## Abhandlungen

der Königlich Bayerischen Akademie der Wissenschaften Mathematisch-physikalische Klasse XXVII. Band, 4. Abhandlung

# Konforme Abbildung des ganzen Erdellipsoids auf die Kugel

von

Wilhelm Deimler

Mit 2 Tafeln

Vorgelegt am 7. November 1914

München 1914 Verlag der Königlich Bayerischen Akademie der Wissenschaften in Kommission des G. Franzschen Verlags (J. Roth)

Der Verfasser der folgenden Abhandlung Dr. Wilhelm Deimler, Privatdozent der Mathematik an der Technischen Hochschule in München, ist am 22. August 1914 bei der Erstürmung des Col de Sainte Marie unfern Markirch im Elsaß, bei der er als Leutnant des 15. Reserve-Infanterieregiments die Spitze der Vorhut führte, gefallen und auf dem Paß selbst begraben. Geboren am 28. Juli 1884 in Bombay als jüngster Sohn eines Missionars kam er mit drei Jahren nach Deutschland, absolvierte 1902 das Alte Gymnasium in Nürnberg und studierte bis 1906 an der Technischen Hochschule und der Universität München erst Maschinenbau und dann Mathematik und Physik. Die beiden Teile des bayerischen Lehramtsexamens für letztere Fächer legte er 1904 und 1906 mit bestem Erfolge ab, den zweiten unter Vorlage einer wissenschaftlichen Arbeit über plötzliche Fixierungen eines starren Körpers. Er bezog dann die Universität Göttingen, wo er unter dem Einfluß von Professor Prandtl 1908 mit einer Arbeit über die Stabilität symmetrischer Gleitflieger promovierte. Die Dissertation erweitert das von Bryan und Williams auf die longitudinale Stabilität angewandte Verfahren der kleinen Schwingungen um eine stationäre Bewegung auf den allgemeinen Fall und zeigt die Unabhängigkeit der Längsund Seitenschwingungen eines symmetrischen Gleitfliegers. Deimler diente 1908/09 beim K. Infanterie-Leibregiment und war dann drei Jahre lang Assistent für Mathematik an der Münchener Technischen Hochschule bei Professor Finsterwalder. Dabei beschäftigte er sich mit Untersuchungen über den Auftrieb von gebogenen Flächen in strömenden Medien nach der Theorie von Kutta, die er durch möglichst exakte Zeichnungen erläuterte (vgl. Zeichnungen zur Kuttaströmung, Zeitschr. für Math. und Physik, 60. Bd., 1912, S. 373). In der Folge lenkte er seine Aufmerksamkeit auf geodätische Probleme, wovon diese Arbeit Zeugnis gibt, die als Grundlage seiner vor kaum einem Jahr erfolgten Habilitation diente. Deimler war Hochalpinist von ungewöhnlichen Fähigkeiten, die er auch in den Dienst der Wissenschaft stellte. Er beteiligte sich an der vom D. und Ö. Alpenverein ausgerüsteten Rickmersschen Pamirexpedition und hat an den topographischen und photogrammetrischen Arbeiten derselben großen Anteil gehabt. Seine Fachkenntnisse, verbunden mit einer seltenen Gewandtheit und Ausdauer im Zahlenrechnen, befähigten ihn zu schwierigen Rechnungen im Auftrag der K. B. Kommission für internationale Erdmessung und zur Vorbereitung der neuen bayerischen Landestriangulation, für die er durch Abhaltung von Informationsvorträgen für die Beamten des Katasterbureaus wirkte.

S. Finsterwalder.

### Vorwort.

Im Wintersemester 1910/11 wurden im Mathematischen Seminar der K. Technischen Hochschule München unter Leitung der Herren Professoren Burkhardt, v. Dyck, Finsterwalder und Liebmann Vorträge über Gegenstände funktionentheoretischer Natur gehalten. Besonders wurden auch die zwei Gaußschen Abhandlungen besprochen: "Allgemeine Auflösung der Aufgabe: Die Teile einer gegebenen Fläche auf einer anderen gegebenen Fläche so abzubilden, daß die Abbildung dem Abgebildeten in den kleinsten Teilen ähnlich wird"<sup>1</sup>) sowie "Untersuchungen über Gegenstände der höheren Geodäsie"<sup>2</sup>). Damals regte Herr Geheimer Hofrat Prof. Dr. Finsterwalder an, es möge die Gaußsche konforme Abbildung des ganzen Erdellipsoids auf die ganze Kugel für beliebige Längen der geodätischen Linien näher untersucht werden. Aus diesen Vorträgen und dieser Anregung heraus ging die folgende Arbeit hervor.

Es ist im folgenden von dem Gesichtspunkt ausgegangen, daß eine sphäroidische Rechnung als gelöst betrachtet wird, sobald ihre Zurückführung auf rein sphärische Rechnungen gelungen ist — ein Gesichtspunkt, der rein theoretisch gesprochen sicher einwandfrei ist, der aber vom Standpunkt des praktischen Rechners aus immerhin als anfechtbar erscheinen mag. Jedoch ist die bequemere Gestaltung der sphärischen Formeln wieder eine Frage für sich, die von den speziellen Problemen, die gerade behandelt werden, ziemlich unabhängig ist.

Die Bezeichnungsweise wurde möglichst im Anschluß an Jordan<sup>3</sup>) gewählt, und zu ihren Gunsten die Gaußsche Bezeichnungsweise abgeändert. Von der Benützung gestrichener Buchstaben zur Bezeichnung von Differentialquotienten wurde in der ganzen Arbeit abgegesehen, um Irrtümer zu vermeiden. Die Striche waren zur Andeutung von Korrektionsgrößen etc. nötig.

Die verhältnismäßig übersichtlichen Resultate wurden teilweise durch außerordentlich langwierige Rechnungen erreicht, bei denen die Gefahr eines Rechenfehlers sehr groß ist. Es wurden deshalb nicht nur alle Rechnungen prinzipieller Natur mindestens dreimal unabhängig voneinander ausgeführt, sondern es wurde auch großer Wert auf Kontrolle durch Beispiele gelegt. Diese notwendige Kontrolle war auch ein wesentlicher Grund zur ausführlichen Behandlung der Enveloppen der geodätischen Linien auf dem Erdellipsoid.

Die Dimensionen des Erdellipsoids wurden bei Berechnung der Beispiele in Übereinstimmung mit Jordan (loc. cit.) angenommen.

1\*

<sup>1)</sup> Gauß, Ges. Werke, Göttingen 1880, Bd. IV, S. 189-216 sowie Ostwalds Klassiker, Nr. 55.

<sup>2)</sup> Gauß, Ges. Werke, Göttingen 1880, Bd. IV, S. 261 ff. sowie Ostwalds Klassiker, Nr. 177.

<sup>&</sup>lt;sup>3</sup>) Jordan, Vermessungskunde. 3. Teil. 5. Aufl. Stuttgart 1907, S. 209.

### § 1. Die Gaußschen Untersuchungen.

#### Allgemeine Formeln über konforme Abbildung und Vergrößerungsverhältnis. Ableitung der Abbildungsgleichungen.

In seiner Arbeit "Allgemeine Auflösung der Aufgabe: Die Teile etc." <sup>1</sup>) gibt Gauß die Gleichungen an, die man für die konforme Abbildung des ganzen Erdellipsoids auf die ganze Kugel erhält. Weiter leitet er auch allgemeine Formeln für das Vergrößerungsverhältnis etc. bei einer konformen Abbildung ab. Um eine in sich geschlossene Arbeit zu erhalten, sei es gestattet, seine Gedanken und Resultate in aller Kürze zu wiederholen. (Im Interesse einer einheitlichen Bezeichnung mußten wir allerdings die Gaußsche Bezeichnung und auch die Anordnung des Stoffes großenteils abändern.)

Gauß denkt sich die zwei gegebenen Flächen in Parameterform vorliegend:

1. Fläche 
$$x = \varphi(u, v)$$
  $y = \psi(u, v)$   $z = \chi(u, v)$   
2. Fläche  $X = \Phi(U, V)$   $Y = \Psi(U, V)$   $Z = \chi(U, V)$ .

x, y, z resp. X, Y, Z sind rechtwinklige Koordinaten; u, v resp. U, V Parametergrößen. Soll die 1. Fläche auf die zweite nach irgend einem Gesetz abgebildet werden, so heißt das, U und V sind irgend welche noch zu bestimmende Funktionen von u und v. Bekanntlich ergibt sich dann als Quadrat des Linienelements ds auf der ersten und dS auf der 2. Fläche:

$$ds^{2} = edu^{2} + 2f du dv + g dv^{2}$$
$$ds^{2} = Edu^{2} + 2F du dv + G dv^{2}$$

wobei:

1)

$$e = \varphi_u^* + \psi_u^* + \chi_u^* \quad I = \varphi_u \varphi_v + \psi_u \psi_v + \chi_v \chi_v \quad g = \varphi_v + \psi_v^* + \chi_v^*$$

$$E = \Phi_v^* + \Psi_v^* + \chi_v^* \quad F = \Phi_v \Phi_v + \Psi_v \Psi_v + \chi_v \chi_v \quad G = \Phi^* + \Psi^* + \chi^*$$

Die Indizes u und v deuten dabei die Differentiation nach diesen Größen an. Soll also

$$\frac{dS}{ds} = \sqrt{\frac{Edu^2 + 2Fdu\,dv + Gdv^2}{edu^2 + 2fdudv + gdv^2}}$$

unabhängig von der Fortschreitungsrichtung  $\frac{du}{dv}$  werden, wie es ja die konforme Abbildung verlangt, so muß sein:

e:f:g=E:F:G.

Durch Rechnung findet man, daß beim Bestehen der Gleichung (1) von selbst die zweite Bedingung der Konformität (Gleichheit der Winkel bei der Abbildung) erfüllt wird.

Für  $ds^2 = 0$  muß e = f = g = 0 sein, also auch E = F = G = 0. Das heißt aber: "Bei der konformen Abbildung gehen Minimalkurven in Minimalkurven über." Dieser Satz gilt auch umgekehrt<sup>2</sup>).

<sup>1)</sup> Loc. cit. (cf. Vorwort).

<sup>&</sup>lt;sup>2</sup>) Vgl. z. B. Scheffers, Einleitung in die Theorie der Flächen. Leipzig 1902, S. 73.

 $ds^2$  läßt sich bezüglich du und dv in zwei lineare Faktoren spalten, nämlich

$$ds^{2} = \frac{1}{e} \left[ e du + (f + i\sqrt{eg - f^{2}}) dv \right] \cdot \left[ e du + (f - i\sqrt{eg - f^{2}}) dv \right].$$

Die beiden Integrale der Gleichung  $ds^2 = 0$  werden also die Form haben

$$\begin{cases} p + iq = \text{const.} & 1. \text{ Klammer} = 0 \text{ gesetzt} \\ p - iq = \text{const.} & 2. \text{ Klammer} = 0 \text{ gesetzt.} \end{cases}$$

Analog folgt für  $dS^2 = 0$ 

$$\begin{cases} P + iQ = \text{const.} \\ P - iQ = \text{const.} \end{cases}$$

p + iq = const. und p - iq = const. sind Minimalkurven der 1. Fläche P + iQ = const. und P - iQ = const. sind Minimalkurven der 2. Fläche

falls nun die Minimalkurven der 1. Fläche in die der 2. Fläche übergehen sollen, so muß für:

$$p+iq = \text{const.}$$
 und  $p-iq = \text{const.}$   
 $P+iQ = \text{const.}$  und  $P-iQ = \text{const.}$ 

auch

 $\alpha$ )

 $\beta$ )

daı 2)

werden, das heißt aber: P + iQ = f(p + iq) $P-iQ=f_1(p-iq)$ und P + iQ = f(p - iq) $P - iQ = f_1(p + iq);$ und

f und f, bedeuten dabei an sich vollständig beliebige Funktionen, die sich aber untereinander nur durch das Vorzeichen von i unterscheiden.

Es ist also

P = reeller Teil einer willkürlichen Funktion f(p+iq), Q = imaginärer Teil einer willkürlichen Funktion f(p + iq).

Im Fall  $\beta$ ) wäre P ebenfalls dem reellen Teil dieser Funktion gleich, dagegen -Qdem imaginären; da jedoch die Funktion f willkürlich ist, so hat diese Vorzeichendifferenz keine weitere Bedeutung. Es gilt also der für die konforme Abbildung einer Fläche auf eine zweite grundlegende Satz:

"Die Bedingungen der Konformität sind erfüllt, sobald P dem reellen, Q dem imaginären Teil einer ganz beliebigen Funktion f(p+iq) gleichgesetzt wird."

Durch Elimination kann dann U und V als Funktion von u und v gewonnen werden.

#### Das Vergrösserungsverhältnis.

Die Proportion (1) kann man schreiben:

|           | $E = m^2 e$          |  |
|-----------|----------------------|--|
|           | $F = m^2 f$          |  |
| aus folgt | $G = m^2 g,$         |  |
|           | $\frac{dS}{ds} = m.$ |  |

m nennt man das Vergrößerungsverhältnis. Es ist noch eine Funktion von u und v. d. h. im allgemeinen an verschiedenen Stellen verschieden. Die Strecken auf der zweiten Fläche werden größer als auf der ertsen, wenn m > 1; kleiner, wenn m < 1. Für m = consthaben wir Ähnlichkeit in endlichen Teilen, für m = const. = 1 vollkommene Gleichheit der Strecken auch in endlichen Teilen - eine Fläche läßt sich auf die andere abwickeln.

Als Lösung von  $ds^2 = 0$  haben wir die Kurven bekommen

$$p + iq = \text{const.}$$
 und  $p$ 

also wird

$$ds^2 = n(dp^2 + dq^2),$$

-iq = const.,

wobei *n* ein Faktor, der im allgemeinen noch Funktion von *u* und *v* sein wird.  $\frac{1}{n}$  ist integrierender Faktor von  $ds^2 = 0$ ,  $\frac{1}{N}$  integrierender Faktor von  $dS^2 = 0$ ; analog ist

$$dS^2 = N(dP^2 + dQ^2).$$

Daraus folgt:

$$m^2 = \frac{dS^2}{ds^2} = \frac{N}{n} \frac{d(P+iQ)}{d(p+iq)} \cdot \frac{d(P-iQ)}{d(p+iq)} = \frac{N}{n} \frac{d(f(p+iq))}{d(p+iq)} \cdot \frac{d(f(p-iq))}{d(p-iq)},$$

also: 3)

$$m = \sqrt{\frac{N}{n}} \left| \frac{df(p+iq)}{d(p+iq)} \right|;$$

dabei ist  $\frac{1}{N}$  resp.  $\frac{1}{n}$  integrierender Faktor von  $dS^2 = 0$  resp.  $ds^2 = 0$ . Ferner bedeutet  $\left| \frac{df(p+iq)}{d(p+iq)} \right|$  den absoluten Betrag des Differentialquotienten  $\frac{df(p+iq)}{d(p+iq)}$ 

#### Die konforme Abbildung des abgeplatteten Rotationsellipsoids auf die Kugel.

Für das Rotationsellipsoid mit der Drehachse 2b ist:

|       | $x = a \cos \lambda \cos \beta$  |
|-------|----------------------------------|
|       | $y = a \sin \lambda \cos \beta$  |
|       | $z = b \sin \beta, \qquad \cdot$ |
| rohei |                                  |

 $\lambda =$  geographische Länge  $\beta = \text{reduzierte Breite}^1$ ).

Für die Kugel mit dem Radius R gilt:

$$\begin{array}{ll} X = R \cos L \cos \Phi \\ Y = R \sin L \cos \Phi \\ Z = R \sin \Phi \end{array} \qquad \begin{array}{ll} L = \mbox{Linge} \\ \Phi = \mbox{Breite.} \end{array}$$

Man erhält:

$$e = a^2 \cos^2 \beta$$
  $f = 0$   $g = a^2 \sin^2 \beta + b^2 \cos^2 \beta$ ,

also:

1) Vgl. z. B. Helmert, Mathem. Theorien der höheren Geodäsie. Leipzig 1880, S. 39 Fußnote.

 $ds^2 = a^2 \cos^2 \beta \, d\lambda^2 + (a^2 \sin^2 \beta + b^2 \cos^2 \beta) \, d\beta^2$ 

$$=a^{2}\cos^{2}\beta\left[\left(d\lambda+i\sqrt{\frac{a^{2}\sin^{2}\beta+b^{2}\cos^{2}\beta}{a^{2}\cos^{2}\beta}}\,d\beta\right)\left(d\lambda-i\sqrt{\frac{a^{2}\sin^{2}\beta+b^{2}\cos^{2}\beta}{a^{2}\cos^{2}\beta}}\,d\beta\right)\right]$$

setzt man  $\frac{a^2 - b^2}{a^2} = e^2$ , so läßt sich die Wurzel schreiben als  $\sqrt{1 + \text{tg}^2 \beta - e^2}$  und  $ds^2 = 0$  gesetzt, gibt also:

A) 
$$0 = d\lambda \pm i \sqrt{1 + \mathrm{tg}^2 \beta - e^2},$$

wobei gleich beachtet werden möge, daß  $n = a^2 \cos^2 \beta$  ist (vgl. Vergrößerungsverhältnis). Man hat noch zu setzen:

$$\frac{\mathrm{tg}\,\beta}{\sqrt{1-e^2}} = \mathrm{tg}\,\varphi \quad \mathrm{und}: \quad \cos\beta = \frac{\cos\varphi}{\sqrt{1-e^2\sin^2\varphi}},$$

wobei  $\varphi$  = geographische Breite ist; dann nimmt unsere Gleichung (A) die Form an

A') 
$$0 = d\lambda \pm i d\varphi \frac{1 - e^2}{(1 - e^2 \sin^2 \varphi) \cos \varphi}$$

Durch die Substitution t<br/>g $\frac{\varphi}{2}=z$  läßt sich diese Gleichung (A') unschwer integrieren und man erhält:

Const. = 
$$\lambda \pm i \lg \left[ \operatorname{ctg} \frac{90 - \varphi}{2} \left( \frac{1 - e \sin \varphi}{1 + e \sin \varphi} \right)^{\frac{\theta}{2}} \right]$$
  
=  $p + iq$ .

Durch analoge Rechnung erhält man für die Kugel

$$dS^2 = R^2 \cos^2 \Phi \left[ dL^2 + \frac{d\Phi^2}{\cos^2 \Phi} \right] \qquad N = R^2 \cos^2 \Phi,$$

 $dS^2 = 0$  gibt:

$$0 = dL \pm i \frac{d\Phi}{\cos\Phi},$$

also:

**B**)

4)

Const. = 
$$L \pm i \lg \operatorname{ctg} \frac{90 - \Phi}{2}$$
  
=  $P + iQ$ .

Nach dem Vorhergehenden muß P + iQ = f(p + iq) gesetzt werden. Am einfachsten ist es, wenn wir f(p + iq) = p + iq setzen. Damit erhalten wir:

a) 
$$\begin{cases} L = \lambda \\ tg \frac{90 - \Phi}{2} = tg \frac{90 - \varphi}{2} \left(\frac{1 + e \sin \varphi}{1 - e \sin \varphi}\right)^{\frac{\theta}{2}}. \end{cases}$$

Diese Abbildungsgleichungen (4) sind für die Übertragung der ganzen Oberfläche des Ellipsoids auf die Kugeloberfläche die geeignetsten, weil sie unter Vermeidung jeglicher speziellen Annahme und einseitigen Bevorzugung etwa eines Parallelkreises etc. entstanden. Kommt nur eine Zone der Erdoberfläche in Betracht, so wird man f(p+iq) nicht = p + iq, sondern etwa f(p+iq) = lineare Funktion von (p+iq) setzen, z. B. mit Gauß<sup>1</sup>):

$$f(p+iq) = \alpha(p+iq) - i\lg k.$$

Das konstante Glied in dieser linearen Funktion ist imaginär gewählt, weil eine reelle Konstante nur eine Verschiebung des Anfangspunktes für die Längen bedeuten würde<sup>1</sup>). Man hat dann außer dem Kugelradius noch die beiden Konstanten k und a zur Verfügung und kann dadurch das Vergrößerungsverhältnis m innerhalb des betrachteten Gebiets außerordentlich nahe an die Einheit heranbringen.<sup>1</sup>)

Für uns sind die Gleichungen (4) die Grundgleichungen, auf die sich alles Folgende stützt: die geographischen Längen auf Kugel und Ellipsoid sind einander gleich; jeder Meridian des Ellipsoids geht in einen Meridian der Kugel über, ebenso Äquator in Äquator.

§ 2.

#### Spezielles über das Vergrösserungsverhältnis und die auftretenden Verzerrungen.

Wir hatten bei Berechnung der Abbildungsgleichungen (4) erhalten:

$$n = a^2 \cos^2 \beta \qquad N = R^2 \cos^2 \Phi;$$

ferner hatten wir f(p+iq) = p + iq gesetzt, so daß  $\left| \frac{df(p+iq)}{d(p+iq)} \right| = 1$  wird. Also ist nach (3)

5) 
$$m = \frac{R\cos\Phi}{a\cos\beta} = \frac{R\cos\Phi}{a\cos\varphi} \sqrt{1 - e^2 \sin^2\varphi}.$$

Da nach (4)  $\Phi$  eine Funktion von  $\varphi$  allein (nicht aber von  $\lambda$ ) ist, so ist auch m unabhängig von  $\lambda$  (resp. L) und Funktion von  $\varphi$  (resp.  $\Phi$ ) allein.

Die Abbildung ist um so brauchbarer, je weniger sich m von der Einheit unterscheidet. Es ist daher von Interesse, die Extremwerte von m aufzusuchen. Durch logarithmisches Differenzieren erhält man aus (5):

a) 
$$d\lg m = -\operatorname{tg} \Phi d \Phi + \operatorname{tg} \varphi d \varphi - \frac{e^2 \sin \varphi \cos \varphi}{1 - e^2 \sin^2 \varphi} d \varphi$$

und aus (4)

 $rac{d\, arPhi}{\cos arPhi} = rac{d\, arphi}{\cos arphi} - rac{e^2 \cos arphi \, d\, arphi}{1 - e^2 \sin^2 arphi}.$ 

Daraus folgt

6)

 $\beta$ )

Ein Extremwert von *m* tritt also dort ein, wo  $\varphi = \Phi$  wird. Das ist aber nach (4) den nur an Stellen  $\varphi = \frac{n\pi}{2}$  (*n* positive oder negative ganze Zahl) der Fall. Deutet man nämlich in (4 b)  $\varphi$  und  $\Phi$  als rechtwinklige Koordinaten, so erhält man ungefähr neben-

 $\frac{d \lg m}{d \Phi} = \frac{\sin \varphi - \sin \Phi}{\cos \Phi}.$ 

<sup>1)</sup> Gauß, "Allgemeine Auflösung etc.", Ziff. 13; s. Vorwort.

stehende Kurve: Sie ist symmetrisch bezüglich des Nullpunkts und schlängelt sich fortgesetzt um die 45° Linie herum, wobei sie sich nur ganz wenig von dieser entfernt (in der Figur ist die Abweichung stark übertrieben).

Sie schneidet die 45° Linie für  $\varphi = \Phi = \frac{n\pi}{2}$ .

Um zu entscheiden, ob für  $\varphi = 0$  ein Maximum oder Minimum vorliegt, setzen wir am bequemsten  $\varphi = \delta$ (wo  $\delta$  sehr klein), dann wird auch  $\Phi$  sehr klein und (4b) gibt unter Vernachlässigung höherer Potenzen von  $\delta$ :  $\Phi = \delta(1-e^2)$ , also wird nach (6):

$$\frac{d \lg m}{d \Phi} = e^2 \delta.$$

Da aber *m* ungefähr gleich + 1 ist, so hat  $\frac{dm}{d\Phi}$  in der Nähe von  $\Phi = 0$  das Vorzeichen von  $\delta$ . Das heißt:

Für  $\varphi = \Phi = 0$  (Äquator) ist das Vergrößerungsverhältnis *m* ein Minimum. Analog folgt: Für den Pol ist das Vergrößerungsverhältnis *m* ein Maximum.

Die größten Streckenverzerrungen treten also am Pol resp. Äquator auf. Für den Äquator  $\varphi = 0$  wird:

$$m_0 = \frac{R}{a}.$$

Für den Pol  $\varphi = 90^{\circ}$  wird:

$$m_{90} = \frac{R}{a} \sqrt{1 - e^2} \lim_{\varphi = 90} \frac{\cos \Phi}{\cos \varphi}.$$

Durch Reihenentwicklung in der Nähe von  $\varphi = 90^{\circ}$  erhält man aus (4):

$$\lim_{\Phi = 90} \frac{\cos \Phi}{\cos \varphi} = \left(\frac{1+e}{1-e}\right)^{\frac{2}{2}}$$

Da es uns hier nicht auf eine ganz exakte Berechnung der Verzerrungen, sondern nur auf eine Angabe ihrer Größenordnung ankommt, wollen wir weiter  $\sqrt{1-e^2}$  und  $\left(\frac{1+e}{1-e}\right)^{\frac{e}{2}}$  in eine Potenzreihe nach  $e^2$  entwickeln und  $e^4$  und höhere Potenzen vernachlässigen. Man erhält so:

$$n_{90} \sim \frac{R}{a} \left(1 - \frac{e^2}{2}\right) (1 + e^2) \sim \frac{R}{a} \left(1 + \frac{e^2}{2}\right).$$

Da  $e^2$  ziemlich genau  $= \frac{1}{150}$  ist, so erhält man je nach der Wahl von R:

1. Für R = a (d. h. die abbildende Kugel berührt das Ellipsoid im Äquator) die größte Verzerrung am Pol. Es wird

$$m = 1 + \frac{e^2}{2} = 1 + \frac{1}{300},$$

d. h. die Strecken am Pol werden bei der Abbildung um  $\frac{1}{300}$  ihrer Länge vergrößert. - Abh. d. math.-phys. Kl. XXVII, 4. Abh.





2. Für R = b (d. h. die abbildende Kugel berührt das Ellipsoid in den Polen). Da  $b = a \sqrt{1 - e^2}$ , so zeigt eine kurze Rechnung, daß *m* an den Polen = 1 wird, und die Strecken am Äquator um  $\frac{1}{300}$  ihrer Länge verkürzt werden. 3. Für

$$R = \frac{a+b}{2} \sim a \left(1 - \frac{e^2}{4}\right)$$

wird die Verzerrung am Pol  $+\frac{1}{600}$ , die am Äquator  $-\frac{1}{600}$  der Länge der betreffenden Strecken.

## § 3.

#### Einige Näherungsformeln.

#### (Potenzreihen nach steigenden Potenzen von $e^2$ .)

I. Die geographische Breite  $\varphi$  auf dem Ellipsoid aus der Breite  $\Phi$  auf der Kugel zu berechnen.

Die exakte Formel (4 b), die zwischen  $\Phi$  und  $\varphi$  besteht, ist zur Berechnung von  $\varphi$ als Funktion von  $\Phi$  sehr ungeeignet. Deshalb wollen wir sie in eine Potenzreihe nach steigenden Potenzen von  $e^2$  entwickeln. Nach (4 b) gilt:

$$\operatorname{tg} \frac{90 - \Phi}{2} = \operatorname{tg} \frac{90 - \varphi}{2} \left( \frac{1 + e \sin \varphi}{1 - e \sin \varphi} \right)^{\frac{e}{2}}.$$

Die Entwicklung von  $\left(\frac{1+e\sin\varphi}{1-e\sin\varphi}\right)^{\frac{e}{2}}$  ist bereits von Herrn Buchwaldt<sup>1</sup>) in sehr eleganter Form gegeben. Da außerdem die Rechnung nur elementare Schwierigkeiten bietet, wollen wir ohne weiteres das Resultat angeben:

a) 
$$\left(\frac{1+e\sin\varphi}{1-e\sin\varphi}\right)^{\frac{e}{2}} = 1+e^{2}\sin\varphi + \frac{e^{4}}{6}\sin^{2}\varphi(3+2\sin\varphi) + \frac{e^{6}}{30}\sin^{3}\varphi(5+10\sin\varphi+6\sin^{2}\varphi) + e^{8}\dots$$

Buchwaldt gibt auch noch das von uns nicht berechnete Glied mit e<sup>8</sup>, nämlich:

$$e^{8}\sin^{4}\varphi(\frac{1}{24}+\frac{1}{5}\sin\varphi+\frac{23}{90}\sin^{2}\varphi+\frac{1}{7}\sin^{3}\varphi).$$

Weiter verfuhren wir folgendermaßen:  $\varphi$  ist, wie man aus letzter Formel (a) und (4 b) sieht, nahe gleich  $\Phi$ . Wir können dann  $\varphi = \Phi + \Phi'$  setzen, wobei  $\Phi'$  eine kleine Korrektionsgröße. Diese Korrektion  $\Phi'$  kann so bestimmt werden, daß (4 b) bis auf Glieder  $e^2$ erfüllt ist:  $\Phi'$  wird dann von der Ordnung  $e^2$ . Nachdem  $\Phi'$  bestimmt ist, können wir weiter  $\varphi = \Phi + \Phi' + \Phi''$  setzen und durch die zweite Korrektion  $\Phi''$  — es wird von der Ordnung  $e^4$  — Gleichung (4 b) bis auf Glieder  $e^4$  erfüllen usw. Wir berechnen so  $\varphi$  als

<sup>&</sup>lt;sup>1</sup>) Das Formelsystem, das wir unter I und IV bringen, findet sich bereits in einer dänischen Abhandlung. auf die ich durch Herrn Geheimen Hofrat Prof. Dr. Finsterwalder aufmerksam gemacht und die mir von ihm freundlichst zur Verfügung gestellt wurde. Es ist dies die Abhandlung von Herrn Kaptajn F. A. Buchwaldt, "Sfaeroidens Regnelinje", Kopenhagen 1911. — Meine Berechnung dieser Formeln war schon seit längerer Zeit abgeschlossen, als ich die Buchwaldtsche Schrift in die Hand bekam. Durch die Übereinstimmung unserer Resultate, die auf etwas verschiedenem Wege erreicht wurden, sind die Formeln gut kontrolliert. Die Priorität ihrer Berechnung gebührt Herrn Buchwaldt.

Funktion von  $\Phi$  bis auf Glieder  $e^6$ —, also  $\varphi = \Phi + \Phi' + \Phi'' + \Phi'''$ . Der besseren Übersicht halber seien hier nur  $\Phi'$  und  $\Phi''$  ausführlich berechnet.

Bis auf Glieder mit  $e^4$  kann (4 b) geschrieben werden:

$$\beta) \qquad \qquad tg \, \frac{90 - \Phi}{2} = tg \, \frac{90 - \varphi}{2} \Big[ 1 + e^2 \sin \varphi + \frac{e^4}{6} \sin^2 \varphi \, (3 + 2 \sin \varphi) \Big],$$

setzen wir  $\varphi = \Phi + \Phi' + \Phi''$ , so wird:

$$\operatorname{tg} \frac{90 - \varphi}{2} = \operatorname{tg} \frac{90 - \Phi - \Phi' - \Phi''}{2} = \operatorname{tg} \frac{90 - \Phi}{2} - \frac{\Phi' + \Phi''}{2} \cdot \frac{1}{\cos^2 \frac{90 - \Phi}{2}} + \frac{\Phi'^2}{4} \frac{\sin \frac{90 - \Phi}{2}}{\cos^3 \frac{90 - \Phi}{2}} + \operatorname{Glieder} e^6,$$

 $\sin \varphi = \sin \Phi + \Phi' \cos \Phi$ 

$$+ \left[ \Phi'' \cos \Phi - \frac{\Phi'^2}{2} \sin \Phi - \Phi' \Phi'' \sin \Phi - \frac{\Phi'^3}{6} \cos \Phi + \Phi''' \cos \Phi \right] + \text{Glieder} e^8.$$

Die letzte eckige Klammer in  $\sin \varphi$ , die Glieder von der Ordnung  $e^4$  und  $e^6$  enthält, ist momentan unnötig, wird aber später gebraucht. Man erhält:

$$\begin{split} \operatorname{tg} \frac{90-\Phi}{2} &= \left[ \operatorname{tg} \frac{90-\Phi}{2} - \frac{\Phi'+\Phi''}{2} \frac{1}{\cos^2 \frac{90-\Phi}{2}} + \frac{\Phi'^2}{4} \frac{\sin \frac{90-\Phi}{2}}{\cos^3 \frac{90-\Phi}{2}} \right] \cdot \left[ 1 + e^2 \sin \Phi \right. \\ &+ e^2 \Phi' \cos \Phi + \frac{e^4}{2} \sin^2 \Phi + \frac{e^4}{3} \sin^3 \Phi \right] = \left[ \operatorname{tg} \frac{90-\Phi}{2} \right] + \left[ e^2 \sin \Phi \operatorname{tg} \frac{90-\Phi}{2} - \frac{\Phi'}{2} \frac{1}{\cos^2 \frac{90-\Phi}{2}} \right] \\ &+ \left[ \frac{e^4}{2} \sin^2 \Phi \operatorname{tg} \frac{90-\Phi}{2} + \frac{e^4}{3} \sin^3 \Phi \operatorname{tg} \frac{90-\Phi}{2} + \frac{\Phi'^2}{4} \frac{\sin \frac{90-\Phi}{2}}{\cos^3 \frac{90-\Phi}{2}} - \frac{\Phi''}{2} \frac{1}{\cos^2 \frac{90-\Phi}{2}} \right] \\ &- \frac{e^2 \Phi'}{2} \frac{\sin \Phi}{\cos^2 \frac{90-\Phi}{2}} + e^2 \Phi' \cos \Phi \operatorname{tg} \frac{90-\Phi}{2} \right]; \end{split}$$

Glieder von der Ordnung  $e^0$ ,  $e^2$ ,  $e^4$  sind für sich in eckige Klammern geschlossen. Die 2., 3., ... Klammer muß für sich gleich Null werden, also:

7 a) 
$$\Phi' = \frac{e^2}{2}\sin 2\,\Phi.$$

Setzt man diesen Wert von  $\Phi'$  in die zweite eckige Klammer ein, so erhält man nach einiger trigonometrischen Umformung:

2\*

7 b) 
$$\Phi'' = \frac{e^4}{2} \sin 2 \Phi (1 - \frac{7}{6} \sin^2 \Phi).$$

Ganz analog folgt, indem man bis auf Glieder e<sup>6</sup> genau rechnet:

7 c) 
$$\Phi^{\prime\prime\prime} = \frac{e^6}{2} \sin 2 \, \varPhi \left( 1 - \frac{17}{6} \sin^2 \varPhi + \frac{28}{15} \sin^4 \varPhi \right).$$

Es ist also bis auf Glieder  $e^6$  genau

$$= \Phi + \frac{e^2}{2}\sin 2\Phi + \frac{e^4}{2}\sin 2\Phi \left(1 - \frac{7}{6}\sin^2\Phi\right) + \frac{e^6}{2}\sin 2\Phi \left(1 - \frac{17}{6}\sin^2\Phi + \frac{28}{15}\sin^4\Phi\right) + \text{Glieder}\,e^{8\,1}).$$

 $\Phi \perp \Phi' \perp \Phi'' \perp \Phi''$ 

 $e^2$  ist ca.  $=\frac{1}{150}$ ; die Klammern können die Größenordnung 1 nicht wesentlich überschreiten, also beträgt die 1. Korrektion höchtens  $\frac{1}{300} = 11.5$ ; die 2. resp. 3. Korrektion ca.  $\frac{1}{150}$  resp.  $\frac{1}{150^2}$  von der ersten. Ebenso käme nach Buchwaldt<sup>1</sup>) auf die 4. Korrektion etwa  $\frac{1}{150^3}$  von der ersten oder ca. 0.0002 im Maximum.

Beispiele:

 $e^2$  ist dabei = 0,00667 43722 angenommen<sup>2</sup>).

Um an einem Beispiel mittels der exakten Formel (4 b) eine Ungenauigkeit in unsrer Formel (7) feststellen zu können, müßte man schon mindestens mit 10 stelligen Logarithmen rechnen. Selbst wenn man nur  $\varphi = \Phi + \Phi' + \Phi''$  setzt, ist ein Fehler erst mit 8 stelligen Logarithmen sicher nachweisbar.

#### II. Die Breite arPhi auf der Kugel aus der geographischen Breite arphi auf dem Ellipsoid zu berechnen.

Auch hier ist die Anwendung einer Potenzreihe nach steigenden Potenzen von  $e^2$  praktischer als die exakte Formel (4 b).

Analog wie in I setzen wir

$$\Phi = \varphi + \varphi' + \varphi'' + \varphi''$$

und erhalten aus (4 b) bis auf Glieder  $e^4$  genau (die Glieder  $e^6$  werden wieder erst im Resultat angegeben):

1) Buchwaldt, loc. cit., S. 25, Formel 14. Buchwaldt gibt auch noch die Glieder mit e<sup>8</sup>:

$$\frac{e^8}{2}\sin 2\,\varPhi \left(1-5\sin^2\varPhi+\frac{889}{120}\sin^4\varPhi-\frac{4279}{1260}\sin^6\varPhi\right)$$

<sup>2</sup>) Cf. z. B. Jordan, Vermessungskunde. Stuttgart 1907, 3. Bd., S. 210.

12

7)

$$\begin{split} & \operatorname{tg} \, \frac{90 - \varphi}{2} - \frac{\varphi' - \varphi''}{2} \frac{1}{\cos^2 \frac{90 - \varphi}{2}} + \frac{\varphi'^2}{4} \frac{\sin \frac{90 - \varphi}{2}}{\cos^3 \frac{90 - \varphi}{2}} \\ &= & \operatorname{tg} \, \frac{90 - \varphi}{2} \left[ 1 + e^2 \sin \varphi + \frac{e^4}{2} \sin^2 \varphi + \frac{e^4}{3} \sin^3 \varphi \right] \end{split}$$

oder

8c)

$$\begin{split} \left[ \operatorname{tg} \frac{90 - \varphi}{2} \right] + \left[ -\frac{\varphi'}{2} \frac{1}{\cos^2 \frac{90 - \varphi}{2}} \right] + \left[ \frac{\varphi'^2}{4} \frac{\sin \frac{90 - \varphi}{2}}{\cos^3 \frac{90 - \varphi}{2}} - \frac{\varphi''}{2} \frac{1}{\cos^2 \frac{90 - \varphi}{2}} \right] \\ = \left[ \operatorname{tg} \frac{90 - \varphi}{2} \right] + \left[ e^2 \operatorname{tg} \frac{90 - \varphi}{2} \sin \varphi \right] + \left[ \frac{e^4}{2} \operatorname{tg} \frac{90 - \varphi}{2} \sin^2 \varphi + \frac{e^4}{3} \operatorname{tg} \frac{90 - \varphi}{2} \sin^3 \varphi \right]. \end{split}$$

Die Summe aller Glieder gleich hoher Ordnung in  $e^2$  muß wieder (wie in I) gleich Null sein; das gibt:

8 a)  $\varphi' = -\frac{e^2}{2}\sin 2\varphi$ 

8 b) 
$$\varphi'' = -\frac{5}{12} e^4 \sin 2\varphi \sin^2 \varphi$$
 und analog:

$$\varphi^{\prime\prime\prime} = + \frac{e^6}{12} \sin 2\varphi \sin^2 \varphi \left( 1 - 10 \sin \varphi + \frac{24}{5} \sin^2 \varphi \right).$$

Es ist also bis auf Glieder e<sup>6</sup> genau:

8)  

$$\Phi = \varphi + \varphi' + \varphi'' + \varphi'''$$

$$= \varphi - \frac{e^2}{2} \sin 2\varphi - \frac{5}{12} e^4 \sin 2\varphi \sin^2\varphi + \frac{e^6}{12} \sin 2\varphi \sin \varphi^2 \left(1 - 10 \sin \varphi + \frac{24}{5} \sin^2\varphi\right) + \text{Glieder} e^{81}.$$
Beispiele:

Beispiele:

Wir haben unter I für  $\Phi = 30^{\circ}, 45^{\circ}, 60^{\circ}$  das zugehörige  $\varphi$  berechnet mittels Formel (7). Jetzt soll umgekehrt aus den so erhaltenen  $\varphi$  wieder  $\Phi$  berechnet werden. Da wir uns später bei den Anwendungen der Formeln größtenteils auf Glieder  $e^4$  beschränken, sei auch hier  $\Phi'''$  und  $\varphi'''$  vernachlässigt.

| Für | $\varphi = 30^{\circ}$ | 9'58 | 3. 9416    | wird  | $\varphi' = -$ | -598.1 | 1121 | $\varphi^{\prime\prime}$ | <br>0."8401 |
|-----|------------------------|------|------------|-------|----------------|--------|------|--------------------------|-------------|
|     | $\varphi = 45^{\circ}$ | 11'3 | 0.2583     | "     | $\varphi' = -$ | - 688. | 3286 | $\varphi^{\prime\prime}$ | <br>1       |
|     | $\varphi = 60^{\circ}$ | 9'56 | 6.6206     | "     | $\varphi' = -$ | -594.1 | 1223 | $\varphi^{\prime\prime}$ | <br>2.4866, |
|     |                        | also | $\Phi = 2$ | 9059' | 59. 9894       | statt  | 3000 | '0"                      | Par Distant |
|     |                        |      | $\Phi = 4$ | 50 0' | 0.0026         | "      | 45°0 | '0"                      |             |
|     |                        |      | $\Phi = 6$ | 00 0' | 00117          | "      | 6000 | <b>'0"</b> .             |             |

Bei Berücksichtigung der Glieder  $\Phi^{\prime\prime\prime}$  und  $\varphi^{\prime\prime\prime}$  würde die Differenz zwischen Ausgangsund Endwert von  $\Phi$  nur etwa 0.0001 betragen.

<sup>1)</sup> Buchwaldt gibt (loc. cit., S. 63-71) eine Tabelle bis auf 0.00001 für den Zusammenhang zwischen  $\Phi$  und  $\varphi$ . Die letzte Stelle ist dabei schon deswegen unsicher, weil  $e^2$  (cf. loc. cit., S. 45) auf 9 Stellen gekürzt ist. Das gibt nach unsrer Formel (8) für  $\varphi = 45^{\circ}$  einen Fehler von 2.4.10<sup>-5</sup>.

III. Berechnung von  $\frac{d \lg m}{d \Phi}$  als Funktion von  ${m \varPhi}$ .

Nach (6) ist:

$$\frac{d \lg m}{d \Phi} = \frac{\sin \varphi - \sin \Phi}{\cos \Phi}.$$

Wir können nach dem Vorhergehenden  $\varphi = \Phi + \Phi' + \Phi'' + \Phi'''$  setzen und erhalten bis auf Glieder  $e^6$  genau (wegen  $\sin \varphi$  cf. S. 11 Zeile 8 v. o.):

$$\frac{d \lg m}{d \Phi} = \frac{1}{\cos \Phi} \left[ -\sin \Phi + \sin \Phi + \Phi' \cos \Phi - \frac{\Phi'^2}{2} \sin \Phi \right.$$
$$\left. + \Phi'' \cos \Phi - \Phi' \Phi'' \sin \Phi - \frac{\Phi^3}{6} \cos \Phi + \Phi''' \cos \Phi \right]$$
$$\frac{d \lg m}{d \Phi} = \left[ \Phi' \right] + \left[ \Phi'' - \frac{\Phi'^2}{2} \operatorname{tg} \Phi \right] + \left[ \Phi''' - \frac{\Phi'^3}{6} - \Phi' \Phi'' \operatorname{tg} \Phi \right] + \operatorname{Glieder} \Phi$$

IV. Berechnung von  $\frac{1}{m}$  als Funktion von  $\Phi^{1}$ ).

Nach (5) ist:

$$\frac{1}{m} = \frac{a}{R} \frac{\cos\varphi}{\cos\Phi} \frac{1}{\sqrt{1 - e^2 \sin^2\varphi}}$$
$$= \frac{a}{R} \frac{\cos\varphi}{\cos\Phi} \left( 1 + \frac{1}{2} e^2 \sin^2\varphi + \frac{3}{8} e^4 \sin^4\varphi + \frac{5}{16} e^6 \sin^6\varphi \right) + e^8 \dots$$

Man setzt wieder  $\varphi = \Phi + \Phi' + \Phi'' + \Phi'''$ ; entwickelt sin  $\varphi$  und cos  $\varphi$  nach Potenzen von  $e^2$  (indem man noch statt  $\Phi', \Phi'', \Phi'''$  ihre Werte in  $\Phi$  aus (7 a), (7 b), (7 c) einsetzt), multipliziert aus und erhält:

 $\frac{1}{m} = \frac{a}{R} \left\{ 1 - \left[ \frac{e^2}{2} \sin^2 \Phi \right] - \left[ \frac{e^4}{2} \sin^2 \Phi \left( 1 - \frac{13}{12} \sin^2 \Phi \right) \right] - \left[ \frac{e^6}{2} \sin^2 \Phi \left( 1 - \frac{5}{2} \sin^2 \Phi + \frac{61}{40} \sin^4 \Phi \right) \right] \right\} + \text{Glieder } e^8.$ 

§ 4.

#### Differentialgleichung der Bildkurve.

Es seien auf dem Sphäroid 2 Punkte  $P_1$  und  $P_2$  in beliebigem Abstand gegeben und zwischen ihnen die geodätische Linie s gezogen. Wird jetzt die geodätische Linie  $P_1 P_2$ auf die Kugel abgebildet, so wird ihr Bild im allgemeinen zwar sehr nahe mit dem größten Kreis durch die abgebildeten Punkte  $P_1$  und  $P_2$  zusammenfallen, aber doch nicht mit ihm identisch sein. Es handelt sich darum, die Gleichung dieses Bildes der geodätischen Linie  $P_1 P_2$  (der "Bildkurve  $P_1 P_2$ ") aufzustellen<sup>2</sup>).

<sup>1</sup>) Buchwaldt, loc. cit., S. 26 f.

<sup>2</sup>) Cf. dazu für kleinere Abstände  $P_1P_2$  Gauß, Untersuchungen über Gegenstände der höheren Geodäsie. 1. Abh. Ges. Werke Bd. IV, S. 261 ff., Ziffer 12 ff.

9)

Der größte Kreis durch die Bildpunkte P, und  $P_2$  werde als x-Achse genommen. dS' sei das Linienelement der Bildkurve, ds das Linienelement der geodätischen Linie auf dem Ellipsoid. Ein Punkt P der Bildkurve wird bestimmt durch seinen senkrechten (sphärischen) Abstand von der x-Achse und durch das x seines Fußpunktes F; x wird dabei gezählt von einem zunächst noch willkürlichen Punkt auf der *x*-Achse. Es sind dann (cf. Fig. 2) x, y, PF, P'F' größte Kreise, während PQ ein Parallelkreis ist, falls F'Q = FPund  $\triangleleft Q = 90^{\circ}$  sein soll. Also wird:



x

AY

und nach (2)

12)

 $\alpha$ )

11)

 $ds = \frac{1}{m} \sqrt{\cos^2 y + \left(\frac{dy}{dx}\right)^2} dx;$ s soll aber geodätische Linie sein, also muß

$$\int_{m}^{1} \sqrt{\cos^2 y + \left(\frac{dy}{dx}\right)^2} dx = \int F\left(x, y, \frac{dy}{dx}\right) dx$$

 $dS' = \sqrt{\cos^2 y + \left(\frac{dy}{dx}\right)^2} \, dx$ 

ein Minimum werden. Die Bedingung dafür ist bekanntlich:

$$\frac{d}{dx}\left(\frac{\partial F}{\partial \frac{dy}{dx}}\right) - \frac{\partial F}{\partial y} = 0.$$

Bei der folgenden Differentiation ist zu beachten, daß das Vergrößerungsverhältnis m Funktion des Ortes allein ist, nicht aber von der Fortschreitungsrichtung  $\frac{dy}{dx}$  abhängt (vgl. Gleichung (1)). Es wird:

$$\frac{\partial F}{\partial \frac{dy}{dx}} = \frac{\frac{dy}{dx}}{m\sqrt{\cos^2 y + \left(\frac{dy}{dx}\right)^2}},$$

ferner unter Berücksichtigung, daß

$$\frac{\partial}{\partial m} = -\frac{1}{m^2} \frac{\partial m}{\partial y} = -\frac{1}{m} \frac{\partial \lg m}{\partial y}$$

$$\beta) \qquad \frac{\partial F}{\partial y} = -\frac{1}{m} \left[ \frac{\sin y \cos y}{\sqrt{\cos^2 y + \left(\frac{d y}{d x}\right)^2}} + \sqrt{\cos^2 y + \left(\frac{d y}{d x}\right)^2} \frac{\partial \lg m}{\partial y} \right],$$

weiter wird unter Berücksichtigung, daß

$$\frac{d}{dx} = -\frac{1}{m} \frac{d \lg m}{dx} = -\frac{1}{m_{e}} \left[ \frac{\partial \lg m}{\partial x} + \frac{\partial \lg m}{\partial y} \frac{dy}{dx} \right],$$
  

$$\gamma) \quad \frac{d}{dx} \frac{\partial F}{\partial \frac{dy}{dx}} = \frac{1}{m} \frac{\frac{d^{2}y}{dx^{2}} \cos^{2}y + \sin y \cos y \left(\frac{dy}{dx}\right)^{2}}{\left[\cos^{2}y + \left(\frac{dy}{dx}\right)^{2}\right]^{\frac{3}{2}}} - \frac{1}{m} \frac{\frac{dy}{dx}}{\left[\cos^{2}y + \left(\frac{dy}{dx}\right)^{2}\right]^{\frac{1}{2}}} \left(\frac{\partial \lg m}{\partial x} + \frac{\partial \lg m}{\partial y} \frac{dy}{dx}\right).$$

Die Minimumsbedingung und damit die Bedingung dafür, daß s geodätische Linie ist, wird daher:

$$\frac{1}{n} \frac{\frac{d^2 y}{dx^2} \cos^2 y + \sin y \cos y \left(\frac{dy}{dx}\right)^2}{\left[\cos^2 y + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}} - \frac{1}{m} \frac{\frac{dy}{dx}}{\left[\cos^2 y + \left(\frac{dy}{dx}\right)^2\right]^{\frac{1}{2}}} \left(\frac{\partial \lg m}{\partial x} + \frac{\partial \lg m}{\partial y} \frac{dy}{dx}\right) + \frac{1}{m} \left(\frac{\sin y \cos y}{\left[\cos^2 y + \left(\frac{dy}{dx}\right)^2\right]^{\frac{1}{2}}} + \left[\cos^2 y + \left(\frac{dy}{dx}\right)^2\right]^{\frac{1}{2}} \frac{\partial \lg m}{\partial y}\right] = 0.$$

Hierin ist  $\frac{1}{m}$  immer nahe gleich 1 anzunehmen; ferner wird sich auch die Bildkurve im allgemeinen nur sehr wenig vom größten Kreis  $P_1P_2$  unterscheiden (auch in Bezug auf den Differentialquotienten — cf. den § 11 Formen der Bildkurve), deshalb wird auch

$$\frac{1}{\cos^2 y + \left(\frac{d}{dx}\right)^2}$$

nahe gleich 1 sein. Es darf also unter diesen Verhältnissen mit

$$n\left[\cos^2 y + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}$$

multipliziert werden und man erhält als exakte Gleichung der Bildkurve:

$$\frac{d^2 y}{dx^2} \cos^2 y + \sin y \cos y \left(\frac{dy}{dx}\right)^2 + \left[\cos^2 y + \left(\frac{dy}{dx}\right)^2\right] \cdot \left[\sin y \cos y - \frac{dy}{dx} \frac{\partial \lg m}{\partial x}\right] + \cos^2 y \frac{\partial \lg m}{\partial y} = 0.$$

Da bis jetzt gar kein Gebrauch davon gemacht wurde, daß die geodätische Linie auf dem Sphäroid liegen soll, so stellt Gleichung (13) ganz allgemein die Gleichung der Bildkurve einer geodätischen Linie bei konformer Abbildung irgend einer Fläche auf die Kugel dar.

Es handelt sich jetzt nur noch darum,  $\frac{\partial \lg m}{\partial x}$  und  $\frac{\partial \lg m}{\partial y}$  als Funktionen von x darzustellen. Wir spezialisieren uns wieder auf das Erdellipsoid und können dann – da nach § 2 m unabhängig ist von der Länge L — setzen:

16

$$\frac{\partial \lg m}{\partial x} = \frac{d \lg m}{d\Phi} \frac{\partial \Phi}{\partial x}$$
$$\frac{\partial \lg m}{\partial y} = \frac{d \lg m}{d\Phi} \frac{\partial \Phi}{\partial y};$$

 $\frac{d \log m}{d \Phi}$  ist aber nach (9) bereits als Funktion von  $\Phi$  berechnet (bis auf Glieder  $e^{6}$ ); es ist also nur noch  $\Phi$  als Funktion von x und y auszudrücken.

Vor Ausführung dieser Aufgabe überlegen wir, daß y mit seinen Differentialquotienten (im allgemeinen) nur klein sein wird, daß wir also für eine erste Näherung höhere Potenzen von y und  $\frac{dy}{dx}$  vernachlässigen dürfen. Nach (9) ist  $\frac{d \lg m}{d\phi}$  und damit  $\frac{\partial \lg m}{\partial x}$  und  $\frac{\partial \lg m}{\partial y}$ klein wie  $e^2$ ; wir erhalten daher aus (13) als eine erste Näherung (bis auf Glieder  $e^2$ ):

$$\frac{d^3y}{dx^2} + y + \frac{\partial \lg m}{\partial y} = 0$$

Daraus folgt, daß y und seine Differentialquotienten gerade klein sind von der Ordnung  $e^2$ ; vorausgesetzt, daß sie — wie wir annahmen — überhaupt klein sind. Wir können dann aus der durch Integration der Gleichung ( $\gamma$ ) erhaltenen ersten Näherung von y — wir wollen sie y' nennen — eine Korrektion y'' in der Weise anbringen, daß die Differentialgleichung (13) bis auf Glieder  $e^4$  befriedigt wird. y'' wird dann klein wie  $e^4$ . Analog kann man weiterfahren. Setzen wir in diesem Sinne

$$y = y' + y'' + y'''$$

(wobei die Striche keine Differentialquotienten, sondern Korrektionen andeuten), so erhalten wir aus (13) bis auf Glieder  $e^6$  genau nach kurzer Rechnung:

(13a) 
$$\begin{bmatrix} \frac{d^2y'}{dx^2} + y' + \frac{\partial \lg m}{\partial y} \end{bmatrix} + \begin{bmatrix} \frac{d^2y''}{dx^2} + y'' - \frac{dy'}{dx} \frac{\partial \lg m}{\partial x} \end{bmatrix} + \begin{bmatrix} \frac{d^2y'''}{dx^2} + y''' - \frac{5}{3}y'^2 \\ + 2y'\left(\frac{dy'}{dx}\right)^2 - y'^2\frac{d^2y'}{dx^2} - \frac{dy''}{dx}\frac{\partial \lg m}{\partial x} + \left(\left(\frac{dy'}{dx}\right)^2 - 2y'^2\right)\frac{\partial \lg m}{\partial y} \end{bmatrix} = 0.$$

Eine Weiterführung der Differentialgleichung auf noch höhere Glieder böte keine Schwierigkeit.

Wir kehren zur Darstellung von  $\Phi$  (und damit von  $\frac{\partial \lg m}{\partial x}$  und  $\frac{\partial \lg m}{\partial y}$ ) als Funktion von x und y zurück.

Wählt man den Koordinatenanfang O auf dem Äquator und bezeichnet das südöstliche Azimut von OF in O mit  $X_0$ , so ist in dem sphärischen Dreieck PLN (cf. Fig. 3)

 $\begin{array}{ll} PN = 90^{\circ} - \varPhi & NL = X_{\circ} - 90^{\circ} & PL = 90^{\circ} - y \\ < L = 90^{\circ} - x \end{array}$ 

und man erhält nach dem Kosinussatz:

14) 
$$\sin \Phi = \sin y \sin X_0 - \cos y \cos \chi_0 \sin x$$
  
Abh. d. math.-phys. Kl. XXVII, 4. Abh.



Fig. 3.

3

 $\alpha)$ 

 $\beta)$ 

-

oder nach Potenzen von y entwickelt:

14 a)  $\sin \Phi = [-\cos X_0 \sin x] + [y' \sin X_0] + \left[\frac{y'^2}{2} \cos X_0 \sin x + y'' \sin X_0\right] + e^6 \dots,$ weiter ist

$$\delta) \qquad \frac{\partial \Phi}{\partial x} = -\frac{\cos y \cos X_0 \cos x}{\cos \Phi} = -\frac{1}{\cos \Phi} \left( \cos X_0 \cos x - \frac{y^{\prime 2}}{2} \cos X_0 \cos x \right) + e^6 \ . \ .$$

$$\frac{\partial \Psi}{\partial y} = \frac{\cos y \sin X_0 + \sin y \cos X_0 \sin x}{\cos \Phi} + \frac{1}{\cos \Phi} \left( \sin X_0 + y' \cos X_0 \sin x + y'' \cos X_0 \sin x - \frac{y'^2}{2} \sin X_0 \right) + e^6 \dots$$

Beide Ausdrücke sind nur bis auf Glieder  $e^4$  berechnet, da ja  $\frac{\partial \lg m}{\partial x}$  und  $\frac{\partial \lg m}{\partial y}$  noch den Faktor  $\frac{d \lg m}{d \Phi}$  enthalten, der seinerseits klein ist wie  $e^2$ .

Die Differentialgleichung (13 a) zeigt, daß bei Beschränkung auf Glieder  $e^6$  $\frac{\partial \lg m}{\partial y}$  bis auf Glieder  $e^6$ , dagegen  $\frac{\partial \lg m}{\partial x}$  nur bis auf Glieder  $e^4$  gebraucht wird.

Unter Berücksichtigung von (a),  $(\beta)$ ,  $(\delta)$ ,  $(\varepsilon)$  und von Gleichung (9) erhält man:

$$\begin{aligned} \frac{\partial \lg m}{\partial x} &= \left[ - \vartheta' \frac{\cos X_0 \cos x}{\cos \vartheta} \right] + \left[ \vartheta'^2 \frac{\cos X_0 \cos x \sin \vartheta}{2 \cos^2 \vartheta} - \vartheta'' \frac{\cos X_0 \cos x}{\cos \vartheta} \right] + e^6 \dots \\ \frac{\partial \lg m}{\partial y} &= \left[ \vartheta' \frac{\sin X_0}{\cos \vartheta} \right] + \left[ \vartheta' y' \frac{\cos X_0 \sin x}{\cos \vartheta} + \left( \vartheta'' - \frac{\vartheta'^2}{2} \operatorname{tg} \vartheta \right) \frac{\sin X_0}{\cos \vartheta} \right] + \left[ - \frac{\vartheta' y'^2 \sin X}{2 \cos \vartheta} + \vartheta'' \frac{\cos X_0 \sin x}{\cos \vartheta} + \left( \vartheta'' - \frac{\vartheta'^2}{2} \operatorname{tg} \vartheta \right) y' \frac{\cos X_0 \sin x}{\cos \vartheta} - \left( \vartheta' \vartheta'' \operatorname{tg} \vartheta + \frac{\vartheta'^3}{6} - \vartheta''' \right) \frac{\sin X_0}{\cos \vartheta} \right] + e^8 \dots \end{aligned}$$

Durch Einsetzen dieser Ausdrücke in die Differentialgleichung (13a) erhält man:

$$0 = \left[\frac{d^{2}y'}{dx^{2}} + y' + \Phi'\frac{\sin X_{0}}{\cos \Phi}\right] + \left[\frac{d^{2}y''}{dx^{2}} + y'' - \Phi'^{2}\frac{\sin X_{0}\sin \Phi}{2\cos^{2}\Phi} + \Phi'y'\frac{\cos X_{0}\sin x}{\cos \Phi} + \Phi'\frac{dy'}{\cos \Phi}\right] + \left[\frac{d^{2}y''}{dx^{2}} + y''' - \frac{5}{3}y'^{3} + 2y'\left(\frac{dy'}{dx}\right)^{2} - y'^{2}\frac{d^{2}y'}{dx^{2}} - \frac{\Phi'^{3}}{6}\frac{\sin X_{0}}{\cos \Phi} - \Phi'^{2}y'\frac{\cos X_{0}\sin x\sin \Phi}{2\cos^{2}\Phi} - \Phi'^{2}\frac{dy'}{dx}\frac{\cos X_{0}\cos x\sin \Phi}{2\cos^{2}\Phi} - \frac{5}{2}\Phi'y'^{2}\frac{\sin X_{0}}{\cos \Phi} + \Phi'\left(\frac{dy'}{dx}\right)^{2}\frac{\sin X_{0}}{\cos \Phi} + \Phi'y'\frac{\cos X_{0}\sin x}{\cos \Phi} + \Phi'\frac{dy''}{dx}\frac{\cos X_{0}\cos x}{\cos \Phi} + \Phi''y'\frac{\cos X_{0}\sin x}{\cos \Phi} + \Phi'y'\frac{\cos X_{0}\sin x}{\cos \Phi} + \Phi''\frac{dy''}{dx}\frac{\cos X_{0}\cos x}{\cos \Phi} + \Phi''y'\frac{\cos X_{0}\sin x}{\cos \Phi} + \Phi''\frac{\sin X_{0}}{\cos \Phi} + \Phi''y'\frac{\sin X_{$$

18

*ε*)

Hierin sind noch  $\Phi$ ,  $\Phi'$ ,  $\Phi''$  und  $\Phi'''$  als Funktionen von x ausdrücken. Um den Überblick nicht durch allzu große Nebenrechnungen zu erschweren, sei wieder nur die Ableitung bis zu den Gliedern  $e^4$  ausführlich gegeben, während die Glieder  $e^6$  bloß im Resultat angeführt werden.

Nach den Gleichungen (7) und (14) folgt:

2

$$\Phi' \frac{\sin X_0}{\cos \Phi} = -e^2 \sin X_0 \cos X_0 \sin x + e^2 y' \sin^2 X_0 + e^6 \dots$$

$$-\Phi'^2 \frac{\sin X_0 \sin \Phi}{2 \cos^2 \Phi} = +\frac{e^4}{2} \sin X_0 \cos^3 X_0 \sin^3 x + e^6 \dots$$

$$\Phi' y' \frac{\cos X_0 \sin x}{\cos \Phi} = -e^2 y' \cos^2 X_0 \sin^2 x + e^6 \dots$$

$$\Phi' \frac{dy'}{dx} \frac{\cos X_0 \cos x}{\cos \Phi} = -e^2 \frac{dy'}{dx} \cos^2 X_0 \sin x \cos x + e^6 \dots$$

$$\Phi'' \frac{\sin X_0}{\cos \Phi} = -e^4 \sin X_0 \cos X_0 \sin x + \frac{7}{6} e^4 \sin X_0 \cos^3 X_0 \sin^3 x + e^6 \dots$$

Nach Einsetzen dieser Ausdrücke samt den analog berechneten Gliedern e<sup>6</sup> erhält man die Differentialgleichung in der Form:

$$\begin{cases} 0 = \left[\frac{d^{2}y'}{dx^{2}} + y' - \frac{e^{2}}{2}\sin 2X_{0}\sin x\right] + \left[\frac{d^{2}y''}{dx^{2}} + y'' + \frac{5}{3}e^{4}\sin X_{0}\cos^{3}X_{0}\sin^{3}x\right] \\ - e^{4}\sin X_{0}\cos X_{0}\sin x + y'e^{2}\sin^{2}X_{0} - y'e^{2}\cos^{2}X_{0}\sin^{2}x - \frac{dy'}{dx}e^{2}\cos^{2}X_{0}\sin x\cos x \\ + \left[\frac{d^{2}y'''}{dx^{2}} + y''' - \frac{16}{5}e^{6}\sin X_{0}\cos^{5}X_{0}\sin^{5}x + 4e^{6}\sin X_{0}\cos^{3}X_{0}\sin^{3}x\right] \\ - e^{6}\sin X_{0}\cos X_{0}\sin x + \frac{5}{3}e^{4}y'\cos^{4}X_{0}\sin^{4}x - 5e^{4}y'\sin^{2}X_{0}\cos^{2}X_{0}\sin^{2}x \\ - e^{6}\sin X_{0}\cos^{2}X_{0}\sin^{2}x + e^{4}y'\sin^{2}X_{0} + \frac{5}{3}e^{4}\frac{dy'}{dx}\cos^{4}X_{0}\sin^{3}x\cos x \\ - e^{4}\frac{dy'}{dx}\cos^{2}X_{0}\sin x\cos x + 4e^{2}y'^{2}\sin X_{0}\cos X_{0}\sin x - e^{2}\left(\frac{dy'}{dx}\right)^{2}\sin X_{0}\cos X_{0}\sin x \\ + e^{2}y'\frac{dy'}{dx}\sin X_{0}\cos X_{0}\cos x + e^{2}y''\sin^{2}X_{0} - e^{2}y''\cos^{2}X_{0}\sin^{2}x \\ - e^{2}\frac{dy''}{dx}\cos^{2}X_{0}\sin x\cos x - \frac{5}{3}y'^{3} + 2y'\left(\frac{dy'}{dx}\right)^{2} - y'^{2}\frac{d^{2}y'}{dx^{2}} \end{bmatrix}.$$

Dies ist die zu integrierende Differentialgleichung bis auf Glieder  $e^6$  genau. Jede der drei eckigen Klammern muß für sich verschwinden. Man hat also zuerst die erste eckige Klammer = 0 zu setzen und daraus y' zu berechnen. Dies setzt man in die zweite

3\*

Klammer ein und berechnet daraus y'' usw. Die Differentialgleichung für jede unserer Korrektionen y', y'', y''' hat also die Form

$$\frac{d^2y}{dx^2} + y = \varphi(x),$$

wobei  $\varphi(x)$  irgendeine bekannte Funktion von x bedeutet. Auch bei Berücksichtigung noch höherer Glieder als  $e^6$  kann die Differentialgleichung für diese höheren Korrektionen immer nur wieder die angegebene Form haben, wie man sich ohne weiteres aus dem Vorhergehenden und aus Gleichung (13) überzeugt.

Geometrisch läßt sich die angewandte Methode zur Lösung der Differentialgleichung (13) so deuten: In der ersten Näherung wird die Bildkurve  $P_1P_2$ ersetzt durch den größten Kreis  $P_1P_2$ . An Stelle von Vergrößerungsverhältnis und Azimut eines Punktes P auf der Bildkurve tritt Vergrößerungsverhältnis und Azimut des korrespondierenden Punktes F (mit gleichem x) auf dem größten Kreis. Abstand zwischen Bildkurve und größtem Kreis wird nur in erster Potenz berücksichtigt. So erhält man gerade die erste Näherungsdifferentialgleichung

$$\frac{d^2y}{dx^2} + y - \frac{e^2}{2}\sin 2X_0 \sin x = 0.$$

Analog verfährt man bei der zweiten Näherung: An Stelle von Vergrößerungsverhältnis und Azimut eines Punktes *P* auf der Bildkurve tritt Vergrößerungsverhältnis und Azimut des korrespondierenden Punktes auf der ersten Näherungskurve usw.

#### § 5.

#### Lösung der Differentialgleichung der Bildkurve. Azimutkorrektionen.

Die Differentialgleichung jeder beliebigen (auch noch so hohen) Korrektion ist nach dem Vorhergehenden von der Form

15)

$$\frac{d^2y}{dx^2} + y = \varphi(x).$$

Wir haben also eine lineare Differentialgleichung zweiter Ordnung mit konstanten Koeffizienten vor uns. Sie kann als gelöst betrachtet werden, sobald ein partikuläres Integral  $\overline{y}$  gefunden ist; denn dann ist

$$y = C_1 \sin x + C_2 \cos x + y$$

das allgemeine Integral. In der Differentialgleichung für y' hat  $\varphi(x)$  eine so einfache Form, daß sich ein partikuläres Integral sofort durch den bekannten Ansatz finden läßt:

$$y = x(a\cos x + b\sin x).$$

Man erhält:

$$a = -\frac{e^2}{4}\sin 2X_0; \qquad b = 0$$

Ist aber  $\varphi(x)$  irgend eine kompliziertere Funktion, so kann man z. B. die Methode der Variation der Konstanten auf die Gleichung (15) anwenden und erhält nach längerer Rechnung folgendes Resultat, das hinterher leicht zu verifizieren ist.

Die Differentialgleichung (15) hat das partikuläre Integral

16) 
$$y = \sin x \int \cos x \varphi(x) \, dx - \cos x \int \sin x \varphi(x) \, dx$$

und die vollständige Lösung:

16 a) 
$$y = C_1 \sin x + C_2 \cos x + \sin x \int \cos x \varphi(x) dx - \cos x \int \sin x \varphi(x) dx.$$

Damit ist die Lösung der Differentialgleichung auf Quadraturen zurückgeführt.

1. Näherung: y = y'.

Die Differentialgleichung für y'

17) 
$$\frac{d^2y'}{dx^2} + y' = \frac{e^2}{2}\sin 2X_0\sin x$$

hat das allgemeine Integral

18a)

$$y' = \frac{e^2}{4} \sin 2X_0 [a_1 \sin x + a_2 \cos x - x \cos x].$$

Die Bildkurve (und auch die verschiedenen Näherungskurven) muß aber durch die 2 Punkte  $P_1$  und  $P_2$  exakt hindurchgehen. Das heißt aber: Für  $x = x_1$  und für  $x = x_2$  muß y' = 0 werden. Daraus berechnen sich die Konstanten zu:

$$\begin{cases} a_1 = \frac{(x_2 - x_1)\cos x_1 \cos x_2}{\sin (x_2 - x_1)} \\ a_2 = \frac{x_1 \cos x_1 \sin x_2 - x_2 \sin x_1 \cos x_2}{\sin (x_2 - x_1)} \end{cases}$$

 $a_1$  und  $a_2$  sind symmetrisch in  $x_1$  und  $x_2$ . Für zusammenfallende Punkte  $P_1$  und  $P_2$   $(x_1 = x_2 = x)$  wird:

 $a_1 = \cos^2 x \qquad a_2 = x - \sin x \cos x.$ 

Die Neigung  $\psi'$  unserer genäherten Bildkurve gegen die X-Achse ist in jedem Punkte x, y' gegeben durch

19) 
$$\operatorname{tg} \psi' = \frac{dy'}{dx} = \frac{e^2}{4} \sin 2X_0 \left[ (x - a_2) \sin x - (1 - a_1) \cos x \right]$$

Setzen wir hierin  $x = x_1$  resp.  $x = x_2$ , so erhalten wir die Azimutkorrektionen  $\psi_1$  resp.  $\psi_2'$  (in 1. Näherung) im Punkte  $P_1$  resp.  $P_2$ . Bei unserer konformen Abbildung geht ja jeder Meridian auf dem Ellipsoid in den entsprechenden Meridian auf der Kugel über (cf. Schluß des § 1) und wegen der Konstanz der Winkel bei der konformen Abbildung

hat jedes Element der geodätischen Linie auf dem Ellipsoid dieselbe Neigung gegen den Meridian wie ihr entsprechendes Element der Bildkurve auf der Kugel.  $\not\prec \psi'$  ist also gerade (in 1. Näherung) die Azimutkorrektion des betreffenden Elementes gegenüber dem größten Kreis durch  $P_1$  und  $P_2$ . Es ist also:

$$\begin{cases} \operatorname{tg} \psi_1' = \frac{e^2}{4} \sin 2X_0[(x_1 - a_2)\sin x_1 - (1 - a_1)\cos x_1] = \frac{e^2}{4} \sin 2X_0 \left[ \frac{x_2 - x_1}{\sin(x_2 - x_1)}\cos x_2 - \cos x_1 \right] \\ \operatorname{tg} \psi_2' = \frac{e^2}{4} \sin 2X_0[(x_2 - a_2)\sin x_2 - (1 - a_1)\cos x_2] = \frac{e^2}{4}\sin 2X_0 \left[ \frac{x_2 - x_1}{\sin(x_2 - x_1)}\cos x_1 - \cos x_2 \right]. \end{cases}$$

Für kleine Entfernungen  $P_1P_2 = x_2 - x_1$  wird  $\psi'_1 = -\psi'_2$ .

 $\psi_1'$  und  $\psi_2'$  ändern sich nicht, wenn man  $x_1$  mit —  $x_1$  und  $x_2$  mit —  $x_2$  vertauscht; sie ändern nur ihr Vorzeichen, aber nicht ihren absoluten Wert, wenn man  $x_1$  mit  $\pi - x_1$ und  $x_2$  mit  $\pi - x_2$  vertauscht.

2. Näherung: 
$$y = y' + y''$$

Durch Einsetzen des in (18) und (19) erhaltenen Wertes für y' und  $\frac{dy'}{dx}$  in Gleichung (13b) erhält man die Differentialgleichung zur Bestimmung der 2. Korrektion y'':

$$\begin{split} k = \frac{e^4}{4} \sin 2X_0 \qquad k_1 = 2 - a_1 - (1 - 2a_1)\cos^2 X_0 \qquad k_2 = -\frac{7}{3}\cos^3 X_0 \qquad k_3 = -a_2\sin^2 X_0 \\ k_4 = \sin^2 X_0. \end{split}$$

Nach (16) treten bei Lösung dieser Differentialgleichung folgende Integrale auf:

$$21) \begin{cases} J_{1} = \int \sin x \cos x \, dx = \frac{\sin^{2} x}{2} & \overline{J}_{1} = \int \sin^{2} x \, dx = \frac{1}{2} (x - \sin x \cos x) \\ J_{2} = \int \sin^{3} x \cos x \, dx = \frac{\sin^{4} x}{4} = J_{1}^{2} & \overline{J}_{2} = \int \sin^{4} x \, dx = \frac{1}{4} (-\sin^{3} x \cos x + 3J_{1}) \\ J_{3} = \int \cos^{2} x \, dx = \frac{1}{2} (x + \sin x \cos x) & \overline{J}_{3} = \int \sin x \cos x \, dx = J_{1} \\ J_{4} = \int x \cos^{2} x \, dx = x J_{3} - \frac{1}{4} (x^{2} + \sin^{2} x) & \overline{J}_{4} = \int x \sin x \cos x \, dx = x J_{3} - \frac{1}{2} \overline{J}_{1}. \end{cases}$$

Das allgemeine Integral von (20) kann also geschrieben werden:

22) 
$$y'' = k \left[ b_1 \sin x - b_2 \cos x + \sin x \sum_{i=1}^{4} k_i J_i - \cos x \sum_{i=1}^{4} k_i \overline{J_i} \right]$$

Dabei muß  $b_1$  und  $b_2$  so bestimmt werden, daß y'' = 0 wird für  $x = x_1$  und für  $x = x_2$ .

Die Neigung  $\psi$ " eines Elements der Kurve (22) gegen die X-Achse ergibt sich zu:

(3) 
$$\operatorname{tg} \psi'' = \frac{dy''}{dx} = k \left[ b_1 \cos x + b_2 \sin x + \cos x \Sigma k_i J_i + \sin x \Sigma k_i \overline{J_i} \right]$$

Daraus eine Verbesserung  $\psi_1^r$ resp.  $\psi_2^r$  der bereits berechneten Azimutkorrektionen  $\psi_1^r$ resp.  $\psi_2^r$  in  $P_1$ resp.  $P_2$ :

23 a) 
$$\begin{cases} \operatorname{tg} \psi_1^{"} = k [\cos x_1 (b_1 + \Sigma k J_{x_1}) + \sin x_1 (b_2 + \Sigma k J_{x_1})] \\ \operatorname{tg} \psi_2^{"} = k [\cos x_2 (b_1 + \Sigma k J_{x_2})] + \sin x_2 (b_2 + \Sigma k J_{x_2})]. \end{cases}$$

Dabei bedeutet z. B.  $\Sigma k J_{x_1}$ , daß überall in  $\Sigma k J$  an Stelle von  $x x_1$  gesetzt werden möge.

3. Näherung: y = y' + y'' + y'''.

Ganz analog wird die Differentialgleichung für y''' gefunden. Man setzt in (13b) die bereits gefundenen Werte

$$y', \quad \frac{dy'}{dx}, \quad \frac{d^2y'}{dx^2}, \quad y'' \quad \text{und} \quad \frac{dy''}{dx}$$

ein. Die Abkürzungen J und J können dabei natürlich nicht beibehalten werden, da sie Funktionen von x sind. Hauptsächlich dadurch kommt es, daß sich die Rechnung zwar elementar, aber außerordentlich langwierig gestaltet. Die Funktion  $\varphi(x)$  in der Gleichung

$$\frac{d^2 y^{\prime\prime\prime}}{dx^2} + y^{\prime\prime\prime} = \varphi(x)$$

enthält anfänglich je nach Anordnung ca. 150 oder mehr Summanden, die sich aber dann auf 15 zusammenfassen lassen. Man erhält:

24) 
$$\frac{d^2 y^{\prime\prime\prime}}{dx^2} + y^{\prime\prime\prime} = \frac{e^6}{2} \sin 2X_0 [l_1 \sin x + l_2 \sin^3 x + l_3 \sin^5 x + l_4 \cos x + l_5 \cos^3 x + l_6 x \sin x + l_7 x \cos x + l_8 x \sin^3 x + l_9 x \cos^3 x + l_{10} x^2 \sin x + l_{11} x^2 \cos x + l_{12} x^2 \sin^3 x + l_{12} x^2 \sin^3 x + l_{10} x^3 \cos x + l_{10} x^3 \cos^3 x + l_{10} x^3 + l_{10$$

Allgemeines Integral:

2

25) 
$$y''' = \frac{e^6}{2} \sin 2X_0 [c_1 \sin x - c_2 \cos x + \sin x \sum_{i=1}^{15} l_i L_i - \cos x \sum_{i=1}^{15} l_i \overline{L}_i];$$

 $c_1$  und  $c_2$  sind so zu bestimmen, daß y''' = 0 wird für  $x = x_1$  und  $x = x_2$ .

25 a) 
$$\operatorname{tg} \psi^{\prime\prime\prime} = \frac{dy^{\prime\prime\prime}}{dx} = \frac{e^6}{2} \sin 2 X_0 [c_1 \cos x + c_2 \sin x + \cos x \Sigma l L + \sin x \Sigma l \overline{L}].$$

Dabei bedeutet wieder  $\psi'''$  die Neigung des Elements der Kurve (25) gegen die X-Achse. Also ist z. B. die Azimutkorrektion  $\psi_1$  in  $P_1$  in 3. Näherung

$$\psi_1 = \psi'_1 + \psi'_1 + \psi'_1$$

Ferner haben die l, L und  $\overline{L}$  folgende Bedeutung:

$$\begin{cases} l_{1} = \frac{1}{2} - \frac{\sin^{2} X_{a}}{2} \left(\frac{a_{1}}{2} + b_{1}\right) + \frac{\cos^{2} X_{b}}{2} \left(a_{1} + b_{1}\right) + \sin^{2} X_{b} \cos^{2} X_{b} \left(\frac{15}{16} - a_{1} + \frac{3}{4} a_{1} a_{1}^{2} + \frac{a_{1}^{2}}{2} - \frac{a_{1}^{2}}{4} - a_{2}^{2}\right) + \frac{\sin^{4} X_{b}}{8} \\ l_{2} = -\cos^{2} X_{b} \left(3 + \frac{a_{1}}{4}\right) + \cos^{4} X_{b} \left(\frac{7}{12} - \frac{a_{1}}{3}\right) - \sin^{2} X_{b} \cos^{2} X_{b} \left(\frac{25}{48} - 3 a_{1} + a_{1} a_{1}^{2} + \frac{5}{4} a_{1}^{2} - \frac{5}{4} a_{2}^{2} - \frac{a_{1}^{2}}{3}\right) \\ l_{3} = \frac{83}{40} \cos^{4} X_{b} \\ l_{4} = -\frac{\sin^{2} X_{b}}{2} \left(a_{2} - b_{2}\right) + \frac{a_{3}}{4} \sin^{2} X_{b} \cos^{2} X_{b} (11 - 9 a_{1} + 3 a_{1}^{2} - a_{1}^{2}) \\ l_{5} = -a_{2} \sin^{2} X_{b} \cos^{2} X_{b} \left(\frac{11}{4} - \frac{5}{2} a_{1} + a_{1}^{2} - \frac{a_{1}^{2}}{3}\right) \\ l_{6} = \frac{a_{2}}{4} \sin^{4} X_{b} + \frac{a_{3}}{4} \sin^{2} X_{b} \cos^{2} X_{b} (7 - 6 a_{t}) \\ l_{7} = \sin^{2} X_{b} \left(1 - \frac{a_{1}}{4}\right) - \frac{\sin^{2} X_{b} \cos^{2} X_{b}}{4} \left(\frac{55}{4} - 11 a_{1} + 3 a_{1}^{2} - 3 a_{1}^{2}\right) - \frac{\sin^{4} X_{b}}{8} \\ l_{8} = -\frac{a_{2}}{2} \sin^{2} X_{b} \cos^{2} X_{b} (5 - 4 a_{t}) \\ l_{9} = \sin^{2} X_{b} \cos^{2} X_{b} \left(\frac{11}{4} - \frac{5}{2} a_{1} + a_{1}^{2} - a_{1}^{2}\right) \\ l_{10} = -\frac{\sin^{2} X_{b} \cos^{2} X_{b}}{8} (7 - 6 a_{t}) - \frac{\sin^{4} X_{b}}{8} \\ l_{11} = -\frac{3}{4} a_{3} \sin^{2} X_{b} \cos^{2} X_{b} \\ l_{12} = \frac{\sin^{2} X_{b} \cos^{2} X_{b}}{4} (5 - 4 a_{1}) \\ l_{13} = a_{2} \sin^{2} X_{b} \cos^{2} X_{b} \\ l_{14} = \frac{\sin^{2} X_{b} \cos^{2} X_{b}}{4} \\ l_{15} = -\frac{\sin^{2} X_{b} \cos^{2} X_{b}}{3} .$$

24

26 a)



Länge s der geodätischen Linie auf dem Ellipsoid und ihres Abbilds S' auf der Kugel. Länge S des grössten Kreises auf der Kugel und seines Abbilds s' auf dem Ellipsoid.

 $S = R \int_{x_1}^{x_2} dx;$ 

Es ist bis auf Glieder  $e^6$ :

A)

ferner nach (11):

$$S' = R \int_{x_1}^{x_2} \sqrt{\cos^2 y + \left(\frac{dy}{dx}\right)^2} \, dx = R \int_{x_1}^{x_2} \sqrt{1 - y'^2 - 2y'y'' + \left(\frac{dy'}{dx}\right)^2 + 2\frac{dy'}{dx}\frac{dy''}{dx}} \, dx$$

$$= R \int_{x_1}^{x_2} \left[ 1 + \frac{1}{2} \left\{ \left(\frac{dy'}{dx}\right)^2 - y'^2 + 2\frac{dy'}{dx}\frac{dy''}{dx} - 2y'y'' \right\} \right] dx$$

$$S' = R \int_{x_1}^{x_2} \frac{dx}{m_0}$$

$$s = R \int_{x_1}^{x_2} \frac{1}{m_1} \sqrt{\cos^2 y + \left(\frac{dy}{dx}\right)^2} \, dx = R \int_{x_1}^{x_2} \frac{1}{m_1} \left[ 1 + \frac{1}{2} \left\{ \left(\frac{dy'}{dx}\right)^2 - y'^2 + 2 \frac{dy'}{dx} \frac{dy''}{dx} - 2 y' y'' \right\} \right] \, dx.$$

Dabei bedeutet  $m_0$  resp.  $m_1$  das Vergrößerungsverhältnis längs des größten Kreises y = 0 resp. längs der Bildkurve y = y' + y'' + y'''.

 $\frac{1}{m}$  ist als Funktion von  $\Phi$  durch Gleichung (10) gegeben. Es ist jetzt noch als Funktion von x, y und  $\chi_0$  auszudrücken. Dies geschieht mittels Gleichung (14) und (14a). Zur Berechnung von  $\frac{1}{m_1}$  ist dann y = y' + y'' + y''' zu setzen, für  $\frac{1}{m_0}$  dagegen ist  $= \frac{dy}{dx} = \frac{d^2y}{dx^2} = 0$ . Nach elementarer Rechnung erhält man:

$$\begin{split} &\frac{1}{m_{1}} = \frac{a}{R} \Big\{ 1 - \Big[ \frac{e^{2}}{2} \cos^{2} X_{0} \sin^{2} x \Big] + \Big[ \frac{e^{2}}{2} y' \sin 2 X_{0} \sin x - \frac{e^{4}}{2} \cos^{2} X_{0} \sin^{2} x + \frac{13}{24} e^{4} \cos^{4} X_{0} \sin^{4} x \Big] \\ &+ \Big[ - \frac{e^{2}}{2} y'^{2} \sin^{2} X_{0} + \frac{e^{2}}{2} y'^{2} \cos^{2} X_{0} \sin^{2} x + e^{2} y'' \sin X_{0} \cos X_{0} \sin x - \frac{13}{6} e^{4} y' \sin X_{0} \cos^{3} X_{0} \sin^{3} x \\ &+ e^{4} y' \sin X_{0} \cos X_{0} \sin x - \frac{e^{6}}{2} \cos^{2} X_{0} \sin^{2} x + \frac{5}{4} e^{6} \cos^{4} X_{0} \sin^{4} x - \frac{61}{80} e^{6} \cos^{6} X_{0} \sin^{6} x \Big] \Big\} \\ &\frac{1}{m_{0}} = \frac{a}{R} \Big\{ 1 - \Big[ \frac{e^{2}}{2} \cos^{2} X_{0} \sin^{2} x \Big] + \Big[ - \frac{e^{4}}{2} \cos^{2} X_{0} \sin^{2} x + \frac{13}{24} e^{4} \cos^{4} X_{0} \sin^{4} x \Big] \\ &+ \Big[ - \frac{e^{6}}{2} \cos^{2} X_{0} \sin^{2} x + \frac{5}{4} e^{6} \cos^{4} X_{0} \sin^{2} x - \frac{61}{80} e^{6} \cos^{6} X_{0} \sin^{4} x \Big] \Big\}. \end{split}$$

Von hier ab wollen wir nur mit Gliedern bis zu  $e^4$  rechnen. Die dadurch erreichte Genauigkeit reicht, wie wir sehen werden, wohl für alle praktischen Zwecke aus und zudem ist ja alles Material zusammengetragen, um die Rechnung ohne Schwierigkeit bis auf Glieder  $e^6$  zu erweitern.

Bis auf Glieder  $e^4$  genau ist also:

$$\begin{split} \mathrm{B}') & S' = R \int_{x_1}^{x_2} \Big[ 1 + \frac{1}{2} \Big\{ \Big( \frac{dy'}{dx} \Big)^2 - y'^2 \Big\} \Big] \, dx \\ \mathrm{C}') & s' = a \int_{x_1}^{x_2} \Big[ 1 - \frac{e^2}{2} \cos^2 X_0 \sin^2 x - \frac{e^4}{2} \cos^2 X_0 \sin^2 x + \frac{13}{24} e^4 \cos^4 X_0 \sin^4 x \Big] \, dx \\ \mathrm{D}') & s = a \int_{x_1}^{x_2} \Big[ 1 - \frac{e^2}{2} \cos^2 X_0 \sin^2 x - \frac{e^4}{2} \cos^2 X_0 \sin^2 x + \frac{13}{24} e^4 \cos^4 X_0 \sin^4 x + \frac{e^2}{2} y' \sin 2 X_0 \sin x \\ & + \frac{1}{2} \Big( \frac{dy'}{dx} \Big)^2 - \frac{y'^2}{2} \Big] \, dx \, . \end{split}$$

Es wird daher:

$$S' - S = \frac{R}{2} \int_{x_1}^{x_2} \left[ \left( \frac{dy'}{dx} \right)^2 - y'^2 \right] dx$$
  
$$s = \frac{a}{2} \int_{x_1}^{x_2} \left[ y'^2 - \left( \frac{dy'}{dx} \right)^2 - e^2 y' \sin 2X_0 \sin x \right] dx$$
  
$$= -\frac{a}{R} (S' - S) - a \frac{e^2}{2} \sin 2X_0 \int_{x_1}^{x_2} y' \sin x \, dx.$$

Man sieht also: Der größte Kreis S und sein Bild s' einerseits und andererseits die geodätische Linie s und ihr Bild S' unterscheiden sich ihrer Länge nach nur um eine Größe von der Ordnung  $e^4$ .

Was jedoch an den Formeln sehr auffällig erscheint, ist folgendes: Es hat den Anschein, als ob sich auch die Differenzen S' - S und s' - s voneinander um eine Größe von der Ordnung  $e^4$  unterschieden, wie man auch den Radius R der abbildenden Kugel wählen möchte. Dies Ergebnis wäre sehr merkwürdig, und man kommt deshalb auf die Vermutung, daß die Gleichung besteht:

27) 
$$\int_{x_1}^{x_2} \left[ y^{2} - \left(\frac{dy'}{dx}\right)^{2} \right] dx = \frac{e^2}{2} \sin 2X_0 \int_{x_1}^{x_2} y' \sin x \, dx$$

Ist (27) richtig, so folgt nämlich für R = a: s' - s = S' - S. Man findet aber durch Einsetzen der Werte für y' und  $\frac{dy'}{dx}$  (nach (18) und (19)) und durch Integrieren:

4\*

$$\begin{split} & \int_{x_1}^{x_2} \left[ y'^2 - \left(\frac{dy'}{dx}\right)^2 \right] dx = -\frac{e^4}{16} \sin^2 2X_0 \left[ x \left(\frac{1}{2} - 2a_1\right) + 2a_1 \sin^2 x (x - a_2) \right. \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \right]_{x_1}^{x_2} \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \right]_{x_1}^{x_2} \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \right]_{x_1}^{x_2} \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \right]_{x_1}^{x_2} \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \right]_{x_1}^{x_2} \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \right]_{x_1}^{x_2} \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \right]_{x_1}^{x_2} \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \right]_{x_1}^{x_2} \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \right]_{x_1}^{x_2} \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \right]_{x_1}^{x_2} \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \right]_{x_1}^{x_2} \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \right]_{x_1}^{x_2} \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \right]_{x_1}^{x_2} \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \right]_{x_1}^{x_2} \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \right]_{x_1}^{x_2} \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \right]_{x_1}^{x_2} \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \right]_{x_1}^{x_2} \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \\ & + \sin x \cos x \left(\frac{1}{2} + a_1^2 - a_2^2 + 2a_2 x - x^2\right) \\ & + \sin x \cos x + x \cos x$$

Indem man in (E) und (F) die Werte für  $a_1$  und  $a_2$  aus (18 a) einsetzt, findet man nach längerer Rechnung, daß die rechten Seiten von (E) und (F) tatsächlich einander gleich werden, daß also die Gleichung (27) zu Recht besteht. Da die rechte Seite von (F) bequemer zu berechnen ist als die von (E), verwenden wir erstere und finden bis auf Größen  $e^4$  genau:

28) 
$$\begin{cases} s'-s = -a \frac{e^4}{64} \sin^2 2X_0 \Big[ (1+2a_1)(x-\sin x \cos x) + 2\sin^2 x (a_2-x) \Big]_{x_1}^{x_2} \\ S'-S = -R \frac{e^4}{64} \sin^2 2X_0 \Big[ (1+2a_1)(x-\sin x \cos x) + 2\sin^2 x (a_2-x) \Big]_{x_1}^{x_2} \\ \frac{s'-s}{a} = \frac{S'-S}{R}. \end{cases}$$

Ferner ergibt sich unter Benützung von (27) durch Integration aus (D') die Länge s der geodätischen Linie auf dem Ellipsoid (bis auf Größen  $e^4$  genau):

29) 
$$\begin{cases} \frac{s}{a} = \left[x\right]_{x_1}^{x_2} - \frac{e^2}{4}\cos^2 X_0 \left[x - \sin x \cos x\right]_{x_1}^{x_2} - \frac{e^4}{4}\cos^2 X_0 \left[(x - \sin x \cos x) + \frac{13}{24}\cos^2 X_0 \left(\sin^3 x \cos x + \frac{3}{2}\sin x \cos x - \frac{3}{2}x\right) - \frac{\sin^2 X_0}{4} \left\{(1 + 2a_1)(x - \sin x \cos x) + 2\sin^2 x(a_2 - x)\right\}_{x_1}^{x_2}.\end{cases}$$

Dabei hat nach dem Vorhergehenden die letzte geschweifte Klammer mit ihren zugehörigen Faktoren — also  $\frac{e^4}{16}\sin^2 X_0\cos^2 X_0 \{\ldots\}$  — die geometrische Bedeutung:  $\frac{s'-s}{a}$ .

Natürlich kann mittels Gleichung (29) auch ohne weiteres die Entfernung  $P_1P$  oder  $P_2P$  berechnet werden, wobei P irgend ein Punkt auf der durch  $P_1$  und  $P_2$  bestimmten geodätischen Linie ist. Man hat einfach, ohne an den Konstanten  $a_1$  und  $a_2$  etwas zu ändern, das Integral zwischen den Grenzen x und  $x_1$  resp. x und  $x_2$  zu nehmen.

Eine gute Kontrolle für die Richtigkeit unserer Formeln ist es, daß bei allen folgenden Beispielen s' - s sowie S' - S positiv werden muß.

Die Abschätzung der Größe von s'-s ist auch für die Praxis recht interessant: Ein Seefahrer, der seinen Kurs nach Maßgabe eines Globus bestimmt, wird seinen Weg von einem Punkt  $P_1$  zu einem anderen  $P_2$  auf dem Globus gemessen längs eines größten

Kreises wählen. Wenn er die auf dem Globus vom größten Kreis  $P_1P_2$  getroffenen Punkte auf das Erdellipsoid überträgt und seinen Kurs (mittels astonomischer Beobachtungen etc.) über diese Punkte hinwegführt, so beschreibt er auf dem Erdellipsoid nicht eine kürzeste Linie, sondern das Abbild eines größten Kreises. Die Größe s' - s gibt an, um wie viel er dadurch unnötigerweise zu weit gefahren ist. Näheres darüber bei den Beispielen.

#### § 7.

#### Beispiele.

Im folgenden seien einige numerische Beispiele ausgeführt, einerseits um die Anwendung unsrer Formeln zu zeigen, andererseits um unsere Ergebnisse mit den Resultaten, die man nach anderen Methoden erhält, zu vergleichen und dadurch zu prüfen. Auf diese Weise kann aber nur eine Prüfung der Formeln vorgenommen werden, die mit  $e^4$  abbrechen, da die bisherigen Methoden zur Bestimmung des Azimuts etc. nicht annähernd so genau sind wie unsere Formeln unter Berücksichtigung der Glieder  $e^6$ . Einige Stichproben auf die Richtigkeit unserer genauen Formeln werden in dem Paragraphen über Enveloppen von geodätischen Linien (§ 12) gemacht werden.

Bei den folgenden numerischen Rechnungen ist zu beachten: Die sphärische Rechnung hat mit 7 oder 8stelligen Logarithmen zu erfolgen, die Berechnung der ersten Korrektion mit 5 (oder 6) stelligen Logarithmen, die der zweiten Korrektion mit Rechenschieber. Wollte man noch die dritte Korrektion berücksichtigen, was nur in ganz besonderen Fällen (vgl. § 8, Konvergenzuntersuchung) oder bei einer gewünschten Genauigkeit von ca. 0.0001 (vgl. § 9, Genauigkeitsabschätzung) nötig ist, so wäre die shpärische Rechnung 10 stellig, die der ersten Korrektion 7 stellig, die der zweiten 5 stellig und die der dritten Korrektion mit dem Rechenschieber durchzuführen. Die zweite Korrektion hat eine für logarithmische Rechnung wenig geeignete Form, es wäre also in diesem Falle die Benützung einer Rechenmaschine von großem Vorteil.

## I. Gegeben die geographische Lage zweier Punkte $P_1$ und $P_2$ , gesucht das Azimut $\chi_1$ und $\chi_2$ der geodätischen Linie $P_1 P_2$ in $P_1$ und $P_2$ sowie die Länge s von $P_1 P_2$ .

Es seien auf der Kugel gegeben:  $P_1$  auf dem Äquator,  $P_2$  durch  $L_2 - L_1 = 90^{\circ}$  und  $\Phi_2 = 45^{\circ}$ .

Der größte Kreis schneidet also den Äquator unter 45° (also  $X_0 = 135^\circ$ ), Länge S von  $P_1P_2 = 90^\circ$   $x_1 = 0$ ,  $x_2 = 90^\circ$ . Azimut bei  $P_2 X_2 = 90^\circ$ .

(18) ergibt für die erste Korrektion:

$$a_1 = a_2 = 0,$$

daher nach (19a) als erste Azimutkorrektion  $\psi'$ :



Fig. 3a.

<sup>1.</sup> Beispiel.

$$\begin{split} \mathrm{tg}\,\psi_1' &= \left(\frac{d\,y'}{d\,x}\right)_{x_1} = \frac{e^2}{4} & e^2 = 0,00667\;43722 \\ \mathrm{tg}\,\psi_2' &= \left(\frac{d\,y'}{d\,x}\right)_{x_2} = -\frac{e^2}{4} \cdot \frac{\pi}{2} & b = 6\;356\;078,963_m \end{split} \right|^1), \end{split}$$

also

$$\psi_1 = 344,172 = 5'44,172$$
  $\psi_2 = -540,624 = -9'0,624$ 

1.

Ferner erhält man nach (20) für die zweite Korrektion:

$$k = -\frac{e^4}{4} = -2$$
, 2972  $k_1 = \frac{3}{2}$   $k_2 = -\frac{7}{6}$   $k_3 = 0$   $k_4 = \frac{1}{2}$ 

Nach (21) wird für:

Y

$$\begin{aligned} x &= x_1 = 0; \qquad J_1 = J_2 = J_3 = J_4 = 0 \qquad \text{und} \qquad \bar{J_1} = \bar{J_2} = \bar{J_3} = J_4 = 0 \\ x &= x_2 = \frac{\pi}{2}; \begin{cases} J_1 = 0,5000 \quad J_2 = 0,2500 \quad J_3 = 0,7854 \quad J_4 = 0,3668 \\ \bar{J_1} = 0,7854 \quad \bar{J_2} = 0,5890 \quad J_3 = 0,5000 \quad \bar{J_4} = 0,3927 \\ \Sigma k J_{x_1} = \Sigma k \bar{J_{x_1}} = 0 \end{cases}$$

also

und

$$\Sigma k J_{x_2} = 0,7500 - 0,2917 + 0 + 0,1834 = 0,6417$$
  
$$\Sigma k J_x = 1,1781 - 0,6872 + 0 + 0,1963 = 0,6872$$

Daher ergeben sich nach (22) die Integrationskonstanten  $b_1$  und  $b_2$  aus den Gleichungen:

a) 
$$0 = -b_2$$
  
b)  $0 = b_1 + 0.6417$ , also  $b_1 = -0.6417$   $b_2 = 0$ ,

folglich wird nach (23 a) die zweite Azimutkorrektion  $\psi$ ":

Als Azimut der geodätischen Linie  $P_1P_2$  in  $P_1$  resp.  $P_2$  ergibt sich dann:

Azimut 
$$\chi_1$$
 in  $P_1$ :  $\chi_1 = X_1 + \psi_1' + \psi_1' = 135^{\circ}$  5'45,645

Azimut 
$$\chi_2$$
 in  $P_2$ :  $\chi_2 = X_2 + \psi'_2 + \psi''_2 = 89^\circ 50' 57,799$ .

Zur Kontrolle wurde das Azimut der geodätischen Linie  $P_1 P_2$  nach einer von Helmert<sup>2</sup>) angegebenen indirekten Methode berechnet und erhalten:

$$\begin{array}{l} \chi_1 = 135^0 \quad 5' \quad 45,63 \\ \chi_2 = \quad 89^0 \quad 50' \quad 57,83 \end{array}$$

Die Differenz mit unseren vorherigen Resultaten ca. 0,"01 bis 0,"03. Das ist die zu erwartende Ungenauigkeit unserer Näherungsrechnung, wenn wir nur die Glieder bis  $e^4$ berücksichtigen (vgl. § 9) und gleichzeitig die der Helmertschen. Überdies hat man nach

<sup>&</sup>lt;sup>1</sup>) Vgl. z. B. Jordan, Vermessungskunde. Stuttgart 1907, 3. Bd. S. 210.

<sup>&</sup>lt;sup>2</sup>) Helmert, Math. u. physik. Theorien der höheren Geodäsie. Leipzig 1880, Bd. 1 S. 247 ff.

der Helmertschen Methode mit den Winkeln selbst (nicht mit ihren Korrektionen) logarithmisch zu rechnen, so daß ein Fehler von einigen Hundertstel-Sekunden allein durch die Ungenauigkeit der 7 stelligen Logarithmentafeln verursacht sein kann.

Die Länge s der geodätischen Linie  $P_1P_2$  ergibt sich aus (29):

$$\frac{s}{a} = \frac{\pi}{2} - \frac{e^2}{4} \frac{\pi}{2 \cdot 2} - \frac{e^4}{4 \cdot 2} \left[ \frac{\pi}{2} + \frac{13}{24 \cdot 2} \left( -\frac{3}{4} \pi \right) - \frac{1}{8} \left( \frac{\pi}{2} - \pi \right) \right]$$
$$= \frac{\pi}{2} \left( 1 - \frac{e^2}{8} - \frac{23}{256} e^4 \right) = \frac{\pi}{2} \cdot 0,999 \ 1640.$$

#### 2. Beispiel.

Als zweites Beispiel wählen wir eine Aufgabe, die schon mehrmals in der höheren Geodäsie berechnet wurde (nur sind bei uns bie Punkte  $P_1$  und  $P_2$  vertauscht gegenüber den Angaben z. B. bei Helmert)<sup>1</sup>). Zugleich soll für die Berechnung der Azimutkorrektionen ein Rechenschema gegeben werden (abgesehen vom sphärischen Teil der Rechnung). Berücksichtigt werden Glieder bis  $e^4$ .

Gegeben auf dem Ellipsoid:

$$\varphi_{1} = -\,33^{0}\,26' \qquad \varphi_{2} = 55^{0}\,45' \qquad \lambda_{2} - \lambda_{1} = 108^{0}\,13'.$$

(Es wird im folgenden noch die allgemein gebräuchliche Abkürzung  $\varrho'' = 206\ 264.806$ verwendet = Radius des Kreises in Sekunden und  $\frac{5}{12}e^4\varrho'' = 3.829$  gesetzt.)

Nach (8) folgt:

 $\begin{array}{l|l} \log \frac{\varrho^{\,''} e^2}{2} &= 2,83\ 780.5 \\ \hline \log \sin 2\,\varphi_1 &= 9,96\ 360_n \\ \hline \log (-\varphi_1') &= 2,80\ 140.5_n \\ \varphi_1' &= 633,007 \\ &= 10'\ 33,007 \\ \varphi_1' &= -3,*829\sin 2\,\varphi_1\sin^2\varphi_1 \\ &= +1,"067 \\ \hline \varPhi_1 &= \varphi_1 + \varphi_1' + \varphi_1' &= -33^0\ 15'\ 25,"926 \\ \hline \varPhi_2 &= -\varphi_2 + \varphi_2' + \varphi_2' &= 55^0\ 34'\ 17,"119 \\ \hline \pounds_2 &- \pounds_1 &= \hbar_2 - \lambda_1 &= 108^0\ 13'. \\ \end{array}$ 

Falls die Buchwaldtsche Tafel<sup>3</sup>) zur Verfügung steht, so ist vorstehende Rechnung überflüssig, da  $\Phi_1$  und  $\Phi_2$  sofort aus der Tabelle entnommen werden können.

Unter Benützung dieser Werte  $\Phi_1$ ,  $\Phi_2$  und  $L_2 - L_1$  folgt jetzt eine sphärische Rechnung (7 stellige Logarithmen; 8. Stelle interpolieren und mit in die Rechnung nehmen!). Man erhält aus den Neperschen Gleichungen:

<sup>1</sup>) Helmert, loc. cit., S. 240 ff. u. S. 250 ff. <sup>2</sup>) Vgl. Zitat auf S. 10.

32

| Nach (18) wird dann:                        |                         |                                    |                              |                 |
|---------------------------------------------|-------------------------|------------------------------------|------------------------------|-----------------|
| $\log(x_2 - x_1) = 0.34526.8$               | $\log x_1 =$            | = 9,85 998.5 <sub>n</sub>          | $\log x_2 =$                 | 0,17 320.1      |
| $\log \cos x_{1} = 9,87441.9$               | $\log \cos x_1 =$       | = 9,87 441.9                       | $\log \sin x_1 =$            | $9,82\ 131.2_n$ |
| $\log \cos x_2 = 8,90\ 664.5$               | $\log \sin x_2$ =       | = 9,99 858.3                       | $\log \cos x_2 =$            | 8,90 664.5      |
| $-\log \sin (x_2 - x_1) = +0,09696.6 -$     | $-\log\sin(x_2-x_1)=$   | =+0,09696.6                        | $-\log \sin(x_2 - x_1) =$    | +0,09696.6      |
| $\log a_1 = 9,22329.8$                      | log                     | $a = 9,82995.3_n$                  | $\log \beta =$               | 8,99 812.4 "    |
| $a_1 = 0.16722$                             |                         |                                    |                              |                 |
| ,                                           | a = -                   | -0,67601                           |                              |                 |
|                                             | $-\beta = +$            | - 0,09957                          |                              |                 |
|                                             | $a_2 = -$               | - 0,57644                          |                              |                 |
| Nach (19 a):                                |                         |                                    |                              |                 |
| $\log\left(x_2 - x_1\right) =$              | 0,34 526.8              | $\log(x_2 - $                      | $x_1 = 0.34526.8$            |                 |
| $-\log\sin(x_2 - x_1) = -$                  | + 0,09 696.6            | $-\log\sin(x_2 -$                  | $(x_1) = +0,09696.6$         |                 |
| $\log \cos x_2 =$                           | 8,90 664.5              | logco                              | $s x_1 = 9,87 441.9$         |                 |
| $\log A_1 =$                                | 9,34 887.9              | log                                | $gA_2 = 0,31\ 665.3$         |                 |
| $A_1 =$                                     | 0,22 329.4              |                                    | $A_2 = 2,07\ 325$            |                 |
| $-\cos x_1 = -$                             | -0,74889.0              | — co                               | $sx_2 = -0,08\ 066$          |                 |
| $B_1 = -$                                   | -0,52559.6              |                                    | $B_2 = 1,99259$              |                 |
| $\log\left(\frac{e^2}{4}\varrho^*\right) =$ | 2,53 677.6              | $\log\left(rac{e^2}{4}\phi ight)$ | $(2,53\ 677.6)$ = 2,53 677.6 |                 |
| $\log \sin 2X_0 =$                          | 9,96 810.7 <sub>n</sub> | log sin 2                          | $2X_0 = 9,96\ 810.7$         | n               |
| $\log B_1 =$                                | $9,72\ 065.3_n$         | log                                | $gB_2 = 0,29\ 941.8$         |                 |
| $\log \psi_1' =$                            | 2,22 553.6              | log                                | $g \psi'_2 = 2,80 \ 430.1$   | n               |
| $\psi_1 = 168,0$                            | 8 = 2' 48,08            | $\psi'_2 = -63$                    | 7,23 = -10'37,23             |                 |
|                                             |                         |                                    |                              |                 |

Man beachte, daß sich in obenstehender Rechnung verschiedene Logarithmen mehrfach wiederholen (also leichtere Rechnung!); ferner, daß die zuletzt vorgenommene Verwechslung von tg $\psi'$  mit  $\psi'$  einen Fehler von der Ordnung  $\frac{\psi'^3}{6} \sim e^6$  hervorruft, also nur gestattet ist, so lange die 3. Korrektion nicht angebracht wird.

Von hier ab Rechenschieber!

Nach (20):

 $k = -2,135 \qquad k_1 = 1,377 \qquad k_2 = -1,598 \qquad k_3 = 0,1816 \qquad k_4 = 0,3152$ und nach (21):

| für $x = x_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $= -0,6103  J_4 = 0,2010$ $= 0,2196  \bar{J}_4 = -0,1020$ $k_1 \bar{J}_1 = -0,1571$ $k_2 \bar{J}_2 = 0,0497$ $k_3 \bar{J}_3 = 0,0399$ $k_4 \bar{J}_4 = -0,0322$ $\Sigma k_1 \bar{J}_4 = -0,0997$ |
| für $x = x_{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                  |
| $ \begin{array}{c} \overbrace{J_1=0,4966} & J_2=0,2465 \\ \hline J_1=0,705 & \bar J_2=0,509 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $J_{3} = 0,785$ $J_{4} = 0,3665$<br>$\bar{J}_{3} = 0,4966$ $\bar{J}_{4} = 0.3875$                                                                                                                |
| $\begin{array}{rcl} k_1 J_1 = & 0,6840 \\ k_2 J_2 = - & 0,3941 \\ k_3 J_3 = & 0,1425 \\ k_4 J_4 = & 0,1154 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $k_{1}\bar{J}_{1} = 0,9705$ $k_{2}\bar{J}_{2} = -0,8135$ $k_{3}\bar{J}_{3} = 0,0902$ $k_{4}\bar{J}_{4} = 0,1220$                                                                                 |
| $\Sigma k J_{x_2} = + 0,5478$<br>Nach (22):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Sigma k \bar{J}_{x_2} = + 0,3692$                                                                                                                                                              |
| $0 = -0,6627 b_1 - 0,7489 b_2 - 0.0000 b_1 - 0.0000 b_2 - 0.0000 b_1 - 0.0000 b_2 - 0.00000 b_2 - 0.0000 b_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0,1178 + 0,0747                                                                                                                                                                                 |
| $0 = 0,9967 b_1 - 0,0806 b_2 +$ (a) und ( $\beta$ ):<br>(23 a):<br>$b_1 = -0,491  b_2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0,5460 - 0,0298,<br>+ 0,377,                                                                                                                                                                    |
| tg $\psi_1'' = \psi_1'' = -2,135 [-0,749 \cdot 0,313 - tg \psi_2'' = \psi_2'' = -2,135 [-0,0806 \cdot 0,057 - 0,0806 \cdot 0,0806 $ | $\begin{array}{l} -0.663 \cdot 0.277] = +0.89 \\ +0.997 \cdot 0.746] = -1.60. \end{array}$                                                                                                       |
| Also gesuchtes Azimut:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                  |
| $\begin{split} \chi_1 &= X_1 + \psi_1' + \psi_1' = 137^{\circ} 52' 22,00 \\ \chi_2 &= X_2 + \psi_2' + \psi_2' = 96^{\circ} 36' 8,80 \end{split} \text{ statt} \\ \text{Helmert angibt.} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\left\{ \begin{array}{ccc} \dots & 22,\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                     |
| Länge s von $P_1P_2$ . Nach (29) ist:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                  |

$$\begin{split} \frac{s}{a} &= 2,214\ 4629.2 - 0,001\ 8714.2 \cdot 1,637\ 783 - 0,000\ 007\ 627\ [1,6378 + 0,3710\ (-2,1591) - 0,0788\ (-2,049)] \end{split}$$

(hier wurde das erste resp. zweite Glied mit 8 resp. 6 stelliger Logarithmentafel gerechnet — es genügt auch eine Stelle weniger).

Abh. d. math.-phys. Kl. XXVII, 4. Abh.

 $\alpha$ )  $\beta$ ) aus

nach

wie

33

$$a^{2} = 2,214\ 4629.2 - 0,001\ 8714.2 - 0,000\ 0076.2 = 2,212\ 5838.8$$

daraus in Metern:

$$\log s = 7,14954321.0.$$

Helmert gibt loc. cit. an:

 $\log s = 7,149\ 5432.0$ 

Zugleich ersieht man, daß sich folgende Fehler für die aufeinanderfolgenden Näherungen ergeben ( $s = ca. 14\,000 \text{ km}$ ):

für die sphärische Rechnung ein Fehler von ca. 11930 m,

nach Hinzunahme der Glieder mit  $e^2$  ein Fehler von ca. 48,6 m.

Nach Hinzunahme der Glieder mit  $e^4$  ist dann ein Fehler von der Größenordnung  $48,6 e^2 = \text{ca. } 0,4 \text{ } m$  zu erwarten. Man sieht schon an diesem Beispiel, daß eine Berücksichtigung der Glieder  $e^6$  (vgl. S. 26) tatsächlich unnötig sein wird.

#### II. Beispiele für die Differenz zwischen geodätischer Linie s und Bild des grössten Kreises s'.

A.  $P_1$  liege auf dem Äquator; der größte Kreis  $P_1P_2$  habe in  $P_1$  das Azimut  $X_0 = 135^{\circ}$ . Es soll s' - s (oder S' - S) für verschiedene Entfernungen  $P_1P_2$  bestimmt werden.

a)

 $x_2 = 30^{\circ}$ .

 $a_1 = 0,9069$   $a_2 = 0,$ 

Nach (18) wird:

$$\begin{aligned} s'-s &= -\frac{a \, e^4}{64} \left[ 2,8138 \, (0,5236 - 0,4330) - 0,2618 \right] \\ &= -4,4390 \left[ 0,2549 - 0,2618 \right] \, \text{Meter} = + \, 0,0306 \, m \\ \text{b)} & x_2 = 60^\circ \quad a_1 = 0,6046 \quad a_2 = 0 \quad s' - s = 0,950 \, m \\ \text{c)} & x_2 = 90^\circ \quad a_1 = 0 \quad a_2 = 0 \quad s' - s = 6,97 \, m \\ \text{d)} & x_2 = 120^\circ \quad a_1 = -1,209 \quad a_2 = 0 \quad s' - s = 29,4 \, m \\ \text{e)} & x_2 = 150^\circ \quad a_1 = -4,53 \quad a_2 = 0 \quad s' - s = 115 \, m \\ \text{f)} & x_2 = 170^\circ \quad a_1 = -16,83 \quad a_2 = 0 \quad s' - s = 455 \, m. \end{aligned}$$

B. Wir wollen jetzt s' - s für dieselben Entfernungen  $P_1P_2 = x_2 - x_1$  berechnen wie in A, wollen jedoch  $P_1$  so wählen, daß für jedes vorgegebene  $x_2 - x_1$  die Azimutkorrektion in  $P_1$  gerade ein Maximum wird. Es ist dann zu erwarten, daß auch s' - sfür das vorgegebene  $x_2 - x_1$  näherungsweise seinen Maximalwert erreicht. Das exakte Maximum s' - s für ein gegebenes  $x_2 - x_1$  zu finden, würde immerhin wesentlich langwieriger sein als das Aufsuchen des Maximums der Azimutkorrektion — man vergleiche zu letzterem § 9. Da wir hier nur einen Überblick über die Größenordnung der Resultate geben wollen, begnügen wir uns mit der Berechnung der genäherten Maxima von s' - s,

indem wir also die Werte von  $x_1$  (auf 5° abgerundet) so wählen, daß bei  $P_1$  ein Maximum der Azimutkorrektion eintritt. (Dabei muß allerdings auf den erst folgenden § 9 verwiesen werden.)

| a) | $x_2 - x_1 = 30^{\circ}$  | $x_1 = 80^{\circ}$ | $x_2 = 110^{\circ}$ | $a_1 = -0,06218$ | $a_2 = 1,7486$ | s' - s = 0,452 m |
|----|---------------------------|--------------------|---------------------|------------------|----------------|------------------|
| b) | $x_2 - x_1 = 60^{\circ}$  | $x_1 = 70^{\circ}$ | $x_2 = 130^{\circ}$ | $a_1 = -0.2659$  | $a_2 = 1,952$  | s' - s = 3,507 m |
| c) | $x_2 - x_1 = 90^{\circ}$  | $x_1 = 60^{\circ}$ | $x_2 = 150^{\circ}$ | $a_1 = -0,6802$  | $a_2 = 2,225$  | s' - s = 12,61 m |
| d) | $x_2 - x_1 = 120^{\circ}$ | $x_1 = 45^{\circ}$ | $x_2 = 165^{\circ}$ | $a_1 = -1,652$   | $a_2 = 2,713$  | s' - s = 37.8 m  |
| e) | $x_2 - x_1 = 150^{\circ}$ | $x_1 = 25^{\circ}$ | $x_2 = 175^{\circ}$ | $a_1 = -4,728$   | $a_2 = 2,984$  | s' - s = 120,0 m |
| f) | $x_2 - x_1 = 170^{\circ}$ | $x_1 = 10^{\circ}$ | $x_2 = 180^{\circ}$ | $a_1 = -16,82$   | $a_2 = 3.142$  | s' - s = 456 m   |

Ein Vergleich mit A. zeigt, daß wir jetzt besonders bei kleinen  $x_2 - x_1$  verhältnismäßig viel größere Werte für s' - s bekommen haben. Immerhin sind auch diese genäherten Maximalwerte von s' - s noch so klein, daß sie für Schiffahrtszwecke etc. nicht in Betracht kommen.

Nebenstehend eine graphische Darstellung des Zusammenhangs zwischen  $x_2 - x_1$  und s' - s.



Fig. 4.

III. a) Maximum der Abweichung *y* des Bildes der geodätischen Linie vom grössten Kreise.
 b) Abstand einer geodätischen Linie von ihrem Ausgangspunkt nach einem Umlauf um die Erde.

Ad a: Das Maximum<sup>1</sup>) der Abweichung y der Bildkurve vom größten Kreis ergibt sich aus  $\frac{dy}{dx} = 0$ . Also in 1. Näherung (y = y') aus Gleichung (19):

$$(x - a_2)\sin x - (1 - a_1)\cos x = 0$$

oder (30)

0) 
$$x - (1 - a_1) \operatorname{ctg} x + a_2 = 0$$
 (Glieder  $e^4$  vernachlässigt))

Z. B. wird für das erste Beispiel dieses Paragraphen ( $x_1 = 0$ ;  $x_2 = 90^{\circ}$ ;  $X_0 = 135^{\circ}$ ;  $a_1 = a_2 = 0$ ):

also:

$$x = \operatorname{ctg} x,$$

$$c = 0,8604 = 49^{\circ} 17'_{.5},$$

1) resp. die Extremwerte vgl. die Diskussion über die Formen der Bildkurve in § 11.

5\*

gibt eingesetzt in (18):

$$y_{\text{Max}} = + \frac{e^2}{4} \cdot 0,8604 \cdot \cos 49^{\circ} 17,$$
  
= 3' 13"  
= 5,96 km.

Ganz analog läßt sich die Rechnung genauer durchführen, wenn man y = y' + y''oder y = y' + y'' + y''' setzt.

Ad b: Wir wollen wieder nur in 1. Näherung (bis auf Glieder  $e^2$ ) rechnen und als Beispiel unser voriges nehmen ( $x_1 = 0$ ;  $x_2 = 90^{\circ}$ ;  $X_0 = 135^{\circ}$ ;  $a_1 = a_2 = 0$ ).

Für  $x = 2\pi$  wird nach (18):

$$y = \frac{e^2}{4} \cdot 2\pi = 36' 2'' = 66,74 \text{ km}.$$

Übrigens ist für  $x_1 = 0$   $a_2$  immer auch = 0 (vgl. 18 a). Der Abstand y der geodätischen Linie von ihrem Ausgangspunkt nach einem vollen Umlauf hängt aber in 1. Näherung von  $a_1$  gar nicht ab; wir erhalten also unabhängig von  $x_2$  immer denselben Wert y = 36' 2'', solange wir nur  $x_1 = 0$  und  $X_0 = 135^{\circ}$  belassen.

Ferner läßt sich unschwer beweisen, daß der eben berechnete Wert von 36'2" den Maximalwert darstellt, den der verlangte Abstand annehmen kann.

Dies letzte Beispiel hängt eng zusammen mit den Ausführungen über die Enveloppen der geodätischen Linien (vgl. § 12).

#### § 8.

#### Konvergenzuntersuchung.

In den folgenden Untersuchungen kann es sich nur darum handeln:

qualitativ die Größen festzustellen, die die Konvergenz hauptsächlich gefährden;
 quantitativ die Größenordnung des Variabilitätsbereichs für diese Größen zu bestimmen.

Die Konvergenz der Reihenentwicklungen für  $\varphi$  und  $\Phi$  (vgl. Gleichung 7 und 8) ist nicht zweifelhaft, da als Faktoren von  $e^{2n}$  nur Glieder von der Größenordnung 1 auftreten. Dasselbe gilt für  $\frac{\partial \lg m}{\partial x}$  und  $\frac{\partial \lg m}{\partial y}$ . Auch die Reihenentwicklungen für sin y, cos y etc. in

der Differentialgleichung (13) sind für alle Werte y erlaubt.

Die Reihententwicklungen für die Lösung y der Differentialgleichung (13) braucht jedoch nicht immer zu konvergieren. Zwei Umstände können die Konvergenz gefährden: 1. das Auftreten der Glieder mit  $x, x^2, x^3 \ldots$  als Faktoren (wenn x sehr groß); 2. das eventuelle starke Anwachsen der Integrationskonstanten  $a_1, a_2; b_1, b_2; c_1, c_2$  etc. und ihrer Potenzen, sowie der Konstanten  $k, l, \ldots$ 

Ad 1. Man sieht ohne weiteres, daß ein Glied mit  $e^{2n}$  sicher keine höhere Potenz von x als  $x^{2n-1}$  als Faktor bei sich haben kann. In der Lösung für  $y^{(n+1)}$  — wobei  $y^{(n+1)}$ die  $(n + 1)^{\text{te}}$  Korrektion bedeutet, y' als erste gezählt — können ja keine anderen Integrale auftreten als Integrale von der Form
# $\int y^{(n)}y'dx, \quad \int y^{(n-1)}y''dx, \quad \int y^{(n-1)}y'^2dx \text{ etc.}$

d. h. die Summe der Striche, mit denen die y unter dem Integral versehen sind, darf höchstens n+1 sein. Wenn die Behauptung also für die n ersten Korrektionen  $y', y'', \ldots, y^{(n)}$  gilt — und für y' und y'' gilt sie —, so werden diese Integrale in x und e von der Form

$$\int e^{2n+2} x^{2n} dx.$$

Jedenfalls treten keine höheren Potenzen von x auf. Die Korrektion  $y^{(n+1)}$  hat also, soweit sie uns hier beschäftigt, die Form

$$y^{(n+1)} \cap e^{2n+2} \frac{x^{2n+1}}{2n+1}.$$

So lange also die übrigen Faktoren von der Größenordnung 1 bleiben, ist Konvergenz zu erwarten, so lange

$$\lim_{n=\infty} \left| \frac{e^{2n+2}x^{2n+1}(2n-1)}{e^{2n}x^{2n-1}(2n+1)} \right| = |e^2x^2| < 1, \quad \text{d. h.} \quad |x| < \frac{1}{e} = \text{ca. } 12,2.$$

Für  $\dot{x} \ge 12$  (= ca. 76000 km) würde hiernach die Konvergenz zweifelhaft.

Tatsächlich ist aber dieser Konvergenzbereich zu eng. Um dies einzusehen, entwickeln wir in der Differentialgleichung (13)  $\sin y$ ,  $\cos y$  etc. nach Potenzen von y und setzen für den Moment  $\frac{\partial \lg m}{\partial x} = e^2 p$  und  $\frac{\partial \lg m}{\partial y} = e^2 q$ , um anzudeuten, daß  $\frac{\partial \lg m}{\partial x}$  und  $\frac{\partial \lg m}{\partial y}$ zwar klein sind wie  $e^2$ , aber y nicht enthalten:

$$\frac{d^2 y}{dx^2} \left(1 - \frac{y^2}{2!} + \frac{y^4}{4!} - \cdots\right)^2 + \left(y - \frac{y^3}{3!} + \frac{y^5}{5!} - \cdots\right) \left(1 - \frac{y^2}{2!} + \frac{y^4}{4!} - \cdots\right) \left(\frac{dy}{dx}\right)^2$$

$$13') \quad + \left[ \left(\frac{dy}{dx}\right)^2 + \left(1 - \frac{y^2}{2!} + \frac{y^4}{4!} - \cdots\right)^2 \right] \cdot \left[ \left(y - \frac{y^3}{3!} + \cdots\right) \left(1 - \frac{y^2}{2!} + \cdots\right) - \frac{dy}{dx} e^2 p + \left(1 - \frac{y^2}{2!} + \frac{y^4}{4!} - \cdots\right)^2 e^2 q \right] = 0.$$

Daraus ersieht man, daß in der Differentialgleichung für  $y^{(n+1)}$  niemals ein Produkt der Größen  $y^{(n)}$  oder  $\frac{dy^{(n)}}{dx}$  mit y',  $\frac{dy'}{dx}$  oder  $\frac{d^2y'}{dx^2}$  vorkommen kann. Dies könnte nämlich nur auftreten, wenn irgendwo in der Differentialgleichung ein Glied 2. Grades in y,  $\frac{dy}{dx}$ oder  $\frac{d^2y}{dx^2}$  vorkäme, das außerdem in  $e^2$  nur klein wäre von derselben Ordnung wie  $y^2$ : Ein lineares Glied in y und seinen Differentialquotienten, z. B. y selbst, gibt ja nach unserer Substitution  $y = y' + y'' + y''' + \cdots + y^{(n)} + \cdots$  niemals ein Produkt dieser Substitutionsgrößen y', y'' etc. Ein Glied von höherer Ordnung als der zweiten dagegen, z. B.  $y^3$ , gibt aber, wenn wir bei Berechnung der Korrektion  $y^{(n+1)}$  nur Glieder bis zur Größenordnung  $y^{(n+1)}$  berücksichtigen (wie wir es ja nach unserem Verfahren tun müssen):

$$y^{3} = (y' + y'' + \dots + y^{(n+1)})^{3}$$
  
=  $y'^{3} + 3y'^{2}(y'' + \dots + y^{(n-1)}) + 3y'(y'' + \dots + y^{(n-2)})^{2} + (y'' + \dots + y^{(n-3)})^{3}.$ 

Das Glied  $y^{(n)}y'$  ist also weggefallen. Ganz analog bei noch höheren Potenzen in yoder seinen Differentialquotienten. In dem Glied  $-y^2 e^2 q$ , das in der letzten Klammer von (13') auftritt, kommt das Produkt  $2y^{(n)}y'$  wegen des Faktors  $e^2$  ebenfalls erst für die folgende Korrektion  $y^{(n+2)}$  in Betracht.

Die Korrektionen y', y'', y''', ...,  $y^{(n)}$  haben also, soweit wir uns hier mit ihnen beschäftigen, folgende Form:

$$y' \sim xe^2$$
 aus der Lösung der Differentialgleichung entnommen

Daraus folgt dann:

 $\begin{array}{lll} y''' & \sim \int y'^3 dx \sim x^4 e^6, & \text{aber nicht: } y''' \sim \int y'' y' dx \\ y^{(4)} & \sim \int y'' y'^2 dx & \text{oder } & \sim \int y'^4 dx \sim x^5 e^8, & \text{aber nicht: } y^{(4)} \sim \int y''' y' dx \sim x^6 e^8 \\ y^{(5)} & \sim \int y''' y'' dx & \text{oder } & \sim x^7 e^{10} \\ & \ddots & \ddots & \ddots & \ddots \\ y^{(2n+1)} & \sim e^{4n+2} x^{3n+1} \end{array}$ 

 $y^{2n+2} \sim e^{1n+4} x^{3n+2}$ .

Also ist Konvergenz zu erwarten, solange

$$1 > \lim_{n = \infty} \left| \frac{y^{(2n+1)} + y^{(2n+2)}}{y^{(2n-1)} + y^{(2n)}} \right| = \lim_{n = \infty} \left| \frac{e^{4n+2}x^{3n+1}(1+e^{2}x)}{e^{4n-2}x^{3n-2}(1+e^{2}x)} \right| = \left| e^{4}x^{3} \right|$$

Man erhält also als Konvergenzbedingung:

 $x < 28,2 = 180\,000 \text{ km} = 4,45$  volle Umläufe um die Erde.

Ad 2. Hier wird die Gefährdung der Konvergenz betrachtet, die durch die Integrationskonstanten  $a_1, a_2; b_1, b_2; c_1, c_2; \ldots$ , ferner durch die Konstanten  $k, l, \ldots$  hervorgerufen wird. Sowohl  $a_1, a_2; b_1, b_2; c_1, c_2; \ldots$  (wir wollen im folgenden Teil dieses Abschnitts die Indizes weglassen und  $a, b, c, \ldots$  dafür schreiben!) wie auch  $k, l, \ldots$  sind ganz wesentlich von  $x_2$  und  $x_1$  abhängig, deshalb muß auch auf diese Größen  $x_2$  und  $x_1$  geachtet werden und zwar einerseits auf  $(x_2 - x_1)$  im Nenner (es kann sich der Null nähern!), andererseits auf  $x_2$  oder  $x_1$  im Zähler (es kann bei sehr großen Entfernungen  $P_1P_2$  wesentlich von 1 abweichen!).

Die Konstanten  $k, l, \ldots$  entstehen dadurch, daß in die Differentialgleichung (13) (vgl. besonders (13 b)) die Werte für die bereits berechneten  $y', \frac{dy'}{dx}$  etc. eingesetzt werden und die dadurch auftretenden Glieder mit anderen (die nur noch Funktionen von  $X_0$ , Zahlenfaktoren und  $e^n$  sind) geeignet zusammengefaßt werden (vgl. § 4). Jedenfalls kommen daher in  $k, l, \ldots$  die Integrationskonstanten a resp. b resp. c etc. höchstens in derselben Potenz vor wie y' oder  $\frac{dy'}{dx}$  resp. y'' oder  $\frac{dy''}{dx}$  resp. y''' oder  $\frac{dy'''}{dx}$  in der Differentialgleichung für die entsprechende Korrektion. Einem Glied  $y'^2$  oder  $\left(\frac{dy'}{dx}\right)^2$  oder auch  $y' \frac{dy'}{dx}$  entspricht das Auftreten eines Gliedes mit  $a^2$  usw. Ähnlich entspricht z. B. einem Glied  $y'''y'^2$  das Auftreten der Kombination  $ca^2$ .

38

31)

Die Integrationskonstante  $b_1$  erhält man aus (22) in folgender Form:

$$b_{1} = \frac{1}{\sin(x_{2} - x_{1})} \left[ \sin x_{1} \cos x_{2} \sum k J_{x_{1}} - \sin x_{2} \cos x_{1} \sum k J_{x_{2}} - \cos x_{1} \cos x_{2} \left( \sum k \bar{J}_{x_{1}} - \sum k \bar{J}_{x_{2}} \right) \right],$$

also ist im wesentlichen

$$b_1 \sim b_2 \sim \frac{1}{\sin(x_2 - x_1)} (kJ)_{x_2} \sim \frac{1}{\sin(x_2 - x_1)} (kJ)_{x_1}.$$

J ist dabei ein Integral, das nach der Integratian x höchstens in derselben Potenz enthält wie die entsprechende Korrektion  $y^{"}$ . Wegen des ganz gleichen Baues der Differentialgleichengen und Lösungen für alle beliebigen weiteren Korrektionen  $y^{"}, \ldots, y^{(n)}, \ldots$ haben auch die weiteren Integrationskonstanten  $c, d, \ldots$  einen ganz analogen Bau.

Unter Berücksichtigung der Überlegung, daß in der Differentialgleichung für  $y^{(n+1)}$ niemals ein Produkt der Größen  $y^{(n)}$  oder  $\frac{dy^{(n)}}{dx}$  mit y',  $\frac{dy'}{dx}$  oder  $\frac{d^2y'}{dx^2}$  vorkommen kann (vgl. S. 37) wird daher im wesentlichen:

$$\sim \frac{x_1 \text{ oder } x_2}{\sin(x_2 - x_1)}.$$

Wir nehmen  $|x_2| > |x_1|$  und schreiben:

a

$$a \sim \frac{x_2}{\sin(x_2 - x_1)}$$

Konstante von:

Integrationskonstante von:

Man sieht, daß besonders in den Integrationskonstanten die Potenz, in der  $x_2$  vorkommt, sehr rasch steigt. Um einigermaßen sicher mit Konvergenz unserer Entwicklungen rechnen zu dürfen, müssen wir  $x_2$  in der Größenordnung 1 annehmen. Wir wollen also immer

$$P_1 P_2 < 180^\circ$$
 annehmen.

Diese Annahme bedeutet: Wir wollen unsere geodätischen Linien  $P_1 P_2$  auch wirklich auf kürzeste Linien beschränken.

Sehen wir jetzt von  $x_2$  und  $x_1$  ab, so bleibt als konvergenzgefährdend im Nenner der Integrationskonstanten noch  $\sin^{\nu}(x_2 - x_1)$  stehen. Das Fortschreitungsgesetz der Potenz  $\nu$  ist hiebei dasselbe wie vorhin (S. 38) das Fortschreitungsgesetz der Potenz von x. Damit die Reihe der in der Lösung unserer Differentialgleichung auftretenden Glieder

$$e^2 a \sin x$$
,  $e^4 b \sin x$ ,  $e^6 c \sin x$ , . . .

konvergiert ist also nötig

$$\left| \frac{e^4}{\sin^3(x_2 - x_1)} \right| < 1 \qquad \text{oder} \qquad x_2 - x_1 < 178^{\circ}.$$

(Für  $x_2 - x_1$  nahe = 0 nehmen die Integrationskonstanten die Größenordnung 1 an, vgl. z. B. S. 21.)

Eine schärfere Konvergenzbedingung erhalten wir aber aus dem Umstand, daß die Konstanten  $k, l, \ldots$  in der Lösung der Differentialgleichung noch multipliziert mit den Integralen  $J, L, \ldots$  auftreten. In diesen Integralen kommt x in einer Potenz vor, die oben (S. 38) näher bestimmt wurde. Man erhält:

Als Konvergenzbedingung ergibt sich

$$1 > \lim_{n = \infty} \left| \frac{y^{(2n+1)} + y^{(2n+2)}}{y^{(2n-1)} + y^{(2n)}} \right| = \left| \frac{e^4 x^3}{\sin^3(x_2 - x_1)} \right|$$
$$\frac{\sin(x_2 - x_1)}{x} > 0,0354.$$

Daraus würde sich für  $x = \pi$ 

$$x_2 - x_1 < 173,5$$

ergeben.

33)

Es sei hier nochmals ausdrücklich betont, daß durch die vorhergehende Konvergenzuntersuchung keineswegs ganz exakte Grenzen für die auftretenden Größen gegeben werden sollten oder gegeben werden konnten; es wurde jedoch einige Klarheit über die Größen gewonnen, die die Konvergenz am meisten gefährden, und andrerseits wurden die Grenzen der Konvergenz doch wenigstens der Größenordnung nach festgestellt. — An einem Beispiel, das nahe an der Grenze der Konvergenz liegt, soll das besprochene Anwachsen der Integrationskonstanten etc. noch näher gezeigt werden.

Vorher sei jedoch noch ein Umstand hervorgehoben:

Während die Potenz von  $e^2$  gleichmäßig in den einzelnen Korrektionen steigt, springt die Potenz, in der  $\frac{x}{\sin(x_2-x_1)}$  vorkommt, von der 2. zur 3. Korrektion, dann von der 4. zur 5. u. s. w. Dieser Faktor  $\frac{x}{\sin(x_2-x_1)}$  gefährdet aber ganz besonders die Konvergenz. Die Annäherung an die Konvergenzgrenze wird sich also auch darin offenbaren, daß zwar die 2. Korrektion wesentlich kleiner ausfällt als die 1., daß dagegen die 3. Korrektion der 2. an Größe nicht viel nachsteht, oder sie sogar übertrifft. — Dies war ein wesentlicher Grund, der uns zur Berücksichtigung der Glieder mit  $e^6$ , die im allgemeinen unnötig ist, bewog.

Divergenz für  $x_2 - x_1$  sehr nahe = 180° war von vorneherein zu erwarten<sup>1</sup>): Denken wir uns auf dem Äquator 2 um 180° von einander abstehende Punkte  $P_1$  und  $P_2$ . Die kürzeste Linie  $P_1P_2$  läuft natürlich über den Pol. Lassen wir  $P_2$  auf dem Äquator um ein ganz kleines Stück näher an  $P_1$  hinrücken, so wird die kürzeste Linie  $P_1P_2$  immer noch in der Nähe des Pols vorbeilaufen: die von uns gemachte Annahme, daß (im Abbild auf die Kugel) der größte Kreis  $P_1P_2$  eine gute Näherung für die kürzeste Linie  $P_1P_2$ sei, ist also nicht berechtigt.

Ein Beispiel in der Nähe der Konvergenzgrenze.

Es sei:

$$x_1 = 0$$
  $x_2 = 175^{\circ}$   $\chi_0 = 135^{\circ}$ .

Man erhält:

$$a_1 = -34,9111$$
  $a_2 = 0$ 

$$\psi_1 = 3^{\circ} \, 25' \, 59,59 \qquad \psi_2 = -3^{\circ} \, 26' \, 44,21$$

Für die 2. Korrektion wird:

$$k_1 = 1.5$$
  $k_2 = -\frac{7}{6}$   $k_3 = 0$   $k_4 = 0.5$ 

für  $x = x_1 = 0$  wird:

 $J_1 = J_2 = J_3 = J_4 = \bar{J_1} = \bar{J_2} = \bar{J_3} = \bar{J_4} = 0$ für  $x = x_2 = 175^0$  wird:

$$\begin{array}{lll} J_1 = 0,0038 & J_2 = 0,0000 & J_3 = 1,4838 & J_4 = 2,1977 \\ \overline{J}_1 = 1,5706 & \overline{J}_2 = 1,1781 & \overline{J}_3 = 0,0038 & \overline{J}_4 = -0,7737 \end{array}$$

6

also

und

 $\Sigma k J_{x_1} = \Sigma k \overline{J}_{x_1} = 0$ 

$$\begin{aligned} & \Sigma k J_{x_2} = 0,0057 + 0 + 0 + 1,0988 = 1,1045 \\ & \Sigma k \overline{J}_{x_2} = 2,3559 - 1,3745 + 0 - 0,3868 = + 0,5946. \end{aligned}$$

Daher wird

| <i>b</i> <sub>1</sub> | — | -7,785 | $b_2$        | = | 0         |
|-----------------------|---|--------|--------------|---|-----------|
| $v_{1}''$             |   | 17, 88 | $\psi_2^{"}$ |   | - 15, 40. |

1) Vgl. auch Buchwaldt "Sfaeroidens Regnelinje". Kopenhagen 1911, S. 10. Abh. d. math.-phys. Kl. XXVII, 4. Abh. Für die 3. Korrektion wird

$$\begin{split} l_4 &= l_5 = l_6 = l_8 = l_{11} = l_{13} = 0 \\ l_1 &= 2816 \quad l_2 = -3946 \quad l_3 = 0,5 \quad l_7 = -248,6 \quad l_9 = +327,2 \quad l_{10} = -6,8 \\ l_{12} &= 9,04 \quad l_{14} = 0,06 \quad l_{15} = -0, \end{split}$$
 für  $x = x_1 = 0$  wird  $L_9 = 0,06 \quad L_{15} = -0,02 \quad \overline{L}_4 = -0,5 \quad \overline{L}_5 = -0,25 \quad L_6 = -0,25 \quad \overline{L}_{13} = 0,03 \end{split}$ 

s  $L_i$  alle anderen  $L_i$  und  $L_i$  sind für x = 0 selbst = 0; für  $x = x_2 = 175^0$  wird

| $\int L_1 = 0,0038$         | $L_2 = 0,000014$              | $L_3 = 0,000$               | $L_7 = 2,198$                | $L_9 = 1,645$               |
|-----------------------------|-------------------------------|-----------------------------|------------------------------|-----------------------------|
| $L_{10} = -2,427$           | $L_{12} = -0,925$             | $L_{14} = 13,27$            | $L_{15} = 10,44$             |                             |
| $J \overline{L}_1 = 1,570$  | $\overline{L}_{2} = 1,178$    | $\overline{L}_{3} = 0,982$  | $\overline{L}_{7} = -0,773$  | $\overline{L}_{9} = -0,480$ |
| $\overline{L}_{10} = 4,368$ | $\overline{L}_{12} = 3,142$ . | $\overline{L}_{14} = -6,44$ | $\overline{L}_{15} = -4,12.$ |                             |

(Die  $L_i$  und  $L_i$  mit den Indices 4, 5, 6, 8, 11, 13 sind nicht angeschrieben, da sie mit den entsprechenden  $l_i$  multipliziert, doch wegfallen)

also wird

$$\Sigma l L_{x_1} = 20,44$$
  $\Sigma l \overline{L}_{x_1} =$ 

und

 $\Sigma l L_{x_2} = +10,7 - 0,1 + 0,0 - 546,2 + 538,0 + 16,4 - 8,4 + 0,8 - 0,9 = +10,3$  $\Sigma l \overline{L}_{x_2} = +4420 - 4648 + 0,5 + 192,1 - 157,0 - 29,5 + 28,4 - 0,4 + 0,3 = -193.$ 

Daher wird

 $c_1 = 2195$   $c_2 = 0$  $\psi_1^{''} = -1'7,9$   $\psi_2^{''} = +1'7,9.$ 

Man sieht an diesem Beispiel das starke Anwachsen verschiedener Konstanten. Besonders bemerkenswert ist es, daß die 3. Azimutkorrektion größer geworden ist als die zweite. Das kommt hauptsächlich davon her, daß für  $\chi_0 = 135^{\circ} k_1$  von  $a_1$  unabhängig wird, während es sonst mit  $a_1$  sehr groß werden würde. Aus diesem Grunde wurde dasselbe Beispiel ( $x_1 = 0$ ;  $x_2 = 175^{\circ}$ ) auch für  $\chi_0 = 150^{\circ}$  resp. 120° gerechnet und erhalten:

A)  $\chi_0 = 150^{\circ}$   $a_1 = -34,9111$   $b_1 = +31,177$   $c_1 = 1527$   $\psi'_1 = 2^{\circ}58' 23,72$   $\psi'_1 = -1'2,03$   $\psi''_1 = -40,91$   $a_2 = 0$   $b_2 = 0$   $c_2 = 0$   $\psi'_2 = -2^{\circ}59'2,37$   $\psi''_2 = +1'7,56$   $\psi''_2 = +40,87$ B)  $\chi_0 = 120^{\circ}$   $a_1 = -34,9111$   $b_1 = -34,746$   $c_1 = 1430$   $\psi'_1 = 2^{\circ}58'23,72$   $\psi''_1 = 1'9,12$   $\psi''_1 = -38,5$  $a_2 = 0$   $b_2 = 0$   $c_2 = 0$   $\psi'_2 = -2^{\circ}59'2,37$   $\psi''_2 = -1'10,46$   $\psi''_2 = +38,6$ .

### § 9.

# Maximalwerte der Azimutkorrektionen und Genauigkeitsabschätzungen.

Wir wollen uns die Frage vorlegen: Unter welchen Umständen wird bei vorgegebener Entfernung  $P_1P_2 = x_2 - x_1$  die Azimutkorrektion (z. B. an der Stelle  $P_1$ ) am größten und wie groß ist dieses Maximum für verschiedene Werte von  $x_2 - x_1$ ?

Um einen Überblick zu gewinnen, ist eine Lösung dieser Frage mit mäßiger Genauigkeit völlig ausreichend, wir beschränken uns daher auf die 1. Korrektion  $\psi'$ . Es ist nach 19a):

$$\psi_1' = \frac{e^2}{4} \sin 2\chi_0 \left[ \frac{x_2 - x_1}{\sin(x_2 - x_1)} \cos x_2 - \cos x_1 \right].$$

Es handelt sich um das Maximum des absoluten Betrags von  $\psi_1$ ; dieses wird erreicht für

$$\sin 2 \chi_0 = \pm 1$$

oder

$$\chi_0 = 45^{\circ}, \ 135^{\circ}, \ \text{etc.} = (2n-1)\frac{\pi}{2}.$$

Weiter wird, wenn wir

$$-x_1 = C$$

 $x_2$  -

setzen (C ist fest vorgegeben):

$$\begin{split} \psi_{1}^{\prime} &= \frac{e^{2}}{4} \sin 2 \,\chi_{0} \left[ \frac{C}{\sin C} \cos C \cos x_{1} - C \sin x_{1} - \cos x_{1} \right] \\ &= \frac{e^{2}}{4} \sin 2 \,\chi_{0} \left[ -C \sin x_{1} + \cos x_{1} \frac{C \cos C - \sin C}{\sin C} \right] \\ \frac{\partial \psi_{1}^{\prime}}{\partial x_{1}} &= \frac{e^{2}}{4} \sin 2 \,\chi_{0} \left[ -C \cos x_{1} - \sin x_{1} \frac{C \cos C - \sin C}{\sin C} \right] \\ \frac{\partial \psi_{1}^{\prime}}{\partial x_{1}^{2}} &= -\psi_{1}^{\prime}. \end{split}$$

Aus  $\frac{\partial \psi'_1}{\partial x_1} = 0$  ergeben sich die Extremwerte von  $\psi'_1$ . Aus  $\frac{\partial^2 \psi'_1}{\partial x_1^2} = -\psi'_1$  folgt aber, daß diese Extremwerte von  $\psi'_1$  immer Maximalwerte des absoluten Betrags von  $\psi'_1$  sind.

Die Maximalwerte der Azimutkorrektion  $\psi'_1$  (absolut genommen) werden also bei vorgegebenem  $x_2-x_1=C$  erhalten aus

34)  
$$\begin{cases} \operatorname{tg} x_1 = \frac{C \sin C}{\sin C - C \cos C} \\ |\psi_1'| = \left| \frac{e^2}{4} \left( \frac{C}{\sin C} \cos x_2 - \cos x \right) \right| \end{cases}$$

Das Aufsuchen des Maximalwerts von  $\psi'_2$  (absolut genommen) würde natürlich nichts neues geben: es würde einfach  $P_1$  mit  $P_2$  vertauscht.

Die folgende Tabelle gibt für einige Werte  $x_2 - x_1$  das  $x_1$  an, welches den größten Betrag von  $\psi'_1$  hervorruft, sowie die Größe dieses Wertes  $|\psi'_1|$ :

| $x_2 - x_1 = 1^0$ | $x_1 = 89^{\circ} 40'$ | $ \psi'_1  = 6,0$                |
|-------------------|------------------------|----------------------------------|
| = 10°             | $= 86^{\circ} 40'$     | = 61,1 = 1,1,1                   |
| = 20°             | $= 83^{\circ} 19'$     | = 120,9 = 2'0,9                  |
| $= 30^{\circ}$    | $= 79^{\circ} 54'$     | = 183,0 $=$ 3'3,0                |
| = 60°             | $= 69^{\circ} 20'$     | = 385,1 $=$ 6' 25,1              |
| = 90°             | $= 57^{\circ} 31'$     | = 640,7 = 10'40,7                |
| $= 120^{\circ}$   | $= 43^{\circ} 28'$     | $= 1048^{"} = 17'28"$            |
| $= 150^{\circ}$   | $= 25^{\circ} 19'$     | = 2107" = 35' 7"                 |
| $= 170^{\circ}$   | $= 9^{\circ} 27'$      | $= 6225'' = 1^{\circ} 43' 45''.$ |

### Genauigkeitsabschätzung.

Unsere Differentialgleichungen und ihre Lösungen sind für die einzelnen Korrektionen ganz gleich gebaut: So lange wir uns nicht zu sehr den Grenzen des Konvergenzbereiches nähern, unterscheiden sie sich abgesehen von Gliedern von der Größenordnung 1 nur dadurch von einander, daß zu jeder fölgenden Korrektion  $e^2$  als Faktor hinzutritt. Es ist also im wesentlichen die zweite Korrektion  $\frac{1}{150}$  der ersten, die dritte  $\frac{1}{150^2}$  der ersten u. s. f. In den Azimutkorrektionen wird also eine Genauigkeit bis auf ca. 0,01 selbst im ungünstigsten Fall erreicht werden

die ganz nahe bis an die Grenzen des Konvergenzbereichs herangeht.

Bis zu einer Entfernung  $P_{\rm 1}P_{\rm 2}={\rm ca.}~60^{\rm o}$ gibt die 3. Näherung die Azimutkorrektionen noch bis auf ca. 0,0001 genau.

Bei der Berechnung der Länge *s* der geodätischen Linie  $P_1 P_2$  ist (vgl. 29) für  $\chi_0 = 0$  oder 180° der größte Fehler zu erwarten. Der Fehler ist außerdem (so lange wir nicht zu nahe an die Grenzen des Konvergenzbereichs herangehen) zum wesentlichen Teil proportional mit  $x_2 - x_1$  oder auch mit *s*. Für  $x_2 - x_1 = 160^\circ = \text{ca. } 2,8 = \text{ca. } 18000 \text{ km}$  ist zu erwarten

| a | ls | Fehler | der | sphärischen | Rechnung | allein:                                    | $18 \cdot 10^6 \cdot \frac{e^2}{4} m = \text{ca. } 30000 \ m$ |
|---|----|--------|-----|-------------|----------|--------------------------------------------|---------------------------------------------------------------|
| , | ,  | **     | "   | "           | "        | unter Hinzunahme  <br>der 1. Korrektion    | $3 \cdot 10^4 \cdot e^2 m = \text{ca.}  200 \ m$              |
| , | ,  | "      | "   | "           | "<br>der | unter Hinzunahme  <br>1. und 2. Korrektion | $3 \cdot 10^4 \cdot e^4 m = \text{ca.}$ 1,3 m                 |

Im Logarithmus von s würde sich dieser Fehler von 1,3 m erst in der 8. Dezimale bemerkbar machen (3 Einheiten der 8. Dezimale).

Bei Berücksichtigung auch noch der 3. Korrektion (vgl. S. 26) könnte für  $P_1P_2 = 18000$  km der Fehler in s höchstens noch ca. 1 cm betragen.

§ 10.

## Gegeben die Länge s einer geodätischen Linie, die Lage eines der Endpunkte und das Azimut in diesem Endpunkt.

Gesucht Breite und Azimut im anderen Endpunkt.

Wir rechnen bis auf Glieder  $e^4$ .

Gegeben sei: s,  $\varphi_1$ ,  $\chi_1$ . Gesucht:  $\varphi_2$ ,  $\chi_2$ ,  $\lambda_2 - \lambda_1$ .

Nach 8) berechne man zuerst aus  $\varphi_1$  das entsprechende  $\varPhi_1$  auf der Kugel.

Das Azimut  $X_1$  auf der Kugel ist:

$$X_1 = \chi_1 - \psi_1' - \psi_1$$

 $\operatorname{tg} \Phi_1$ 

daher

 $\alpha$ )

$$\begin{split} \operatorname{tg} x_{1} &= -\frac{\operatorname{tg} \varPhi_{1}}{\cos X_{1}} = -\frac{\operatorname{tg} \varPhi_{1}}{\cos \left(\chi_{1} - \psi_{1}^{'} - \psi_{1}^{''}\right)} \\ &= -\frac{\operatorname{tg} \varPhi_{1}}{\cos \chi_{1}} + \psi_{1}^{'} \frac{\sin \chi_{1}}{\cos^{2} \chi_{1}} \operatorname{tg} \varPhi_{1} - \operatorname{tg} \varPhi_{1} \bigg[ \frac{\psi_{1}^{'2}}{2} \cdot \frac{1 + \sin^{2} \chi_{1}}{\cos^{2} \chi_{1}} - \psi_{1}^{''} \frac{\sin \chi_{1}}{\cos^{2} \chi_{1}} \bigg] \end{split}$$

 $\psi'_1$  und  $\psi'_1$  sind hierin noch unbekannt. Im folgenden werden wir sehen, daß  $\psi'_1$  in Form einer Potenzreihe nach steigenden Potenzen von  $e^2$  erhalten wird (dasselbe würde für  $\psi_1^*$ eintreten, doch enthält dabei schon das 2. Glied e6 als Faktor, wird also vernachläßigt), deshalb müssen wir  $\psi_1^i$  trennen in

35)

$$\psi_{i}=\psi_{i}+\psi_{i},$$

wobei  $\overline{\psi_1}'$  die Glieder mit  $e^2$ ,  $\overline{\psi_1}'$  die mit  $e^4$  enthält. Nach Potenzen von  $e^2$  geordnet, wird dann die Gleichung a)

$$\operatorname{tg} x_{1} = \left[-\frac{\operatorname{tg} \varPhi_{1}}{\cos \chi_{1}}\right] + \left[\overline{\psi}_{1}^{\prime} \frac{\sin \chi_{1}}{\cos^{2} \chi_{1}} \operatorname{tg} \varPhi_{1}\right] + \left[\operatorname{tg} \varPhi_{1} \left((\overline{\psi}_{1}^{\prime} + \psi_{1}^{\prime}) \frac{\sin \chi_{1}}{\cos^{2} \chi_{1}} - \frac{\overline{\psi}_{1}^{\prime 2}}{2} \frac{1 + \sin^{2} \chi_{1}}{\cos^{3} \chi_{1}}\right)\right].$$

Setzen wir noch

$$x_1 = \xi_1 + \overline{\xi_1} + \overline{\overline{\xi_1}}$$

so erhalten wir nach kurzer Rechnung

$$\begin{cases} x_{1} - \varepsilon_{1} + \varepsilon_{1} + \varepsilon_{1} \\ tg \xi_{1} = -\frac{tg \Phi_{1}}{\cos \chi_{1}} \\ \overline{\xi}_{1} = \overline{\psi}_{1}^{\prime} \frac{\sin \chi_{1}}{\cos^{2} \chi_{1}} tg \Phi_{1} \cos^{2} \xi_{1} \\ \overline{\xi}_{1} = \cos^{2} \xi_{1} tg \Phi_{1} \left[ (\overline{\psi}_{1}^{\prime} + \psi_{1}^{\prime}) \frac{\sin \chi_{1}}{\cos^{2} \chi_{1}} - \frac{\overline{\psi}_{1}^{\prime 2}}{2} \frac{1 + \sin^{2} \chi_{1}}{\cos^{3} \chi_{1}} \right] - \left( \overline{\psi}_{1}^{\prime} \frac{\sin \chi_{1}}{\cos^{2} \chi_{1}} tg \Phi_{1} \right)^{2} \sin \xi_{1} \cos^{3} \xi_{1}.$$

Durch 36) ist  $x_1$  als Funktion gegebener Größen und der noch unbekannten Azimutkorrektionen ausgedrückt. Dasselbe muß für  $X_0$  geschehen. Man erhält nach ganz analoger Rechnung

37) 
$$\begin{cases} X_{0} = \chi_{0} + \overline{\chi}_{0} + \overline{\chi}_{0} \\ \sin \chi_{0} = \cos \Phi_{1} \sin \chi_{1} \\ \chi_{0} = -\frac{\overline{\psi}_{1}^{'} \cos \chi_{1} \cos \Phi_{1}}{\cos \chi_{0}} \\ \overline{\chi}_{0} = -\frac{\cos \Phi_{1}}{\cos \chi_{0}} \Big[ (\overline{\psi}_{1}^{'} + \psi_{1}^{'}) \cos \chi_{1} + \frac{\overline{\psi}_{1}^{'2}}{2} \sin \chi_{1} \Big] + (\overline{\psi}_{1}^{'} \cos \chi_{1} \cos \Phi_{1})^{2} \frac{\operatorname{tg} \chi_{0}}{2} \Big( 1 + \frac{\operatorname{tg}^{2} \chi_{0}}{2} \Big). \end{cases}$$

(Es ist hiebei allerdings nicht gelungen, eine ganz konsequente Bezeichnungsweise durchzuführen:  $\chi_0$  ist nicht der Winkel unter dem die geodätische Linie den Äquator auf dem Ellipsoid schneidet, sondern ein geometrisch nicht näher definierter Hilfswinkel).

Auch für  $x_{\rm 2}$  muß die analoge Rechnung durchgeführt werden. Es ergibt sich durch Einsetzen von

$$x_2 = x_1 + s + \xi_2 + \xi_2$$

in unsere Gleichung 29) (natürlich darf s nicht in Metern, sondern muß in Bogenmaß d. h. als  $\frac{s \text{ Meter}}{a \text{ Meter}}$  gerechnet werden !).

$$\begin{cases} x_{2} = x_{1} + s + \overline{\xi}_{2} + \overline{\xi}_{2} \\ \overline{\xi}_{2} = \frac{e^{2}}{8} \cos^{2}(\chi_{0} + \chi_{0}) \left[ 2s - \sin 2(s + \xi_{1} + \overline{\xi}_{1}) + \sin 2(\xi_{1} + \overline{\xi}_{1}) \right] \\ \overline{\xi}_{2} = \frac{e^{2} \overline{\xi}_{2}}{4} \cos^{2} \chi_{0} \left[ 1 - \cos 2(s + \xi_{1}) \right] + \frac{e^{4}}{4} \cos^{2} \chi_{0} \left[ (x - \sin x \cos x) + \frac{13}{24} \cos^{2} \chi_{0} (\sin^{3} x \cos x + \frac{3}{2} \sin x \cos x - \frac{3}{2} x) - \frac{\sin^{2} \chi_{0}}{4} \left\{ (1 + 2a_{1})(x - \sin x \cos x) + 2\sin^{2} x(a_{2} - x) \right\} \right]_{x_{1}}^{x_{2}}.$$

In der letzten Gleichung 38) ist dabei statt  $x_2$  und  $x_1$  irgend einer ihrer Näherungswerte zu verwenden.  $a_1$  und  $a_2$  wird nach 18a) berechnet — wieder unter Verwendung eines der bereis berechneten Näherungswerte für  $x_2$  und  $x_1$ .

Aus 19a) erhält man dann schließlich die noch notwendigen Gleichungen für die Azimutkorrektionen  $\psi'$  nämlich:

$$\begin{split} \psi_1' &= \overline{\psi}_1' + \overline{\psi}_1' = \frac{e^2}{4} \sin 2 X_0 \Big[ \frac{x_2 - x_1}{\sin (x_2 - x_1)} \cos x_2 - \cos x_1 \Big] \\ &= \frac{e^2}{4} \sin (2\chi_0 + 2\overline{\chi}_0) \Big[ \frac{s + \overline{\xi}_2}{\sin (s + \overline{\xi}_2)} \cos (s + \xi_1 + \overline{\xi}_1 + \overline{\xi}_2) - \cos (\xi_1 + \overline{\xi}_1) \Big]. \end{split}$$

Daraus durch Ordnen nach Potenzen von  $e^2$ :

$$39) \quad \begin{cases} \overline{\psi}_{1}^{\prime} = \frac{e^{2}}{4} \sin 2 \chi_{0} \left[ \frac{s \cdot \cos(\xi_{1} + s)}{\sin s} - \cos \xi_{1} \right] \\ \overline{\psi}_{1}^{\prime} = \frac{e^{2}}{4} \sin 2 \chi_{0} \left[ \xi_{2} \frac{\cos(\xi_{1} + s)}{\sin s} - \frac{s \xi_{1} \sin(\xi_{1} + s)}{\sin s} - \frac{s \xi_{2} \cos \xi_{1}}{\sin^{2} s} + \overline{\xi}_{1} \sin \xi_{1} \cos \xi_{1} \right] + \\ + \frac{e^{2}}{4} \chi_{0} \cos 2 \chi_{0} \left[ \frac{s \cos(\xi_{1} + s)}{\sin s} - \cos \xi_{1} \right]. \end{cases}$$

 $\psi_2'$  erhält man sofort bis auf Glieder  $e^4$  genau als

40) 
$$\psi'_{2} = \frac{e^{2}}{4} \sin 2(\chi_{0} + \overline{\chi_{0}}) \left[ \frac{s + \overline{\xi_{2}}}{\sin(s + \xi_{2})} \cos(\xi_{1} + \xi_{1}) - \cos(s + \xi_{1} + \overline{\xi_{1}} + \overline{\xi_{2}}) \right].$$

Die zweiten Azimutkorrektionen  $\psi_1^*$  und  $\psi_2^*$  werden dann genau so berechnet wie früher (vgl. § 5); nur ist überall statt  $x_2$  und  $x_1$  einer ihrer Näherungswerte einzusetzen. Damit ist die Aufgabe im wesentlichen erledigt. Die Rechnung gestaltet sich um nochmals einen Überblick zu geben — folgendermaßen:

Zuerst wird aus  $\varphi_1$  nach 8)  $\Phi_1$  berechnet. Damit sind auch die ersten Näherungswerte für  $x_1$ ,  $x_2$  und  $X_0$  bekannt, nämlich  $\xi_1$ ,  $\xi_2$  und  $\chi_0$ . Mit diesen Näherungen kann zuerst  $\overline{\psi}_1'$  (sowie  $\psi_1''$  und  $\psi_2'$ ) und dann  $\overline{\xi}_1$ ,  $\overline{\xi}_2$ ,  $\overline{\chi}_0$  berechnet werden. Hiemit wieder  $\overline{\psi}_1'$ (sowie  $\psi_2'$ ) und damit  $\overline{\xi}_1$ ,  $\overline{\xi}_2$ ,  $\overline{\chi}_0$ .

Jetzt kann durch Rechnung auf der Kugel (aus rechtwinkligen Dreiecken)  $\Phi_2, L_2-L_1$  und  $X_2$  berechnet werden und es ist

$$\lambda_2 - \lambda_1 = L_2 - L_1;$$

 $\varphi_2$  wird aus  $\Phi_2$  nach 7) berechnet;

 $\chi_2 = X_2 - \psi_2' - \psi_2''.$ 

### Beispiel.

Wir wählen das 2. Beispiel des § 7 (S. 31 ff.), indem wir die dort erhaltenen Resultate für Länge s der geodätischen Linie und Azimut  $\chi_1$  und  $\chi_2$  wieder zurückrechnen. Gleichzeitig sei für den Hauptteil der Rechnung ein Rechenschema gegeben.

Gegeben:

 $\varphi_1 = -33^{\circ} \, 26'$   $\chi_1 = 137^{\circ} \, 52' \, 22,00$   $s = 2,21258388 = 126^{\circ} \, 46' \, 18,19.$ 

Wie auf S. 31 findet man

$$\varPhi_1 = -33^0 \, 15' \, 25", 935^1).$$

<sup>1</sup>) Dies wurde mit 6 stelliger Logarithmentafel gefunden — daher der Unterschied gegenüber S. 31.

| Damit sind die Glieder mit e <sup>2</sup> erledigt. von jetzt ab mechenschieder. | $\begin{array}{c c} 2s = 4,425\ 1678 \\ +\sin 2(\xi_1+\xi_1) = -0,992\ 569.5 \\ \sin 2(s+\xi_1+\xi_1) = -0,164\ 487.1 \\ C = 3,268\ 111 \\ C = 3,268\ 111 \\ C = 3,268\ 111 \\ c = -0,164\ 487.1 \\ c = -0,164\ 487.1 \\ c = -0,164\ 487.1 \\ c = -0,001\ 86718 \\ \hline \\ $ | $\begin{aligned} \xi_1 + \overline{\xi_1} &= -41^{\circ} \ 30' \ 19''_620 & 2(\xi_1 + \overline{\xi_1}) = -83^{\circ} \ 0' \ 39''_24 \\ s &= 126^{\circ} \ 46' \ 18''_2 & 2(s + \xi_1 + \overline{\xi_1}) = 170^{\circ} \ 31' \ 57''_2 \\ s + \overline{\xi_1} + \overline{\xi_1} &= 85^{\circ} \ 15' \ 58''_16 & \chi_0 + \chi_0 = 145^{\circ} \ 50' \ 45''_1706 \end{aligned}$ | $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                      | $\begin{array}{rcl} \text{MIT} & \text{oder } \circ \text{sterninger tater ergins sign:} \\ & & & & & & \\ & & & & & \\ & & & & & $ |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                  | $\log E = 0,29\ 941.1$ $\log \frac{e^3}{4} = 7,22\ 235.0$ $12(\chi_0 + \chi_0) = 9,96\ 810.2_n$ $\log \psi'_2 = 7,48\ 986.3_n$ $\psi'_2 = -0,003\ 08932$ $= -10'\ 37,'219.$                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  | $= 6,90\ 807.0$ $= 9,87\ 020.3_{m}$ $= 9,92\ 231.9$ $= -9,91\ 796.7_{m}$ $= 6,78\ 262.5$ $= -0,000\ 60621$ $= -2'\ 5,'040$ |                                                                                                                                     |

<sup>1</sup>) Es wurde mit der 8 stelligen Tafel von Bauschinger-Peters (Leipzig 1911) gerechnet.

$$\psi_1 = +0,000\,005\,662 = 1,168$$

also

$$\psi_1 = 2'46,914 + 1,168 = 2'48,082$$
 statt  $2'48,08$   
 $\psi_2' = -10'37,219$  ,  $-10'37,23$  wie auf S. 32.

Um  $\psi_1^{"}$  und  $\psi_2^{"}$  zu erhalten, hat man mit

 $x_1 = \xi_1 + \xi_1 = -41^{\circ} 30' 20''$   $x_2 = s + \xi_1 + \xi_1 + \xi_2 = 85^{\circ} 22' 24''$   $X_0 = \chi_0 + \chi_0 = 145^{\circ} 50' 46''$ zuerst  $a_1$  und  $a_2$  nach 18a) zu rechnen und dann in das Rechenschema auf S. 33 einzugehen. Jede einzelne Zahl bleibt genau wie dort, so daß man erhält

$$\psi_1^{"} = 0,891 \qquad \psi_2^{"} = -1,597.$$

Also gesamte Azimutkorrektion  $\psi_1$  resp.  $\psi_2$ :

$$\begin{array}{cccc} \psi_1 = & 2'\,48,\!\!^{\circ}973 \\ \psi_2 = & -10'\,38,\!\!^{\circ}816 \end{array} & \begin{array}{cccc} 2'\,48,\!\!^{\circ}97 \\ & -10'\,38,\!\!^{\circ}83 \end{array} \end{array} \text{ wie auf S. 29} \\ \end{array}$$

Weiter ergibt sich

aus 38)  $\overline{\xi_2} = 11,830 \cdot 10^{-6} = 2,442$ aus 36)  $\overline{\xi_1} = -4,79 \cdot 10^{-6} = -0,989$  (Die Berechnung von  $\overline{\xi_1}$  und  $\overline{\chi_0}$  wäre nicht aus 37)  $\overline{\chi_0} = -7,37 \cdot 10^{-6} = -1,521$  aus rechtwinkl. sph. Dreiecken zu berechnen)

so daß wir schließlich erhalten:

$$x_{1} = \xi_{1} + \overline{\xi_{1}} + \overline{\xi_{1}} = -41^{\circ} 30' 20,'611 \\ x_{2} = s + \xi_{1} + \overline{\xi_{1}} + \overline{\xi_{2}} + \overline{\xi_{1}} + \overline{\xi_{2}} = 85^{\circ} 22' 25,'16 \\ X_{0} = \chi_{0} + \overline{\chi_{0}} + \overline{\chi_{0}} = 145^{\circ} 50' 44,''182$$
 statt  $85^{\circ} 22' 25,''16 \\ 145^{\circ} 50' 44,''20$  wie auf S. 31

Mittels zweier rechtwinkliger sphärischer Dreiecke findet man dann

also schließlich:



f.



$$\begin{array}{c} \lambda_{2} - \lambda_{1} = l_{2} - l_{1} = 108^{\circ} \, 12' \, 59,994 \\ \chi_{2} = X_{2} + \psi_{2} = 96^{\circ} \, 36' \, 8,818 \\ \varphi_{2} = 34^{\circ} \, 14' \, 59,98 \end{array} \right\} \text{ statt } \begin{array}{c} 108^{\circ} \, 12' \, 60,00 \\ 96^{\circ} \, 36' \, 8,80 \\ 34^{\circ} \, 14' \, 60,00 \end{array}$$

Abh. d. math.-phys. Kl. XXVII, 4. Abh.

## § 11.

### Formen der Bildkurve.<sup>1</sup>)

Im wesentlichen ist die Form der Bildkurve bestimmt durch die 1. Näherung:

A) 
$$y = \frac{e^2}{4} \sin 2 X_0 (a_1 \sin x + a_2 \cos x - x \cos x)$$

denn so lange unsere Reihenentwicklungen gelten (vgl. § 8), geben die folgenden Korrekturen nur Verbesserungen von ca.  $\frac{1}{150}$  des Betrags von dem y der 1. Näherung.

Für  $\sin 2 X_0 = 0$  also für

$$X_0 = \pm \frac{n\pi}{2} (n = 0, 1, 2 \dots)$$

d. h. für Äquator und Meridiane (vgl. S. 8) wird y immer gleich Null d. h. Bildkurve und größter Kreis fallen zusammen. Dieser Ausnahmefall sei im folgenden ausgeschlossen.

Wir wollen jetzt die Schnittpunkte der Bildkurve mit dem größten Kreis betrachten. Durch Differenzieren ergibt sich aus A)

B) 
$$\frac{dy}{dx} = \frac{e^2}{4} \sin 2X_0 \left[ (a_1 - 1) \cos x - a_2 \sin x + x \sin x \right]$$
C) 
$$\frac{d^2y}{dx^2} = \frac{e^2}{4} \sin 2X_0 \left[ (a_1 - 1) \cos x - a_2 \sin x + x \sin x \right]$$

C)  $\frac{a^{2}y}{dx^{2}} = \frac{e^{2}}{4}\sin 2X_{0}\left[-(a_{1}\sin x + a_{2}\cos x - x\cos x) + 2\sin x\right].$ 

Für den Schnittpunkt der Bildkurve mit dem größten Kreis (also für y = 0) wird daher

$$\frac{d^2y}{dx^2} \neq 0$$

so lange  $\sin x \neq 0$  d. h.

"Dann und nur dann ist der Schnittpunkt der Bildkurve mit dem größten Kreis ein Wendepunkt, wenn er auf den Äquator fällt."<sup>2</sup>)

Die Abszissen der Schnittpunkte ergeben sich (da sin  $2X_0 \neq 0$  vorausgesetzt ist) aus der Gleichung

D)  $a_1 \sin x + a_2 \cos x - x \cos x = 0$ 

oder

$$x - a_2 = a_1 \operatorname{tg} x_2$$

also ganz unabhängig von  $X_0$ . Bei dem Übergang von D) zur Gleichung 41) wurde jedoch durch  $\cos x$  dividiert. Das ist nicht gestattet, wenn  $\cos x = 0$  eine Lösung der Gleichung D) ist.

<sup>1</sup>) Vgl. eine entsprechende Diskussion bei Krüger "Konforme Abbildungen des Erdellipsoids in der Ebene". Veröffentlichungen der K. Preuß. geod. Inst. Potsdam 1912, S. 126 ff.

2) Vgl. Krüger l. c. S. 128.

Für  $\cos x = 0$  also für

$$x = \pm (2n-1)\frac{\pi}{2}$$

folgt aber aus D)

$$a_1 = 0$$

 $a_1$ kann aber nach 18 a) nur Null werden, wenn entweder  $\cos x_1=0$ oder  $\cos x_2=0.$ Wir wollen denjenigen Punkt als  $P_2$  bezeichnen, dessen  $\cos x_2=0$  wird, und haben also für diesen Fall

$$x_2 = \pm (2n-1)\frac{\pi}{2}$$
  $a_1 = 0$   $a_2 = +x_1$ .

Daher folgt aus D)

$$(x_1 - x)\cos x = 0$$

also

-

$$x = x_1$$
 und  $x = \pm (2n-1)\frac{\pi}{2} = x_2 \pm n\pi$  d. h.:

"Wenn bei beliebiger Lage von  $P_1$  der Punkt  $P_2$  längs des größten Kreises  $P_1 P_2$ um  $\pm 90^\circ$  vom Äquator absteht, so stehen alle weiteren Schnittpunkte der Bildkurve mit dem größten Kreis um  $x = \pm (2n-1)\frac{\pi}{2}$  vom Äquator ab." (Dabei ist nur wegen 32)  $P_1 P_2 < 2R$  zu wählen.)

Damit darf der Fall  $\cos x = 0$  und zugleich der Fall  $a_1 = 0$  als erledigt gelten. Wir dürfen also im folgenden mit Gleichung 41) rechnen und  $a_1 \neq 0$  annehmen.

Wir setzen

a) 
$$y = x - a_2 = f_1(x)$$
  
 $\beta$ )  $y = a_1 \operatorname{tg} x = f_2(x)$ 

und erhalten die Lösung von 41) als Abszissen der Schnittpunkte der Kurven  $\alpha$ ) und  $\beta$ ).

Gleichung a) stellt ein System von Geraden dar, die unter 45° gegen die X-Achse geneigt sind.

Gleichung  $\beta$ ) bildet ein System von homogen deformierten Tangens-Kurven (vgl. Fig. 6).

Es ist geometrisch sofort einleuchtend, daß jede beliebige Gerade des Systems a) irgend eine der homogen deformierten Tangens-Kurven innerhalb eines Quadranten höchstens zweimal schneiden kann. Falls  $P_1$  und  $P_2$ , zwischen denen die geodätische Linie ver-



läuft, in diesem Quadranten liegen, so müssen die erwähnten zwei Schnittpunkte aber gerade den Punkten  $P_1$  und  $P_2$  entsprechen. Wir haben also den

Satz: "Wenn  $P_1$  und  $P_2$  in demselben Quadranten liegen, so kann die Bildkurve den größten Kreis  $P_1P_2$  innerhalb  $P_1$  und  $P_2$  nicht schneiden. Auch ein Tangieren in  $P_1$  oder  $P_2$  ist ausgeschlossen (so lange  $P_1 \neq P_2$ )."

Für eine weitere Diskussion über die Gestalt der Bildkurve ziehen wir hauptsächlich noch das Vorkommen von Wendepunkten in Betracht. Die Abszissen der Wendepunkte erhalten wir nach C) aus der Gleichung:

E) 
$$2\sin x - (a_1\sin x + a_2\cos x - x\cos x) = 0$$

oder

2) 
$$x - a_2 = (a_1 - 2) \operatorname{tg} x.$$

Analog wie vorher setzen wir wieder:

$$\begin{array}{l} \gamma) \\ \delta) \end{array} \qquad \qquad y = x - a_2 \qquad = \varphi_1(x) \\ y = (a_1 - 2) \operatorname{tg} x = \varphi_2(x) \end{array}$$

und erhalten die Lösung von 42) als Abszissen der Schnittpunkte der Kurven  $\gamma$ ) und  $\delta$ ). Das Kurvensystem  $\gamma$ ) ist identisch mit dem System  $\alpha$ ) (System von 45° Linien); das System  $\delta$ ) stellt gerade so wie  $\beta$ ) homogen deformierte Tangens-Linien dar, doch sind die Koeffizienten der Deformation in  $\beta$ ) und  $\delta$ ) verschieden.

Wir setzen für das Folgende fest:

$$P_1$$
 resp.  $x_1$  liege im 1. Quadranten.  $P_1 \neq P_2$ 

Typus 1.

Dann können folgende Fälle eintreten:



Bildkurve

Fig. 7.

I)  $x_2$  liegt auch im 1. Quadranten:

Die Bildkurve schneidet den größten Kreis innerhalb P, P, nicht (nach obigem Satz). Ferner muß - damit überhaupt zwei Schnittpunkte  $P_1$  und  $P_2$  zwischen a) und  $\beta$ ) im 1. Quadranten entstehen können — für a, gelten:

$$0 < a_1 < 1$$

Also ist  $a_1 - 2 < 0$  d. h. die Kurve  $\delta$ ) läuft durch den 2. und 4. Quadranten, kann also von der Geraden a) nicht innerhalb  $x_1$  und  $x_2$  getroffen werden. Folglich hat die Bildkurve innerhalb  $P_1 P_2$  keinen Wendepunkt.

Die Bildkurve hat somit nebenstehenden einfachsten Typus. II)  $x_2$  liegt im -1. Quadranten:

Auch hier muß sein:

$$0 < a_1 < 1$$
 und  $a_1 - 2 < 0$ .

Also gilt wieder im wesentlichen Fig. 7 für die Kurven a)  $\gamma$   $\beta$   $\delta$ ). Zwischen  $P_1$  und  $P_2$ tritt ein Wendepunkt auf. Für  $x_1 = 0$  oder  $x_2 = 0$  fällt er nach  $P_1$  oder  $P_2$  selbst. Weiter sieht man aus der Figur: Das Auftreten eines und nur eines Schnittpunktes P3 (von Bildkurve und größtem Kreis) zwischen  $P_1$  und  $P_2$  ist möglich aber nicht notwendig.



Wir haben somit folgende Typen 2 und 3 für die Bildkurve:

Bei Typus 3 ist P<sub>8</sub> nur dann selbst ein Wendepunkt, wenn P1 und P2 symmetrisch bezüglich des Nullpunkts sind. Allgemein liegt der Wendepunkt innerhalb  $P_1 P_3$ , wenn

$$|x_3 - x_1| > |x_3 - x_2|$$

wie man sich aus Fig. 7 überzeugt.

 $P_{\scriptscriptstyle 3}$ kann auch nach  $P_{\scriptscriptstyle 1}$ oder  $P_{\scriptscriptstyle 2}$ fallen, so daß die Bildkurve in  $P_1$  oder  $P_2$  tangiert (also die Azimutkorrektion dort zu Null wird). Die geometrische Bedingung dafür, daß  $P_3$  nach  $P_1$  fällt ist: die betreffende 45° Linie  $\alpha$ ) muß die deformierte Tangens-Kurve  $\beta$ ) in  $P_1$  berühren. Oder analytisch:

$$\left(\frac{df_2(x)}{dx}\right)_{x_1} = \frac{a_1}{\cos^2 x_1} = 1$$

und analog für  $x_2$ .

Aus 18a) erhält man dann:

43)

 $\frac{x_2 - x_1}{\sin(x_2 - x_1)} \frac{\cos x_2}{\cos x_1} = 1$  $\frac{x_2 - x_1}{\sin(x_2 - x_1)} \frac{\cos x_1}{\cos x_2} = 1$ Bedingung, daß die Bildkurve in  $P_1$  tangiert. "  $P_2$ 

Aus 43) ergibt sich nebenstehende Figur und es ist

> längs  $OAC \quad \psi_1 = 0$ ,  $OBC \quad \psi_2 = 0$

(wobei  $\psi_1$  und  $\psi_2$  die Azimutkorrektionen bei  $P_1$  und  $P_2$ bedeuten).

Für alle Punkte  $x_1, x_2$ innerhalb OACB schneidet die Bildkurve den größten Kreis innerhalb  $P_1 P_2$ , für alle Punkte außerhalb dagegen nicht.

Die letzte Behauptung kann folgendermaßen als richtig erkannt werden:

Liegt  $P_1$  und  $P_2$  symmetrisch zum Nullpunkt ( $x_1 = -x_2$ ), so fällt der Schnittpunkt  $P_{s}$  auf den Aquator (vgl. Fig. 10) also

-X2





Fig. 9.



Fig. 10.





innerhalb  $P_1 P_2$ . Er bleibt auch immer innerhalb  $P_1 P_2$ , bis er eine der Kurven  $\psi_1 = 0$  oder  $\psi_2 = 0$  überschreitet (bei Veränderung der Lage von  $P_1$  resp.  $P_2$ ).

III)  $x_2$  liegt im 2. Quadranten.

Es muß (vgl. Fig. 11)  $a_1 < 0$  sein. Daher auch  $a_1 - 2 < 0$  und zwar ist  $|a_1 - 2| > |a_1|$  also sind die Ordinaten der Wendepunktskurve  $\delta$ ) absolut genommen größer als die entsprechenden Ordinaten der Kurve  $\beta$ ). Also:

Kein Schnittpunkt  $P_3$  innerhalb  $P_1 P_2$ , auch kein Tan gieren der Bildkurve in  $P_1$  oder  $P_2$ ; kein Wendepunkt innerhalb  $P_1 P_2$ . Typus 1.

IV)  $x_2$  im 3. Quadranten; jedoch  $x_2 - x_1 < 2R$ (vgl. Konvergenzbedingung 32).

Wegen  $x_2 - x_1 < 2R$  muß (vgl. Fig. 12)  $a_1 < 0$ sein. Wir erhalten dieselben Resultate wie in III), jedoch einen Wendepunkt zwischen  $P_1$  und  $P_2$ . Typus 2.

V)  $x_2$  im -2. Quadranten; jedoch  $|x_2-x_1| \le 2R$ . Wieder wegen  $|x_2-x_1| \le 2R$  (vgl. Fig. 12)  $a_1 \le 0$ . Zwischen  $P_1$  und  $P_2$  tritt (und zwar im 1. Quadranten) ein Wendepunkt auf; genau wie IV. Typus 2.

Damit sind alle Fälle erschöpft, bei denen unsere Konvergenzbedingung 32) erfüllt ist, bei denen wir es also wirklich mit kürzesten Linien zu tun haben. Das wichtigste unserer Resultate wollen wir nochmals zusammenfassen:

"Ein Tangieren von Bildkurve und größtem Kreis in einem der Punkte  $P_1$  und  $P_2$  oder ein Schnittpunkt  $P_3$  innerhalb  $P_1P_2$  sind nur möglich, wenn  $x_1$  und  $x_2$  resp. in zwei durch den Äquator getrennten Quadranten liegen."

Die Untersuchung der Formen der Bildkurve aus unserer Gleichung 41) unter Zulassung von Werten  $|x_2 - x_1| > 2R$  hat, so lange die Konvergenz der Reihenentwicklungen für diesen Fall zum mindesten sehr fraglich ist, keinen großen praktischen Wert. Man würde dann noch all die Formen erhalten, die Herr Professor Krüger in seiner zitierten Untersuchung über die konforme Abbildung des Erdellipsoids auf die Ebene erhielt.<sup>1</sup>) Z. B. ergeben sich für  $x_1$  im 1.  $x_2$  im -3. Quadranten unter andern folgende Typen:

### Fig. 13.

1) Die Konvergenz der Entwicklungen ist aber hiebei nicht geprüft worden.

Eine Bemerkung sei noch angeschlossen: Wenn  $|x_2 - x_1|$  um so viel < 2R ist, daß  $\frac{1}{\sin(x_2 - x_1)}$  von der Größenordnung 1 wird, dann beherrschen wir nach § 8 den Verlauf unserer Bildkurve bis auf mehrere volle Umläufe. Wir sehen dann aus Fig. 1, daß die Abstände der aufeinanderfolgenden Schnittpunkte mit dem größten Kreis sich  $\pi$ nähern (im allgemeinen sehr rasch!).

#### § 12.

### Enveloppe der geodätischen Linien.

v. Braunmühl<sup>1</sup>), Rohn<sup>2</sup>) u. a. haben die Enveloppe geodätischer Linien auf Rotationsflächen mittels elliptischer Funktionen behandelt. Eine Anwendung auf das Erdellipsoid haben ihre Untersuchungen wohl nie gefunden, was mit den schwer zu überblickenden Resultaten zusammenhängen mag sowie mit den umständlichen Rechnungen, die für jeden Einzelfall notwendig sind. So ist selbst über die Größenordnung der auf dem Erdellipsoid auftretenden Enveloppen meines Erachtens noch nichts bekannt.

Unsere Aufgabe soll es im folgenden sein, mittels unserer bisherigen Resultate bequeme und doch bis auf ca. 3" genaue Näherungsformeln für die Enveloppen geodätischer Linien auf dem Erdellipsoid aufzustellen. Zugleich haben wir Gelegenheit, durch Vergleich mit einem Braunmühlschen Resultat zwei Stichproben auf die Richtigkeit der Glieder unserer 3. Korrektion anzustellen.

Die Enveloppen auf dem abgeplatteten Rotationsellipsoid haben eine Gestalt, die stark an eine Astroide erinnert. Für einen Punkt P mit der Breite  $\varphi$  liegen 2 Spitzen auf dem Parallelkreis —  $\varphi$  (der Bequemlichkeit halber wollen wir sie im folgenden "Spitzen auf dem Parallelkreis" nennen), die zwei andern Spitzen liegen auf dem (über Nord- und Südpol fortgesetzten) Meridian durch P ("Spitzen auf dem Meridian"). [Näheres vgl. bei v. Braunmühl<sup>1</sup>).]

Für einen Punkt auf dem Äquator arten bei der Bestimmung der Spitzen auf dem Parallelkreis (hier Äquator) die elliptischen Funktionen<sup>2</sup>) aus und es ergibt sich nach kurzer Rechnung das einfache Resultat:

Abstand d der näher gelegenen Spitze vom Punkte P

 $d = \frac{b}{a}\pi$  (b = kleine, a = große Achse des Ellipsoids; Zahlenangaben und Zitat S. 30)

 $= 3,131\ 091\ 02214$ 

 $= \pi - 36' 6''_{.11697.}$ 

Der Abstand der zwei auf dem Äquator gelegenen Spitzen von einander ist daher

#### 1º 12' 12"23394.

1) v. Braunmühl "Über Enveloppen geodätischer Linien". Math. Ann. 14, S. 557 ff.

"Die Enveloppen geodätischer Linien auf das verl. und abgepl. Rotationsellipsoid". Abh. zu den math. Modellen angefertigt im math. Institut der K. Technischen Hochschule in München. Abh. XVIII.

<sup>2</sup>) Rohn "Die geodätischen Linien auf dem Rotationsellipsoid". Abh. zu d. math. Mod. etc. Abh. IV.

Jetzt soll 1. der Abstand d mit möglichster Schärfe aus unseren Näherungsformeln hergeleitet werden (zur Kontrolle der Formeln) und dann sollen 2. Näherungsformeln für die Enveloppe eines Punktes mit beliebiger Breite  $\varphi$  berechnet werden.

I. Eine Spitze auf dem Äquator wird ausgeschnitten durch eine dem Äquator unendlich benachbarte geodätische Linie. Wir denken alles auf die Kugel übertragen und

$$P_{r} \xrightarrow{P_{2}} P_{2}$$

$$R \xrightarrow{P_{2}} P$$

$$A \xrightarrow{R} A \xrightarrow{R} \xrightarrow{R} A \xrightarrow{R}$$

charakterisieren auf der Kugel das Abbild der geodätischen Linie durch 2 ihrer Punkte  $P_1$  und  $P_2$ :  $P_1$  auf dem Äquator,  $P_2$  um  $\frac{\pi}{2}$  von  $P_1$  und um  $\delta$  vom Äquator entfernt.  $\delta$  ist in der Grenze gleich Null zu setzen. Wegen der Konstanz der Längen bei der Abbildung wird  $P_1P = P_1S = d$ .

Nach unserer gewohnten Bezeichnungsweise haben wir:

$$x_1 = 0; \quad x_2 = \frac{\pi}{2}; \quad X_0 = \frac{\pi}{2} + \delta; \quad P_1 P = x; \quad y = f(x) \text{ Gl. d. Bildkurve (§ 5); } PS = \delta \sin x.$$

S ist definiert durch

$$-y = \delta \sin x.$$

Für die 1. Näherung (y = y') findet sich nach 18a)

$$a_1 = a_2 = 0$$
  $y' = -\frac{e^2}{4} \sin(180^\circ + 2\delta) x \cos x$   
 $= +\frac{e^2}{2} \delta x \cos x$ 

(wobei höhere Potenzen von  $\delta$  vernachläßigt wurden). Es folgt also nach 44)

x

b.

und daraus

44)

$$= \pi - 35' 55,4$$
 (Fehler: 10,7).

Für die 2. Korrektion wird

$$k = -\frac{e^4}{2} \cdot \delta$$
  $k_1 = 2$   $k_2 = 0$   $k_3 = 0$   $k_4 = 1$ ,

ferner nach kurzer Rechnung (vgl. § 7):

$$= -1,36\ 685$$
  $b_2 = 0$ 

daher

$$y'' = -\frac{e^4}{2} \delta \left[-0,61\ 685\sin x + \frac{x^2}{4}\sin x - \frac{3}{4}x\cos x\right]$$

und deshalb in 2. Näherung (y = y' + y''):

(45 b) 
$$\operatorname{tg} x + \frac{e^2}{2}x + \frac{e^4}{8} \left[ 3x + \operatorname{tg} x \left( 2,46\ 740 - x^2 \right) \right] = 0$$

und daraus

 $x = \pi - 36' 6,066$  (Fehler: 0,051).

### 3. Korrektion: Es wird nach 26 a)

 $l_1 = 1,30\ 842 \qquad l_7 = 0,875 \qquad l_{10} = 0,125$  alle anderen l sind Null. Weiter gibt 26b) für

$$\begin{aligned} x &= x_1 = 0: \quad L_1 = L_7 = L_{10} = \overline{L}_1 = \overline{L}_7 = \overline{L}_{10} = 0 \\ x &= x_2 = \frac{\pi}{2}: \quad \begin{cases} L_1 = 0.5 & L_7 = 0.36\ 685 & L_{10} = 0.36\ 685 & L_{10} = 0.36\ 685 & L_{10} = 1.03\ 866 & L_{10}$$

also

 $(\Sigma l L)_{x_1} = (\Sigma l \overline{L})_{x_1} = 0$  und  $(\Sigma l L)_{x_2} = 0,92\,934$  (Berechnung von  $(\Sigma l \overline{L})_{x_2}$  unnötig), daher aus 25)

$$c_1 = -0.92934$$
  $c_2 = 0.$ 

Weiter folgt aus 26 a) und 26 b) nach einiger Rechnung:  $\sin x \Sigma lL = 0.46\ 671 \sin x + 0.1875 x^2 \sin x - 0.46\ 671 x \cos x + 0.02\ 0.83 x^3 \cos x$ aus 25)

$$y''' = e^{6} \delta \left[ 0,46\ 671\ x\cos x - 0,02\ 083\ x^{3}\cos x - \sin x \left( 0,46\ 263 - 0,1875\ x^{3} \right) \right]$$

also in 3. Näherung (y = y' + y'' + y'''):

c) 
$$\begin{cases} \operatorname{tg} x + \frac{e^3}{2}x + \frac{e^4}{8} \left[ 3x + \operatorname{tg} x \left( 2,46\,740 - x^2 \right) \right] + \\ + \,e^6 \left[ 0,46\,671\,x - 0,02\,083\,x^3 - \operatorname{tg} x \left( 0,46\,263 - 0,1875\,x^2 \right) \right] \end{cases}$$

und daraus

45

$$x = \pi - 36^{\circ} 6,1172$$
 (Fehler: 0,0002).

Der Fehler von 0,0002 entspricht der zu erwartenden Ungenauigkeit der 3. Näherung. Die Probe auf die Richtigkeit unserer Formeln stimmt also.

### II. Gesucht die Enveloppe eines Punktes $P_0$ mit der Breite $\Phi_0$ .

Die Enveloppe ist der Ort der Schnittpunkte unendlich benachbarter geodätischer Linien, die durch einen Punkt  $P_0$  gehen.

Wir könnten das unter I) angewandte Verfahren für einen Punkt  $P_0$  mit der Breite  $\Phi_0$ , sowie für ein beliebiges Azimut  $X_0$  der geodätischen Linie verallgemeinern. Dementsprechend würden wir dann zwei unendlich benachbarte geodätische Linien durch  $P_0$  durch zwei ihrer Punkte  $P_0$  und  $P_1$  resp.  $P_0$  und  $P_2$  charakterisieren, wobei  $P_0 P_1$  (resp.  $P_0 P_2) = 90^\circ$ , sowie das Azimut des größten Kreises  $P_0 P_1$  (resp.  $P_0 P_2$ ) im Äquator =  $X_0$  (resp.  $X_0 + \delta$ ) zu wählen wäre. Man gelangt jedoch auf diese Weise zu einem recht komplizierten Formelsystem für den Schnittpunkt der beiden unendlich benachbarten geodätischen Linien (transzendente Gleichungen; Genauigkeit der Resultate dieselbe wie in I), so daß es besser erscheint, auf Kosten der Genauigkeit dadurch bequemere Formeln zu erreichen, daß man die zwei unendlich benachbarten geodätischen Linien durch  $P_0$  folgendermaßen festlegt:

Abh. d. math.-phys. Kl. XXVII, 4. Abh.

= 0



Die erste geodätische Linie G sei charakterisiert durch  $P_0$  und P'" zweite " "  $G^*$  " " " "  $P_0$  " P', wobei  $P'' P_0 = P_0 P' = \delta$  ist ( $\delta$  in der Grenze = 0); die größten Kreise  $P'' P_0$  und  $P_0 P'$  fallen zusammen (cf. Fig.)<sup>1</sup>), sie schneiden den Äquator unter dem  $\ll X_0 - 90^\circ$ .

Fig. 15.

$$\sin x = -\frac{\sin \varphi_0}{\cos X_0}$$

Nach unserer früheren Bezeichnungsweise (vgl. § 5) gilt:

für 
$$G$$
 :  $x_1 = x_0$   $x_2 = x_0 + \delta$   
,  $G^*$ :  $x_1 = x_0 - \delta$   $x_2 = x_0$ 

Die Konstanten, die sich auf  $G^*$  beziehen, wollen wir konsequenterweise mit  $a_1^*, a_2^*, k^*$  etc. bezeichnen. Analog  $y^*, J^*, J^*, L^*, \overline{L^*}$ . Wir bekommen:

$$\begin{aligned} a_{1} &= \cos x_{0} \left( \cos x_{0} - \delta \sin x_{0} \right) & a_{2} &= x_{0} - \sin x_{0} \cos x_{0} + \delta \sin^{2} x_{0} \\ a_{1}^{*} &= a_{1} + 2 \, \delta \sin x_{0} \cos x_{0} & a_{2}^{*} &= a_{2} - 2 \, \delta \sin^{2} x_{0}. \end{aligned}$$

Für den Schnittpunkt der geodätischen Linien muß  $y^* - y = 0$  sein, also erhalten wir in 1. Näherung:  $y^{*'} - y' = 0$ 

$$(a_{1}^{*}-a_{1})\sin x + (a_{2}^{*}-a_{2})\cos x = 0$$
  

$$2\delta \sin x_{0}\cos x_{0}\sin x - 2\delta \sin^{2} x_{0}\cos x = 0$$
  

$$\sin x_{0}\sin(x-x_{0}) = 0$$

d. h.

$$x = x_0 + 180^\circ$$

(da  $x_0 = 0$  nur wieder den Punkt  $P_0$  gibt).

2. Näherung:  $y^{*'} - y' + y^{*''} - y'' = 0$ .

Zu bestimmen ist hierin noch

A) 
$$y^{**} - y^{*} = \frac{e^{*}}{4} \sin 2X_0 [(b_1^* - b_1) \sin x - (b_2^* - b_2) \cos x + \sin x (\Sigma k^* J^* - \Sigma k J) - \cos x (\Sigma k^* J^* - \Sigma k \overline{J})]$$

also handelt es sich zuerst um die Berechnung von  $b_i^* - b_i$  und  $b_i^* - b_i$  (sie werden klein von der Ordnung  $\delta$  werden).  $y^*$  muß Null werden für  $x = x_0$  und  $x = x_0 + \delta$ . Also gilt:

a)  $0 = b_1 \sin x_0 - b_2 \cos x_0 + \sin x_0 (\Sigma k J)_{x_0} - \cos x_0 (\Sigma k \overline{J})_{x_0}$ 

$$\beta) \quad 0 = b_1 \delta \cos x_0 + b_2 \delta \sin x_0 + \delta \cos x_0 (\Sigma k J)_{x_0} + \sin x_0 (\Sigma k \Delta J)_{x_0} + \delta \sin x_0 (\Sigma k J)_{x_0} - \cos x_0 (\Sigma k \Delta J)_{x_0}.$$

<sup>&</sup>lt;sup>1</sup>) Es ist einleuchtend, daß die Genauigkeit auf diese Weise eine geringere werden wird, als bei der vorher angegebenen Methode: Die größten Kreise, durch die wir die geodätischen Linien in 1. Näherung ersetzen können, schnitten sich bei der 1. Methode für  $x = 180^{\circ}$ . Die Glieder mit  $e^2$ gaben also bereits eine Korrektion dieser 180°. Jetzt fallen aber beide größte Kreise zusammen, so daß offenbar ein Schritt verloren gegangen ist.

$$\left(\frac{\Delta J}{\Delta x}\right) \cdot \delta$$
 resp.  $\left(\frac{\Delta \overline{J}}{\Delta x}\right) \cdot \delta$ .

Ebenso muß  $y^{**}$  Null werden für  $x = x_0$  und  $x = x_0 - \delta$ ; also gilt:

- $\gamma) \ 0 = b_1^* \sin x_0 b_2^x \cos x_0 + \sin x_0 (\Sigma k^* J^*)_{x_0} \cos x_0 (\Sigma k^* J^*)_{x_0}$
- $\delta) \quad 0 = b_1^* \delta \cos x_0 + b_2^* \delta \sin x_0 + \delta \cos x_0 (\Sigma h^* J^*)_{x_0} \sin x_0 (\Sigma h^* \Delta J^*)_{x_0} + \delta \sin x_0 (\Sigma h^* J^*)_{x_0} + \cos x_0 (\Sigma h^* \Delta \overline{J^*})_{x_0}.$

Gleichung <br/>  $\delta$ ist aus  $\gamma)$  durch Differentiation nach <br/>  $-\delta$ hervorgegangen;  $\varDelta J^*$  und<br/>  $\varDelta J^*$  bedeuten

$$\frac{\Delta J^*}{\Delta x}(-\delta) \text{ resp. } \frac{\Delta J^*}{\Delta x}(-\delta).$$

Wenn man noch beachtet, daß

$$(J^*)_{x_0} = J_{x_0}$$
 und  $(\overline{J^*})_{x_0} = \overline{J}_{x_0}$ 

also auch

$$(\varDelta J^*)_{x_0} = -(\varDelta J)_{x_0}$$
 ,  $(\varDelta \bar{J}^*)_{x_0} = -(\varDelta \bar{J})$ 

so erhält man aus a) bis  $\delta$ )

$$\begin{aligned} \varepsilon ) & 0 = (b_1^* - b_1) \sin x_0 - (b_2^* - b_2) \cos x_0 + \sin x_0 (\Sigma (k^* - k)J)_{x_0} - \cos x_0 (\Sigma (k^* - k)\overline{J})_{x_0} \\ \zeta ) & 0 = (b_1^* - b_1) \delta \cos x_0 + (b_2^* - b_2) \delta \sin x_0 + \sin x_0 (\Sigma (k^* - k)\Delta J)_{x_0} - \cos x_0 (\Sigma (k^* - k)\Delta \overline{J})_{x_0} + \\ & + \delta \cos x_0 (\Sigma (k^* - k)J)_{x_0} + \delta \sin x_0 (\Sigma (k^* - k)\overline{J})_{x_0} \end{aligned}$$

und daraus:

$$b_{1}^{*}-b_{1} = -(\Sigma(k^{*}-k)J)_{x_{0}} - \sin x_{0}\cos x_{0}\frac{(\Sigma(k^{*}-k)\Delta J)_{x_{0}}}{\delta} + \cos^{2}x_{0}\frac{(\Sigma(k^{*}-k)\Delta J)_{x_{0}}}{\delta}$$
$$b_{2}^{*}-b_{2} = -(\Sigma(k^{*}-k)J)_{x_{0}} + \sin x_{0}\cos x_{0}\frac{(\Sigma(k^{*}-k)\Delta J)_{x_{0}}}{\delta} - \sin^{2}x_{0}\frac{(\Sigma(k^{*}-k)\Delta J)_{x_{0}}}{\delta}$$

und daraus nach einer kurzen Nebenrechnung, die sofort nachgetragen werden wird:

46)

$$\begin{cases} b_{1}^{*}-b_{1} = -\Sigma(k^{*}-k)J_{x_{0}} \\ b_{2}^{*}-b_{2} = -\Sigma(k^{*}-k)J_{x_{0}} \end{cases}$$

Nebenrechnung: Nach 16) und 21) muß  $\Sigma k J_{x_0}$  resp.  $\Sigma k^* J_{x_0}$  die Form haben:

$$\begin{split} \Sigma k J_{x_0} &= \left[ \int \cos x f(x) \, dx \right]_{x_0} \\ \Sigma k^* J_{x_0} &= \left[ \int \cos x f^*(x) \, dx \right]_{x_0} \end{split} \text{ also auch } \begin{cases} \Sigma k \ \varDelta J_{x_0} &= \ \delta \cos x_0 f(x_0) \\ \Sigma k^* \varDelta J_{x_0} &= -\delta \cos x_0 f^*(x_0) \end{cases}$$

wobei f(x) und  $f^*(x)$  irgend zwei uns nicht weiter interessierende Funktionen von x sind. Daher wird:

$$\Sigma k^* \varDelta J_{x_0} - \Sigma k \varDelta J_{x_0} = \Sigma (k^* - k) \varDelta J_{x_0} = -\delta \cos x_0 \left[ f^*(x_0) - f(x_0) \right]$$

und ganz analog:

$$= \Sigma(k^* - k) \varDelta \overline{J}_{x_0} = -\delta \sin x_0 \left[ f^*(x_0) - f(x_0) \right].$$

Unter Berücksichtigung der letzten zwei Gleichungen erhält man aber sofort:

$$-\sin x_0 \cos x_0 \frac{\Sigma(k^*-k) \Delta J_{x_0}}{\delta} + \cos^2 x_0 \frac{\Sigma(k^*-k) \Delta \overline{J}_{x_0}}{\delta} = 0$$
  
$$\sin x_0 \cos x_0 \frac{\Sigma(k^*-k) \Delta \overline{J}_{x_0}}{\frac{8}{\delta}} - \sin^2 x_0 \frac{\Sigma(k^*-k) \Delta J_{x_0}}{\delta} = 0 \qquad \text{q. e. d.}$$

Aus 20) ergibt sich:

 $k_1^* - k_1 = -2\delta \sin x_0 \cos x_0 (1 - 2\cos^2 X_0); \quad k_2^* - k_2 = 0; \quad k_3^* - k_3 = 2\delta \sin^2 x_0 \sin^2 X_0; \quad k_4^* - k_4 = 0$ daher aus 21)

$$\begin{split} \Sigma(k^*-k)J &= -\delta\sin x_0 \cos x_0 (1-2\cos^2 X_0) \sin^2 x + \delta\sin^2 x_0 \sin^2 X_0 (x+\sin x \cos x) \\ \Sigma(k^*-k)J_{x_0} &= \delta\sin^2 x_0 (x_0 \sin^2 X_0 + \sin x_0 \cos x_0 \cos^2 X_0) = -(b_1^* - b_1) \\ \Sigma(k^*-k)\overline{J} &= -\delta\sin x_0 \cos x_0 (1-2\cos^2 X_0) (x-\sin x \cos x) + \delta\sin^2 x_0 \sin^2 X_0 \sin^2 x \\ \Sigma(k^*-k)\overline{J_{x_0}} &= \delta \left[ \sin^4 x_0 \sin^2 X_0 - \sin x_0 \cos x_0 (1-2\cos^2 X_0) (x_0 - \sin x_0 \cos x_0) \right] = -(b_2^* - b_2) \end{split}$$

also (vgl. die Gleichung A) auf S. 58):

 $\sin x \mathcal{Z}(k^*-k) J - \cos x \mathcal{Z}(k^*-k) \overline{J} = \delta [\sin x_0 \cos x_0 (1 - 2\cos^2 X_0) (\sin x - x\cos x) - \sin^2 x_0 \sin^2 X_0 x \sin x].$ 

Damit wird schließlich:

$$y^{**} - y^{*} = \delta \frac{e^4}{4} \sin 2X_0 \sin x_0 \left[A \sin x + B \cos x + Cx \cos x + Dx \sin x\right]$$

wobei

47)

| $A = -\sin x_0 (x_0 \sin^2 X_0 + \sin x_0 \cos x_0 \cos^2 X_0) - \cos x_0 (1 - 2\cos^2 X_0)$              |
|-----------------------------------------------------------------------------------------------------------|
| $B = -\cos x_0 \left(1 - 2\cos^2 X_0\right) \left(x_0 - \sin x_0 \cos x_0\right) + \sin^3 x_0 \sin^2 X_0$ |
| $C = \cos x_0 \left( 1 - 2 \cos^2 X_0 \right)$                                                            |
| $D = \sin x_0 \sin^2 X_0.$                                                                                |
| Die Enveloppe ergibt sich aus $y^{*'}-y^{*}+y^{*''}-y^{*'}=0$ also:                                       |
| $0 = (a \sin x + b \cos x) + e^{2} (A \sin x + B \cos x + Cx \cos x + Dx \sin x)$                         |
| wobei noch                                                                                                |
| $a = 2\cos x_0 \qquad b = -2\sin x_0.$                                                                    |

Die letzte Gleichung stellt das Abbild der Enveloppe auf der Kugel dar.

Bei der Ableitung von 47) wurde durch  $\sin x_0 \sin 2 X_0$  dividiert. Trotzdem gilt 47) auch für  $x_0 = 0$  (also für einen Punkt des Äquators) sowie für  $X_0 = 0^{\circ}$  oder 180° (also für die Spitzen auf dem Meridian), da bereits bekannt ist, daß die verschiedenen Enveloppen kontinuierlich in einander übergehen.

| Die | Spitzen | auf | dem | Parallelkreis | erhält | man | aus | 47) | für: | $x_0 =$ | $\frac{\pi}{2};$ | $X_{0} = \frac{\pi}{2} + \Phi_{0}^{1}$ |
|-----|---------|-----|-----|---------------|--------|-----|-----|-----|------|---------|------------------|----------------------------------------|
| "   | "       | "   | "   | Meridian      | ""     | "   | "   | "   | "    | $x_0 =$ | $\Phi_0$         | $X_0 = \pi.$                           |

<sup>1</sup>) D. h. als Schnittpunkt zweier geodätischer Linien, die den Parallelkreis in  $P_0$  berühren, vgl. v. Braunmühl, Ann. 14.

Im folgenden soll noch die Lage der Spitzen der Enveloppe für Punkte  $P_0$  mit verschiedener Breite  $\Phi_0$  untersucht werden.

### A) Spitzen auf dem Parallelkreis.

Für  $x_0 = \frac{\pi}{2}$ ;  $X_0 = \frac{\pi}{2} + \Phi_0$  wird:

 $a = 0; \quad b = -2; \qquad A = -\frac{\pi}{2}\cos^2\Phi_0; \quad B = \cos^2\Phi_0; \quad C = 0; \quad D = \cos^2\Phi_0.$ 

Also erhalten wir aus 47) die Gleichung für die Spitzen auf dem Parallelkreis in der Form:

48) 
$$0 = \cos x + \frac{e^2}{2} \cos^2 \Phi_0 \left[ \left( \frac{\pi}{2} - x \right) \sin x - \cos x \right].$$

Diese Gleichung ändert sich nicht, wenn man x mit  $180^{\circ}-x$  vertauscht, d. h. aber : die beiden Spitzen liegen für jedes  $\Phi_0$  nach beiden Seiten gleichweit vom Punkte  $P_0$  ab. Aus 48) ergibt sich x (für  $\Phi_0 \pm 90^{\circ}$ , 270° etc.) als etwas kleiner wie 270°. Wächst  $\Phi_0$  von 0° bis 90°, so muß sich offenbar x immer mehr 270° nähern, d. h. aber geometrisch : die Spitzen rücken immer mehr zusammen, bis sie für  $\Phi_0 = 90^{\circ}$  zusammenfallen (in den Gegenpol).

Quantitativ sieht man aus 48), daß die Entfernung p der Spitzen voneinander proportional mit  $\cos^2 \Phi_0$  abnimmt (bis auf Glieder höherer Ordnung d. h. so lange  $\cos x = \cos \left(270 - \frac{p}{2}\right) = -\frac{p}{2}$  gesetzt werden darf).

Beispiele: Man erhält aus 48) für

| $\Phi_0 = 0$  | die              | halbe | Entfernung $\frac{p}{2}$ | der | Spitzen | voneinander | = 36' 2,"5 | Fehler | · ca. | 3,"6   |
|---------------|------------------|-------|--------------------------|-----|---------|-------------|------------|--------|-------|--------|
| $\Phi_0 = 30$ | )0 "             | ,,,   | "                        | ,,  | "       | "           | 27' 1,"9   | "      | "     | 2,"7   |
| $\Phi_0 = 45$ | <sup>50</sup> "  | "     | ,,                       | "   | 17      | "           | 18' 1,"3   | "      | "     | 1,"8   |
| $\Phi_0 = 60$ | ) <sup>0</sup> " | "     | "                        | ,,  | "       | >>          | 9' 0,"6    | "      | "     | 0,"9   |
| $\Phi_0 = 90$ | )0 "             | "     | 37                       | "   | "       | ".          | 0' 0,"0    | 39     | "     | 0,"01) |
|               |                  |       |                          |     |         |             |            |        |       |        |

und zwar ist immer der Abstand der Spitze von  $P_0$ :  $2R - \frac{p}{2}$ .

B) Spitzen auf dem Meridian.

Für  $x_0 = \Phi_0$ ;  $X_0 = \pi$  erhält man aus 47):

$$\begin{array}{ll} a=2\cos\Phi_0; & b=-2\sin\Phi_0\\ A=\cos^3\Phi_0; & B=\cos\Phi_0(\Phi_0-\sin\Phi_0\cos\Phi_0); & C=-\cos\Phi_0; & D=0 \end{array}$$

und die Gleichung für die Spitzen auf dem Meridian wird:<sup>2</sup>)

49) 
$$0 = \sin x - \operatorname{tg} \Phi_0 \cos x + \frac{e^2}{2} [\cos^2 \Phi_0 \sin x + (\Phi_0 - \sin \Phi_0 \cos \Phi_0) \cos x - x \cos x].$$

<sup>1</sup>) Dies alles gilt für das Abbild der Enveloppe auf die Kugel. Ein Zurückführen der Resultate auf das Ellipsoid hätte mit den in § 2 und 3 angegebenen Übertragungsformeln zu geschehen. <sup>2</sup>) In 49) ist durch  $\cos \Phi_0$  dividiert worden. Dies ist für  $\Phi_0 = \frac{\pi}{2}$  etc. rückgängig zu machen. Diese Gleichung ändert sich sehr wohl, falls man x mit  $2\Phi_0 - x$  vertauscht d. h. die Spitzen stehen nach beiden Seiten nicht gleichweit vom Punkte  $P_0$  ab (ausgenommen wenn  $\Phi_0 = 0, \frac{\pi}{2}$  etc.).

Beispiele: Man erhält aus 49) folgende Abstände der Spitzen von  $P_0$  (wobei der eine Abstand  $A_N$  über den Nordpol, der andre  $A_S$  über den Südpol gemessen ist):

| $\Phi_0 = 0$          | $A_N = 180^{\circ} 36' 2,4$  | $A_s = 180^{\circ} 36' 2,4$   |
|-----------------------|------------------------------|-------------------------------|
| $\Phi_{0} = 45^{0}$   | $A_N = 180^{\circ} 17' 55,7$ | $A_s = 180^{\circ}  18'  6,7$ |
| $\Phi_0 = 90^{\circ}$ | $A_N = 180^{\circ}$          | $A_{s} = 180^{\circ}$ .       |

Anmerkung. v. Braunmühl hat den Satz aufgestellt,<sup>1</sup>) daß sich auf dem abgeplatteten Rotationsellipsoid zwei unendlich benachbarte geodätische Linien erst nach Vollendung "ihrer halben Periode" schneiden. Dieser Satz scheint zwar mit unseren Resultaten unter B), nicht aber mit denen unter A) zu stimmen. Die Unstimmigkeit ist jedoch bloß scheinbar: Der Braunmühlsche Satz behauptet nur, daß sich zwei benachbarte geodätische Linien, die von einem Punkt  $P_0$  des Kreises  $\Phi_0 = \text{const.}$  ausgehen erst schneiden nachdem sie den Kreis  $-\Phi_0 = \text{const.}$  getroffen haben.<sup>2</sup>) Dies widerspricht aber unsern Resultaten keineswegs.

#### Enveloppen höherer Ordnung.

Die Gleichungen 48) und 49) haben natürlich unendlich viele Lösungen x. Je zwei aufeinanderfolgende Werte dieser x unterscheiden sich ungefähr um  $\pi$  voneinander. Setzen wir deshalb in 48) resp. 49)

$$x = (2n+1)\frac{\pi}{2} - \delta$$
 resp.  $x = n\pi + \Phi_0 + \delta'$ 

(wobei n = 1, 2...), so wird  $\delta$  und  $\delta'$  klein wie  $e^2$  und wir erhalten nach kurzer Rechnung unter Vernachläßigung höherer Glieder in  $e^2$ 

aus 48)

$$\delta = \frac{1}{2} n \pi \cos^2 \Phi_0$$
$$\delta' = \frac{e^2}{2} n \pi \cos^2 \Phi_0.$$

aus 49)

Wenn wir in 49)

$$c = -(n\pi - \Phi_0 + \delta^{"})$$

setzen (also im Sinne fallender x fortschreiten) so wird

$$\delta'' = \delta' = \frac{e^2}{2} n \pi \cos^2 \Phi_0.$$

Daraus sehen wir: 1. Die Abstände der Spitzen der Enveloppen *n*. Ordnung sind (bis auf Glieder höherer Ordnung) *n* mal so groß als die betreffenden Abstände der Enveloppen 1. Ordnung. 2. Die Spitzen beider Art rücken proportional mit  $\cos^2 \Phi_0$  zusammen, wenn  $\Phi_0$  vom Äquator zum Pol fortschreitet. 3. Die Abstände der Spitzen auf dem Parallelkreis (=  $2\delta$ ) sind gleich den Abständen der Spitzen auf dem Meridian (=  $\delta' + \delta''$ ) bis auf Glieder höherer Ordnung.

<sup>1</sup>) Math. Ann. 14 (1879) S. 563.

<sup>2</sup>) Und zwar auf dem Weg:  $P_0$  auf Kreis  $\Phi_0 = \text{const.} - \text{Grenzkreis}$  (d. h. Kreis, dem das größte  $\Phi$  zukommt, das von der geod. Linie erreicht wird) - Kreis  $\Phi_0 = \text{const.} - \text{Kreis}(-\Phi_0) = \text{const.}(\text{vgl. l. c. S. 558}).$ 

Eine zweite Probe auf die Richtigkeit unsrer Formeln 24) bis 26) für die 3. Korrektion.

Die bisher angegebenen Formeln für die Enveloppe geodätischer Linien lassen sich ohne Schwierigkeit durch Berücksichtigung der 3. Korrektion  $y^{\prime\prime\prime}$  auf Glieder mit  $e^4$  erweitern. Die Rechnungen sind ganz analog den auf S. 58 ff. bereits ausgeführten; die dann noch auftretenden Fehler sind von der Größenordnung 0,01.

Zur Kontrolle der Formeln 24) bis 26) wurden für  $\Phi_0 = 0$  die Abstände der Spitzen der Enveloppe, die auf dem Äquator liegen, bestimmt.

Ganz analog wie früher wurde nach einiger Rechnung folgende Gleichung für das x der Spitzen gefunden:

$$0 = \cos x + \frac{e^3}{2} \left[ \left( \frac{\pi}{2} - x \right) \sin x - \cos x \right] + \frac{e^4}{8} \left[ \left( \frac{\pi}{2} - x \right) \sin x - \left( x^2 - \pi x + 1 + \frac{\pi^2}{4} \right) \cos x \right]$$

daraus berechnet sich ein x zu:

$$270^{\circ} - 36^{\circ} 6,144$$
 (Fehler: 0,027).

Der Fehler von 0,027 entspricht der zu erwartenden Ungenauigkeit der 3. Korrektion. Die Probe auf die Richtigkeit unserer Formeln stimmt also.

### § 13.

### Nomographische Darstellung der Azimutkorrektionen.

Die Azimutkorrektionen  $\psi$  wurden, wie sie sich in 1. Näherung ergeben, nomographisch dargestellt. Es wurde also gesetzt (cf. 19a)

$$\operatorname{tg} \psi_1 = \frac{e^2}{4} \sin 2 X_0 \left[ \frac{x_2 - x_1}{\sin(x_2 - x_1)} \cos x_2 - \cos x_1 \right] = 344, 172 \sin 2 X_0 \cdot f(x_1, x_2).$$

Hierin ist zur Abkürzung

$$\left[\frac{x_2 - x_1}{\sin(x_2 - x_1)}\cos x_2 - \cos x_1\right] = f(x_1, x_2)$$

gesetzt.<sup>1</sup>)

Es wurde nun zuerst f als Funktion von  $x_1$  und  $x_2$  nomographisch dargestellt. Zu diesem Zwecke wurden für ca. 120 zusammengehörige Werte von  $x_1$  und  $x_2$  — wobei  $0 \le x_1 \le \frac{\pi}{2}$  und  $|x_2 - x_1| < \pi$  angenommen wurde — die zugehörigen Werte von f bestimmt. Diese 120 Punkte  $x_1, x_2$  wurden so ausgewählt, daß sie den in Betracht kommenden Bereich ungefähr gleichmäßig überdeckten. Jedem dieser Punkte ist dann ein Zahlwert f zugeordnet; durch Interpolation können die Kurven  $f = \lambda$  (wo  $\lambda$  ein variabler Parameter) gefunden werden. Die Interpolation geschah im allgemeinen linear unter Benützung je zweier benachbarter Punkte oder gelegentlich auch (besonders zu Kontrollzwecken) unter Benützung dreier Punkte nach der Newtonschen oder Lagrangeschen

<sup>1)</sup>  $x_1$  und  $x_2$  sind dabei in Teilen des Radius auszudrücken.

Interpolationsformel. f ändert sich nicht, wenn man  $x_1$  mit  $-x_1$  und  $x_2$  mit  $-x_2$  vertauscht, ferner ändert es nur sein Vorzeichen aber nicht seinen absoluten Wert bei Vertauschung von  $x_1$  mit  $\pi - x_1$  und  $x_2$  mit  $\pi - x_2$ . Daher konnte ohne weitere Berechnung von Punkten  $x_1$ ,  $x_2$  allein durch Drehung der Figur der ganze Bereich  $|x_2 - x_1| < 2R$ mit Kurven  $f = \lambda$  überdeckt werden. (Vgl. Tafel 1.)



Man könnte jetzt die Azimutkorrektion  $\psi_1$  ganz analog aus zusammengehörigen Werten  $X_0$  und f interpolieren. Dies wurde auch tatsächlich ausgeführt, und es ergaben sich Kurven von nebengezeichnetem Typus. Dieser Typus gibt also für kleine f sowie für  $X_0$  nahe 0° oder 90° etc. außerordentlich schlechte Schnitte (also gerade für die Werte, die kleinen Azimutkorrektionen entsprechen, die daher Fehlern gegenüber verhältnismäßig sehr empfindlich sind). Um diesem Übelstande abzuhelfen, haben wir logarithmiert, so daß wir haben :

 $\begin{cases} a) & \log \frac{\psi}{344, 17} = \log f + \log \sin 2 X_0 & \text{oder aber:} \\ b) & \log \frac{\psi}{344, 17} + \log \frac{1}{\sin 2 X_0} = \log f. \end{cases}$ 

Das Nomogramm von 50 a) besteht aus drei logarithmischen, parallelen und äquidistanten Maßstäben. Die beiden äußeren (f zur Rechten und  $X_0$  zur Linken) haben gleichgroße Teilung; die des mittleren (für  $\psi$ ) ist nur halb so groß.<sup>1</sup>) Ganz analog wird 50 b) dargestellt, nur kommt hier f mit halbem Maßstab in die Mitte.

Das gesuchte  $\psi$  wird dadurch gefunden, daß man das gegebene  $X_0$  und das aus Tafel 1 gefundene f miteinander durch eine Gerade verbindet: diese Gerade schneidet  $\psi$  aus.

50 a) gibt gute Schnitte für kleine  $\psi$ , bei kleinem  $|\sin 2X_0|$ 50 b) ", ", ", ", ", ", ", ",  $|\sin 2X_0|$  vgl. Tafel 2a) und 2b).

Wie die Bestimmung der beiden Azimutkorrektionen  $\psi_1$  und  $\psi_2$  vor sich geht, sei an einem Beispiel gezeigt.

Es sei gegeben

$$x_1 = 0; \quad x_2 = \frac{\pi}{2}; \quad X_0 = 135^{\circ}.$$

Um zuerst  $\psi_1$  zu finden, geht man mit  $x_1 = 0$ ;  $x_2 = \frac{\pi}{2}$  in Tafel 1 und findet (ev. durch lineare Interpolation) f = -1, 0.

Da ferner  $\sin 2X_0 = -\sin 2 \cdot 45^\circ$  findet man in Tafel 2a) oder 2b) für  $X_0 = 45^\circ$ ; f = 1,0:

$$|\psi_1| = 344,2.$$

Wegen der 2 Minuszeichen  $(f = - \text{ und } \sin 2X_0 = -)$  ist daher

 $\psi_1 = + 344,2.$ 

<sup>1</sup>) Vgl. z. B. Enzyklopädie d. math. Wiss. Französ. Ausg. "Calculs numeriques" Mehmke-d'Ocagne, Paris 1909, S. 385.

64

50)

Um  $\psi_2$  zu finden, hat man  $x_1$  mit  $x_2$  zu vertauschen und findet für  $x_1 = \frac{\pi}{2}$ ;  $x_2 = 0$ : f = +1,57.

Damit aus Tafel 2a) oder 2b) für  $X_0 = 45^\circ$ :

$$|\psi_{2}| = 541''$$

(Ich fand aus Tafel 2a)  $|\psi_2| = 542$ " und aus 2b  $|\psi_2| = 540$ "). Da f positiv und sin 2 X<sub>0</sub> negativ ist, so haben wir

$$\psi_2 = -541^{"}.$$

### Abschätzung der Genauigkeit.

Mit welcher Genauigkeit wird das  $\psi_2$  in unserem letzten Beispiel versehen sein? Jede der beiden Kurven  $f = \lambda$  in Tafel 1, zwischen denen interpoliert wird, sei unabhängig von der anderen mit einem mittleren Zeichenfehler von 0,1 mm behaftet, ferner werde bei der Eintragung und Ablesung des Punktes  $x_1, x_2$  zwischen den Kurven im Mittel ein Fehler von 0,1 mm gemacht. Das gibt zusammen einen mittleren Fehler von  $\sqrt{0,03} = 0,17$  mm. In unserer Figur 1 machen aber in der Nähe des Punktes  $x_1 = 90^{\circ}$ ,  $x_2 = 0$ , 20 mm eine Differenz von 0,7011 im Werte von f aus, 0,17 mm machen daher 0,006 im Werte von f aus.

In der Tafel 2a wird deshalb statt log 1,571 etwa log 1,577 abgelesen, d. h. ein Wert, der um 0,00165 falsch ist. Die Einheit wurde gleich 200 mm gewählt, deshalb macht dieser Fehler in mm aus: 0,33 mm. Dazu kommt der Fehler wegen der ungenauen Auftragung des interpolierten f (in Tafel 2a) und der benachbarten zwei Werte f mit ca. 0,17 mm. Also zusammen  $\sqrt{0,33^2 + 0,17^2} = 0,37$  mm. Übertragen auf die Gerade für  $\psi$  ergibt sich der halbe Fehler davon also 0,185 mm (da  $\psi$  in der Mitte von  $X_0$  und faufgetragen ist). Außerdem hat der interpolierte Wert von  $X_0$  einen mittleren Fehler von ca. 0,17 mm (Annahmen wie oben bei f), daher treffen auf  $\psi: \frac{0,17}{2} = 0,085$  mm.

Zusammengenommen ist für  $\psi$  ein mittlerer Fehler von  $\sqrt{0.185^2 + 0.085^2} = 0.204$  mm zu erwarten. Zwischen 500" und 600" machen aber 7,8 mm 100" aus, daher ist der

mittlere Fehler von  $\psi_2 = 2,6$  also ca.  $1/2^0/_0$  der Korrektion.

Verschiedene Fehlerquellen (z. B. Papiereingang, ungenaues Lineal, nicht genaue Äquidistanz der Geraden für  $X_0$ ,  $\psi$  und f) wurden unberücksichtigt gelassen, da es sich ja nur um einen Überblick handelt. Sie können die Genauigkeit wesentlich herunterdrücken. Dazu kommt noch der Fehler infolge der Vernachlässigung höherer Potenzen von  $e^3$  in der Rechnung. (Er beträgt für unser Beispiel nach § 7 1.6). Alles in allem ist

ein Fehler von ca. 1% bis 1,5% der Korrektion zu erwarten.

Abh. d. math.-phys. Kl. XXVII, 4. Abh.

#### § 14.

### Anhang: Notwendige und hinreichende Bedingungen, für die Möglichkeit, eine Funktion $F(x_4) = f(x_1, x_2, x_3)$ nomographisch in der Ebene darzustellen.<sup>1</sup>)

Wir haben in Tafel 1 und 2 die Azimutkorrektionen als Funktionen von  $x_1$ ,  $x_2$  und  $X_0$  dargestellt. Es wäre zweifellos wesentlich angenehmer sie als Funktionen der Längendifferenz  $\lambda_2 - \lambda_1$  und der geographischen Breiten  $\varphi_1$  und  $\varphi_2$  der Punkte  $P_1$  und  $P_2$  dargestellt zu haben. Hier treten jedoch große Schwierigkeiten auf.

Der eine Weg wäre natürlich sofort gangbar, daß man z. B.  $\lambda_2 - \lambda_1$  feste etwa von 5° zu 5° fortschreitende Werte gäbe, für jeden solchen Wert von  $\lambda_2 - \lambda_1$  ein besonderes Nomogramm für den Zusammenhang zwischen Azimutkorrektion und den zwei Breiten aufstellte und schließlich für die gegebene Längendifferenz zwischen 2 oder 3 Nomogrammen interpolierte. Die Gründe, die gegen ein solches Verfahren sprechen, liegen auf der Hand.

Soll jedoch eine Funktion  $F(x_4) = f(x_1, x_2, x_3)$  durch ein<sup>2</sup>) Nomogramm mit stetiger Aufeinanderfolge der Funktionswerte dargestellt werden, so hat die Funktion f eine Bedingung zu erfüllen:

Die 4 Variablen  $x_1, x_2, x_3, x_4$  müssen sich nämlich irgendwie zu je dreien zusammenfassen lassen, damit eine Darstellung in der Ebene (durch bezifferte Kurven) möglich wird. Wir können sagen, es muß sich  $F(x_4)$  in der Form schreiben lassen:

$$F(x_{\mathbf{A}}) = f[x_{\mathbf{A}}, \varphi(x_{\mathbf{A}}, x_{\mathbf{A}})]$$

und es ist unsere Aufgabe, eine analytische Bedingung für die Möglichkeit dieser Schreibweise aufzustellen.

Durch partielles Differenzieren folgt aus A):

$$\frac{\partial f}{\partial x_2} = \frac{\partial f}{\partial \varphi} \cdot \frac{\partial \varphi}{\partial x_2} \\ \frac{\partial f}{\partial x_3} = \frac{\partial f}{\partial \varphi} \cdot \frac{\partial \varphi}{\partial x_3}$$
 oder in oft gebrauchter Abkürzung: 
$$\begin{cases} f_2 = f_{\varphi} \varphi \\ f_3 = f_{\varphi} \varphi \end{cases}$$

und daraus durch Division:

oder durch Logarithmieren:

B) 
$$\lg f_2 - \lg f_3 = \lg \frac{\varphi}{\varphi}$$

Die rechte Seite von B) hängt aber nur von  $x_2$  und  $x_3$  ab, man erhält also durch part. Differenzieren nach  $x_1$ :

 $\frac{f_2}{f_3} = \frac{\varphi_2}{\varphi_3}$ 

$$\frac{f_{2\cdot 1}}{f_2} = \frac{f_{3\cdot 1}}{f_3} \quad \text{oder:} \\
51) \quad f_{1\cdot 2}f_3 = f_{1\cdot 3}f_2 \quad \text{d. h. } \left(\frac{\partial^2 f}{\partial x_1 \partial x_2}\right) \cdot \frac{\partial f}{\partial x_3} = \left(\frac{\partial^2 f}{\partial x_1 \partial x_3}\right) \cdot \frac{\partial f}{\partial x_2}.$$

<sup>1</sup>) Eine ähnliche Untersuchung findet sich bei: Paul de Saint-Robert, Memorie della R. Academia di Torino, 2<sup>e</sup> serie, t. XXV p. 53, 1871; (auch abgedruckt in: d'Ocagne, Traité de Nomographie, Paris 1899, S. 418 ff.).
 <sup>2</sup>) Oder durch zwei (kein prinzipieller Unterschied !).

66

A)

Diese Bedingung ist jedenfalls notwendig, sie ist aber auch hinreichend. Denn wenn irgend ein  $f(x_1, x_2, x_3)$  gegeben ist, das die partielle Differentialgleichung 51) erfüllt, so folgt aus dieser durch Integrieren:

$$\lg f_2 = \lg f_3 + \lg \psi \left( x_2, \, x_3 \right)$$

oder C)

$$\frac{\partial f}{\partial x_2} - \frac{\partial f}{\partial x_3} \psi \left( x_2, \, x_3 \right) = 0$$

worin  $\psi$  irgend eine von  $x_1$  unabhängige Funktion bedeutet.

In C) ist aber  $\frac{\partial f}{\partial x_2}$  und  $\frac{\partial f}{\partial x_3}$  bekannt, da ja  $f(x_1, x_2, x_3)$  gegeben ist. Also kann aus C) das  $\psi(x_2, x_3)$  bestimmt werden.

Da aber weiter

$$\frac{\partial f}{\partial x_2} : \frac{\partial f}{\partial x_3} = \frac{\partial \varphi}{\partial x_2} : \frac{\partial \varphi}{\partial x_3}$$

gilt (cf. oben), so hat man für das gesuchte  $\varphi$  die partielle lineare, homogene Differentialgleichung:

52) 
$$\frac{\partial \varphi \left( x_2, x_3 \right)}{\partial x_2} - \frac{\partial \varphi \left( x_2, x_3 \right)}{\partial x_3} \psi \left( x_2, x_3 \right) = 0$$

und diese Gleichung hat immer eine Lösung — eben die gesuchte Beziehung  $\varphi(x_2, x_3)$  zwischen  $x_2$  und  $x_3$ . Also ist die Bedingung 51) auch hinreichend.

Für unsere Zwecke folgt aus der Bedingung 51), daß schon der Ausdruck  $\frac{x_2 - x_1}{\sin(x_2 - x_1)}$ ; der in unserer ersten Azimutkorrektion vorkommt, nicht als Funktion von  $\varphi_1$ ,  $\varphi_2$  und  $\lambda$ (wobei  $\lambda = \lambda_2 - \lambda_1$ ) nomographisch dargestellt werden kann. Denn aus

$$\begin{split} \cos\left(x_2 - x_1\right) &= \sin \Phi_1 \sin \Phi_2 + \cos \Phi_1 \cos \Phi_2 \cos \lambda \qquad (\text{da } L = \lambda) \\ &= f_1 \left(\lambda, \, \Phi_1, \, \Phi_2\right) \\ &= f \left(\lambda, \, \varphi_1, \, \varphi_2\right) \end{split}$$

folgt nach kurzer Rechnung, falls man den Ansatz versucht

$$\begin{split} f\left[\lambda,\varphi\left(\varphi_{1},\varphi_{2}\right)\right] &= f\left(\lambda,\varphi_{1},\varphi_{2}\right)\\ \frac{\partial^{2}f}{\partial \lambda \partial \varphi_{1}}\frac{\partial f}{\partial \varphi_{2}} - \frac{\partial^{2}f}{\partial \lambda \partial \varphi_{2}} \cdot \frac{\partial f}{\partial \varphi_{1}} &= \sin\lambda\sin\left(\varphi_{1} + \varphi_{2}\right)\sin\left(\varphi_{1} - \varphi_{2}\right)\frac{\partial \Phi_{1}}{\partial \varphi_{1}}\frac{\partial \Phi_{2}}{\partial \varphi_{2}}; \end{split}$$

ebenso folgt für den Ansatz

$$\begin{split} f(\lambda,\varphi_1,\varphi_2) &= f\left[\varphi_2,\varphi\left(\lambda,\varphi_1\right)\right] & \frac{\partial^2 f}{\partial \varphi_2 \partial \lambda} \frac{\partial f}{\partial \varphi_1} - \frac{\partial^2 f}{\partial \varphi_2 \partial \varphi_1} \frac{\partial f}{\partial \lambda} = \cos^2 \varphi_1 \sin \lambda \frac{\partial \Phi_1}{\partial \varphi_1} \frac{\partial \Phi_2}{\partial \varphi_2} \\ f(\lambda,\varphi_1,\varphi_2) &= f\left[\varphi_1,\varphi\left(\lambda,\varphi_2\right)\right] & \frac{\partial^2 f}{\partial \varphi_1 \partial \lambda} \frac{\partial f}{\partial \varphi_2} - \frac{\partial^2 f}{\partial \varphi_1 \partial \varphi_2} \frac{\partial f}{\partial \lambda} = \cos^2 \varphi_2 \sin \lambda \frac{\partial \Phi_1}{\partial \varphi_1} \frac{\partial \Phi_2}{\partial \varphi_2} \\ \end{split}$$

also ist die Gleichung 51) in keinem der drei möglichen Fälle erfüllt, d. h.  $\cos(x_2 - x_1)$  ist als Funktion von  $\lambda$ ,  $\varphi_1$ ,  $\varphi_2$  nicht nomographisch darstellbar. Dies gilt dann sofort auch für jede andere Funktion von  $(x_2 - x_1)$  allein, z. B. für  $\frac{x_2 - x_1}{\sin(x_2 - x_1)}$ .<sup>1</sup>)

<sup>1)</sup> Ein analytischer Beweis für diese an sich schon einleuchtende Behauptung wäre etwa:

Die Azimutkorrektion  $\psi_1 = \frac{e^2}{4} \sin 2 X_0 \left[ \frac{x_2 - x_1}{\sin (x_2 - x_1)} \cos x_2 - \cos x_1 \right]$  wurde allerdings nicht in dieser Weise auf die Möglichkeit ihrer nomographischen Darstellung als Funktion von  $\lambda$ ,  $\varphi_1$ ,  $\varphi_2$  untersucht. Der Grund dafür liegt nur zum kleinen Teil in der außer-ordentlichen Langwierigkeit der auftretenden Differentiationen, größtenteils aber darin, daß schon die Anschauung eine solche Möglichkeit auszuschließen scheint.

#### Zusammenfassung.

Die vorliegende Arbeit beschäftigt sich mit der konformen Abbildung des ganzen Erdellipsoids und seiner geodätischen Linien auf die Kugel; die Resultate gelten für Strecken von beliebiger Länge (Einschränkungen vgl. § 8).

In § 1 wurden Untersuchungen von Gauß, die sich auf unsere konforme Abbildung beziehen, in Kürze wiederholt.

In § 2 ergibt sich unter anderem das Resultat, daß die maximale Längenverzerrung bei unserer Abbildung bei günstigster Wahl des Kugelradius R ca.  $\frac{1}{600}$  der Länge beträgt, für R = große oder bleine Achen des Freiblingeile 1

für R = große oder kleine Achse des Erdellipsoids ca.  $\frac{1}{300}$ .

In § 3 werden verschiedene Näherungsformeln nach steigenden Potenzen von  $e^2$  angegeben (e = Exzentrizität).

In § 4 wurde die Differentialgleichung des Abbilds der geodätischen Linie auf die Kugel in zwei Formen aufgestellt: 1. exakt in geschlossener Form, 2. als unendliches System: Die 1. Differentialgleichung enthält nur Glieder mit  $e^2$ , die 2. mit  $e^4$  usw. Es wurden nur Glieder bis  $e^6$  berücksichtigt, doch wurde die Möglichkeit zur Einhaltung jeder gewünschten Genauigkeit gezeigt.

§ 5 bringt die Lösung der Differentialgleichung der Bildkurve. Die angegebene Lösung erscheint als Summe von (im allgemeinen) sehr rasch abnehmenden Korrektionen und kann als exakte Lösung der Differentialgleichung in Form einer unendlichen Reihe betrachtet werden. Angegeben sind nur Glieder bis  $e^6$ ; es ist jedoch gezeigt, daß auch die Berücksichtigung höherer Glieder immer wieder auf ein und dieselbe Differentialgleichung zurückführt, deren Lösung bereits bewerkstelligt ist. Durch die Lösung der Differentialgleichung sind alle Aufgaben, die sich auf geodätische Linien des Sphäroids beziehen, zurückgeführt auf rein sphärische Aufgaben und damit theoretisch gelöst.

Wenn für  $y = f(x_1, x_2, x_3)$  $\frac{\partial^2 y}{\partial x_1 \partial x_2} \frac{\partial y}{\partial x_3} - \frac{\partial^2 y}{\partial x_1 \partial x_3} \cdot \frac{\partial y}{\partial x_2} \neq 0$ 

ist, so wird für eine Funktion  $\psi(y)$  nach ganz kurzer Rechnung erhalten:

$$\frac{\partial^2 \psi}{\partial x_1 \partial x_2} \frac{\partial \psi}{\partial x_3} - \frac{\partial^2 \psi}{\partial x_1 \partial x_3} \cdot \frac{\partial \psi}{\partial x_2} = \left(\frac{\partial \psi}{\partial y}\right)^2 \left(\frac{\partial^2 y}{\partial x_1 \partial x_2} \frac{\partial y}{\partial x_3} - \frac{\partial^2 y}{\partial x_1 \partial x_3} \frac{\partial y}{\partial x_2}\right)$$

und die rechte Seite hievon ist nach Bed.  $\pm$  0, so lange  $\psi(y)$  von y abhängt.

In § 6 wird die Länge einer geodätischen Linie aus der geographischen Lage ihrer Endpunkte abgeleitet, ferner die Länge ihres Abbilds auf die Kugel und die Länge des Abbilds eines größten Kugelkreises auf das Ellipsoid. Praktisch interessant ist besonders die Differenz der Längen von geodätischer Linie und Abbild des größten Kreises.

Daß diese Längendifferenz zu gering ist, um z. B. in der Schiffahrt aus Ersparnisgründen berücksichtigt werden zu müssen, zeigt § 7. Dieser Paragraph bringt auch Beispiele für die Aufgabe: Aus der geographischen Lage der Endpunkte  $P_1$  und  $P_2$  die Azimutkorrektionen bei  $P_1$  und  $P_2$  und die Länge s der geodätischen Linie  $P_1P_2$  zu berechnen. Gegenüber den bisherigen Methoden, die für die ganze Rechnung die Benützung 7 stelliger Tafeln voraussetzen, bedeutet unsere Lösung insofern praktisch einen Vorteil, als nur die sphärische Rechnung 7 stellig, die 1. Korrektion 5 stellig und die 2. Korrektion mit Rechenschieber auszuführen ist. Rein theoretisch gesprochen ist in unserer Methode darin ein gewisser Vorzug zu erblicken, daß sie direkt ist, während die bisherigen Methoden für große Entfernungen  $P_1P_2$  nur indirekte Lösungen dieser Aufgabe geben.

Die Konvergenzuntersuchung in § 8 bringt den Nachweis, daß unsere Lösung innerhalb sehr weiter Grenzen konvergiert (und zwar sehr rasch). Sie weist aber auch auf die Größen hin, deren rasches Anwachsen (besonders wenn sich  $P_1P_2$  180° nähert) die Konvergenz gefährdet. Eine ungefähre Abschätzung der Konvergenzgrenzen ist möglich infolge des im § 5 hervorgehobenen gleichmäßigen Baus der Differentialgleichung für jede einzelne Korrektion.

In § 9 wird unter anderem gezeigt, daß die Azimutkorrektion für  $P_1P_2 = 100$  km schon 6" betragen kann. Ferner, daß unsere 1. Korrektion bei Strecken bis zu 100 km im Azimut höchstens noch einen Fehler von 0,"04 besitzt, die 2. Korrektion bei Strecken bis zu ca. 4000 km einen solchen von 0,"01, während bei Berücksichtigung auch der 3. Korrektion eine Genauigkeit auf 0,"0001 selbst noch bei Strecken bis zu ca. 6500 km gewährleistet ist.

10 bringt die Lösung der Aufgabe: Gegeben Länge s einer geodätischen Linie, Lage des einen Endpunkts und Azimut in demselben. Gesucht Breite und Azimut im anderen Endpunkt.

In § 11 sind die Formen der Bildkurve (d. h. des Abbilds der geodätischen Linie auf die Kugel) diskutiert unter starker Benützung der geometrischen Anschauung. (Rein analytische Beweise wurden zwar teilweise ausgeführt, aber im Text nicht angegeben.)

§ 12 beschäftigt sich mit Enveloppen geodätischer Linien auf dem Sphäroid. Für das Abbild der Enveloppen auf die Kugel konnte eine ziemlich übersichtliche Näherungsgleichung (maximaler Fehler der Punktbestimmung 3,6) aufgestellt werden. Zugleich werden zwei Proben auf die Richtigkeit unserer Formeln für die 3. Korrektion angestellt.

§ 13 bringt die nomographische Darstellung der Azimutkorrektionen. Der Fehler des nomographisch erhaltenen Resultats wird auf ca. 1% bis 1,5% der Korrektion geschätzt.

In § 14 (Anhang) wird die notwendige und hinreichende Bedingung für die Möglichkeit  $F(x_4) = f(x_1, x_2, x_3)$  in der Ebene nomographisch darzustellen aufgestellt.

### Zusammenstellung der Bezeichnungen.

Hier seien die Bezeichnungen und Abkürzungen zusammengestellt, die sich durch einen größeren Teil der Arbeit ziehen.

Große Buchstaben beziehen sich auf die Kugel, kleine auf das Ellipsoid. So bedeutet:

|                         | Kugel                                                                             | Ellipsoid                                              |
|-------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------|
| L                       | Länge,                                                                            | λ Länge,                                               |
| $\Phi$                  | Breite,                                                                           | $\varphi$ geogr. Breite,                               |
| S                       | Länge des größten Kreises,                                                        | s Länge der geod. Linie,                               |
| S'                      | Länge des Bildes der geod. Linie,                                                 | s' Länge des Bildes des größten Kreises.               |
| X                       | südöstl. Azimut,                                                                  | γ südöstl. Azimut,                                     |
| $X_0$                   | Azimut des gr. Kreises im Äquator,                                                | zo vgl. S. 46 (sonst nicht verwendet).                 |
| $\overset{{}_\circ}{R}$ | Radius der Kugel,                                                                 | a große<br>b kleine Halbachse des Sphäroids.           |
| erne                    | r:                                                                                | ,                                                      |
| m                       | Vergrößerungsverhältnis,                                                          | $a_1, a_2; b_1, b_2; c_1, c_2;$ Integrationskonstante, |
| е                       | Exzentrizität,                                                                    | $e^2 = 0,006\ 674\ 372\ 231\ 315,$                     |
| a                       | = 6 377 397,15500 m,                                                              | $b = 6356078,96325\mathrm{m},$                         |
| $\psi$                  | Azimutkorrektion,                                                                 |                                                        |
| x,                      | $x_1, x_2, y$ Definition in § 4,                                                  |                                                        |
| k,                      | $k_1, k_2, k_3, k_4$ cowisso you $\tau$ unabhängig                                | Größen / vgl. S. 22,                                   |
| <i>l</i> <sub>1</sub> , | $l_2 \dots l_{15} \int gewisse von x unabhangig$                                  | , S. 24,                                               |
| $J_1$                   | $, J_2 \ldots J_4; \overline{J_1} \ldots \overline{J_4}; )$ genuine Interm        | vgl. S. 22,                                            |
| $L_{1}$                 | $L_1 \ldots L_{15}; \ \overline{L}_1 \ldots \overline{L}_{15}; \ $ gewisse integr | are ( " S. 25.                                         |

Striche bedeuten nie Differentialquotienten, sondern im allgemeinen Korrektionen. Die Anzahl der Striche deutet die Potenz an, in der  $e^2$  vorkommt, z. B.

 $y^{*}, \varphi^{*}, \Phi^{*}$  Korrektionen von der Größenordnung  $e^{4}$  (wir nennen sie "2. Korrektionen"). Weiter ist noch gesetzt:

 $\varphi = \Phi + \Phi' + \Phi'' + \Phi'''$  vgl. S. 10 u. 11,  $\Phi = \varphi + \varphi' + \varphi'' + \varphi''' \quad \text{, S. 12.}$ 

### Inhaltsverzeichnis.

| Vorwe | ort                                                                                      | 3  |
|-------|------------------------------------------------------------------------------------------|----|
| § 1.  | Die Gaußschen Untersuchungen: Allgemeine Formeln über konforme Abbildung und Ver-        |    |
|       | größerungsverhältnis. Ableitung der Abbildungsgleichungen                                | 4  |
| § 2.  | Spezielles über das Vergrößerungsverhältnis und die auftretenden Verzerrungen            | 8  |
| § 3.  | Einige Näherungsformeln. (Potenzreihen nach steigenden Potenzen von $e^2$ )              | 10 |
| § 4.  | Differentialgleichung der Bildkurve                                                      | 14 |
| § 5.  | Lösung der Differentialgleichung der Bildkurve. Azimutkorrektionen                       | 20 |
| § 6.  | Länge s der geodätischen Linie auf dem Erdellipsoid und ihres Abbilds S' auf der Kugel.  |    |
|       | Länge $S$ des größten Kreises auf der Kugel und seines Abbilds s' auf dem Erdellipsoid . | 26 |
| § 7.  | Beispiele                                                                                | 29 |
| § 8.  | Konvergenzuntersuchung                                                                   | 36 |
| § 9.  | Maximalwerte der Azimutkorrektionen und Genauigkeitsabschätzungen                        | 43 |
| § 10. | Gegeben die Länge s einer geodätischen Linie, die Lage eines der Endpunkte und das       |    |
|       | Azimut in ihm. Gesucht Breite und Azimut im anderen Endpunkt Beispiel                    | 45 |
| § 11. | Formen der Bildkurve                                                                     | 50 |
| § 12. | Enveloppen der geodätischen Linien auf dem Sphäroid                                      | 55 |
| § 13. | Nomographische Darstellung der Azimutkorrektionen                                        | 63 |
| § 14. | Anhang: Notwendige und hinreichende Bedingungen für die Möglichkeit, eine Funktion       |    |
|       | $F(x_4) = f(x_4, x_2, x_3)$ nomographisch in der Ebene darzustellen                      | 66 |
| Zusan | imenfassung                                                                              | 68 |
| Zusan | nmenstellung der Bezeichnungen                                                           | 70 |
|       |                                                                                          |    |




Ł

|                                                               | Wilh. Deimler, Conf. Abb.d.ganzen Erdellipsoids a.d.Kugel.               | Taf. II.<br>(Val. 5.64)                                                                            |
|---------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                               | X. /¥](inSek.) /f/                                                       | X.  f/  4/(inSek.)                                                                                 |
|                                                               | <b>a</b> .                                                               | <b>b.</b> ] [                                                                                      |
|                                                               |                                                                          |                                                                                                    |
|                                                               | $log \frac{ \psi }{2kh} = log_1 f_1 + log_1 \sin 2r_0 r^{\frac{15}{14}}$ | $\frac{1}{\log f  = \log \frac{ \Psi }{344172} + \log \frac{1}{1272}}$                             |
|                                                               |                                                                          |                                                                                                    |
|                                                               | 9                                                                        | 3° + +90 +3400<br>+90 +3200<br>+80 +3000<br>70 +2800                                               |
| ·                                                             |                                                                          | $4^{\circ}$ + $50^{\circ}$ + $2600^{\circ}$ + $2400^{\circ}$ + $45^{\circ}$ + $2400^{\circ}$       |
|                                                               | 6,5<br>- 6,0<br>- 5,5                                                    | $5^{9}$ $+40$ $+2200$<br>+35 $+2000+30$ $+$                                                        |
|                                                               | 5,0                                                                      |                                                                                                    |
|                                                               | 4                                                                        |                                                                                                    |
|                                                               |                                                                          | 9°<br>10 1100<br>10°<br>8 1000                                                                     |
|                                                               |                                                                          |                                                                                                    |
|                                                               | 1500<br>1400<br>1200<br>1200                                             | 15 <b>9</b><br>4 700-                                                                              |
|                                                               | + 1000<br>+ 900<br>+ 800<br>+ 1,5                                        | 208-                                                                                               |
|                                                               | +600<br>+500 +                                                           | 250 - 2 600                                                                                        |
| P. Groener                                                    | $45^{2}$ $400$ $+1,1$<br>$35^{2}$ $+300$ $+1$                            |                                                                                                    |
|                                                               | $30^{\circ}$ + $250$ + $0.9$<br>$25^{\circ}$ + $200$ + $0.8$             | + 0,8 300 -<br>- 0,7 -<br>- 0,6                                                                    |
|                                                               | 20° + + 180<br>160<br>140<br>- 140                                       | - 0,5 250<br>- 0,4                                                                                 |
| th I table Lotes, St famis Lawkark we fammers on over 1971 19 | $15^{\circ}$ $120$ $100$ $100$ $105$                                     | $\begin{array}{c cccc} + 0.35 & 200 + \\ + 0.30 & 190 + \\ - 0.25 & 150 + \\ 100 + \\ \end{array}$ |
|                                                               |                                                                          | $\begin{array}{cccc} + 0.2 & 100 \\ + 0.2 & 100 \\ + 0.16 & 150 \\ - 0.16 & 140 \end{array}$       |
|                                                               | 10 <sup>2</sup> + 40                                                     | 0,14 130 -<br>0,12 120 -<br>0,12 120 -                                                             |
|                                                               | 8 <sup>+</sup> + 30 + 0,3<br>25                                          | $\begin{array}{cccc} & & & & & & & & & & & & & & & & & $                                           |
|                                                               | 7*+ +20<br>+ +16<br>6*+ +16                                              | - 0,06<br>- 0,05 80 -                                                                              |
|                                                               | 5 <sup>4</sup>                                                           |                                                                                                    |
|                                                               | 4°                                                                       | +0.025 55 + 0.02 50 + 0.02                                                                         |
|                                                               |                                                                          |                                                                                                    |
|                                                               | -3                                                                       | - 0,01 35-<br>- 0,008 20                                                                           |
|                                                               | -2                                                                       | - 0,006                                                                                            |
|                                                               | Abh.d.math.phys KI XXVII 4 Abh                                           | Lith. Anst. Hubert Köhler, München,                                                                |