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§ 1. Introduction. The dual norm of a scalar absolute (L)-norm, 

i. e. an (AL)-norm on a vector lattice, is an absolute (M)-norm 

or an (AM)-norm, and more precisely an order-unit norm. Con- 

versely, an absolute (M)-norm has as its dual an absolute (L)- 

norm. These and other well-known results about (AL)-norms 

and (AM)-norms go back to K akut an i [9] and have been 

generalized in various ways. Two important directions, in which 

generalizations have been made, were shown by Edwards [5] 

and Ellis [6] to the one side and F. L. Bauer [1] to the other. 

Edwards and Ellis introduced the notion of a “cone-base” 

norm, proved theorems concerning the duality of order-unit and 

cone-base norms and there by generalized results of Kakutani 

about norms on vector lattices in the sense of more general 

orderings on the space the norms are defined on. On the other 

hand Bauer considered vector-valued norms on vector lattices. 

He formally carried over the notions of an (AL)-norm and an 

(AM)-norm from the scalar case to the case of vector-valued 

norms, introduced an appropriate notion of regularity for vector- 

valued norms and proved [1] among other things that a regular 

(AL)-norm possesses as its dual a vector-valued “order-interval” 

norm, i. e. the corresponding generalization of order-unit norms 

to the case of vector-valued norms. The introduction of the 

notion of regularity is due to the fact that not every vector- 

valued norm has a reasonable dual norm. A scalar norm always 

possesses a dual norm and therefore is regular. Accordingly, 

F. L. Bauer obtains one of the theorems of Kakutani men- 

tioned above as a special case of his theorem about vector-valued 

norms. Bauer also raised questions, which do not appear in the 
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scalar case. For instance, he asked for a necessary and sufficient 

condition for the regularity of (AL)-norms and proved [1] a 

“pretty good” necessary condition for the regularity of an (AL)- 

norm. We will show in theorem 8.7 that this condition is also 

sufficient. 

The aim of the present paper is to bring together the two 

directions mentioned above, in which the results of Kakutani 

have been generalized, i. e. to define comprehensive notions and 

to prove corresponding duality theorems. This task is accom- 

plished with the concept of vector-valued absolute-monotone 

(l)-norms and (m)-norms, (al)-norms and (am)-norms in short, 

on ordered vector spaces in the following sense. The (al)- and 

(am)-norms are identical with the classical (AL)- and (AM)- 

norms, respectively, if the underlying ordered vector space is a 

vector lattice (§ 8). In the case of scalar norms on ordered vector 

spaces we have the following relations. Every (al)-norm is a 

cone-base norm and every cone-base norm which is itself the 

dual of an “approximate order-unit” norm [12] is also an (ab- 

norm. Similarly a scalar (am)-norm is always an approximate 

order-unit norm and every order-unit norm is an (am)-norm. 

The (al)- and (am)-norms can be generalized without difficulty 

in such a way that in the scalar case the (al)-norms are even 

identical with the cone-base norms and the (am)-norms with the 

approximate order-unit norms. To this end one has to substitute 

in some definitions the relation with the relation '<’, i. e. < 

and =r, or to require that some properties usually required for 

the closed norm balls should hold only for “weakly-open” norm 

balls [11]. Corresponding generalizations of (al)- and (am)-norms 

will be treated in a subsequent paper of the author entitled 

‘Duality of vector-valued monotonie norms on ordered vector 

spaces’, in which duality theorems beyond the above scope are 

proved by topological means. 

Let us summarize the contents of the paper succinctly. From 

§§ 3-5 we develop the new concepts and duality theorems. In § 8 
to the discussion about vector-valued norms on vector lattices 

there will be added some new results. Before coming to the 

duality theorems we prove new theorems about general regular 

norms and introduce the new notion of a ‘complete regular’ norm 
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(§ 2). The central notion of an order-interval norm is investigated 
in § 6. There the close relation between order-interval norms, 
generalized absolute value operators and also sublattices of 
ordered vector spaces will become apparent. Conditions for 
regularity of (al)- and (am)-norms are the object of § 7. 

Notation. Throughout we use the following notations. V* is the 
space of all linear functionals on a vector space V. If M C V, 
Lin(M) denotes the subspace of V generated by M. Let (V, Q) 
be an ordered vector space. In context with an order relation 
we use < in the usual meaning. If x, y, z E V, we frequently 
write x, y < z instead of # < z and y < z. C°g denotes the cone 
of all semipositive functionals contained in V*. V°: — C°e — C°g. 

f < g for /, g £ V* means fix) < g(x), VzG Ce, where CQ: 
~ {x EL V : o < xj. The ordering determined by C°e is called the 
dual ordering of Q in V*, V° the order dual space of (V, Q). The 
composition of mappings f and g is denoted by / • g. The natural 
ordering of functionals on a set M is denoted by <*. We have 

/ g, if f(x) < g(x)< V * E M. inf, A and inf0 A denote the 
infimum of the elements of a set A with respect to the natural 
and dual ordering, respectively. 
This paper is dedicated to my dear teacher, Professor Dr. Dr. h. c. 
Friedrich L. Bauer, who gave the impulse for it. 

§ 2. Regular and completely regular norms. 

Let V be a vector space over the real scalar field R and {77, a) 
an ordered vector space over R with Ca as its positivity cone. 
A norm p on V with values in 77 is a positive-definite symmetric 
sublinear mapping of V into 77, i. e. a mapping with the follow- 
ing properties. 

(p-d) o < p{x) and (p(x) — ° =► x — o), 

(s) p(x) =/>(— x), 

(si) P(x +y) < p(x) + p(y), p (fx) = Ip (x) 

for all x,y E F, 2 G R, o < A. Together with a norm/» one often 

considers the indexed family Kp of its norm balls or [11] inverse 
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predomains Kp[y\ : = {x E V: p(x) < y} for all y EL H. p(x) 

= inf {y E H \ x E Kp [y]} holds. It is clear that in general a 
norm is not determined by one single norm ball, as it is the case 

for scalar norms. If y Ca, then Kp[y\ = 0. 

As is usually done for scalar norms, we call a norm pA the 

‘dual’ norm of p, if it associates to each bounded linear functional 

on Fa linear ‘least upper bound’. We shall see that in the general 

case of vector-valued norms exactly the regular norms have a 

dual norm. 

However one gets to different notions of regularity and corre- 

spondingly to different dual norms, depending on which mappings 

of H or C„ one admits as upper bounds for functionals from V*. 
In the following we define ‘regular’ norms and ‘completely regular’ 

norms. In the first case all the semipositive linear functionals are 

allowed as upper bounds, in the second case all the semipositive 

superlinear mappings of Ca in R. 

We suppose throughout that Ca is generating, i. e. Ca — C„ 
= H. Let p be an W-valued norm on V. We call y' E C°a a positive 
linear upper bound of f E V* and correspondingly f bounded 
by y', if /(x) < y' 'pipe) for all x E V- The set of all positive 

linear upper bounds of / is denoted by Bp[f], Bp[f] : = {y' E Cb : 

f(x) < y' • p(x), \/ x E V). Exactly for all bounded / E V* we 

have Bp [/] =j= 0. The set of all bounded linear functionals from 

V* forms a subspace Vb of V*. p is called regular, if for all 

/ E Vh the set of bounds Bp [/] contains a least element with re- 

spect to the dual ordering of a in H°. Since a least element of 

Bp[f] is uniquely determined and is itself the infimum of Bp [/], 

we have 

(2.1) p is regular ^ there is a unique mapping pà : Vh —>- C°a, 
such that for all f E Vb 

(i) /(/) = inf0 Bp\f\ and 

(ii) p\f) E Bp[f], i. e. f{x) < p\f) -plx), VxEV 

(Hôlder inequality) and o <^>d(/). 

That pA is a norm is easily verified. pA is called the dual norm of p. 
The following equivalence is sometimes useful. Let v : Vb —*■ C\. 
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(2.2) p is regular and v is the dual norm of p ^ 

V/ G v\ / e c°a: (v(f) <y'~y' E Bp[f\), i. e. 

(/ e Kv[y'] <=>/ e 

The next description of regularity does not contain pA explicitly. 

(2.3) p is regular ^ V / E Vh : 3 y' E H° : y' = mf0Bp[f] 
and / E Bp[f}. 

Each downwards directed set B of semipositive linear func- 

tionals on H possesses an infimum for which, for all y E Ca, 
(infQB) (y) = inf (y'(y) : y' E B} (c. f. the proof of theorem 

2.4). More generally this means that the order dual space H° of 

H is ‘directed-complete’. An ordered vector space is defined to 

be directed-complete, if each subset which is directed downwards 

and bounded from below possesses an infimum. Because of the 

above representation of these infima we get from property 2.3 

a convenient necessary and sufficient condition for regularity. 

(2.4) Theorem, p is regular ^ V / E Vh : Bp[f] is directed 

downwards 

[< : For all y E Ca there exists Uj(y) : = inf (y'(y) : y' E 
Bp [/]}. The additivity of the functional up on Ca follows from 

u/(y) + uAß) = inf {y'(y) + ß'(ß) ■ y', ß' e Bt\f\) < inf 
{y(y + ß) : y' E Bp[f\} < inf {y'(y) + ß’(ß) ■ /, ß' G B,[f]} 
= Uj(y) + Uy(ß). Here the directedness of Bp[f] is only needed 
for the proof of the second inequality. up is also positive-homo- 

geneous and possesses therefore a linear extension ^ on H. Since 

for all y' E Bp [/] and x E V the inequality f(x) < y' • p(x) 
holds, f(x) < inf {y' • p{xr) : y' E Bp[f\) = uf(p(*)), i. e. 

ü/ E Bp[f~\. Apparently we also have üp = inf0Bp[f], i. e. p 
is regular.] 

The notion of ‘complete regularity’ is narrower, but possesses 

many applications. Completely regular are the scalar norms, the 

absolute-value mapping on a vector lattice, the norms with the 

decomposition property [4], „spaltbare“ norms [7] as well as 
regular norms in the sense of Robert [13] or Bode [3]. Inter- 
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esting is also that the dual norm of a regular (AL)-norm on a 
vector lattice is always completely regular (c. f. theorem 8.8). 
Several somewhat differing notions and applications thereof will 
be discussed in a subsequent paper 'Regular vector-valued 
norms’ by the author. 

We consider a semipositive superlinear functional q on Ca, i. e. a 
mapping q : Ca —*■ R with the properties o < q(x) and q(x) + 

ç(y) < ç(x -f y). gßx) = Ay(*) for all x, y E Ca, A E R, o < A. 
q is called an upper bound of / E V*, if /(x) < q(p (x)), V x E F. 
The set of all semipositive superlinear upper bounds of / G Vb 

is denoted by Sp [/]. Clearly the functionals from Bp [/] re- 
stricted to Ca are elements of Sp[f\. But in contrast to Bp[f] 
Sp [/] always contains a least element with respect to the natural 
ordering of the set of the functionals on Ca, namely up\ — 
inf<. Sp[f] u/(y) = inf {q(y) : q & Sp[/] }, V y E Ca. This 
will be shown in the following theorem. Let again Kp be the 
indexed family of the norm balls of p. 

(2.5) Theorem. Let / E Vb. iij : = infs# Sp[f~\ is the least ele- 
ment of Sp [/], i. e. UjE Sp [y]. Uj can be represented as follows. 

u/(y) = inf {q(y) :?e^[/]) = sup {/(*) : x E Kp[y]}, 
Vy E Ca. 

r(inf<# T^[/]) (y) = inf {q(y) : q E Sp[f]} is obtained from 
the definition of the natural ordering < . There remains the 
2. equality to be shown. The set {fix') : ^ E Kp[y] } is bounded 
by q(y) for all q E Sp [/]. Because of the definition we have for 

all q E Sp[f] /O) < q (_p{x)), V x E V- But a semipositive 
superlinear functional q is also isotone. Therefore from f(x) 
< q{p(x)) for all y with p(x) < y, i. e. for all y such that 
x E Kp [y] follows also f(x) < q(y). We define Vj{y) : = sup 
{/ (x) : x E Kp [y]} for all y E Ca. Clearly Vj up. From the 
sublinearity of p follows AKp\y\ -f- )J.Kp[ß] C Kp[Ay -f- /uß\ for all 
y, ß E Ca) A, /j, > o, and therefrom the superlinearity of vp. For 
all y E Ca o == p(p) < y, i. e. o E Kp [y]. Therefore o < &y(y), 
V y E Ca, i. e. Vj is semipositive. We obtain vp E Bp [/] and 
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u, < Vj. Now Uj = Vj is proved. Clearly up is the least element of 

wi-J 
Suppose/» is regular. Then the semipositive superlinear mapping 

Uj describes the same set of semipositive linear upper bounds 

of a functional / G Lb as pA. That is the content of the following 

theorem, which is easily verified. 

(2.6) Theorem. Let p be regular. Then for all / G Vb and 

/ G Cl we have pA{f) < ÿ ^ uf(y) < y'(y), V y G Ca. 

An //-valued norm on V is called completely regular, if for all 

/ G Vb the least semipositive superlinear upper bound of / is 

linear. Let Bp\f\ denote the set of all functionals from Bp\f\ 

restricted to Ca. Then the complete regularity of p is equivalent 

to the property V / G Vh : infs< Sp[f] G Br
p[f]. Therefrom is 

easily obtained 

(2.7) Lemma. If p is completely regular, then also p is regular 

and we have for all / G r, y G Ca 

PAU) (y) = sup {/(G) : * G Kp\y\}, therefore 
sup {fix) : x G Kp [y]} = inf {/(y) : / G Bp[f]}. 

§ 3. (l)-norms and (m)-norms. 

In this paragraph and all the following ones we consider 

vector-valued norms on ordered vector spaces. We introduce the 

concepts of an (l)-norm and an (m)-norm and show, that the 

dual norm of a regular (l)-norm is an (m)-norm. Conversely, the 

dualization of certain (m)-norms leads to (l)-norms. 

Let (V, Q) and (//, a) be ordered vector spaces over R. The 

positivity cones Ce in V and Ca in H are always supposed to 
be generating. Let p be an //-valued norm on V. p is an (l)-norm, 

if p is additive over C , i.e. if 

(1) V x,y G ce : p{x + y) = p(x) + p(y). 

8 München Ak. Sb. 1981 
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p is an ('rn)-norm, if p is directed over Cg, i. e. if 

(m) V x, y E Ce, y E H : (p(x) < y A p(y) < y) => 

3 * p(z) < y. 

Both properties of the norm p are already determined by the 

restriction of p onto CQ. Let p be an (/)-norm. The restriction 

of p onto the generating cone Cg can be linearly extended to F 

in a unique manner. This extension is called the linear mapping 

associated with p and is denoted by Bp. We have therefore 

V x E CQ : Bp(x) — p(x). We show that 

(3-i) V * G V : Bp(x) <p(x). 

r Let x E F. Since CQ — ' = F, we have x = y — z with 
certain y, z 0 Ce, hence (x y + z) = Consequently 

2 • Bp(y) =p(x +y + z) <p(x) + p{y + z) = p{x) + Bp(y + z) 
= p(x) + 2 • Bp(y) — Bp(x), from which we obtain Bp(x) 

<P(x)-J 

An (l)-norm p : F —»• H is always symmetric-monotone, i. e. 

(3.2) \/ x, y EL V : —y < x < y => p(x) < p(jy). 

\ Let x, y E F, —y < ^ < y. Then we have o < # + < 2y 

and o < —x + y < 2jy, consequently p(py) = p(x -j- y — x y) 
= p (x + y) + p (— x + y). On the other hand p{2x) = p (x -j- y 

+ * —y) < pix + y) + p(x —y) = p(x + y) + p(y — x) =p(?y). 
Hence p(x) < p{ÿ)-\ 

In those cases we mainly deal with in this paper the (m)-norms 

have a somewhat more restricted property than is expressed by 

(m), because they are ‘directed’. This will be shown for the 

absolute-monotone (m)-norms treated in § 5. Here we call a 

mapping v of F into H directed, if V x, y E F, y E H : 

(v(x) < y A v(y) < y) => 3 2 G V : x z A y < z /\ v(z) < y. 

If this property holds only for all x, y E CQ, then v is called 

directed over Ce, as was already done for a norm p in definition 

(m). 
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Directed are also those (m)-norms p, whose norm balls 

Kp [y] = {x E V : p{x) < y} with y E Ca contain each a 
greatest element e(y). These norms we call (m)-norms with 

maxima. Clearly, to each (m)-norm with maxima there corre- 

sponds a mapping ep of Ca in Cp, the associated 7napping ep, 

such that Kp[y] C [—ep(y), ep(y)] and ep(y) E Kp[y\ for all 

y G Ca. For ep and all ^ G V, y & Ca we have 

(3-3) —x, x < ep(p(x)) and p{ep(y)) < y. 

If ep is linear, then the unique linear extension of ep onto H is 

also called the associated mapping. 

Properties of mappings v into ordered vector spaces can 

frequently be characterized by properties of their inverse pre- 

domains Ky\y\ = {x G V : v(x) < y}, y E H. An example 

thereof is the following characterization of the directedness of a 

mapping. The proof follows immediately from the definitions. 

(3.4) Theorem. Let » be a mapping of V into H. Then we have 

v is directed ^ V y E H : Kv[y] is directed. 

Now we come to the problem of dualizing (l)-norms and (m)- 

norms. Let p be an //-valued norm on V. For any / G V* let Bp [/] 

be the set of all linear upper bounds of / from C°a. Conversely, start- 

ing from a linear functional y' E CjJ one can consider the set of all 

linear functionals/ G V*, which are bounded byy'. Le., the relation 

y is an upper bound of/’ generates not only the family Bp but 
also a family of subsets of V*. We define for y' E C°a K

A
p\y'\ 

■ = {f E V* : fix) < y' ■ p(x), \/ x E V} and call KA
p the dual 

family of the family Kp of norm balls of p. We have / G Kà
p\y'~\ 

N y' G Bp[/]. For proving properties of KA
p[y'~\ it is of impor- 

tance that Kp[y'] is the polar set of the unit ball of the seminorm 

y' ‘/> i- e., KA
p\y'\ is equal to the unit ball of iy' • p)A, since we 

have for y' E C°a : f E KA[y'] & (\/x G V : f{x) < y' ■ p (x)) ^ 

f x E V\{y' • pfp) < 1 => ffx) < 1). For example one has 
immediately that KA

p\y'~\ is convex and symmetric. 
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(3.5) Lemma. Let p : V —>- H be an (l)-norm and Bp its as- 

sociated linear mapping, i. e. Bp(x) — p(x), V x G C . Then we 

have for all y' G C° : Kp[y'] contains B J (y') = y' • Bp as its 

greatest element; in particular KA
p\y'\ is directed. 

I" / G KAp\y’\ means f(x) < y' • p(x), V x G V. Therefore 

f < y' ■ Bp in the dual ordering in V*. On the other hand from 

3.1 follows y' ■ Bp(x) < ÿ ■ p(x), V x G V, \. e., y‘ ■ Bp G 

(3.6) Lemma. Let / : V H be a directed (m)-norm. Then for 

all y G Ca and /, g G 0° 

sup /(/^[y]) + sup /(XJy]) = sup (/ + /) (ATJy]). 

rsup f(Kp[y]) + supg(Kp[y]) = sup (/(^[y]) + g(Kp[y])) = sup 

{/(*) + TW : * G Kp[y\, y E JCp[y]} > sup {(/ + g) (x) : 
x G Kp [y] }• For the proof of the converse relation let x, y G 

Kp [y]. Because of the directedness of / there exists a ^ G Kp [y] 

with a: < ^ and _y < z. Since f,g >0, we have /(.*) + g{y) 

</(*)+ g 0) = (/ + g) 0)-j 

In the case of (m)-norms with maxima and an associated mapping 

which is even linear the following Lemma holds. 

(3.7) Lemma. Let p \ V —* H be an (m)-norm with maxima 

and a linear associated mapping Ep : H V. Then for all y' G CQ
a, 

fec°e 

/ G Kp[y'] N E'l(j) < y', i. e., / • Ep(y) < y' (y), VyGf, 

r> : Let y G Cc. Because of 3.3, p(Ep(y)) < y, therefore 

/(^(y)) < r''^(^(y)) < /(y)- < : Let * G V. From 3.3 
follows f(x) < f(Ep ■ p(x)) < y' • p(x).J 

"I he following propositions follow essentially from the Lemmas 

3-5 and 3.7. They describe the relation between the order dual 

space V° : = C°e — C°e of (V, Q) and the space Vh of linear 
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functionals which are bounded with respect to an (l)-norm or 

an (m)-norm. 

(3.8) Lemma. Let p be an (//)-valued norm on V. Then we have 

1. p is an (l)-norm > FbC and Vb is directed. 

2. (V* G V : 3 z G CQ : x < z A p{z) < p(x))1 > Vb is order- 

convex with respect to the dual ordering of V*. 

3. p is an (m)-norm with maxima and a linear associated 

mapping > V° C Vh. 

r 1.: / G K\\y'\ > / G [—y' ■ Bp, y' • and y' • Bp G ^[y']. 
2.: Let £7 h G Lb, i. e., < y' • p{pc), h(x) < ß' - pipe) for all 

x ÇL V and certain y', ß' G C°a. Let g </ < h. For all x G F 

we have with appropriate z Çz CQ x <. z and (h—-f) (x) < (h—-f) 
(z) < (A—-^) (2) < (y' + ß')-p{z) < (y' + /?') ■ p{x). We obtain 

h—/ G Fb. Analogously, /—g G Fb, hence / G Fb. 3. follows 

immediately from Lemma 3.7.J 

Note that the 2. proposition of Lemma 3.8 is applicable in 

particular to directed (m)-norms. 

Let p : V —*■ H be a norm. If p is regular and has a dual norm 

pA, then the relation between the dual family KA of p and the 

family Kpd of the norm balls of pA is very close. Namely they are 

equal for all y G C°a, i. e. 

(3-9) Vy'G C%:K\[y'] =^/[y'], 

as one can see from the definitions. Because of this coincidence 

the following theorem is obtained from Lemma 3.5. 

(3.10) Theorem. Let p : V —»- H be a regular (l)-norm with an 

associated linear mapping Bp : V —>- H. Then the dual norm 

pA is an (m)-norm with a linear associated mapping, which is 

identical with Bj : H° —> Vb. 

1 We call a norm with this property a positive-directed, norm. 
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Analogously we obtain from Lemma 3.7 the corresponding theo- 

rem for (m)-norms which have a linear associated mapping. 

(3.11) Theorem. Let p : V —H be a regular (m)-norm with 

maxima and a linear associated mapping Ep : H —>■ V. Then 

the dual norm pA of p is an (l)-norm with Ep : Vb —» H° as its 

associated linear mapping. 

Also in the general case of directed (m)-norms we get an analo- 

gous theorem. Here we require that p is completely regular 

instead of being only regular and therefore we can apply Lemma 

3.6. 

(3.12) Theorem. Let p : V —*■ H be a completely regular directed 

(m)-norm. Then the dual norm pA is an (l)-norm. 

§ 4. Absolute-monotone norms. 

Absolute-monotone norms are a generalization of the absolute 

and monotone norms on vector lattices [1]. We prove a duality 

theorem, which is essential for the proof of the duality theorems 

in § 5. The specification of the results to the case of norms on 

vector lattices is accomplished in § 8. 

Let (V, Q) and (H, a) be ordered vector spaces over R and v 

a mapping of V into H. v is called symmetric-monotone, if 

V x,y G V : —y < x < y => v(x) < v(y). A symmetric-mono- 
tone mapping v is also monotone over C , i. e., V x, y G CQ : 

x < y => v(x) < v(y). v is called symmetric-directed, if V x G V, 

y G H : [y (pc) < y A r(—x) ^ y) =>■ B 7 G V : x <) y A —^ < y A 

v(y) <y. If r is symmetric-monotone, symmetric-directed and 

symmetric, then we define ^ to be absolute-monotone. 

A symmetric mapping r is symmetric-directed, if and only if 

V A G fi : B y G V : x fC y A —ar < y A v(_y) < r(^). There- 

from follows immediately property (i) in the following 

(4.1) Lemma, v is absolute-monotone >» 
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(i) \/ X E. V: 3 y E V: x E [—y, y\ A V(X) = v(y), 

119 

(ii) V x E V : v(o) < v(x). 

f(ii): Let x E V. Because of (i) x E [—y,y\ and v(x) = v(y) 

for a certain y E V. Consequently o < y, hence o E [—y, y] 

and therefrom v(o) < J>(y) = v(x).j 

Because of (ii) an absolute-monotone and positive-homogeneous 

mapping v is semipositive i. e. o < v(x), V x E V. From (i) 

follows the important fact that the correspondence between 

absolute-monotone mappings and their restriction onto the cone 

CQ is one-to-one. Let v be a mapping of V into H. We denote the 

restriction of v onto C with vc and call it the generator of v. 

Then we have 

(4.2) Lemma, v is absolute-monotone > V x E V : 

v(x) = inf {vc (y) : —y < x < y} = min {vc (y) : —y < x < y }. 
e e 

Absolute-monotone norms p satisfy the following equivalent 

properties. 

(i) p(x) = inf {p{y) : —AT, x <yj, 

(ii) p{x) = inf {p(y -f s) : x = y — z, y, z £ Ce}. 

Because of the one-to-one correspondence of absolute-monotone 

mappings and their generators it is meaningful to ask for proper- 

ties of v and vc which likewise correspond to one another. As 

an example thereof we note the following 

(4.3) Theorem. Let v : V —H be absolute-monotone. Then 

v is sublinear ^ vr is sublinear. 
ce 

T-< : Let x,y E V. v(x) + v(y) = inf {vc (x) : —x < x < x) 
e 

+ inf {vc (47) ; —y < y <47} = inf {ly (pc) -(- vc (ÿ) : — x <. x 
0 0 e ' 

< x, —47 <y <47}. Because of [—x, x\ + [—ÿ, 47] C [—x—47, 
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x-\-y\ follows v(x-j-y) = inf {vc (z) : —z < x-\-y < z) < v(T) 

4- v(_y). Similarly we obtain v(Ax) = Av(ar), V x G F’, A > o.J 

In the following theorem the properties introduced above are 

characterized by properties of the inverse predomains with re- 

spect to v [11] Wv[y] — {x G V: v(x) < y }, V y G H, i. e., in 

the case of norms, by properties of their norm balls. The proofs 

result directly from the definitions. 

(4.4) Theorem. Let v be a mapping of V into H. Then 

1. v is symmetric-directed ^ V 7 G H : K„[y\ is symmetric- 

directed4 i. e. x G Kv\y\ A —x G ^,[y] => 3 y G ^[y] : 

1; A —A: < _y. 

2. r is symmetric-monotone V y G H : A”,, [y] is symmetric- 

order-convex4 i. e. 2: G ÜTv[y] A —x G //„ [y] =► [—x, x] C 

KM- 
3. v is absolute-monotone X V y £ // : Kv [y] is absolute- 

order-convex4 i. e. symmetric-order-convex, symmetric-di- 

rected and symmetric. 

4. v is absolute-monotone ^ V y G H : Kv [y] — |^J {[—x, x\ : 

v(x) < y} ^ V x G V\ Kv[v(x)] = (J {[—y, y] : y G 

V-1 {v(x)Y}. 

The remainder of § 4 aims at the duality theorem 4.7 for 

absolute-monotone norms. 

Let p be an //-valued norm on V and Kp the dual family of the 

family of norm balls of p, i ,e.KA
p[y'] = {f G V*\f{pc) < y' ■ p(x), 

\/ x E V] for y' G C°. 

(4.5) Lemma. Let y' G C°a. We have 

1. p is symmetric-directed > KA
p\y'~\ is symmetric-order-convex. 

2. p is symmetric-monotone > K'p\y'\ is symmetric-directed. 

3. p is absolute-monotone > Kp[y'] is absolute-order-convex. 

1 See also [2]. 
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[l. Let g G [—-/,/] and —-/,/ G KA
p\y'\. For all * G V there 

exists a y G V such that x <. y, —x < y and p(y) </(/). We 

have g(x) <f(ÿ) < ÿ ‘ p(y) < y' ‘ P(x), therefore ^ G i/S[/]. 

2. Let —-/,/ G Kp [y']. Since/is bounded, there exists q(x): = sup 

/([—x, x\) for all x G CQ. We have q(x) < y' ' p(x), V ^ G CQ. 

Since q is superlinear and y' • p is a seminorm on V, according 

to a theorem of Bonsai 1 (see [14] p. 13) there exists a linear 

functional g such that q(x) < g(x) V x G Cg and g(x) < y' • p(x) 

V x G L. From the definition of q follows / < g and —f < £■. 
On the other hand we also have g G KA

p[ÿ\J 

We remark that in the proof of 2. and thereby 3. the theorem 

of Hahn-Banach is used in the form of a theorem of Bonsall [8]. 

This is the only place in the present paper in which the theorem 

of Hahn-Banach is directly used. 

(4.6) Corollary. Let p : V —*■ H be an absolute-monotone norm. 

Then Vh is an ideal in V°, i. e., Vb is an order-convex and 

directed subspace of V°. 

Now let p : V —>- H be a regular norm and pd its dual. In 3.9 

we have mentioned that for all y' G C°a Kp[y'\ = i/d [/]. Be- 

cause of this equality we obtain from theorem 4.4 together with 

lemma 4.5 the following duality theorem. 

(4.7) Theorem. Let p : V —*■ H be a regular absolute-monotone 

norm. Then the dual norm pA is also absolute-monotone. 

§ 5- (al)-norms and (am)-norms. 

If an (l)-norm is absolute-monotone, then we call it an (ab- 

norm. An absolute-monotone (m)-norm is called an (am)-norm. 

The duality theorems for (al)- and (am)-norms result from the 

combination of the corresponding theorems in §§ 3 and 4, exactly 

as it happens for the definition of (al)- and (am)-norms. Before 

we write down these theorems let us investigate special properties 
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of (al)- and (am)-norms. If the ordered vector spaces underlying 

the (al)- and (am)-norms are even vector lattices, then these 

norms coincide with the classical (AL)- and (AM)-norms, re- 

spectively. In the following let CQ and Ca be generating again. 

Since an absolute-monotone norm p is determined through its 

one-to-one correspondence with its generator, an (al)-norm is 

determined through its one-to-one correspondence with its as- 

sociated linear mapping Bp. 

(5.1) Lemma. Let p be an (al)-norm and Bp its associated linear 

mapping. Then we have the following ‘interpolation property’. 

V y,u, v £ V : x,y < u, v => 3 z £ V \ x, y <. z s Bp{z) 
< Bf(u), Bp(y). 

T For y : = —x there is a z such that p(x) — p(y) = p(z) and 

x,y < r. Since / is symmetric-monotone, we have also p(x) < 

p(u) and p{x) < Piv)- P can be substituted with Bp, because 

u, v, z ÇE C . The general case, y being arbitrary, can be ob- 

tained via the transformation x' = x — (x -f- y), y' = y -—i- 

(x -}- y) from the special case.J 

In the following we introduce the concept of an ‘order-convex’ 

mapping and show in corollary 5.4 that an (am)-norm is order- 

convex and directed. To the fore we remark that every directed 

mapping is symmetric-directed and directed over Cg. For sym- 

metric mappings the converse is also true. The proof is simple. 

(5.2) Let v be symmetric. Then we have 

v is directed ^ v is symmetric-directed and directed over 

Cg- 

(5.3) Lemma. Let v : V —*■ H be absolute-monotone and directed 

over CQ. Then 

(i) v is order-convex, i. e. V x, y, z G V, y G H \ 

(y < x < z A v(y) < y A viz) < y) => r(F) < y. 
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(ii) V x, y G V, y G H : (v(x) < y A r(y) < y) => 
3 z E Cg: x, y G [—2, 2] A V(X), v(y) < v(z) < y ; 

in particular, v is directed. 

f(i): First of all, since v is absolute-monotone, the premise 

implies—ÿ < y < ÿ, —2 < 2 < 2 and v(y) < y, v (ë) < y for 

certain y, ir G C . Because of the directedness of v, as noted in 

(5.2), there also is an x with ÿ, z < x and v(x) < y. Because of 

—x “^y^x^z-G-x, i. e. ■—x < at < x, there follows v(x) 
< v(x) < y. 

(ii) : From lemma 4.1 we get ^(L) = r(ar), ^ G [—4:,#], v(y) = v(ÿ), 

y G [—ÿ,ÿ] for certain i,ÿ£ CQ. Since v is directed over C , 

we obtain x, ÿ < z, v(z) < y for a certain 0 G C . Because of 

x,y G. [—•s', •s'] we conclude v(ur), r(y) < v(z) < y.J 

(5.4) Corollary. Let p : V —► H be a norm. Then 

p is an absolute-monotone (m)-norm ^ p is directed and order- 

convex. 

The property of a mapping r : V —* H to be order-convex may 

be characterized by properties of the inverse predomains Kv [y] 

= {x G V : v(ar) <y}, y G F as it is done in the theorems 3.4 
and 4.4. 

(5.5) Theorem. Let v be a mapping of V into H. Then 

v is order-convex ^ V y G H : Kp [y] is order-convex. 

If the norm balls Kp\y\ of an (am)-norm p contain a greatest 

element ep(y) for all y G Ca, then, because Kp\y\ is order-convex, 

Kp[y] is equal to the interval [—ep(y), ep(y)]. In such a case p is 

called an ‘order-interval’ norm. I. e. p is an order-interval norm, 

if V y G La : 3y G V '■ Kp[y] = [—y, y]- Because of corollary 
5-4 together with theorem 3.4 and 5.5 we have 

(5.6) p is an order-interval norm ^ p is an (am)-norm with 

maxima. 



124 Werner Meixner 

In the following we state the duality theorems for (al)- and 

(am)-norms. They arise essentially as corollaries of the corre- 

sponding theorems in §§ 3, 4. First of all we consider the dual 

family KA
p of an (al)-norm and an (am)-norm and in particular 

the relation between Vb and V°. 

(5.7) Lemma. Let p : V —* H be a norm. Then 

1. p is an (al)-norm with the associated linear mapping 

Bp:V-^H>Vy' ECl.Kj[/] = [-Bj(/), Bj(/)]. 

2. p is an order-interval norm with a linear associated mapping 

Ep \ H —*■ V>Vy'G Cl:K\\y'] = U {[-/,/]: 

Ej(f) </}• 

[T. Lemma 3.5 together with Lemma 4.5 (1.). 

2. Lemma 3.7 together with Lemma 4.5 (3-)-J 

It should be noted that for the proof of the 2. proposition of the 

lemma above the theorem of Hahn-Banach is needed indirectly 

via lemma 4.5 (2.). We obtain the following 

(5.8) Corollary. Let p : V —*■ H be a norm. Then 

1. p is an (al)-norm > Vh is an ideal in V°. 

2. p is an order-interval norm with a linear associated mapping 

> Vb = V°. 

(5.9) Theorem. Let p : V —> H be a regular (al)-norm with the 

associated linear mapping Bp : V —> H. Then the dual norm pA 

of p is an order-interval norm, which has the linear mapping 

Bj : H° —> Vh as its associated mapping. 

[Theorem 3.10, Lemma 5.7. (i.)J 

(5.10) Theorem. Let p : V —* H be a regular order-interval norm 

with a linear associated mapping Ep : H —* V. Then the dual 



Duality of Vector-valued (al)-Norms and (am)-Norms 125 

norm pA is an (al)-norm with the associated linear mapping 

Ej : Vh — H°. 

[Theorem 3.11 and theorem 4.7.J 

(5.11) Theorem. Let p : V —*■ H be a completely regular (am)- 

norm. Then the dual norm pA is an (al)-norm. 

[Theorem 3.12 and 4.7.J 

§ 6. Order-interval norms and absolute value operators over ordered 

vector spaces. 

At the beginning of the foregoing paragraph we have claimed 

the consistency between the concepts of (al)- and (am)-norms 

and the classical concepts of (AL)- and (AM)-norms on vector 

lattices. This will be shown in § 8. But the definitions turn out 

to be also adequate, because many theorems about (AL)-norms 

and (AM)-norms on vector lattices can be generalized to (al)- 

and (am)-norms. The parallels of statements for absolute norms 

on vector lattices to the one and absolute-monotone norms on 

ordered vector spaces to the other seem to be most far-reaching 

in the case of orderinterval norms because these latter norms 

induce an operation onto their preimage space which we may 

think of as the formation of an absolute value. In this paragraph 

we shall investigate the relation between order-interval norms p 

and generalized absolute value operators or, equivalently, sublat- 

tice structures in the ordered preimage space (V, Q) ofp. A few of 

the results presently obtained shall be needed in § 7 for the proof 

of necessary and sufficient regularity conditions for (al)-norms. 

Let (V, Q) and (H, a) be ordered vector spaces. As we have 

already defined an //-valued norm p on F is an order-interval 

norm, if 

V y G c„ : 3 y E ce : Kp [y] = {x £ V : p(x) < y } = [—y, y]. 
The associated mapping of an order-interval norm is a so-called 

‘absolute-inverse’ of the norm. Here we call a mapping e : Ca—±Cn 

an absolute-inverse of a mapping v : V —*■ Ca, if 
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(6.1) v y E ca : Kv[y\ = {x E Î7: J>(*) < y } = [—e(y), e(y)] 

or, equivalently, 

(6.2) V X G F, y E ca: v(x) < y <=> —* < e(y). 

If for a mapping an absolute-inverse exists, then it is uniquely 

determined. Conversely, for any mapping e : Ca —- CQ there 

exists at most one mapping v : V —*• Ca such that 6.1 or 6.2 

holds. This is a consequence of the following equations for 

mappings v : V —*■ Ca with an absolute-inverse e : Ca —>- Cg. 

(6.3) v(x) = inf {y E Ca: x E [—e(y), e(yj\}, V x E V and 

(6.4) e{y) = sup {x E V\ v(x) < y} = sup Kt[y\. 

From 6.1 there follows immediately that a norm p\ V —► H is an 

order-interval norm if and only if it has an absolute-inverse. 

A pair of mappings consisting of an order-interval norm p 

and its absolute-inverse e possesses properties which are analo- 

gous to a large extent to those of a Galois connection (lemma 6.5). 

We have p • e • p = p, e • p • e — e, and p • e is a hull operator. 

In order to characterize the operator e • p we introduce the con- 

cept of an ‘absolute value operator’ over an ordered vector space. 

Then an order-interval norm proves to be decomposable into an 

absolute value operator and an isomorphism between subsets of 

V and H. 

A mapping h of an ordered vector space (V, Q) into itself is 

called an absolute value operator over (V, Q), if 

(i) h is symmetric-extensive, i.e. V x G V : —x, ar < h(x), 

(ii) h is symmetric-monotone, i. e. V x, y E V '■ —y < x < y 

=» h(x) < h(y), 

(iii) h is idempotent, i.e. h2, = h. 

The image li(V) of V with respect to h is equal to the set of 

invariant elements with respect to h and is called the kernel of h. 
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(6.5) Lemma. Let v : V —*■ Ca and e : Ca —*■ Cg. Then all the 
properties (ii)-(x) follow from (i). 

(i) e is the absolute-inverse of v, i.e. \/ x G V, y G Ca 

v(x) < y <=> —x, x < e(y). 

(ii) e • v is symmetric-extensive, i.e. E V 

—x, x < e • v(x). 

(iii) v • e is extensive with respect to <”1, i.e. V y G Ca 

v ■ e(y) < y. 

(iv) v is symmetric-monotone, i.e. V y G F 

—y * < y => v(x) < 

(v) * is monotone over Ca, i. e. V y, ß G 

y < ß => e(y) < g(/S). 

(vi) v ■ e • v = v and e • v • e = e. 

(vii) e • v is an absolute value operator over (V, Q) with kernel 

*(Q- 

(viii) v ■ e is a hull operator over (Ca, <0*) with kernel v( F). 

(ix) The restricted mappings v|e(c ) and e\v(F) are the inverse 

mappings of each other. 

(x) v\t(c j and e|v(F) are order isomorphisms of e(Ca) onto v(V) 

and of v(V) onto e(Ca), respectively, each with respect to 

the orderings induced by Q and a. 

r(ii) : v(x) < v(x) => —x, A: < e(y(x)). 
(iii) : o < e(y) < e(y) => —g(y), e(y) < e(y) => v(e(y)) < y. 

(iv) : —y,y < e(y(y)) => —*, ar < e(v(y)) => v(T) < r(y). 

(v) : v«y)) < y => v(*(y)) < /? => *(y) < *(£)• 
(vi) : From (iii) it follows that v • e(y(x)) < v(x). On the other 

hand from —x, x < e • v(^r) follows with (iv) v(T) < v(e • v(x)). 

Hence v ■ e ■ v = v. Correspondingly, we have —e(y) < o < e(y) 

< « • »'(e(y)). On the other hand from v • e(y) < y follows with 

(v) e(y • e(y)) < ^(y). Therefore e • v • e = e. 

(vii) -(x) are an immediate consequence of (ii)—(vi).J 
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The foregoing lemma suggests different ways to express when a 

mapping e is the absolute-inverse of a mapping v. 

(6.6) Theorem. Let v : V —*■ Ca and e : Ca —*■ CQ. Then we have 

the following relations between the properties (i)-(x) in lemma 6.5. 

1. (i) £ (ii)-(v). 

2. (i) (vii)-(x). 

[1. < : Let v(x) < y. We obtain eMx)) < e(y). Because of 

—x, ar < e • v(x) we have —x, x < e(y). Conversely, let —x, * 

< e(y). We obtain —e{y) < ;r < e(ï)- Therefrom v(x) < v{e(yfj. 

Because of v • e(y) < y, we have v(ar) < y. 

2. <( : One has to prove (ii)-(v) and then conclude using 1. (ix) 

together with (vii) and (viii) imply (vi). (iv) holds, since e • v is 

symmetric-monotone and v is an order isomorphism onto e(Ca). 

(v) follows in the same way.J 

Theorem 6.6 yields a construction of mappings with an absolute- 

inverse from operators over V and Ca, resp., and an isomorphism 

of their kernels. This is done in the following corollary. 

(6.7) Corollary. Let k : V —> V, l : Ca —*■ Ca be operators, i a 

mapping of h(V) in /(C0). Then the following properties are 

equivalent. 

(i) h is an absolute value operator over (V, Q), l a hull operator 

over Ca with respect to and i an isomorphism of /i(V) 

onto l(Ca) with respect to the induced orderings. 

(ii) e : = • l is an absolute-inverse of v : = i • h. 

The absolute-inverse « of a mapping v is gained from v through 

the relation 6.4. Conversely, v is gained from e through 6.3. 

A consequence of these equations is that there is a one-to-one 

correspondence between mappings and their absolute-inverse, 

as has already been noted. Because of this correspondence we 

can associate certain properties of v and e to one another. 
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(6.8) Theorem. Let v : V —»■ C„ and e : Ca —C be mappings 

such that e is the absolute-inverse of v. Then we have the follow- 

ing equivalences. 

1. v is positive-definite ^ e(o) = O. 

2. v is positive-homogeneous ^ e is positive-homogeneous. 

3. v is sublinear ^ e is superlinear. 

4. v is an order-interval norm ^ e is superlinear. 

f 1. > : e(o) = sup {x E V : v(x) < 0} = o. < : v(o) = inf 

{y E Ca: O < «(y) } = O. r(^) = o =► —x, x < «(o) = O => a: = o. 

2, > : V ^ > o, y G we have v • «(Ay) <~ Ay, -j-v • «(Ay) < y, 

ß E Ca. < : Similarly. 

3. > : «(y) + «(/3) < « • v(e(y) + e(ß)) < «(v(«(y)) -f v(e(ß))) 

< «(y T /?). < : —#, ar <~ « • v(;tr) and —_y, _y < e • v(y) imply 

v(x-\-ÿ) < v(e(v(x)) -T «(v(jy))). Because of « K*)) + 'KKT)) 

< e(y(x) -f- v(y)) we obtain v(x -)- y) < v • «(v(T) + r(y/)) < v(ar) 

+ ”0')- 
4. : If « is positive-homogeneous, then 2«(o) = e(o), i.e. e(o) = o.J 

Let r : V Ca and « : Ca —► (G be mappings such that « is 

the absolute-inverse of v. We next show, that g maps an infimum 

of any subset of Ca into an infimum of its image. Here we have 

to take the infima with respect to the relative orderings of Ca and 

Cg, respectively, which are induced by a and Q, respectively. Let 

A C Ca and a: E Ca. Then ;r = inf,- A means that < a, 

V a E A and V y E Ca : [y < a, V a E A) => y < x. We 
deal analogously, whenever we consider infima or suprema 

relative to orderings restricted to subsets. 

(6.9) Lemma. Let v : V —>- Ca and e : Ca —> Cg be mappings 

such that « is the absolute-inverse of v. Then for A C C , B C Ca, 

x E CQ and y G Ca 

9 München Ak. Sb. 1981 
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1. # = sup A => v(x) — sup v(A), 

2. y = infCaB => e{y) = infc^(5). 

[ l. via) < r(;r), \J a EL A since v is monotone over CQ. Let 

y E H and via) < y, V a E A. Then —a, a < e(y), V a E A, 

hence x < e(y). Consequently, —x, x < e(y). Therefrom 

v(x) < v(e(y)) < y. 

2. e(y) ^ e(/?), V ß E B since e is monotone over Ca. Let f( 

and ;r < e(ß), V ß E B. We have —x, x <. e(ß), hence v(x) < 
v{e(ß)) ^ ß i"or aü ß E B. Therefrom follows vÇx) < y. We 
obtain * 

If (V, p) is a vector lattice, then the infima taken relative to Ce 

are also infima in (V, Q) and, accordingly, the lemma above may 

be extended. I. e. instead of 2. we have 

2'. y = infC"B => e(y) = inf e(B). 

We note the following 

(6.10) Corollary. Let ( V, (?) and (//, cr) be vector lattices, v : V —> C0 

and e : Ca —> Cg. Then 

e is an absolute-inverse of v > e is a A-homomorphism, i. e. 

V y, ß E ca : e(y A ß) = e(y) A e(ß). 

Now, we leave the general part of the theory of order-interval 

norms and turn to those possessing an absolute-inverse which is 

even linear. To this class of norms belong all the completely 

regular order-interval norms. 

(6.11) Theorem. Let v:V—*Ca be a mapping which possesses 

an absolute-inverse e : Ca —»- Cn. Let U : = Lin (e • v(V)). We 

consider the following properties. 

(i) e is linear. 

(ii) is a convex cone with the property C f) U = e (CJ. 

(iii) \f x E V : inf {y E U : — x, x <. y} = e ■ v(x). 



Duality of Vector-valued (al)-Norms and (am)-Norms 131 

(iv) V X E U : 
inf {y E V: —x, x < y} = sup {—x, x} = e • v(x). 

(v) V x G U : 

inf = + v(G)) — e • v(x). 

(vi) V * G V : 

sup {y E U : y < x} = e • v(x) —■ e • v(— x -\- e ■ v(x)). 

Then we have 

1. (i) > (ii)-(vi)- 

2. (ii) H (iü) N (iv)- 

3. (ii) > (v) and (v) & (vi). 

f (i) > (ii): Clearly, e(Cg) is convex and we have e(Ca) C Cg f") U. 

Let x — e(y) —- e(ß) and x E Ce. Since v is monotone over CQ, 

v ' e(ß) ^ v ' e(y) 1 hence v ■ e(y) — v • e(ß) G Ca. Because of (i), 

e(v ■ e(y)) = e(v ■ e(y) —v • e(ß) + v • *(/5)) = f?(v • e(y) —v • e(ß)) 

G g(j< • e(ß)), therefore e(y) — e(ß) = e[y ■ e(y) — v • e(ß)) 

G e(Ca). 
(ii) > (iii): We have —x, x < e • v(x). Let —x, x < y G U. 

We have y G CQ. Because of (ii), y G e(Ca), i. e. y = e(y) for a 

y G Ca. We have —x, x < *(y), hence v(ar) < y. Therefrom 
e • v(x) < g(y) = jy. 

(iii) > (v): Because of o < x e ■ v(x) and (iii) we have inf 

{_y G U : — * — g • r(G). ar G e • v(x) < y} = inf {y G £7: 
x G e • v(G) < y} = ê • G e ' v(G)). Since e ■ v(x) G U, we 

have also inf {y G £7 : # G £ • v(ar) < y } = e • v(x) G inf {z G U : 

2: < We obtain (v). 

(v) ^ (vi): We have e • v(—# G e • r(—x)) —- e • v(—x) = inf 

{y G G: — * < y } = — sup {.z G U : £ < y } 

= e • v(—x G g • v(G)) — e • v(x). 

(iii) > (iv): —x,x < e • r(G) since is symmetric-extensive. Let 

y EL V and — ;r, ;r < y. Because of (vi), — x, x < e ■ v(y) — 
g • v (—y + e ■ v(jyj) < y. Using (iii) we obtain e • v(x) < 

g • r(y) — e • v (—y G e ‘ v(y)) < y. 

(iv) > (ii): Let u, v E e{Ca) = e • v(V), i.e. = e • v(x), 

v = e • v(y) for certain x, y G V. —u — v < «G* since 
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u,v E Cg. Therefrom with (iv) we obtain e • v(u -f- v) — u + v, 
i. e. u v E e{Cj). Now let u E Cg Ç\ U, i. e. u — e • v(x)— 

e • v(y), o fi. u. Because of (iv) there follows again e • v(u) — u E 

e{Ca). J 

From property (iv) of the foregoing theorem follows that the 

subspace U is a sublattice of (V, Q). Property (v), moreover, 

says that U contains a least upper bound for each element x E V. 

Therefore we define the notion of an ‘order-projective subvector- 

lattice’. Let U be a subspace of an ordered vector space (V, Q). 

U is called a subvector-lattice, if V *, y E U : 3 z E U \ 

z = sup {x,y}. Here z — sup {x, y} means that z is the su- 

premum of x and y with respect to the ordering Q. U is called 

order-projective in (V, g) if V x E V : 3 y E U '■ y — inf 

{z E U x < z}. Each order-projective subspace of V is cofinal, 
i. e. \/ x E V: 3 y EU: x fi- y. Now from theorem 6.il 

follows easily 

(6.12) Corollary. Let v : V —*■ Ca and e:Ca—+CQ be mappings 

such that e is the absolute-inverse of v and let e be linear. Then 

for U: = Lin (e • v{Vj) we have 

1. U is a subvector-lattice of (V, Q). 

2. U is order-projective in (V, g); in particular, U is band- 

closed, i. e. V A C U, x E V : x = inf A => x E U- 

|T.: From (iv) follows that sup {—x, xj exists for all x E U, 
therefore sup {2x, 0} and sup {x, 0} exist for all x E U. Since 

sup {x, 0} = sup Jx, — ~ x^ -|- -i- x E U, the conclusion 

follows. 

2. : As a consequence of (v) U is order-projective. Now, let A E 17, 

x E V and x = inf A. Because of (v) we have also ar < 

e • v (x + e • v(xj) — e ■ v(x) < a, V a E A. Therefrom we 

obtain x = e ■ v (x + e • v(xfj — e ■ v(x), hence x E U.J 

It is easily verified that the absolute value operation \x \ = x v —a: 

in a vector lattice (V, Q) has the identical mapping of C. as its 



Duality of Vector-valued (al)-Norms and (am)-Norms 133 

absolute-inverse. Moreover, we have that an ordered vector space 

(V, (?) is a vector lattice if a mapping |.| : V —*■ Cg of V onto 

CQ exists such that the identical mapping of Cg is the absolute- 
inverse of |.|. This result is a consequence of corollary 6.12, but, 

naturally, it is easier to prove it directly by a few simple argu- 

ments. 

The statements of theorem 6.12 concern the subspace U = 

Lin (e ■ v(Vj) and the absolute value operator e • v over V. The 

following theorem summarizes properties of v, e and of the hull 

operator v ■ e. Again it is supposed that e is linear. 

(6.13) Theorem. Let v : V —* Ca and e : Ca —>■ Cg be mappings, 

e the absolute-inverse of v and e linear. Let Ca be generating, 

i. e. Ca — Ca = H. Then we have 

1. v is a norm, namely an order-interval norm. 

2. v is linear on e(Ca). 

3. The restriction v|e((: ) of v onto e(Ca) has an unique linear 

extension / onto U = Lin (e(Ca)). / is a linear order-isomorphism 

of U onto K = Lin (r(L)) with respect to the ordering of U and 

K induced by q and a, respectively. 

4. v • e is linear. 

5. v-e has a unique linear extension P : H —* H. We have 

o < P < I with respect to the ordering induced into 

Horn (77, H) and P(i) 2 = P, i. e. P is a positive linear pro- 

jection over H with P < I. 

6. e possesses a linear extension E onto H. E is a complete 

pre-Riesz homomorphism E'.H^-V, i.e. the following 

properties (i) and (ii) hold. 

(i) A is a pre-Riesz homomorphism, i. e. E is linear, isotone and 

satisfies the ‘interpolation property’ 

V * G V, y, ß, a G H : (o < y, ß A * < E(y), E(ß)) => 
]a£f/:o<ti<y, (5 A *< E(at) < E(y), E(ß). 
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(ii) For all downwards directed and bounded subsets A of H 

and elements z G H z = inf A => E(z) = inf E(A). 

7. With the mapping's /, P and E introduced in 3., 5. and 6. 

we have P — I ■ E and E = /_1 • P. 

ft.: From theorem 6.8. 

2. : —y,y < e • v(_y) < g • v(x) + e • v(y) implies v(y) < 

v[e • v(x) + e • v(y)), hence e : = v(x) + v(y) — v[e • v(x) + 

e • v(y)) < v(x), i.e. o < v(x) — e. Since v is sublinear and 
v • e • v = v, we have also o < e. We conclude v • e(v(x) —■ e) — 

v(e(y(x)) — g(e)) = v(e • v(x) — e • V(AT) — 2 • v(j/) -f- 2 • v(e ■ v(x) -f- 

e • v(y))) = v(— e • r(_y) + • v • £(v(ar) -j- r(jy))) = v(— £ • v(j) + 

e(v(x) + v(y))) = v(e(v(ar))) = v(x). Therefrom follows v(x) 

= v • e(v(x) — e) < v(x) ■— e, hence e < o. Because of o < e 

we have e = o, i.e. v(e • v(x) + e • v(y)) = v(x) -f- v(y) = 

v(e • v(x)) + v(e ■ v(y)). 

3. v|e(c j is an order isomorphism (lemma 6.5). Since 7 is linear 

and Cg f~) U = e(Ca) (theorem 6.21), it remains to be shown 

that I(e(Ca)) = K H Ca. I(e(Ca)) = v(V) C K Ca holds 

generally. Let y = I(x) — 7(y) G Ca with x, y G e(C0). Since 

I(y) < 7 (nr), 7/ < nr because of lemma 6.5 (x). From CQ (~) U = 

e(Ca) follows *—3/ £ e(Ca), i.e. I(x) — I(y) = I(x—y) 

and y G I(e(Ca)). 

4. The statement follows from the fact that e is linear and v is 

linear in e(Ca). 

5. Since Ca is generating, v • e can be uniquely extended onto 

H. o < P follows from v • e(Ca) C Ca. P < 7 since v ■ e is a 

hull operator and therefore extensive. Likewise P2 = P follows. 

6. (i): Let a, y, ß G H, er < y, er < ß, x < 7?(y), x ^ 7?(|3). 

Then we have ;r — 7?(er) < E(y — a), E (ß —a) and o < y — a, 

o < ß — a. Let z : = E(y — a) A E(ß — er). We obtain 

v(z) < v ■ e(y — er) < y —er and »»(.z) < v • e(ß — er) < ß — 0. 

Let a. : = v(z) a. We have a < y, ß. Since o < z and z E: U, 

e • v (z) = z, hence E(a) = # 4" E(a). Because of the definition 

of z we also have nr — E(a) < therefore n: < E(a), 

(ii): Let ^ = inf 4. We have o = inf (A —- z). Using lemma 6.9 

we obtain o = infc e (A —z). Since U — E(H) is a subvector- 
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lattice, lemma 6.9 can be applied once more in order to obtain 

o = \nîue (A — z), i.e. E(z) = infaE (A). In an order-projective 
subvector-lattice, and thereby also in U, each relative infimum 

is also an infimum in the whole space. Therefore the proof is 

complete. 

7. For all y E Ca P(y) = v • e(y) = I • E(y). But this equality 

holds even for all y E H, since the linear extension of v • e is 

unique. Since /_1 exists, from P = I • E we obtain E = 7_1 • P.J 

If a mapping E : H —*■ V is a pre-Riesz homomorphism, then 

we can prove 

(6.14) Va, ß,y £ H, x,y G V : (a < ß, y A x, y < E(ß), 
E(y))=>3 ÔEHLOL <ö<ß,y A x,y<E(ô) <E(ß), 

E(y). 

[ Let a., ß, y E E, x, y E V such that a < ß, y and x, y < E (ff), 
E(y). Because of the definition of a pre-Riesz homomorphism 

there exists a r EH such that a < r < ß, y and x < E(r). 
If we use this defining property once more, then we get a ô E H 
such that T < ô < ß, y and y < E(ô). Since E is isotone, 

E(x) < E(ô), hence x < ii((5).j 

If (H, a) and (V, Q) are vector lattices, then one can easily prove 

that the pre-Riesz homomorphisms of H into V coincide with 

the lattice homomorphisms of H into V. 

A linear projection P of an ordered vector space (H, a) with 

the property o < P < / decomposes H into an order-direct 

sum of subspaces K and L, i.e. H = K + L, K L — {0} 

and (K P) Ca) -f (i Q Ca) = Ca. K and L are called order- 

direct summands of (//, d). The order-direct summands are ob- 

tained from P by defining K : = P(H) and L : = (/ — F) {H). 

H = K -j- L and K p L = {0} can be easily verified. Let 

x E Ca. Because of o < P < / we have (/— P) (x) E Ca and 

P{x) E Ca. Therefore x E K P Ca + L p Ca. Thereby we 

obtain the following 
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(6.15) Corollary, Let v : V —> Ca and e : Ca —*■ C be mappings 

such that e is the absolute-inverse of v and let e be linear. Then 

we have 

1. K = Lin {v(V)) is an ideal in (77, a) and v(V) is a face of 

Ca] in particular, the image set v(V) is a convex cone. 

2. K is an order-direct summand of 77. 

3. K is a lattice. With respect to (77, a) K is a subvector-lattice. 

r 1. v(V) = Ca(~)K because of v(V) = v ■ e(Ca) = P(Ca) and 2. 
2. is true since P is a linear projection satisfying o < P < I. 

3. K is the order isomorphic image of U with respect to the 

induced orderings. But U is a lattice as stated in corollary 6.12. 

The remaining steps follow with 2.J 

An order-interval norm possessing a linear absolute-inverse 

determines a subvector-lattice in its preimage space (V, Q), a 

subvector-lattice K in its image space (77, a) and a linear order 

isomorphism of U onto K. The converse also holds in the follow- 

ing form. 

(6.16) Theorem Let U be an order-projective subvector-lattice 

of {V, Q), K an order-direct summand of (77, a) and 7: U —+ K 

a linear order isomorphism of U onto K. Then we have 

(i) \/x(E:V:3zŒiU:z = inf {j £ U : — x, x < y }. 

(ii) abs^ : V —* V with absa(x') : = inf {JKG U : —x, x y) 

is an absolute value operator over V with kernel U 

(iii) v : = 7 • abs^ is an order-interval norm. 

(iv) On Ca E : = 7-1 ■ P is the linear absolute-inverse of v, 

where P is defined to be the canonical projection of 77 onto 

the direct summand K of 77. 

T(i): Let lub (x/U) denote inf {z G U : x < z} for x G V. Then 

we have z : = lub (x/U) A lub (—x/U) = inf {y G U: —x, < y}. 
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(ii): The properties symmetric-monotone, symmetric-extensive 

and idempotent are immediate consequences of the definition of 

abs^. Just as easily follows the rest, (iii) and (iv) follow from 

corollary 6.7 together with theorem 6.13.J 

The construction of order-interval norms is closely connected 

with the determination of order-projective subvector-lattices of 

ordered vector spaces as is expressed by the above theorem. We 

give a characterization of these subspaces in the case of directed- 

complete ordered vector spaces (see § 2 for the definition of the 

latter spaces). 

(6.17) Theorem. Let (V, Q) be a directed-complete ordered 

vector space. A subspace U of V is an order-projective subvector- 

lattice of (V, Q) if and only if the following three conditions 

are satisfied. 

(i) U is a sublattice. 

(ii) U is band-closed, i.e. V A C U, a: G V : x — inf A => x G U. 

(iii) U is cofinal in V, i.e. \/ x £ F: 3 y £ U : x < y. 

\ Let x G V. We prove the existence of a z £; U such that 

z = inf {7 £ U : x < y }. Let A = {y U : x < y}. A =j= 0. 

Since U is a sublattice, A is downwards directed and bounded 

by x. Therefore z = inf A exists. Since U is band-closed, z G U, 
hence z — inf {7 £ U \ x < y} = lub (x/U) ÇE U. J 

Let £ be a linear mapping of H into V. If a mapping v of V 
into Ca exists, whose absolute-inverse is given by the restriction 

of E onto Ca, then theorem 6.13 statement 6. tells us that E is 

a complete pre-Riesz homomorphism. The following theorem 

shows that the converse is true, whenever H is directed-complete. 

(6.18) Theorem. Let (H, a) be directed-complete and H = Ca — Ca 

and let if be a linear mapping of H into V. Then 

there exists a mapping v : V —> Ca such that E is the absolute- 

inverse of v 
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^ £ is a complete pre-Riesz homomorphism and E(H') is 

cofinal in V. 

\ < : We have to construct a mapping v : V —* H such that 

{x E V: v(x) < y} = [—E(y), E(y)\ for all y E Ca. Let 

x EL V and Ax = {y E Ca: — x, ;r < E(y)}. Ax =j= 0 since 

E(H) is cofinal. Because of property 6.14 A is directed down- 

wards. o is a lower bound of Ax, therefore exists a y E Ca : y — 
inf Ax. Let v : V —- // such that \j x E V v(x) = inf {y E Ca\ 
— ;r, < E(ÿ)}. ar E [—E(y), E(y)] implies v(x) < y be- 

cause of the definition of v. Conversely, let v(x) < y. Since E 
preserves infima and, in particular, is isotone, inf {E(oC) : a E Ca, 
— a:, ^ < E(a)} = E(v(x)) and E(y(x)) < E(y). But this 

implies —xyx < E(y{x)) < E{y). Thereby we have shown 

that E is the absolute-inverse of v.\ 

§ 7. The regularity of (al)-norms and (am)-norms. 

The aim of this paragraph is the formulation of necessary 

and sufficient conditions for the regularity of (al)-norms and 

(am)-norms. We need a preliminary lemma. 

(7.1) Lemma. Let B be a linear mapping of V into H and let 

o < B. Then for all downwards directed and bounded subsets 

A of H° and elements y' of H° we have : y' = inf0 A => BT(y') = 

inf0 B\A). 

r From the remark after 2.3 we get \f y E Ca, x E CQ y’(y) = 
inf {ß’(y) : ß' E A } and (inf0i?r(2Î)) (x) = inf {ß' ■ B(x): 

ß' E A). Hence (BT(y')) (x) = y’(B(x)) = (inf B1 (A)) (x).J 

(7.2) Theorem. Let p : V —* H be an (al)-norm and Bjt its 

associated linear mapping. Then 

p is regular ^ Bx
v is a pre-Riesz homomorphism of H° into V°. 

T : From theorem 5.9 together with theorem 6.13 statement 
6. (i). 
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-< : Let / G Vh, i.e. y' G Bp\f\ for a y G From lemma 

5.7, / < 2?J(y'), i-e- -öj(27°) is cofinal in Fb. Because of 7.1 

2?] is a complete pre-Riesz homomorphism, therefore, applying 

theorem 6.18, there exists a mapping v : Vh—*-H°, such that 

Bj is the absolute-inverse of v, i.e. such that Kv\y'] = [—Bj(y'), 

Bj(y')\ for all y' G C°a. Since also K*[y'] = [- Bj(y'), 
Bj(y')\ because of 5.7 (1.), y' G Bp\f\ <=> v(f) < y . That 
means, because of 2.2, that p is regular and v is equal to the 

dual norm of p.\ 

We now characterize the regularity of (am)-norms. 

(7.3) Theorem. Let p : V —>- H be an order-interval norm with 

a linear associated mapping Ep : H —*■ V. Then 

p is regular ^ Ep has the following interpolation property 

Vf.g, h, k G vb: (J,g < h, k) => a / G Vh-.f,g < l A Ej(l) 
< ÆJ(A), Æj(/è). 

1 > : Theorem 5.10 together with Lemma 5.1. 

<: Let / G V\ ß', y' G C ß' G £,[/] and /G *,[/]. 

Because of Lemma 5.7 (2.) there exists a g G Lb such that 

—/,/ < ^ and • Ep = < y'. Because of the inter- 

polation property —/,/ < /, Ej(l) < Ep(/i), Ej(k) with 

f G Fb and 2?J(/) G 2?^ [/]• It follows that Bp [/] is down- 
wards directed. Now, theorem 2.4 is applied.] 

(7.4) Theorem. Let p : V —*■ H be an order-interval norm and 

ep its absolute-inverse. Let Vh be point-distinguishing for V. Then 

p is completely regular ^ 

(i) ep is linear and 

(ii) VrjG e(Ca),f G Vh : sup/([—x, x\) + sup/([-—y, y]) 

— sup f ([—x—y, x y]), i.e. the closed images 

/([—x, x]y of the intervals [—x, x\ for # G e(Ca) are 

additive. 
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r > : V / G c° f'l Vh, y G Ca we have /(/) (y) = supf(Kp[y\) 

= sup/([— ep(y), ep(y)]) = f(ep(y)). Since /(/) is additive, 
also / ■ ep is additive. f(ep(y + ß)) = f{ep(y)) + f(ep(ß)) = 

f(ep(y) + ep(ß))- Since, because of 4.6, Vh is an ideal in V°, 
Vh CQ is point-distinguishing for V. Therefore ep(y -\-ß) = 

ep(y) + ep(ß). Now let / G Vh. Since again pA(f) (y) = sup 

f(Kp[y\) = sup /([— ep(y), ep(ÿ)]) V y G C„, we obtain (ii). 
< : Because u/y) : = sup /(^[y]) = sup /([— ep(y), ep(y)]) 
is linear, the proof of the statement follows from the definition 

of the complete regularity.] 

In a vector lattice the intervals [AT, jy] are additive, i.e. [x, y] -f- 

[u, v] = [x + u, y -f- v]. Therefore the condition (ii) in the 

preceding theorem is satisfied whenever (V, Q) is a lattice. 

§ 8. (AL)-norms and (AM)-norms on vector lattices. 

Following F. L. Bauer [1] a norm/» on a vector lattice (V, Q) 

with values in a vector lattice (H, a) is an (L)-norm, if 

(L) p(x+y) = p (pc) + p (y), \/ x, y G CQ, 

and an (M)-norm, if 

(M) p(xM y) = p{x) v p (y), \J x, y G Ce. 

p is called absolute, if p(x) =/>( |^ |), V x G V. Correspondingly 

an absolute (L)-norm and an absolute (M)-norm are called an 

(AL)-norm and an (AM)-norm, respectively. 

In this last paragraph we investigate (1)-, (m)-, (al)- and 

(am)-norms p on a vector lattice (V, g) with values in a vector 

lattice (If, a). We show among other things that the two last 

ones coincide with the (AL)- and (AM)-norms, respectively. 

The duality theorems for (AL)- and (AM)-norms can be ob- 

tained as corollaries from the corresponding theorems about 

(al)- and (am)-norms. A remarkable peculiarity appears for 

(AL)- and (AM)-norms in so far, as lemma 4.5 can now be 
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proved without using the theorem of Hahn-Banach. That means 

that all the duality theorems can be proved without using the 
Hahn-Banach theorem as well. We will give alternative proofs. 

Let (V, Q) and (//, a) be vector lattices and p an //-valued 

norm on V. At first we characterize those monotonicity proper- 

ties for norms which we have introduced in the §§ 3-4. 

(8.1) Theorem. Let p be an //-valued norm on V. Then we have 

1. p is monotone over CQ ^ V x, y £ V : 

/(kl) v/(kl) </(kl v kl)- 

2. p is symmetric-monotone ^ V x, y £ V : 

/(*) 
V
/(T) < / (kl v kl)- 

3. p is order-convex V x, y, z £ H : 

p (z) < p (z v x) v p (— ^ v 4/). 

[1. Clear. 2. > : For all x, y £ H we have — (|;r | v |jy |) < ;r, y 

< |ar| v |y|. Therefrom the desired equality follows. -< : Let 

— y ^ x <i y. y = k I v k I- Hence p(x) < /(kl v k I) = /O')- 
3. : z A —4/ <L z z v x implies /(^) </(# vjr) w p(z A —4/). 

Thereby, because of />(/ A —4/) = _^(—^ vy), the inequality is 

proved. # < z < y implies x — x i\ z and y = z v x. The 

rest is clear.] 

For monotone norms we characterize the directedness properties 

in the following theorem. To abbreviate, here we call a norm 

monotone, if it is monotone over Cg. 

(8.2) Theorem. Let p be a monotone norm on V with values 

in H. Then 

1. p is directed K V y £ V\p{kl v kl) < P(x) v/GO H 

p is directed over CQ ^ V y £ V : /(kl v kl) 

= /(kl) v/(kD- 
2. p is symmctric-directcd ^ V x £ V : / (kl) — P(x)• 
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3. p is positive-directed ^ V x G V : p(x+) < _/>(*), where x+ 

: = x v o. 

T1. We show, if p is directed over C , then the first inequality 

holds. The rest is an easy consequence thereof. Let x, y Çz V. 

From x+ = — (| * [ + x) and x~ = — (\x\—x) we obtain 

p(x+), p(x~) < ~ (p(\ * |) -f- P (x))■ Since p is directed over Cg, 

x+, x~ < z < p(z) < — (p(\x\) + />(*)) for a certain z G Cg. 

\x I = x+ v x~ < z implies p(\x |) < — (/>(|% |) -f- />(*)), because 

p is monotone. Hence p(\x\) < />(*). Similarly, we obtain 

p(\y I) < p(y). Again, since p is directed and monotone over 

Ce, we have p(\x\ v |y |) </>(*) vp(y). 

2. and 3. are clear.] 

(8.3) Theorem. Let p be an //-valued norm on V. Then 

p is absolute-monotone ^ p is absolute and monotone ^ 

p is lattice-monotonic [13], i.e. V x, y G V: \x\ < \y\ => p(x) 

<P(y)- 

T Let p be absolute-monotone, i.e. symmetric-monotone and 

symmetric-directed. p{x) < p(\x\), \f x G V follows from 

8.1.(2.). Moreover, because of 8.2.(2.), we have p{x) = p(\x\), 

V x G V, i.e. p is absolute, p is monotone, since p is even 
symmetric-monotone. Now, let p be absolute and monotone and 

let \x\ < \y |. p(\x\) v p(\x\ v \y\) < p(\x\ v \y |) = p(\y\) 

follows from 8.1.(1.). Since p is absolute, we obtain p(x) < p(y). 

If we suppose that/» is lattice-monotonic, then ^(|*|) v/»(|y|) < 

P(\x I v \y !)> V *, y G V follows immediately. From \\x || < \x\ 
we also obtain p(\x\) < p{x), V * G V, i.e. p is absolute- 

monotone.J 

The preceding theorems yield now quite simply that the (al)- 

and (am)-norms coincide with the (AL)- and (AM)-norms, 

respectively. 
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(8.4) Theorem. Let p be an //-valued norm on V. Then 

1. p is an (al)-norm ^4, p is an (AL)-norm ^ 

V x, y E V:p(\x\ + \y |) = p(x) + p(y). 

2. p is an (am)-norm ^ p is an (AM)-norm ^ 

M x,y E V: p(\x\ v \y\) = p{x) v p(y). 

fi. Let p be an (al)-norm. According to 8.3, p is absolute, 

hence p is an (AL)-norm. Obviously, the equation is satisfied 

if p is an (AZ)-norm. From p(\x\ -f- \y\) = p{x) + p(ÿ), V x, y 

E V we obtain />(|^|) = p(x), \1 x E V. But every (/)-norm 
is also monotone, i.e., according to 8.3,p is absolute-monotone. 

2. Let p be an (am)-norm. 8.3 together with 8.2.(1.) yields that 

p is an (AM)-norm. Obviously, the equation is satisfied if p is 

an (AM)-norm. On the other hand from the equation together 

with 8.1.(2.) and 8.2.(2.) follows that p is absolute-monotone.J 

Now we turn to the duality theorems. At first we give an 

alternative proof of lemma 4.5.(3.). Let p : V —> H be a norm 

and Kp the dual family of the family Kp of the norm balls 

of p, i.e. KA
p[y'] = {/ E V* : / (x) < y' • p(x), \f x E V }, 

/ G e 

(8.5) Lemma. Let y' G C°a. Then 

p is absolute-monotone > J£p[y’] is absolute-order-convex. 

[Let f(x) < y' ■ p(x), \j x E V. As is well-known |/| (\y |) = 

sup /([— \y\, \y |]) for all y E V. Let z E V. Because of 

fix) < y' -p{x) < y' ' p(\z\) for all ^ E [— \z\, \ z |] we have 

I/K-S-) < l/l(kl) < I) = i-e. I/I e KA[y']. 
Therefore KA

p\y'\ is symmetric-directed. Because of lemma 

4.5.(1.) Kd
p[y'] is also symmetric-order-convex. J 

Let p : V —* H be an absolute-monotone norm. One conse- 

quence of lemma 8.5 is the fact that the space Vb of all bounded 

linear functionals on V is an ideal in V°. Therefore Vh is a 

Dedekind-complete vector lattice as well as V°. The following 
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theorem corresponds to theorem 4.7. For its proof lemma 8.5 

is used together with 3.9 and theorem 4.4.(3.). 

(8.6) Theorem. Let p : V -* H be a regular lattice-monotonic 

norm. Then the dual norm / is also lattice-monotonic. 

For the proof of the theorems 5.9-5.11 we can also use lemma 

8.5 and thereby manage to prove them without using theorem 

4.7 or the Flahn-Banach theorem. Moreover, these theorems 

can be slightly modified by substituting (al)- and (am)- with 

(AL)- and (AM)- in their text. We do not present the details. 

In the following we deal with questions concerning the regu- 

larity of (AL)- and (AM)-norms. Since in the case of vector 

lattices the pre-Riesz homomorphisms coincide with the linear 

lattice homomorphisms, from theorem 7.2 we obtain the fol- 

lowing 

(8.7) Theorem. Let p : V —*■ H be an (AL)-norm with the 

associated linear mapping Bp : V —*■ H. Then 

p is regular ^ Bj is a linear lattice homomorphism. 

We have already mentioned that in vector lattices the condition 

(ii) in theorem 7.4 is always satisfied. Therefore the following 

theorem is a consequence of 7.4. 

(8.8) Theorem. Let p : V H be an order-interval norm with 

the associated mapping e. : Ca —* CQ. Let Vh be point-distin- 

guishing for V. Then 

p is completely-regular ^ e. is linear. 
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