camera in a penta-camera system, respectively.

9http://www2.isprs.org/commissions/comm1/icwg15b/benchmark_main.html (accessed on Jan, 26, 2021)
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(a) front camera

(b) left camera (c) nadir camera (d) right camera

(e) back camera

Figure 5.6.: Five exemplary images taken from different views in one small oblique aerial image block
(block4). Images (a), (b), (c), (d), (e) are taken by front, left, nadir, right and back camera,
respectively. As those five images come from different imaging stations, there is a large
viewpoint and viewing direction change among any two of the images taken by different
cameras.

For block 1 and 2, adjacent imagery from inter and intra flight line are not included, in order to increase
the difficulty of matching. For the dataset “Dortmund”, the imagery taken at every other flight line are not
included for the published version. As block 3 and 4 are selected from “Dortmund”, adjacent flight lines
have already been excluded. Therefore, compared to a full block, connecting images from different views of
the selected 4 image blocks with matching points is more challenging.
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(a) block1 (b) block2

(c) block3 (d) block4

Figure 5.7.: Typical nadir view for block1 (a), block2 (b), block3 (c) and block4 (d) used in the image
orientation experiment. Block 1 contains more texture-less scene composed of farmland and
forest. In comparison, block 2 includes more artificial terrestrial objects, e.g., low residential
buildings and low industrial building, which result in a more abundant texture. The other two
blocks, 3 and 4, contain urban buildings. A slight difference is that block 3 contains a few more
higher buildings than block 4.
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(a) block1

(b) block2

(c) block3 (d) block4

Figure 5.8.: The selected views used in block1 (a), block2 (b), block3 (c) and block4 (d). For each graph,
the stations where images are taken using the penta-camera system are indicated by the symbol
defined at the top of the figure. The blue line represents the flying line and the flight direction is
shown by the arrow. The selected views for each image block are shown in colour according to
the colour bar shown at the top of this figure.
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5.2. Evaluation and Analysis Criteria

In this section, the criteria of the evaluation task A, B, C and D are explained.

5.2.1. Task A: Patch based Image Matching

For this task, a collection of features from pairs of images containing a reference !0 and target image
!1 is used. Features on the reference image !0 (G80, 8 = 1, 2, ..., #) are detected and features on target
images, (G81, 8 = 1, 2, ..., #), are generated by projecting features detected on reference image !0 with noise
perturbation. Thus, each feature of G80 is certain to have a correctly matched feature G6C81 and 6C8 = 8.
By varying the perturbation level from easy to tough, the matching difficulty between (G80, 8 = 1, 2, ..., #)
and (G81, 8 = 1, 2, ..., #) increases. As suggested in the corresponding benchmark software “hpatches-
benchmark”10, the nearest neighbour based on the distance between descriptors (recorded GX81) is taken as
the matched feature for each feature G80 detected in the reference image !0. The matching relationship H8
is labelled as +1 (correct match), if X8 = 8 and as -1 (wrong match), if not. Based on the decreasing order
of similarity score, the matching relationships H8 are sorted into (Hc1 , Hc2 , .., Hc# ) and the average precision
�%(Hc1 , Hc2 , .., Hc# ; #) is calculated as the final performance measure. In particular, �% is defined as:

�%(H; #) =
∑
::H:=+1 H:

#

In the above equation,
∑
::H:=+1 H: represents the number of correct matches and # stands for the number of

returned matches. Owing to the fact that the number of ground truth matches equals the number of involved
features for matching, recall and precision are identical. Therefore, only average precision is used to evaluate
the performance. In an ideal case, AP is 1; a higher AP indicates better matching performance.

5.2.2. Task B: Descriptor Distance Analysis

After descriptors are learned, it is critical to know how the distance of a matched pair change when different
kinds of geometric transformations are applied to one of the local image patches surrounding detected features.
To explore this issue, the descriptor distance between matched patch pairs which have undergone different
kinds of geometric transformations is analysed. This analysis provides a closer look at how descriptor
distance for feature pairs change by geometric transformations, therefore it acts as an important guidance
for the question: under which circumstances the descriptor distance is an effective measure for the level of
geometric distortions contained in local feature patch.

Among all possible types of transformations, rotation, translation and affine shape transformation are explored,

10https://github.com/hpatches/hpatches-benchmark
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because those are common potential geometric transformations a descriptor needs to be invariant against in
real applications. To explore this, a large number of matched pairs are sampled for this study. For each
matched patch pair containing an anchor (0) and a positive patch (?), 0 is fixed and ? is transformed with
different transformations sampled by different transformation parameters. Then a functional relationship
is explored in this study: the distance between the descriptor of 0 and the descriptor of transformed ? is
treated as dependent variable, while the parameters determining the transformation applied to ? is treated
as independent variables. By applying geometric transformations, the descriptor distance is attained as the
average value for the whole patch pair set. Through this process, a better knowledge of how the descriptor
distance changes by different geometric transformations is gained.

5.2.3. Task C: Feature based Image Matching

In this task, the matching is conducted for full images. The images contain planar scenes and the relationships
between image pairs are described by homography. After the features are detected and described, the
matching relationship is predicted using the extracted descriptors. In addition, the ground truth matches
between different images are available.

A pair of reference and target images is matched using the matching variants composed by the modules
proposed in this thesis. These matches are checked by comparing them to ground truth correspondences.
Features that are consistent with ground truth correspondences are considered as correct matches. Once
the numbers of initial matches (#<0C2ℎ4B), correct matches (#2>AA42C_<0C2ℎ4B) and ground truth corre-
spondences (#6C_<0C2ℎ4B) are known, recall and precision are computed following the commonly applied
procedure:

A420;; =
#2>AA42C_<0C2ℎ4B

#6C_<0C2ℎ4B

?A428B8>= =
#2>AA42C_<0C2ℎ4B

#<0C2ℎ4B

(5.1)

By varying the distance threshold used in matching, the number of computed matches changes and thus
both #<0C2ℎ4B and #2>AA42C_<0C2ℎ4B vary accordingly. This, in turn, leads to the change of recall and
precision. Therefore, a curve in 2D space spanned by recall and precision can be drawn. The area under the
curve (AuC) is then taken as the evaluation criterion for a pair of input images that are matched. A higher
AuC indicates a better feature matching performance.

5.2.4. Task D: Image Orientation

Besides evaluating descriptors and other learning modules using the above benchmarks, results of the
proposed method used in real applications are also assessed, using an oblique aerial image orientation task
as an example. For a block of oblique aerial images, quality measures based on the image orientation result
after bundle adjustment are used to assess the quality of the feature matching algorithm. In particular, the
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following criteria are reported:

• Number of registered images (#8<6_A46.), i.e., the number of images for which the orientation pa-
rameters could be determined. This number is the very first criteria to evaluate the performance of
the matching algorithm. Obviously, a larger number of registered images indicates stronger matching
performance.

• Number of reconstructed 3D points (#3�%_A42.). Under the condition that features on all images are
detected with identical detectors and that an equal number of features is obtained for each image, the
number of reconstructed points can indirectly reflect how well the features are matched in the blocks.
A larger number of reconstructed 3D points indicates more features are correctly matched.

• Average number of matches per image used in the bundle adjustment. Again, a higher number means
that more features are matched and used in bundle adjustment.

• Number of intersecting rays per 3D point, the histogram of which reflects the redundancy level of
observations for 3D points. For each 3D point, depending on which images these rays come from, four
cases are distinguished:

– A) from only one camera (nadir or oblique) (only_nad_or_obl);

– B) from the nadir and one oblique camera (nad_obl);

– C) from the nadir and at least two different oblique cameras (obl_nad_obl);

– D) from two or more different oblique cameras (obl_obl).

The difficulty of feature matching increases from level A to D as the viewpoint and viewing direction
changes between images increases accordingly.

• The estimated standard deviation after bundle adjustment f?>BC0 . It measures the overall deviation
between data and model.

• Precision of the 3D point coordinates obtained via error propagation. Higher precision indicates better
quality of the whole image orientation pipeline.

• The quality of matches. The number of initial matches (# 8=8C80;
<0C2ℎ

), the number of matches after two-view
geometric verification using RANSAC (# 8=;_2E84F

<0C2ℎ
) and the the number of matches which survive after

bundle adjustment (#BDA E_��
<0C2ℎ

) are reported. Correspondingly, the ratio of inliner matches ('8=;_2E84F
8=8C80;

)
= (# 8=;_2E84F

<0C2ℎ
/# 8=8C80;

<0C2ℎ
) and the ratio of surviving matches after bundle adjustment ('8=;_2E84F

BDA E_�� ) =
(#BDA E_��
<0C2ℎ

/# 8=;_2E84F
<0C2ℎ

) are reported.

• Distribution of matching points in the image plane. It should be noted that only the matching points
which survive after bundle adjustment are considered. A more even distribution of matching points
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in the image plane reduces the risk of running into degenerate cases and contributes to more reliable
parameters.

For a comparison using different matching variants, the one leads to higher #8<6_A46. and #3�%_A42. indicates
a better matching performance. Correspondingly, a higher number of observations per image also indicates
a better matching performance. For the intersecting rays per 3D point, more matches for harder cases
represents better invariance against larger viewpoint and viewing direction change. The precision of 3D
object points relies on the matching relationship as well as the localization accuracy of detected features. The
two ratios '8=;_2E84F

8=8C80;
and '8=;_2E84F

BDA E_B 5 < provides a closer look at the robustness of the matching performance.
In addition, the distribution of matching points is an important factor, an even distribution is mandatory for
the computation of correct image orientation.

The detailed result for this image orientation task (Task D) will be reported in section 5.6.

5.2.5. Summary of Tasks and Involved Datasets

Before presenting the detailed results from next section, a summary of the training and test dataset, as well
as task description for tasks A, B, C and D is provided in table 5.3. For each task, a different training and
test dataset are used. For the subtasks in task C and D except for C1, the involved affine shape, orientation
and full affine shape network are trained both on the Brown and the Aerial-Graz dataset. In this way, a better
understanding of the generalization of the networks proposed in this thesis is achieved.
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5.3. Descriptor Learning and Patch Based Image Matching

In this section, results related to descriptor learning are provided and analysed. First, this section provides the
parameter study for _F<, which controls the relative importance between descriptor loss and weak matched
descriptor loss. Then, the trained descriptor is compared to other closely related descriptors.

In this experiment, the descriptor network training is implemented in PyTorch, based on the code published
in [Mishchuk et al., 2017] 11 for the HardNet descriptor. During training, mini-batches with a size of 1024
pairs are used and trained in 10 epochs 12. Standard gradient descent is used with the learning rate initialized
at 0.05. The learning rate decay is applied exponentially after each iteration, such that the learning rate at the
beginning of an epoch is decreased by 20% by the time the epoch is finished. The losses involved in descriptor
learning are logged every 50 training steps, in order to visualize and analyse the change of losses throughout
the whole training procedure. For each experiment conducted in section 5.3.1, 10 million matched pairs are
sampled as the training dataset, while 30 million matched pairs are used for the experiments conducted in
section 5.3.2. All of the descriptor networks mentioned in this section are trained using the Brown Dataset
[Winder and Brown, 2007; Brown et al., 2011]. During training, the maximum stretch of the local weak
match finder is set as 2.2.

In task A, four different sets of data division using Hpatches [Balntas et al., 2017] are used: “a”, “view”,
“illumination” and “full”. The patch set “a” contains features detected on images found only in a subset of
the "view" and “illumination” set. The sets “view” and “illumination” contain all features detected from the
view and illumination set, respectively, while the set “full” contains features detected in all images. This
separation yields a more comprehensive result and the performance against different types of transformation
(illumination and viewpoint change) is better comparable.

5.3.1. Parameter Study for WeMNet

The relative weight factor of the weak match networks is investigated in this section. With the aforementioned
training procedure, the descriptors are trained by varying _F<, for which the test values are 0, 0.01, 0.1, 1.0,
3.0, 5.0 and 10.0. _F< = 0 is the case for descriptor learning without weak matches. In the following step
of the parameter study, those descriptors trained with different test values for _F< are employed, in turn, to
compute descriptors of patches contained in the Hpatches dataset for running the patch based image matching
(Task A). The matching process is first evaluated with regard to the view and illumination sets, and then with
regard to the full dataset as well. The mean average precision obtained are listed in table 5.4. As observed
from the listed results, the involvement of weak matches improves the matching performance in cases of both
viewpoint and viewing directions (set “View”) and illumination (set “Illumination”) change.

For a better visualization and analysis of the parameter study, the result using the full dataset is further
11https://github.com/DagnyT/hardnet (accessed on Jan 26, 2021)
12In the context of deep neural network training, an epoch refers to one cycle through the training dataset.
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explained in figure 5.9. As can be seen in figure that when _F< equals 5, the best results are achieved on
average over different cases (easy, hard and tough). Consequently, _F< = 5.0 is selected as the final choice
of _F< in this study. All the WeMNet in following experimental tasks relies on the WeMNet with _F< =
5.0. Also, the results for _F< = 3.0 and 5.0 are very similar, which means that in the corresponding range the
trained descriptor is less sensitive to the parameter change. When the model trained by applying _F< = 5.0 is
compared to the baseline (without the weak match branch and thus _F< = 0), a 12.0% overall improvement
is gained in terms of mean precision by using the weak match. For the “Hard” and “Tough” sets, 13.2% and
28.1% improvements are achieved, respectively, whereas the improvements for "Easy" set are only marginal
(2.5%). This confirms that the involvement of weak matches improves the invariance of descriptors against
geometric transformations.

Descriptor
architecture

Training
dataset _F< Hpatches-Set Easy Hard Tough Mean

HardNet Liberty 0
View 0.709 0.541 0.354 0.535

Illumination 0.631 0.470 0.307 0.469
Full 0.671 0.506 0.331 0.503

HardNet Liberty 0.01
View 0.709 0.544 0.359 0.537

Illumination 0.633 0.473 0.310 0.472
Full 0.672 0.510 0.335 0.505

HardNet Liberty 0.1
View 0.719 0.568 0.387 0.557

Illumination 0.633 0.489 0.331 0.484
Full 0.676 0.529 0.360 0.521

HardNet Liberty 1.0
View 0.734 0.614 0.450 0.599

Illumination 0.627 0.510 0.371 0.503
Full 0.681 0.563 0.411 0.552

HardNet Liberty 3.0
View 0.747 0.623 0.455 0.609

Illumination 0.639 0.516 0.371 0.509
Full 0.694 0.571 0.414 0.560

HardNet Liberty 5.0
View 0.745 0.629 0.468 0.614

Illumination 0.630 0.515 0.379 0.508
Full 0.688 0.573 0.424 0.562

HardNet Liberty 10.0
View 0.759 0.612 0.423 0.599

Illumination 0.651 0.505 0.346 0.501
Full 0.706 0.560 0.386 0.551

Table 5.4.: The mean Average Precision (mean AP) of patch based descriptor matching (Task A) for different
weights controlling the importance of weak match loss !F40:_<0C2ℎ in descriptor learning. _F<
stands for the weight of the weak match branch. The best value for each case is in bold. HardNet
[Mishkin et al., 2017] is employed as the descriptor architecture.
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Figure 5.9.: Parameter study for the relative importance of weak match network in descriptor learning. The
results are based on the Hpatches full dataset, i.e., the third row of each test case in table5.4.

5.3.2. Comparison to Related Work

To evaluate the performance of descriptors, the Hpatches benchmark is used also in this section and the
closely related state-of-the-art CNN descriptors HardNet [Mishkin et al., 2017], HardNetPS [Mitra et al.,
2018] and SoSNet [Tian et al., 2019] are selected for comparison.

The basic architecture of the descriptor network for all of the selected descriptors is based on L2-Net [Tian
et al., 2017]. The necessary information on the selected comparisons is listed in the table 5.5. Among
those methods, HardNetPS [Mitra et al., 2018] uses a considerably larger training dataset 13, in which more
challenging viewpoint and viewing direction changes are simulated and only the matched pairs with large
intersection angles are selected for descriptor learning. For SoSNet and HardNet, the weights trained and
published by their authors are used.

The result of the comparison between different configurations is provided in table 5.6. As can be seen, the
comparison refers to different sets with different levels of transformation (easy, hard and tough). Therefore,
it is easier to differentiate the improvements of the proposed descriptor for different cases. A graphical

13the PS dataset is accessible via https://github.com/rmitra/PS-Dataset (accessed on December 27, 2020). Among the 30 subsets
contained in the PS dataset, 25 of them are used as training sets and the remaining 5 are used for validation purposes.
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visualization is provided in figure 5.10.

Method
Descriptor
Variants Training Dataset

Self
Trained?

HardNet
[Mishkin et al., 2017]

HardNet_Lib Liberty no

HardNet_Brown6 All Brown Sets no
HardNetPS

[Mitra et al., 2018] HardNet_PS
PS Dataset

[Mitra et al., 2018] no
SoSNet

[Tian et al., 2019] SoSNet_Lib Liberty no

WeMNet
(this thesis)

WeMNet_Lib Liberty yes -

WeMNet_Brown6 All Brown Sets yes

Table 5.5.: The selected related state-of-the-art learned CNN descriptors for comparison. All the descriptor
variants are based on L2-Net [Tian et al., 2017] architecture. SoSNet_Brown6 is not available as
the results gained with the full Brown Dataset are not published. "Self Trained?" means whether
the involved network is trained by the author of this thesis.

As can be seen from table 5.6, WeMNet performs better than the other two state-of-the-art methods (HardNet
and SOSNet) in all cases when different sets of images are used for evaluation, in terms of themeanAP. For the
easy transformation level, the performance difference between the different methods is only marginal. In the
case of illumination change, WeMNet performs slightly worse than the other two methods. Compared to the
easy case, the improvements of WeMNet become increasingly visible. For the tough case, the improvement
caused by WeMNet is more significant.

As shown in figure 5.10 (set:Illumination), WeMNet performs on a level comparable to HardNet and SoSNet.
However, for the viewpoint change (c.f. figure 5.10 (set:View)), the improvement achieved by WeMNet is
noticeable. This confirms that the involvement of the weak match branch contributes to a higher invariance
against viewpoint change for WeMNet descriptors. The comparison between WeMNet and HardNet_PS
confirms, not surprisingly, that the involvement of larger and more challenging viewpoint and viewing
direction changes in the patch dataset can result in a better descriptor.
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Descriptor
Variants Hpatches-Set Easy Hard Tough mean

HardNet_Lib

“a” 0.684 0.508 0.328 0.507

View 0.729 0.564 0.375 0.556

Illumination 0.663 0.501 0.331 0.498

Full 0.697 0.533 0.353 0.528

HardNet_Brown6

“a” 0.705 0.533 0.353 0.530

View 0.748 0.587 0.397 0.577

Illumination 0.677 0.518 0.349 0.515

Full 0.713 0.553 0.374 0.547

HardNet_PS

“a” 0.693 0.585 0.446 0.574

View 0.793 0.690 0.540 0.674

Illumination 0.586 0.492 0.379 0.486

Full 0.691 0.593 0.460 0.582

SoSNet_Lib

“a” 0.690 0.519 0.339 0.516

View 0.736 0.577 0.388 0.567

Illumination 0.668 0.511 0.341 0.507

Full 0.703 0.545 0.365 0.537

WeMNet_Lib

“a” 0.690 0.560 0.404 0.551

View 0.745 0.629 0.468 0.614

Illumination 0.630 0.515 0.379 0.508

Full 0.688 0.573 0.424 0.562

WeMNet_Brown6

“a” 0.718 0.570 0.397 0.562

View 0.771 0.637 0.455 0.621

Illumination 0.659 0.525 0.371 0.518

Full 0.716 0.582 0.414 0.570

Table 5.6.: Average precision of the proposed method and related methods. The bold numbers indicate the
best result for each case.
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5.4. Descriptor Distance Analysis

Considering pairs of matched features, how does the descriptor distance change when different types of
transformations are applied? To answer this question, different types of descriptors are applied within
different domains of dataset in this experiment. Concretely, the descriptors involved in this study are
SIFT[Lowe, 1999], HardNet[Mishkin et al., 2017] and the proposed WeMNet, and the datasets used are
NotreDame from the Brown dataset (close range terrestrial images) and Aerial-Dortmund (aerial images).

Among possible types of transformations, translation, rotation and affine shape transformation are selected
for analysis, due to the fact that those transformations are in line with the geometric transformations in feature
based matching. For each of the experiments introduced below, the used patch dataset contains 100,000
matched pairs.

The details of the three transformations are as follows:

• Translation: translate ? with vector XG , XH in range of [−1.5_, 1.5_] with a step size of 0.375_, where
_ stands for the detected scale of the feature14.

• Rotation: rotate ? in range of [−180◦, 180◦) with a step size of 5◦.

• Affine shape: transform ? according to the transformation model in equation 4.7. The longitude q is a
transformation parameter in range of [0, 180◦] and the stretch C in range of [1, 4].

In order to compare the descriptor distance of patch pairs, two different transformation rules are used for the
Rotation and Affine shape transformations:

1. Fix the anchor patch (0) and apply transformation to the positive patch (?)

2. Apply the same transformation to the anchor (0) and the positive patch (?).

For Translation, only the first case is studied. The first case provides a chance to inspect how the descriptor
distance changes in comparison to a reference patch. With the second case one can inspect how the descriptor
distance is influenced by different common transformations.

5.4.1. Translation

How does the descriptor distance change if the features being described undergo small amounts of translation?
This experiment uses a small number of steps for translation. The result is shown in figure 5.11. The two
axes in the horizontal plane represent the translation in G and H direction (4G and 4H) in the image plane. As
explained, the unit 1 in this experiment represents for 0.375_, where _ is the scale of the detected feature.
The vertical axis stands for the descriptor distance between the descriptor calculated on the reference patch

14 The patches of size 32 × 32 pixels (corresponding to 12_) are used; each pixel is equal to a width of 0.375_
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and that on the patch being translated. The result figure reveals that differences between the results for each
descriptor using different datasets (NotreDame and Aerial-Dortumund) are small.

As the resulting figures show, the three different descriptor variants all share the same trend, i.e., the descriptor
distance increaseswhen the relative translation between the reference and translated patch increases. However,
the descriptor distance computed using the SIFT descriptor is distinctively lower than the distance computed
using HardNet and WeMNet. The distance computed using WeMNet is slightly lower than the one obtained
by using HardNet, as can be detected by checking the colour of contour maps shown at the bottom of the
figure.

When the local feature patches are moved from central (low translation) to larger steps, the descriptor distance
varies significantly. For instance, as shown in figure 5.11b, this distance changes from 0.6 (low translation)
to 1.1 (1.5_ translation). This suggests that the descriptor is only invariant against translation in a relatively
limited range, e.g.,

√
42
G + 42

H < _ (equivalent to 2.67 pixels in the patch).

5.4.2. Rotation

With regard to rotation, similar questions apply: How does the descriptor distance for matched feature pairs
change, when one of them is rotated? How does that distance change if the feature pairs are aligned and
rotated by the same angles? Two cases of rotation are presented in this section. First, the anchor patch (0)
is fixed and only the positive patch (?) is rotated (FixA_RotP), and the distance between the descriptors of
the reference patch and the rotated patch is computed. Second, both the anchor patch and the positive patch
are rotated by the same angle (RotA_RotP), then the corresponding descriptor distance is calculated for both
of the rotated features. For both cases, the standard deviation at each rotation angel is also calculated. The
results are shown in figure 5.12, in which the horizontal axis of each graph stands for the rotation angles from
−180◦ to 180◦, and the vertical axes stand for the descriptor distance.

As illustrated in figure 5.12, the curves computed by HardNet and WeMNet using different datasets are very
similar to each other, while the curves computed by SIFT show some noticeable differences when different
datasets are used.

For the first case, FixA_RotP, the descriptor distance change for SIFT, HardNet and WeMNet varies in
different ways. For SIFT, the descriptor distance is only sensitive to the rotation change in a relatively narrow
range, around −45◦ to 45◦. In the remaining range, the shape of the curve depends on the used data. In
the NotreDame dataset, this distance varies smoothly but for the aerial dataset, more complex variations are
observed, as shown in figure 5.12d. For HardNet, the descriptor distance is sensitive in a larger range of
rotation angles compared to SIFT, around −60◦ to 60◦. In the range beyond −60◦ to 60◦, the descriptor
distance turns into an almost constant value. For WeMNet, this descriptor distance is sensitive to the rotation
change in the full range of −180◦ to 180◦. For all three descriptors, the descriptor distances calculated at
±180◦ is almost doubled when it is calculated around 0◦. This indicates that running the feature orientation
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to align features before description is indeed a necessary step.

For the second case RotA_RotP, similar results are obtained for SIFT, HardNet and WeMNet. As shown by
the green cross marking the line in each sub graph of figure 5.12, the descriptor distance is stable throughout
different rotation angles. This is not surprising, as in this case the patches are always aligned, and no distinct
descriptor distance change should be expected in any case.

5.4.3. Affine Shape Transformation

In this chapter, the descriptor distance change under affine shape transformations is assessed. Similar to
the section on rotation, two different cases are explored. First, the anchor patch is fixed and the affine
shape transformation is only applied to the positive patch (FixA_AffP). Second, both the anchor and the
positive patch undergo the same amount of affine shape transformation (AffA_AffP). The result is shown in
Figure 5.13, in which the horizontal axes are the stretch and the longitude for controlling the affine shape
transformation (see section 4.3.1) and the vertical axis stands for the descriptor distance calculated with the
underlying transformation. Note that the whole range of longitude has been covered in the simulation; for
stretch, the simulation range of 1 to 4 is already reasonably large.

For the case FixA_AffP, the contour maps shown in the bottom of each graph in figure 5.13 are quite
different. For SIFT, the descriptor distance change in the direction of longitude is considerably larger than
in the direction of stretch. This change difference between the stretch and longitude directions is alleviated
for HardNet, but an obvious difference along the two directions is still observed (see figure 5.13b and 5.13e).
In contrast to SIFT and HardNet, WeMNet results in a change of descriptor distance in both longitude and
stretch directions with nearly equal amount. However, this equivalence is more pronounced in the results
achieved using Aerial-Dortmund than in the results achieved using NotreDame.

For the case AffA_AffP, similar results are obtained for SIFT, HardNet and WeMNet. This is no surprise, as
in all cases the patches are aligned because the same level of affine shape distortion is used. However, the
distance computed by using SIFT is notably lower than that computed using HardNet and WeMNet.
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5.5. Image Matching Analysis

In this section, the learned affine shape, orientation and full affine shape networks are evaluated on image
matching benchmarks. This section first explains how the feature affine shape, orientation and full affine
shape network are trained. Then the derivation of ground truth correspondence is introduced. The following
part studies the parameter _B:4F , which is used to control the relative importance of skew loss in affine shape
learning. Finally, the proposed method is compared to other methods using the rotation and affine subset of
the Hpatches image sequence benchmark.

Training of Feature Affine Shape and Orientation Network The affine shape (MoNet) and orientation
(MGNet) modules are trained using mini-batches with a size of 1024. The learning rate policy used here is
the same as used in descriptor learning, as explained at the beginning of section 5.3. In total, both MoNet and
MGNet are trained in 10 epochs with 12 million patch pairs. For affine shape training (MoNet), the stretch
for simulating affine transformation is increased from 4.0 to 5.8 in the later epochs. The details of the change
are listed in table 5.7.

Epoch number 1 2 3 4 >=5
Stretch used for simulation 4.0 4.5 4.8 5.3 5.8

Table 5.7.: The stretch used for training the proposed MoNet.

Training of Full Affine Shape Network The training of Full-AffNet also uses mini-batches with a batch
size of 1024 and training data size of 12 million patches. Due to the fact that the loss of the full affine
shape network is composed of three partial losses and a slower convergence is observed during training, the
Full-AffNet is trained with 40 epochs. The learning rate decays in the same way as in descriptor learning.
_B:4F is fixed as 0.001 during training, whereas _>A8 is adjusted during training, such that the two partial
losses can be optimized simultaneously. In this thesis, _>A8 is set as 0.1 as the initial values which are used
for the first five epochs. In the beginning of the sixth epoch, _>A8 is adjusted to 0.2. Throughout all training
epochs, _BCA4C2ℎ is fixed as 1. Using this setting, !>A8 and !BCA42C2ℎ are jointly minimized.

To train MoNet, MGNet and Full-AffNet, 15% percent of the training pairs are used for validation purposes.
Thus, around 10 million feature patches are used for training. The validation loss is calculated after each
epoch is finished and monitored throughout the whole training procedure. Finally, the trained model with the
best validation result (i.e., the lowest validation loss) is taken as the final model, to be later used in the tasks
C and D.

Ground Truth Correspondence Derivation: To determine the ground truth match for a pair of images,
each of the detected features in one target image is projected to its reference image using the ground-truth
homography. If a feature detected in the reference image is located inside a small range of this projected
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feature, i.e. less than n6C , then this pair of features is judged as ground-truth correspondence. The small range
mentioned here is tested with multiple choices for the affine transformation set, i.e., with 1, 2 and 3 pixels. For
the rotation set, this threshold is fixed at 2 pixels. The main reason of investigating different thresholds in the
affine case is that the noise of feature detection for images containing only rotation change is assumed to be
lower than that for images including affine transformation. Through a careful check, this method can retrieve
most correct correspondences. The ambiguity is low because there usually are no other distracting features
in the reference image inside the range of several pixels, due to the fact that non-maximum suppression is
applied during the feature detection stage.

Once the ground match correspondences are known, the images in the Hpatches image sequence are matched
and AuC for the recall-precision curve, as defined in section 5.2.3, is computed and used as the evaluation
criterion.

5.5.1. Parameter Study for Affine Shape Learning

The parameter _B:4F that controls the relative importance of skew loss is tested first. To explore the sensitivity
of _B:4F , the matching performance of using different values for _B:4F is compared. This study employs the
Hpatches affine dataset for task C.

Table 5.8 and 5.9 provide results for this study. The descriptors HardNet and WeMNet and the training
dataset Aerial-Graz are used for all experiments. _B:4F is tested with options 0.01, 0.1 and 1.0. The three
cases converge and the ground truth matches are derived with different threshold n6C , varying from 1.0 to 3.0
pixels. Training does not convergent when _B:4F = 2.0, in which the stretch is increased to infinity and the
output predicted affine corrected pattern collapses to a line.

In each test, the descriptors are matched with ten different descriptor distance thresholds. This descriptor
distance threshold is used for descriptor matching and is not to be confused with n6C . This distance threshold
gradually changes from a small value to a large one, for each of which recall and precision are computed.
Correspondingly, the area under the curve (AuC) for precision-recall is calculated. The precision and recall
are first averaged over different descriptor distance thresholds for each image pair and then averaged over all
image pairs. As introduced before in the evaluation protocol for Task C, the AuC is averaged over all image
pairs.

To better view the result of the parameter study, the results shown in table 5.8 and 5.9 are visualized in figure
5.14. In this way, it is easier to see that the mean AuC is not sensitive to the choice of _B:4F . This insensitivity
also applies for both HardNet and WeMNet. The difference for different choices of n6C is extremely small
and thus negligible. For simplicity’s sake, in the further study, _B:4F is set to be 1.0 for training MoNet.
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Descriptor
Training Dataset

of MoNet _B:4F n6C

Mean
Precision

Mean
Recall

Mean
AUC

HardNet Aerial-Graz 0.01

1.0 0.149 0.403 0.143

2.0 0.329 0.375 0.286

3.0 0.425 0.354 0.371

HardNet Aerial-Graz 0.1

1.0 0.151 0.404 0.143

2.0 0.333 0.376 0.290

3.0 0.434 0.357 0.381

HardNet Aerial-Graz 1.0

1.0 0.150 0.402 0.141

2.0 0.331 0.379 0.292

3.0 0.430 0.355 0.382

Table 5.8.: Parameter study result for _B:4F using HardNet as descriptor. n6C : threshold for ground-truth
correspondences in pixel.

Descriptor
Training Dataset

of MoNet _B:4F n6C

Mean
Precision

Mean
Recall

Mean
AUC

WeMNet Aerial-Graz 0.01

1.0 0.135 0.375 0.141

2.0 0.295 0.352 0.278

3.0 0.383 0.330 0.368

WeMNet Aerial-Graz 0.1

1.0 0.132 0.376 0.140

2.0 0.294 0.352 0.276

3.0 0.394 0.333 0.375

WeMNet Aerial-Graz 1.0

1.0 0.137 0.374 0.141

2.0 0.298 0.351 0.281

3.0 0.388 0.330 0.371

Table 5.9.: Parameter study result for _B:4F using WeMNet as descriptor. n6C : threshold for ground-truth
correspondences in pixel.
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(a) parameter study using HardNet as descriptor (b) parameter study using WeMNet as descriptor

Figure 5.14.: The parameter study for _B:4F . The results are based on the mean AuC in table 5.8 and 5.9, as
well as the mean value of three different combinations.

5.5.2. Image Matching for Rotation Dataset

In this section, the feature orientationmodule is evaluated with the Hpatches-Rot, in which the rotation change
is the dominate type of transformation between image pairs. Therefore, Hpatches-Rot serves as a suitable
test-bed for the performance of feature orientation related networks. The proposed orientation network is
compared to some closely related methods.

The different approaches involved in this comparison are summarized in table 5.10. All variants employ
the Hessian detector to detect features; different orientation and descriptor modules are combined. The
abbreviation of each variant depends on the types of its employed detector, orientation and descripto, as well
as the training dataset for the affine shape and orientation related networks. Although all variants rely on the
same detector – Hessian detector, "H" is preserved for a better interpretation. The SIFT principal direction
assignment strategy [Lowe, 2004] is used and named SIFT in feature orientation. Its combination with the
SIFT descriptor, HardNet and WeMNet results in the first three variants listed in table 5.10. OriNet is the
network proposed in [Mishkin et al., 2018] for feature orientation. Both MGNet and OriNet are trained on
two different datasets, i.e. Brown and Aerial-Graz. For the OriNet trained on the Brown dataset, the weights
pre-trained by the author of Mishkin et al. [2018] are used. As there is only rotation change between different
images involved in this experiment, affine shape is not estimated. This configuration results in the 8 variants
(from AOH-Brown to MW-Graz) listed in table 5.10. Although affine shape and orientation of features
are jointly estimated in Full-AffNet and the dataset only contains rotation, Full-AffNet is still tested in this
investigation. This leads to the last four variants listed in table 5.10. Figure 5.15 shows the result based on
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Variants Feature
Orientation

Training Data used for Orientation
or Full Affine Shape Descriptor Notes

SS SIFT No training SIFT
Lowe [2004]SH SIFT No training HardNet

SW SIFT No training WeMNet
OH-Brown OriNet Brown HardNet

Orientation used in
Mishkin et al. [2018]

OH-Graz OriNet Aerial-Graz HardNet
OW-Brown OriNet Brown WeMNet
OW-Graz OriNet Aerial-Graz WeMNet
MH-Brown MGNet Brown HardNet

MGNet for
orientation, proposed

in this thesis
MH-Graz MGNet Aerial-Graz HardNet
MW-Brown MGNet Brown WeMNet
MW-Graz MGNet Aerial-Graz WeMNet
FuH-Brown Full-AffNet Brown HardNet Full-AffNet for

full affine shape
estimation, proposed

in this thesis

FuH-Graz Full-AffNet Aerial-Graz HardNet
FuW-Brown Full-AffNet Brown WeMNet
FuW-Graz Full-AffNet Aerial-Graz WeMNet

Table 5.10.: Different combinations of orientationmodule and descriptors used in the rotation set experiments.
All variants use the Hessian feature detector.

the mean AuC. Note that the standard deviations of the computed values, given the 59 groups of images, is
relatively high and can amount to as much as 0.5 AuC. Therefore the individual values have to be interpreted
cautiously.

With drawing attention to the differences between the different versions of a network (Full-AffNet, MGNet,
OriNet) trained with different datasets (Brown or Aerial-Graz), it can be observed from figure 5.15 that the
performance difference for MGNet and Full-AffNet are negligible: This high similarity in performance indi-
cates that MGNet and Full-AffNet trained on different datasets performs equally well for rotation invariance.
When OriNet is used for feature orientation, the networks trained on different datasets show more noticeable
performance difference: OH-Graz is slightly better than OH-Brown, but OW-Graz performs worse than
OW-Brown with a more noticeable margin.

In order to compare the two descriptors HardNet ad WeMNet, the other influencing factors must be identical,
of course. For all three networks (SIFT orientation as well) and both training datasets, WeMNet performs
better than HardNet as larger values for AuC are obtained. This confirms that thatWeMNet has better rotation
invariance than HardNet
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Figure 5.15.: The top graph is the comparison result for the Hpatches rotation dataset; the bottom one is
zoomed view of the result in range of -75 to 75 degree.
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Besides comparing the performance difference of networks trained with different training datasets and using
different descriptors, the performance of Full-AffNet, OriNet and MGNet can be further compared. First,
Full-AffNet performs better than OriNet and MGNet constantly. Second, when OriNet and MGNet are
compared, the following comparison result are obtained:

• OW-Brown performs better than MW-Brown with a noticeable margin,

• OW-Graz performs slightly worse than MW-Graz,

• OH-Brown performs similar to MH-Brown,

• OH-Graz performs similar to MH-Graz.

based on those comparisons, the MGNet and OriNet show a similar performance in terms of rotation
invariance. Third, the learned networks Full-AffNet, OriNet and MGNet performs notably better than the
SIFT orientation strategy. This is confirmed by the the comparisons of SH and SW to its competitors using
the same descriptor but varying feature orientation modules.

5.5.3. Image Matching for Hpatches Affine Dataset

For the image patch affine dataset, different combinations are tested. The criteria for evaluation is again the
average AuC, computed in the way explained previously. MoNet and Full-AffNet are the methods proposed
in this thesis. For all tested combinations, the Hessian detector is again used. Regarding the affine shape,
orientation and feature description modules, combinations are illustrated in table 5.11. The abbreviation of
each variant follows the same rule used in the last investigation. All the involved networks for those three
modules are trained on both Brown and Aerial-Graz Dataset. AOH-Brown stands for Mishkin et al. [2018],
in which the affine shape and orientation module are learned using descriptor distance based loss. The Brown
version refers to the published networks trained by the authors ofMishkin et al. [2018], while the Graz version
is trained by the author of this thesis using the Aerial-Graz dataset. Among all of the combinations, only
BSS is a work with hand-crafted modules. The MoNet, MGNet (variant A of this thesis) and Full-AffNet
(variant B of this thesis), as well as the AffNet and OriNet ([Mishkin et al., 2018]) are tested in different
combinations with HardNet and WeMNet. In total, 15 different combinations are tested.

All the variants are tested on the Hpatches-Aff dataset, where different thresholds for ground truth matches
are used, i.e., 1.0, 2.0 and 3.0 pixels. The results are shown in figure 5.16. Again, the standard deviations are
relatively large.
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Variants Affine Shape Feature
Orientation

Training Data
Aff. + Ori. Descriptor Notes

BSS Baumberg SIFT No training SIFT Baseline
BSH Baumberg SIFT No training HardNet
BSW Baumberg SIFT No training WeMNet

AOH-Brown AffNet OriNet Brown HardNet Brown version:
[Mishkin et al., 2018];
Graz version: trained by
the author of this thesis

AOH-Graz AffNet OriNet Aerial-Graz HardNet
AOW-Brown AffNet OriNet Brown WeMNet
AOW-Graz AffNet OriNet Aerial-Graz WeMNet

MMH-Brown MoNet MGNet Brown HardNet
variant A of
this thesis

MMH-Graz MoNet MGNet Aerial-Graz HardNet
MMW-Brown MoNet MGNet Brown WeMNet
MMW-Graz MoNet MGNet Aerial-Graz WeMNet
FuH-Brown FullAffine-Net Brown HardNet

variant B of
this thesis

FuH-Graz FullAffine-Net Aerial-Graz HardNet
FuW-Brown FullAffine-Net Brown WeMNet
FuW-Graz FullAffine-Net Aerial-Graz WeMNet

Table 5.11.: Different combinations of affine shape, orientation modules and descriptors used in the image
matching performance on Hpatches-Affine dataset. All variants use the Hessian feature detector.
Training Data Aff. + Ori. : Training data used for feature affine shape and orientation modules.

Figure 5.16.: The result for the Hpatches-Aff dataset. The three different groups of bins are computed by
using different ground truth match thresholds indicated by the values on the horizontal axis.
The generation process of the Hpatches affine dataset is further explained in section 5.1.2.
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First, the comparisons for the networks trained by different datasets reveals that MoNet + MGNet and
Full-AffNet show a very similar performance. In contrast, the performance of AffNet+OriNet trained on
Graz (AOH-Graz, AOW-Graz) is notably worse than the same combination trained on the Brown Dataset
(AOH-Brown, AOW-Brown). Second, all the trained networks, except for AffNet and OriNet trained on
Graz, performs notably better than the Baumberg [Baumberg, 2000] related variants. Third, the performance
of Full-AffNet is comparable to the combination of AffNet and OriNet, when the Brown Dataset is used for
training. For the variant A of this thesis, i.e. MoNet + MGNet, a slight performance drop is observed for
the Brown dataset, compared to Full-AffNet and AffNet + OriNet. Furthermore, the results of variants using
WeMNet and HardNet are very similar.

5.6. Image Orientation

Except for evaluating descriptors and other learning modules from the above benchmarks involved in task A,
B and C, results of the proposed method used in real applications are also assessed, using an image orientation
task as an example. As explained in section 5.1.2, four blocks of images taken by an aerial penta-camera
system including nadir and oblique images with significant change in viewing direction and viewpoints are
used as input dataset for this assessment. After feature detection and matching, a bundle adjustment is carried
out to determine he exterior image orientation parameters. A number of quality measures for the result are
selected as evaluation criteria (see below for details).

This section first describes the steps for determining the orientation of different image blocks and all relevant
details for the experimental setup, then the image orientation results obtained with different variants proposed
in this thesis are presented. In the next step, the respective matching quality is analysed.

5.6.1. Determination of Image Orientation

Each small block of images is processed according to the pipeline shown in 5.17 and orientation results after
bundle adjustment are obtained. For each image block, the processing steps are explained below.
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Figure 5.17.: Overview of the the experiment used to determine the orientation of small image blocks.

1. Detect features for all images with the Hessian detector, as explained in section 4.6. In this step, a fixed
number of Hessian features with potentially high repeatability against viewpoint changes is detected
in scale space. 12000 features per image in all four blocks are extracted15.

2. Estimate the affine shape as well as the orientation of local features and obtain the descriptors using
the different networks, as explained in section 4.6.

3. Apply nearest neighbour ratio matching [Lowe, 2004] to obtain initial matches for each possible pair
of images in a block. The ratio between nearest and second nearest matching features is set to 0.85.
The output of this step are matching relationship files which contain the initial matches.

4. Providing the initial matches as input, run the Structure from Motion (SfM) software COLMAP16

[Schönberger and Frahm, 2016] to obtain initial orientation parameters. Before being fed into the SfM
pipeline, the matches are geometrically verified by estimating the epipolar geometry.

5. Transform the initial orientation results into a common coordinate system for further comparison17.
To achieve this goal, one image is selected as origin of the common coordinate system, setting both its
projection centre and rotation angles to zero. A second image is selected to define the scale between
the two projection centres. For all employed blocks, the scale is computed from the provided projection
centre coordinates, which are measured by a GPS-IMU (Inertial Measurement Unit) system during
flight. According to Nex et al. [2015] the accuracy of the projection centres is approximately 1m. The
length of the baseline between the two images is in a range between 500 and 600 metres. The selected
first and second image are identical for each image block processed by the different variants.

15Due to the fact that the image size is relatively large, features in each image are extracted on four separate non-overlapped tiles
of the original image and are subsequently combined. Since this does not affect the result, it is a way to parallelize the whole
algorithm.

16https://github.com/colmap/colmap
17As matches obtained from different pipelines vary, so do the orientation parameters, especially when different image pairs are

used as initial pairs in SfM. Additionally, not all images can be registered with all pipelines.
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6. Run robust bundle adjustment. The bundle adjustment delivers the final orientation parameters. Robust
estimation is used and observations with residuals larger than 3.2 times the standard deviation of the
image coordinates are considered outliers, and are excluded from further iterations. According to the
camera calibration protocol, the camera distortion effect is marginal and the distortion parameters are
therefore neglected.

5.6.2. Experiment Setup Details

In this experiment, the proposed methods are compared to other closely related works. The selected
combinations of feature detector, affine shape estimation, orientation and description module involved in this
experiment are identical to the one listed in table 5.11. As mentioned already, in total, 15 combinations are
tested.

As the distribution of descriptor distance betweenmatched features generated by different descriptor networks
varies, it is difficult to set a common value for the nearest neighbour distance basedmatching strategy. Instead,
the nearest neighbour ratio, as defined in section 2.1.7, is utilized in the current task D. For all the experiments,
the distance ratio is set as 0.85. This setting of 0.85 is slightly larger than the typical value suggested for
hand-crafted descriptors. On the other hand, the learning based descriptors optimize the distance directly,
instead of minimizing the ratio between the distance to the nearest and second nearest neighbour. Therefore,
0.85 is chosen as a well-balanced value for all variants of methods.

5.6.3. Orientation Result of Different Blocks

This experiment uses the four different blocks of images presented in section 5.1.2. Table 5.12 summarizes
the result for block 1 and 2, while table 5.13 summarizes the result for block 3 and 4. In these two tables, the
following items are listed (see also section 5.2.4):

• number of registered images (#8<6_A46.)

• number of reconstructed 3D points (#3�%_A42.)

• the estimated standard deviation of image coordinates after bundle adjustment f?>BC0 (in pixel)

• the mean number of matching points per image

• the precision (in meter) of object coordinates in X, Y, Z direction

As can be seen from both tables 5.12 and 5.13, the hand-crafted variant BSS can only reconstruct part of the
images in all the four blocks. The number (and ratio) of reconstructed images using BSS varies from block
1 to block 4. For block 1 fewer images are reconstructed, possibly due to some areas with poor texture.For
block 2, more images are reconstructed. Here, the difficulty of matching is decreased, as the scene contains
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more texture. #8<6_A46. for block 3 and 4 lies in the middle, probably owing to the fact that the images in
those two blocks contains more occlusions due to high buildings, although the images are well textured.

For AffNet and OriNet trained on the Aerial-Graz dataset, the related two variants are AOH-Graz and AOW-
Graz. With those two variants, none of the 4 blocks can be reconstructed completely in terms of #8<6_A46..
This observation is consistent with the observations in task C, inwhichAOH-Graz andAOW-Graz have shown
a significant performance drop in terms of invariance against rotation and affine shape transformations.

Using learned descriptors all four blocks can be completely reconstructed in terms of #8<6_A46., as seen from
the results of BSH and BSW. Correspondingly, the number of reconstructed 3D points increases dramatically
from BSS to BSH and BSW. Also, the precision of object point coordinates improves considerably, as shown
in the result for blocks 1, 3 and 4. When comparing #3�%_A42. for all variants using WemNet and HardNet
as descriptor (e.g., AOH-Brown vs. AOW-Brown, MMH-Brown vs. MMW-Brown ), it is found that in most
but not in all cases WeMNet performs better than HardNet.

For the combination of MoNet and MGNet (variant A), the difference between the two versions trained
on Brown and Aerial-Graz datasets shows some dependency to the choice of employed descriptor. When
WeMNet is employed as feature descriptor, then for all four groups the version trained on Brown, i.e.
MMW-Brown, performs better than the same networks trained on Aerial-Graz (MMW-Graz). However,
when HardNet is employed as feature descriptor, the performance difference between MMH-Brown and
MMH-Graz is more dataset dependent: for block 1 and 4, MMH-Brown performs worse than MMH-Graz;
for block3MMH-Brown performs better thanMMH-Graz, while for block 2 the two variants perform similar.

For variant B, i.e. Full-AffNet, the two versions trained on Brown and Aerial-Graz are very comparable to
each other. In all the four blocks, the difference of #3�%_A42. between the following pairs of variants:

• FuH-Brown and FuH-Graz

• FuW-Brown and FuW-Graz

is small.
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Block
Index

Det+Aff.+
Ori.+Desc.

# reg.
img

# rec.
pts f

?>BC

0

#m. matches.
per img.

precision
of X,Y,Z [m]

Block-1

BSS 7/18 849 0.76 283.4 0.205, 0.375, 0.593

BSH 18/18 3124 0.78 557.9 0.352, 0.170, 0.367

BSW 18/18 3233 0.85 591.1 0.375, 0.156, 0.373

AOH-Brown 18/18 4695 0.76 882.7 0.312, 0.145, 0.305

AOH-Graz 11/18 1624 0.80 476.0 0.080, 0.234, 0.261

AOW-Brown 18/18 5260 0.83 1012.7 0.332, 0.149, 0.321

AOW-Graz 12/18 1549 0.84 426.1 0.090, 0.249, 0.291

MMH-Brown 18/18 4293 0.76 800.3 0.330, 0.146, 0.330

MMH-Graz 18/18 4968 0.75 741.1 0.335, 0.142, 0.328

MMW-Brown 18/18 4455 0.80 826.4 0.350, 0.159, 0.356

MMW-Graz 18/18 3966 0.78 735.3 0.366, 0.161, 0.404

FuH-Brown 18/18 4252 0.74 791.0 0.322, 0.141, 0.313

FuH-Graz 18/18 4584 0.75 845.2 0.324, 0.142, 0.320

FuW-Brown 18/18 4722 0.79 886.0 0.333, 0.140, 0.323

FuW-Graz 18/18 4716 0.80 889.8 0.338, 0.151, 0.332

Block-2

BSS 15/19 5255 0.64 1110.7 0.190, 0.276, 0.309

BSH 19/19 11116 0.82 2110.2 0.243, 0.239, 0.306

BSW 19/19 11890 0.91 2284.9 0.267, 0.258, 0.335

AOH-Brown 19/19 14462 0.81 2904.5 0.230, 0.221, 0.287

AOH-Graz 12/19 7804 0.80 2366.1 0.063, 0.294, 0.277

AOW-Brown 19/19 15080 0.87 3059.6 0.250, 0.238, 0.312

AOW-Graz 12/19 8187 0.84 2521.3 0.067, 0.312, 0.293

MMH-Brown 19/19 13361 0.79 2617.0 0.236, 0.229, 0.295

MMH-Graz 19/19 13389 0.79 2618.4 0.234, 0.227, 0.293

MMW-Brown 19/19 13946 0.86 2780.8 0.254, 0.245, 0.316

MMW-Graz 19/19 14132 0.86 2809.7 0.248, 0.239, 0.311

FuH-Brown 19/19 14025 0.79 2759.0 0.234, 0.223, 0.290

FuH-Graz 19/19 13800 0.79 2712.5 0.235, 0.223, 0.291

FuW-Brown 19/19 14662 0.85 2925.5 0.250, 0.237, 0.311

FuW-Graz 19/19 14468 0.87 2896.9 0.254, 0.241, 0.314

Table 5.12.: The result for all block 1 and 2 after robust bundle adjustment. #reg. img: number of registered
images over available number of images; # rec. pts: number of reconstructed 3D points; f?>BC0
posterior standard deviation in pixel; #m. matches. per img.: number of mean matches per
image. Precision of X, Y, Z refers to the scaling of the block and is in unit meter. The bold
numbers indicate the highest three numbers of reconstructed 3D points.
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Block
Index

Det+Aff.+
Ori.+Desc.

# reg.
img

# rec.
pts f

?>BC

0

#m. matches.
per img.

precision
of X,Y,Z [m]

Block-3

BSS 10/17 1346 0.62 365.2 0.126, 0.131, 0.336

BSH 17/17 4053 0.69 752.9 0.122, 0.127, 0.204

BSW 17/17 4109 0.76 791.9 0.128, 0.130, 0.209

AOH-Brown 17/17 5061 0.69 1040.8 0.109, 0.112, 0.175

AOH-Graz 10/17 3182 0.70 973.4 0.061, 0.139, 0.206

AOW-Brown 17/17 5517 0.73 1134.7 0.110, 0.124, 0.185

AOW-Graz 10/17 3361 0.74 1047.0 0.065, 0.147, 0.220

MMH-Brown 17/17 4493 0.68 883.8 0.116, 0.119, 0.188

MMH-Graz 17/17 3997 0.69 782.5 0.117, 0.105, 0.190

MMW-Brown 17/17 4438 0.72 876.8 0.151, 0.118, 0.203

MMW-Graz 17/17 4394 0.73 877.0 0.117, 0.118, 0.200

FuH-Brown 17/17 4415 0.68 875.4 0.114, 0.118, 0.185

FuH-Graz 17/17 4223 0.66 829.6 0.116, 0.120, 0.193

FuW-Brown 17/17 5137 0.71 1030.8 0.113, 0.121, 0.185

FuW-Graz 17/17 4976 0.71 994.2 0.113, 0.124, 0.190

Block-4

BSS 10/20 1098 0.70 354.0 0.104, 0.219, 0.416

BSH 20/20 5009 0.70 856.1 0.128, 0.137, 0.189

BSW 20/20 5919 0.76 1012.9 0.134, 0.138, 0.197

AOH-Brown 20/20 7525 0.71 1346.5 0.114, 0.120, 0.173

AOH-Graz 12/20 4279 0.73 1187.3 0.052, 0.160, 0.185

AOW-Brown 20/20 8107 0.75 1469.0 0.120, 0.125, 0.176

AOW-Graz 12/20 4472 0.76 1263.8 0.054, 0.169, 0.194

MMH-Brown 20/20 5506 0.70 967.2 0.123, 0.131, 0.200

MMH-Graz 20/20 6008 0.71 1052.8 0.135, 0.142, 0.241

MMW-Brown 20/20 6380 0.74 1130.5 0.124, 0.129, 0.184

MMW-Graz 20/20 6309 0.74 1125.6 0.123, 0.134, 0.188

FuH-Brown 20/20 6323 0.69 1133.8 0.120, 0.128, 0.172

FuH-Graz 20/20 6807 0.69 1189.3 0.112, 0.124, 0.177

FuW-Brown 20/20 6600 0.73 1201.5 0.122, 0.138, 0.181

FuW-Graz 20/20 6818 0.74 1226.5 0.124, 0.131, 0.183

Table 5.13.: The result for all block 3 and 4 after robust bundle adjustment. #reg. img: number of registered
images over available number of images; # rec. pts: number of reconstructed 3D points; f?>BC0
posterior standard deviation in pixel; #m. matches. per img.: number of mean matches per
image. Precision of X, Y, Z refers to the scaling of the block and is in unit meter. The bold
numbers indicate the highest three numbers of reconstructed 3D points.



5.6. Image Orientation 115

For the affine shape and orientation module, both separating them into two modules, i.e., AffNet + OriNet
or MoNet + MGNet (Variant A), and combining them into one, i.e., Full-AffNet (Variant B), leads to a
complete reconstruction, except for the AffNet and OriNet trained on Aerial-Graz. By comparing #3�%_A42.

for all blocks, it is found that Full-AffNet performs slightly better than the combination of MoNet and
MGNet, whereas the combination of AffNet and OriNet trained on Brown Dataset performs slightly better
than Full-AffNet.

The posterior standard deviation, f?>BC0 , indicates the size of overall residuals (re-projection error) after
bundle adjustment. This number lies in the range of 0.6 to 0.9 pixel for most experiments, owing to the fact
that convergent views are included and the number of observations is only in the range of 2 to 3 times the
number of unknowns. Also, for two convergent views, the uncertainly of feature matching also increases.
Therefore, when more matches from convergent views are included, f?>BC0 will increase. This is observed by
comparing all variants with WeMNet and HardNet, e.g., MMW and MMH. The reason that a higher f?>BC0
is obtained for WeMNet variants could be that more matches from convergent views are included. Similarly,
this also partially contributes to the fact that variants with learned descriptors (HardNet and WemNet) have a
higher f?>BC0 than variants with SIFT descriptors because more matches from convergent views are included
using learned descriptors (see figure 5.19).

The precision for X, Y, Z are the average standard deviations of object points in the three dimensions defined
in the object coordinate systems after bundle adjustment. The configuration of the blocks, as well as the
matching quality, affects this value. For urban image blocks 3 and 4, the deep learning based variants
outperform BSS considerably in all three coordinates. In the suburban blocks 1 and 2, more challenging
and non-evenly distributed views in the different directions are contained. The uneven distribution of views
in block 1 contributes to the fact the precision of object points in X and Y direction for that block is not
roughly equal. Corresponding to the aforementioned reason with regard to the use of f?>BC0 for variants with
WeMNet andHardNet, object point precision for variants related toWeMNet is slightlyworse than for variants
using HardNet. The object coordinate precision difference between variants with different orientation and
affine shape estimation modules is less distinguishable, which means those variants, i.e., Baumberg+SIFT,
AffNet+OriNet, MoNet+MGNet and FullAffine-Net, are comparable in terms of X, Y, Z coordinate precision.

In order to analyse the influence of including oblique views on the 3D object point precision, for each image
block only the nadir images are used to determine the image orientation parameters 18. For this study, only
one matching variant is utilized, due to the fact that matching nadir view should be handled by all variants
as very limited level of geometric transformations are included for adjacent nadir views. In particular, the
MMH-Brown variant is used. The results are listed in table 5.14.

18Due to the fact only three or four nadir images are contained in each block, the option of ignoring two view tracks is switched off
during SfM, while that option is switched on for the image orientation using the complete blocks.



116 5. Experiments and Results

Block
Index

# reg.
img

# rec.
pts f

?>BC

0

#m. obs.
per img.

precision
of X,Y,Z [m]

Block-1 4/4 2341 0.62 1263.3 0.114, 0.254, 0.711
Block-2 4/4 5268 0.76 3060.5 0.094, 0.208, 0.588
Block-3 3/3 2318 0.64 1679.7 0.121, 0.107, 0.372
Block-4 4/4 3483 0.72 1882.8 0.112, 0.130, 0.365

Table 5.14.: Image orientation result using MMH-Brown as matching variant for all blocks after bundle
adjustment. #reg. img: number of registered images over available number of images; # rec.
pts: number of reconstructed 3D points; f?>BC0 posterior standard deviation in pixel; #m. obs.
per img.: number of mean observations per image. Precision of X, Y, Z refers to the scaling of
the block and is in unit meter.

For all blocks, it is clear the main improvement comes from the Z direction. Compared to the object precision
in Z direction for the case of only using nadir, a nearly 50% improvements is observed when oblique views
are included (see table 5.13). In the X and Y direction, the improvement on precision is significantly less
obvious. For block 1 and 2, the precision in X and Y direction is not roughly equal, largely owing to the fact
the distribution of the nadir images in block 1 and 2 is uneven in X and Y direction (see figure 5.8).

5.6.4. Matching Quality Analysis

The above analysis confirms that the involvement of learned modules for affine shape estimation, orientation
and description improves the quality of image orientation for blocks containing convergent views. With
the help of those learned modules, the image blocks are reconstructed in a more complete way with more
reconstructed 3D points, and more accurate object points can be derived. However, a closer look at the
matching quality is still needed and is provided in this section.

In order to better analyse the matching quality of different variants, the following matching quality related
terms are analysed:

• number of initial matches (# 8=8C80;
<0C2ℎ

)

• number of inlier matches (# 8=;_2E84F
<0C2ℎ

) after running two view geometry estimation using RANSAC.
Those matches are used as the input matches for SfM.

• number of matches after bundle adjustment (#BDA E_��
<0C2ℎ

)

• ratio of inlier matches/initial matches ('8=;_2E84F
8=8C80;

)

• ratio of matches after bundle adjustment/inlier matches('8=;_2E84F
BDA E_�� )

For each variant, the number of initial matches (# 8=8C80;
<0C2ℎ

), matches verified by two-view geometry (# 8=;_2E84F
<0C2ℎ

)
and the number of matches after bundle adjustment (# 8=;_2E84F

<0C2ℎ
) serve as direct indicators of the matching
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performance. Provided that identical feature detectors are used and the same number of high quality features
is detected as input, a higher number in all of these three criteria is expected from a better feature matching
variant. Moreover, the ratio of inlier matches after running two view geometry estimation using RANSAC,
i.e., '8=;_2E84F

8=8C80;
, effectively indicates how discriminative a feature based image matching variant is. A higher

ratio is normally achieved by a variant with more discriminative power. Compared to '8=;_2E84F
8=8C80;

, the ratio
of matches after bundle adjustment, i.e., '8=;_2E84F

BDA E_�� , depends on both the quality of matches and the detailed
techniques used in SfM, e.g., connecting new views or the removal of inconsistent observations. Therefore,
'
8=;_2E84F
8=8C80;

is taken as a major indicator and '8=;_2E84F
BDA E_�� is used as a side indicator for the overall quality

measure in the image orientation task. Table 5.15 summarizes those terms for block 1 and 2, while table 5.16
summarizes those for block 3 and 4.

For a better comparison, the aforementioned numbers and ratios of tables 5.15 and 5.16 are also shown as
bar graphs in figure 5.18. # 8=;_2E84F

<0C2ℎ
computed by BSS is lower than for other variants (as shown in the

second row of figure 5.18), and among those verified matches, a much smaller number is available after
bundle adjustment (as shown in the first row of figure 5.18). This indicates that BSS performs worse than the
other variants. For the AffNet and OriNet trained on Aerial-Graz (AOH-Graz and AOW-Graz), # 8=;_2E84F

<0C2ℎ

is lower than the same term generated by the version trained on Brown (AOH-Brown and AOW-Brown),
and this decrease becomes more significant for #BDA E_��

<0C2ℎ
. This indicates that probably a higher proportion

of two-view inlier matches generated by the variants using AffNet and OriNet trained on Aerial-Graz are
excluded by the view connecting process of image orientation, compared to other learning based variants.
As a result, significantly fewer views are connected and accordingly, less 3D object points are reconstructed
by AOH-Graz and AOW-Graz.

When comparing # 8=;_2E84F
<0C2ℎ

and '8=;_2E84F
8=8C80;

for each variant for WeMNet and HardNet, it is found that
variants with WeMNet constantly yield better results than those with HardNet. This again confirms that
WeMNet achieves higher invariance against viewpoint and viewing direction change than HardNet. When
taking into consideration the variants for affine shape and orientation (as shown in the second and third row
of figure 5.18), the pipelines of AffNet+OriNet, MGNet+MGNet and FullAffine-Net achieve comparable
results.

In the next step, the interacting rays at each 3D object point is analysed. A very first result is the distribution
of track length (the number of rays per 3D point) for each variant. However, the feature track length cannot
distinguish from which views a feature track is generated. For instance, a longer feature track with matches
only from one camera view might contribute less to the stability of the image orientation task than a shorter
feature track with matches from two or more different camera views, as the image block can be better
connected with cross camera view feature tracks, thus stabilizing the reconstructed block. Based on the
source camera view of each feature in a feature track, the feature tracks are classified into four different
classes, i.e., “only_nadir_or_obl”, “nadir_obl”, “obl_nadir_obl”, “obl_obl”. A detailed explanation of the
meaning of each case is given in section 5.2.4. The result of the view intersection is provided in figure 5.19.

As can be seen in figure 5.19, nearly for all variants “only_nadir_or_obl” accounts for the highest proportion.
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HBSS shows a higher proportion than other variants in three of the four blocks (block 1, 2 and 3) and has
virtually no cases for “obl_nadir_obl” and “obl_obl”. This indicates that BSS can only retrieve a very limited
number of matches from harder cases. All other machine learning variants retrieve matches in the cases
“nadir_obl” and “obl_nadir_obl”. For the hardest cases “obl_obl”, blocks 1 and 2 have a higher proportion
(3-5%) than blocks 3 and 4, probably due to the fact that matching of cross oblique views is more difficult in
urban areas than in suburban ones because of the more complex local shape change caused by high levels of
depth change in the city scene. However, the proportion of “nadir_obl” in city areas (blocks 3 and 4) is nearly
twice that of the suburban blocks (blocks 1 and 2). Also, a nearly 50% improvement of “obl_nadir_obl”
is observed in urban blocks (block 3 and 4) when compared to rural blocks (block 1 and 2). These two
improvements contribute significantly to the stability of aerial image blocks after image orientation and,
therefore, the precision of object point coordinates in urban areas (blocks 3 and 4) is considerably higher than
in suburban areas. In this context, it should be recalled, that the oblique camera system, ground sampling
distance and flying height are identical for all image blocks.

Compared to other learning based variants, AOH-Graz and AOW-Graz have significantly larger proportions
for “nadir_obl”, while both variants have significantly lower proportions for “obl_nadir_obl” and “obl_obl”.
This suggests that the AffNet and OriNet trained on Aerial-Graz are capable of linking nadir and one oblique
view, but linking matches cross oblique views is too challenging for AOH-Graz and AOW-Graz in many
cases.

When comparing the results of different variants in figure 5.19, it can be observed that the difference varies
from block to block. In block 2, the difference between different learning based variants is less distinctive,
possibly due to the fact that this block is the easiest to match. It presents a well-textured, relatively flat scene
without high buildings, allowing different methods to perform equally well. As for the other three blocks,
the differences between different variants do not show any systematic pattern. Therefore, the distribution of
ray intersections at each 3D point is considered to be data dependent.

Apart from analyzing the intersection of rays per 3D point, the distribution of the matching points delivered
after bundle adjustment in the 2D image plane is also an important indicator for the performance of the
employed matching algorithms. In this experiment, the image planes are divided into grids of 50 × 50 pixels
and the matching points located in each of these grids are counted. In the next step, the distribution of
different variants in the image plane is computed. In general, a good matching algorithm should deliver
a more even and dense distribution of matching points in the image plane. However, this distribution also
depends on the scene content. The distribution of matching points for is shown in figure 5.20 (blocks 1 and
2) and 5.21 (blocks 3 and 4).

For the results of all four blocks, BSS leads to a sparse and non-uniform distribution of matching points in
the image plane. This is mainly attributed to the fact that the hand-crafted modules in BSS are less invariant
against the viewpoint and viewing direction change. Not surprisingly, AOH-Graz and AOW-Graz lead to a
sparser result than other variants related to learned modules. This is consistent with the results repeated so
far for AOH-Graz and AOW-Graz. All the other variants related to learned modules, result in denser and
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more evenly distributed matching points in the 2D image plane.

Observing the result for block 2, as shown in figure 5.20b, it is evident that the matching points in this block
are more evenly distributed with a higher concentration towards the central part of the image plane. The
relatively large number (compared to the other three blocks) of matching points obviously corresponds to
the large number of reconstructed 3D points. Also, this even distribution of matching points along different
directions in the image plane leads to a similar range of mean object coordinate precision in X andY direction.
Compared to block 2, block 1 has a much more uneven distribution of matching points, largely due to the
fact that the scene contains a large area with poor texture, as shown in figure 5.7a.

For the urban blocks 3 and 4, the results are shown in figure 5.21. Both blocks have evenly distributed
matched points. However, when compared to block 3, a denser distribution is observed in block 4, leading
to a 20-30% improvement for the number of reconstructed 3D points in comparison to block 3. The even
distribution of the matched points in both blocks is largely due to the fact that well-textured content in the
urban blocks leads to a even distribution of detected features.
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Block
Index

Det+Aff.+
Ori.+Desc. # 8=8C80;

<0C2ℎ
#
8=;_2E84F
<0C2ℎ

#
BDA E_��
<0C2ℎ

'
8=;_2E84F
8=8C80;

'
8=;_2E84F
BDA E_��

Block-1

BSS 282755 21092 1232 7.46% 5.84%
BSH 150067 32933 9585 21.95% 29.10%
BSW 147788 35092 10188 23.74% 29.03%

AOH-Brown 150453 43083 16027 28.64% 37.20%
AOH-Graz 122482 32179 4721 26.27% 14.67%
AOW-Brown 145854 47398 18678 32.50% 39.41%
AOW-Graz 122915 35936 4773 29.24% 13.28%

MMH-Brown 153527 38147 14121 24.85% 37.02%
MMH-Graz 152577 38083 12939 24.96% 33.98%
MMW-Brown 154556 41821 14574 27.06% 34.85%
MMW-Graz 152238 41573 13145 27.31% 31.62%
FuH-Brown 153259 40578 14135 26.48% 34.83%
FuH-Graz 151415 40067 14890 26.46% 37.16%
FuW-Brown 145187 43695 15904 30.10% 36.40%
FuW-Graz 145766 44411 16013 30.47% 36.06%

Block-2

BSS 362802 47099 15512 12.98% 32.93%
BSH 213143 74433 43846 34.92% 58.91%
BSW 211735 80940 48026 38.23% 59.34%

AOH-Brown 221214 95678 63938 43.25% 66.83%
AOH-Graz 184145 75990 30974 41.27% 40.76%
AOW-Brown 216376 103205 68273 47.70% 66.15%
AOW-Graz 182911 82518 33473 45.11% 40.56%

MMH-Brown 219980 85929 55356 39.06% 64.42%
MMH-Graz 218812 85901 55235 39.26% 64.30%
MMW-Brown 220550 92553 59675 41.96% 64.48%
MMW-Graz 219155 93494 60542 42.66% 64.75%
FuH-Brown 221538 90465 59267 40.83% 65.51%
FuH-Graz 219130 89668 58082 40.92% 64.77%
FuW-Brown 214697 97696 63795 45.50% 65.30%
FuW-Graz 213481 97452 63179 45.65% 64.83%

Table 5.15.: Number of matches generated by different variants for image block 1 and 2. # 8=8C80;
<0C2ℎ

: number
of initial matches. # 8=;_2E84F

<0C2ℎ
: number of inlier matches after running two view geometry

estimation using RANSAC. #BDA E_��
<0C2ℎ

: number of matches after running bundle adjustment.
'
8=;_2E84F
8=8C80;

: ratio of inlier matches/initial matches. '8=;_2E84F
BDA E_�� : ratio of matches after bundle

adjustment/inlier. Except for # 8=;_2E84F
<0C2ℎ

, the highest three numbers for each term are indicated
in bold type.
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Block
Index

Det+Aff.+
Ori.+Desc. # 8=8C80;

<0C2ℎ
#
8=;_2E84F
<0C2ℎ

#
BDA E_��
<0C2ℎ

'
8=;_2E84F
8=8C80;

'
8=;_2E84F
BDA E_��

Block-3

BSS 398160 25542 2537 6.41% 9.93%
BSH 240728 40091 11469 16.65% 28.60%
BSW 230211 41440 12404 18.00% 29.93%

AOH-Brown 241260 48390 17457 20.06% 36.08%
AOH-Graz 198911 34583 8346 17.39% 24.13%
AOW-Brown 226582 51292 19071 22.64% 37.18%
AOW-Graz 185414 38195 9413 20.60% 24.64%

MMH-Brown 238068 42128 14245 17.70% 33.81%
MMH-Graz 234594 41490 12399 17.69% 29.88%
MMW-Brown 229634 45125 14235 19.65% 31.55%
MMW-Graz 225185 44625 14535 19.82% 32.57%
FuH-Brown 233589 43793 14218 18.75% 32.47%
FuH-Graz 232805 42417 13324 18.22% 31.41%
FuW-Brown 219296 46465 16728 21.19% 36.00%
FuW-Graz 218711 45913 16006 20.99% 34.86%

Block-4

BSS 555595 39548 2289 7.12% 5.79%
BSH 334780 58108 16758 17.36% 28.84%
BSW 318473 60342 19704 18.95% 32.65%

AOH-Brown 327279 67612 27111 20.66% 40.10%
AOH-Graz 274719 51170 13180 18.63% 25.76%
AOW-Brown 303723 72457 30212 23.86% 41.70%
AOW-Graz 252957 54291 14651 21.46% 26.99%

MMH-Brown 329149 60471 19117 18.37% 31.61%
MMH-Graz 324911 60215 20816 18.53% 34.57%
MMW-Brown 314540 64533 22569 20.52% 34.97%
MMW-Graz 310978 64265 22581 20.67% 35.14%
FuH-Brown 325979 63324 22632 19.43% 35.74%
FuH-Graz 324651 62874 23347 19.37% 37.13%
FuW-Brown 303728 66507 24516 21.90% 36.86%
FuW-Graz 302219 66816 24891 22.11% 37.25%

Table 5.16.: Number of matches generated by different variants for image block 3 and 4. # 8=8C80;
<0C2ℎ

: number
of initial matches. # 8=;_2E84F

<0C2ℎ
: number of inlier matches after running two view geometry

estimation using RANSAC. #BDA E_��
<0C2ℎ

: number of matches after running bundle adjustment.
'
8=;_2E84F
8=8C80;

: ratio of inlier matches/initial matches. '8=;_2E84F
BDA E_�� : ratio of matches after bundle

adjustment/inlier. Except for # 8=;_2E84F
<0C2ℎ

, the highest three numbers for each term are indicated
in bold type.
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Figure 5.18.: Number and ratio of matches for different blocks. From top to bottom: number of matches
after bundle adjustment (#BDA E_��

<0C2ℎ
), number of two view inlier matches (# 8=;_2E84F

<0C2ℎ
), ratio of

two-view inlier matches ('8=;_2E84F
8=8C80;

) and ratio of matches after bundle adjustment
('8=;_2E84F
BDA E_�� ). All four of the bar figures share the same label for different variants, as shown in

the top figure. For the two related ratios (3rd and 4th row), the mean values over the four
groups are also provided at the end of each bar figure.
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Figure 5.19.: Ray intersection for the match track of each 3D object point. From top to bottom the results
are given for blocks 1 through 4. All four of the bar figures share the same label for the
different variants as shown above the results for the first block.
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(a) block1

(b) block2

Figure 5.20.: The distribution of matching points after bundle adjustment applying different matching
variants on blocks 1 (a) and 2 (b). For better visualization, the axes and grid are only shown in
the HBSS result of each block and it is identical for all variants. The colour bars used in the
two blocks show different ranges (number of matched point per grid), due to the fact that block
1 delivers a significantly smaller number of matches and reconstructed 3D points.
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(a) block3

(b) block4

Figure 5.21.: The distribution of matching points after bundle adjustment using different matching method
variants in blocks 3 (a) and 4 (b). For better visualization, the axes and grid are only shown in
the HBSS result of each block, and it is identical for other variants. The colour bars used in
blocks 3 and 4 are identical.
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6. Discussion

This section first provides the discussion based on the experimental results presented in the previous chapter.
For the sake of simplicity, the discussion is structured according to the investigations in chapter 5 which
depicts the experiments and results. Some fundamental issues, such as the correctness of parameter study
policy and the implications of the achieved experimental results, are discussed. Also, the strengths and
limitations of the different modules proposed in this thesis are analysed. In accordance with those findings
and an analysis of limitations, possible directions of future work are outlined.

6.1. Descriptor Learning and Patch Based Image Matching

6.1.1. Parameter Study

The parameter study for the proposed WeMNet involves the relative weight of weak match loss (_F<). The
results are provided in table 5.4 and figure 5.9. The weak match branch contributes to the invariance of
descriptors when _F< is larger than 0.01. However, when _F< is larger than 5.0, this improvement starts
to diminish for “hard” and “tough” patches. In the case that _F< is larger than 5, the whole descriptor loss
is governed by the weak match part. Due to the fact that the weakly matched patches are sampled from the
central part of the input feature patches, those patches used for training the weak match branch have smaller
context windows. Assigning high weights to the descriptor trained on those smaller context windows could
decrease the discriminative power of the resulting trained descriptor again.

In theory, the thresholds used in the descriptor distance based loss, i.e., V and VF40: (the margins between
the matched and unmatched feature pairs in descriptor space), should also be studied in a systematic way.
In an ideal case, a grid search over all three hyper-parameters, _F<, V and VF40: , should be conducted.
To keep the computation burden tractable in this research, however, the parameter study for V, VF40: is
ignored. Instead, V and VF40: are set empirically. For all the experiments in this thesis, V is set to 1.0 for
triplet loss and VF40: to 0.8. Considering the fact that descriptors are normalized and the possible distances
between any two descriptors thus lies in the range of [0, 2.0], setting the distance margin threshold to 1.0
seems reasonable. As more challenging weakly matched patches are included for the weak match branch in
descriptor learning, VF40: should have a lower value that forms a looser constraint for harder training data.
Therefore, VF40: is set to 0.8. Although V and VF40: are set with meaningful values, there is a risk that the
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values for those two parameters for the proposed WeMNet are not optimal. It is to be expected that with a
more complete study of parameters the performance of the descriptor proposed in this thesis will improve
slightly.

6.1.2. Comparison to Related Works

The descriptor is compared to its counterparts in closely relatedworks on thematching task using theHpatches
benchmark [Balntas et al., 2017]. As can be seen from figure 5.10, the matching results of different variants
on the illumination set are relatively stable. However, the result for the set View changes dramatically. The
dataset used in HardNet_PS [Mitra et al., 2018] is deliberately designed to simulate challenging viewpoint
and viewing direction change. Due to the fact that the amount of training data1 used in HardNet_PS is at
least ten times the size of the dataset used for other variants, it does not come as a surprise that a better
performance in the view set is achieved.

By restricting the comparison of variants to cases where the same network and training data are used, i.e.,
HardNet_Lib, SOSNet_Lib and WeMNet_Lib, the advantage of including weak matches becomes obvious,
as observed from the result for the sets View and Full. Even with a smaller dataset (Liberty), the variant
WeMNet_Lib achieves better performance than HardNet_Brown which is trained with the entire Brown
dataset. As discussed in section 3.5.2, the intra-variance in the matched patch pairs, i.e., including enough
changes of appearance for matched pairs during the training process, was not fully explored and used in
descriptor learning. In this thesis, however, the involvement of the proposed weak match branch helps the
network to discover the potential of including enough intra-variance for matched pairs and thus achieving
higher invariance under the condition that a limited quantity of training data is available.

However, when a larger dataset is used, the improvement forWeMNet is marginal, as can seen inWeMNet_Lib
vsWeMNet_Brown6. This may imply a risk of over-fitting caused by the mechanism used in WeMNet. To be
precise, the network may put too much emphasis on differentiating matched features whose feature support
windows are slightly transformed to each other, and thus the trained network may be overly dependent on the
training data. Consequently, the generalization power of the trained network could be restricted.

6.2. Descriptor Distance Analysis

To explore the issue how descriptor distance change by geometric transformations, two different groups of
data and three different typical geometric transformations are chosen for analysis. The results are shown in
section 5.4.

1A more detailed description of the dataset used in training HardNet_PS can be found here: https://github.com/rmitra/PS-Dataset
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6.2.1. Translation

The sensitivity of descriptor distance towards translation of the local image context window is high. This
observation is relatively independent of the type of descriptor and data, as illustrated in figure 5.11. On the
one side, this observation suggests that the invariance of the involved local descriptors against localization
errors of feature points is only bound to a limited range, e.g., not larger than half of the characteristic
scale of underlying features. On the other side, this observation is consistent with applications, in which
local descriptors are employed as similarity measures differentiating proposals (e.g., object proposal for the
purpose of visual object detection, pixels in stereo matching) with different localizations. For instances, the
SIFT descriptor is used as descriptor for object tracking [Zhou et al., 2009] and the DAISY descriptor is used
as similarity measure in stereo matching [Tola et al., 2009].

6.2.2. Rotation

The sensitivity analysis of descriptor distance against rotation contains a lot of information. First, as
mentioned already in section 5.4.2, when one patch is fixed and the other one is rotated in a pair, i.e.,
FixA_RotP, different descriptors deliver different results. The relevant issue here is that descriptor distance
can be a less discriminative measure for learning the orientation of local features when the relative rotation
difference lies beyond the sensitivity range of the descriptors employed. For instance, the range lies beyond
−60◦ to 60◦ for HardNet. However, in the real orientation network training stage, the patches used in each
mini-batch are randomly simulated with different rotation angles, therefore a larger gradient, computed by
the derivatives of loss with regard to the predicted angles, can normally be obtained by feature pairs which are
simulated with a small amount of rotation difference. Second, the descriptor distance for the case RotA_RotP
stays constant. This indicates that once local patches have been aligned, the descriptor distance is fixed, no
matter which angles are used for alignment. Thus, no single solution for the alignment of feature patches is
guaranteed. This leads to the over-parameterization problem mentioned in section 3.5.1. In this thesis, the
involvement of mean gradient loss guarantees that the canonical unique solution can be found, as long as no
symmetric pattern is contained in the feature context window.

6.2.3. Affine Shape Transformation

For the affine shape transformation, it can be observed that the changing trends of descriptor distance in the
direction of q (skewness) and stretch are very different. This suggests that optimization might prove difficult
if the descriptor distance computed using HardNet or SIFT is employed as loss for training affine shape. The
elongated shape of the contours suggests that a very different scale of gradients can be obtained for skewness
and stretch. In turn, this may lead to a failure of convergence. Actually, when HardNet is used for training
AffNet, the descriptor distance loss is significantly higher than the one obtained for descriptor training itself.
This may serve as evidence that the derived affine shape is not globally optimized in the parameter space
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formed by q and stretch.

In case the same amount of affine shape of transformation is used for two patches in a pair, the distance
is independent of the amount of transformation once the patch pair is aligned. This again confirms the
over-parametrization problem mentioned in section 3.5.1 exists. In this thesis, joining the stretch and skew
loss based on the second moment matrix is much better suited to compute a unique solution for the affine
shape estimation.

6.3. Feature based Image Matching

In this part, the parameter _B:4F is studied first in order to choose a good value so that a good feature
matching performance is attained. Then, the trained modules are assessed with a rotation set of images and
a set including affine transformations.

6.3.1. Parameter Study

The parameter study for _B:4F is conducted in section 5.5.1. According to the results for which either
HardNet or WeMNet is employed as descriptor, the proposed affine network is rather insensitive to the choice
of _B:4F . The parameters, _B:4F and _>A8 in the full affine shape estimation module are adjusted during
training, thus the three different losses can drop simultaneously. Based on the parameters set in this thesis,
it can be observed that the stretch loss is made to decrease first, and the importance of the orientation loss
increases after the stretch has been brought to a lower value. As the scale of skew loss is marginal, a small
value for it is employed for all epochs. It is worth to note this strategy setting in full affine shape network
training works fine for both the Brown and the Aerial-Graz dataset.

6.3.2. Rotation Set

As shown in figure 5.15, all variants that are combined with different feature orientation and descriptors
generally perform better when the relative rotation of two images is smaller than they do in case of a larger
relative rotation. Compared to the matching performance for smaller relative rotation (e.g., [−45◦, 45◦]), a
performance drop of nearly 50% is observed for all variants in which the relative rotation between two images
is moved to the maximum value (±180◦). This implies that not all of the involved feature orientation variants
achieve a full rotation invariance in [−180◦, 180◦).

An observation beyond expectation is that the variants of FuH, FuW , MH, when training with Brown or
Aerial-Graz, and OH-Brown show a notable performance drop when the relative rotation changes from ±45◦

to ±15◦. It was found that this drop is mainly caused by the drop in 4 of the 59 used subsets. For these
subsets, the performance drop from ±45◦ to ±15◦ is in range of 0.25 to 0.31 (in terms of AuC). This might
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be partly due to the fact that WeMNet is less sensitive to rotation change in a small range (see Fig 5.12c and
5.12f) .

6.3.3. Affine Set

As shown in figure 5.16, the different variants involved are very comparable to each other, except for BSS,
BSH, BSW, AOH-Graz and AOW-Graz. The difference between the variants is affected by the change of the
ground truth matching thresholds used by said variants. For nearly all cases, it can be observed that HardNet
performs nearly identical to WeMNet. In contrast, when the ratio and number of inliner matches are used in
the oblique aerial image datasets in Task D, WeMNet performs slightly better than HardNet. This suggests
that the result is data dependent.

Another positive aspect stems from the fact that MoNet, MGNet and Full-AffNet trained using the aerial
image dataset (Aerial-Graz) perform well on close range images in Hpatches. For the other training dataset,
i.e. Brown, both AffNet + OriNet and the networks (MGNet + MoNet and Full-AffNet) proposed in this
thesis perform well. This implies that the generalization of the trained affine shape and orientation network
is good enough for matching images from different domains.

One possible risk lies in the type of scene contained in the used data, i.e., planar dominant contents or pure
rotation camera poses. On the one hand, this simplifies the process of generating ground truth correspondences
because only the homography matrix is needed to model the pixel-wise geometric relationship between two
test images. On the other hand, the scene type is not fully representative. Therefore, extending this evaluation
task to images containing large viewpoint and viewing change while imaging real 3D scene is a meaningful
direction for future work on this topic.

6.4. Image Orientation

In order to evaluate the performance of the proposed feature matching modules when they are applied to
real image orientation tasks, small blocks of images that cover different types of images are utilized. The
result changes from block to block. In the city area, mainly owing to the block geometry and the fact that
an increased proportion of cross camera matches was found by the deep learning based feature matching
variants, the object coordinate precision improves significantly (results of block 3 and 4 compared to block
1 and 2) and therefore the stability of the reconstructed block is improved accordingly.

Although the proposed MoNet, MGNet and Full-AffNet are trained with one branch and do not require
matching relationships of features as a label, the variants based on these proposed modules achieve result
comparable to those of AffNet and OriNet trained on the Brown dataset, for which Siamese CNN are used
and a matching relationship is needed to supervise the training process. This result suggests that the proposed
method can be used to solve real tasks where challenging viewpoint and viewing direction change is included.



132 6. Discussion

Despite the fact that the proposed method is tested on images of rural and urban areas, this only covers
applications on plain landscape, as the both imaging cities, Dortmund and Zeche Zollern, are located in the
North German Plain. The performance of the proposed method for other types of landscapes, e.g., mountain
areas, still remains unknown. This restriction comes from the lack of proper oblique aerial image benchmarks
which would be representative enough for varying types of landscapes. Therefore, the result for Task D in
this thesis can be seen as a pilot study for applying the proposed matching algorithm to real image orientation
tasks. In this pilot study, promising results with regard to real image orientation are achieved.

Each of the blocks 1 through 4 contains small image blocks made up from only 3 to 5 images from each
camera view in the penta-camera system. Some of the adjacent images, as mentioned in section 5.1.2, were
excluded in order to create more challenging viewpoint and viewing direction change. Once the approach is
verified to be efficient for smaller blocks, the extension to large and complete image blocks should work as
well.

To make the comparison between AffNet and OriNet of [Mishkin et al., 2018] and MoNet, MGNet and
Full-AffNet proposed in this thesis as fair as possible, identical datasets and an equal number of data are
used in training. In particular, 10M patch pairs for AffNet and OriNet and 10.2M patch for MoNet, MGNet
and Full-AffNet are used. Regarding the training dataset, all the network are trained on both Brown and
Aerial-Graz. For AffNet and OriNet trained on Brown, as already mentioned, the version trained by the
author of Mishkin et al. [2018] is used, while the version using Aerial-Graz is trained by the author of this
thesis. As observed in task C and D, the AffNet and OriNet trained on Aerial-Graz experienced a significant
performance drop. This is shown in task C.3 and task D. This drop may stem from two aspects:

• The hard negative constant loss proposed in [Mishkin et al., 2018]may be data dependent and thus this
loss cannot cope with Aerial-Graz dataset as well as with Brown;

• The inconsistency among the training data for descriptor, affine shape and orientation related networks.
In particular, the Brown dataset is the training data for HardNet, as well as AffNet and OriNet published
in [Mishkin et al., 2018]. In this thesis, HardNet trained on Brown is used for training of AffNet and
OriNet on both Brown and Aerial-Graz dataset. When Aerial-Graz is used to train AffNet and OriNet,
the dataset consistency among the training sets of descriptor, affine shape and orientation networks is
violated.

For MGNet, MoNet and Full-AffNet, the versions trained on Brown and Aerial-Graz datasets performs
equally well in task C and D, only small differences between the two versions are observed. Those images in
the training data, i.e. Brown and Aerial-Graz and in the test datasets, i.e. Hpatches and Aerial-Dortmund,
respectively, clearly come from different image domains. Therefore, a performance drop or decreasing
generalization can be expected. However, the experimental result of Task D (as well as Task C) does not
suggest an obvious performance drop or domain gap. This is probably due to the fact that only local image
regions, are relied on for training the affine shape, orientation and full affine shape as well for descriptor
learning. In other words, large context windows are not necessary, so that the reliance on data “domains” is
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considerably weakened and thus contributes to a smaller domain gap compared to applications where larger
context windows are indispensable for discriminating among different categories of objects. The result in
this thesis shed some light on the generalization of the trained modules. However, this conclusion is still far
from comprehensive. To find a complete and stable answer to the generalization issue, a systematic study
using different training/testing dataset combinations is needed, which, in turn, suggests a direction for future
work.

One of the issues which remains unexplored so far but is also essential to feature matching is feature detection.
All of the variants in this thesis rely on the Hessian detector, as it is more invariant against viewpoint and
viewing direction change than other hand crafted feature detectors. In the chapter presenting the results of
the experiment conducted for this thesis, it is verified that the Hessian can detect repeatable features despite
challenging viewpoint and viewing direction change, otherwise matching would not have been successful and
the image blocks would not have been orientated. However, two closely related issues are still not explored.
First, the repeatability of features remains unknown when large viewpoint and viewing direction change is
included in the data. Consequently, it also remains unknown when the feature detection starts to become
unreliable. The feature detector can be applied to image patches that are simulated with strong relative
geometric transformation, then a repeatability constraint can be employed to force the location of detected
features to be as consistent as possible. This leaves - second - the question whether the localization precision
of detected features can be improved. This is critical to applications for which high precision for image
orientation (camera pose, 3D object point coordinates) is required. Either forming a localization loss or even
solving this in a larger context, e.g., bundle adjustment, can be issues to be dealt with in future work.
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7. Conclusion and Outlook

Following the goal of improving feature based image matching for images containing large viewpoint and
viewing direction change, this thesis addressed the closely related issues for several steps in the feature
based image matching framework. Starting from improving the descriptor invariance against large viewpoint
and viewing direction change, orientation and affine shape estimation using geometric measures as well as
the process of simultaneously learning the affine shape and orientation module were discussed. Also, the
proposed method was comprehensively assessed in the image orientation of aerial oblique image blocks. This
chapter draws the conclusion based on the presented investigation and suggests the most promising future
directions for further work on this topic.

By incorporating a weakmatch branch that actively finds weakmatches in descriptor learning using a Siamese
CNN architecture, the learned descriptor has been shown to be more invariant against viewpoint and viewing
direction change. Through the weak match network, the appearance of the matched features is explored in
a more comprehensive way, therefore the intra-variance of the appearance for the matched features is better
considered and covered. As only a simple predefined geometric transformation model is provided for the
weak match network to find the hardest matched feature pairs during descriptor learning, the influence of the
types and range of geometric transformations on the descriptor performance remains unknown. This issue
needs to be addressed in future work to increase the understanding of the influence caused by the choice of
geometric transformations allowed between matched feature pairs.

A canonical feature patch is critical to the feature orientation assignment and affine shape estimation problem.
With the help of the proposed mean gradient based orientation loss and second moment based skewness
and stretch loss, the orientation and affine shape network are able to find the rotation and affine shape
transformation so that the output patches have canonical forms. The proposed loss for both feature orientation
and feature affine shape estimation is independent of descriptor distance, which makes possible to use a
single branch CNN instead of the Siamese CNN for training. In a further step, a full affine network that
simultaneously learns the orientation and affine shape of an input feature patch from scratch is also proposed.
To the best of the author’s knowledge, this is the first time that orientation and affine shape are reported
to have been successfully trained simultaneously from scratch. To make it possible that the three separate
losses regarding the orientation, skew and stretch of a local patch decrease at the same time, a policy of
dynamically adjusting the relative weights of those three different losses during training is utilized. As a
result, a plausible solution for the full affine shape estimation network is achieved. However, this strategy
should be more systematically studied, so that a better weight adjustment strategy can be found to bring the
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final losses for all the three parts to a minimum. Correspondingly, further performance improvement for the
full affine shape estimation network can then be expected.

The proposed feature matching method is assessed in an image orientation task using oblique aerial image
blocks in which challenging viewpoint and viewing direction change is included. Compared to the existing
benchmarks, the dataset used for assessment in this thesis emphasizes the challenging case with a real
application problem, i.e., image orientation, by varying the types of covered landscape in the image blocks
as well as the combination of orientation, affine shape and feature description module. Through the detailed
analysis of the results of this image orientation task, it is found in this thesis that the proposed descriptor leads
to a slightly higher number of matching points. At the same time the proposed orientation and affine shape
network achieve a result comparable to the one yielded by the network trained by a Siamese CNN which
employs descriptor distance based loss. However, for the image pairs used in the orientation task, its ground
truth matches still remained unknown. In the future, a strategy that can automatically provide the ground
truth matches for image pairs containing large viewpoint and viewing direction change should be developed.
As a consequence, the recall and precision of the developed matching method can be derived and then used
as complementary performance measures for the measures used in the current work.

In this thesis, the ability to transfer learned modules to images that are different from the training data is
preliminarily answered. As different datasets are used in the training and evaluation tasks, an acceptable
generalization is observed for the trained modules. As mentioned before, the possible reasons for this
generalization come from two aspects. First, all of the learned modules rely on a simple network composed
of only several layers and a large quantity of training data is used to train them. Second, the feature patch
relies mainly only on local image contents because the characteristic scales of most detected features are
within the range of several pixels, therefore a larger context window is not required. As a result, for one local
image pattern contained in the image domain used for training, a similar local image pattern can probably be
found in the image domain where the trained networks are applied. However, the ability to transfer the learned
modules is not systematically investigated in the current work. A more systematic and comprehensive study,
which employs more diverse datasets and compares different combinations of training and testing dataset,
may bring a clearer vision to the generalization issue of the proposed method.

So far, feature detection still relies on a hand-crafted detector, i.e., the Hessian detector. In the future, when
feature detection is revisited, the question whether its performance can be improved by deep learning should
be explored. Some existing research has already shed light on the promising aspects of learning feature
detectors. For images containing large viewpoint and viewing direction change, the feature detection network
can follow the line of achieving a higher repeatability and localization accuracy. Consequently, further
improvement on the image orientation quality in terms of the accuracy of image and object points over this
work can be expected.



Bibliography 137

Bibliography

Aanaes, H., A. Dahl, and K. Steenstrup Pedersen. 2012. “Interesting interest points.” International Journal
of Computer Vision 97 (1): 18–35.

Agarwal, S., Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz, and R. Szeliski. 2011. “Building
Rome in a day.” Communications of the ACM 54 (10): 105–112.

Alahi, A., R. Ortiz, and P. Vandergheynst. 2012. “Freak: Fast retina keypoint.” Paper presented at the
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–517.

Balntas, V., E. Johns, L. Tang, and K. Mikolajczyk. 2016a. “PN-Net: Conjoined triple deep network for
learning local image descriptors.” arXiv preprint arXiv:1601.05030.

Balntas, V., E. Riba, D. Ponsa, and K. Mikolajczyk. 2016b. “Learning local feature descriptors with triplets
and shallow convolutional neural networks.” Paper presented at the Proceedings of the British Machine
Vision Conference, pp. 1–11.

Balntas, V., Lenc, K., Vedaldi, A., and Mikolajczyk, K. 2017. “Hpatches: A benchmark and evaluation of
handcrafted and learned local descriptors.” Paper presented at the Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5173–5182.

Barnard, S. T. and W. B. Thompson. 1980. “Disparity analysis of images.” IEEE Transactions on Pattern
Analysis and Machine Intelligence 2 (4): 333–340.

Baumberg, A. 2000. “Reliable feature matching across widely separated views.” Paper presented at the
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 774–781.

Bay, H., A. Ess, T. Tuytelaars, and L. Van Gool. 2008. “Speeded-up robust features (SURF).” Computer
Vision and Image Understanding 110 (3): 346–359.

Bay, H., T. Tuytelaars, and L. Van Gool. 2006. “SURF: Speeded up robust features.” Paper presented at the
Proceedings of the European Conference on Computer Vision, pp. 404–417.

Beis, J. S. and D. G. Lowe. 1997. “Shape indexing using approximate nearest-neighbour search in high-
dimensional spaces.” Paper presented at the Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1000–1006.



138 Bibliography

Blott, G., Yu, J., and Heipke, C. (2019). “Multi-view person re-identification in a fisheye camera network
with different viewing directions.” PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation
Science, 87(5-6):263–274.

Bromley, J., I. Guyon, Y. LeCun, E. Säckinger, and R. Shah. 1994. “Signature verification using a "Siamese"
time delay neural network.” Paper presented at the Proceedings of the Advances in Neural Information
Processing Systems, pp. 737–744.

Brown, M., G. Hua, and S. Winder. 2011. “Discriminative learning of local image descriptors.” IEEE
Transactions on Pattern Analysis and Machine Intelligence 33(1): 43–57.

Brown, M., R. Szeliski, and S. Winder. 2005. “Multi-image matching using multi-scale oriented patches.”
Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Volume I, pp. 510–517.

Calonder, M., V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and P. Fua. 2012. “BRIEF: Computing a
local binary descriptor very fast.” IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (7):
1281–1298.

Calonder, M., V. Lepetit, C. Strecha, and P. Fua. 2010. “BRIEF: Binary robust independent elementary
features.” Paper presented at the Proceedings of the European Conference on Computer Vision, pp.
778–792.

Carlevaris-Bianco, N. and R. M. Eustice. 2014. “Learning visual feature descriptors for dynamic lighting
conditions.” Paper presented at the Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2769–2776.

Chechik, G., V. Sharma, U. Shalit, and S. Bengio. 2010. “Large scale online learning of image similarity
through ranking.” Journal of Machine Learning Research 11 (3): 1109–1135.

Chen, L., F. Rottensteiner, and C. Heipke. 2014. “Learning image descriptors for matching based on Haar
features.” In The International Archives of Photogrammetry, Remote Sensing and Spatial Information
Sciences, Volume XL-3, pp. 61–68.

Chen, L., F. Rottensteiner, and C. Heipke. 2016. “Invariant descriptor learning using a Siamese convolutional
neural network.” In ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume III-3, pp. 11–18.

Chen, L., F. Rottensteiner, and C. Heipk. 2020a. “Deep learning based feature matching and its application
in image orientation.” In ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information
Sciences, Volume V-2, pp. 25–33.

Chen, L., F. Rottensteiner, and C. Heipk. 2020b. Feature detection and description for image match-
ing: from hand-crafted design to deep learning. Geo-spatial Information Science, 24(1):58–74.
DOI:https://doi.org/10.1080/10095020.2020.1843376



Bibliography 139

Chung, D., Tahboub, K., and Delp, E. J. 2017. “A two stream siamese convolutional neural network for
person re-identification.” Paper presented at the Proceedings of the IEEE International Conference on
Computer Vision. pp. 1983-1991.

Dreschler, L. and H.-H. Nagel. 1981. “On the frame-to-frame correspondence between greyvalue character-
istics in the images of moving objects.” Paper presented at the Proceedings of the German Workshop on
Artificial Intelligence, pp. 18–29.

Fan, B., Kong, Q., Wang, X., Wang, Z., Xiang, S., Pan, C., and Fua, P. 2017. “A performance evaluation of
local features for image based 3d reconstruction.” arXiv preprint arXiv:1712.05271.

Fan, B., Q. Kong, X. Wang, Z. Wang, S. Xiang, C. Pan, and P. Fua. 2019. “A performance evaluation of local
features for image-based 3D reconstruction.” IEEE Transactions on Image Processing 28(10): 4774–4789.

Förstner, W. and E. Gülch. 1987. “A fast operator for detection and precise location of distinct points, corners
and centres of circular features.” In Proceedings of ISPRS Intercommission Conference on Fast Processing
of Photogrammetric Data, pp. 281–305.

Föstner, W. 1991. “Statistische Verfahren für die automatische Bildanalyse und ihre Bewertung bei der
Objekterkennung und -vermessung.” Habilitation Thesis, Deutsche Geodätische Kommission bei der
Bayerischen Akademie der Wissenschaften, Nr. 370.

Goesele, M., Snavely, N., Curless, B., Hoppe, H., and Seitz, S. M. 2007. Multi-view stereo for community
photo collections. Paper presented at the Proceedings of the IEEE International Conference on Computer
Vision, pp. 1–8.

Hadsell, R., S. Chopra, and Y. LeCun. 2006. “Dimensionality reduction by learning an invariant mapping.”
Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1735–1742.

Han, X., T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg. 2015. “Matchnet: Unifying feature and metric
learning for patch-based matching.” Paper presented at the Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3279–3286.

Harris, C. andM. Stephens. 1988. “A combined corner and edge detector.” Paper presented at the Proceedings
of Alvey Vision Conference, Volume 15, pp. 147–151.

Hoffer, E. and N. Ailon. 2015. “Deep metric learning using triplet network.” Paper presented at the
Proceedings of the International Workshop on Similarity-Based Pattern Recognition, pp. 84–92.

Ioffe, S. and Szegedy, C. 2015. “Batch normalization: Accelerating deep network training by reducing
internal covariate shift.” arXiv preprint arXiv:1502.03167.

Jacobsen, K. andM. Gerke. 2016. “Sub-camera calibration of a penta-camera.” In The International Archives
of Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W4, pp. 35–40.



140 Bibliography

Jahrer, M., M. Grabner, and H. Bischof. 2008. “Learned local descriptors for recognition and matching.”
Paper presented at the Proceedings of the Computer Vision Winter Workshop, pp. 39–46.

Jin, Y., D. Mishkin, A. Mishchuk, J. Matas, P. Fua, K. M. Yi, and E. Trulls. 2020. “Image matching across
wide baselines: From paper to practice.” arXiv preprint arXiv:2003.01587.

Ke, Y., R. Sukthankar, and I. C. Society. 2004. “PCA-SIFT: A more distinctive representation for local image
descriptors.” Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 506–513.

Keller, M., Z. Chen, F. Maffra, P. Schmuck, and M. Chli. 2018. “Learning deep descriptors with scale-aware
triplet networks.” Paper presented at the Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2762–2770.

Kim, D.-G., W.-J. Nam, and S.-W. Lee. 2019. “A robust matching network for gradually estimating geometric
transformation on remote sensing imagery.” Paper presented at the Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics (SMC), pp. 3889–3894.

Kumar, B., G. Carneiro, I. Reid, et al. 2016. “Learning local image descriptors with deep Siamese and triplet
convolutional networks by minimising global loss functions.” Paper presented at the Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 5385–5394.

LeCun, Y.. 1989. “Generalization and network design strategies.” Technical Report CRG-TR-89-4, University
of Toronto Connectionist Research Group, June 1989.

Lenc, K. and A. Vedaldi. 2016. “Learning covariant feature detectors.” Paper presented at the Proceedings
of the European Conference on Computer Vision Workshops, pp. 100–117.

Lepetit, V. and P. Fua. 2006. “Keypoint recognition using randomized trees.” IEEE Transactions on Pattern
Analysis and Machine Intelligence 28(9): 1465–1479.

Leutenegger, S., M. Chli, and R. Y. Siegwart. 2011. “BRISK: Binary robust invariant scalable keypoints.”
Paper presented at the Proceedings of the IEEE International Conference on Computer Vision, pp. 2548–
2555.

Lindeberg, T. 1994. “Scale-space theory: A basic tool for analyzing structures at different scales.” Journal
of Applied Statistics 21 (1-2):225–270.

Lindeberg, T. 1998. “Feature detection with automatic scale selection.” International Journal of Computer
Vision 30 (2): 79–116.

Lindeberg, T. 2015. “Imagematching using generalized scale-space interest points.” Journal of Mathematical
Imaging and Vision, 52(1): 3–36.

Lindeberg, T. and J. Garding. 1997. “Shape-adapted smoothing in estimation of 3-D shape cues from affine
deformations of local 2-D brightness structure.” Image and Vision Computing 15 (6): 415–434.



Bibliography 141

Lowe, D.G. 1999. “Object recognition from local scale-invariant features.” Paper presented at theProceedings
of the International Conference on Computer Vision, pp. 1150–1157.

Lowe, D. G. 2004. “Distinctive image features from scale-invariant keypoints.” International Journal of
Computer Vision 60 (2): 91–110.

Lucas, B. D., T. Kanade, et al. 1981. “An iterative image registration technique with an application to stereo
vision.” Paper presented at the Proceedings of the DARPA Image Understanding Workshop, pp. 121–130.

Luo, Z., T. Shen, L. Zhou, S. Zhu, R. Zhang, Y. Yao, T. Fang, and L. Quan. 2018. “Geodesc: Learning
local descriptors by integrating geometry constraints.” Paper presented at the Proceedings of the European
Conference on Computer Vision, pp. 168–183.

Matas, J., O. Chum, M. Urban, and T. Pajdla. 2004. “Robust wide-baseline stereo from maximally stable
extremal regions.” Image and Vision Computing 22 (10): 761–767.

Mikolajczyk, K. 2002. “Interest point detection invariant to affine transformations.” PhD diss., Institut
National Polytechnique de Grenoble, France.

Mikolajczyk, K. and Schmid, C. 2001. “Indexing based on scale invariant interest points.” Paper presented
at the Proceedings of the International Conference on Computer Vision, pp. 525–531.

Mikolajczyk, K. and C. Schmid (2004). “Scale & affine invariant interest point detectors.” International
Journal of Computer Vision 60 (1): 63–86.

Mikolajczyk, K. and C. Schmid. 2005. “A performance evaluation of local descriptors.” IEEE Transactions
on Pattern Analysis and Machine Intelligence 27 (10): 1615–1630.

Mikolajczyk, K., T. Tuytelaars, C. Schmid, A. Zisserman, J.Matas, F. Schaffalitzky, T.Kadir, and L.VanGool.
2005. “A comparison of affine region detectors.” International Journal of Computer Vision 65 (1-2): 43–72.

Mishchuk, A., D. Mishkin, F. Radenovic, and J. Matas. 2017. “Working hard to know your neighbor’s
margins: Local descriptor learning loss.” Paper presented at the Proceedings of the Advances in Neural
Information Processing Systems, pp. 4826–4837.

Mishkin, D., Radenovic, F., andMatas, J. 2017. “Learning discriminative affine regions via discriminability.”
arXiv preprint arXiv:1711.06704.

Mishkin, D., F. Radenovic, and J. Matas. 2018. “Repeatability is not enough: Learning affine regions via
discriminability.” Paper presented at the Proceedings of the European Conference on Computer Vision,
pp. 284–300.

Mitra, R., Doiphode, N., Gautam, U., Narayan, S., Ahmed, S., Chandran, S., and Jain, A. 2018. “A large
dataset for improving patch matching.” arXiv:1801.01466v3.

Moravec, H. P. 1979. “Visual mapping by a robot rover.” Paper presented at the Proceedings of the
International Joint Conference on Artificial Intelligence, Volume 1, pp. 598–600.



142 Bibliography

Morel, J.-M. and G. Yu. 2009. “ASIFT: A new framework for fully affine invariant image comparison.” SIAM
Journal on Imaging Sciences 2 (2): 438–469.

Nair, V. and Hinton, G. E. 2010. “Rectified linear units improve restricted boltzmann machines.” Paper
presented at the Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp.
807–814.

Nesterov, Y. 2013. “Gradient methods for minimizing composite functions.” Mathematical Programming,
140(1):125–161.

Nex, F., F. Remondino, M. Gerke, H.-J. Przybilla, M. Bäumker, and A. Zurhorst. 2015. “ISPRS benchmark
for multi-platform photogrammetry.” In ISPRS Annals of Photogrammetry, Remote Sensing and Spatial
Information Sciences, Volume II-3/W4, pp. 135–142.

Nguyen, U. and C. Heipke 2020. “3D Pedestrian tracking using local structure constraints.” ISPRS Journal
of Photogrammetry and Remote Sensing, 166: 347–358.

Onyango, F., F. Nex, M. Peter, and P. Jende. 2017. “Accurate estimation of orientation parameters of
uav images through image registration with aerial oblique imagery.” In The International Archives of
Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-1/W1, pp. 599–605.

Osendorfer, C., J. Bayer, S. Urban, and P. Van Der Smagt. 2013. “Convolutional neural networks learn
compact local image descriptors.” Paper presented at the Proceedings of the International Conference on
Neural Information Processing, pp. 624–630.

Ozuysal, M., M. Calonder, V. Lepetit, and P. Fua. 2010. “Fast keypoint recognition using random ferns.”
IEEE Transactions on Pattern Analysis and Machine Intelligence 32(3): 448–461.

Perd’och, M., Chum, O., and Matas, J. 2009. “Efficient representation of local geometry for large scale object
retrieval.” Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 9–16.

Rodehorst, V. and A. Koschan. 2006. “Comparison and evaluation of feature point detectors.” Paper presented
at the 5th International Symposium Turkish-German Joint Geodetic Days, Technical University of Berlin,
Berlin, Germany.

Rosten, E., R. Porter, and T. Drummond. 2010. “Faster and better: A machine learning approach to corner
detection.” IEEE Transactions on Pattern Analysis and Machine Intelligence 32 (1): 105–119.

Rublee, E., V. Rabaud, K. Konolige, and G. Bradski. 2011. “ORB: An efficient alternative to SIFT or
SURF.” Paper presented at the Proceedings of the IEEE International Conference on Computer Vision,
pp. 2564–2571.

Savinov, N., A. Seki, L. Ladicky, T. Sattler, and M. Pollefeys. 2017. “Quad-networks: unsupervised learning
to rank for interest point detection.” Paper presented at the Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3929–3937.



Bibliography 143

Schönberger, J. L. and J.-M. Frahm. 2016. “Structure-from-motion revisited.” Paper presented at the
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113.

Shi, J. and C. Tomasi . 1994. “Good features to track.” Paper presented at the Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 593–600.

Simo-Serra, E., E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer. 2015. “Discriminative
learning of deep convolutional feature point descriptors.” Paper presented at the Proceedings of the IEEE
International Conference on Computer Vision, pp. 118–126.

Simonyan, K., A. Vedaldi, and A. Zisserman. 2014. “Learning local feature descriptors using convex
optimisation.” IEEE Transactions on Pattern Analysis and Machine Intelligence 36 (8): 1573–1585.

Smith, M., N. Kokkas, A. Hamruni, D. Critchley, and A. Jamieson. 2008. “Investigation into the orientation
of oblique and vertical digital images.” Paper presented at the European Calibration and Orientation
Workshop (EUROCOW). Barcelona, Spain.

Smith, S. M. and J. M. Brady. 1997. “SUSAN - A new approach to low level image processing.” International
Journal of Computer Vision 23 (1): 45–78.

Snavely, N., S. M. Seitz, and R. Szeliski. 2006. “Photo tourism: exploring photo collections in 3D.” Paper
presented at the Proceedings of the International Conference on Computer Graphics and Interactive
Techniques (ACM Siggraph), pp. 835–846.

Snavely, N., S. M. Seitz, and R. Szeliski. 2008. “Modeling the world from internet photo collections.”
International Journal of Computer Vision 80 (2): 189–210.

Szeliski, R. 2010. “Computer vision: algorithms and applications.” Springer Science and Business Media,
London. DOI:https://doi.org/10.1007/978-1-84882-935-0

Tian, Y., B. Fan, and F. Wu. 2017. “L2-net: Deep learning of discriminative patch descriptor in euclidean
space.” Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 661–669.

Tian, Y., X. Yu, B. Fan, F. Wu, H. Heijnen, and V. Balntas. 2019. “Sosnet: Second order similarity
regularization for local descriptor learning.” Paper presented at the Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 11016–11025.

Tola, E., V. Lepetit, and P. Fua. 2009. “Daisy: An efficient dense descriptor applied to wide-baseline stereo.”
IEEE Transactions on Pattern Analysis and Machine Intelligence 32 (5): 815–830.

Trzcinski, T., M. Christoudias, P. Fua, and V. Lepetit. 2013. “Boosting binary keypoint descriptors.” Paper
presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
2874–2881.



144 Bibliography

Trzcinski, T., M. Christoudias, and V. Lepetit. 2015. “Learning image descriptors with boosting.” IEEE
Transactions on Pattern Analysis and Machine Intelligence 37(3): 597–610.

Tuytelaars, T. and Mikolajczyk, K. 2008. “Local invariant feature detectors: a survey.” Foundations and
Trends in Computer Graphics and Vision, 3(3):177–280.

Tuytelaars, T. and L. Van Gool. 2004. “Matching widely separated views based on affine invariant regions.”
International Journal of Computer Vision 59(1), 61–85.

Tuytelaars, T., L. Van Gool, L. D’haene, and R. Koch. 1999. “Matching of affinely invariant regions for
visual servoing.” Paper presented at the Proceedings 1999 IEEE International Conference on Robotics
and Automation, pp. 1601–1606.

Tuytelaars, T. and L. J. Van Gool. 2000. “Wide baseline stereo matching based on local, affinely invariant
regions.” Paper presented at the Proceedings of the British Machine Vision Conference, pp. 38.1–38.14.

Verdie, Y., K. Yi, P. Fua, and V. Lepetit. 2015. “TILDE: a temporally invariant learned detector.” Paper
presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
5279–5288.

Verykokou, S. and C. Ioannidis. 2016. “Automatic rough georeferencing of multiview oblique and vertical
aerial image datasets of urban scenes.” The Photogrammetric Record 31 (155): 281–303.

Verykokou, S. and C. Ioannidis. 2018. “Oblique aerial images: a review focusing on georeferencing
procedures.” International Journal of Remote Sensing 39 (11): 3452–3496.

Viola, P. and M. J. Jones. 2004. “Robust real-time face detection.” International Journal of Computer Vision
57 (2): 137–154.

Wang, C., J. Chen, J. Chen, A. Yue, D. He, Q. Huang, and Y. Zhang. 2018. “Unmanned aerial vehicle oblique
image registration using an ASIFT-based matching method.” Journal of Applied Remote Sensing 12(2),
025002.

Winder, S. A. and M. Brown. 2007. “Learning local image descriptors.” Paper presented at the Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8.

Wu, C. 2013. “Towards linear-time incremental structure from motion.” Paper presented at the Proceedings
of the International Conference on 3D Vision, pp. 127–134.

Wu, C., S. Agarwal, B. Curless, and S. M. Seitz. 2011. “Multicore bundle adjustment.” Paper presented at
the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3057–3064.

Yi, K. M., Y. Verdie, P. Fua, and V. Lepetit. 2016a. “Learning to assign orientations to feature points.” Paper
presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
107–116.



Bibliography 145

Yi, K. M., E. Trulls, V. Lepetit, and P. Fua. 2016b. “LIFT: Learned invariant feature transform.” Paper
presented at Proceedings of the European Conference on Computer Vision, pp. 467–483.

Zagoruyko, S. and N. Komodakis. 2015. “Learning to compare image patches via convolutional neural
networks.” Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4353–4361.

Zhou, H., Yuan, Y., and Shi, C. 2009. “Object tracking using sift features and mean shift.” Computer Vision
and Image Understanding, 113(3): 345–352.





147

A. Affine Shape Adaptation Theory

Affine shape adaptation theory is studied in works Lindeberg and Garding [1997]; Baumberg [2000]; Miko-
lajczyk and Schmid [2004]. Unlike rotation and uniform scaling in all directions, affine transformation
introduce anisotropic scale change and it leads to the fact that isotropic measure like Gaussian with scales
will not be invariant. Thus affine Gaussian space which can be invariant to affine transformation under
deliberate design is introduced.

Let one image pattern G! on image ! is transformed to another image pattern G' on image ' through some
invertible linear transformation � in form of G! = �G'. Furthermore, let two intensity patterns represent by
5! , 5' respectively have the form of 5! , 5' : R2 → R, then under the transformation of � it fulfils Lindeberg
and Garding [1997]

5! (G!) = 5' (�G!)

A.1. transformation of affine Gaussian scale-space

The affine Gaussian scale space is defined as:

! (·;Σ!) = 6(·;Σ!) ∗ 5! (·)

'(·;Σ') = 6(·;Σ') ∗ 5' (·)
(A.1)

6(·;Σ) is Gaussian function with covariance matrix Σ. The covariance matrices Σ! , Σ' are symmetric
positive semi-definite matrix which deliver non-uniform Gaussian kernel for image ! and '. In this affine
scale-space, the response value for G! and G' should be equal, thus it achieves invariance against the underline
linear transformation �, i.e.,

! (G!;Σ!) = '(G';Σ') (A.2)

In this case, Σ! and Σ' meet the following equation:

Σ' = �Σ!�
> (A.3)
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%A>> 5 : first with the basic definition and considering that 3 (�b) = det �3b

! (G!;Σ!) =
∫
b ∈R2

6(G! − b;Σ!) 5! (b)3b

= (det �)−1
∫
b ∈R2

6(�−1(�G! − �b);Σ!) 5' (�b)3 (�b)
(A.4)

The gaussian kernel transform under a linear transformation as

6(�−1Z ;Σ!) =
1

2c
√

detΣ!
4
−(�−1Z )>Σ−1

!
(�−1Z )

2

=
√

det ��>
1

2c
√

det �Σ!�>
4
−Z> (�Σ!�>)−1Z

2

= det �
1

2c
√

det �Σ!�>
4
−Z> (�Σ!�>)−1Z

2

= det �6(Z, �Σ!�>)

(A.5)

Further, we can convert the former one into the following form given [[ = �b]:

! (G!;Σ!) = (det �)−1(det �)
∫
b ∈R2

6(�−1(�G! − �b); �Σ!�>) 5' (�b)3 (�b)

=

∫
[∈R2

6(�G! − [; �Σ!�>) 5' ([)3 ([)

= '(�G!; �Σ!�>)

= '(G', Σ')

(A.6)

The above equations shows that when two image patterns are related by transformation �, then the affine
Gaussian space of the two patterns is equal when Σ' = �Σ!�>. If we reverse this process and suppose the
covariance matrices Σ! , Σ' are known, we can further calculate the transformation � between two image
patterns.

A.2. Local affine distortion measurement

For image ! : R2 → R and its gradient ∇! = (!G , !H)>, the second momentum matrix of ! centred at @
defined with a window function F is:

`! (@) =
∫
G∈R2
(∇! (G)) (∇! (G))>F(@ − G)3G

=

∫
(G1,G2) ∈R2

(
!2
G !G!H

!G!H !2
H

)
F(@1 − G1, @2 − G2)3G13G2

(A.7)
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here (@1, @2) is the image point under computation. `! (@) maps R2 to a symmetric positive semi-definite 2
x 2 matrix. Given transformation [[ = �b] and the fact that ∇! (b) = �>∇'(�b), D! (@) can be converted
to:

`! (@) =
∫
b ∈R2

�>(∇'(�b)) (∇'(�b))>�F(@ − b)3b

= �>
{∫
[∈R2
(∇'([)) (∇'([))>F(�−1(? − [)) (det �)−13[

}
�

(A.8)

Since F(�−1(? − [)) (det �)−1 = det �F(? − [) (det �)−1 = F(? − [), the above equation is further written
as

`! (@) = �>
{∫
[∈R2
(∇'([)) (∇'([))>F(? − [))3[

}
�

= �>`' (?)�
(A.9)

This equation shows that the momentum matrix of two image patterns under transformation � is linked by
the above formula. If two eigenvalues of a second momentum matrix close to each other, it basically means
that the computed feature has an isotropic shape.

The window function F can be specified as a Gaussian function with an integration kernel Σ� . The gradient
parts ∇!,∇' is calculated with another differential kernel Σ� . Thus it can be further written as:

`! (@, Σ� , Σ�) = 6(@, Σ� ) ∗ ((∇!) (@;Σ�) (∇!) (@;Σ�)>) (A.10)

A.3. More affine transformation

Under a linear transformation G' = �G! , the calculated momentum matrix at G! and G' transformed in the
following way:

`! (G! , Σ� ,! , Σ�,!) = �>`(G', Σ� ,', Σ�,')�

= �>`(�G! , �Σ� ,!�>, �Σ�,!�>)�
(A.11)

Here Σ� ,! is the integration kernel and is Σ�,! the differentiation kernel used in the calculation of affine
Gaussian scale space. With denote of `! (G! , Σ� ,! , Σ�,!) = "! and `! (G', Σ� ,', Σ�,') = "', the
following relationship can be obtained:

"! = �
>"'�

"' = �
−>"!�

−1
(A.12)
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Suppose ' is an arbitrary 2 x 2 rotation matrix, we can extend "! into the following term

"! = "
1/2
!
'>"−1/2

'
"'"

−1/2
'

'"
1/2
!

= ("1/2
!
'>"−1/2

'
)"' ("−1/2

'
'"

1/2
!
)

= ("−1/2
'

'"
1/2
!
)>"' ("−1/2

'
'"

1/2
!
)

= �>"'�

(A.13)

Thus the transformation � can further represent by "! , "' as:

� = "
−1/2
'

'"
1/2
!

Substitute this � into G' = �G! , it is easily to get:

G' = �G! = "
−1/2
'

'"
1/2
!
G!

"
1/2
'
G' = '"

1/2
!
G!

(A.14)

This shows that, when normalized frame "1/2
!
G! and "1/2

'
G' are related with a pure rotation '. The

following Diagram shows the affine transformation diagram.

Figure A.1.: affine normalization based on 2nd momentum matrixMikolajczyk and Schmid [2004]

To calculate the affine transformation between images, iterative methods are used to estimate the affine
corrected image patchesMikolajczyk and Schmid [2004]. It runs in the following steps:
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1. Estimate the shape with second momentum matrix " on detected feature points

2. Normalize the affine region with "−1/2 and calculate the new second momentum matrix " ′ for
transformed region

3. Calculate the eigenvalue of " ′ and go back to step 1 if the two eigenvalues of " ′ are not close to each
other
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