BAYERISCHE AKADEMIE DER WISSENSCHAFTEN MATHEMATISCH-NATURWISSENSCHAFTLICHE KLASSE

ABHANDLUNGEN · NEUE FOLGE, HEFT 103

RUDOLF SIGL · HORST HERZOG

Europäisches Dreiecksnetz (RETRIG) Basis München im Ebersberger Forst

Bericht über die endgültige Auswertung

Vorgelegt von Herrn Max Kneißl am 8. Juli 1960

MÜNCHEN 1960

VERLAG DER BAYERISCHEN AKADEMIE DER WISSENSCHAFTEN IN KOMMISSION BEI DER C.H. BECK'SCHEN VERLAGSBUCHHANDLUNG MÜNCHEN

Printed in Germany Druck der C. H. Beck'schen Buchdruckerei Nördlingen

INHALTSÜBERSICHT

Vorw	vort von M. Kneißlen	5
Zum	Geleit von A. Tárczy-Hornoch	7
1.	Vorbemerkung	9
2.	Bestimmung von Elastizitätsmodul und Kettenlinienparameter	
	für die Invardrähte der I. Abt. des DGFI	9
2.1	Elastizitätsmodul	9
2.2	Kettenlinienparameter	10
3.	Neigungs- und Dehnungskorrektion	11
4.	Eichwerte der Drähte	13
4.1	Laboratoriumseichung	13
4.1.1	Korrektion auf das tatsächliche Spanngewicht	13
4.2	Eichung auf der Normalstrecke München	15
4.3	Gegenüberstellung der Eichwerte	17
4.4	Länge der Normalstrecke aus Laboratoriumseichwerten	17
5.	Länge der Basis	19
6.	Genauigkeitsabschätzung für die Basis	19
6.1	Genauigkeit der Drahtmessung	19
6.2	Genauigkeit des Alignements	19
6.3	Genauigkeit des Nivellements	19
6.4	Genauigkeit der Streckungsreduktion	26
6.5	Genauigkeit des Hilfsdreieckes	27
6.6	Gesamtgenauigkeit der Basis	27
7.	Endergebnis der Basismessung durch die I. Abt. DGFI	27
7.1	Basislänge aus Laboratoriumseichwerten	27
7.2	Basislänge aus Normalstreckeneichwerten	28
8.	Endergebnis der Basismessung Ebersberg als Mittelwert aus	
	den Messungen der I. u. II. Abt. des DGFI	28
8.1	Basislänge aus Laboratoriumseichwerten	28
8.2	Basislänge aus Normalstreckeneichwerten	28

.

VORWORT

Über die Anlage einer Normalstrecke, einer Basis und eines Basisvergrößerungsnetzes im Ebersberger Forst bei München, sowie die dabei ausgeführten Invardrahtmessungen, Winkel-, Tellurometer- und Geodimeterbeobachtungen ist bereits berichtet worden [1], [2], [3], [4]. Die dort ausgewiesenen Ergebnisse dienten einmal einer kritischen Genauigkeitsbetrachtung für die Basismessung und Basisvergrößerung und zum anderen der Überprüfung der im Basisvergrößerungsnetz ausgeführten Tellurometer- und Geodimetermessungen.

Eine kritische Überprüfung der ersten Basisauswertung ergab die Notwendigkeit, vor der Einführung der Basislänge in das europäische Hauptdreiecksnetz (RETRIG) die Auswertung an einigen Stellen zu verbessern bzw. einige Korrektionen nachzutragen. Insbesondere zeigt es sich, daß die bisher benützten Reduktionsformeln von E. GIGAS (vgl. [7]) wegen der großen Höhenunterschiede entlang der Basis nicht ausreichen und zweckmäßig durch die von A. TARCZY-HORNOCH angegebenen geschlossenen Ausdrücke [6] zu ersetzen sind. Weiter ergab sich dabei, daß diese Formeln in einfacher Weise für den Einsatz programmgesteuerter Rechenanlagen aufbereitet werden können, wodurch sich gegenüber der Tabellenrechnung nicht nur ein Genauigkeitsgewinn, sondern auch eine Beschleunigung der Rechenarbeit erreichen läßt.

Das vorliegende Heft bringt die Ergebnisse der endgültigen Auswertung der Basis München; die notwendigen Berechnungen wurden unter meiner Leitung von Dipl.-Ing. H. HERZOG ausgeführt und von Herrn Dr.-Ing. R. SIGL überprüft. Den Bericht besorgten die beiden Herren.

Benützt man entsprechend den Empfehlungen der Internationalen Assoziation für Geodäsie für die Ableitung der Basislänge ausschließlich die Normalstreckeneichwerte (Feldeichung), so ergibt sich für die auf Meereshöhe reduzierte Länge der Basis München: 8231,8467 m.

Bei der in [3] ausgewiesenen Berechnung des Basisvergrößerungsnetzes ist für die Länge der Basis der Wert 8231,846 m eingeführt worden; eine Neuberechnung des Basisvergrößerungsnetzes ist damit nicht erforderlich.

M. KNEISSL

ZUM GELEIT

Es sind schon 30 Jahre her, daß meine erste Publikation über die Durchbiegungs- und Dehnungskorrektion der Meßbänder im Bande 1930 der Mitteilungen aus dem Markscheidewesen erschien. Sie baute natürlich auf frühere Ergebnisse auf, so in erster Richtung auf die von AUBELL, der 1922 (Sammlung von Ausweisen und Behelfen für das Feldmessen und Markscheiden) wohl als erster den Einfluß eines Höhenunterschiedes der Bandendpunkte auf die Durchbiegung und Dehnung berücksichtigte. In meiner Untersuchung war ich entsprechend den neueren Forschungen bestrebt, die Korrektionsformel schärfer zu fassen, und es wurde daher neben der vorgeschlagenen besseren Gebrauchsformel für besonders große Genauigkeitsanforderungen noch eine weitere schärfere Formel angegeben.

1934 ergab sich die Notwendigkeit, für die Reduktion der mit Jäderin-Drähten gemessenen Grundlinie der Stadtvermessung Budapest eine zeitgemäße Korrektionsformel aufzustellen. Es war naheliegend, daß die Formel für die Änderung des Durchhanges von jener des Durchhanges selbst nicht unabhängig ist und auch aus dieser hergeleitet werden kann. Die in der Fachliteratur bis dorthin aufgestellten zahlreichen Korrektionsformeln für die Jäderindrähte zeigten aber im Vergleich dazu grundsätzliche Unterschiede, deren Grund dann in unseren, gemeinsam mit Prof. Esztó erschienenen Studien (Geodéziai Közlöny, 1934, Z. f. V. 1935 u. 1939) darin gefunden wurde, daß die vorherigen Korrektionsformeln aus einer Kettenlinie mit konstantem Parameter ausgingen. Nach unseren Untersuchungen sind bei der richtigen Berechnung zwei Fälle zu unterscheiden, je nachdem, ob der Draht an einem Ende oder an beiden Enden mit Spanngewicht belastet ist. Im ersten Falle ist der Draht am anderen Ende geklemmt und die Korrektion hängt davon ab, ob das Spanngewicht im tieferen oder im höheren Endpunkt des Drahtes wirkt, d. h. in der Korrektionsformel auch ungeradzahlige Potenzen der Höhe vorkommen müssen. Im zweiten Falle mit zwei Spanngewichten ist es dagegen gleichgültig, ob das eine Spanngewicht höher oder tiefer liegt. In der Korrektionsformel dürfen daher nur geradzahlige Potenzen erscheinen (vgl. auch unsere Veröffentlichung in der Z. f. V. 1958). In beiden Fällen sind aber die bei verschiedenen Höhenunterschieden entstehenden Kettenlinienteile Teile von Kettenlinien, die verschiedene, mit dem Höhenunterschied sich verkleinernde Parameter haben, weshalb die auf Grund eines konstanten Parameters hergeleitete Korrektionsformel streng genommen nicht entsprechen kann.

Solange die Höhenunterschiede gering und die Genauigkeitsanforderungen mäßiger sind, können die entstehenden Unterschiede wohl vernachlässigt werden, wenn auch hier zu bedenken ist, daß die richtigere Formel keinesfalls langwieriger als die weniger exakte ist. Bei relativ größeren Höhenunterschieden und bei größeren Genauigkeitsanforderungen, wie bei der Münchener Vergleichsgrundlinie, erscheint es schon erforderlich, die genaueren Formeln zu verwenden.

Noch mehr gilt dies für die Verwendung von Invarmeßbändern auch bei größeren Höhenunterschieden, bei denen die Zusammenziehung der Durchbiegungskorrektion mit

Zum Geleit

der Korrektion für die von dem Höhenunterschied abhängige Änderung der Durchbiegung bei konstant angenommenem Parameter einen grundsätzlich falschen Ausdruck für die Durchbiegungskorrektion bei verschieden hohen Endpunkten liefert (vgl. unsere Bemerkung in "Fluchtstab" 1960).

Es mag bemerkt werden, daß die Berücksichtigung der Änderung des Parameters der Kettenlinie mit dem Höhenunterschied sich allmählich in der internationalen Fachliteratur durchsetzt. Nach unseren Publikationen von 1934 und 1935 wies 1937 LINDINGER (Z. f. V.) auf die Veränderung des Parameters hin, 1938 REGÖCZI in seinem die Gödöllöer Vergleichsgrundlinie behandelnden Heft, 1939 berücksichtigte dies KRASSOWSKIJ bereits in seinem Buche Rukovodostvo (I/2. S. 398), 1943 CUPR (Zeměměr Abzor), 1950 HONKASALO in der Publikation Nr. 37 des Finnischen Geodätischen Institutes, 1955 BÖHM in Úvod do vyšši geodesie, 1959 NIEWIARA in der Veröffentlichung Geodezija, Nr. 2 der Bergakademie Krakau. Auch Band IV des JORDAN-EGGERT-KNEISSLschen Handbuches der Vermessungskunde führt die Korrektionsformel mit veränderlichem Parameter, aber noch alternativ mit der Korrektionsformel mit konstantem Parameter an. Nach der vorliegenden, nicht von uns stammenden Untersuchung dürfte die Richtigkeit der Korrektionsformel mitveränderlichem Parameter auch praktisch erwiesen worden sein.

Sopron, den 25. August 1960

A. Tárczy-Hornoch

1. VORBEMERKUNG

Die gesamte Auswertung der von der I. Abteilung des DGFI auf der Basis München ausgeführten Invardrahtmessungen ist einer kritischen Überprüfung unterzogen worden. Dabei erwies es sich als notwendig, einige Reduktionen neu durchzuführen bzw. nachzutragen; über das Ergebnis dieser teilweisen Neuberechnung soll nachfolgend berichtet werden.

Die erste Auswertung stützte sich auf Formeln, wie sie in ([7], S. 467 ff.) angegeben sind. Wegen der großen Höhenunterschiede entlang der Basis und der damit gegebenen ständigen Veränderung des Kettenlinienparameters reichen jedoch diese Formeln nicht aus, und es wurde deshalb für die Neigungs- und Dehnungskorrektion eine Neuberechnung nach den Formeln von TARCZY-HORNOCH [6] durchgeführt, nachdem vorher für die Drähte der I. Abteilung des DGFI noch der Kettenlinienparameter und der Elastizitätsmodul neu bestimmt worden waren.

Weiter mußte noch der Einfluß der Abweichung zwischen den bei der Laboratoriumseichung bzw. bei der Basismessung benützten Spanngewichten angebracht werden; damit war auch die Zusammenstellung der Laboreichwerte und der Normalstreckeneichwerte neu zu bearbeiten.

Die in ([1], S. 23) angegebene fehlerhafte Genauigkeitsbetrachtung für die Normalstreckeneichwerte, bei der die Genauigkeit der Feldeichung zu ungünstig dargestellt wurde, ist berichtigt worden.

Es folgt eine Genauigkeitsabschätzung für die Gesamtlänge der Basis, wobei die Fehlerbeiträge der einzelnen Arbeitsgänge berücksichtigt werden.

Abschließend sind für die Ableitung der endgültigen Länge der Basis noch einmal die Ergebnisse der von der I. und II. Abt. des DGFI ausgeführten Invardrahtmessungen zusammengestellt.

2. BESTIMMUNG VON ELASTIZITÄTSMODUL *E* UND KETTEN-LINIENPARAMETER *c* FÜR DIE INVARDRÄHTE DER I. ABTEILUNG DES DGFI

2.1 ELASTIZITÄTSMODUL

Für die Bestimmung des Elastizitätsmoduls der Invardrähte wurde der Übungsdraht Nr. 512, welcher derselben Schmelze wie die für die Basismessung benützten Drähte 509, 510 und 511 entstammt, im Treppenhaus der Residenz aufgehängt. Da die Höhe des Treppenhauses weniger als 24 m beträgt, wurde der Draht am oberen Ende mit Hilfe von zwei Bleiplatten gegen ein Vierkanteisen geklemmt und dieses quer über die Ecke München Ak. Abh. 1960 (Herzog-Sigl) 2

10 Bestimmung von Elastizitätsmodul E und Kettenlinienparameter c für die Invardrähte

eines Lichtschachtfensters gelegt. Für die Aufnahme der verschiedenen Gewichte wurde am unteren Drahtende ein flacher Topf befestigt. Die Dehnung des Drahtes wurde sowohl im Erdgeschoß als auch im zweiten Stockwerk durch Nivellieren nach zwei aufgeklebten Strichmarken beobachtet. Auf diese Weise konnte der Einfluß einer eventuellen Höhenänderung der Aufhängung eliminiert werden. Die Nivelliere (es wurden zwei Präzisionsnivelliere vom Typ Breithaupt IV und Wild N3 verwendet) waren so aufgestellt, daß der Dehnungsbereich stets innerhalb des Bereiches der Planplattenmikrometer blieb. Die wirksame Länge des Invardrahtes ergab sich in einfacher Weise aus dem Abstand der aufgeklebten Strichmarken. Für die Bestimmung des Elastizitätsmoduls wurde das Spanngewicht zwischen 5 kg und 20 kg variiert.

Die Dehnung zeigte innerhalb der Beobachtungsgenauigkeit exakt lineares Verhalten. Eine lineare Ausgleichung der Dehnungsbeobachtungen ergab für den Elastizitätsmodul $E = 15400 \text{ kg/mm}^2$ mit einer Unsicherheit von ca. $\pm 100 \text{ kg/mm}^2$. Der größte Fehleranteil ergibt sich dabei aus der Annahme, daß der Durchmesser des Invardrahtes nur auf \pm 0,01 mm sicher eingehalten ist.

2.2 DER KETTENLINIENPARAMETER

Die Bestimmung des Kettenlinienparameters für den horizontal hängenden Draht wurde ebenfalls mit dem Übungsdraht Nr. 512 unter Benützung der auch bei der Feldbeobachtung verwendeten Spannvorrichtung vorgenommen. Der Draht wurde zu diesem Zweck zwischen zwei in gleicher Höhe an Mauerhaken befestigten Rollen aufgehängt und in Abständen von zwei Metern in bezug auf eine feststehende Latte einnivelliert.

Für die Bestimmung des Kettenlinienparameters stehen drei Möglichkeiten offen:

a) Bestimmung aus dem Durchhang in der Mitte des Drahtes:¹
 Nach ([7], Seite 473) gilt dann

$$d_{niv} = \frac{l^2}{8c} \left(1 + \frac{l^2}{48c^2} \right). \tag{1}$$

Mit einem nivellierten Durchhang von 0,12440 m findet man daraus für c = 579 m.

- b) Bestimmung durch Ausgleichung der nivellierten Drahthöhen nach einer Kettenlinie. Die rechnerische Lösung der Aufgabe erfolgt ähnlich wie bei a) zweckmäßig durch Variation von c. Die beste Annäherung zwischen gemessenen und theoretischen Drahthöhen ergab sich bei einem Kettenlinienparameter von c = 580 m.
- c) Bestimmung aus Spannkraft und Metergewicht des Drahtes. Definitionsgemäß gilt c = P/p, wobei P die Spannkraft im Scheitel und p das Metergewicht des Drahtes bedeuten. Danach erhält man für denselben Draht:

$$c = 10033 \text{ (g)} / 17,4198 \text{ (g/m)} = 576 \text{ m}.$$

Im Mittel ergeben die drei Bestimmungen für den Kettenlinienparameter c = 579 m, wenn man den Lösungen a) und b) etwas größeres Gewicht gibt.

¹ Der Durchhang bezieht sich auf die sorgfältig gleichhoch gestellten Nullstriche der Skalen.

3. DIE NEIGUNGS- UND DEHNUNGSKORREKTION

Bei der Erstauswertung wurden für die Berechnung der Neigungs- und Dehnungskorrektion die nachstehenden Formeln verwendet ([7], S. 508):

$$k_{1} = -h^{2} \cdot \left(\frac{1}{2s} - \frac{2}{c^{2}}\right) - \frac{h^{4}}{8s^{3}},$$

$$k_{2} = +\frac{h^{2}}{2s^{2}} \cdot (\sigma + \lambda),$$

$$k_{3} = -\frac{s^{2}}{8c^{2}} \cdot \sigma,$$

$$k_{4} = +\frac{P}{E \cdot Q} \cdot \frac{h^{2}}{2s}.$$
(1)

Die Erläuterung der Bezeichnungen ist in Gl.(4) besorgt. Mit c = 575 m, s = 24 m, P = 10 kg, E = 16000 kg/mm² und Q = 2,14 mm² ergaben sich daraus die numerischen Ausdrücke:

$$\begin{aligned} k_1 &= -20827,284 \cdot h^2 - 9,0422 \cdot h^4, \\ k_2 &= +0,86806 \cdot h^2 \cdot (\sigma + \lambda), \\ k_3 &= -0,2178 \cdot \sigma, \\ k_4 &= +6,085 \cdot h^2. \end{aligned} \tag{2}$$

Dabei erhält man die Korrektionen $k_1 - k_4$ in μ , wenn h in m, σ und $(\sigma + \lambda)$ in mm eingesetzt werden.

Nach TARCZY-HORNOCH ([6] und [7] S. 512) lautet der Ausdruck für die Neigungsund Dehnungskorrektion unter Berücksichtigung der Variation des Kettenlinienparameters:

$$K_{1} = -\frac{h^{2}}{2B} - \frac{h^{4}}{8B^{3}} - \frac{h^{6}}{16B^{5}} - \frac{B^{2}\sigma}{8c^{2}} + \frac{h^{2}\sigma}{2B^{2}} + \frac{3h^{4}\sigma}{8B^{4}} - \frac{B\sigma^{2}}{8c^{2}} - \frac{h^{2}\sigma^{2}}{2B^{3}} + \frac{Bh^{2}}{2B^{2}} + \frac{Bh^{2}}{2B^{2}} + \frac{Bh^{2}}{2B^{2}} + \frac{Bh^{2}}{2B^{2}} + \frac{h^{2}\sigma}{2BEQ} + \frac{Gh^{2}}{2BEQ} + \frac{Gh^{2}}{2BEQ}.$$
(3)

Darin bedeuten:

h = Höhenunterschied einer 24 m-Teilstrecke

 $B = 24 \text{ m} + \lambda = \text{Eichlänge des Drahtes}$

 $\sigma\,=\,{\rm Differenz}$ der Skalenablesungen

$$P = \text{Spannkraft}$$

p = Metergewicht des Drahtes

$$c =$$
 Kettenlinienparameter

2*

(4)

Die Neigungs- und Dehnungskorrektion

- G = Gewicht des zwischen den beiden Rollen liegenden Verbindungsgeschirrteiles (Karabiner + Spanndraht)
- E = Elastizitätsmodul

Q = Drahtquerschnitt.

Mit den folgenden, teilweise neu bestimmten Daten

$$P = 10,033 \text{ kg},$$

$$p = 0,0174192 \text{ kg/m},$$

$$c = 579 \text{ m},$$

$$G = 0,065 \text{ kg},$$

$$E = 15400 \text{ kg/mm}^{2}$$

$$Q = 2,138 \text{ mm}^{2}$$
(5)

erhält man für die Neigungs- und Dehnungskorrektion:

$$K_{1} = -\frac{10^{6} \cdot h^{2}}{2B} + 3,23 h^{2} - 9,042 h^{4} - 0,008 h^{6} - 0,21477 \sigma - 0,0000089 \sigma^{2} + 0,86806 h^{2} + 0,001 13 h^{4} \sigma - 0,000 0362 h^{2} \sigma^{2}.$$
(6)

Die Berechnung der Neigungs- und Dehnungskorrektion nach (6) kann in einfacher Weise für den Einsatz moderner Rechenanlagen aufbereitet werden. Für die zweite Berechnung, bei der alle in (6) enthaltenen Glieder berücksichtigt wurden, ist deshalb die Rechenanlage Zuse Z 11 der Geodätischen Rechenstelle an der Technischen Hochschule München eingesetzt worden. Dabei wurden die Reduktionen für die einzelnen Drahtlagen auf 0,01 μ , die abschnittweisen Summen auf 0,1 μ genau berechnet.

Die folgende Tabelle 1 für die einzelnen Basisabschnitte zeigt die Unterschiede zwischen der ersten und zweiten Berechnung bzw. den Reduktionsmethoden nach GIGAS bzw. TARCZY-HORNOCH.

Т	а	b	el	1	ė	1

	mm	mm	mm
Abschnitt	Reduktion nach Gigas	Reduktion nach Tárczy-Hornoch	Differenz
	1)	2)	2) 1)
Normalstrecke	— 33,780	— 33,785	<i>→</i> 0,005
0- 93	— 185,533	— 185,596	— 0,063
93-195	- 114,393	114,413	0,020
195-226	- 18,576	- 18,578	0,002
226-238	- 77,127	- 77,156	- 0,029
238-295	— 580,777	581,018	- 0,241
295-316	518,691	— 518,914	
316-340	-1253,454		
340-345	195,994	196,079	— 0,085
0-345	-	Summe	

12

Laboratoriumseichung

4. EICHWERTE DER DRÄHTE

4.1 LABORATORIUMSEICHUNG

Für den Vergleich der Laboratoriumseichwerte mit den auf der Normalstrecke gefundenen Eichwerten sind alle Eichwerte auf das bei der Basismessung gültige Spanngewicht und auf die Schwere von Ebersberg bezogen worden.

4.1.1 Die Korrektion auf das tatsächliche Spanngewicht

Bei einer Änderung des Spanngewichtes sind zwei verschiedene Wirkungen zu beachten, nämlich die Änderung der Meßlänge des Drahtes infolge Änderung des Durchhanges und die Änderung der Drahtlänge infolge einer Änderung der elastischen Dehnung des Drahtes.

Nach ([7] S. 473) gilt:

$$l = s - \frac{s^3}{24 c^2},$$
 (1)

wobei *s* die wahre Länge des Drahtes und *l* die Meßlänge des Drahtes bedeuten. Mit c = P/p erhält man aus (1)

$$l = s - \frac{s^3 \not 2^2}{24 P^2}.$$
 (2)

Für die von der Spannungsänderung abhängige Längenänderung findet man aus (2):

$$\frac{dl_1}{dP} = \frac{s^3}{12c^2P},\tag{3a}$$

$$dl_1 = \frac{s^3}{12c^2} \cdot \frac{dP}{P},\tag{3b}$$

oder schließlich:

 $dl_1 = + 0.343 \, dP.$ (3 c)

Die Längenänderung infolge elastischer Dehnung beträgt

$$dl_2 = \frac{s \cdot dP}{Q \cdot E},\tag{4a}$$

woraus man mit $Q = 2,138 \text{ mm}^2$ und $E = 15400 \text{ kg/mm}^2$ erhält:

$$dl_2 = + 0,729 \, dP.$$
 (4b)

Die Gl. (3c) und (4b) ergeben zusammen:

$$dl_1 + dl_2 = dl = +1,072 \ dP \tag{5}$$

 dl_1 , dl_2 und dl ergeben sich in μ , wenn dP in g eingeführt wird.

In Tabelle 2 sind für alle benützten Drähte die vor und nach der Basismessung bestimmten Laboratoriumseichwerte zusammengestellt.

ungewicht	12)	Korrigierter Laboreichwer	71	+ 322,0 158,0	408,0 668,0	+ 432,5 + 447,5	+ 495,5 + 528,5	+ 593,5 + 567,5	+ 726,4 + 754,7			
chliche Spar	(11	Korrektion auf 20° C	4						+ 14,4	+ 13,2	+ 14,4	
d das tatsäo	(0I	Korrektion auf tatsächliches Gewicht	ц	+ 53,6 + 53,6	+ 53,6 + 53,6	+ 25,4 + 25,4	+ 25,4 + 25,4	+ 25,4 + 25,4	+ 53,6 + 43,6	+ 35,4 + 25,4	+53,6 + 43,6	
ersberg un	(6	Schwere- korrektion	ħ					3,9 3,9		— 1,6 — 3,9	1,6 3,9	
vere von Eb	(8)	Laboratoriums- Eichwert	н	+ 270 210		+ 411 + 426	+ 474 + 507	+ 572 + 546	+ 660 + 715	— 300 — 176		
uf die Schv	(1	Eich- temperatur	°C	15° 15°	15° 15°	30°	500 700	30°	15° 20°	15° 20°	15° 20°	
bezogen a	(9	tatsächliches Meßgewicht	kg	10,050 10,050	10,050 10,050	10,033 10,033	10,033 10,033	10,033 10,033	10,050 10,050	10,033 10,033	10,050 10,050	
reichwerte,	5)	Eichgewicht	kg	10,000 10,000	10,000 10,000	10,0093 10,0093	10,0093 10,0093	10,0003 10,0003	10,000 10,0093	10,000 10,0093	10,000 10,0093	
ıg der Labo	4)	Schwere Eichinstitut	Gal	980,9408 980,9408	980,9408 980,9408	981,2682 981,2682	981,2682 981,2682	981,2682 981,2682	980,9408 981,2682	980,9408 981,2682	980,9408 981,2682	al
nmenstellur	3)	Eichinstitut		BIPM BIPM	BIPM BIPM	PTB PTB	PTB PTB	PTB PTB	BIPM PTB	BIPM PTB	BIPM PTB	g: 980,7161 G
elle 2. Zusai	2)	Zeit der Eichung		Mai 53 Feb. 59	Mai 53 Feb. 59	Aug. 58 Okt. 58	Aug. 58 Okt. 58	Aug. 58 Okt. 58	Dez. 57 Dez. 58	Dez. 57 Dez. 58	Dez. 57 Dez. 58	e in Ebersberg
Tab	г)	Draht		98	66	509	510	511	526	527	529	Schwer

1 I

14

Eichwerte der Drähte

4.2 EICHUNG AUF DER NORMALSTRECKE MÜNCHEN

Die Berechnung der Eichwerte aus den Messungen auf der Normalstrecke ist in Tabelle 3 zusammengestellt.

Die in [1] gegebene Diskussion über die Genauigkeit der Feldeichung ist wie folgt zu berichtigen: Der Eichwert λ berechnet sich nach:

$$\lambda = \frac{L - (36 \cdot 24m + [\sigma + r_t + K])}{36};$$
(1)

dabei bedeuten:

L = interferometrisch gemessene Länge der Normalstrecke im Drahtmessungshorizont = 864,019535 m,

 $\sigma = \text{Differenz} \text{ der Skalenablesungen},$

 $r_t = \text{Temperaturkorrektion},$

K = Summe der Korrektionen wegen Neigung, Alignement und Lotung.

Also wird:

$$\lambda = \frac{(L - 36 \cdot 24 \,\mathrm{m}) - [\sigma + r_t + K]}{36}, \qquad (2)$$

oder

$$\lambda = \frac{19,535 - [\sigma + r_t + K]}{36}.$$
(3)

 λ ergibt sich in mm, wenn $[\sigma + r_t + K]$ in mm eingesetzt wird.

Die Unsicherheit der Eichlänge λ beträgt nach (1):

$$m_{\lambda} = \frac{1}{36} \sqrt{m_{L}^{2} + m_{[\sigma + r_{t} + K]}^{2}}.$$
 (4)

Der Fehleranteil der Korrektionen K kann neben dem Fehlerbeitrag der reinen Drahtmessung vernachlässigt werden. Letzterer beträgt nach [1] Seite 23 für das Mittel aus Hin- und Rückmessung der Normalstrecke \pm 0,26 mm. Hinsichtlich der äußeren bzw. wirklichen Genauigkeit der interferometrisch bestimmten Länge der Normalstrecke ist derzeit eine definitive Aussage nicht möglich; eine erneute, für 1960 vorgesehene interferometrische Bestimmung der Normalstrecke wird jedoch darüber Aufschluß geben. Die innere Genauigkeit von L ist in [3] Seite 33 mit \pm 89 μ oder rund \pm 0,10 mm angegeben. Damit wird m_{λ}

$$m_{\lambda} = \frac{1}{36} \sqrt{0.10^2 + 0.26^2}$$
,
 $m_{\lambda} = \pm 0.008 \text{ mm.}$

Die Genauigkeit der Feldeichung beträgt somit rund \pm 10 μ ; für die Laboreichung ist dagegen nach Angabe der PTB eine Genauigkeit von \pm 20 μ anzusetzen.

			4)	5)	(9	7)	(8)	(6	10)	11)	12)
()	2)	3)	$[\sigma + r_t]$	$[\sigma + r_t]$		$[\sigma + r_t]$	[K,]	[K.]	[K。]	[2]-10]	
Draht	Abschnitt	Datum	Hin	Rück	Hin-Rück	Mittel	(Neigung)	(Alignement)	(Lotung)	T	Y
N			шш	mm	mm	mm	шш	mm	mm	mm	μ
98	1-36	27.9.	+ 61,537	+ 61,776	0,239	+ 61,656	- 33,787	0,008	0,810	+ 27,051	208,8
	1-36	3. 10.	+ 61,397	+ 61,567		+ 61,482			— 0,480	+ 27,207	
66	1-36	23.9.	+77,322	+77,741		+77,532	- 33,791			+ 43,203	- 657,4
	1-36 1-36	27.9. 3.10.	+ 78,430 + 81,425	+ 78,326 + 80,838	+ 0,104 + 0,587	+ 78,378 + 81,132	-33,791 -33,791	0,008 0,008		+ 43,769 + 46,853	$\frac{-673,2}{-758,8}$ 716,0
605	1-36	23. 0.	+ 30.612	+ 39,036	- 0.324	+ 30.774	33.783	0.008	0.530	+ 5.453	+ 301.2
	1-36	27.9.	+ 39,016	+ 38,510	+ 0,506	+ 38,763	- 33,783			+ 4,162	+ 427,0
510	1-36	22. 9.	+ 35,696	+ 35,660	+ 0,036	+ 35,678	-33,782	— 0,008		+ 1,358	+ 504,9
	1-36	27.9.	+ 34,196	+ 34,020	+ 0,176	+ 34,108	- 33,782	0,008		— 0,492	+ 556,3
511	1-36	27.9.	+ 33,258	+ 33,184	+ 0,074	+ 33,221	- 33,781		— 0,810		+ 580,9
	1-36	2. 10.	+34,932	+ 33,904	+ 1,028	+ 34,418	- 33,781			+ 0,149	+ 538,5
	1-30	3. 10.	+31,758	+ 30,392	+ 1,300	+31,075					+ 631,4
526	1-36	22. 9.	+ 28,220	+ 27,374	+ 0,846	+ 27,797	- 33,780	— 0,008	— 0,530	-6,521	+723,8
	1-36	23.9.	+ 27,430	+ 27,420	+ 0,010	+ 27,425	- 33,780		— 0,530	- 6,893	+ 734,1
	1-30	27.9.	+ 20,509	+ 20,092	+ 0,477	+ 20,330		0,000		- 8,208	+ 772,3
527	1-36	27.9.	+ 62,074	+ 62,338	— 0,264	+ 62,206	33,787	0,008		+ 27,601	- 224,1
	1-36	2. 10.	+ 60,156	+ 60,140	+ 0,016	+ 60,148		0,008	— 0,480	+ 25,873	- 176,1
529	1-36	27.9.	+ 69,620	+ 69,211	+ 0,409	+ 69,416	- 33,789	0,008		+ 34,809	
	1-30 1-36	29.9.	+ 70,157 + 70,020	+ 70,961 + 71,144		+ 70,559 + 70,582	-33,789 -33,789	0,008 0,008	0,690 0,480	+ 36,072 + $36,305$	
) ب = ۲	¹ / ₃₆ (19,535 —	$(T \cdot$									

Tabelle 3. Basismessung Ebersberg, Normalstreckeneichwerte

16

Eichwerte der Drähte

4.3. GEGENÜBERSTELLUNG DER EICHWERTE

Die gesamten Eichwerte, bezogen auf das tatsächliche Spanngewicht bei der Basismessung und auf die Schwere von Ebersberg, sind in Tabelle 4 zusammengestellt.

4.4. LÄNGE DER NORMALSTRECKE AUS LABORATORIUMSEICHWERTEN

Zur Überprüfung der interferometrisch bestimmten Länge der Normalstrecke wurde diese auch noch mit Hilfe der Drahtmessungen aus den Laboratoriumseichwerten abgeleitet. Der in [3] angegebene Wert für die Länge der Normalstrecke aus Laboratoriumseichwerten ist noch wegen des Einflusses der Abweichung zwischen den bei der Laboratoriumseichung und den bei der Drahtmessung benützten Spanngewichten verfälscht. Berücksichtigt man diesen Einfluß, so erhält man für die Länge der Normalstrecke im Horizont der Drahtmessung:

Interferometrisch bestimmte Länge:	864019,535	\pm 0,09 mm
Mittel aller Drähte (14 Eichwerte):	019,762	\pm 0,26 mm

	Eichinstitut Zeit	Normalstree September/C	ekeneichung Oktober 1958	Eichinstitut Zeit
	Zeit	vor	nach	Dilli
Draht	Eichlänge	Eichlänge	Eichlänge	Eichlänge
Schweizer	BIPM			BIPM
Drähte	1953			Febr. 1959
98	+ 322,0	208,8	- 213,1	— 158,0
99	— 408,0	- 657,4	673,2	
			758,81	668,0
DGFI, I. Abt.	PTB			РТВ
	Aug. 1958			Okt. 1958
509	+432,5	+ 391,2	+ 427,0	+ 447,5
510	+495,5	+ 504,9	+ 556,3	+ 528,5
511	+ 593,5	+ 580,9	$+ 538,5^{2}$	
			+ 631,4	+ 567,5
Österr.	BIPM			PTB
Drähte	Dez. 1957			Dez. 1958
526	+ 726,4	$+723,8^{3}$		
		+ 734,1	+ 772,3	+ 754,7
527	- 253,0	- 224,1	- 176,1	- 154,5
529		$-424,3^{4}$		
		459,4	— 465,8	448,5
	1	1	l	1

Tabelle 4. Gegenüberstellung der verschiedenen Eichungen

¹ Dazwischen Nachmessung eines Basisabschnittes.

² Knick bei Messung des letzten Basisabschnittes.

⁴ Bei Messung des 1. Basisabschnittes Knick, nach neuer Eichung wiederholt.

München Ak. Abh. 1960 (Herzog-Sigl) 3

³ Bei Regen.

Gegenüberstellung der Eichwerte

Eichung	beim BIPM (5 Eichwerte):	019,874	mm
Eichung	bei der PTB (9 Eichwerte):	019,699	mm

Eine Zusammenstellung der mit den einzelnen Drähten bestimmten Längen der Normalstrecke gibt Tabelle 5.¹

Tabelle 5. Länge der	Normalstrecke au	is Laboreichwerten	im Horizont	der l	Drahtmessung
	Septer	nber/Oktober 1958			

				1		
Draht	Eichinstitut	Eichwert vor nach mm	36 · λ vor nach mm	$\begin{bmatrix} \sigma + r_t + \Sigma \mathbf{K} \end{bmatrix}$ vor nach mm	Normalstrecke vor nach mm	v mm
	1		1			
98	BIPM BIPM	+ 322,0 158,0		+ 27,051 + 27,207		1,757
99	BIPM BIPM	408,0 668,0	 	+43,203 +45,311	21,263	- 1,501
509	PTB PTB	+ 432,5 + 447,5	+ 15,570 + 16,110	+ 5,453 + 4,162	21,023 20,272	— 1,261 — 0,510
510	PTB PTB	+ 495,5 + 528,5	+ 17,838 + 19,026	+ 1,358 - 0,492	19,196 18,534	+ 0,566 + 1,228
511	PTB PTB	+ 593,5 + 567,5	+ 21,366 + 20,430	- 1,378 - 1,522	19,988 18,908	0,226 + 0,854
526	BIPM PTB	+ 726,4 + 754,7	+ 26,150 + 27,169	— 6,893 — 8,268	19,257 18,901	+ 0,505 + 0,861
527	BIPM PTB	253,0 154,5	— 9,108 — 5,562	+ 27,601 + 25,873	18,493 20,311	+ 1,269 0,549
529	BIPM PTB	443,6 448,5	— 15,970 — 16,146	+ 34,809 + 36,305	18,839 20,159	+ 0,923 0,397
	Σ	+ 2420,5	+ 87,138	+ 189,526	+ 276,663	+ 0,005
		Gesa	mtmittel:	19,762 ± 0,	26 mm	
		Mitt	el BIPM:	19,874		
		Mitt	el PTB:	19,699		
		[vv]	= 13,717			
		m_0	$=\pm$ 0,99 mm	n		
		m	$=\pm$ 0,26 mm	1		

¹ Anläßlich von weiteren Basismessungen ausgeführte Invardrahtmessungen auf der Normalstrecke (Feldeichung) ergaben folgende Längen der Normalstrecke, wieder abgeleitet aus Laboreichwerten: 1959: Anläßlich der Messung in Feldmoching (11 Eichwerte): 864019,924 m \pm 0,3 mm 1959: Anläßlich der Messung in Heerbrugg (6 Eichwerte): 019,407 m \pm 0,2 mm. Eine systematische Abweichung der einzelnen Eichungen voneinander kann auf Grund der mittleren Fehler der Einzelwerte nicht nachgewiesen werden.

18

5. LÄNGE DER BASIS

Anlage, Ergebnisse und Auswertung der von der I. Abt. auf der Basis München ausgeführten Messungen sind bereits beschrieben worden ([1], [3]). Es ist also lediglich noch notwendig, abschnittsweise die nach TARCZY-HORNOCH gerechneten Korrektionen zusammenzustellen und die Längen der einzelnen Basisabschnitte unter Verwendung der in Tab. 4 angegebenen Eichwerte, die sich nunmehr auf das tatsächliche, bei der Basismessung verwendete Spanngewicht und auf die Schwere von Ebersberg beziehen, abzuleiten. Dies ist in den Tabellen 6 und 7 besorgt.

Eine Schlußzusammenstellung für die gestreckte Länge der Basis für jeden einzelnen Draht und getrennt nach Laboreichung und Normalstreckeneichung ist in den Tabellen 8 und 9 gegeben.

6. GENAUIGKEITSABSCHÄTZUNG FÜR DIE BASISMESSUNG

6.1. GENAUIGKEIT DER DRAHTMESSUNG

Anhaltspunkte für die Genauigkeit der reinen Drahtmessung, der Eichung, der Temperaturkorrektion und wenigstens angenähert auch der Lotungen gibt die Tabelle 9. Daraus ergibt sich für die aus Normalstreckeneichwerten abgeleitete Basislänge¹ eine mittlere Unsicherheit von \pm 2,4 mm für das Mittel aus allen Drähten.

6.2. GENAUIGKEIT DES ALIGNEMENTS

In [1] S. 12 sind die Reduktionsergebnisse zweier verschiedener Alignements, nämlich vor und nach der Basismessung zusammengestellt; die Differenz beträgt 0,046 mm. Der Fehleranteil des Alignements kann damit zu rund \pm 0,03 mm angesetzt werden.

6.3. GENAUIGKEIT DES NIVELLEMENTS

Für die Berechnung der Neigungs- und Dehnungskorrektion stehen ebenfalls zwei Messungen, nämlich je ein Nivellement vor und nach der Basismessung zur Verfügung. Um den Fehlerbeitrag des Nivellements abzuschätzen, wurde die Summe der k^2 getrennt für jedes Nivellement und für jeden Basisabschnitt mit dem Hauptglied der Formel für die Neigungskorrektion multipliziert (vgl. Tab. 10).

¹ Für die endgültige Darstellung der Basislänge werden ausschließlich die Normalstreckeneichwerte benützt.

			(4)	5)	(9	(2	8)	(6	(o1	11)
I)	2)	3)	Hin	Rück	Differenz	Mittel	[K1]	[K ₂]	[K ₃]	1
Draht	Abschnitt	Datum	$[\sigma + r_t]$	$[\sigma + r_t]$	4)-5)	$[\sigma + r_t]$	Neigung	Alignement	Lotungen	1
			mm	mm	mm	mm	mm	mm	шш	шш
98	0- 93	29.9.	+ 485,983	+ 486,429	— 0,446	+ 486,206		— 0,350		+ 296,823
	93-195	30.9.	+ 500,732	+ 501,791		+ 501,262	- 115,136		+ 3,140	+ 389,073
	195-226	1. 10.	+ 166,344	+ 165,201	+ 1,143	+ 165,772	- 18,826		+ 0,300	+ 147,145
	226-238	1. 10.	+ 113,663	+ 113,258	+ 0,405	+ 113,460	- 77,830		± 0,000	+ 35,599
	238-295	1. 10.	+ 232,224	+ 232,677	— 0,453	+ 232,450			— o,84o	
	295-316	2.10.			+ 0,086		518,915	— 0,202	+ 1,430	
	316-340	2.10.			— 0,180	— 437,627		— o,o49	+ 9,760	
	340-345	2.10.	+ 16,435	+ 16,192	+ 0,243	+ 16,314				
			23.9.	26.9.	2.10.					
66	0- 93	23.,26.9.,2.10.	+ 536, 272	+ 527,326	+ 534,280	+ 532,626		0,099	- 3,647	+ 343,303
	93-195	24.9.	+ 545,577	+ 545,339	+ 0.238	+ 545,458	- 113,714	- 0,329	+ 3,270	+ 434,685
	195-226	25.9.	+ 180,793	+ 180,098	+ 0,695	+ 180,446	- 18,337		+ 0,040	+ 162,047
	226-238	25.9.	+ 117,634	+ 118,160	— 0,526	+ 117,897	- 76,485	— 0,029	+ 0,240	+ 41,623
	238-295	25.9.	+ 259,225	+ 258,801	+ 0,424	+ 259,013	- 579,424		- 1,170	
	295-316	26.9.	- 227,189						+ 1,160	
	316-340	26.9.	- 426,729	- 426,928	+ 0,199	- 426,828	-1254,008	— o,o49	+ 9,740	
	340-345	26.9.	+ 18,180	+ 18,610	— 0,430	+ 18,395	— 196,080	— 0,015		
509	0- 93	23.9.	+ 426,365	+ 427,840		+ 427,102				+ 237,287
	93-195	24.9.	+ 433,320	+ 431,038	+ 2,282	+ 432,179	- 113,689	- 0,329	+ 3,270	+ 321,431
	195-226	25.9.	+ 144,250	+ 145,668	- 1,418	+ 144,959	- 18,330		+ 0,040	+ 126,567
	226-238	25.9.	+ 103,452	+ 104,616	— 1,164	+ 104,034	- 76,482		+ 0,240	+ 27,763
	238-295	25.9.	+ 191,497	+ 194,204		+ 192,850	- 579,411	— 0,098	- 1,170	-387,829
	295-316	26.9.	- 250,673	- 250,137	— 0,536				+ 1,160	-768,359
	316-340	26.9.			— 0,737			— o,o49	+ 9,740	
	340-345	26.9.	+ 12,835	+ 12,610	+ 0,225	+ 12,722	— 196,079			— 207,772
510	0- 93	23.9.	+ 418,091	+ 418,783	— 0,692	+ 418,437				+ 228,624
	93-195	24.9.	+ 426,420	+ 425,870	+ 0,550	+ 426,145	- 113,688	— 0,329	+ 3,270	+ 315,398
	195-226	25.9.	+ 142,223	+ 142,741	— 0,518	+ 142,482	- 18,330		+ 0,040	+ 124,090
	226-238	25.9.	+ 103,540	+ 103,409	+ 0,131	+ 103,474	- 76,482	— 0,029	+ 0,240	+ 27,203

Tabelle 6. Basismessung Ebersberg

20

Genauigkeitsabschätzung für die Basismessung

	238-295	25.9.	+ 188,028	+ 190,462		+ 189,245	- 579,409	0,098	- 1,170	-391,432
	295-316	26.9.	- 251,653		— 0,483	- 251,412	- 518,910		+ 1,160	
	316-340	26.9.	455,313		— 0,277	455,174		— 0,049	+ 9,740	
	340-345	26.9.	+ 12,650	+ 12,310	+ 0,340	+ 12,480				208,013
511	0- 93	29.9.	+ 410,173	+ 411,710		+ 410,942				+ 221,575
	93-195	30.9.	+ 419,172	+ 419,034	+ 0,138	+ 419,103	- 115,119		+ 3,140	+ 306,931
	195-226	1. 10.	+ 141,159	+ 140,962	+ 0,197	+ 141,060	- 18,820	0,101	+ 0,300	+ 122,439
	226-238	1. 10.	+ 103,632	+ 103,954	0,322	+ 103,793	- 77,828	— 0,031	± 0,000	+ 25,934
	238-295	1. 10.	+ 187,057	+ 186,384	+ 0.673	+ 186,720	— 582,616	— 0,095	— o,840	
	295-316	2.10.		- 255,222	+ 2,307		518,912		+ 1,430	- 771,752
	316-340	2.10.			+ 0.071		-1254,006	0,049	+ 9,760	-1703,657
	340-345	2.10.	+ 11,840	+ 11,760	+ 0,080	+ 11,800		0,015		
526	0- 93	23./26.9.	+ 398,990	+ 395,387	(+3,603)	+ 397,188		0,108	- 3,765	+ 207,759
	93-195	24. 9.	+ 402,892	+ 403,633	0,741	+ 403,262	- 113,682		+ 3,270	+ 292,521
	195-226	25.9.	+ 136,618	+ 136,476	+ 0,142	+ 136,547	- 18,328		+ 0,040	+ 118,157
	226-238	25.9.	+ 100,554	+ 100,173	+ 0,381	+ 100,364	76,482	0,029	+ 0,240	+ 24,093
	238-295	25.9.	+ 175,837	+ 176,247		+ 176,042	- 579,407	0,098		
	295-316	26.9.	- 256,844	- 256,702	0,142	-256,773			+ 1,160	
	316-340	26.9.			— 0,957	-461,538	-1254,003	— 0,049	+ 9,740	
	340-345	26.9.	+ 11,325	+ 11,460	-0,135	+ 11,392		— 0,015		209,101
527	o- 93	29.9.	+ 488,491	+ 490,004	- 1,513	+ 489,248		— 0,350		+ 299,865
	93-195	30.9.	+ 502,536	+ 502,318	+ 0,218	+ 502,427	- 115,137		+ 3,140	+ 390,237
	195-226	1. 10.	+ 166,547	+ 165,902	+ 0,645	+ 166,224	- 18,826		+ 0,300	+ 147,597
	226-238	1. 10.	+ 113,424	+ 114,124	0,700	+ 113,774	- 77,830		± 0,000	+ 35,913
	238-295	1.10.	+ 234,635	+ 232,944	+ 1,691	+ 233,790	- 582,625	— 0,095	0,840	— 349,770
	295-316	2.10.	- 236,444	236,490	+ 0,046		-518,914		+ 1,430	- 754,153
	316-340	2.10.			+ 0,960		-1254,008	o,o49	+ 9,760	-1682,373
	340-345	2.10.	+ 16,200	+ 15,900	+ 0,300	+ 16,050	— 196,080		24,450	— 204,495
529	o- 93	29.9.	+ 509,430	+ 510,938		+ 510,184		— 0,350	- 3,440	+ 320,796
	93-195	30.9.	+ 523,950	+ 525,680	- 1;730	+ 524, 815			+3,140	+ 412,620
	195-226	1. 10.	+ 174,505	+ 173,064	+ 1,441	+ 173,784	- 18,827		+ 0,300	+ 155,156
	226-238	1. 10.	+ 116,552	+ 116,946	— o,394	+ 116,749	- 77,831		+ 0,000	+ 38,887
	238-295	1. 10.	+ 249,316	+ 247,378	+ 1,938	+ 248,347	- 582,629		— o,840	- 335,217
	295-316	2.10.	- 231,021	231,058	+ 0,037			0,202	+ 1,430	- 748,728
	316-340	2.10.		431,939	+ 0,171			o,o49	+ 9,760	
	340-345	2. 10.	+ 17,783	+ 17,462	+ 0,321	+ 17,622				

Genauigkeit der Drahtmessung, des Alignements, des Nivellements

21

			4)	5)	(9	7)	(8	(6	(o1	11)	12)
(I	2)	3)		Labore	ichung	Normalstree	keneichung	Labore	sichung	Normalstree	keneichung
			Т	x - x	$n \cdot \lambda$	Y . u	$x \cdot x$	S	S	S	S
Draht	Abschnitt	Datum		VOL	nach	VOL	nach	vor	nach	vor	nach
			mm	mm	шш	mm	шш	mm	mm	шш	шш
98	0- 93	29. 9.	+ 296,823		- 14,694	- 19,418	- 19,818		+ 282,129	+ 277,405	+ 277,005
	93-195	30.9.	+ 389,073		- 16,116		-21,736		$+ 37^{2},957$	+ 367,775	+ 367,337
	195-226	1.10.	+ 147,145		- 4,898	- 6,473	- 6,606		+ 142,247	+ 140,672	+ 140,539
	226-238	1. 10.	+ 35,599		- 1,896	- 2,506	- 2,557		+ 33.703	+ 33,093	+ 33,042
	238-295	1. 10.			- 9,006					— 363,012	
	295-316	2. 10.	- 754,846		- 3,318	4,385			-758,164		-759,321
	316-340	2. 10.		8	- 3,792	5,011	- 5,114		-1685,712		-1687,034
	340-345	2. 10.			- 0,790	1,044	1,066		205,021	205,275	
66	0- 93	23.,26.9.,2.10.	+ 343,303		- 62,124		- 66,588		+ 281,179	+ 282,165	+ 276,715
	93-195	24.9.	+ 434,685				- 73,032		+ 366,549	+ 367,630	+ 361,653
	195-226	25.9.	+ 162,047		20,708				+ 141,339	+ 141,668	+ 139,851
	226-238	25.9.	+ 41,623		8,016	- 7,889	- 8,592		+ 33,607	+ 33,734	+ 33,031
	238-295	25.9.	-321,679			- 37,472					
	295-316	26.9.	744,992		- 14,028						760,028
	316-340	26.9.	-1671,145		- 16,032	- 15,778	17,184		-1687,177		
	340-345	26.9.			- 3,340	- 3,287	- 3,580		205,440		205,680
509	o- 93	23.9.	+ 237, 287	+ 40,222	+ 41,618	+ 36,382	+ 39,711	+ 277,509	+ 278,905	+ 273,669	+ 276,998
	93-195	24.9.	+ 321,431	+ 44,115	+ 45,645	+ 39,902	+ 43,554	+ 365,546	+ 367,076	+ 361,333	+364,985
	195-226	25.9.	+ 126,567	+ 13,408	+ 13,872	+ 12,127	+ 13,237	+ 139,975	+ 140,439	+ 138,694	+ 139,804
	226-238	25.9.	+ 27,763	+ 5,190	+ 5,370	+ 4,694	+ 5,124	+ 32,953	+ 33,133	+ 32,457	+ 32,887
	238-295	25.9.	-387,829	+ 24,652	+ 25,508	+ 22,298	+ 24,339		-362,321		- 363,490
	295-316	26.9.	768,359	+ 9,082	+ 9,398	+ 8,215	+ 8,967			760,144	-759,392
	316-340	26.9.		+ 10,380	+ 10,740	+ 9,389	+ 10,248				
	340-345	26.9.		+ 2,163	+ 2,238	+ 1,956	+ 2,135	205,609			205,637
510	0- 93	23.9.	+ 228,624	+ 46,082	+ 49,150	+ 46,956	+ 51,736	+ 274,706	+ 277,774	+ 275,580	+ 280,360
	93-195	24.9.	+315,398	+ 50,541	+ 53,907	+ 51,500	+ 56,743	+ 365,939	+ 369, 305	+ 366,898	+ 372,141
	195-226	25.9.	+ 124,090	+ 15,360	+16,384	+ 15,652	+ 17,245	+ 139,450	+ 140,474	+ 139,742	+ 141,335
	226-238	25.9.	+ 27,203	+ 5,946	+ 6,342	+ 6,059	+ 6,676	+ 33,149	+ 33,545	+ 33,262	+ 33,879

Tabelle 7. Basismessung Ebersberg

22

Genauigkeitsabschätzung für die Basismessung

Genauigkeit der Drahtmessung, des Alignements, des Nivellements

_	238-295	25.9. 26.0	391,432 760.364	+ 28,244	+ 30,124 + 11,008	+ 28,779 + 10,603	+31,709 + 11.682			-362,653 -758,761	359,723
	316-340	26.9.	-1699,483	+ 11,892	+ 12,684	+ 12,118	+ 13,351	-1687,591	-1686,799	-1687,365	-1686,132
	340-345	26.9.	— 208,013	+ 2,478	+ 2,642	+ 2,524	+ 2,782				
;11	0- 93	29.9.	+ 221,575	+ 55,196		+ 54,024		+ 276,771		+ 275,599	
	93-195	30.9.	+ 306,931	+ 60,537		+ 59,252		+ 367,468		+366,183	
	195-226	1. 10.	+ 122,439	+ 18,398		+ 18,008		+ 140,837		+ 140,447	
	226-238	1. 10.	+ 25,934	+ 7,122		+ 6,971		+ 33,056		+ 32,905	
	238-295	1. 10.		+ 33,830		+ 33,111		- 363,001		- 363,720	
	295-316	2.10.			+ 11,918	+ 11,308	+ 13,259		- 759,834		-758,493
	316-340	2.10.			+ 13,620	+ 12,924	+ 15,154				
	340-345	2.10.			+ 2,838	+ 2,692	+ 3,157			206,053	
326	0- 93	23./26.9.	+ 207,759	+ 67,555	+ 70,187	+ 68,271	+71,824	+ 275,314	+ 277,946	+ 276,030	+ 279,583
	93-195	24.9.	+ 292,521	+ 74,093	+ 76,979	+74,878	+ 78,775	+ 366,614	+369,500	+ 367,399	+ 371,296
	195-226	25.9.	+ 118,157	+ 22,518	+ 23,396	+ 22,757	+ 23,941	+ 140,675	+ 141,553	+ 140,914	+ 142,098
-	226-238	25.9.	+ 24,093	+ 8,717	+ 9,056	+ 8,809	+ 9,268	+ 32,810	+ 33,149	+ 32,902	+ 33,361
	238-295	25.9.	- 404,633	+ 41,405	+ 43,018	+ 41,844	+ 44,021	- 363,228			
	295-316	26.9.	-774,726	+ 15,254	+ 15,849	+ 15,416	+ 16,218	- 759,472	-758,877		
	316-340	26.9.		+ 17,434	+ 18,113	+ 17,618	+ 18,535				
	340-345	26.9.		+ 3,632	+ 3,774	+ 3,670	+ 3,862	205,469			
27	0- 93	29.9.	+ 299,865	-23,529	- 14,368	20,841	- 16,377	+ 276,336	+ 285,497	+ 279,024	+ 283,488
	93-195	30.9.	+ 390,237		- 15,759		-17,962	+ 364,431	+ 374,478	+ 367,379	+ 372,275
	195-226	1. 10.	+ 147,597	7,843	- 4,790	- 6,947	- 5,459	+ 139,754	+ 142,807	+ 140,650	+ 142,138
	226-238	1. 10.	+ 35,913	— 3,036	- 1,854	- 2,689	- 2,113	+ 32,877	+ 34,059	+ 33,224	+ 33,800
	238-295	1. 10.			— 8,806	- 12,774					
	295-316	2.10.	- 754,153	- 5,313	- 3,244	- 4,706	- 3,698	-759,466		- 758,859	- 757,851
	316-340	2.10.	-1682,373	- 6,072	- 3,708	- 5,378					
	340-345	2.10.		- 1,265	0,772	- 1,120	0,880	205,760	- 205,267		-205,375
529	o- 93	29.9.	+ 320,796		- 41,710	- 42,724			+ 279,086	+ 278,072	+ 277,477
	93-195	30.9.	+ 412,620						+ 366,873	+ 365,761	+ 365,108
	195-226	1.10.	+ 155,156			- 14,241			+ 141,252	+ 140,915	+ 140,716
	226-238	1. 10.	+ 38,887		- 5,382	- 5,513	5,590		+ 33,505	+ 33,374	+ 33,297
	238-295	1. 10.	- 335,217		- 25,564	26,186				- 361,403	-361,768
	295-316	2.10.	-748,728		- 9,418	— 9,647	- 9,782		- 758,146	- 758,375	
	316-340	2. 10.			— 10,764	- 11,026	- 11,179				-1687,330
	340-345	2.10.	- 202,923		- 2,242	- 2,297	- 2,329		- 205,165	205,220	

23

	50
	ž
	0
	Ę.
	Ż
	S
ì	4
ł	
1	5
	ä
	Ę
•	10
	¥.
-	G
	SL
	50
	2
•	ē
1	4
	i.
	te te
	E C
	Ā
,	등
•	H
	ŝ
	Ξ
	11
	5
	at
	5 C
,	ā
	13
	ب
•	E
	H
	ä
	0
•	E
	0
ć	2
	e
7	\geq
	Ħ
	П
	br
	H
	SSI
	ē
	E
•	10
	g
F	ц
	L C
-	ð
	e
	SS
•	ľ
,	0
	50
,	H
1	
¢	ŝ
p	ΠĘ
ĺ	o e
	B
E	-

24

-

Ab- schnitt	0-93	93-195	195226	226-238	238-295	295-316	316-340	340-Süd	Summe Nord-Süd	Streckungs- reduktion	Basis im Messungs- horizont	Gewicht p	а
	vor nach Mittel	vor nach Mittel	vor nach Mittel		Mittel								
Draht	2232 m mm	2 448 m mm	744 m mm	288 mm	1 368 m	504 m	576 m mm	74 m mm	8234 m mm	mm	8234 m mm		um
	+	+	+	+	I	1		+	1				
98	1	1		1	1	I	l	- 1	!		,		
	282,129	372,957	142,247	33,703	360,116	758,164	1685,712	969,044	1003,912				
	282,129	372,957	142,247	33,703	360,116	758,164	1685,712	969,044	1 003,912	421,969	1425,881	1	
66	1	-	I		l	1		l	1				
	281,179	366,549	141,339	33,607	359,755	759,020	1687,177	968,782	1 014,496				
	281,179	366,549	141,339	33,607	359,755	759,020	1687,177	968,782	1014,496	421,969	1 436,465	1	- 3,851
509	277,509	365,546	139,975	32,953	363,177	759,277	1 687,064	968,676	1024,859				
	278,905	367,076	140,439	33,133	362,321	758,961	1 686,704	968,723	1019,710			×	
	278,207	366,311	140,207	33,043	362,749	759,119	1 686,884	968,700	1 022,284	421,969	1444,253	61	+ 3,937
510	274,706	365,939	139,450	33,149	363,188	758,958	1687,591	968,723	1 027,770				
	277,774	369,305	140,474	33,545	361,308	758,266	1686,799	968,825	1016,450				
	276,240	367,622	139,962	33,347	362,248	758,612	1687,195	968,774	1022,110	421,969	1444,079	61	+ 3,763
511	276,771	367,468	140,837	33,056	363,001	I	l	1	l				
		[l	[I	759,834	1 690,037	968,553	l				
	276,771	367,468	140,837	33,056	363,001	759,834	1 690,037	968,553	1026,187	421,969	1448,156	1	+ 7,840
526	275,314	366,614	140,675	32,810	363,228	759,472	1 688,416	968,764	1 026,939				
	277,946	369,500	141,553	33,149	361,615	758,877	1 687,737	968,853	1017,228				
	276,630	368,057	141,114	32,980	362,422	759,174	1 688,076	968,805	1022,084	421,969	1444,053	6	+ 3,737
527	276,336	364,431	139,754	32,877	364,191	759,466	1 688,445	968,582	1030,122				
	285,497	374,478	142,807	34,059	358,576	757,397	1 686,081	968,890	996,323				
	280,916	369,454	141,280	33,468	361,384	758,432	1 687,263	968,736	1013,222	421,969	1435,191	61	- 5,125
529	l]	1	I	1	l	1	i				
	279,086	366,873	141,252	33,505	360,781	758,146	1686,915	968,954	1016,172				
	279,086	366,873	141,252	33,505	360,781	758,146	1 686,915	968,954	1016,172	421,969	1438,141	ţ	- 2,175
Mitte	el: — 1440,3	10 [pv] =	+ 0,003	= [v v v] =	429,18 <i>m</i> 0	=± 7,8 г	$\frac{1}{\mu} = \frac{1}{\mu}$ mu	2,3 mm		-		_	

Genauigkeitsabschätzung für die Basismessung

Tab	elle 9. Erg	ebnisse d	ler Basısn	ressung i	m Mebho	rizont mi	t Normais	treckeneici	lwerten. N	eigungsredi	uktion nach	TARCZY-F	IORNOCH
Ab- schnitt	0-93	93-195	195–226	226-238	238-295	295-316	316-340	340-Süd	Summe Nord-Süd	Streckungs- reduktion	Basis im Messungs- horizont	Gewicht P	ъ
	vor nach Mittel	vor nach Mittel	vor nach Mittel		Mittel								
Draht	2232 mm	2448 m mm	744 m mm	288 mm	1368 m mm	504 mm	576 mm	74 m mm	8234 m mm	mm	8234 m mm		mm
	+	+	+	+	1	I	1	+		1	1		
98	277,405	367,775	140,672	33,093	363,012	759,231	1686,931	968,885	1021,344				
	277,005	367,337 367,556	140,539 140,606	33,042 33,068	363,257 363,134	759,321 759,276	1687,034 1686,982	968,872 968,878	1 022,817 1 022,080	421,969	1 444,049	61	+ 1,161
66	282,165	367,630	141,668	33,734	359,151	758,797	1 686,923	968,815	1010,859				
	276,715	361,653	139,851	33,031	362,491	760,028	1 688, 329	968,632	1 030,966		.00		
400	273.660	304,042	138.604	33,382	300,821 365,531	760.144	1 087,020 1 688,055	908,724 068,547	1 020,912	421,909	1442,001	51	
600	276,998	364,985	139,804	32,887	363,490	759,392	1 687,196	968,659	1026,745				
	275,334	363,159	139,249	32,672	364,510	759,768	1687,626	968,603	1 032,888	421,969	1454,857	61	+11,969
510	275,580	366,898	139,742	33,262	362,653	758,761	1687,365	968,752	1 024,545				
	280,360	372,141	141,335	33,879	359,723	757,682	1 686,132	968,913	1 006,909				
	277,970	369,520	140,538	33,570	361,188	758,222	1 686,748	968,832	1015,727	421,969	1437,696	61	- 5,192
511	275,599	366,183	140,447	32,905	363,720	760,444	1 690,733	968,399	1031,364				
		1	1	1		758,493	1688,503	968,69 0	1				
	275,599	366,183	140,447	32,905	363,720	759,468	1 689,618	968,544	1 029,128	421,969	1451,097	1	+ 8,209
526	276,030	367,399	140,914	32,902	362,789	759,310	1 688,232	968,788	1 024,298				
	279,583	371,296	142,098	33,361	360,612	758,508	1687,315	968,908	1011,189				
	277,806	369,348	141,506	33,132	361,700	758,909	1 687,774	968,848	1 017,744	421,969	1 439,713	61	- 3,175
527	279,024	367,379	140,650	33,224	362,544	758,859	1 687,751	968,673	1 020,204				
	283,488	372,275	142,138	33,800	359,808	757,851	1 686,599	968,823	1 003,734				
	281,256	369,827	141,394	33,512	361,176	758,355	1 687,175	968,748	1011,969	421,969	1433,938	61	- 8,950
529	278,072	365,761	140,915	33,374	361,403	758,375	1687,177	968,920	1019,913				
	277,477	365,108	140,716	33,297	361,768	758,510	1 687,330	968,900	1022,110				
_	277,774	365,434	140,816	33,336	361,586	758,442	1 687,254	968,910	1021,012	421,969	1442,981	61	+ 0,093
Mitte	1: - 1442,8	88 [pv]:	+ 0,007 []	bvv] = 59	0,89 m ₀ =	= 土 9,2 mm	$\mu = \pm 2$	4 mm					

Genauigkeit der Drahtmessung, des Alignements, des Nivellements

25

München Ak. Abh. 1960 (Herzog-Sigl) 4

Abschnitt	$[\varDelta \ k_M^2]^1$	$[\varDelta \ h_F^2]^1$	Differenz $[\varDelta h^2_M] - [\varDelta h^2_F]$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	m²	m ²	m²	μ
0- 93	8,898483	8,902082	0,003 599	75
93-195	5,396879	5,400117	0,003238	67
195-226	0,966766	0,966434	+ 0,000 332	+ 7
226-238	3,781 879	3,783983	0,002 104	- 44
238-295	27,608792	27,610614	- 0,001 822	38
295-316	24,867744	24,867410	+ 0,000 334	+ 7
316-340	60,075831	60,081 500	0,005669	— 118
340-345	9,402485	9,403671	- 0,001 186	- 25
Summe:	140,998859	141,015811	- 0,016952	- 353

Tabelle 10. Abschätzung des Fehlers der Neigungskorrektion

Mittlere Unsicherheit der Basislänge aus Niv. $\approx \pm$ 0,2 mm

 1 M = Münchener Nivellement; F = Frankfurter Nivellement.

In den übrigen Gliedern kann der Unterschied in den nivellierten Höhenunterschieden vernachlässigt werden. Aus dieser Abschätzung ergibt sich der Fehlerbeitrag des Nivellements zu \pm 0,2 mm.

6.4. GENAUIGKEIT DER STRECKUNGSREDUKTION

Die Summe der im Basispolygon beobachteten Winkel ergab einen Widerspruch von 15^{ce}. Damit errechnet sich der mittlere Fehler eines ausgeglichenen Winkels im Basispolygon zu:

$$m_w = \pm \frac{15}{\sqrt{n}} \cdot \sqrt{1 - \frac{1}{n}}, n = 9, m_w = \pm 5^{\rm cc}.$$
 (1)

Die Unsicherheit der Neigungswinkel der einzelnen Basisabschnitte gegen die gerade Verbindungslinie der Basisendpunkte wächst also von $\pm 5^{cc}$ an den Enden bis zu $\pm 10^{cc}$ in der Mitte des Polygonzuges. Für die Genauigkeit der gesamten Streckungsreduktion ergeben sich folgende Zahlenwerte:

Abschnitt	Neigung	⊿ cos/1 ^{cc}	Unsicherheit der Neigung	$\Delta \cos \cdot m$	s	ms
	g	10-8	mcc	10-8	m	mm
Nord– 9 3	0,487	2	5	10	2232	0,223
93-195	0,056	1	7	7	2448	0,171
195-226	0,068	1	9	9	744	0,067
226-238	0,731	2	10	20	288	0,058
238-295	0,321	1	10	10	1 368	0,137
295-316	0,313	1	9	9	503	0,045
316-340	1,976	5	7	35	574	0,201
240-Süd	1,974	5	5	25	75	0,019

Daraus folgt eine mittlere Unsicherheit der Streckungsreduktion von \pm 0,39 mm.

Genauigkeit des Hilfsdreiecks, Gesamtgenauigkeit der Basismessung

6.5. GENAUIGKEIT DES HILFSDREIECKS

Das Hilfsdreieck wurde zweimal ausgemessen (vgl. [1], S. 9). Sowohl aus den Differenzen der gemessenen Winkel als auch aus den Dreieckswidersprüchen erhält man für die Mittelwerte der gemessenen Winkel einen mittleren Fehler von rund $\pm 2^{cc}$.

Die mittlere Unsicherheit für den abgeleiteten Basisabschnitt ergibt sich dann zu:

$$m_a = \pm a \sqrt{\left(\frac{m_c}{c}\right)^2 + \frac{2}{3} \left(\operatorname{ctg}^2 a + \operatorname{ctg} a \operatorname{ctg} \gamma + \operatorname{ctg}^2 \gamma\right) \left(\frac{\mu}{\varrho}\right)^2}.$$
 (2)

Mit a = 75 m, c = 120 m, $m_c = \pm 0.05$ mm, $a = 42^{g},64$ und $\gamma = 108^{g},00$ erhält man aus (2)

$$m_a = \pm 75000 \sqrt{\left(\frac{0.05}{120000}\right)^2 + 2/3 (1.593 + 0.159 + 0.016) \left(\frac{2^{cc}}{\varrho^{cc}}\right)^2}$$
$$m_a = \pm 0.26 \text{ mm.}$$

6.6. GESAMTGENAUIGKEIT DER BASISMESSUNG

Mit den oben dargestellten Unsicherheiten der verschiedenen Arbeitsgänge läßt sich nun die Gesamtgenauigkeit der Basismessung berechnen:

Mittlerer Gesamtfehler der Basislänge aus	No	rm	als	tre	cke	ene	ich	w	ert	en				± 2,5 mm.
Mittlerer Fehler aus dem Hilfsdreieck .		•	•	•			•						•	\pm 0,26 mm
Mittlerer Fehler aus der Streckungsredukt	ion	•	•								•		•	\pm 0,39 mm
Mittlerer Fehler aus dem Nivellement .	• •	•		•									•	\pm 0,2 mm
Mittlerer Fehler aus dem Alignement .				•					·	•	•	•		\pm 0,03 mm
Mittlerer Fehler aus der Drahtmessung .			•	·		•	•	•		•		·		\pm 2,4 mm

7. ENDERGEBNIS DER BASISMESSUNG DURCH DIE I. ABT. DGFI

Im folgenden werden nunmehr die endgültigen Längen der Basis angegeben; eine Erläuterung der verschiedenen Werte ist nicht erforderlich.

7.1. BASISLÄNGE AUS LABORATORIUMSEICHWERTEN

Länge der Basis im Messungshorizont ($H = 549,78$ m)	8232559,68 mm
Reduktion auf Meereshöhe	 710,40 mm
Basislänge in Meereshöhe	8231849,28 ± 2,4mm

28 Endergebnis der Basismessung Ebersberg als Mittelwert aus den Messungen der I.u. II. Abt. des DGFI

7.2. BASISLÄNGE AUS NORMALSTRECKENEICHWERTEN

Länge der Basis im Messungshorizont ($H = 549,78$ m)		8232557,11 mm
Reduktion auf Meereshöhe	_	710,40 mm
Basislänge in Meereshöhe		8231846,71 ± 2,5mm

8. ENDERGEBNIS DER BASISMESSUNG EBERSBERG ALS MITTEL-WERT AUS DEN MESSUNGEN DER I. UND II. ABT. DES DGFI

8.1. BASISLÄNGE AUS LABORATORIUMSEICHWERTEN IM MEERESHORIZONT

White-	0231050,7 IIIII
N : ++ - 12	 9 a a 4 9 d a 1 mana
II. Abt. DGFI ¹	8231 852,14 mm
I. Abt. DGFI	8231 849,28 mm

8.2 BASISLÄNGE AUS NORMALSTRECKENEICHWERTEN

I. Abt. DGFI	8231 846,71 mm
II. Abt. DGFI ¹	8231 846,74 mm
Mittel ²	8231846,7 mm.

Entsprechend den Empfehlungen der I.A.G. wird für die endgültige Darstellung der Basis nur die aus Normalstreckeneichwerten abgeleitete Länge benützt; also gilt für die auf Meereshöhe reduzierte Länge der Basis:

8231846,7 mm.

Die Genauigkeit des Endwertes kann mit ± 2 mm veranschlagt werden.

² Es wurde davon abgesehen, bei der Mittelung die geringfügigen Genauigkeitsunterschiede zu berücksichtigen.

¹ Laut Mitteilung der II. Abteilung des DGFI. Näheres über die Messungen der II. Abteilung DGFI siehe bei [2].

LITERATURVERZEICHNIS

- M. KNEISSL und R. SIGL, Basis Ebersberger Forst, Invardrahtmessungen der I. Abteilung des Deutschen Geodätischen Forschungsinstitutes 1958. Abh. d. Bayer. Akad. d. Wiss., math.-nat. Kl., N. F. Heft Nr. 99, München 1959.
- [2] K. GERKE, Basis Ebersberger Forst, Invardrahtmessungen 1958 der II. Abt. des DGFI, Veröff. d. DGK, Reihe B, Heft Nr. 56, Teil II. (Im Druck.)
- [3] M. KNEISSL, Normalstrecke, Basis und Basisvergrößerungsnetz München-Ebersberg, Anlage und Vermessungsergebnisse 1958. Abh. d. Bayer. Akad. d. Wiss., math.-nat. Kl., N. F. Heft 97, München 1959.
- [4] M. KNEISSL und R. SIGL, Tellurometermessungen 1958 (der I. Abt. des DGFI) im Basisvergrößerungsnetz München. Abh. d. Bayer. Akad. d. Wiss., math.-nat. Kl., N. F. Heft 100, München 1959.
- [5] GIGAS, E., Handbuch für die Verwendung von Invardrähten bei Grundlinienmessungen. Reichsamt für Landesaufnahme 1934 Berlin.
- [6] ТА́ксzy-Нокмосн, Über die Invardraht- und Bandmessung. ZfV 83. Jg. 1958, Heft 6, Seite 183 ff.
- [7] JORDAN-EGGERT-KNEISSL, Handbuch der Vermessungskunde, Bd. IV, 1. Hälfte, Stuttgart 1958.