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Abstract

Water mass transport on the Earth is an interaction among the ocean, land and atmosphere.
As a part of the circulation, the terrestrial water mass change in the water cycle and exchange
in the ocean-land-atmosphere interaction are essential to assess, which motivates us to start
this study. As a major spaceborne geodetic sensor, the GRACE satellite mission observes the
global mass change, sensing the time-variable gravity field of the Earth. The global coverage
of GRACE allows to monitor the large-scale water mass variation, despite the coarse temporal
and spatial resolution and the limited lifetime. Based on the GRACE products, this thesis aims
to assess the terrestrial water mass change by hydrometeorological variables and explore the
teleconnection with climate variability.

Initially, the linear relationship between and the seasonality of each variable in the water bal-
ance are characterized. For estimating the terrestrial water mass change at catchment scale
by multiple hydrological variables, three statistical approaches are employed in this thesis,
namely, (1) least-squares prediction/collocation (LSP/LSC), (2) principal component regres-
sion (PCR), (3) partial least-squares regression (PLR). Concerning the temporal shifts among
the variables in the dynamic water cycle, an adaptive moving average (MA) algorithm com-
bined with these three approaches is developed to improve the accuracy of model estimates.
The performances of the three different approaches are evaluated and compared through a
validation against the observations from GRACE. The terrestrial water storage in the tropical
and temperate basins is well-modeled by a combination of precipitation, evapotranspiration
and runoff. However, the water storage is poorly predicted in boreal catchments, due to its
weak cyclo-stationarity. In addition, some aspects regarding the model performance, e.g. the
sensitivity of PCR and PLR to the selected modes, the sensitivity to the order of MA, are also
investigated to find an optimal scheme.

Concerning the coarse spatial resolution of GRACE, we develop a statistical assimilation algo-
rithm based on MA and PLR to acquire a higher resolution, by assimilating GRACE with mul-
tiple spatial highly-resolved hydrological models. In contrast with conventional assimilation
approaches, e.g. Kalman filter, our algorithm is implemented without any model assumption.
This spatial downscaling of GRACE is achieved with knowledge of the empirical information
of high resolution water storage from a model, i.e. WGHM. The results show an obvious im-
provement of the spatial resolution. For a validation, we compare the downscaled water stor-
age with GRACE and WGHM by aggregation over catchments, and through the misclosure of
the water balance. As a result, it shows that our assimilation is acceptable. Additionally, the
spatial and temporal patterns of separated modes of results as well as the linear trends and an-
nual amplitudes explain the good performance of the assimilation, which retains the dominant
signals from GRACE and benefits from WGHM in local details.
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To explore the teleconnection between climate variablity and terrestrial water mass change,
the sea surface temperature (SST) anomalies are adopted as an intermedium. This thesis em-
ploys several decomposition methods, i.e. principal component analysis (PCA), independent
component analysis (ICA), and canonical correlation analysis (CCA), to extract the associated
variation from GRACE observed terrestrial water storage with El Nind Southern Oscillation
(ENSO). Comparing with PCA and ICA, CCA demonstrates the advantage of identifying the
signature of ENSO on terrestrial interannual water mass change. The spatial patterns of the
identified canonical modes reveal the signature of ENSO on pan-Arctic regions, particularly
on several boreal catchments, e.g. Lena, Yenisei and Ob. In addition, the disagreement of the
spatial patterns of water storage fluxes from mass derivative and water balance is explained by
the model errors and the inconsistency of the spatial resolution.

Furthermore, to explore the causal relationships between ENSO and terrestrial variables (i.e.
water storage, precipitation, evaporation, runoff, land surface temperature) in boreal catch-
ments, the phase and time delay with respect to ENSO is estimated by the Hilbert transforma-
tion and wavelet transformation. The different time lags of each variable allow interpretation of
the dynamic process of the water mass transport. The wavelet coherency maps indirectly prove
the identified joint modes by CCA. The associated temporal modes of precipitation, runoff,
evaporation indicate time lags to ENSO from 0 to 2 months. Due to the inadequate temporal
sampling of GRACE, the time lag of water storage cannot be distinguished within one inte-
ger month. Water storage fluxes respond to ENSO with about 1-month delay. Nevertheless,
GRACE has proved its capability of sensing the interannual change of terrestrial water mass
that associated with ENSO. Overall, the phase differences calculated by Hilbert transforma-
tion and represented by wavelet coherency maps help us to interpret the causal relationships
between ENSO and terrestrial variables, and understanding the teleconnection in a compre-
hensive way:.
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Zusammenfassung

Der Wassertransport auf der Erde findet in der Wechselwirkung zwischen Ozean, Land und
Atmosphire statt. Als Teil der Zirkulation sind die Anderungen der terrestrischen Wasser-
massen im Wasserkreislauf und der Austausch in der Wechselwirkung zwischen Meer, Land
und Atmosphdre von wesentlicher Bedeutung, was uns zu dieser Forschung motiviert. Als
bedeutender geoditischer Sensor im Weltraum beobachtet die GRACE-Satellitenmission die
globalen Massendnderungen und erfasst das zeitlich-verdnderliche Schwerefeld der Erde. Die
globale Abdeckung der GRACE Beobachtungen erméglicht die Uberwachung der grofiraumi-
gen Wassermassenschwankung trotz der groben zeitlichen und rdumlichen Auflésung und der
begrenzten Lebensdauer. Basierend auf den GRACE-Beobachtungen soll diese Dissertation die
terrestrische Wassermassendnderung durch hydrometeorologischer Variablen bewerten und
die , Teleconnection“mit der Klimavariabilitit untersuchen.

Zunidchst werden die Saisonalitit jeder Variablen und die lineare Beziehung zwischen
diesen im Wasserhaushalt charakterisiert. Drei statistische Ansdtze, nadmlich (1),least-
squares prediction/collocation”(LSP/LSC), (2),principal component regression”(PCR),
(3), partial least-squares regression”(PLR), werden in dieser Arbeit verwendet, um die
Anderung der terrestrischen Wassermassen durch mehrere hydrologische Variablen je
Becken abzuschidtzen. Beziiglich der zeitlichen Verschiebungen zwischen den Variablen im
dynamischen Wasserkreislauf wird ein adaptiver ,moving average”(MA) Algorithmus in
Kombination mit diesen drei Ansadtzen entwickelt, um die Genauigkeit der Modellschdtzungen
zu verbessern. Die Leistungen der drei verschiedenen Ansdtze werden bewertet und durch
eine Validierung mit den Beobachtungen von GRACE verglichen. Der terrestrische Wasserspe-
icher in den tropischen und gemaéfigten Becken ist durch eine Kombination aus Niederschlag,
Evapotranspiration und Abfluss gut modelliert. Aufgrund der schwachen Zyklo-Stationaritét
wird der Wasserspeicher in borealen Becken jedoch nur schlecht vorhergesagt. Aufierdem
werden einige Aspekte beziiglich der Modellleistung ebenfalls untersucht, z.B. die Sensitivitat
von PCR und PLR fiir die ausgewé&hlten Modi, und die Sensitivitit fiir die Reihenfolge von
MA, um ein optimales Schema zu finden.

Dartiber hinaus entwickeln wir einen statistischen Assimilationsalgorithmus basierend auf MA
und PLR, um eine hohere raumliche Auflosung des gesamten Wasserspeichers zu erhalten, in-
dem GRACE-Iosungen mit mehreren raumlichen hochaufgelosten hydrologischen Modellen
assimiliert wird. Im Gegensatz zu einem herkdmmlichen Assimilationsansatz, z.B. "Kalman-
Filter", wird unser Algorithmus ohne Modellannahme implementiert. Diese raumliche Herun-
terskalierung von GRACE wird durch Kenntnis der empirischen Informationen der Wasserspe-
icherung mit hoher Auflésung aus dem Modell, d.h. WGHM, erreicht. Die Ergebnisse zeigen
eine offensichtliche Verbesserung der raumlichen Auflosung. Fiir eine Validierung vergleichen
wir die rechnerische verkleinerte Wasserspeicherung aus GRACE und WGHM durch Aggrega-
tion tiber die Becken und durch den Abschlussfehler des Wasserhaushaltes. Das Ergebnis zeigt,
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dass unsere Assimilation akzeptabele Werte liefert. Die raumlichen und zeitlichen Muster der
getrennten Ergebnismodi, sowie die linearen Trends und Jahresamplituden erkldren die gute
Leistung der Assimilation dariiber hinaus, wobei die Losungen die dominanten Signale von
GRACE beibehilt und in lokalen Details von WGHM profitiert.

Um die Teleconnection zwischen der Klimavariabilitit und der Anderung der terrestrischen
Wassermassen zu untersuchen, werden Anomalien der Meeresoberflichentemperatur (SST)
als Medium angenommen. Diese Arbeit verwendet verschiedene nummerisch ,,decompo-
sition methods”, d.h., principal component analysis”(PCA), ,,independent component analy-
sis“(ICA) und ,,canonical correlation analysis”(CCA), um die damit verbundene Variation aus
der beobachteten terrestrischen Wasserspeicherung von GRACE mit , El Nind Southern Oscil-
lation”(ENSO) zu extrahieren. Im Vergleich mit PCA und ICA zeigt CCA den Vorteil der Iden-
tifizierung der Signatur von ENSO bei den zwischenjahrlichen Anderungen der terrestrischen
Wassermasse. Die rdumlichen Muster der identifizierten kanonischen Modi zeigen die Sig-
natur von ENSO in panarktischen Regionen, insbesondere in mehreren borealen Becken, z.B.
Lena, Yenisei und Ob. Die Nichtiibereinstimmung der raumlichen Muster der Wasserspeicher-
fliissse aus der Massenableitung und dem Wasserhaushalt wird durch die Modellfehler und die
Inkonsistenz der raumlichen Auflosung erklart.

Ferner wird die Phasen- und Zeitverzogerung in Bezug auf ENSO geschitzt, um die
kausalen Beziehungen zwischen ENSO und terrestrischen Variablen (d.h. Wasserspeicherung,
Niederschlag, Verdampfung, Abfluss, Landoberflichentemperatur) in borealen Becken zu
untersuchen. Die Hilbert-Transformation und die Wavelet-Transformation werden eingefiihrt,
um die Phasendifferenzen zu quantifizieren. Die unterschiedlichen Zeitverzogerungen
jeder Variablen interpretieren den dynamischen Prozess des Wassermassentransports. Die
Wavelet-Kohdrenzkarten bestédtigen indirekt die kanonische Modi durch CCA identifizierten.
Die verbundenen zeitlichen Modi von Niederschlag, Abfluss und Verdampfung weisen auf
eine Zeitverschiebungen bis zu 2 Monaten im Vergleich zu ENSO hin. Aufgrund der unzure-
ichenden zeitlichen Probenahme von GRACE kann die zeitliche Verzogerung der Wasserspe-
icherung nur auf Monatsebene erfolgen. Wasserspeicherfliisse reagieren auf ENSO mit einer
Verzogerung von etwa einem Monat. Trotzdem hat GRACE seine Fahigkeit bewiesen, die mit
ENSO einhergehenden Anderungen der terrestrischen Wassermasse zu erfassen. Auflerdem
helfen die dargestellten Phasendifferenzen durch den Hilbert-Transformation und durch die
Wavelet-Kohdrenzkarten, um die kausalen Beziehungen zwischen ENSO und terrestrischen
Variablen zu interpretieren, und die Teleconnection umfassend zu verstehen.



Chapter 1

Introduction

The Earth system is composed of several components: the solid Earth, hydrosphere, atmo-
sphere, lithosphere and biosphere. Although the Earth system is mass conserving, masses
are transported and redistributed in and among different parts of Earth. With the interaction
among the land, ocean and atmosphere in various ways, the mass variation occurs on all tem-
poral and spatial scales.

Air mass change

Surface water content

Su rface water Ievel

Total water storage
Ocean mass change Land mass change -

Figure 1.1: Illustration of mass storage components and transport between ocean, land and atmosphere.

A general overview of the global water mass storage and transport is illustrated in Figure 1.1.
Monitoring the global water mass storage and transport is practically fulfilled through various
variables. The terrestrial water mass change can be measured via the variation of surface wa-
ter level, content, runoff as well as soil moisture, etc. Meanwhile, the oceanic mass change is
observed by the variation of ocean level, bottom pressure and storage. Additionally, the ocean
mass transport is also indicated by the surface temperature, which generally reflects the as-
sociated climate impacts. Different from ocean and land, the atmospheric mass components
are mainly in form of water vapor. Hence, the air pressure and air temperature are important
observed quantities, indicating the water transport in the atmosphere.
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1.1 Monitoring the terrestrial water cycle

The terrestrial part of water mass variation is the main interest of this thesis, despite the oceanic
and atmospheric mass changes are also significant. The hydrological cycle, particularly as the
essential topic in the terrestrial water mass change, will be mainly investigated and discussed.
This section introduces briefly the components of the terrestrial water balance, their measure-
ment, and the data acquisition by various spaceborne sensors.

Theoretically, water mass is gained from rainfall into a river basin, while river runoff and evap-
oration cause water mass loss. As a consequence, such mass gain and loss leads to a change
of the terrestrial water storage. The relationship between precipitation, evaporation and river
runoff, therefore, is mathematically described in terms of the water balance equation

aMm
—— =P—-ET—-R, 11
T (1.1)
where P denotes precipitation, E is evaporation, and R represents river runoff. dM/dt rep-

resents the rate of water mass change, namely water storage flux. This is the fundamental
principle of the terrestrial hydrological cycle.

Measurement of hydrological variables Precipitation, is generally measured using var-
ious type of rain gauges, e.g. the cylinder gauge and wedge gauge. For different purposes,
a variety of recording rain gauge devices are available, e.g. hyetograph for short period, and
totalizer for long-time measurement. Although surface precipitation gauges are considered as
the standard in-situ measurement, some regions still lack observations.

In the recent past, satellite sensors, including both thermal infrared and microwave types, are
used to measure the precipitation by remote sensing. The Tropical Rainfall Measuring Mis-
sion (TRMM), a joint mission by the National Aeronautics and Space Administration (NASA)
and the Japan Aerospace Exploration Agency (JAXA) in 1997, employed microwave sensors to
monitor the tropical precipitation (Huffman et al., 2007). Another joint mission by NASA and
JAXA, namely Global Precipitation Measurement (GPM), building on the success of TRMM,
provides frequent (every 2-3 hours) observations of precipitation (Hou et al., 2014). Unlike
gauge measurements, these modern spaceborne sensors provide observations of precipita-
tion at large-scale. Therefore, global gridded precipitation data is available. A number of
agencies produce the global precipitation dataset with high spatial resolution and dense tem-
poral sampling, e.g. Climate Research Unit (CRU), Global Precipitation Climatology Center
(GPCC), Global Precipitation Climatology Project (GPCP), etc. Based on the satellite observa-
tions, various global precipitation model estimations have emerged with high spatio-temporal
resolution, e.g. European Center for Medium-Range Weather Forecasts (ECMWF) produced
the ERA-Interim reanalysis data, and the Center for Hydrometeorology and Remote Sensing
(CHRS) at the University of California, Irvine (UCI) developed the Precipitation Estimation
from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record
(PERSIANN-CDR) dataset. In this thesis, precipitation from model estimates are employed
for terrestrial water mass change analysis.



Runoff is the overall volume of water that exits a drainage basin through either the outflow
cross-section (surface or subsurface) or other means. Generally, the runoff in the field is mea-
sured at the reference gauges, e.g. weirs, notches, orifices and meter gates, in terms of wa-
ter velocity. In-situ measurements of runoff are publicly available from several agencies, e.g.
Global Runoff Data Center (GRDC), the Arctic Rapid Integrated Monitoring System (Arcti-
cRIMS) project, Water Survey Canada, the U.S. Geological Survey (USGS), the U.S. Army Corps
of Engineers (USACE), the Environmental Research Observatory (ORE) Geodynamical, Hy-
drological, and Biogeochemical Control of Erosion/Alteration and Material Transport in the
Amazon Basin (HYBAM) project, etc.

Apart from the in-situ runoff measurement, runoff is also modeled on a grid by Land Sur-
face Models (LSMs) that represent the energy and terrestrial water fluxes for climate, weather,
and water resource studies, e.g. the Global Land Data Assimilation Systems (GLDAS) model
produced runoff. Since the declined number of available gauge stations from those runoff
databases leads to a deficiency of runoff measurement in the past decades, it has been practical
to resort to sophisticated hydrological and atmospheric reanalysis models to acquire runoff es-
timates (Trenberth et al., 2007). Recently, spaceborne observations have demonstrated their po-
tential and accuracy of estimating river runoff at catchment scale (Tourian et al., 2013; Sneeuw
et al., 2014; Lorenz et al., 2015). This concept provides us a broad way to estimate runoff in-
stead of in-situ measurement and validate against hydrological model estimates (Alsdorf et al.,
2007).

Evapotranspiration plays a significant role in the water cycle. However, different from precip-
itation and runoff, evapotranspiration is difficult to directly measure and quantify in the field.
One general way to measure evapotranspiration is with the aid of a weighing lysimeter. The
soil humidity is measured by lysimeter and subsequently the evapotranspiration is calculated
by modeling the change of water in the soil. Since the in-situ measurement of evapotranspira-
tion is difficult, in general, it is indirectly calculated using water balance methods, water vapor
transfer methods or energy balance methods (Rana and Katerji, 2000).

In recent decades, spaceborne sensors provide us a useful measure of spatial evapotranspi-
ration. For example, remote sensing satellites provide opportunities for instantaneous snap-
shots of evapotranspiration over large area. Moreover, Light Detection And Ranging (LiDAR)
technology has been used to monitor evapotranspiration remotely, providing detailed and fre-
quent 3D mapping of evapotranspiration (Drexler et al., 2004). With the help of spatial obser-
vations from satellites, the global evapotranspiration datasets are consequently available, e.g.
the high-resolved evapotranspiration dataset from the Global Land-surface Evaporation: the
Amsterdam Methodology (GLEAM), which is calculated based on multi-satellite observations
(Miralles et al., 2011). In this thesis, we acquire the gridded global evapotranspiration from
these datasets.

Spaceborne geodetic sensors for monitoring water mass change In the past decades,
an increasing number of satellites was designed and launched for various purposes, e.g. po-
sitioning, oceanography, cryosphere, hydrology applications, etc (Alsdorf et al., 2007). Since
more spaceborne geodetic sensors provide large-scale terrestrial observations, various studies
has been done on modelling the hydrological variables by the geodetic observations.

The Global Positioning System (GPS), initially a military satellite navigation and positioning
system project, was developed in 1973 by the Department of Defense, USA (Evans et al., 2002).
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It became fully operational in 1994 with the completion of a full constellation of 24 satellites.
Not only accurate positioning information, GPS technology also provides information on sev-
eral components of the terrestrial water cycle. For example, GPS has been used to determine
the integrated precipitable water vapor on various temporal and spatial scales using the signal
delay in the troposphere (Davis and Elgered, 1998). GPS technology is also used to investigate
the hydrological loading from surface displacementen time series (van Dam et al., 2001; Davis
et al., 2004; Tregoning et al., 2009). Moreover, making use of the multi-path effects, the GPS re-
flectometry (GPS-R) is developed to measure the soil moisture (Larson et al., 2008), water level
heights (Larson et al., 2013) and snow depths (Larson et al., 2009).

Radar satellite altimetry offers the possibility to measure sea surface heights globally. The sea
surface height is determined by radar measurement of the distance between the satellite and
the sea surface, based on the location information of the satellite during the measurement and a
number of atmospheric corrections. The altimetric satellite missions (e.g. ENVISAT, TOPEX/-
Poseidon), originally developed for oceanographic and geophysical applications, has already
demonstrated its capability on monitoring the water level of inland rivers and lakes (Berry
et al., 2005; Alsdorf et al., 2007; Papa et al., 2010). Moreover, based on the spaceborne wa-
ter level observations, the river discharge has been estimated by a quantile function approach
(Tourian et al., 2013).

Remote sensing satellite imagery, including optical and Synthetic Aperture Radar (SAR), pro-
vides high resolution images to monitor the surface water extent. For example, utilizing the
images from Moderate Resolution Imaging Spectroradiometer (MODIS), the water extent vari-
ation of lakes and rivers has been successfully captured (Gao et al., 2012; Kiinzer et al., 2015;
Tourian et al., 2015; Elmi et al., 2016). Hence, the application of satellite imagery contributes
remarkably to the terrestrial water resource monitoring.

Since the launch of the Gravity Recovery And Climate Experiment (GRACE) mission in 2002
jointly by NASA and Deutsches Zentrum fiir Luft und Raumfahrt (DLR), the global monitoring
of the Earth’s time-variable gravity field has become possible (Tapley et al., 2004). The GRACE
mission, aiming at measuring the variation of Earth’s gravity field, comprises two coplanar
satellites in a low, near circular, near polar orbit with an inclination of 89°, at an altitude of
around 500 km, separated from each other by a distance of roughly 220 km. The measurement
is established by tracking the inter-satellite range and range-rate between two satellites via
a K-band ranging system. Additionally, accelerometers, GPS receivers, star cameras as well
as laser retro reflectors are embedded on-board on both satellites. The GRACE mission was
designed initially for a 5-year period, and was terminated in 2017, well exceeding its designed
life-time. In principle, the variation of gravity is sensed by the varying distance between the
two satellites. By measuring the variation of distance between the two satellites, the time-
variable gravity field is eventually recovered (Tapley et al., 2004).

As the variations in gravity are caused by the mass transport and redistribution within the
Earth system, the GRACE-observed time-variable gravity field has provided valuable informa-
tion of global mass change, which allows us to determine the large-scale water storage changes
and water balance on monthly time scales (Alsdorf and Lettenmaier, 2003; Riegger and Giint-
ner, 2004). Therefore, the GRACE product has been applied in various areas, e.g. hydrology,
cryosphere, oceanography, and climate studies.



Figure 1.2: GRACE twin satellites with the Earth’s gravity field (courtesy: GFZ).

Spaceborne observations from GRACE derive the terrestrial water storage and water storage
fluxes, complementing the shortage of ground observations in certain area. Various studies
have demonstrated the capability of GRACE in monitoring the groundwater resources (Rodell
etal., 2007,2009). GRACE has also been used to close the terrestrial water balance at catchment-
scale (Pan and Wood, 2006; Sheffield et al., 2009; Frappart et al., 2011a; Sneeuw et al., 2014;
Lorenz et al., 2015). In particular, GRACE has been applied to validate and refine the hydro-
logical models (Giintner, 2008; Eicker et al., 2014).

Apart from the applications in hydrology, the capability of GRACE in assessing the continuous
mass loss has been demonstrated in a number of studies, e.g. investigation on the cryospheric
mass loss of ice sheets in Greenland (Baur et al., 2009; Harig and Simons, 2012) and in Antarctica
(Velicogna and Wahr, 2006; Chen et al., 2009), and on the mass change of mountain glaciers in
Himalaya (Matsuo and Heki, 2010) and Alaska (Chen et al., 2006). Moreover, a large amount of
studies took advantage of GRACE in determining the ocean mass change as well as equivalent
sea level rise (Chambers, 2006; Lombard et al., 2007; Chambers and Willis, 2008; Willis et al.,
2008).

Because of the global coverage of GRACE, many researchers have proved the importance of the
use of GRACE for climate studies (Rangelova et al., 2010; Forootan and Kusche, 2012; de Linage
et al., 2013; Eicker et al., 2016). In practice, extreme events, e.g. floods (Seitz et al., 2008; Chen
et al., 2010) and droughts (Long et al., 2013; Thomas et al., 2014), have been inferred by using
GRACE observations. In addition, GRACE is also applied in monitoring the loading induced
deformations (Davis et al., 2004; van Dam et al., 2007; Tregoning et al., 2009; Chen, 2015), com-
bined with the GPS point-wise deformation time series.

The aforementioned spaceborne sensors promote a number of novel approaches in oceanogra-
phy, geophysics, hydrology, hydrometeorology and climatology. Using spaceborne sensors to
observe the hydrological variables is beneficial to both hydrologists and geodesists in support
of global monitoring, with development of new mission concepts and potential improvement
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of spatio-temporal resolution. Therefore, this contribution of spaceborne sensors helps us bet-
ter understand the dynamic water balance.
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Figure 1.3: lllustration of the land-ocean-atmosphere circulation as well as the terrestrial water cycle, in which the
blue arrows indicate the land-ocean-atmosphere circulation, and the black arrows indicate the terrestrial water
cycle. The yellow arrows describe the relationship between climate change and sea surface temperature change.
The blue dashed lines represent the impact of climate change on the terrestrial water mass change.

1.2 Water mass change in ocean-land-atmosphere circulation

Considering the ocean, land and atmosphere as components within the Earth system, the mass
transport between is described as a dynamic circulation. The ocean-land-atmosphere interac-
tion generally refers to the water mass transport, simultaneously with energy exchange (e.g.
heat, moisture, momentum), which induces temperature change. As illustrated in Figure 1.3,
the direct interaction mainly occurs between ocean and atmosphere, and between land and
atmosphere. The river runoff from basin to ocean is the dominant part of direct ocean-land
interaction.

Hence, in such a circulation, the ocean and land are coupled through the atmosphere. The
water fluxes in form of precipitation and evaporation in the ocean-atmosphere interaction, and
in form of precipitation and evapotranspiration in the land-atmosphere interaction. In fact, the
water mass exchange in the land-atmosphere interaction is represented as the terrestrial water
cycle. Since we have already discussed this in 1.1, as a consequence, the ocean-atmosphere
interaction will be particularly discussed in this section. In this thesis, we limit our research
and discussion only to the water mass exchange, regardless of the energy exchange.



1.2.1 Teleconnection

Because of the interaction of ocean-atmosphere and land-atmosphere, the atmospheric circu-
lation transmits the energy and water mass over very long distances to remote regions. As a
consequence, the climatologic variations are communicated through fluxes of heat, moisture,
and momentum by the atmospheric circulation, and transported via large-scale continental
water cycle and ocean circulation in form of precipitation and evaporation (Horel and Wallace,
1981; Wallace and Gutzler, 1981). Thus, the atmospheric circulation can be considered as a
driving factor that affects land and ocean, exhibiting substantial climate variability (Alexander
et al., 2002). This variability represents patterns that occur on various time scales, e.g. from
diurnal, daily, weekly and monthly, to intraseasonal, seasonal, interannual and even secular
scales. Therefore, teleconnections are as a concept to summarize the atmospheric interactions
and describe transport process, and provide a way of quantifying the climate variability into a
set of indices.
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Figure 1.4: Regions which ENSO index represents in Pacific Ocean

The term teleconnection, coined by the British meteorologist Walker (1924) for quantifying the
correlations between atmospheric pressure, temperature and rainfall, was initially used in
atmospheric science to describe the climate links between geographically separated regions
(Glantz et al., 1991). Atmospheric teleconnections link widely separated pressure centers, map-
ping the redistribution of atmospheric mass which associates with climate variability in fine
anomaly patterns (Horel and Wallace, 1981; Barnston and Livezey, 1987). Now it becomes
more general, that a teleconnection map describes the linkage between a region of interest and
all other points in the domain that are farther than the decorrelation length scale of the variable
(Nigam, 2003). In this teleconnection map, the remote region does not necessarily represent the
variation of the same sign to be teleconnected. In practice, contemporaneous variations with
opposite signs are often phenomena in the teleconnections. The teleconnection based on the
contemporaneous correlations of variables, however, cannot discriminate between the forcing
and response regions by itself. Thus, a teleconnection map in climate science provides a large
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spatial scale and long time scale patterns of climate variability, reflecting the impact of regional
climate anomalies on the remote regions.

Table 1.1: Common used climate indices, including their full names, acronyms, observable and using methods.

Index full name Acronym  Observable Method
Southern Oscillation Index SOI SLP anomaly

El Nin6é Southern Oscillation ENSO SST anomaly

Multivariate ENSO Index MEI SLP anomaly, SST anomaly, PCA

Surface wind zonal components,
Surface wind meridional components,
Sea air temperature,

Total cloudiness fraction of the sky

Pacific Decadal Oscillation PDO SST anomaly PCA
Oceanic Nino Index ONI SST anomaly
Arctic Oscillation AO Geopotential height anomaly PCA
(or Northern Annular Mode) (or NAM)
North Atlantic Oscillation NAO SLP anomaly PCA
Antarctic Oscillation AAO Geopotential height anomaly PCA
(or Southern Annular Mode) (or SAM)
Palmer Drought Severity Index PDSI Land surface temperature anomaly, Dai et al. (2004)
Precipitation,
Soil moisture, streamflow
Pacific North America PNA Geopotential height anomaly RPCA

Teleconnection patterns have widely been extracted from correlation analysis. Correlation anal-
ysis, as a measure of constructing the teleconnection maps, is intuitive and straightforward.
The knowledge of the correlation between two points is represented as the teleconnection map.
For example, the assessment of the North Atlantic Oscillation (NAO), the North Pacific Oscil-
lation/West Pacific (NPO/WP), and the Pacific-North America (PNA) was pioneered via cor-
relation analysis by (Wallace and Gutzler, 1981). Principal component analysis (PCA) is also
widely applied for determining teleconnections (Giannini et al., 2000; Diaz et al., 2001). The ob-
tained teleconnection patterns are spatially and temporally orthogonal. Moreover, an advanced
PCA method, named rotated principal component analysis (RPCA), has become popular in
yielding teleconnection patterns, which are no longer constrained to be orthogonal (Barnston
and Livezey, 1987; McCabe et al., 2004). Alternatively, an empirical orthogonal teleconnection
(EOT) analysis has been developed to identify the teleconnections, by finding a component that
explains the most variance using linear regressions (Van den Dool et al., 2000). In recent stud-
ies, other statistical methods, e.g. the independent component analysis (ICA) (Forootan and
Kusche, 2012; Eicker et al., 2016), and the multi-channel singular spectrum analysis (MSSA)
(de Linage et al., 2013) , have also successfully been applied to identify the teleconnection pat-
terns for climate studies.



1.2.2 Climate variability and climate indices

A climate index is a simple proxy quantity that is used to characterize an aspect of a geophys-
ical system, i.e. a circulation pattern of climate variability. Commonly, the climate indicies
are generated based on the selected stations, grid points or using regional average data (eg.,
Southern Oscillation Index (SOI), Nino 3.4 (see Figure 1.4)). As summarized in Table 1.1, some
indices are based upon PCA (eg. AO, NAO) or RPCA (eg. PNA). Most indices use a single
variable (eg. SLP, SST, geopotential height, precipitation, etc.), while some other indices (e.g.
MEI, PDSI) use a combination of variables (e.g. air temperature, surface wind, precipitation,
etc.). Particularly, some indices are known by several names, eg. the Nouthern Annular Mode
(NAM), Southern Annular Mode (SAM) are also known as the Arctic Oscillation (AO), Antarc-
tic Oscillation (AAO), respectively. In addition, some indices have minor controversial issues.
For example, the physical distinction from NAO (Hurrell, 1995) and North Pacific (NP) (Tren-
berth and Hurrell, 1994) indices is not completely agreed upon by researchers that might result
in user confusion. Further, use of different source data sets, different base periods, and different
normalization yield different index values.

The El Nifio Southern Oscillation (ENSO) — is a quasi-periodic fluctuation (every 2-
7 years) in sea surface temperature (El Nifio) and air pressure of the overlying atmosphere
(Southern Oscillation) across the equatorial Pacific Ocean. ENSO is considered as the most
dominant source of global inter-annual variability of climate. The presence of an El Nifo, or
its opposite, La Nifia, sufficiently modifies the general flow of the atmosphere to affect normal
weather conditions in many parts of the world.
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Figure 1.5: ENSO indices: Nino 1+2, Nino 3, Nino 4, Nino 3.4.

Historically, ENSO is characterized by simple indices (Nino 1+2, Nino 3, Nino 4, Nino 3.4),
defined by a consecutive 5-month running mean of sea surface temperature (SST) anomalies in
a certain region of the equatorial Pacific, as shown in Figure 1.4 and 1.5. The most commonly
used region is the Nifio 3.4 region (5°5-5°N and 170°W-120°W), and the most commonly used
threshold is a positive SST departure from normal greater than or equal to +0.5° (Trenberth,
1997). Positive values of the index indicate El Nifio conditions, corresponding to warm sea
surface temperature, while negative values can be interpreted as La Nifia (cold) conditions,
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as illustrated in Figure 1.5. The ENSO index used in this thesis is produced by the National
Oceanic and Atmospheric Administration (NOAA)’s Climate Prediction Center (CPC) (ftp.
cpc.ncep.noaa.gov/wd52dg/data/indices available till 2018). According to the spectra
of ENSO indices in Figure 1.6, all the indices represent the mean periods of 3 years and 1.5 years
(i.e. frequencies of 1/3 and 2/3 cycle per year), which reveals the inter-annual variability of
ENSO.

Apart from these four ENSO indices, other ENSO-related climate indices have also been pro-
duced, e.g. the SOI (Trenberth, 1984; Trenberth and Hoar, 1996; Trenberth and Caron, 2000),
the Multivariate ENSO Index (MEI) (Wolter and Timlin, 1998), the Oceanic Nino Index (ONI)
(Trenberth and Stepaniak, 2001), and the Pacific Decadal Oscillation (PDO) (Zhang et al., 1997;
Mantua et al., 1997). Accordingly, ENSO indices are calculated through SST anomalies while
SOI is based on SLP. The MEI is calculated as the first unrotated PC based on the six main
observed variables (i.e. sea-level pressure (P), zonal (U) and meridional (V) components of
the surface wind, sea surface temperature (S), surface air temperature (A), and total cloudiness
fraction of the sky (C)) over the tropical Pacific. Different from ENSO indices, MEI is a bi-
monthly index. Unlike Nino 3.4, ONI is calculated using a 3-month running mean instead of a
5-month running mean. PDO is characterized as the leading PC of the monthly SST anomalies
in the northern Pacific Ocean.

Nino 1+2
50 A Nino 3
\ Nino 4

Nino 3.4

Frequency [cycle / year]

Figure 1.6: Power spectrum of 4 ENSO indices time series. All of them show strong frequency at or close to 0.34
and 0.65, which presents 3-year and 1.5-year cycle.

Climate change brings more frequent extreme events and causes abnormal variation of the ter-
restrial water cycle. ENSO is one of the most important climate phenomena, reflecting ocean-
atmosphere interactions over the equatorial Pacific (Trenberth and Stepaniak, 2001). However,
ENSO as a phenomenon is not restricted to only in Pacific but also has a globally great impact
(Glantz et al., 1991; Trenberth et al., 2002; Cai et al., 2012). ENSO dominantly influences rainfall
in terms of moisture advection from ocean to land, consequently impacts on evaporation and
runoff, and eventually affects the terrestrial water cycle. A possible connection between ENSO
and terrestrial hydrological variables, like precipitation, evaporation, and runoff, has been in-
vestigated in many regions. Previous studies found the significant relationship of precipitation
(Ropelewski and Halpert, 1987; Ronchail et al., 2002; Boulanger et al., 2005) and stream flow
(Chiew and McMahon, 2002; Tootle and Piechota, 2006; Johnson et al., 2013) with ENSO at
inter-annual scales in various regions. Generally, terrestrial water storage reflects the water
balance and, therefore, is influenced as well by global and regional climate change. Giintner
et al. (2007) indicated that the inter-annual variation of terrestrial water storage is associated
with ENSO using a hydrology model. After more than a decade of observations with suffi-
cient temporal and spatial resolutions, GRACE has shown to be capable of monitoring water
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mass variation and redistribution (Volkov and Landerer, 2013). Although the terrestrial wa-
ter cycle commonly behaves strongly seasonally, the inter-annual variability of water storage
has been observed by GRACE at different spatial scales. Various studies have revealed the
GRACE-observed interannual water storage change relates to the extreme climate conditions
(Humphrey et al., 2016; Kusche et al., 2016). Moreover, recent studies have explored the corre-
lation patterns with ENSO in GRACE observations globally (Phillips et al., 2012; Ni et al., 2017)
and regionally (Chen et al., 2010; Garcfa-Garcia et al., 2011; de Linage et al., 2013; Forootan
et al.,, 2014; Awange et al., 2014; Luo et al., 2016).

1.3 Motivation and Objectives

The insufficient spatial and temporal resolution of GRACE limits its use in regional applica-
tions. Conversely, the hydrological variables, either from the model estimates or from the
spaceborne observations, can also be employed for GRACE to monitoring the global water
mass variation. Moreover, regarding the important role of ocean-atmosphere interaction in the
climate change and the indirect linkage of water mass exchange between ocean and land, the
anomalous variation of the global terrestrial water mass is potentially relevant to the climate
variability in a certain region. Despite the limited monthly solutions of GRACE, as illustrated
in Figure 1.7, the temporal scale of both hydrological water cycle (from intraseasonal to in-
terannual) and climate variability (from seasonal to interannual, even to decadal) is visible in
GRACE observations (Sneeuw et al., 2005).

GRACE-observed mass change

| Climate variability
L
1

Hydrological cycle

| N
>
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Figure 1.7: Temporal scales of the GRACE observation, the hydrological cycle, and the climate variability.
Therefore, this thesis is motivated by the following four questions:

o Can the terrestrial water storage be estimated via other hydrological variables?

e Can the spatial resolution of GRACE be downscaled through fine resolved hydrological
observations?

o Can the signature of climate variability on terrestrial water storage be identified?

e How can we interpret the teleconnection between climate variability and terrestrial water
cycle via ocean-land-atmosphere interaction?
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In order to answer these questions, the objectives of this thesis are divided in two individual
topics:

e Assessing the water mass change in the terrestrial water cycle;

e Interpreting the water mass exchange in the ocean-land-atmosphere interaction.

Assessing the water mass change in the terrestrial water cycle

To assess the terrestrial water mass change in the water cycle, we aim to estimate the the con-
tinental water storage using multiple hydrological variables. Estimating the terrestrial water
storage variation with the aid of hydrological observations is practically realistic and feasible.
In recent studies, the water storage change in large-scale basins is predicted by a parametric
spectral method given precipitation observations (Reager and Famiglietti, 2013). Apart from
hydrological observations, the terrestrial water storage has been estimated by a set of climate
indices as proxy that represent significant teleconnections between water storage change and
SST anomalies, using an empirical statistical approach (de Linage et al., 2014). Regarding the
temporal relationship between climate change and water storage, an auto-regressive model has
been employed to predict regional water storage change, using multiple variables (e.g. precipi-
tation, SST, climate indices) (Forootan et al., 2014). Hence, we propose to model the relationship
between water storage and hydrological variables by statistical approaches.

Moreover, the spatio-temporal sampling of observations is important for the assessment of
terrestrial water mass variation. Concerning the limited spatial and temporal resolution of
GRACE and high resolution of hydrological observations, we explore to make up for the de-
ficiency of GRACE by hydrological variables. In practice, a few studies have made efforts
on downscaling of GRACE by incorporating with other hydrological variables (Seyoum and
Milewski, 2017; Miro and Famiglietti, 2018). This challenge of downscaling will be attempted
by a statistical assimilation in this thesis.

Interpreting the water mass exchange in the ocean-land-atmosphere interaction

We aim at the teleconnection patterns between climate variability and terrestrial variables, in
order to understand the water mass exchange among ocean, land and atmosphere. As cli-
mate change is commonly reflected by the ocean-atmosphere circulation, a variety of climate
indices is characterized statistically by the oceanic and atmospheric variables (e.g. SST, SLP, air
pressure, etc.). Inter-annual changes in SST are found to relate to the terrestrial water cycle in
river basins (Diaz et al., 1998; Gochis et al., 2007; McCabe and Wolock, 2014). Since amount of
climate indices are characterized by adopting SST as the indicator, as shown in Table 1.1, con-
sequently we use SST as an intermedium to explore the teleconnection between the continental
water storage and climate variability. Apart from water storage, other terrestrial variables (e.g.
precipitation, evaporation and runoff), as the major drives in the terrestrial water cycle, are
expected to be connected to climate variability as well. Land surface temperature (LST) is a
significant indicator of climate change and terrestrial water resource. Particularly, the rela-
tionship between evaporation and LST is characterized in dry and cold climate condition (Sun
et al., 2016). Hence, the LST is also involved in our study.

Climate warming has a great impact on the Arctic, which leads to extreme events (Honda et al.,
2009; Francis and Vavrus, 2012; Kug et al., 2015). Terrestrial water resources in the pan-Arctic
have teleconnections to the climate warming on Arctic (Rouse et al., 1997; Morison et al., 2007;
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Kim et al., 2017). Numerous studies indicate the Arctic and Eurasia are mainly under the influ-
ence of Arctic oscillation and North Atlantic oscillation (Wanner et al., 2001; Déry and Wood,
2004; Peterson et al., 2006; Peralta-Ferriz et al., 2014). However, whether ENSO has a signa-
ture as well on boreal regions is still an unanswered question. Some studies (Jevrejeva et al.,
2003; Matsuo and Heki, 2012) indicate that ENSO likely has influence on high latitude region.
This motivates us to focus on detecting the signature of ENSO in boreal regions. In addition,
the causal relationships between terrestrial variables and ENSO is essential for interpreting the
relevancy of the inter-annual change of terrestrial water storage to the climate variability. To
investigate such a cause and effect, we resort to estimation of the phase/time delays in our
study.

From above, to fulfill our objectives of this thesis, we propose a comprehensive study including
the following four tasks:

e Estimating the continental water storage at catchment scale by multiple hydrological vari-
ables, using statistical regression models.

e Statistical downscaling the spatial resolution of GRACE by assimilating GRACE with
variables from high resolution hydrological models.

e Identifying the teleconnection between ENSO and terrestrial water cycle in pan-Arctic
region, and specifically in the boreal catchments, through SST anomalies.

e Investigating the causal relationship between ENSO and terrestrial variables through
time leads/lags.

To estimate the terrestrial water mass change by hydrological variables and to explore the sig-
nature of climate change (e.g. ENSO) on the terrestrial water variation, it is of great importance
to employ a proper approach. Several statistical analysis tools are introduced in various stud-
ies. Hilbert transformation is introduced to analyze the influence of ENSO on terrestrial water
storage (TWS) (Phillips et al., 2012). The global connection between TWS change and ENSO is
directly examined by using cross-correlation and coherence spectrum analysis (Ni et al., 2017).
Signal decomposition techniques are commonly used to extract the dominant spatio-temporal
patterns of long-term and inter-annual components from observations. PCA is powerful for
finding interrelations between variables in the data, interpreting the features of data, and de-
creasing the number of variables to reduce the dimension of data. It is adopted by Rangelova
et al. (2007) and Schmidt et al. (2008) on GRACE observations. Frappart et al. (2011b) and Fo-
rootan and Kusche (2012) improved the decomposition approach by independent component
analysis (ICA). It has the advantage that it can find dominant components with statistical inde-
pendence. Eicker et al. (2016) applied a complex ICA on TWS from GRACE and successfully
isolated an ENSO mode from the signals. A multi-channel singular spectrum analysis (MSSA)
was applied on extracting inter-annual signals from GRACE (Rangelova et al., 2010). As a mul-
tivariate method, it is capable to isolate trend and nonlinear oscillations of notable periodicity
in noisy and short data sets. de Linage et al. (2013) linked sea surface temperatures with terres-
trial water storage observed by GRACE using MSSA. A seasonal trend decomposition using
the loess (STL) approach has been used in (Humphrey et al., 2016) to assess the temporal vari-
ability of water storage. Another multivariate method, canonical correlation analysis (CCA),
has also been used in climate and water resource studies (Ouarda et al., 2001; Busuioc et al.,
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2001; Barros and Silvestri, 2002). CCA is based on the joint data sets to extract the linear combi-
nation from two different fields. Different from other approaches, CCA has the advantage that
it correlates linear relationship between two different variables in terms of canonical modes,
regardless of units. Concerning the different units of temperature and equivalent water height,
CCA is thus an appropriate approach to associate SST with terrestrial observations. Moreover,
the advantage of extracting canonical modes from joint datasets can also be used in the model
regressions. In order to achieve sufficient spatial resolution, a statistical downscaling of GRACE
is attempted by assimilating multiple variables, i.e., precipitation, evapotranspiration, runoff,
from a set of hydrological models. This assimilation is accomplished by implementation of a
partial least-squares regression approach, which is based on the idea of CCA.

1.4 Outline

In line with the aforementioned two aspects as well as the given tasks, thus, this thesis is orga-
nized as follows.

Chapter 2 contains a solid theory of signal decomposition techniques and regression ap-
proaches, which are the mathematical foundations of the following chapters. The signal
decomposition methods are employed mainly in Chapter 5 for teleconnection pattern analysis.
The regression algorithms, some of which are based on the previous decomposition techniques,
are implemented in Chapter 3 for modeling the terrestrial water mass variation.

Chapter 3 is the kernel part of the thesis. It firstly introduces the theory to derive the equivalent
water height from GRACE, and characterizes the relationships between terrestrial water mass
change and other hydrological variables as a statistical foundation for modeling. Later on, four
different regression approaches are applied to estimate the terrestrial water storage change.
In addition, a spatial downscaling of GRACE is achieved using a hydro-geodetic assimilation
approach.

Chapter 4 aims to analyze the temporal delay between each variable in the water cycle to better
understand the terrestrial water dynamics, and to interpret the causal relationship between ter-
restrial water mass variation and climate change as a preliminary step for investigating the tele-
connection. In order to establish this goal, two methods: Hilbert transformation and wavelet
transformation, which will also be used in Chapter 5, are addressed before the numerical anal-
ysis.

Chapter 5 is as important as Chapter 3. To investigate the teleconnection patterns between
terrestrial water storage in boreal catchments and ENSO, Chapter 5 represents the applications
of PCA, ICA and CCA on terrestrial variables as well as climate variables in a comprehensive
way.

Chapter 6 briefly summarizes the achievement of the thesis, draws the conclusions and pro-
vides an outlook.
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Chapter 2

Signal Decomposition Techniques and
Regression Approaches

Generally, complicated physical mechanism are behind the global and regional changes, like
terrestrial water mass change, glaciers and ocean mass change. As a consequence, the observa-
tions in geoscience contain various types of variability, i.e., linear trend, annual, semi-annual
or interannual variations, which cannot be simply recognized. Therefore, an appropriate sta-
tistical method is required to extract these significant variabilities from observed signals.

Several non-parametric statistical analysis tools have been employed in geodetic and hydro-
logical studies. Principal component analysis (PCA) is adopted by Rangelova et al. (2007)
and Schmidt et al. (2008) on GRACE observations. PCA is a powerful technique for finding
relations between variables in the data, interpreting the features of data, and decreasing the
number of variables to reduce the dimension of data. Frappart et al. (2011b) and Forootan
and Kusche (2012) improved the decomposition approach by independent component analysis
(ICA), which has the advantage of finding dominant components with statistical independence.
Eicker et al. (2016) applied a complex ICA on TWS from GRACE and successfully isolated the
ENSO mode from the signals. Another multivariate method, canonical correlation analysis
(CCA), has also been used in climate and water resource studies (Ouarda et al., 2001; Busuioc
et al., 2001; Barros and Silvestri, 2002). CCA is able to identify joint modes in two different
variables. Different from other approaches, CCA has the advantage of linearly correlating two
different variables, regardless of units. CCA may even be improved to recognize the nonlinear
relationship of signals (Hsieh, 2001).

It is necessary to establish a proper framework to model the relationship between terrestrial
water mass variation with other variables in the water cycle. Several multivariate linear re-
gression techniques, like least-squares prediction, principal component regression, and partial
least-squares regression, can be used to model the spatio-temporal linear relationship in a sta-
tistical way.

In this chapter, PCA is introduced firstly from the view of both eigenvalue decomposition and
singular value decomposition. We also explain the principle and generic algorithm of ICA.
To explore the mutual characteristics in different variables, CCA is introduced as an impor-
tant method. Additionally, the numerical performances of each method are illustrated, and the
comparisons between PCA and ICA, PCA and CCA are discussed as well in the end. Multivari-
ate linear regression approaches (i.e., least-squares prediction, principal component regression,
and partial least-squares regression) which are used in this thesis, are introduced as well.
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2.1 Principal component analysis

Principal component analysis (PCA) (Jolliffe, 1986) seeks structures that explain the maximum
amount of variance in a two-dimensional data set. In general, the optimal directions with max-
imally distributed observations are formulated as orthogonal eigenvectors, which are called
empirical orthogonal functions (EOFs). The decomposed observations, known as principal
components (PCs), are obtained by projecting the observations along those directions. Both of
the structures are orthogonal in their own dimension.

The PCs can be interpreted as a new set of variables created from the original variables. Each
of the new variables is a linear combination of the original variables. EOFs and PCs are the
structures that explain the most variance in a data set. The first principal component has the
maximum variance among all possible choices, as illustrated in Figure 2.1.

Let us assume that we have measurements of some variable at locations s = 1,2,...,d, taken
atepochs t = 1,2,...,n. For each epoch we can think of the measurements xs(s = 1,2,...,d)
as a map of field. We store these measurements in a matrix X as n maps each being d samples
long

X1’1 x1,2 e xlld
X21 X22 ... led T

= . . = [xlls X25 - .- xn,s] = [xt,1 Xt2 ... xtrd] . (21)
xn,1 Xn2 e xnld

Generally, when assessing the variability of the field, one of the dimensions of X gets removed
and we are left with a measure of the dispersion of the structure with itself across the spatial
dimension or temporal dimension. Hence, we obtain the temporal variance-covariance matrix
of data X along the spatial dimension by

Cxx = Ctemporal = XXT/ d

d d d
25:1 x%,s 25:1 X1,sX2,s .- 23:1 X1,5Xn,s
d d d
1 Zs:l x2,5x1,5 Zs:l x%,s ... Zs:l x2,sxn,s (22)
= E . . . . ’
d d d
Y1 XnsXls Yaq XnsX2s ... Ya—iXag

or spatial variance-covariance along the temporal dimension by

Cxx = Cspatial = XTX/”

Y X?,l Lia XeaXe2 oo Mg Xe1Xig
1| Lioaxax,  YTigXf, oo Liq Xe2Xeg (2.3)
n . . . M

n n n 2
Yoboq XpaXe1  Yop—q XpdXt2 .- t=1Xr4
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The n X n covariance matrix Ciemporal in (2.2) is the covariance between different time epochs,
obtained by projecting on the sample of different spatial points. The dimension of space disap-
pears and we get an n X n matrix. Similarly, Cspatial in (2.3) denotes the d x d covariance matrix
of spatial locations with each other.

Figure 2.1: [llustration of PCA principle. The first component point to the direction of maximum variance, and
then the following components are projected orthogonal to the previous one.

As illustrated in Figure 2.1, each component is statistically uncorrelated with others. Thus, the
decomposed components are orthogonal with each other in their covariance matrix. In other
words, PCA eventually aims to find out the optimal linear transformation matrix E that makes
the covariance matrix Cpp of the transformed matrix P to be diagonal, for example, expressed
as

P=X-E, with Cpp=PPT=A, (2.4)

in which the vectors in P are orthogonal, and the vectors in E are both orthogonal and normal-
ized, ETE = I. Clearly, since X is a n x d matrix, each pair of columns from P and E represent
one single mode. Thus, P contains the temporal modes, while E interprets the modes in space,
as depicted in Figure 2.2. The first mode from PCA always contains the most important infor-
mation from data X. Accordingly, the diagonal matrix A contains the variance of each mode,
which writes

A= . , (2.5)

where r is the number of the decomposed modes. Hence, in this case, the matrix X is decom-
posed by PCA, in terms of matrix as,
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X=P-ET. (2.6)

where P is named as principal component (PC). Generally, the eigenvectors E are called Empirical
Orthogonal Functions (EOFs) (Jolliffe, 1986; Preisendorfer, 1988). Empirical because they are
derived from data, orthogonal because they are orthogonal with each other. To accomplish the
decomposition of matrix X by PCA, the task becomes to identify the transformation matrix P
and E in order to diagonalize the covariance matrix from Cxx to A.

mode space mode R
time P — time X E space
nxr nxd
dXr

Figure 2.2: Illustration of PC and EOF matrices of data X.

For geodetic applications, in this thesis, we generally assume that we have observations of
one variable with dj,, longitudes and dj,; latitude in space, taken at n time epochs. For each
time epoch t, we have observations at certain location. So the X(n X (djon X da)) is three-
dimensional matrix. We rearrange X into a two-dimensional matrix by storing all the locations
at one epoch in a row vector in X, so that the size of X becomes n x d, where d equals djon X diat.
Thus, we simply interpret each of the n columns in X as a time series for a given location,
whereas its row contains the entire data from all locations per time epoch. In this case, applying
PCA on this geodetic observation matrix, we finally gain the principal components in terms of
time series, and simultaneously the orthogonal eigenvectors in terms of maps, which represents
the features in space.

2.1.1 Singular value decomposition

Singular value decomposition (SVD) is a general decomposition of a matrix, which was in-
troduced into numerical analysis by Golub and Kahan (1965). The computational algorithms
were systematically summarized by Stewart (1993). In principle, any ¢ X n matrix X can be
decomposed uniquely as

X=U-2-VT, (2.7)

where U(n x r), V(d x r) are both orthonormal here, we have UTU = [ and V'V = I. The
diagonal matrix X(r X r) contains singular values of matrix X. r = rank(X) = rank(X), is
the rank of X. The column space of X is spanned by the first r columns of U, and the row
space of X is spanned by the first » columns of V. The columns of U and V are linked by the
singular values contained in the diagonalized matrix . The singular values in X represent the
amplitude, however, not the variance.
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Figure 2.3: Illustration of U, %, V matrices of data X.

Geometrically, we can think of U and V as 2-D rotation matrices, and X as scaling matrix
(Strang, 1993). As an example illustrated in Figure 2.4, SVD can be interpreted as a sequence of

transformation of X based on the unit vectors e = [e;

e2]T in the case that X has dimensions
n = d = 2. After rotation by V7, stretching by %, and rotation by U again, we get X as

Xe =UxV'e. (2.8)
T V!
€ 1 RotationV*~ | €
e, — S . e,
Ve 2
e,;
I Scaling
X =UZV v
Uu,o VTG T
B T OV €, AR
U, T,V €,
............. Rotation [J
........................ T
UXV'e {— XV'e
Figure 2.4: Illustration of SVD principle as a linear transformation process.
Considering the following decomposition on the covariance matrix of X, so we have
xxT =uxvlivu® = ux?u’,
(2.9)

XTx = vzuTuzv? = vx2vT,

Hence, we know that the columns of U are the left singular eigenvectors of XX', and the
columns of V are the right singular eigenvectors of X” X. In this case, the values in £? represents
the singular values of covariance matrix of X.

If we right multiply X by V, we get
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XV =uxvlv =ux, (2.10)

from which derives (UZ)T(UX) = ZTE. According to (2.4) and (2.6), V fulfills the condition
that makes the covariance matrix of transformed XV diagonal. Thus, P = UX is seen as PC of
X, and V is the corresponding EOEF. Similarly, if we multiply U with X T then we obtain

XtTu=vzu'u=vz, and (VO)I(VI)=xTx. (2.11)

In this case, P = VX is seen as PC of X7, and U is the corresponding EOF. Thus, either U or
V can be chosen to represent PCs when combining with the singular value matrix X. In other

words, both U and V represent the modes in X, and the amplitudes of each mode are reflected
by X.

On one hand, SVD can be seen as a method for transforming correlated variables into a set of
uncorrelated ones and presenting the relationships among each other. On the other hand, SVD
is also a method for identifying and ordering the data based on the variance. In addition, we
can also apply SVD for data reduction of X. From this view, SVD is essentially and widely used
in PCA decomposition. If we take the two-dimensional data matrix of spatial dimension and
temporal dimension, and do the direct SVD of this matrix, we recover the normalized EOFs,
singular values, and normalized PCs in one step. It can be applied to find both the EOFs and
PCs simultaneously (Preisendorfer, 1988).

2.1.2 Eigenvalue decomposition

As the data matrix X is defined in (2.2) and (2.3), we know that the variance-covariance matrix
of X can be calculated either along temporal dimension or spatial dimension. In this thesis, the
covariance matrix is primarily calculated by (2.3), i.e.,, Cxx = Cspatial = XTX/n. Statistically,
it contains only the information of covariance at each grid point, and reflects the dependence
of any two grid points. Cxx is simply written to represent the Cqpayial in the following content.
Therefore, we discuss the eigenvalue decomposition of Cxx in the case of Cxx = XTX/n as an
example.

The aim of PCA is to find directions e in the data X, so that the projection of X on e has the
maximum variance, as shown in Figure 2.1. The vector e is an eigenvector of Cxx, which
satisfies eTe = 1. The variance of Xe is calculated by

%(eTXT)(Xe) — e Cxxe. (2.12)

Therefore, finding a projection that maximizes the projected variance of Xe, which writes
max(e! Cxxe), is equivalent to the solution of PCA, according to (2.4). To solve the equation
above, Cxx can be decomposed in the following way through a diagonalization,

CXXe = Ae ’ (2.13)
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since e = [eq, €, ..., ei]T. To find the e, we can use any number of standard techniques to solve
the system

(CXX — AI)e =0. (214)

The set of eigenvectors e and associated eigenvalues A represents a coordinate transformation
into a coordinate space where the matrix Cxx becomes diagonal. In terms of linear algebra,
we put the eigenvectors e into columns of the matrix E. Accordingly, the issue turns to find a
transformation E that can diagonalize the covariance matrix Cxx. So we have

CxxE = EA, (2.15)

in which the elements of the diagonal matrix A are the eigenvalues of Cxx (Jolliffe, 1986), E
contains the eigenvectors with respect to A. (2.15) is the so called eigenvalue decomposition (EVD)
of C XX-

Because the covariance matrix Cxx is diagonal in this new coordinate space, the variations in
these new directions are uncorrelated with each other. The eigenvectors define directions in
the initial coordinate space along which the maximum possible variance can be explained. The
variance explained in this direction is orthogonal to the variance explained by other directions,
which is defined by the other eigenvector. Comparing with (2.4) and (2.5), we find that (2.15)
fulfills the condition of PCA, which diagonalizes the covariance matrix from Cxx to A. There-
fore, eigenvalue decomposition is constantly used for PCA applications.

Here, the eigenvectors E denote EOF. The first EOF e; thus contains the dominant pattern, as
Ay is distinctly larger than the other eigenvalues. Accordingly, if we project the original data
X on the new basis e, we obtain the decomposed PCs, written as P = XE. The ith EOF (e;), is
corresponding to the i PC p; = Xe;. Therefore, we have

Peab (2.16)
X =PET, ’
since EET = ETE = I. Each associated pair {p;, e;} is named mode of variability in X

(Preisendorfer, 1988). In addition, p;, known as PC;, reflects the temporal amplitudes of data
on basis vector e;.

Here, P and E, in (2.16), have r number of PCs and EOFs, where r denotes the number of non-
zero eigenvalues in A. r depends on the rank of data X. In our example, since covariance
matrix Cxx is calculated by Cxx = XTX/t, the eigenvectors E (i.e., EOFs) represent the modes
in the spatial domain. Complementary, the PCs represent temporal modes. In other words,
PCA expands X in terms of a new set of temporal PCs associated with spatial uncorrelated
maps known as EOFs.



22 2.1 Principal component analysis

2.1.3 Links between EVD and SVD

To illustrate the relationship between SVD and EVD, we first look at the covariance matrix Cxx
from SVD. As defined in (2.7) that X = UXVT, we have

Cxx = (UzvHT(uzvT)/n
=vxTutuzv’/n (2.17)
=veTsvT/n,

because UTU = I. From EVD in (2.15), we obtain

Cxx = EAET. (2.18)

Hence, in this case, we infer that

V =E, and A=xT%/n. (2.19)

In (2.19), a factor n, the sample size, is between the eigenvalues A of the covariance matrix C,
and the singular values X of the original data matrix.

According to (2.18), we find that SVD implementation either on covariance matrix Cxx or di-
rectly on data matrix X does not change the eigenvectors E, but change the amplitude of sin-
gular values. In brief, the EVD can be understood as SVD of covariance matrix Cxx. SVD on
covariance matrix Cxx makes the singular values from X to A, which is explained by (2.19).

Comparing (2.7) with (2.16), PCA implemented by EVD can only normalize either EOF or PC,
while both two normalized eigenvectors are obtained by SVD. The former depends on the
purpose of application to normalize either EOFs or PCs. If we choose to normalize the spatial
modes in order to reflect the real amplitude in time, then we obtain the unnormalized temporal
modes containing the information of variance. And vice versa.

As aresult, either by EVD or by SVD, a set of observations can be separated into different modes
of variability, which reveal both spatial and temporal variation. In the following chapter, PCA
is therefore applied on our geodetic and hydrological datasets in order to gain the individual
modes for analysis. In the following content, we express the PCA decomposition as

X=UuvT, (2.20)

in which U, V stand for PCs and EOFs, instead of X = PET in (2.16) and X = UZVT in (2.7).
U, V are not necessarily both normalized in this form.

Numerical illustration A simulation is introduced here to test the performance of PCA on
separating significant components from a mixture of signals. The source signals in Figure 2.5(a)
contain a linear trend, two sinusoidal signals with different periods, and random Gaussian
noise, see Table 2.1. Each of the simulated observation y, as shown in Figure 2.5(b), are mixed
by an arbitrary linear combination of the source signals x1, x2, x3, x4,
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Y=w1- X1+ Wy Xp+ W3- X3+ Wy Xy, (2.21)

where wy, wy, w3, wy represent the weights of source signals.

Table 2.1: Simulated source signals with certain parameters.

Source signal Parameters
Linear trend
x1 = at +b a=0050b=1

Sinusoidal signal 1
X2 = msin(wit + ¢1) + bicos(wit + ¢1)
Sinusoidal signal 2
x3 = azsin(wat + ¢o) + bacos(wat + ¢7)

a, = 1,b1 = O,C(J] = 0.1,4)1 =05

a, =0,bp =1, wy, = 0.05,¢ =0

Random noise
e~ N(0,1)
X4 =€
(a) Source signals (b) Mixed signals (c) Principal components
40 2 10

w;=0.01,w,=1,w3=0,w,;=0.01

0 2 10
0 500 0 500 0 500
1 10 5
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-1 10 w1=0,W, =5, w;=0,w, =0.01 5
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1 5 0.4

0 0 \/\/\/\/ 0.2

w;=0,w;=0,w3=2,w,=0.01
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5 2 0.02

5 D) w;=0.01,w;=1,w3=0.1, w, =0.01 0.02
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Figure 2.5: Numerical performance of PCA on a set of mixed signals. Principal components are shown in a
descending order of variance.

We successfully apply PCA decomposition on these mixed signals, and then obtain the decom-
posed signals as principal components shown in Figure 2.5(c). The source signals are success-
fully separated in a descending order of variance by PCA from mixed signals. The first mode
separated by PCA expresses the component with most information. If we discard the four
mode of white noise, and reconstruct the rest modes into observations, then it can be regarded
as a filtering process.



24 2.2 Independent component analysis

As a result, PCA is a powerful method to separate signals into its principal components. The
first several components represent significant information in observations. According to this
property, PCA is widely used in compression of data and feature recognition in geodetic and
hydrological applications.

2.2 Independent component analysis

For data with non-Gaussian distribution, only using covariances or correlations will not be
sufficient to distinguish the statistical dependence in the data structures. Therefore, higher
than second-order statistical information needs to be explored, in which case ICA is necessarily
introduced (Hyvarinen, 1999).

In contrast to PCA, which deals with the second-order statistical moments of a data distri-
bution, independent components analysis (ICA) focuses on higher order moments in the de-
composition. ICA is a computational method for separating multivariate signal into additive
subcomponents that are maximally independent. All the subcomponents are assumed non-
Gaussian signals and statistically independent.

2.2.1 Blind source separation and statistical independence
Blind source separation ICA is described as a signal separation technique, which is able
to recover the source signals from the observations.

Let us assume that the data X is a linear mixture of some statistically independent source sig-
nals S. We often even assume that the number m of sources S is the same as the dimensionality
n of the data. The data is generated by mixing the sources linearly like

X=ms1+asr+...4ausm = [a1 a2 ... ap) =AS, (2.22)

with a mixing matrix A = [a1, ay, ..., 4], containing m column vectors. And unknown source
signals S = [s1, s, ..., sw]T, having m row vectors.

The blind source separation is to find a de-mixing matrix or whitening matrix W that inverts
this mixture, so that

X1

X2
S=wix1+wWaXp+ ...+ WyXy = (w1 Wy ... Wy | =WX, (2.23)

Xn

where W = [wq, ws, ..., wy,] denotes the de-mixing matrix, which is to be determined with n
observations. W can be identified with the pseudo-inverse of A4, i.e. W = A™.
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Typically, in ICA, A or W is identified such that s; are mutually statistically independent. In
this case, the source signals S are so called independent components (ICs).

Statistical independence Each source signal is characterized by a probability density func-
tion (PDF) p(s;), and the joint PDF of the sources is simply the product of its individual PDFs.
Therefore, the statistical independence is described based on the PDFs. For those sources, we
have p(s1,52,...,5m). It defines the joint PDF of source signals sy, sy, . .., s, with probabilities
of p1,p2, ..., pm, respectively.

A fundamental assumption of ICA is that the data is a linear mixture of statistically indepen-
dent sources. If we unmix the data then the resulting output components should therefore be
statistically independent again. Hence, a possible criterion of independence is whether

p(s1,82,---,5m) = ﬁp(si) ) (2.24)

i=1

Practically, the target is to minimize the difference between the joint distribution and the prod-
uct of marginal distribution. This approach is optimal as a measure of statistical indepen-
dence.

A mixture of an infinite number of variables could lead to a Gaussian distribution even though
each source variable may have non-Gaussian distribution. To seek for components that are
as different from a Gaussian distribution as possible, it could be a good strategy to search
for independent output components. One measure of non-Gaussianity often used is kurtosis,
see (2.25). This approach typically first extracts the most non-Gaussian signal, and eliminates
the corresponding dimension from the mixed data, and then finds the second non-Gaussian
signal.

Moments and cumulants can describe the statistical properties of a random variable. If one
simply subtracts from the higher moments what one would expect from the lower moments
already, then the corrected moments are obtained, which are called cumulants. We assume
zero-mean data s, and then the cumulants of s are defined as

Ci=E(si)) =0,

Cij = E(sisj) ,
Cijk = E(sisjsk) , (2.25)
Ciju = E(sisjsis1)

— E(si8j)E(sks1) — E(sisk)E(sjs1) — E(sis1)E(sjsx) -

E(s) expresses the expectation of s. Notice that there are no terms subtracted from Cij and Cjj
above because of the zero-mean constraint. In (2.25), C; and C;; are the mean and variance. C;j
is named skewness of the data, and C;j; is the fourth-order cumulant which is called kurtosis.
It indicates how peaky or fat the distribution is. If the data has a Gaussian distribution, the
kurtosis becomes zero and all the other cumulants higher than second-order also vanish.
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Cumulants are an important property of the data. If we have two (or more) statistically inde-
pendent variables and add them up, the cumulants of the sum equal the sum of the cumulants.
If the random variables of a higher moment can be split into two statistically independent
groups, then the expectation can be written as a product of the two lower moments of the
groups. For example, if two signals s; and s; are statistically independent of s;, the expectation
of s, sj, sy can be written as

E(SZ‘S]‘Sk) = E(SiS]')E(Sk> . (226)

As a consequence of the assumption of zero-mean of data, all the cross-cumulants vanish, e.g.
Cijx = E(sisjsx) = E(sisj)E(sx) = 0. Turning this argument around is also true. If all cross-
cumulants vanish then the random variables are statistically independent. This property thus
simplifies the estimation of independence criteria.

Hence, the cross-cumulants are used in the ICA algorithm to measure the statistical indepen-
dence between the components. Usually, we use the fourth-order cumulants because in many
cases the third-order cumulants vanish with centered data. In practice, we optimize the inde-
pendent components by finding the minimal fourth-order cumulants of the output signals.

2.2.2 Generic algorithm of ICA

As explained in 2.2.1, two assumptions are made. Firstly, observations should be a linear mix-
ture of all the source signals. Secondly, all the independent components in the mixture are
non-Gaussian signals. Based on these assumptions, ICA can be optimally applied to seek for
statistically independent components from observation signals.

Generally, given the multi-dimensional source data S, we find the mixing matrix A that pro-
duces the observation data

X=A-S, (2.27)

and conversely, with the de-mixing matrix W it becomes

S=W-X. (2.28)

To obtain a set of statistically independent source signals S among a set of observed mixtures
X, therefore, ICA intends to estimate W or A in a proper way. A number of ways exist to solve
this problem. In this thesis, we use a proper rotation of the SVD transformation, following
Aires (2002) and Forootan and Kusche (2012).

As defined in (2.7), a mixture data set can be represented by SVD transformation. If we apply
a proper rotation to make the output components as independent as possible, then it reads

X =UZR-RTVT, (2.29)
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where R is the rotation matrix, making U and V statistically independent. UXR is treated as the
mixing matrix A in (2.27), and RTVT is considered as independent components S, namely

S =RTvT =RTWX,

(2.30)
A=UZR.

Hereby the task of ICA is finding an optimal rotation matrix R that makes the output compo-
nents statistically independent. To solve this problem, a statistics-based algorithm proposed
by Cardoso (1993), which is known as joint approximate diagonalization of eigenmatrices (JADE),
is employed in this thesis.

As described in 2.2.1, the fourth-order cumulant is an important property, which indicate the
statistical independence of variables. Given a random vector X with size n x 1 and any n x n
matrix M = (m;;), we define the associated cumulant matrix Q(M) as the n x n matrix defined
component-wise by (Cardoso, 1993)

[Q¥(M)];; = Y, C(Xi, Xj, Xp, Xi) My, (2.31)
Ki=1

in which C(S;, Si, Sk, S) = Ciju denotes cumulants of X = AS. As M is a basis matrix for
the linear space of n x n matrices, the cumulant tensor QX contains n? x n? matrices. For the
rotation matrix R, we define the following joint diagonality criterion

2

F= Z RTQ(M,)R, (2.32)

m=1

in which the matrix R makes Q(M) simultaneously close to diagonality. Thus, the rotation
matrix R is determined as the minimizer of the squared off-diagonal cumulant elements.

In general, the JADE algorithm can be briefly summarized as

e Initialization. Estimate a whitening matrix W and do whitening on data Z = WX.
e Form statistics. Calculate the fourth-order cumulant tensor Q% (M).

e Optimization. Minimize the off-diagonal elements of F by joint diagonalization such that
the cumulant matrices Q% (M) are as diagonal as possible, and then obtain rotation matrix
R.

e Separation. Signal separation: estimate W = R"Wand S = WX, A = XS~ ..

In this thesis, the JADE algorithm is implemented using the JADE Matlab function initially
developed by Cardoso (1993). The details of JADE algorithm can be found in the Appendix
B.
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PCA ICA

Figure 2.6: Illustration of ICA principle with respect to PCA. Different from PCA, The first component of ICA does
not mean the most important component, and ICA requires that each component is statistically independent
from others but not necessarily orthogonal projected.

2.2.3 Comparison of PCA and ICA

We already know that the first component from PCA indicates the most important mode of
variability in data set. As explained in 2.2.1, however, the first component separated by ICA
does not necessarily have the most variance. In addition, the independent components from
ICA are not necessarily orthogonal to each other; they are just statistically independent. The
different principles of PCA and ICA are illustrated in Figure 2.6.

A simulation is introduced here to examine the performance of ICA on finding statistically
independent components from mixed signals. The source signals we used in this section are
the same as listed in Table 2.1. The simulated observations are mixed according to (2.21) but
with different weights from Figure 2.5, as shown in Figure 2.7(b).

PCA cannot distinguish the sinusoidal modes with different frequencies, while ICA is able to
identify and separate in two independent modes, comparing Figure 2.7(c) and (d). In other
words, ICA has advantages on separating signals into different modes, which are maximally
statistical independent.

In summary, PCA is powerful to extract the most important information from the observations,
and efficient to compress the dimension of the data, and widely used to analyze the structure
of the observations and variables. However, PCA does not perform well on identifying and
separating statistically independent signals from observations. This imperfection can be suc-
cessfully remedied by ICA.

2.3 Canonical correlation analysis

Canonical correlation analysis (CCA) (Hotelling, 1936; Glahn, 1968) is a method of finding joint
modes between two multidimensional variables. CCA aims to recognize the mutual informa-
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(a) Source signals (b) Mixed signals (c) Principal components (d) Independent components
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Figure 2.7: Numerical performance of (c) PCA and (d) ICA on a set of (b) mixed signals, which is mixed on a set of
(a) source signals. Principal components are shown in a descending order of variance. Independent components
are shown in a descending order of kurtosis.

tion from two data sets, and thus applies SVD on the covariance matrix between two data sets.
Because correlation between signals is invariant to the signal magnitudes, CCA is able to find
the basis vectors for two different sets of variables with different units.

Different from PCA, CCA seeks out the structures not based on maximum variance but on
maximum covariance between signals. Each canonical mode from both fields represents the
mutual correlated information, as illustrated in Figure 2.8.

Figure 2.8: lllustration of the CCA principle. Different from PCA, CCA seeks for the most correlated component
from the covariance space, and then project onto each data set. The red arrows show the direction of components
after SVD analysis on the joint data set. The blue arrows depict the projected components for each data set,
which are therefore canonical correlated.

There are two typical purposes of CCA. One is to reduce the dimension of data. Based on the
covariance between two sets of variables, data reduction is fulfilled by using a small number
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of linear combination with high correlations. The second is to find typical features (i.e., canon-
ical modes of variability) between both fields. With the aid of features which explain most
covariation between two sets of variables, we can better interpret the observed data. For tele-
connection pattern analysis, in this thesis, CCA is applied mainly for feature identification of
joint variables.

2.3.1 Principle of CCA

Let us define two variables X (t; X n1) and Y (¢, x n2). Particularly, one of the dimensions of
X and Y must have the same size. Let us assume that X and Y have the same dimension in
time. Thus, t; and t, become equal. Similar to (2.2) and (2.3), the cross-covariance of X and Y
is formulated as

n n n
Yo Xe1Vel g1 XeaYi2 oo g1 Xe1Yid,
n n n
1 1| YioiXeaVen i1 Xe2Yi2 - Yoi—1 Xt2Yid,
Cxy=-XTy== - - _ - (2.33)
n n : : . .
n n n
Yim1 Xt Vel Lp—1 Xed Y2 oo Lp—1 XtdyYidy

Assume that two variables A and B that have the same size as X and Y, are the linear com-
binations of X, Y, respectively. In order to seeking the most correlated variation of A and B,
we need to find out the canonical variates that maximize the cross-covariance matrix of A and
B, i.e. max[Cov(A, B)] = max(Cyp). In other words, we need to find a linear combination
A = XU and B = YV that maximize the C,p. Thus, the U and V fulfill

1 1
Cag = EATB = EUTXTYV =UlCxy V. (2.34)
According to the principle of PCA, maximizing C4p is equivalent to finding a transformation U
and V to diagonalize the covariance matrix of X and Y. Hence, according to (2.7), it is essential
to apply SVD to the covariance matrix Cxy, and then it becomes

Cxy = Uc Zc VL. (2.35)

Here, the Uc and V( are called the canonical modes or joint PC of X and Y with dimension 4,
dy, respectively. Now in (2.35), the covariance matrix C4p in (2.34) turns to be diagonal singular
value matrix . Meanwhile, we obtain the so-called canonical variates A and B, which reflect
the maximal correlation in X and Y. Thus, the first pair of vector Uc and V(- has the maximal
covariance, which indicates the canonical directions. The first pair of canonical variates A and
B has the best correlation via linear combination of X and Y. X contains the singular values of
covariance matrix Cxy. Uc, V¢ are not necessarily ranked in decreasing order of variance for
each field X, Y, but only in decreasing order of cross-covariance X'Y.

In (2.35), column vectors in Uc, Vi are orthonormal. In other words, the canonical modes U,
Ve satisfy UCUE = llg U =1, VCVCT = VCT Ve = I. Here, we need to notice that the corre-
sponding vectors in the variates A and B are not normalized and not necessarily orthogonal,
but mutually correlated between A and B.
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Figure 2.9: Illustration of Uc, X, Vi matrices of covariance matrix Cxy.

In Figure 2.9, the number of modes r = min(ry,r2), where 11, r; denote the rank of X and Y.
At this point, 71 and 7, are not necessarily equal. In this thesis, according to the size of data
sets, the number of spatial grid cells is larger than the number of temporal samples (n < dy, d>).
The cross-covariance matrix Cxy(d; X d») is scaled by n, i.e., divided by the length of the time
series. Hence, the amount of modes r; = r, = r is equal to the temporal dimension #.

Since the canonical modes Uc, Vc retain spatial information, the associated temporal modes
Vx, Vy (i.e. canonical variates A, B) are obtained by projecting the data X and Y on U, V¢,

Vy = X Uc (2.36)
Ve =Y V. (2.37)

In this case, Vx, Vy consequently refer to the temporal information, representing the associated
features from X, Y. Visually, the canonical spatial mode U¢ from X and corresponding tempo-
ral mode Vy are depicted in Figure 2.10. In fact, the associated temporal PCs (Vx, Vy) of each
field are matched with respect to the canonical modes. Specifically, in this study, we use spatial
EOFs to denote these joint canonical modes by CCA.

mode space R mode
time — time
VX X U C space
nxr nxd,
dyXr

Figure 2.10: Illustration of the canonical spatial mode U, and temporal mode Vx of X.

In short, the canonical modes are produced by the maximum covariance between two input
fields. Namely, a subset of the canonical modes of two data sets is selected, which explains the
most covariance between two different datasets.

The precondition of CCA is that there is significant correlation between these two data sets,
otherwise it may not make sense to search for structures in this covariance. A normalized
root mean squared covariance (RMSC) is introduced here. The total squared covariance, which
is sum of the squares of all the elements of the covariance matrix, is a useful measure of the
strength of the simultaneous linear relationship between the fields. It can be normalized by the
product of the variance of both fields. Therefore, we calculate the RMSC (Wallace et al., 1992),
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which is equivalent to the square root of the temporal correlation coefficients between X and
Y, averaged over all pairs of the grid points in the two fields, by

1 i & (xi — %) T (yi — ;)

RMSC = i d,
1421 i=1 (xiTxi)(y]Tyj)

. (2.38)

In (2.38), x;, y; are column vectors of X and Y at grid point i, j, and ¥;, jj; are the mean of
the column vector x;, y;. di, d» are the number of the grid points in each field. The RMSC is
typically of order 0.1 or larger for well-correlated fields, but even smaller values may indicate
significant correlation if the number of independent samples is large. Hence, the correlations
can be distinguished from zero. After evaluation, the RMSC between all hydrologic variables
that are involved in this research and sea surface temperature are between 0.03 to 0.1. Although
there is probably no strong linear relationship between those variables, it is still necessary to
find out how they relate with each other, so that it can reflect implicitly the signature of climate
change.

(a) Source signals (b) Mixed signals X (c) Mixed signals Y
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Figure 2.11: Two simulated sets of signals (b) X and (c) Y , which is mixed by a linear combination of (a) source
signals.

2.3.2 Comparison of PCA and CCA

As described in 2.1 and 2.3, PCA attempts to find the modes with most variance in one set of
the observations, while CCA is similar but instead attempts to search for the joint modes with
most covariance between two different variables. Considering this property, a simulation is
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designed here to examine the performance of CCA on finding significantly associated signals
from two different sets of signals.

These two sets of signals X and Y, as shown in Figure 2.11, are mixed by an arbitrary linear
combination of the same source signals in terms of weights w1, w», w3, w4, according to (2.21).
The source signals in Figure 2.11(a) we used are the same as listed in Table 2.1.

We apply CCA, as written in (2.35) and (2.37), on these two sets of mixed signals to see whether
CCA has the capability to find out the correlated signals from them. From Figure 2.12, four
canonical modes are identified from each field in descending order of covariance. The first
canonical mode is identified, which represents sinusoidal variability. The second mode of each
field represents both sinusoidal variability as well but with larger period. Comparing with
Figure 2.11(a), the third canonical mode show linear trend but with periodic component as
well in the time series.

(a) Canonical components from X (b) Canonical components from Y
10 10
SV o W

-10 10

0 500 0 500
5 5

{AVAVAVAVIER\VAVAVAV/

5 -5

0 500 0 500
2 2
2 -2

0 500 0 500
0.01 0.05
0 0
0.01 -0.05

0 500 0 500

Figure 2.12: Numerical performance of CCA on two mixed data sets (a) X and (b) Y. Canonical components from
each field are shown in a descending order of covariance.

Obviously, CCA is able to recognize the associated components between two mixtures. How-
ever, we also find that, CCA is not able to fully recover the source signals, according to its
numerical performance in Figure 2.12. In addition, due to its insensitivity to the linear trend,
in the following chapter, we therefore carefully remove the linear trends from the observations
before we apply CCA.
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2.4 Multivariate linear regression modelling

The generalized linear problem The linearity between hydrological variables and terres-
trial water mass variation can be identified by applying the above decomposition techniques.
However, it is still a challenge to model the multivariate linear relationship between them. Us-
ing one or a combination of several different hydrological quantities to estimate water mass
change is one of our objectives in this thesis.

In short, concerning the linear relationship between observations and predictions, a general-
ized problem needs to be solved, which writes

s=H-1. (2.39)

In (2.39), s is the predictant, which refers to the unknown signals that need to be estimated, !
is the predictor, which normally comes from measurements, H describes mathematically the
relationship between predictor and predictant.

Least-squares collocation, as a mathematical tool developed by Krarup (1969) and Moritz
(1980), is used for modeling the linear relationship between different terrestrial variables.
By using least-squares prediction/collocation approach, the unknown quantities s can be
optimally estimated from the observations /.

Generally, noise exists on the measurements. To improve the performance of prediction from
observations, I needs to be filtered or corrected. Signal decomposition techniques, i.e., PCA,
CCA, are therefore employed in the linear regression. Principal component regression (PCR) is
useful to compress the observations and consequently eliminate the influence of random noise
in the prediction. Partial least-squares regression (PLR) concerns not only the impact of noise
on measurements, but also takes the mutual linear variability of measurements and unknown
signals into account. An adaptive regression model is therefore established by PCR or PLR on
basis of s = HI.

2.4.1 Least squares prediction and collocation

The main purpose of collocation is to predict unknown signals by known measurements. Con-
sidering the presence of noise in the measurement, a second application is filtering on the ob-
servations. Besides predicting and filtering, least-squares collocation can additionally be used
to determine the parameters which define a mathematical model between measurements and
unknown signals (Ruffhead, 1987).

Least-squares prediction As we assume that a set of unknown signals S is approximated by
a linear combination of the observations L, the model has the form

S=L-H+e, (2.40)

where S(n x d;) is the target matrix to be estimated, L(n x d)) is the observation matrix, H(d; x
ds) is the prediction matrix, which links the linear relationship between S and L. Each column
vector in S and L is a time series. Both L and S contain zero-mean column vectors. In statistical
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estimation, the best linear estimate of S in terms of L is defined as the linear minimum variance
unbiased estimate (Moritz, 1980). To solve this optimization problem in (2.40), we refer to the
least-squares criterion that minimizes the covariance of error e,

Cee = E{eTe} = E{(§—S)T(5 —S)} = min. (2.41)
By (2.40) and (2.41), we get the error covariance matrix as
ele=(S—LH)'(S— LH)

Cee = HTCLLH —Csr.H — HTCLS + Csg (2.42)
= Css — Cs1.C; ;' Cr1C; Crs + (H — C;/Crs) T Crr(H — C ! Crs)

If the latter part in (2.42) is made zero, then C,, is minimum. Thus, we obtain

H=C[/Crs

B (2.43)
Cee = Css — Cs.C Crs,

in which Cr(d; x d;) is auto-covariance matrix of L, and Cps(d; x d;) is the cross-covariance
matrix between S and L.

dg d, dq

no SO = LO H d;

4

n § — L ﬁ d,

ds

Figure 2.13: lllustration of S, L and H for training and prediction.
Substituting (2.43) into (2.40), one obtains

S=L-C;/Crs. (2.44)

As a result, the unknown signal S is optimally estimated in terms of a linear combination of L
by its covariance Cr and Cs.
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In brief, as illustrated in Figure 2.13, for least-squares prediction there are two steps: firstly,
estimate the prediction matrix H by using prior information Ly and Sy to construct the covari-
ance matrix Crr and Cpg; secondly, predict the unknown signal S by the observation L and the
estimated prediction matrix H. The procedure is mathematically summarized as

e Training prediction matrix: H = C;/'Crs;
LG

e Predicting signal by H: S=1L-H.

In practice, least-squares prediction does not only work with homogeneous data, but can also
be applied on different quantities, i.e., water storage change, river discharge, precipitation, or
water level change, in any hydro-geodetic applications.

Least-squares prediction with noise The general case of linear estimation model is initial-
ized in (2.39). Taken random noise into consideration, the observation ! can be separated into
true signal part t and noise part w, written

I=t+w. (2.45)

Since signal and random noise are uncorrelated, which derives Cyys = 0, consequently, we
calculate the auto-covariance of observations C;; and the covariance matrix C;g between ob-
servations L and signals S by

Crr = Crr + Cww

(2.46)
Crs = Crs +Cws = Crs,

In (2.46), Cr . is simply the sum of the covariance matrix of signal Cy; and noise Cyy,. Both s and
t refer to signals, so C;; becomes a pure signal covariance matrix. Substituting (2.46) into (2.43)
and (2.44), we get the prediction formula

H = (Crr + Cww) 'Crs
Cee = Css — Cs1(Crr + Cww) 'Crs (2.47)
S=L-H=L-(Crr+Cww) 'Crs,

where Cww (d; x d;) is the covariance matrix of white noise. In this case, the prediction with
random noise in (2.47) is also named for least-squares collocation (Moritz, 1980). The only differ-
ence between (2.44) and (2.47) is the matter of the covariance of noise Cyyw.

If we assume that S = T, then the collocation formula (2.47) becomes

T=L-(Crr+Cww) 'Crr
S=L-(Crr+Cww) 'Crs
= TC1(Crr + Cww)(Crr + Cn) " 'Crs
=T-C;iCrs,

(2.48)
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since L = TC;#(Crr + Cww). The upper equation represents the filtering of the observations
L(n x d) into T(n x d), in which L is mathematically replaced by T. The lower equation ex-
presses the prediction of signal S(n x d) based on filtered signal T(n x d), in terms of noise free
case.

Therefore, when the object of the linear estimation S equals the signals T, the collocation with
noise turns equivalently to data filtering. Briefly, it can be summarized as filtering on the ob-
servations and then predicting new signals based on filtered signals (Moritz, 1980).

Least-squares collocation with parameters Generally, according to (2.39) and (2.45), a
physical variable / can be mathematically approximated by a linearized model | = Ax +e¢
with model parameters x. When we introduce a mathematical model in the linear collocation,
a more generalized case is achieved as

l=Ax+t+w. (2.49)

If we firstly simplify the case, L = AX + e, in which X(m x d;) is the parameter matrix, A(n x
m) is the design matrix. Then we obtain the covariance matrix of L and X in terms of Cr; =
ACxxAT and Cxx = (ATC L A)~ L. Referring to (2.41), the least-squares solution of X is given
as

X =Cx1C;]'L

2.50
= (ATc L A)ATC L. (2.50)

Next we suppose a model of observations regardless of noise, then
L=AX+SB+e, (2.51)

where S(n x ds) is linked with L(n x d;) by the weight matrix B(ds x d;). Thus, S is obtained
equivalently as a linear expression

S=(L—AX)H +e. (2.52)

As we know, L is supposed to be modelled by AX, so that E(L) = AX. According to (2.52),
we obtain Crs = E{L(L — AX)H} = E{L(L — AX)}H = C H. Hence, we get H = C;/'Cys,
which is consistent with (2.43). Eventually, it proves that S is the linear estimate of L — AX. As
a result,

A

S=(L-AX)H

) 2.53
= (L - AX)C;[Crs . (259)

If we consider noise in the model, then L = AX + SB + W, where W(n x d;) is the white noise
matrix. Similar to (2.46), the covariance of L becomes
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CrL = Css + Cww - (2.54)

(2.53) represents a model synthetically combining adjustment and prediction (Moritz, 1980). In
other words, we can say that the least-squares collocation is composed of two steps: adjustment
and prediction.

In fact, (2.52) describes the most general case. There are two more special cases to be discussed
(Rufthead, 1987). Firstly, if the model is known, then it can be removed directly from the ob-
servations by substraction in the equation, i.e. L = SB 4+ W. It is equivalent to the case of
collocation only with noise, as defined in (2.45).

Another case is noise free collocation. If, in addition, the noise in the observation is negligible,
the linear relationship between observation and estimation becomes L = SB, which is mathe-
matically equivalent to least-squares prediction (LSP), S = LH, as expressed in (2.40). In this
thesis, the least-squares collocation (LSC) approach are used for hydro-geodetic applications.
Since both the observation L and the prediction S in the model are type of hydro-geodetic vari-
ables in nature, therefore, we employ the noise free prediction and collocation instead. The
random noise is concerned and filtered additionally by decomposition techniques, which are
involved in the following sections.

2.4.2 Principal component regression

Based upon the criterion of minimum error covariances, least-squares collocation provides an
unbiased optimal linear estimate. However, the multicollinearity phenomenon exists in the
linear regression models. In this sense, the ordinary least-squares prediction can not overcome
this problem. Hence, principal component regression has been developed for dealing with the
collinearity among multiple variables (Kendall, 1957; Massy, 1965). According to (2.20), a PCA
decomposition on a measurement matrix can be expressed by

L=U- VE , (2.55)

where U (n x r) is decomposed PCs of L(n x d;), Vi(d; x r) is the normalized eigenvectors
with respect to Uy. v is the number of modes. Generally, r is obtained as the rank of L. For the
purpose of filtering and data compression, r should be smaller than the rank. In this case, we
retain  number of PCs from L and eliminate the left signals. Substituting (2.55) into (2.40), as
depicted in Figure 2.14, the regression model is written in the form

S=L-H+e=U -V} - H+e=U.-K+e, (2.56)

in which S(n x d;) denotes prediction for unknown signals, H(d; x ds) is the prediction matrix,
building up the linear regression model between S and L. K(r X d) is the reformed prediction
matrix, which refers to the PC U, of L. We find the optimal estimation of K using the least-
squares approach, so K can be estimated in terms of PC U, from L as
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dg r d; ds
T
no SO = UL VL H
K=V,"H
$
n § — L l’.i d,
d, d,
ds

Figure 2.14: Illustration of S, L and H in PCR model for training and prediction.

R (2.57)

(ufur)—tui s,
VLK.

T

Since Uy, = L Vi, substituting the Uy, by LV}, in (2.57), the covariance of U} can be expressed
by

Cuu = (LV)T(LVy) = VICL Vv,

2.58
uls =vyL's = vlcs. (2.58)

Combining (2.57) and (2.58), the unknown signal S is ultimately estimated by
S=L-H=LV,(VIC Vy) 'V[ICs. (2.59)

The regression represented in (2.59) is the so called principal component regression (PCR). The
procedure of training and prediction by PCR is illustrated in Figure 2.14. If we think of the
eigenvectors V], as a linear transformation matrix R of L, then (2.59) is reformed by

S$=LR (RTC; R)" ' RTCys, (2.60)
where R = V1. In this case, according to (2.43), the error covariance from PCR is derived by

Cee = Css — CsLR (RTCLLR) ™' R"Cys . (2.61)

Comparing with (2.44), R is equivalent to a constraint matrix on the least-squares prediction. If
we implement the PCR on a generalized case in (2.52), then we have an updated form
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0 T 1 AT -1

}f_ (A CLLfl) A'C L 2.62)
S =(L—-AX)R (RTC R)* RTCys,

since S = (L — AX)RK + e represents the model of observations instead of (2.52). The regres-
sion model represented by (2.62) is, therefore, an ultimate generalized case. (2.62) is equivalent
to ordinary least-squares prediction when R = I. In this sense, the least-squares prediction can
be regarded as a special case.

From above, the procedure of PCR is briefly summarized as

e Separating observation by PCA into modes:
Lo=U.-V[;

e Training prediction matrix on selected modes:
K= (UEUL)_luESO}

e Transforming the prediction matrix from mode version K to signal version H:
H = VLK;

e Predicting signal by H:
S=L-A

On one hand, PCR is one way to deal with an ill-conditioned problem. The constraint matrix R
reduces the dimension of L when L is not full rank matrix. On the other hand, PCR is a linear
regression model that the predicted signal S is actually regressed on the PCs of observations L.
Therefore, PCR can be regarded as a synthetical approach including both filtering and predic-
tion process. In this thesis, we employ PCR model on different hydrological variables in order
to predict the water mass change.

2.4.3 Partial least-squares regression

Dimension reduction is one of the major tasks for multivariate analysis, especially critical for
multivariate regressions. Besides PCR, the partial least-squares regression (PLR), which is de-
veloped by Wold et al. (1984), is another method for dealing with the collinearity problem.
Although PLR is promoted and used by chemometricians (Hoskuldsson, 1988), it is also appli-
cable in hydrological and geodetic researches.

Different from PCR, PLR aims to regress on those PCs of measurements, that highly correlate
with target signals. Similar to CCA, as depicted in Figure 2.15, PLR is fulfilled via SVD on the
covariance matrix between predictors and predictants, expressed by

Crs = LTS = Uc 2 VF, (2.63)

where Uc(d; x r), Vc(ds x r) are the joint normalized eigenvectors from SVD for L(n x d;)
and S(n x ds), which are also called canonical modes, respectively. ¢ is a diagonal matrix
containing covariance of L and S. U, V¢ are associated spatial EOFs in each space. r is the
number of canonical modes from SVD. Similar to (2.55), r is obtained as the rank of covariance
matrix Crg(d; x ds). In practice, r is decided by the purpose of application. In our case, we
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retain r modes, which are strongly associated between L and S, and eliminate the remaining
signals as redundancy.

ds r r dg
vV T
“| Cs |=| Ug ke ¢
d, r \ d, d
T
no SO — UL UC H
L ’ 7
- T
K=U,H
n g - L ﬁ d;
d d,
ds

Figure 2.15: Illustration of S, L and H in PLR model for training and prediction.

We gain the PCs of L, which is significantly correlated with S, by projection of Uc on L. In the
next step, substituting (2.63) into (2.40), the regression model is thus written in the form

Up =LUc-,
S=LH+e
. (2.64)
:LILK+e.

As illustrated in Figure 2.15, UL (n x r) is the associated PCs from L. K(r x ds) is the reformed
regression matrix that is combined with Uc. The optimal estimation of K is estimated in terms
of Up, using the least-squares approach, then

(upuy)~'UL s,

L
) 2.65
UcK. (265

Sv

In accordance with PCR, we substitute the U by LU in (2.65), so we calculate the covariance
of Ur by
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Cuu = (LUc)"(LUc) = ULC U,

2.66
upfs =ulL’s =ufcys. (2.66)

Combining (2.65) and (2.66), the unknown signal S with its error covariance C,, is consequently
predicted by

S=L-H
= LUc(ULCUc) tulcys, (2.67)
Cee = Css — Cs U (UECLLUC) ™ ULCrs

Comparing with (2.62), the transformation matrix becomes R = Uc. The regression repre-
sented in (2.67) is called partial least-squares regression (PLR). The major difference between PCR
and PLR is that PCR uses only the dominant signals of L to predict S, while PLS uses the most
associated signals of L, gained on basis of both S and L to estimate the new unknown signals
for S.

In summary, the procedure of PLR is implemented by four steps:

e Separating observation into modes that are associated with predictant by CCA:
Crs = LISo = UcZc V], Up = Lolg;

e Training prediction matrix on the selected canonical modes:
R = (ufuy)~-tufsy;

e Transforming the prediction matrix from mode version K to signal version H:
H = UCK,'

e Predicting signal by H:
S=L-A.

2.4.4 Adaptive moving averaging regression

Water mass transport in the water cycle is a dynamic process. Hence, each variable has either
leads or delays, correlating with others. When we model the linear relationship between those
hydrological variables, the temporal shifting needs to be carefully considered. Therefore, we
propose an adaptive regression approach, which involves a moving average model.

Generally, a moving average model (MA) is represented as

s(t) = myl(t) +mpl(t—1) + ... +ml(t —k+1)

(2.68)

=[mimy ...m]- [l ... lt—k+1]T,
in which s(t) is the model estimation, I(t),I(t — 1),...,I1(t — k + 1) are the observations with
k — 1 different number of shifting. my,m,, ..., my are the parameters of the model. The value k
defines the order of the MA model, which is abbreviated as MA(k). A MA model is conceptu-
ally a regression of current observation against current and previous observations.
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As expressed in (2.68), a variable s can be modeled by a linear combination of / in terms of MA
model. Hence, a t x 1 vector S is regressed by an ensemble observation matrix AL on all the
epochs t with a shift from 0 to k — 1, written as

S=AL-M-+e, (2.69)
where the observation matrix
I(t1) I(t;—1) It —k+1)
1(t I(ty — 1 I(th —k+1
ap— |12 M=) (t2 . ) , 2.70)
I(tn) I(ta—1) I(th —k+1)
T

and the parameter matrix M = [my, my, ..., my]".

Considering a linear regression for multiple variables, in which both L and $ contain more than
one variable, we expand the AL and § in (2.69) by

S =ALiM; +ALoMy + ... ALy My +e
=[AL1 ALy ... ALg) [Mi My ... My]" +e (2.71)
=L-H+e,

where L = [AL; ALy ... ALy ] is an x (k x d;) matrix for d; different variables, S(n x ds) has
ds number of model prediction. As defined in (2.69), AL, in L is a n X k matrix, so d; matrices
My, (k x ds) yield a prediction matrix H((k x d;) x ds) matrix for this regression model.

Similarly, L in (2.71) can be rearranged in the form of

L=[LiL, ... L,
S=L-H+e (2.72)
:[Ll L2 Lk][Hl H2 Hk]T+€,

where L; is a n X d; matrix,

hip hp - Lg
Iy oo - 1

Le= 20 (2.73)
ln,l ln,l T ln,d;

containing measurements at n epochs from d; different variables. Each L; stands for observa-
tions with a shift in MA(k) model, and each Hy(d; x ds) represents the prediction matrix with
respect to Ly, consisting of H(k x (d; x ds). Hence, if PCR is implemented on this moving
average regression, then (2.72) becomes
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S=L-H-+e
= LiHy + LyHo + ... + LyH +e
=WLWViH +WViH + ... + UV H +e (2.74)
= [ Uy ... UJ[VEH, ViH, ... VIH]T +e
=U-K+e.

In (2.74), K(k x (r x ds)) becomes the new prediction matrix substituting H, and U(n x (k x r))
expresses an ensemble of PCs from observations L. When L is allocated as in (2.72), the PCs
Uy (n x r) are thus decomposed within each moving window, delivering the dominant variation
of observations in each window.

Similarly, according to (2.63) and (2.64), when PLR is implemented with moving average win-
dow, the regression model is represented by

S=L-H+e
= L1Hy + LoHo + ... + LiHe +e
= UL, VEHi+ UL, VEHy + ... + UL, Ve Hi+e (2.75)
= [Up, Uy, ... UL][VEHI VEH, ... VEH]T +e
=U-K+e.

Comparing (2.75) with (2.63) and (2.64), the joint PCs Uy, (¢ X r) are decomposed by SVD ac-
cording to the cross-covariance between each Ly and S, written as Cr, s = L{S = Uc,Xc, Vch ,
and obtained by projection on each Ly, then U;, = L Uc,. Hence, U here is grouped by Uj, .

As a result, now referring to either LSP in (2.44), or PCR in (2.59), or PLR in (2.67), an adap-
tive moving average regression (MAR) is established, based on the formulation in (2.72), (2.74)
and (2.75). In LSP, the spatial covariance matrix between prediction and observations is es-
timated over time. Combining with MAR, the association among epochs is revealed in the
cross-covariance matrix along the moving window. The LSP approach can, therefore, reduce
the effect of lagged errors from observations.

Applying PCR with MAR, we extract and retain not the dominant signals from observations,
but the significant modes of observations within each moving average window. It takes the
variation of modes over time into consideration. Different from PCR, PLR takes the advantages
in maximizing the covariance among multiple variables. It eventually predicts the unknown
signals by the most correlated part of signals from multiple observed signals, with the help of
MAR over epochs.

The adaptive moving average regression integrated with LSP, PCR or PLR (i.e. MA-LSP, MA-
PCR, MA-PLR) is consequently employed in the following chapter for hydro-geodetic mod-
elling.
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2.4.5 Comparison and summary

This section describes several different linear regression approaches and discusses their ad-
vantages and disadvantages. In Table 2.2, these methods are shortly summarized from four
different aspects: form of model, observation, covariance matrix of observation, and cross-
covariance matrix of observation and prediction.

Table 2.2: Summary of four different type of multivariate linear regression approaches. The essential required
quantities for these regressions are briefly listed.

Method Observation Auto-covariance Cross-covariance Model description

LSP L Crr CrLs S=LH+e

LSC L—AX Crr Crs S = (L — AX)H +e
PCR LV, viCvi VICrs S=U,V/H+e
PLR LUc ulcpUc ulces S=UUlH+e

As introduced before, three different cases are addressed in least-squares collocation (LSC). The
general case consists of a mathematical model, the true signal, and noise. Two special cases are
introduced: in the first the measurements are the sum of true signal and noise; in the second
the noise free measurement only consists of signal. In this thesis, the noise in the regression is
neglected to regress, and we only employ collocation with approximated model and without
approximated model. LSC is an unbiased optimal estimation method, which minimizes the
square errors. When the multicollinearity exists in the measurement, in which the variables are
highly correlated, it probably results in imprecise predictions.

To reduce the data dimensions and the computational effort as well as to tackle ill-conditioning,
we implement two more regression methods: principal component regression (PCR), and par-
tial least-squares regression (PLR). These two methods inherit the advantages and properties
of PCA and CCA, respectively. Compared with LSC, PCR optimizes the prediction by extract-
ing the signals with maximum variance, while PLR finds the optimal estimate by searching for
signals with maximum covariance.

Considering the lagged error problem, the adaptive moving average regression (MAR) is estab-
lished. MAR is implemented via a moving average window on the measurements, which we
combine with either LSC, PCR, or PLR. These adaptive MA-LSP, MA-PCR, MA-PLR methods
benefit from the advantages of both LSC, PCR, PLR and MA model, simultaneously concerning
both the spatial and temporal correlation between multiple measurements and predictions. In
addition, the stability of predictions and sensitivity of anomalous observations is examined in
hydro-geodetic applications and discussed in the following chapter.
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Chapter 3

Modelling of Terrestrial Water Storage Change
in the Water Cycle

Continental water storage is an essential part of the water cycle. Measurements of the global
time-variable gravity field by GRACE allow us to determine the total water storage variation.
However, the coarse spatial scales limit the application in small regions, and the limited tem-
poral scales restrict us to investigate the water storage change within one month. Additionally,
the limited lifetime of GRACE constrains the determination of large-scale water storage change
out of the range of GRACE observing period. Therefore, the inadequate spatio-temporal obser-
vations by GRACE motivate us to determine terrestrial water storage in alterative ways.

Since more spaceborne geodetic sensors provide large-scale terrestrial observations, various
studies has been done on modelling the hydrological variables by the geodetic observations
using hydro-geodetic approach. Sneeuw et al. (2014) modeled the river runoff with the aid of
the geodetic observations using hydro-geodetic approaches. Tourian et al. (2013) estimated the
river discharge from spaceborne water level observations by a quantile function approach. Sev-
eral studies (Pan and Wood, 2006; Lorenz et al., 2015) adopted the Kalman filter framework to
estimate the catchment-scale water budget. GRACE products have also been used in hydrolog-
ical modelling through assimilation (Eicker et al., 2014). Conversely, estimating the terrestrial
water storage variation with the aid of hydrological observations is practically realistic and
feasible.

In this chapter, we estimate the continental water storage change at catchment scale by mod-
elling the relationship between water storage and other hydrological variables. Three different
statistical approaches are implemented for water storage prediction: least-squares collocation,
principal component regression, and partial least-squares regression. Considering that a time-
invariant temporal shift exists between water storage and water cycle (Riegger and Tourian,
2014), an adaptive moving average model is consequently integrated with these regression al-
gorithms.

Furthermore, a spatial downscaling of GRACE is attempted by assimilating multiple variables
(i.e., precipitation, evapotranspiration, runoff) from a set of hydrological models with a highly
resolved water storage change model, in order to achieve sufficient spatial resolution. This
assimilation is accomplished by implementation of an adaptive moving average partial least-
squares regression approach.



48 3.1 Spaceborne observation of terrestrial water storage

3.1 Spaceborne observation of terrestrial water storage

3.1.1 From geopotential to total water mass variation

The gravitational potential field V' outside of the Earth’s surface, due to its source-free and
curl-free property, can be described in terms of spherical harmonic expansions (Heiskanen and
Moritz, 1967) by

GM [ee] R l+1 l _ _ _
V(A,0,r) = = Z <r> Z Py (cos ) (Cppy cos mA + Sy sinmA) , (3.1)
1=0

m=0

where A, 6 are the spherical coordinates, r is the spherical radius, R is the radius of the Earth,
GM is the gravitational constant, Cy,,, S, denote the normalized dimensionless spherical har-
monic coefficients of degree I and order m, expressing the gravitational potential field of the
exterior Earth. P}, represents the normalized associated Legendre functions, with

Py (cos6) = Ny, - Pyy(cos ),

(I —m)! (3.2)
(I+m)’

N, = \/(2 - 5m,0>(2l + 1)

in which 4, is called Kronecker delta that equals 1 if m = 0, and 0 otherwise.

As assumed by Wahr et al. (1998), the mass variations on the Earth’s surface occur in a thin
layer close to the surface. Under this assumption, the volume mass density ¢ is replaced by
the surface mass density. Therefore, the surface mass density change, which relates to surface
mass variation, can be parameterized in terms of spherical harmonics (Wahr et al., 1998) as

o |
Ac(A,0) = Row Y Y Piy(cos8)(ACY, cosmA + AS], sinmA) , (3.3)
=0 m=0

where p,, is the density of water, assuming that this thin layer on the surface consists of water.
Cy ., S7 denote the normalized dimensionless spherical harmonic coefficients of the surface
mass density. According to Farrell (1972) loading theory, the changes of the spherical harmonic
coefficients of the surface density changes can be related to the spherical harmonic coefficients

of the gravity potential changes. The relationship between them is thus expressed through the

load Love numbers k; by
ACS\ _ pe 20+1 [AG, 64
ASL S 3pw 14k \ASm [’ '

where p is the average density of the Earth. Combining (3.3) and (3.4), eventually we formulate
the surface mass density change as

Ac(M,0) = RPe i

3 T e Y Y Pyu(cos 0)(ACy, cos mA + ASy, sinmA) . (3.5)
1=0 1
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The spherical harmonic coefficients ACj,,, AS},,, can be obtained from the montly GRACE so-
lutions, since GRACE is able to measure the temporal variation of the Earth’s gravity field. In
general, the surface density change Ac are converted into water height change

R Lmax 21 1 1 _ _ _
= “Pe Y. + Y Pi(cos8)(ACy,, cos mA + AS;, sinmA) , (3.6)

AM
3 1=0 T+ k; m=0

where Lpyax is the upper bound of degree I. AM is commonly denoted as equivalent water
height (Wahr et al., 1998). Practically, the upper limit of degree [ is defined by the maximum
degree of the GRACE products. To avoid of confusion with residuals in the following content,
we describe the water mass variation by M instead of AM in this thesis.

The GRACE observed time-variable gravity field of the Earth can be equivalently considered as
the terrestrial water mass variation, which is calculated via equivalent water height in (3.6). In
hydrology, the water mass variation is revealed by the total water storage change in the water
cycle. Therefore, to keep consistency in this thesis, the term total water storage change (TWS)

is used instead of equivalent water height change, representing for the water mass variation
M.

Furthermore, the water storage fluxes dM/dt, which represents the water balance, are calcu-
lated as the first derivative of water storage change by

dM  M(t + At) + M(t — At)
ar 2At ’

(3.7)

where At is the temporal intervals. In this thesis, we use the central difference as the differen-
tiator in order to avoid the interpolation error.

3.1.2 Total water storage change from GRACE product

The GRACE level 2 products are provided by several different sources, e.g., Center for Space
Research (CSR) at the University of Texas (Bettadpur, 2007), Jet Propulsion Laboratory (JPL),
GeoForschungsZentrum (GFZ), ITSG 2018 from Graz University of Technology (Mayer-Giirr
et al., 2018), using different data processing techniques and model corrections in order to elim-
inate the effects from atmosphere and ocean tides and to recover as much original signals from
gravity field variation as possible. In addition, the GRACE Mass Concentration blocks (mas-
cons) solutions based on level 1 products are available from CSR (Save et al., 2016), JPL (Watkins
et al., 2015), and Goddard Space Flight Center (GSFC) (Luthcke et al., 2013). Different from the
data produced by standard spherical harmonic approach, the mascons are essentially another
representation of the gravity field, which is described by small blocks. In fact, it is beyond the
scope of this thesis and not further discussed here. We use the GRACE products from GFZ
release 05 in form of spherical harmonic coefficients for the following study.

Degree-1term The origin of the reference frame used for GRACE solutions is defined in the
Earth’s center of mass (CM). The changes in degree-one terms are closely related to the relative
motion of the CM to the center of the figure (CF) of the Earth’s surface. In this frame, the
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degree-one spherical harmonic coefficients are zero by definition. As a result, GRACE cannot
sense the motion of the mass center of the Earth, only observing the time-variable gravity field.
The changes in degree-one terms represent a considerable mass variation, which cannot be
neglected (Chambers, 2006b). Hence, the omission of degree-one coefficients in GRACE data
has to be corrected. In this thesis, the degree-one coefficients are replaced using the product
from Swenson et al. (2008).

Degree-2 terms The degree-two terms are related to the large scale mass redistribution
on the Earth’s surface. The changes in the spherical harmonic coefficients of degree two and
order zero, AC, ), reflect the flattening of the Earth, which is known as AJ; (A], = —\@ACZO).
Considering that degree-two terms are not accurately observed by GRACE, the optimal degree-
two coefficients are obtained from the analysis of satellite laser ranging (SLR) observations
(Cheng et al., 2011). Moreover, the degree-two terms in the GRACE product from GFZ are
already replaced (Dahle et al., 2012).

Filtering Since the GRACE measurements are evidently affected by noise, filtering is re-
quired to reduce these effects and enhance the true physical signals when processing GRACE
data. Several different filtering approaches (e.g. Gaussian filter, Han filter, destriping filter,
DDXK filter, etc.) are consequently proposed. Generally for GRACE data, the filter is applied in
the spectral domain, and the filtered AMY is then formulated as

Rpe fxz 2l +1 & . .
:fe Z + Z Py, (cos 0) (Wi, ACyyy, cos mA + W, ASy, sinmA) (3.8)

AMS =
1=0 1 + k; m=0

where W expresses the kernel of the filter in the spectral domain. Various filter operators are
proposed and discussed in many researches, which commonly are consisted of two classes:
deterministic filters and stochastic filters. A detailed description of different filter schemes is
summarized by Devaraju (2015) for GRACE data filtering.

The Gaussian smoothing function WS, as a deterministic filter, is formulated by Jekeli (1981) in
the spatial domain,

WE = g7llmeose) y >0, (3.9)

where « is the spherical distance on the sphere, and r is the averaging radius. The Gaussian
smoothing function was subsequently developed by Wahr et al. (1998) in the spectral domain,
formulated recursively

1
cG_ 1
Wo' = 27t
1 [1+e 2 1
W= on LJ—FZ% _b] '
21 +1 (3.10)
chj-l = Wi+ Wiy,
with b In(2)

T 1- cos(r/R)
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Obviously, the Gaussian smoothing kernel W performs isotropically only along degree [ in
spectrum. Due to this property, WF is classified as isotropic filter for GRACE. Unlike degree-
dependent W, an anisotropic Gaussian filter was developed by Han et al. (2005), in order to
perform smoothing on both degree and order. The weighting structure of the smoothing kernel
is directional variant, performing both degree and order dependent in the spectral domain.

In fact, the GRACE observations are strongly affected by the correlated errors, which normally
show up as north-south stripes over the unsmoothed TWS spatial patterns. A destriping filter,
proposed by Swenson and Wahr (2006), aims to eliminate the spatially correlated errors.

p P
D _ 1 iyi
W, = Y Y Ltnit,
i=0 j=0
1+2
with Ly = Z n'n/, n:evenorodd,

)
n=I-73

(3.11)

where 1 denotes the degree that includes only the same parity as degree I. This destriping leads
to the smoothed coefficients CP as

1+%

Cp = E WP Cum, 1 :evenorodd . (3.12)

n=1-%

Swenson and Wahr (2006) found that there is no apparent correlations between even and odd
coefficients. However, the correlated behavior appears at approximately m = 8 and also at
higher orders. In this case, the spherical harmonic coefficients are smoothed for a particular
order m with a quadratic polynomial in a moving window centered about degree /, where p is
the order of the polynomial, w is the width of the smoothing window. The implementation of
the destriping algorithms is explained by Devaraju (2015) in detail.

Moreover, various stochastic filters, e.g. Wiener filter (Sasgen et al., 2006), DDK filter (Kusche,
2007; Kusche et al., 2009), regularization filter (Lorenz, 2009), an anisotropic, non-symmetric
filter developed by Klees et al. (2008), are designed to filter the observed field from GRACE
based on a prior information. In addition, the EOF approach is also employed as a smoothing
tool at the level of GRACE monthly solutions (Rangelova et al., 2007; Schrama et al., 2007).

In this thesis, since a thorough evaluation of different filters on GRACE is not essential for the
objective of our research, the performance of filters in GRACE data processing is not further
discussed. To make our results comparable with the work done by others, we simply apply a
destriping filter to minimize the effect of correlated errors, and an isotropic Gaussian smooth-
ing with radius of 350 km to the GRACE data. The procedure of calculating the TWS from
GRACE coefficients are explained in detail in Appendix A.

Spatial and temporal resolution Although filtering on GRACE observations reduces the
effects of noise and subsequently produces more accurate signals, it simultaneously causes
signal leakage and also leads to lower spatial resolution (Devaraju and Sneeuw, 2016). For
example, the filter with radius of 350 km applied in this study limits the spatial resolution to the
level of ca. 400 km. Comparing with the observations from other variables, like precipitation,



52 3.1 Spaceborne observation of terrestrial water storage

evapotranspiration, river runoff, usually with 0.5° resolution, this level of resolution is not
adequate for hydrological applications, particularly for regional studies on small basins.

[mm/month]

Figure 3.1: Map of the linear trend of global total water storage change (a) on a grid and (b) at catchment scale.

0 50 100 150 200
[mm]

Figure 3.2: Map of the annual amplitude of global total water storage change (a) on a grid and (b) at catchment
scale.

Many studies focus on the correction methods for repairing the signal damage due to filtering
(Klees et al., 2007; Longuevergne et al., 2010; Landerer and Swenson, 2012; Vishwakarma et al.,
2018). However, repairing the GRACE products, which is not within the scope of this thesis, is
not further discussed. Downscaling GRACE is an optional solution to acquire sufficient spatial
resolution, using statistical approaches.

As our current study is mainly about modelling the total water storage by multiple hydrologi-
cal variables, we aggregate the observations from grid cells into catchments in order to reduce
the error level. The water storage change in each grid cell is aggregated over the catchment
via

N
N Mgia(As, 6;) - A;
Mbasin:zl—l %Zi(-l 2 a (3.13)
asin

where A;, 6; express the longitude and latitude of the cell i, A; is the area of the cell i within
the catchment, Ay, is the total area of the catchment, N is the number of cells located in the
catchment. Thus, we obtain the aggregate of total water storage change over the catchment
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Mpasin by doing a spatial averaging on the Mgiq of each cell. Figure 3.1 and 3.2 show the linear
trend and annual amplitude of total water storage change grids over the globe and aggregates
over the catchments.

In Figure 3.1, the catchment-scale linear trends are smoothed in the catchments which are rel-
atively stationary, and enhanced in the catchments which have evident mass gain or loss com-
paring with the linear trend from TWS in grids. The annual amplitude of TWS at catchment
scale shown in Figure 3.2 reveals comparatively consistency with gridded products, especially
for those large-scale catchments. Therefore, the spatial resolution is adequate for applications
at catchment scale, especially for those catchments with an area larger than 200 000 km?. For
investigating the impact of climate change on continental water storage changes at large scale,
the current spatial resolution (ca. 400 km) is sufficient for comprehensive analysis. Moreover,
to achieve finer spatial resolution, a spatial downscaling of GRACE is attempted in this chapter,
using an empirical statistical approach.

Temporal resolution of GRACE products is one month due to its monthly solutions. In hy-
drology, data with sub-monthly, weekly, daily sampling are commonly available. Considering
that the water cycle is a dynamic process, coarse temporal sampling in GRACE products could
lead to inconsistency when modeling the total water storage by hydrological observed time
series.

To acquire densified temporal sampling of GRACE, some researchers estimate the daily solu-
tions from monthly GRACE products using Kalman filter approach (Kurtenbach et al., 2009,
2012). With the aid of hydrological observations with higher sampling rates, in this thesis, we
explore another way to obtain the terrestrial water storage variation with better temporal reso-
lutions. Therefore, based on the relationships gained from statistical modelling, the water stor-
age variation is estimated by multiple variables, for instance, precipitation, evapotranspiration,
runoff. In addition, for long-term analysis, monthly observations from GRACE are sufficient
and commonly used in hydrological applications.

3.2 Modelling terrestrial water mass change by hydrological
variables

Datasets In this chapter, we use the monthly observation based precipitation datasets, calcu-
lated from global station data, from the Global Precipitation Climatology Center (GPCC) with
0.5° spatial resolution (Meyer-Christoffer et al., 2015), and the monthly precipitation datasets
that combine observations and satellite data, from the Global Precipitation Climatology Project
(GPCP) with 2.5° spatial resolution (Adler et al., 2003).

The Tropical Rainfall Measuring Mission (TRMM) by NASA and JAXA provides precipitation
products based on the measurement of rainfall from multiple satellites (Huffman et al., 2007,
2010). We use the precipitation dataset from TRMM with monthly temporal resolution and 0.5°
spatial resolution.
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Table 3.1: Data sets used in water mass variation modelling.

Variable Data source Spatial resolution Temporal resolution
p GPCC23 0.5° x 0.5° monthly
GPCP V7 2.5° x2.5° monthly
ECMWFEF ERA-Interim 0.5° x 0.5° daily
PERSIANN-CDR 0.5° x 0.5° monthly
TRMM 3B43 0.5° x 0.5° monthly
ET ECMWF ERA-Interim 0.5° x 0.5° daily
GLEAM v3.1 0.5° x 0.5° monthly
R GLDAS CLM10 1°x 1° monthly
GLDAS MOS10 1°x1° monthly
GLDAS NOAHO025 2.0 0.25° x 0.25° monthly
AM  GRACE RL05 GFZ 1° x 1° monthly

In addition, we use a 0.5° daily precipitation dataset from the Precipitation Estimation
from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record
(PERSIANN-CDR) model (Ashouri et al., 2015), which estimates precipitation using the
PERSIANN algorithm on satellite data and combining many different precipitation data
sources.

The atmospheric reanalysis ERA-Interim from the European Center for Medium-Range
Weather Forecasts (ECMWFE) is used to derive daily fields of total precipitation and evapora-
tion (Dee et al., 2011). These data sets are produced with 0.5° spatial resolution.

The evapotranspiration dataset, which is obtained from the Global Land-surface Evaporation:
the Amsterdam Methodology (GLEAM) based on multi-satellite observations (Miralles et al.,
2011; Martens et al., 2017), is used as well in the study.

The Global Land Data Assimilation Systems (GLDAS) was developed by NASA and the Na-
tional Oceanic and Atmospheric Administration National Centers for Environmental Predic-
tion (NCEP). It provides a global, high-resolution, optimal simulation of global land surface
states, representing the energy and terrestrial water fluxes for climate, weather, and water re-
sources study (Rodell et al., 2004). Currently, the GLDAS has four different land surface models
(LSMs), including the Mosaic model (Koster and Suarez, 1996), the Noah model (Chen et al,,
1996; Koren et al., 1999), the Common Land Model (CLM) (Dai et al., 2003), and the Variable
Infiltration Capacity (VIC) model (Liang et al., 1996). These four models in GLDAS define
different number of soil layers and different corresponding soil depths. In this thesis, three
different runoff datasets are used from the GLDAS, namely the 1° monthly data from GLDAS
CLM Model, the 1° monthly data from GLDAS Mosaic Model, and 0.25° monthly data from
GLDAS NOAH LSM L4 (Rodell et al., 2004).

We choose the time period of the datasets listed above in Table 3.1 ranging from 2003 to 2016,
in order to stay in accordance with the data from GRACE products.

Furthermore, to be consistent with total water storage change time series from GRACE, the
temporal resolution is averaged from daily to monthly. We choose 26 catchments as case study,
which are distributed globally as shown in Figure 3.3. In order to estimate the water mass
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Figure 3.3: Map of 26 catchments distributed globally.

variation at catchment scale, the GRACE grids are then aggregated within each catchment us-
ing (3.13). Similarly, the other hydrological variables, such as precipitation, evapotranspiration
and runoff, are also aggregated over catchment in the same way as the aggregation of water
storage.

3.2.1 Performance metrics for model evaluation

To validate the estimated total water storage changes, numerous performance metrics to eval-
uate the time series exists (Moriasi et al., 2007). In this chapter, several important metrics, i.e.,
correlation coefficients, root mean square error, the Nash-Sutcliffe efficiency, and relative bias
are introduced and adopted here for validating the predictions from the regression models.

Correlation coefficient (R) It describes a statistical relationship between two time series.
The correlation coefficient, which ranges from —1 to 1, indicates the similarity of them. It
writes

R — Yo (i — %) (yi — 7) ‘
VEL (i = 220 (yi — )2

In (3.14), x; is observation, and y; is prediction time series to be evaluated, X, i represent for
the mean of observation and prediction time series, respectively. The valuesR = 1orR = —1
reflect a perfect positive or negative linear relationship, while R = 0 indicates that no linear
relationship exists. Although it is commonly used for data evaluation, the correlation coeffi-
cient is extremely sensitive to the phase shifts, but insensitive to the differences in amplitude
or bias. According to this characteristic, only using the correlation coefficient is not adequate
for validation of model predictions.

(3.14)
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Relative bias (PBIAS) Since correlation coefficient is insensitive to bias, we introduce a
statistical indicator that is describing the relative bias. Since it was introduced as percent bias,
thus, we name it PBIAS in this thesis (Gupta et al., 1999):

Yo (xi —vi)

PBIAS =
2?:1 Xi

—1—

=i

(3.15)

PBIAS is dimensionless, and calculated as a relative difference, normalized by observations.
PBIAS measures the relative bias of prediction against observation. It indicates an optimal
prediction when the value of PBIAS becomes 0. Positive and negative values indicate model
underestimation bias and overestimation bias, respectively. The deviation from 0 reflects the
relative bias, which is represented as a percentage. From PBIAS, we can simply know whether
the predictand is optimally estimated by the model in view of bias.

Root mean square error (RMSE)  As one of the widely used error indices, RMSE measures
directly the accuracy of the estimation, which is compared with the reference time series. It is
defined as

n . 17.)2
RMSE = Z_l(xny) . (3.16)

As a second-order statistic, RMSE is a non-negative value to quantify the average deviation
from the observations. In general, it reflects an optimal fit when RMSE is close to 0. Different
from PBIAS, RMSE is sensitive to the difference in amplitude. Hence, we use it to evaluate the
level of the differences between observations and model estimates.

Nash-Sutcliffe efficiency (NSE) We introduce NSE here because of its common use to
evaluate the model performance against observation (Nash and Sutcliffe, 1970) in hydrology.
The NSE is a dimensionless statistic that quantifies the relative magnitude of mean square error
compared to the variance, since

n
NSE = 1 — D=t i W) 3.17
SEEEEE o
NSE ranges from —co to 1, where NSE = 1 indicates a perfect prediction. A value of NSE
between 0 and 1 (0 < NSE < 1) reflects a prediction that is better than simply taking the
average X, which is considered generally as acceptable levels in our study. The value of NSE
below 0 indicates a prediction worse than the mean observation, which is unacceptable.

Different from correlation coefficient, NSE is highly sensitive to the similarity both in phase
and also in amplitude and bias. Therefore, we adopt NSE as an important statistic to evaluate
our prediction results from each approach.

Cyclostationary Nash-Sutcliffe efficiency (CNSE) According to the seasonality be-
haviour of hydrological time series, in this study, we adopt an alternative formulation of NSE,
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called cyclostationary NSE (CNSE). It compares the prediction with the cyclo-stationary mean
of observation instead of the mean as

Y (v —vi)?

CNSE =1 — 7
im1 (xi — )2

(3.18)

where % is not the long-term mean of observation x, but represents the mean annual behavior,
i.e. climatology. Similar to the regular NSE, CNSE reflects a perfect prediction when its value
equals to 1. If the value of CNSE is between 0 and 1, it indicates a prediction better than the
historic cyclostationary mean of the time series, which is acceptable. If CNSE < 0, it indicates
that the prediction performs worse than the climatology in the observations, i.e. it does not
successfully capture the significant non-seasonal variability in the observations. In geodetic-
hydrological applications, therefore, CNSE is as important as NSE and even more meaning-
ful than NSE, because NSE > 0 is easily achieved. Due to the strongly seasonal variability
in terrestrial water storage variation, we evaluate the performance as good predictions when
CNSE > 0 in the following content.

Cyclostationarity index (CI) To evaluate the seasonal variability in a single time series,
we define a statistical indicator CI as

i (xi — f)z
n )2 *

Cl=1-
i1 (x; —

(3.19)
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CI is a dimensionless measure of non-seasonal variability relative to seasonal variability. A
value of CI = 1 indicates perfect cyclo-stationarity, whereas CI ~ 0 indicates that non-seasonal
behaviour dominates. Hence, we use CI as an important indicator to evaluate the seasonality
in the terrestrial water storage observations from GRACE.

3.2.2 Characterization of terrestrial water storage variation

Relationships of water storage-water cycle To characterize the time series of terrestrial
water storage variation, we investigate the linear relationship between water storage change
and hydrological variables, i.e., precipitation, evapotranspiration and runoff. A linear relation-
ship exists between total water storage change (M or TWS) and precipitation (P), evapotranspi-
ration (ET), river runoff (R), since the terrestrial water balance can be mathematically described

by

d;fzp—ET—R. (3.20)

Theoretically, estimating the total water storage changes via a linear regression model by other
variables (i.e., P, ET, R) in the water cycle is therefore feasible based on (3.20).
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3.2 Modelling terrestrial water mass change by hydrological variables
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Figure 3.4: Relationships between TWS and P, ET, R, respectively for catchment (a) Amazon (tropical), (b)
Yangtze River (temperate), (c) Mackenzie (boreal), and (d) Lena (boreal).

We investigate the relationships between AM and P, ET, R, respectively at catchment scale.
These relationships are visualized in Figure 3.4. Considering the different climatic conditions,
we choose four catchments as examples, in which Amazon represents basins in the tropical
zone, Yangtze represents for basins in the temperate zone, while Mackenzie and Lena act on
behalf of basins in the polar region influenced by arctic climate. We plot the mean annual cycle
together with observations for each year as a sequence. Figure 3.4 illustrates a distinct periodic
behaviour for each catchment.

In the Amazon, Figure 3.4 clearly shows linear performance except for P-TWS in the scatter
plot. However, in temperate and polar regions (i.e. Yangtze, Mackenzie, Lena), ET, R and TWS
are periodical, which is different from the behaviour in tropical basins (e.g. Amazon). By direct
comparisons of water storage and other hydrological variables (i.e. P, ET, R), they mainly show
up these periodic performance with hysteresis, indicating a non-linear relationships. Thus, the
river basins are characterized as non-linear dynamic system (Kirchner, 2009; Teuling et al.,
2010). However, Riegger and Tourian (2014) interpret this non-linear, periodic behaviours with
a hysteresis for catchments as a linear time-invariant (LTI) system, in which a time-invariant
temporal delay exists. In other words, the non-linearity between ET, R and TWS in Yangtze
is thus explained by asynchronous variation in the water cycle. Thus, from Figure 3.4 (a), we
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can infer that the non-linearity between P and TWS in Amazon refers to a hysteresis in this
dynamical water system.

However, under dry and cold climatic conditions, the non-collinearity in boreal catchments
(i.e., Mackenzie, Lena) cannot be simply explained by a time invariant or time-dependent delay
between ET, R and liquid TWS change. This non-linear behavior is assigned to solid storage
components like snow /ice, for which the terrestrial mass variations do not lead to changes in
water balance (Riegger and Tourian, 2014). Therefore, in the boreal catchments, except for the
time-invariant temporal delay, the solid /liquid components of water storage also result in the
non-linear behaviour.

In a word, for tropical and boreal catchments, the time invariant time lag exists in the M-
P,ET, R relationships. The liquid water mass change are P, ET, R are treated as a LTI system.
In practice, this time shift has to be taken into consideration when we do regression on multiple
hydrological variables.

(a) Amazon (b) Danube (c) Yangtze River
150 100 60
Cl=0.85 Cl=0.51 Cl=0.64
100 40
50
e 50 20
E }
g 0 0 0 \
~ -50 20! 1
-50 \
-100 | |mmmmSeasonal mean = Scasonal mean -40 = Scasonal mean [ Seasonal mean ||
TWS in each year TWS in each year |~ TWS in each year|
-150 100 -60
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
(d) Mackenzie (e) Ob (f) Lena
100 150 100
Cl=0.70 Cl=0.53 Cl=0.58
50 100 50
= ‘ 50
E 0 1 0 ‘
g 50 ° 50 |
= -50
100 | s Sea50nI meN 100 || Seasonal mean -100 mm Scasonal mean
TWS in each year TWS in each year TWS in each year
-150 150 -150
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
Month Month Month

Figure 3.5: Seasonal mean of TWS and its CI index in catchment (a) Amazon, (b) Danube, (c) Yangtze River, (d)
Mackenzie, (e) Ob, and (f) Lena.

Seasonality of total water storage Generally, the cyclostationarity of the observed time
series is a significant characteristic in hydrology. Non-stationarity of a time series appears gen-
erally as time-dependent trend, time-variant frequency, or inconstant amplitude. Practically,
the training is based on the a prior data. Non-stationarity in the training phase induces un-
certainty of the model prediction. Meanwhile, the model prediction is difficult to capture the
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anomalous variation if non-stationary signal exists in the prediction phase. Therefore, an ob-
servation time series that behaves as cyclo-stationary signal probably leads to poor predictions.
Hence, before we implement regression on the water storage time series, the seasonal variabil-
ity in the observations of water storage change is also necessary to be evaluated.

In Figure 3.5, total water storage changes in each year are plotted with their cyclo-stationary
mean (i.e. seasonal mean in hydrological variables), which is calculated as the mean annual
cycle of the signal. Six catchments, i.e., Amazon (tropical), Danube, Yangtze (mid-latitudes),
Mackenzie, Ob, Lena (high-latitudes), are selected as examples. The cyclo-stationary mean
represents the seasonal behavior in observations. The CI values indicate the cyclo-stationarity
of water storage in catchments. Amazon shows a very stable seasonality with CI > 0.8, while
TWS in Danube, Ob and Lena (CI < 0.6) are weakly stationary in each year.

Accordingly, for those seasonal stationary basins, the mean annual cycle retains nearly
the whole of observation information, representing distinct seasonal behaviors. Therefore,
the mean annual cycle can be simply adopted as the prediction. On the contrary, a low
cyclo-stationarity indicates that the water cycle in these basins displays more non-seasonal
behaviours. This leads to a challenge for prediction.

3.2.3 Estimation by least squares collocation

Least-squares collocation with model parameters Firstly, we assume that we have the
observed time series of total water storage M, and the river runoff R, which are arranged in
matrix as

Mg Mip -+ Mg Rip Riz -+ Ry
Mp1 My -+ My Ry1 Rpp -+ Ry

M= | o I = . o ) (3.21)
Mn,l Mn,Z o Mn,s Rn,l Rn,Z cee Rn,l

In (3.21), each column of M and R is a single time series with n time epochs. M contains s
number of time series, and R has [ number of time series. Thus, M and R has the same length
of observing period but different number of time series.

If we predict the total water storage change M for p more epochs, for example, by river runoff
Rops(p % 1) using the least-squares collocation (LSC) approach, we have to estimate the predic-
tion matrix, training on a prior datasets M(n x s) and R(n x I). Following (2.52) and (2.53), we
have

R=AXg+MB,

Xr = (ATCxpA)TATCRER,
M= (R-AXg)H,

H = CrpCrM,

(3.22)
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where A(n x m) is the design matrix for modelling the observation R, B(s x I) is the prediction
matrix for predicting M, estimated based on training, Xg(m x I) contains m unknown param-
eters to estimate for each time series.

Applying such a least-squares collocation on R and M, we model the runoff signal itself R, and
at the same time predict the target signal M. According to (3.22), the M can be seen as the
predictand of R — AXg, that satisfies M = (R — AXgr)H. Since the model R — AXr produces
the residuals, the predictand M is estimated on the residual level. Thus, we use the TWS
residuals AM instead of M for training of the cross-covariance matrix Crps. The TWS residual
AM is calculated by subtracting the cyclo-stationary mean M from the full signal M,

AM=M— M. (3.23)

Hence, by training, we gain the estimated parameter matrix Xg(m x I), and the estimated
prediction matrix 21 (I x n) instead of B. As a consequence, the predicted AMpre is calculated
via

AMpre = AM = (Rops — AXr)H = (Rops — AXr)CrrCruM - (3.24)

Still, we need to add the removed seasonal mean M back to the model prediction AM as

Mpre = AM + M. (3.25)

Considering the strong seasonal behaviour in runoff time series, we employ a harmonic model
for R to model the annual and semi-annual components,

R = aq - sinwqt + by - coswit + ap - sinwst + by - coswoyt
= [sinwqt coswit sinwyt coswat] (a1 by az bz]T (3.26)
=A-Xg,

where Xg = [a; by az by]T are the parameters to be estimated in (3.22), wy, w; represent for the

frequencies of annual and semi-annual components in observations. The design matrix A is
constructed as A = [sinwjt coswit sinwyt coswst] and involved as input in (3.22). Simi-
larly, the precipitation P and evapotranspiration ET are also modeled as defined in (3.26).

The procedure of this LSC on predicting total water storage M by runoff R is summarized in
the flowchart shown in Figure 3.6.

The same procedure is applied also for precipitation P and evapotranspiration ET. Therefore,
an integrated prediction of M by multiple variables P, ET, R can be expressed by

L=AX+AMB,
X = (ATc Ay 1ATC L,
H=C;!'Clm,

AM = (Lyps — AX)H,

(3.27)
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| A priori dataset for training |

River runoff R Total water storage M
v v
Build up model for R Subtracting seasonal mean from M
R=A-X, (3.26) AM =M -M (3.23)
Least-squares collocation with parameters
R=A-X,+AM-B (3.22)
training
A

Prediction matrix H and parameters Xg
X =(ATCA)ATCR
H =Cqt Cay (3.22)
¥
Predicting AM by R,
AM =Ry, -AX)H  (3.24)

\

Predicted total water storage M,
M,, =AM +M  (3.25)

Observation R

'obs.

Figure 3.6: Flowchart of predicting total water storage by river runoff using least-squares collocation with param-
eters.

where L = [P ET R] is as a prior joint dataset for training parameters X and prediction matrix
H, Lops = [Pobs ETops Robs) is as joint observation matrix for prediction. Accordingly, X =
[Xp Xpr XR] contains model parameters for P, ET, R.

Briefly, in this collocation model, the model parameters of hydrological variables P, ET, R are
estimated by least-squares adjustment, and simultaneously the total water storage residuals
AM are predicted by least-squares prediction, based on the adjusted residuals from P, ETR
observations.

In our application, we implement LSC to predict AM in 26 catchments, which are distributed
globally. The training period is from 2003 to 2010, and the prediction period is from 2011 to
2016. Results are shown in Figure 3.7 for the four catchments (Amazon, Yangtze, Mackenzie,
Lena). In Figure 3.7, the combined prediction from P, ET and R is more stable than the predic-
tion by P, ET, R individually. However, the prediction errors are still significant, especially for
Lena and Mackenzie. Distinct discrepancies between predicted TWS and observed TWS from
GRACE indicate insufficient prediction accuracy. The performance of least-squares collocation
on TWS prediction in four catchments is quantitatively summarized in Table 3.2. Negative
NSE and CNSE values reveals the unsatisfactory performance of the least-squares collocation,
despite the high correlation between predictions and observation from GRACE. In short, the
TWS is not well modeled by this least-squares collocation with parameters approach.

Least-squares prediction To model the observations in a non-parametric way, we refer to
the seasonal mean, due to the seasonality of hydrological observations. Therefore, we derive
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Figure 3.7: Estimations of total water storage change for (a) Amazon, (b) Yangtze, (c) Mackenzie, (d) Lena, respec-
tively, by Least-Squares Collocation on a linear-fit model of observations using precipitation, evapotranspiration
and runoff.

the residuals from observation time series by removing the cyclo-stationary mean instead of a
harmonic modelling in (3.26). Thus, we have

AR=R—-R. (3.28)
Different from (3.22), in the least-squares prediction (LSP), now the observation variable R is

directly associated with the predictand M, getting rid of a mathematical model. Referring to
(2.40), the AM is predicted by AR in form of

AM=AR-H, (3.29)

in which H the prediction matrix to estimated. As a consequence, the prediction matrix H is
obtained via

H = CxiCru - (3.30)

In (3.30), both the covariance matrix Cgr and cross-covariance matrix Cgy; are calculated based
on the residuals AR and AM. Therefore, the predicted TWS M. is eventually obtained by

AM = ARyps - H = ARopsCrpCrM ,

N (331)
Mpre = AM + M.

We summarize the LSP on predicting total water storage M by a flowchart in Figure 3.8. Com-
paring with Figure 3.6, the LSP simplifies the prediction procedure in the training session.



64 3.2 Modelling terrestrial water mass change by hydrological variables

| A priori dataset for training |

River runoff R Total water storage M
v v
Subtracting seasonal mean from M and R
AM =M —-M (3.23)
AR=R-R (3.28)

v

Least-squares prediction
AM =AR-H (3.29)

. training

Prediction matrix H
H=Cw Cou  (330)

v
Predicting AM by AR
AM =AR, -H  (3.31)
Predicted total water storage M,
M, =AM +M  (3.31)

Observation R,

Figure 3.8: Flowchart of predicting total water storage by river runoff using least-squares prediction.

Similarly, we apply the same procedure as well for precipitation P and evapotranspiration ET.
To combine all the variables in the regression model, we expand the training dataset from R to
L = [AP AET AR], and observation dataset from Rgps t0 Lops = [APops AETgps ARops), Subse-
quently the (3.27) becomes

AM=L-H,
H=C;/Cum, (3.32)
AM = Ly H .

Using the same training and predicting period as in the LSC, the predictions by LSP at residual
level are depicted in Figure 3.9. Again, the estimation of TWS by assimilating of P, ET and R
shows better agreement in the four catchments than prediction from individual variable, with
respect to the observations from GRACE. However, the level of prediction error is still high.
Comparing visually with Figure 3.7, the quality of estimation seems slightly improved, al-
though the discrepancy between prediction and observation from GRACE is still significant.

Performance of regression by LSP and LSC  To evaluate the performance of the two
approaches, we refer to the statistical metrics: correlation coefficient, NSE, CNSE and PBIAS.
As listed in Table 3.2, evaluation results in the four catchments are calculated. Comparing with
the LSC based on a harmonic model L = AX, the LSP, directly implemented on the residu-
als, represents a better prediction for the TWS change in the four catchments, according to an
overview of Table 3.2.
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Figure 3.9: Estimations of total water storage change for (a) Amazon, (b) Yangtze, (c) Mackenzie, (d) Lena,
respectively, by Least-Squares Prediction on observation residuals using precipitation, evapotranspiration and

runoff.

Table 3.2: Performance of least-squares prediction and collocation using precipitation, evapotranspiration and
runoff.

Basin Observations Least-squares prediction Least-squares collocation
R NSE CNSE PBIAS R NSE CNSE PBIAS
Amazon p 077 059 —-293 014 0.64 017 —423 —0.04
ET 087 070 —0.60 0.36 0.86 073 —0.74 0.26
R 0.80 0.63 —1.90 014 0.80 021 —405 011
P,ET,R 091 0.81 —0.15 0.20 0.87 0.74  —0.68 0.09
Yangtze p 040 014 -868 —-045 051 -115 —5.66 0.44
ET 073 046 —0.77 0.33 0.76 0.55 —0.40 0.36
R 046 021 -10.15 017 056 —-054 376 —0.14
P,ET,R 0.74 049 —0.70 0.24 0.66 017  —1.56 0.29
Mackenzie p 053 026 —464 —0.01 048 —-0.88 —5.66 0.34
ET 072 047 -1.16 020 0.73 0.33 —1.38 0.16
R 065 039 —-270 025 044 234 -10.80 0.39
P,ET,R 0.81 0.64 —0.53 0.04 0.77 032 —-141 0.22
Lena p 045 012 —-439 -121 052 -116 =579 —4.07
ET 070 032 —-072 —-054 0.64 040 —0.97 045
R 067 040 151 054 048 —-040 342 0.21

P,ET,R 071 036 —-070 —0.45 0.63 023 —-143 —-048
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The values of PBIAS reveal the bias with respect to observed time series. An extreme over-
estimate by P is done by LSC for Lena. By comparison, using LSP improves the accuracy of
the prediction, according to the decreased bias. From Table 3.2, the better performance of LSP
from combined variables is demonstrated by higher correlation, NSE, CNSE in these four catch-
ments, despite PBIAS does not represent notable decrease of bias than other schemes. Unlike
LSP, the TWS variations in Yangtze and Lena are ideally estimated by LSC using individual
ET. The cyclo-stationary variability of ET in Yangtze and Lena probably leads to this better
performance of LSC than other variables. This indicates that the performance of LSC depends
on the accuracy of the mathemathical model for variables.

In order to realize the different performance from the two approaches, we therefore look at the
covariance matrix of prediction model errors. The error covariance matrix is estimated using
(2.43) and (2.47). From Figure 3.10, LSP on P and the ensemble of P, ET, R anomalies evidently
reduce the magnitude level of errors, comparing with the error covariance from LSC. The error
covariance of ET, R are relative at the same level for LSP and LSC. This explicitly explains the
different performance of LSP and LSC in Table 3.2.

(a)P (c)R (d)P,E,R

LSC with parameters
o

LSP

H T E T E T s
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Figure 3.10: Covariance performance of prediction errors of two approaches: least-squares prediction and colloca-
tion, using (a) precipitation, (b) evapotranspiration, (c) runoff, and (d) combining all of them.

From Table 3.2, prediction from multiple variables with the preference of LSP approach pro-
vides more reliable predictions of TWS in the four catchments, which are under different
climatic conditions. Figure 3.10 reveals the preference of LSP approach for TWS prediction.
Therefore, it indicates that modeling the TWS change in catchments by an assimilation scheme
of multiple variables is our optimal choice, using LSP approach. However, the estimations
by LSP are still not good enough. Considering the time-invariant time lag between TWS and
P,ET, R in most of catchment (see 3.2.2), a more adaptive approach needs to be developed.
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3.2.4 Estimation by principal component regression

Variability of modes in observations In order to identify the different type of variability
in hydrological observations, a PCA decomposition is performed on these observations. As
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