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Abstract

The north polar regions, in particular the northern Nordic Seas, are one of the most
important gateways between the Arctic Ocean and the northern Atlantic. They are
characterized by strong heat exchange to the atmosphere, freshwater inflow from the
outlet glaciers, drifting sea ice and water masses flowing polewards and in equatorial di-
rection. Particularly in this region, an increased heat exchange between the upper ocean
layer and the atmosphere and the mixing of fresh polar with salty North Atlantic water
has an effect on the density distribution of the water and thus on the thermohaline circu-
lation. Changes in the northern Nordic Sea’s circulation can cause changes to the global
and local climate conditions. This motivates the continuous and homogeneous monitor-
ing of geostrophic surface currents by satellite altimetry. However, in polar regions the
observation of ocean currents, using for example satellite altimetry, is challenging and
limited by difficult observation conditions for example caused, for example, by a rough
sea state and sea ice conditions.

In order to overcome these challenges and provide a more comprehensive view on the sea
surface circulation, this thesis focuses on developing a method for a homogeneous and
gapless representation of geostrophic ocean surface currents by combining along-track
satellite altimetry observations from 1995-2012 with simulated water heights referring
to a geopotential surface provided by a high-resolution ocean model. The combination
differs from conventional assimilating strategies, because it links simulated and observed
data at the same processing level, sticking more to the observational part (i.e. altimetry
data) and using only the model to bridge periods, where observations are missing or not
available.

In order to use satellite altimetry observations in that area, sea ice-dedicated algorithms,
such as an unsupervised classification for the reliable detection of open water observa-
tions within the sea ice domain and retracking of altimeter radar echoes during open
ocean and sea ice conditions, are presented. Moreover, a validation procedure, based
on external Synthetic Aperture Radar images and image processing methodologies has
been successfully applied and indicates an overall good classification performance. The
algorithms are developed for altimeters operating in different observation configurations
and can be adapted to all existing satellite altimetry missions.

The combination of the conceptually different data sources is performed in terms of dy-
namic ocean topography (DOT) elevations. Therefore, a comparison of both quantities
has been performed, revealing good agreement in terms of the dominant annual circu-
lation and major variability patterns, and recommends a combination to benefit from
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Abstract

the advantages of both datasets. However, limitations regarding the model setup, the
profiled altimetry data, for example, in relation to the underlying geoid model have to be
considered. Particularly, in the case of the geoid model, a comparison of several marine
gravity fields reveals the need for improvement of existing geoid models including the
use of an updated gravity database. Moreover, the comparison shows that all investi-
gated marine gravity models suffer from different effects and a direct improvement is not
noticeable.

The combination is based on a Principal Component Analysis, merging the 50 major
spatial dynamic ocean topography (DOT) variability patterns with the temporal vari-
ability of the profiled altimetry-derived DOT heights. The result are daily homogeneous
spatio-temporal consistent triangular meshes with a spatial resolution of up to 1 km
covering a time span of 17 years.

A short data exploitation shows a slight decreasing velocity trend in northwards flowing
warm Atlantic water and a negative correlation of circa 75% to warm and cool sea surface
temperature periods, in contrast to the water masses flowing southwards experiencing
a positive velocity trend. Furthermore, the combination method enables the detection
of different flow branches of major, but also of smaller currents. In particular near the
coast of East Greenland, the combination method enables the observation of current
patterns, which are covered by sea ice most of the time.

Generally, the innovative combination of along-track altimeter DOT observation and
simulated water heights, based on a Principal Component Analysis (PCA) can contribute
to a deeper knowledge of the ocean surface circulation in a very climate significant
region.
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Zusammenfassung

Das nördliche Nordmeer, gelegen zwischen Grönland, Island und Norwegen, stellt eine
der wichtigsten Verbindungsrouten zwischen dem Arktischen Ozean und dem Nordat-
lantik dar. Es ist gekennzeichnet durch starke Wärmeaustauschprozesse zwischen Ozean
und Atmosphäre, Süßwassereintrag der anliegenden Gletscher, driftendes Meereis sowie
pol- und äquatorwärts strömende Wassermassen. Gerade in dieser Region wirkt sich
ein verstärkter Wärmeaustausch zwischen der oberen Ozeanschicht und der Atmosphäre
sowie die Vermischung von frischem polarem mit salzigem Nordatlantikwasser auf die
Dichteverteilung des Wassers und damit auf die thermohaline Zirkulation aus. Verände-
rungen in der Ozeanzirkulation des Nordmeeres können sich einerseits auf die lokalen kli-
matischen Bedingungen auswirken, aber andererseits auch auf die globale Ozeanströmung.
Dieser Zusammenhang motiviert die kontinuierliche und lückenlose Beobachtung von
geostrophischen Oberflächenströmungen mittels der Satellitenaltimetrie. Jedoch stellt
dies in polaren Regionen durch schwierige Beobachtungsbedingungen, verursacht zum
Beispiel durch Meereisbedeckung oder rauen Seegang, eine Herausforderung dar.

Um diese Schwierigkeiten zu überwinden und um einen umfassenden Blick auf die Mee-
resoberflächenzirkulation zu ermöglichen, zielt die Arbeit auf die Entwicklung einer Me-
thode zur homogenen und lückenlosen Darstellung geostrophischer Meeresoberflächen-
strömungen ab. Dafür werden Beobachtungen der Satellitenaltimetrie zwischen 1995 und
2012 mit simulierten Wasserhöhen von einem hochaufgelösten Ozeanmodell kombiniert.
Beide Datenquellen beziehen sich dabei auf eine geopotenzielle Referenzoberfläche. Die
Kombination unterscheidet sich von herkömmlichen Assimilationsstrategien in der Hin-
sicht, dass sie simulierte und beobachtete Daten auf dem gleichen Prozessierungsniveau
verbindet, wobei sie sich mehr auf die Beobachtungen der Altimetrie stützt und das
Modell zur Füllung oder Überbrückung von Beobachtungslücken verwendet wird.

Um Altimeterbeobachtungen zuverlässig in polaren Gegenden nützen zu können, vor
allem in Meereisregionen, werden spezielle Verfahren benötigt. Beispielsweise wird ein
Klassifizierungsverfahren entwickelt, welches selbständig und ohne Vorwissen, basierend
auf künstlicher Intelligenz, Altimeterbeobachtungen aus offenen Wasserstellen innerhalb
des Meereises detektiert. Zusätzlich wird ein speziell entwickelter Ansatz zum Abtas-
ten des Radarsignals und zur Bestimmung des Abstands zwischen Oberfläche und der
Flughöhe des Satelliten genutzt. Das sogenannte Retracking-Verfahren ist in der Lage
reflektierte Radarechos aus Meereisgebieten und dem offenen Ozean in einem Ansatz
abzutasten um den Abstand zwischen Satellit und Erdoberfläche unabhängig von der
Oberflächeneigenschaft zu bestimmen.
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Zusammenfassung

Der Retracker- sowie Klassifizierungsalgorithmus werden innerhalb der Arbeit vorge-
stellt. Teil der Klassifizierung ist zusätzlich eine automatische quantitative Validierung,
welche auf externen Radarbildern und Methodiken der Bildverarbeitung basiert und eine
insgesamt gute Klassifizierungsleistung aufzeigt. Die entwickelten Ansätze sind auf ver-
schiedene Altimeter Beobachtungskonzepte anwendbar und können an alle bestehenden
Altimetriemissionen angepasst werden.

Die Kombination der konzeptionell völlig unterschiedlichen Daten erfolgt auf Basis der
dynamischen Ozeantopographie (DOT). Dazu wird ein Vergleich beider Datensätze durch-
geführt, der eine insgesamt gute Übereinstimmung in Bezug auf jährliche Schwingungen
und deren wichtigsten Variabilitätsmuster aufzeigt. Der Vergleich empfiehlt die Kombi-
nation, um von den Vorteilen beider Datensätze profitieren zu können. Dennoch müssen
Limitierungen bezüglich des Modells und dessen Aufbau sowie der auf den Bodenspuren
vorhandenen Altimeterbeobachtungen, zum Beispiel in Bezug auf das verwendete Geoid
Modell, berücksichtigt werden. Insbesondere im Falle des Geoidmodells zeigt ein Ver-
gleich mehrerer mariner Schwerefelder die Notwendigkeit zur Verbesserung bestehender
Geoidmodelle durch beispielsweise aktualisierte und erweiterte Schwerebeobachtungen.
Darüber hinaus zeigt der Vergleich, dass alle untersuchten marinen Schwerefeldmod-
elle von unterschiedlichen Effekten betroffen sind und eine direkte Verbesserung nicht
erkennbar ist.

Im Wesentlichen basiert die Kombination auf einer Hauptkomponentenanalyse, welche
die 50 signifikantesten räumlichen Muster, abgeleitet aus dem Modell, mit der zeitlichen
Variation der Altimeter abgeleiteten DOT Höhen verbindet. Das Ergebnis ist ein 17
Jahre umfassender, täglicher, räumlich-zeitlich konsistenter Datensatz auf Basis eines
dreiecksvermaschten Gitters mit einer räumlichen Auflösung von bis zu 1 km.

Eine Datenauswertung zeigt einen leicht abnehmenden Geschwindigkeitstrend im pol-
wärts fließenden warmen Atlantikwasser und eine negative Korrelation von ca. 75% zu
warmen und kühlen Perioden der Ozeanoberflächentemperatur. Im Gegensatz zu den
äquatorial strömenden Wassermassen, welche einen ansteigenden Geschwindigkeitstrend
aufweisen. Darüber hinaus ermöglicht die Kombination die Erfassung verschiedener
Strömungsäste größerer, aber auch kleinerer Strömungen. Insbesondere in der Nähe der
ostgrönländischen Küste zeigen sich durch die Kombination Strömungsmuster, welche
hauptsächlich von Meereis bedeckt sind.

Zusammenfassend kann die vorgestellte neuartige Kombination aus Altimeter Beobach-
tungen und simulierten Wasserhöhen, unter zentraler Verwendung der Hauptkomponen-
tenanalyse zu einem tieferen Verständnis der Ozeanoberflächenzirkulation in einer für
das regionale aber auch globale Klima relevanten Region beitragen.
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1 Introduction

1.1 Background and Motivation

The West Spitsbergen Current (WSC) and East Greenland Current (EGC) are the most
important transport routes of warm and saline water masses from the northern Atlantic
Ocean in the Arctic Ocean and vice versa of cold and fresh polar water to the northern
Atlantic Ocean. Both current systems cross the northern Nordic Seas are characterized

by a total water volume transport of about 8 Sv - 10 Sv (1 Sv = 106
m3

s
) in both

directions at the Fram Strait region (Blindheim and Østerhus (2013), Rudels (2012))
and play a significant part of global circulation.

The ocean surface circulation in polar regions is affected by local winds, the sea ice
drift causing drag effects and density differences as well as strong horizontal salinity
gradients at the water surface due to inhomogeneous distribution of freshwater (Armitage
et al. (2017)). In particular, strong differences in the horizontal pressure gradient cause
accelerations in the geostrophic surface flow. Especially in the last decades, changes
in the surface circulation, due to an increased inflow of warm Atlantic water to the
Arctic Ocean, in connection with an enhanced mass loss of the Greenland ice sheet and
a thinning of the sea ice coverage, can be observed (e.g. Kwok et al. (2009), Holliday
et al. (2008), Church et al. (2004)).

Most of these studies are based on water flow simulations from dedicated ocean current
models or observations from in situ systems measuring the velocity and flow direction
at certain geographic locations. However, the latter are not able to provide spatially
homogeneous distributed ocean current observations for a longer time period due to a
sparse availability and irregular spatial distribution.

Ocean current models provide a large number of different spatio-temporal homogeneously
distributed ocean current parameters. They enable detailed studies of individual com-
ponents that contribute to the surface flow. However, they are limited to predefined
mathematical equations and boundary conditions that only approximate the true state
of the ocean circulation. Furthermore, ocean models are dependent on their forcing data,
which significantly impact the level of detail and resolution of the simulation.

Even with the usage of space-based remote sensing techniques, a complete and direct
observation of the geostrophic surface current components without applying further in-
terpolation and transformation routines is not possible. Moreover, spaceborne obser-
vation techniques cannot provide direct measurements of geostrophic surface currents,
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1 Introduction

since they can only observe physical and geometrical height differences, which, however,
enable the determination of the dynamic ocean topography (DOT). The DOT is the
difference between the sea surface height (SSH) and the geoid, which deviates up to
2 meters in amplitude, caused by hydrodynamic processes (e.g. water density and mass
variations). The DOT provides information about the oceanic mass and heat transport.
Geostrophic current components are derived by applying the geostrophic equations di-
rectly to the DOT heights. The DOT can be determined by using time-variable gravity
field observations of the Gravity Recovery And Climate Experiment (GRACE) mission,
for example. However, this only captures the variability of the water mass and neglect
steric effects. In order to provide the full DOT information, steric height variations,
for example observed by in situ buoys measuring temperature and salinity profiles from
different ocean depths must be added. In contrast, satellite altimetry enables the geo-
metrical determination of the full DOT by subtracting a geoid from observed SSHs.

Since the early 90s, satellite altimeters have provided profiled SSH elevations up to
the high latitudes. However, satellite altimetry missions are placed on a fixed orbit
configuration causing fixed revisit times and ground track patterns, thus limiting spatio-
temporal comprehensive investigations of the surface circulation. In addition, altimetry
SSH observations are usually limited to open ocean conditions, which lead to data gaps
and irregular data sampling during sea ice conditions, since it is not possible to look
through or under the ice layer. Nevertheless, the sea ice cover is not an uniform surface,
but is interrupted by narrow elongated cracks (i.e. leads) and circular water openings
(i.e. polynya) that allow a view of the sea level within the sea ice domain. Moreover,
leads and polynyas have a significant contribution to ocean-atmosphere interaction, since
they allow an barrier-free exchange of heat between the ocean and the atmosphere (e.g.
Persson and Vihma (2016)). However, these small water openings within the ice are
dynamically changing its shape, location and size due to ocean currents, rapid changing
air temperatures and local wind conditions. Their size can range from several meters to
kilometers. Due to the shielding of the open ocean by the surrounding ice cover, the sea
state conditions within these areas are calm, showing nearly no wave movements.

In connection with the global climate relevant importance of the northern Nordic Sea,
the main motivation of the thesis has been to perform deep and comprehensive inves-
tigations of the geostrophic ocean surface currents in polar regions, strongly influenced
by sea ice and harsh environmental conditions, through a combination of observational
and simulated data, by benefiting from both data sources. The study aims at a com-
bination more from an observational perspective, using model data, when observations
are not available. It is not the object to improve existing ocean models by assimilating
observational data. Instead the study focuses more on a linkage of datasets at the same
data processing level. The combination is done based on the dynamic ocean topography
and aims at the creation of a novel dataset providing a comprehensive description of the
temporal evolution of geostrophic ocean surface currents in the northern Nordic Seas.
The major output of the work consists of combined, time-variable geostrophic ocean
current components and DOT maps featuring a high spatio-temporal resolution.
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1.2 Research Goals

1.2 Research Goals

In connection with the given motivation, the thesis addresses four key questions:

❼ How can altimetry sea surface height observations from open water
bodies within the sea ice domain be identified and how can this be
validated?

❼ How do simulated and observed dynamic ocean topography data differ
and what should be considered when combining them?

❼ How does the combination work and how can it be validated?

❼ What can be learned from the combination dataset about the temporal
variation of the surface currents in the northern Nordic Seas and what
should be done in future studies to improve the results?

The questions are answered below. The first three questions refer to the four publications
this thesis is based on. The last question is addressed in a data exploitation (see Sec. 4).
At first, an overview about the investigation area, in particular of the ocean circulation
in the northern Nordic Seas, is given.

1.3 Ocean currents in the northern Nordic Seas

The northern Nordic Seas comprise the Greenland Sea in the center, the Barents Sea in
the east, the Fram Strait in the north and is limited by the northeast coast of Greenland
in the west. Southern parts adjoin the Norwegian Sea and the Denmark Strait. Trans-
ferred to geographic coordinates, the investigation area is defined by 72◦N to 82◦N and
−30◦W to 30◦E (Figure 1.1) and belongs to the Arctic peripheral seas. The northern
Nordic Seas are characterized by complex bathymetric structures, steep slopes, depths
of up to 5600 m and shallow water as well as large shelf regions. The ocean bottom
topography has a significant influence on the ocean currents in this region, which can be
observed by the pathway of the WSC near the shelf edge of the Barents Sea (Koszalka
et al. (2011), Orvik and Niiler (2002)).

The northern Nordic Seas depict the most important water mass exchange area between
the Arctic Ocean and the North Atlantic (Blindheim and Østerhus (2013)). Warm
Atlantic Water, coming from the Gulf Stream is carried by the Norwegian Atlantic
Current and further northwards by the WSC through the Fram Strait via the Yermak
and Svalbard branches into the Arctic Ocean (total transport circa 7 Sv, Rudels (2012)).
Along the way, the warm Atlantic Water (6-8◦C) cools down and interacts with cold air
masses, causing strong heat fluxes to the atmosphere (Brambilla et al. (2008)). This
ocean-atmosphere interaction, stronger in the winter season (von Appen et al. (2016)),
contributes significantly to the air temperature in northwestern Europe during winter
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1 Introduction

(e.g. Rhines et al. (2008)). However, not all Atlantic Water enters the Arctic Ocean;
nearly 45% (e.g. Teigen et al. (2011), de Steur et al. (2014)) recirculates and flows
southwards mixing with the cold and less saline EGC.

Figure 1.1: Topography based on Refined Topography-2 (RTopo2) model (Schaffer et al. (2016))
and major surface flow of the northern Nordic Seas including the Greenland Sea
(GS), Barents Sea (BS), and Fram Strait (FS). The Arctic Ocean (AO), Denmark
Strait (DS) and Norwegian Sea (NS) mark adjacent seas. Red arrows indicate
inflowing Atlantic Water (West Spitsbergen Current, WSC; Yermak Branch, YB;
Svalbard Branch, SB and Norwegian Atlantic Current, NWAC). Outflowing Polar
Water is highlighted in blue (East Greenland Current, EGC; North-East Greenland
Coastal Current, NEGCC). Thinner lines indicate subordinated currents.

Polar Water from the Arctic Ocean is transported southwards by the EGC along the
eastern coast of Greenland through the western Fram Strait and Greenland Sea, where
it merges with recirculating warm and saline Atlantic Water and inflowing freshwater
from the outlet glaciers along the east coast of Greenland. The EGC shows different
vertical layers with the less dense freshwater at the upper layer, the Atlantic Water
in the intermediate depths and dense polar water in the deepest regions. This layer
distribution does not remain stable along the EGC pathway (H̊avik et al. (2017)). The
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1.4 Thesis outline

EGC represents the most important freshwater route, with a total transport volume
of about 9 Sv, between the Arctic Ocean and the North Atlantic (e.g. de Steur et al.
(2014), Woodgate et al. (1999)).

The exchange of warm saline Atlantic Water with fresh Polar Water in the northern
Nordic Seas plays an important role in the Atlantic and the global thermohaline cir-
culation (Talley (2008), Langehaug et al. (2016)). Furthermore, the Fram Strait is the
main gate for the sea ice export from the Arctic Ocean. Nearly 90 % of the Arctic sea
ice is exported via the EGC through the Fram Strait (Rudels et al. (1999)). The sea
ice cover prevents the ocean from losing heat by forming a kind of insulation. However
in recent years, the sea ice volume, thickness and coverage have been dramatically de-
creasing, leading to an enhanced ocean heat loss and changed circulation conditions (e.g.
Selyuzhenok et al. (2020), Armitage et al. (2017), Kwok et al. (2009)).

1.4 Thesis outline

This thesis is based on four publications covering the three main research topics, (1)
the reliable exploitation of along-track altimetry observations within the sea ice zone
including a validation process based on image processing methods (i.e. P-1.1, P-1.2), (2)
the determination of profiled DOT heights and a comprehensive comparison of them with
simulated water heights (i.e. P-2), and (3) the generation of an improved representation
of geostrophic ocean currents in the northern Nordic Seas (i.e. P-3):

P-1.1 Müller, F. L., Dettmering, D., Bosch, W., and Seitz, F. (2017). Monitoring the
arctic seas: How satellite altimetry can be used to detect open water in sea-ice
regions. Remote Sensing, 9(6), ISSN: 2072-4292, DOI: 10.3390/rs9060551

P-1.2 Passaro, M., Müller, F. L., and Dettmering, D. (2018b). Lead detection using
cryosat-2 delay-doppler processing and sentinel-1 sar images. Advances in Space
Research, 62(6):1610 – 1625, ISSN: 0273-1177, DOI: 10.1016/j.asr.2017.07.011

P-2 Müller, F. L., Wekerle, C., Dettmering, D., Passaro, M., Bosch, W., and Seitz,
F. (2019b). Dynamic ocean topography of the northern nordic seas: a comparison
between satellite altimetry and ocean modeling. The Cryosphere, 13(2):611–626,
DOI: 10.5194/tc-13-611-2019

P-3 Müller, F. L., Dettmering, D., Wekerle, C., Schwatke, C., Passaro, M., Bosch,
W., and Seitz, F. (2019a). Geostrophic currents in the northern nordic seas from a
combination of multi-mission satellite altimetry and ocean modeling. Earth System
Science Data, 11(4):1765–1781, DOI: 10.5194/essd-11-1765-2019

Figure 1.2 arranges the four publications and gives an overview of the logical order of the
studies. All investigations and studies are conducted in the northern Nordic Seas. The
thesis is divided into an observational part at the beginning (see Sec. 2) only referred
to satellite altimetry and data processing, followed by an assessment section, evaluating
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1 Introduction

the combination of simulated and observational data, completed by the combination
approach (see Sec. 3). The thesis closes with an exploitation of the obtained results and
final remarks.

Figure 1.2: Connection of the four publications, which set the frame for this thesis. Light blue
indicates investigations based on observational datasets only, blue the usage of both,
simulations and observations. The arrows outline results and obtained knowledge
that are transferred between the publications.

After introducing satellite altimetry missions observing north polar oceans in Section 2.1,
the basic measurement principle of satellite altimetry and the concept of deriving geostrophic
currents are explained in Section 2.2. Challenges related to the computation of geostrophic
currents are described in Section 2.3. In particular, problem areas due to the complex
observation environment, but also due to irregularities of the used gravity field data,
are described. Section 2.3 starts with a comparison and assessment of different ma-
rine gravity fields followed by the description of a retracking algorithm developed for
open ocean and sea ice conditions and an unsupervised classification method in order
to assign altimeter radar echoes to open-water or sea ice conditions. The classification
method developed in P-1.1 is applied to radar echoes (i.e. waveform) of the Ku-band
operating European Space Agency (ESA) Environmental Satellite (Envisat) and Centre
National d’ Études Spatiales (CNES)/Indian Space Research Organisation (ISRO) satel-
lite mission, Satellite with Argos and AltiKa (SARAL) working in Ka-band. Moreover,
the developed classification strategy is applied to the ESA mission, European Remote
Sensing Satellite-2 (ERS-2) and used in P-3.
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1.4 Thesis outline

The algorithm applied is based on the idea of an unsupervised waveform assignment re-
quiring the application of artificial intelligence techniques such as partitional clustering
(e.g. K-medoids). The classification approach is evaluated by an automatic and quan-
titative validation process comparing classified altimeter observations with Synthetic
Aperture Radar (SAR) images of RADARSAT-2 (Japan Aerospace Exploration Agency
(JAXA)/Mac Donald, Dettwiler and Associates Ltd. (MDA)), JAXA Advanced Land
Observing Satellite (ALOS) and ESA/Copernicus mission Sentinel-1A by using image
processing techniques. The validation approach is explained in P-1.2.

After cleaning up the altimeter database from measurements affected by sea ice, a trans-
formation to DOT heights is performed, aiming at a comparison between the obser-
vational and model database. The comparison, examined in P-2, is based on Envisat
observations and water heights of the Finite Element Sea Ice Ocean Model (FESOM).
Therefore, Subsection 3.1 gives a brief introduction to the key aspects of ocean current
model FESOM.

Finally, after analyzing both datasets, P-3 describes the combination and the generation
of a combined DOT and geostrophic surface current dataset. The combination approach
is mainly focused on a Principal Component Analysis (PCA), a method which is often
applied to data reduction of multivariate timeseries data and commonly used for sea
level reconstruction, mapping the sea level before spaceborne remote sensing techniques
are launched (e.g. Church et al. (2004)).

The thesis closes with a brief data exploitation (Sec. 4) highlighting the potential of the
combined surface currents and concluding remarks as well as an outlook pointing out to
further future improvements in Section 5.
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2 Satellite altimetry in the northern Nordic
Seas

This chapter provides an introduction to the different radar satellite altimetry missions
covering the northern Nordic Seas and gives an overview about the basic observation
principle. The description of the satellite altimetry missions and observation principle
is limited to the satellite altimetry missions, which are used in the investigation.

In addition, more detailed information on the derivation of geostrophic surface currents
from sea surface height and connected challenges in the polar regions are presented. In
particular, Chapter 2 addresses issues to derive reliable sea surface height observations in
regions, which are affected by sea ice coverage and rapid changing environmental sea state
conditions. A novel classification algorithm is introduced, which enables an unsupervised
assignment (i.e. without the usage of pre-known training data) of radar echoes to open-
water or sea ice conditions. Moreover, a quantitative and automatic validation process
based on external SAR images is performed to evaluate the classification performance.
Chapter 2 includes the results and investigations of P-1.1 and P-1.2.

2.1 Altimetry missions in the northern Nordic Seas

Satellite radar altimeters were designed primarily for the consistent monitoring of the
global sea level, including the northern polar regions, which have been covered by vari-
ous satellite altimetry missions since the early nineties. Between 1991 and 2012, radar
altimeters mounted on ESA missions, European Remote Sensing Satellite-1 (ERS-1),
ERS-2 and Envisat and from 2013 CNES/ISRO mission SARAL provide sea surface
height information in polar regions until a latitudinal limit of 81.5◦N.

One of the first altimeters was mounted on ERS-1, which observed the northern Nordic
Seas between 1991 and early 2000. The successor mission ERS-2 was launched in 1995
and provided range measurements until 2003. Moreover, ERS-2 was placed on a repeat-
orbit configuration, which means that the satellite is repeating its ground track after a
certain time. In the case of ERS-2, this revisit time is set to 35 days. Unfortunately,
after June 2003, a failure in the data storage management led to data gaps. ERS-2 was
deorbited in 2011.

In 2002, Envisat was placed into the same orbit and continued data acquisition. In Oc-
tober 2010, Envisat left its nominal mission phase and was relocated on a drifting orbit
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2 Satellite altimetry in the northern Nordic Seas

configuration, which means that the satellite is not able to retain its fix defined orbit and
starts drifting. This may be due to instrument failures or the satellite has been deliber-
ately placed in a drifting orbit for various reasons (e.g. changed observation strategy).
In the case of Envisat, declining fuel reserves led to a change of orbit that allows an
extended mission phase (i.e. Envisat-EM). Due to an unexpected communication loss,
Envisat was decommissioned in May 2012.

10 months later, SARAL was brought at the same orbit of ERS-2 and Envisat, continuing
sea surface monitoring until July 2016. Due to an issue in the steering wheels of SARAL,
the satellite had to leave its nominal mission phase entering a drifting orbit. In contrast
to the in Ku-band (13.6 GHz) working ESA missions, SARAL operates in Ka-band
(35.75 GHz) showing a smaller footprint (i.e. by the radar altimeter illuminated area
at the surface) up to 8 km (Bronner et al., 2016) versus 10 km of Envisat (Connor
et al., 2009). Beside the footprint, further instrumental modifications led to an increased
observation sampling rate of 40 Hz (175 m observation spacing on Earth) instead of 18 Hz
(circa 400 m observation spacing on Earth) in the case of the ESA missions.

Figure 2.1 displays the temporal coverage of all satellite altimeter missions used in this
thesis. All missions are on the same 35-day repeat-orbit configuration, except the ex-
tended mission phase of Envisat, which is characterized by drifting ground track patterns
with revisit times of nearly 30 days. Further satellite altimetry missions, for exam-
ple CNES/National Aeronautics and Space Administration (NASA) missions Jason-1,
Jason-2 or Jason-3, are not used because they do not reach the northern Nordic Seas,
due to different orbit characteristics. Other missions reaching the northern Nordic Seas
such as the drifting phase of SARAL, ESA/Copernicus satellites Sentinel-3A and B,
launched in 2016 and 2018 and Ice, Clouds, and Land Elevation Satellite (ICESat) as
well as Ice, Clouds, and Land Elevation Satellite-2 (ICESat-2) operated by the NASA
are not part of the investigation, since they do not cover the study period ranging from
1995 to 2012 and are characterized by a significantly changed observation as well as in-
strumental strategy (i.e. laser altimetry). ERS-1 and ESA Earth Explorer Opportunity
Mission-2, CryoSat-2 are not part of the investigations, the first due to low quality of
the radar echoes resulting in a reduced accuracy and the latter due to not yet adapted
algorithms, considering the observation methodology of SAR altimetry. In Appendix,
Figure A.1 provides an overview about the orbit configuration of the used ESA mis-
sions and SARAL and shows the limited spatial coverage of the CNES/NASA missions.
Table A.1 summarizes key aspects of the used altimetry missions.

The thesis refers to Ku-band altimeters between 1995 and 2012 and includes additionally
Ka-band observations between 2013 and 2016. Due to a different radar band, SARAL
and Envisat radar observations are used to develop and test the unsupervised classifica-
tion algorithm in publication P-1.1. However, SARAL as well as the drifting phase of
SARAL are not part of P-3 due to a time gap between the end of Envisat and the launch
of SARAL. Considering feasible measurements of Envisat and the temporal availability
of the ocean current model (i.e. FESOM), the comparison of altimetry-derived dynamic
ocean topography (DOT) heights and simulated differential water height (DWH) in P-2
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2.2 Radar altimetry - from the observed radar signal to geostrophic surface currents
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Figure 2.1: Timeline of radar altimetry missions included in the thesis and their application in
each publication.

is limited to 2003-2009. On the other hand, ERS-2 and Envisat observations are included
in the combination approach, described in P-3 enabling the generation of a combined
DOT and geostrophic surface current dataset covering a time span of 17 years.

2.2 Radar altimetry - from the observed radar signal to
geostrophic surface currents

2.2.1 From the observed radar signal to sea surface heights

Generally, all satellite altimeters orbiting the Earth measure the distance (i.e. range)
between the satellite and the surface of Earth. Figure 2.2 shows on the left side the
observing principle and on the right the geometrical linkage to different reference sur-
faces.

In order to observe the distance between the radar altimeter and the surface, the antenna
emits short sequences of electromagnetic pulses in nadir direction to the ground level.
The radar pulses hit the surface, illuminate a circular region (i.e footprint) and are
reflected back to the satellite, where they are recorded by the on-board receiver. In the
case of pulse-limited altimeters, the illuminated area during a measurement is set by
the length of the emitted radar pulse, but can vary dependent on the roughness of the
surface and instrumental adjustments (Vignudelli et al. (2019)).

Each registered radar echo is sampled and divided into pre-defined time windows (i.e.
range bins), defining the altimeter waveform. For example, in the case of Envisat, each
range bin corresponds to a time interval (t) of about 3.125 ns (Vignudelli et al. (2011)),
which can be converted to a height of 46.84 cm by multiplying t by the speed of light
and divide it by 2 considering a one-way measurement. The length of the waveform
is dependent on instrumental characteristics and can vary between 64 and 128 bins,
which refer in the case of Envisat to a window of circa 60 m. Due to changing surface
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2 Satellite altimetry in the northern Nordic Seas

Figure 2.2: Observation (left) and geometric (right) principle of satellite altimetry.The left side
shows in an exemplary way an Envisat waveform during normal open ocean con-
ditions. The retracked range (rret) and the epoch are shown in red, the reference
range (rref ) in black. Circles indicate the propagation direction of the radar signals
hitting the surface. The right side displays the relationship between range, orbital
height, sea surface height, geoid and dynamic ocean topography.

conditions caused by various sea states, for example, the waveform shape can vary.
Smooth surface conditions result in very narrow and peaky waveforms in contrast to
open ocean conditions leading to broader waveform types. Each waveform provides
information about the nature of the reflective surface and backscattered energy.

In order to obtain a high observation accuracy, so-called retracking algorithms such as the
Adaptive Leading Edge Subwaveform+ (ALES+) retracker (Passaro et al. (2018a)) or
threshold based approaches (e.g. Davis (1997)) are designed to find the most likely point
at the surface level (i.e. epoch) by sampling waveforms using physical or mathematical,
numerical models. The obtained range within this 60 m interval is labeled as retracking
range (rret). The full range between the satellite and the Earth’s surface is estimated
by adding the reference range (rref ) to rret. The reference range depends on the Earth’s
topography and is steadily adapted by the on-board processing system.

For many applications, the sea surface height, which means the distance between the
water surface and the reference ellipsoid, is required. Therefore, the satellite’s altitude
above the reference ellipsoid (Hsat) is provided by precisely determined orbit parameters,
based on space-geodetic observations such as Satellite Laser Ranging (SLR), Doppler Or-
bitography and Radiopositioning Integrated by Satellite (DORIS) and Global Navigation
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2.2 Radar altimetry - from the observed radar signal to geostrophic surface currents

Satellite System (GNSS) observations. SSHs are then obtained by subtracting the range
(R) from Hsat, referred to the center of mass of the satellite. Equation 2.1 shows this
relationship:

SSH = Hsat −R (2.1)

In order to provide meaningful SSHs, altimeter range observations need to be corrected
for geophysical influences, path delays caused by the atmosphere and for effects of the
illuminated surface, which expands Equation 2.1 to:

SSH = Hsat − (R+
∑

Ratm +
∑

Rgeo +
∑

Rsurf +
∑

Rinstr) (2.2)

The following paragraph lists all effects and magnitudes, described in Rosmorduc et al.
(2018).
∑

Ratm includes atmospheric path delays caused by the ionosphere and troposphere
affecting the radar signal directly. The ionosphere causes an attenuation of the radar
signal, due to the atmosphere’s electronic content. In order to account for ionospheric
path delays, a correction is applied to the altimeter range, gathered from models or
two-frequency altimeters. The magnitude of the correction ranges between 0 m and
0.5 m.

Effects caused by the troposphere are divided into a dry proportion, accounting for dry
gases (e.g. oxygen, nitrogen) and a wet part consisting of water vapor and liquid water
in the atmosphere. The correction for the dry proportion is generally taken from models,
in the case of the wet part, the correction is obtained from models, but can also directly
observed by a microwave radiometer. The magnitude of the correction varies between
0 m and 0.5 m for the wet part and is about 2.3 m for the dry troposphere.
∑

Rgeo indicates geophysical effects, which are not acting on the radar signal directly,
but have to be reduced in order to observe the sea level properly. The biggest amount
of the geophysical influences is induced by the attraction of the Sun and Moon. Ocean,
solid earth, pole tides and tidal loading effects can cause sea level height variations
up to 15-20 m, in total. Moreover, atmospheric loading and wind forcing effects are
considered by the inverse barometric correction and high resolution barometric models.
The combination of air pressure changes at a low frequency and impacts due to wind
forcing at high frequencies is summarized as dynamic atmosphere correction, which
features a magnitude of about 0.15 m.
∑

Rsurf is referred to the surface on which a radar signal is reflected. In this category, the
biggest error budget (circa 50 cm) on range observations is caused by the electromagnetic
bias or sea state bias. The sea state bias correction compensates amplification and
damping effects in the backscattered power of the returning radar echo reflected by
ocean wave troughs and crests. It is mainly estimated by empirical approaches modeling
the relationship between wave height and wind speed (Tran et al. (2010)).
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2 Satellite altimetry in the northern Nordic Seas

∑
Rinstr substitutes corrections, which are applied due to biases or drifts within the

instrument and the radar signal processing chain. For example, biases (e.g. time tag)
can occur due to drifting effects of the Ultra-Stable Oscillator (USO), which defines the
exact time a radar pulse is emitted. The order of magnitude Rinstr is about 0.01 m.

Besides, pulse-limited satellite altimetry missions, so-called SAR or Delay-Doppler (DD)
altimeters (e.g. CryoSat-2), provide SSH information. The main difference to pulse-
limited altimetry lies in the on-board processing of the incoming radar echoes because
the Doppler bandwidth is fully exploited. DD altimeters record reflected radar signals
of an illuminated area as long it is visible (e.g. Raney (1998)). This improves the
signal-to-noise ratio and leads to higher range accuracy up to a factor of 2 (Phalippou
and Enjolras (2007)). However, due to this changed observation strategy, the waveforms
are characterized by a different shape and power properties resulting in an necessary
adaption of the retracking algorithm, which is not part of the current study.

2.2.2 From sea surface heights to geostrophic currents

Satellite altimetry enables the study of the geostrophic component of the major ocean
currents. In order to derive surface ocean currents from altimetry observations, the
deviation of the sea surface with respect to a geoid, called the dynamic ocean topography,
needs to be computed. The geoid is defined as an equipotential surface of the Earth’s
gravity field depending on the mass distribution and the angular velocity of the Earth.
It approximates very closely the mean sea surface. However, hydrodynamic processes
due to changes in salinity and temperature cause deflections of up to 2 m in amplitude,
which define the DOT. According to ocean surface currents, the slopes of the DOT in
connection with the Coriolis force are used to derive the velocity and direction of the
geostrophic currents. In particular, DOT heights are estimated by subtracting geoid
elevations (N) above the reference ellipsoid from SSHs. Equation 2.3 illustrates the
functional relation:

DOT = Hsat − (R+
∑

Ratm +
∑

Rgeo +
∑

Rsurf +
∑

Rinstr)−N (2.3)

Geostrophic currents represent horizontal surface movements of water particles, which
result from the balance between the horizontal pressure gradients and the Coriolis force.
These horizontal pressure gradients are proportional to the sea level slope (e.g. Stewart
(2009)). Elevation differences in the sea surface cause an acceleration to the water
masses. The so-called geostrophic flow explains major ocean current patterns (e.g. Gulf
Stream) on the rotating Earth, without the influences of wind- or wave-induced current
motions (i.e. a-geostrophic currents).

In order to explain the geostrophic flow, the full momentum equation (Navier-Stokes
Equation) of a liquid mass, in Cartesian coordinates (x,y,z) and with velocity vector
v(u,v,w) is shown in Equation 2.4. The equation describes the change of momentum by
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2.2 Radar altimetry - from the observed radar signal to geostrophic surface currents

applied forces (e.g. Coriolis force, gravity, friction), which act on liquids with constant
mass.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −

1

ρ

∂p
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+ 2Ωv sinϕ+ Fx

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −

1

ρ
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∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −

1

ρ

∂p

∂z
+ 2Ωu cosϕ− g + Fz

(2.4)

where,
1

ρ
∇p is the pressure gradient, related to the density ρ, the friction Fx,y,z and

the Coriolis term 2Ω× v with the Earth angular velocity Ω. The gravity acceleration is
substituted by g and the time by t.

Assuming a stationary ocean (u = v = w = 0) with no change of momentum and
no friction of the water particles, the horizontal momentum equations are 0, while the
vertical component is dependent on g at a certain latitude (φ) and depth level (Stewart
(2009)):

1

ρ

∂p

∂x
= 0;

1

ρ

∂p

∂y
= 0;

1

ρ

∂p

∂z
= −g(φ, z) (2.5)

where
∂p

∂x
,
∂p

∂y
represent the horizontal and

∂p

∂z
the vertical pressure gradients. Equa-

tion 2.5 represents the hydrostatic equilibrium. Adding the Earth’s rotation, the water
particles, which are flowing from high to low pressure, are deflected by the Coriolis force.
The water particles are deflected to the right on the Northern Hemisphere and to the
left on the Southern Hemisphere. This phenomenon describes the geostrophic balance,
which is the balance of the Coriolis force and the pressure gradients. By assuming that
the horizontal velocities are much larger than the vertical (i.e. w << u, v) ones and g

is only an external force, the momentum equations are transformed to (Stewart (2009))
:

1

fρ

∂p

∂x
= v; −

1

fρ

∂p

∂y
= u;

1

ρ

∂p

∂z
= −g (2.6)

The Coriolis force, dependent on φ and Ω, is substituted by f = 2Ω sin(φ). v and u are
the geostrophic velocity components in meridional and zonal flow direction. Please note,
z = 0 in order to compute the geostrophic motion at the sea surface.

Applying the relationship between SSH differences and the horizontal pressure gradients
(see Stewart (2009)) and only referring to the horizontal movements, Equation 2.6 can
be transferred to:

15



2 Satellite altimetry in the northern Nordic Seas

g

f

∂h

∂x
= v −

g

f

∂h

∂y
= u (2.7)

where,
∂h

∂x
,
∂h

∂y
are now describing the slope of the DOT in x and y direction. u, v are

substituting the geostrophic velocity components at the surface, which can be derived
from satellite altimetry-derived DOT observations.

2.3 Challenges of monitoring geostrophic surface currents by

radar altimetry

The derivation of meaningful altimetry-based geostrophic surface currents is strongly
related to the reliability of the observed SSH and the quality of the used geoid model.
The following chapter provides an overview about the most significant challenges that
arise when computing geostrophic velocity components in polar oceans. The first part is
related to the description of necessary steps in the altimeter processing enabling a reliable
exploitation of the radar waveforms followed by uncertainties of the geoid model.

2.3.1 Retracking radar waveforms in the vicinity of rough sea states and sea
ice conditions

The northern Nordic Seas are characterized by ocean surface conditions that are difficult
to monitor in particular the presence of sea ice or rough sea states (Serreze and Barry
(2014)), which directly affect the shape and backscatter characteristics of the reflected
altimetry radar signal (Figure 2.3). Moreover, the complexity of the surface properties
and the transition between leads, sea ice and open ocean, which is not necessarily char-
acterized by a clear delimitation of the areas, makes it challenging to apply only one
retracking algorithm. Moreover, the application and combination of different surface
type-dedicated retracking algorithms can lead to systematic height offsets (i.e. retracker
bias), which require further processing steps (Bulczak et al. (2015), Peacock and Laxon
(2004)). In order to avoid this issue, the retracking approach must be able to handle
single-peak waveforms (Fig. 2.3, right), and open ocean (i.e. Brown-like waveform shape,
Brown (1977)) conditions, within one retracking algorithm.

Related to this requirement, Passaro et al. (2018a) developed a novel retracking strategy
(i.e. ALES+), which is essentially based on the Adaptive Leading Edge Subwaveform
(ALES) retracker (Passaro et al. (2014)), but includes an additional component for an
improved fitting of single-peak waveforms. Furthermore, ALES+ is able to provide
homogeneous range estimations for any kind of water surfaces (Passaro et al. (2018a).
However, ALES+ is not adapted to DD waveforms, which restricts the application to
pulse-limited altimetry missions.
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2.3 Challenges of monitoring geostrophic surface currents by radar altimetry

Figure 2.3: Examples of Envisat open ocean (Brown-like, left) and calm water (single-peak;
right) waveforms. Green indicates the leading edge; orange highlights the trailing
edge.

ALES+ follows mainly the steps of ALES, described in more detail in Passaro et al.
(2014). ALES is primarily developed for the precise determination of the correct leading
edge (Fig. 2.3, green waveform parts) and trailing edge slope (i.e. the angle between
green and orange waveform parts) of coastal and open ocean waveforms by selecting and
investigating the right subwaveform. ALES+ is an extension of the conventional ALES
approach to identify the correct leading edge for all kind of waveform types. Before
running the standard processing steps of ALES, ALES+ includes an additional fitting
of waveforms with a steep trailing edge by first estimating the waveform parameter
cξ, provided in the Brown-Hayne model, which is the standard functional form that
describes received altimeter waveforms (Brown (1977), Hayne (1980)). In particular, cξ
substitutes all influences on the waveform that can affect the slope of the trailing edge,
such as the antenna beam width or the mispointing angle (Vignudelli et al. (2011)).

At first, a threshold (see Passaro et al. (2018a)), based on the Pulse-Peakiness (PP)
of a waveform, decides for the standard ocean leading edge detection (i.e. ALES) or
non-standard leading edge detection(i.e. ALES+). The PP is introduced by Peacock
and Laxon (2004) and provides information about the shape of the backscattered power
distribution of the radar echo and indirectly about the reflectivity of the surface. Fur-
ther, it describes the ratio of the maximum power to the mean power of the waveform.
Waveforms, reflected by calm water areas, are characterized by a dominant peak and less
noise featuring steep leading- and trailing edges show high PP values in contrast to open
ocean waveforms, which display mainly lower PP values (see Appendix Fig. A.2). The
standard leading edge detection, applied to open ocean waveforms, follows the routines
of ALES and is explained more in detail in Passaro et al. (2014). The non-standard
leading edge detection, applied for single-peak waveforms, is described in Passaro et al.
(2018a). The following description refers to the ALES+ starting with the detection of
the leading edge, followed by the decision for an external or standard estimation of cξ.
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Leading-edge detection based on ALES+

After deciding for a non-standard leading edge detection, the first part of ALES+ refers
to the determination of the leading edge. Therefore, the waveforms are normalized
by applying a normalization factor of 1.3 · median(waveform) indicating the closest
position of the maximum power of the leading edge. The normalization factor results
from empirical tests conducted in Passaro et al. (2018a). In the next steps the start and
the stop bin of the leading edge are determined. The leading edge starts if a change of
0.01 units in comparison to the previous bin is detected and holds for at least the next
4 bins without a 10% decrease of the normalized power. The leading edge stops at the
first bin, the sign of the derivative of the rising part of the waveform changes and is kept
for the following 3 bins.

Decision of trailing edge slope computation based on ALES+

In the next processing step, the computation of the trailing edge slope parameter, cξ,
is conducted. The computation of cξ is again dependent on the PP, which decides for
an external estimation of cξ or a direct application of the conventional Brown-Hayne
model. In contrast to the first PP, the choice of cξ is related to the PP of normalized
waveforms in order to avoid inaccuracies due to the presence of other peaks in the trailing
edge. If the threshold is not exceeded, cξ is directly estimated following the conventional
application of the Brown-Hayne model. The waveform is forwarded to the standard
ALES processing. However, if the threshold is exceeded, a preliminary estimation just
based on the determination of cξ is performed. In a next step, the a-priori estimated cξ
is introduced as a pre-known parameter to the Brown-Hayne model before continuing
with the normal ALES processing procedure.

In the end, the application of ALES+ results in homogeneous estimated altimeter ranges,
which need no further processing dependent on the reflective surface. However, since
ALES+ can retrack all kinds of relevant surface types in the polar regions, as long as
a clear leading edge can be found (Passaro et al. (2018a)), further processing steps are
required to distinguish between radar echoes reflected from water areas, such as ocean
or leads, and waveforms originating from sea ice surfaces. Due to the complexity of
changing surface characteristics, a simple threshold based for example on PP, is not
enough for a reliable surface discrimination. Therefore, a classification approach based
on artificial intelligence is developed, which finds autonomously similar patterns among
the waveform dataset.

2.3.2 Artificial intelligence for radar waveform classification

The northern Nordic Seas are characterized by a seasonally occurring sea ice coverage
with a maximum in March. The melting period starts in April and accelerates until
the minimum is reached in September (Kvingedal (2013)). The sea ice conditions are
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dependent on the sea ice import through the Fram Strait and on local ice growth. Beside
drifting sea ice floes with variable size, the sea ice layer is interrupted by closed or semi-
closed open water areas, called leads and polynyas. The first are narrow and elongated
cracks and can vary from several meters to kilometers and a few meters to hundreds
of meters in width. The latter are mainly entirely closed and nearly constant areas
of open water with a more circular shape. In the northern Nordic Seas, they mainly
develop close to the coast and in the vicinity of landfast ice (i.e. stable ice anchored
to the coast). These open water areas can provide insights into the sea level within
the sea ice zone by using altimetry if dedicated detection algorithms are introduced to
the altimetry data processing chain. Beside mission-dependent fixed defined threshold
strategies (e.g. Connor et al. (2009), Peacock and Laxon (2004)), one of these detection
strategies is an innovative unsupervised classification approach, which is independent of
the radar frequency as well as mission-specific characteristics and is applied for the first
time to Ku-band radar echoes of Envisat and Ka-band waveforms of SARAL (Müller
et al. (2017)).

The unsupervised classification belongs to the so-called artificial intelligence algorithms,
which enables the detection of similar, hidden patterns within a given dataset, with-
out the use of pre-known information or training data (Xu and Wunsch (2008)). In
the present context, unsupervised classification methods are transferred to altimetry
waveforms to find similarities within a given sample of various waveforms collected from
open ocean, sea ice and lead/polynya conditions. The idea is to find single-peak wave-
forms, originating from calm water areas (i.e. leads and polynynas), and Brown-like
(open ocean) waveforms automatically (Fig. 2.3) without the use of pre-defined fixed
thresholds in order to exploit all possible usable radar data for deriving SSH observa-
tions independent of the surface conditions and observation season. For this purpose,
K-medoids, belonging to the partitional clustering algorithms (Celebi (2014)) are ap-
plied, only using as input the waveform itself and the backscattered power, for splitting
the waveform sample.

The following publication describes the unsupervised classification process for waveform
samples of Envisat and SARAL and provides information about the classification per-
formance, resulting in a consistency rate of 70.7% for Envisat and 76.9% in case for
SARAL. The validation is based on circa 15000 Envisat and 20000 SARAL classification
results, which are compared to image processed and binarized SAR images, indicating
open water and sea ice areas. The automatic and quantitative validation approach is
described in the next subsection. Moreover, the unsupervised classification is transferred
unchanged and applied to waveforms of ERS-2 (not part of P-1.1).

P-1.1 Müller, F. L., Dettmering, D., Bosch, W., and Seitz, F. (2017). Monitoring the
arctic seas: How satellite altimetry can be used to detect open water in sea-ice
regions. Remote Sensing, 9(6), ISSN: 2072-4292, DOI: 10.3390/rs9060551

The unsupervised classification was also applied to CryoSat-2 SAR waveforms yielding
an overall classification performance of 97% (Dettmering et al. (2018)). Moreover, the
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classification concept is part of Göttl et al. (2016) to assign and label waveforms in the
inland area resulting in an overall improvement of about 25% in the estimation of lake
water level time series compared to conventional approaches.

2.3.3 Validation of classification by SAR images and image processing
techniques

In order to assess the performance of the unsupervised classification a method is de-
veloped, which enables an automated, quantitative comparison with backscatter images
from side-looking imaging SAR instruments during sea ice conditions. The radar images
are spatially and temporally collocated, considering the altimetry overflight locations
and times. Compared to other spaceborne sensors working in the visible spectrum, SAR
instruments are not affected by the illumination conditions caused by the sun and the
cloud cover. This is particularly beneficial in the northern Nordic Seas, during the polar
night in winter and a cloud cover of up to 80-90% in summer (Hurdle (1986)). More-
over, the provided pixel resolution ranging from 40 m in the case of Sentinel-1 to 100 m
for ALOS enable the detection of leads ranging from a few meters up to hundred of
meters in width. In order to account for sea ice movements between the observation
times of altimetry and the image data, the acquisition time gap should be as small as
possible. However, the possibility for simultaneous comparisons is limited by the orbit
characteristics of the satellite missions, for example due to fixed revisit times, caused
by the repeat orbit configuration. Therefore, the images are shifted to compensate for
the sea ice motion by using daily sea ice velocity fields from a combination of passive
and active microwave sensors as well as in situ information from buoys, which are frozen
into the ice or mounted on top of sea ice floes. In order to enable an automatic and
quantitative comparison, the radar images are converted to binary images, indicating
only water and sea ice surfaces, by applying morphological gray scale operations and
adaptive thresholding techniques. In the last step, the altimetry classification results
are interpolated to the SAR pixel coordinates by using a nearest-neighbor interpolation,
enabling a direct point-wise comparison of both datasets.

The automated validation technique based on SAR images was mainly developed within
the framework of another threshold-based classification approach (i.e. supervised classi-
fication) based on CryoSat-2 stack data, but can be used independently. The method is
described in:

P-1.2 Passaro, M., Müller, F. L., and Dettmering, D. (2018b). Lead detection using
cryosat-2 delay-doppler processing and sentinel-1 sar images. Advances in Space
Research, 62(6):1610 – 1625, ISSN: 0273-1177, DOI: 10.1016/j.asr.2017.07.011

The identical method, but adding two more imaging SAR missions (i.e. RADARSAT-2
and ALOS), is applied for the validation of the unsupervised classification of Envisat
and SARAL data, described in Müller et al. (2017).
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2.3 Challenges of monitoring geostrophic surface currents by radar altimetry

The classification process, starting with the application of the unsupervised assignment
of waveforms, followed by an validation process based on external imaging data is also
included in a review publication by Quartly et al. (2019).

2.3.4 Geoid models in the northern Nordic Seas

For determining the DOT, it is crucial to know about geoid uncertainties which can have
a direct influence on the along-track DOT computation (Skourup et al. (2017)). Since
the launch of the gravity satellite missions Gravity field and steady-state Ocean Cir-
culation Explorer (GOCE) and Gravity Recovery And Climate Experiment (GRACE),
global geoid models have been significantly improved in the lower spherical harmonic
degrees, providing an accuracy of up to 2-3 mm (Forsberg and Skourup (2005)). Shorter
wavelengths between 10 km to 30 km are mainly based on gravity observations from
regional in situ campaigns or various satellite altimetry missions. But in the case of
spaceborne sensors, only altimeters can contribute to wavelength between 5 km and
100 km spatial resolution (Sansò and Sideris (2013)). One approach to use satellite
altimetry-derived gravity data for the geoid determination is based on a remove-restore
approach by reducing a long wavelength geoid model and a mean dynamic topography
from SSH observations obtaining residual geoid elevations. These residuals are converted
to gravity anomalies, filtered and added back to the long wavelength geoid to provide
the total gravity signal (Sansò and Sideris (2013)).

At higher latitudes, however, the available gravity measurements, contributing to the
shorter wavelengths, are very sparse and based only on selective gravity surveys (e.g.
submarine expeditions) or few altimetry missions that reach polar areas. Particularly, in
polar ocean regions, gravity fields include gravity data from altimetry without a sufficient
sea ice flagging or dedicated retracking algorithms (see previous sections), cause artifacts
or unrealistic geoid elevations. Moreover, errors in the higher harmonic degrees (>719)
significantly affect the computation of altimetry-derived along-track DOT heights such as
those described in Skourup et al. (2017). Referring to McAdoo et al. (2013) and Kwok
and Morison (2015), these artifacts can cause deflections of up to several decimeters.
Related to this issue, Skourup et al. (2017), McAdoo et al. (2013) and Kwok and Morison
(2015) explain that the geoid accounts for a significant portion of the error budget for a
reliable DOT determination, which must be particularly considered in polar regions.

In the present investigation for N (Eq. 2.3), the Optimal Geoid Model for Modeling
Ocean Circulation (OGMOC) is used, which is one of the the newest high-resolution
gravity fields, developed up to a spherical harmonic degree of 2190 corresponding to a
global spatial resolution of 9.13 km (Gruber and Willberg (2019)). In harmonic degrees,
≤ 719 OGMOC consists of a combination of the gravity fields, European Improved
Gravity model of the Earth by New techniques 6-C4 (EIGEN6-C4) (Förste et al. (2014))
and the Experimental gravity field model 2016 (XGM2016) (Pail et al. (2018)). Following
Gruber and Willberg (2019), higher degrees are fully represented by EIGEN6-C4, which
includes DTU10 gravity anomalies (DTU10GRA), gathered from ERS-1 in the higher
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latitudes (Andersen (2010)). Moreover, to account for old altimeter data, parts of the
marine gravity field DTU13GRA (Andersen et al. (2014)) and three years of CryoSat-2
observations are partly blended.

OGMOC, dedicated and developed for ocean currents, is identified as the best choice
for this study. But lack of information of the ground truth makes it difficult to quantify
errors in one specific geoid solution and complicates a clear separation of geoid-caused
artifacts or oceanographic phenomena (Kwok and Morison (2015)). However, permanent
artificial height deviations, which cannot be explained physically, indicate geoid errors.
In order to better assess these effects, Figure 2.4 shows in an exemplary way for January
(sea ice conditions) and September (no sea ice) monthly averaged and arranged into bins,
the along-track DOT heights of Envisat between 2003-2009 (the bin structure follows
the description of Müller et al. (2019b)). Underlining the investigations of Skourup et al.
(2017), seasonally independent, stationary differences of up to 60 cm, caused by geoid
inaccuracies are clearly visible in the northern Fram Strait area (e.g. at 2◦E/80.8◦N).

Figure 2.4: Examples of Envisat-derived along-track DOT elevations averaged for January (left)
and September (right) and arranged into bins of 7.5 km length between 2003-2009.
RTopo2 bathymetric lines (Schaffer et al. (2016)) indicate the Greenland Sea Basin
(-1500 m) and the Greenland Shelf (-450 m).

In order to evaluate the need for regularly updated marine gravity field data, Figure 2.4
motivates for a short comparison of different marine gravity fields of the Danish Technical
University, which is a leader in the creation of marine gravity fields based on altimeter
data that covers the high latitudes. The comparison is based on the latest altimetry-
based gravity data (i.e. DTU15GRA, Andersen et al. (2017) and DTU17GRA, Andersen
and Knudsen (2020)).

Figure 2.5 shows the differences among the various marine gravity fields, illustrating the
problem of inaccuracies in the marine geoid determination. As a reminder, OGMOC
includes gravity anomalies of DTU10GRA and partly of DTU13GRA. It appears that
updated altimetry data and refined computation methods can compensate for some ar-
tificial deflections, especially in coastal and sea ice regions (DTU15GRA, DTU17GRA).
Nevertheless, no complete improvement can be surprisingly seen between the release
of DTU10GRA and DTU17GRA. For example, artifacts - eliminated in DTU15GRA -
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are present once again in DTU17GRA. Especially, the height artifact (15 mGal) at
2◦E/80.8◦N is spotted well in Fig. 2.5a, proving that DTU10GRA passes this artifact
directly to the altimetry-derived along-track DOT (Fig. 2.4). Furthermore, the artifact
is also seen in DTU15GRA versus the latest gravity model, DTU17GRA (Fig. 2.5d),
which is not directly explainable, but indirectly by the application of filter algorithms
and background models included in the computation (pers. communication Ole B. An-
dersen). In addition, an issue is detected in the computation of DTU15GRA gravity
anomalies in relation to the zero meridian, showing interrupted and strongly smoothed
structures of the gravity anomalies.

Figure 2.5: Comparison between (a) DTU10GRA - DTU15GRA, (b) DTU10GRA -
DTU17GRA (c) DTU13GRA - DTU15GRA and (d) DTU15GRA - DTU17GRA
gravity fields in terms of gravity anomalies in mGal. Contour lines indicate depths
of -450 m and -1500 m, taken from RTopo2 (Schaffer et al. (2016)).

To summarize, a brief comparison of currently available marine gravity fields demon-
strate the challenges of the geoid determination at polar latitudes and underlines the
need for updated in situ and altimetry-derived gravity observations. Moreover, the com-
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parison shows that currently no perfect geoid is available for this region. Furthermore,
the comparison shows that all marine gravity solutions are affected by different effects,
which does not indicate a continuous improvement.
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3 Combination of altimetry observations
with ocean modeling data

The thesis presents an innovative methodology to combine observed with modeled water
heights at the same processing stage in order to benefit from the advantages of both
datasets. It aims to provide sea surface currents from equally combined, but conceptually
totally different, data sources. The modeled water heights are used to fill in or bridge
observation gaps in the altimeter data.

In polar regions, altimetry observations are characterized by an irregular data cover
caused by the seasonal sea ice coverage. Moreover, it must be dealt with a poor data
coverage due to a fixed observation geometry, since only one repeat orbit configuration
of 35 days is available. The idea is to fill in simulated water heights, where no altime-
try data exists and to enable a homogeneous representation of the DOT and derived
geostrophic currents, without additional smoothing effects by interpolating altimetry
observations in space and time, for example. The ocean model FESOM (Wang et al.
(2014)) provides daily differential water heights (DWH) by a spatial resolution of up to
1 km. The observational dataset consists of ERS-2 and Envisat-derived along-track DOT
observations. Both data sources refer to a geopotential surface. In the case of altimetry,
it is provided by the geoid and in case of FESOM by the ocean bottom topography.

In order to check both quantities for consistency, a comparison by analyzing constant
offsets, annual variability and regional seasonal patterns based on DOT, as well as DWH
elevations is necessary. The following chapter provides a brief introduction about FE-
SOM, followed by the comparison of the observational and modeled data and closes with
the combination.

3.1 The Finite Element Sea Ice Ocean Model (FESOM)

The Finite Element Sea Ice Ocean Model (FESOM) is a global hydrostatic ocean cir-
culation model solving for a standard set of primitive hydrostatic equations (Danilov
et al. (2004)), which are an approximation of the Navier-Stokes equation (e.g. Marshall
et al. (1997)). The standard set of primitive hydrostatic equations generally includes,
the conservation of momentum equation, the continuity equation, the thermodynamics
equation, the equation of state and the equation of diffusion for the salinity (e.g. Temam
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and Ziane (2005)). Since ocean modeling is not the focus of this thesis, more addi-
tional information focusing on the general background of ocean circulation modeling is
provided in Griffies (2004).

FESOM is defined on unstructured, triangular meshes, which allow for flexible spatial
refinements and the resolution of jagged coastlines as well as small straits and pas-
sages (e.g. Fram Strait). The model equations are discretized by the application of
the finite-element method (Danilov et al. (2004)). FESOM exists in different versions
and development stages. The investigations in the thesis are based on a modified model
configuration of FESOM Version 1.4 (see Wang et al. (2014)), described by Wekerle
et al. (2017). In order to account for sea ice, FESOM includes a sea ice component
mapping the major sea ice drift pathways. Moreover, relative sea surface elevations (i.e.
DWH) with respect to the ocean bottom topography (i.e. RTopo2 model; Schaffer et al.
(2016)) projected on a sphere are given. Following Androsov et al. (2018), the DWH is
referenced to an own model coordinate system (z) being very close at z = 0 to the geoid.
However, secular changes, such as effects due to the glacial isostatic adjustment or the
self-gravitaton are not visible to the ocean model, causing a constant offset of 47 cm
(Androsov et al. (2018)).

The model configuration used provides daily ocean parameters for the northern Nordic
Seas with regional mesh densifications in the central Fram Strait and Greenland Sea
ranging from 4.5 km up to less than 1 km, enabling an eddy-resolving resolution at
different vertical layers. However, in the present work, only model results at the surface
(i.e. z = 0) are considered. Furthermore, FESOM conserves volume, but no mass, since
a global steric height correction is missing in order to ensure the full conservation of
mass. Furthermore, it does not model the atmospheric loading. Following the expla-
nations of Androsov et al. (2018), a mass conservation would require detailed, regional
information about inflow and outflow of fresh water through the ocean boundaries (e.g.
glacial melting water, river discharge, precipitation-evaporation ratio, etc.), which is not
included in the model setup being used.

FESOM is driven by daily and 2◦ degree spatially resolved CORE2 (Large and Yeager
(2008)) atmospheric reanalysis data, monthly river runoff (Dai et al. (2009)) and sea sur-
face salinity fields (Steele et al. (2001)). In comparison with observational data, Wekerle
et al. (2017) indicate good accordance of FESOM in terms of circulation patterns, hy-
drography and eddy activity. However, Richter et al. (2018) refer to a bias towards a
higher assumed salinity in the Atlantic Water layer due to model uncertainties in simu-
lating the correct pathway of the North Atlantic water, which can lead to displacements
in the representation of the annual oscillation.

More information regarding the used FESOM configuration can be found in Wekerle
et al. (2017). In the following sections, only modeled sea surface elevations are used,
which are available in a daily resolution from 2002 - 2009. After 2009, no model output
is delivered, since the forcing datasets were not available.
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3.2 Comparison of the dynamic ocean topography from

altimetry and FESOM

Before the combination, the datasets are compared in terms of the DOT and DWH.
Following the explanation of Androsov et al. (2018), the volume conservation implies that
DWH is not modeled correctly in an absolute sense (missing global mean steric height
correction), but in relative height differences leading to correctly simulated horizontal
pressure gradients. In conjunction with the DOT, it follows that:

∇DOT = ∇DWH (3.1)

Therefore, DOT and DWH are considered as equivalent and are summarized as DOT
elevations in the next sections.

Similarities and discrepancies are evaluated based on profiled observed and modeled
DOT heights within the 2003 - 2009 Envisat investigation period. Therefore, the model
data are interpolated on the altimeter along-track coordinates. The assessment analysis
focuses on constant offsets and seasonal DOT variabilities in regional parts (i.e. shelf,
deep basin) and in the northern Nordic Seas as a whole. In general, the comparison
reveals good agreement and depicts the annual oscillation as the most dominant signal
captured by both datasets. The comparison showed a constant offset of about 47 cm
between both datasets, which is consistent with the description of Androsov et al. (2018).
The assessment shows up to 2-3 times stronger amplitudes of the observational dataset,
in contrast to the phase, which indicates good agreement (Müller et al. (2019b)). A
regional reduction by constant offsets and the annual signal of both datasets, results in
a good accordance and high correlations of the DOT time series. The best consistency
can be found in ice-free areas and in regions affected by ocean currents.

Inconsistencies are divided into three categories concerning issues of the model, altimetry
observations and the geoid model (i.e. OGMOC, Subsec. 2.3.4). In contrast to open ice-
free ocean regions, satellite altimetry observations suffer from a stronger scattering in
sea ice regions. Even applying sea ice-dedicated algorithms, such as a sophisticated
retracker sampling single-peak, but also Brown-like waveforms within one approach and
an unsupervised classification for detecting waveforms reflected by open water areas
within the sea ice domain, the noise level is increased compared to the open ocean.
Moreover, in sea ice regions, the applied altimetry range corrections are characterized
by an enhanced error budget, causing uncertainties in the range estimation and the
reliable determination of the annual signal.

In the case of the model, differences in the representation of the annual signal in terms
of amplitude and phase might occur due to a stronger smoothing of the model output,
caused by a too strongly adjusted sea ice friction and the added numerical diffusion co-
efficient stabilizing the model computations. Moreover, as mentioned above, the model
preserves only the volume and neglects a global steric height correction for a complete
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preservation of mass. In the global model, the freshwater inflow is integrally 0, trans-
ferred to the regional domain it is likely that this affects the annual cycle, so that the
amplitude is reduced and phase shifts are caused. Another reason in a smaller modeled
annual amplitude can be found in the forcing models, which are characterized by an
excessively coarse spatial resolution. Furthermore, following the explanations of Richter
et al. (2018), FESOM uses inter-annual runoff data of Dai et al. (2009), neglecting a
subglacial and submarine melting of the Greenland ice sheet, which leads to errors in
the simulation of the EGC water mass transport along of the shelf edge. This may also
influence the correct location of the modeled Atlantic Water flow crossing the northern
Nordic Seas.

The comparison states that even with an improvement of the known problems, limita-
tions such as the difference of the absolute height level and an enhanced observation noise
in regions affected by sea ice will persist. However, a combination of both quantities is
useful because of a general good agreement, showing no significant differences between
both datasets. The comparison suggests a combination in order to benefit from both
datasets enabling the computation of a homogeneous DOT and geostrophic ocean surface
circulation. The combination shall be performed in the sense that the temporal DOT
variability and the absolute height reference are provided by altimetry. FESOM data are
used to bridge regions influenced by sea ice, geoid artifacts and incomplete observation
coverage. The detailed comparison of the observational and simulated database in terms
of DOT heights can be found in:

P-2 Müller, F. L., Wekerle, C., Dettmering, D., Passaro, M., Bosch, W., and Seitz, F.
(2019b). Dynamic ocean topography of the northern nordic seas: a comparison
between satellite altimetry and ocean modeling. The Cryosphere, 13(2):611–626,
DOI: 10.5194/tc-13-611-2019

3.3 Geostrophic currents from a combination of altimetry and

FESOM

The combination is based on a Principal Component Analysis or empirical orthogonal
function analysis (e.g. Preisendorfer (1988)). The concept of historic sea level recon-
struction described, for example by Church et al. (2004) or Ray and Douglas (2011)
is transferred for a combination of profiled altimetry-derived DOT heights with simu-
lated spatio-temporally homogeneous DOT elevations in the investigation area. Similar
approaches are used for signal decomposition described, for example by Schmeer et al.
(2012) or for filling in data gaps in oceanographic datasets (e.g. Beckers and Rixen
(2003)).

In this thesis the PCA is used to link the most dominant spatial patterns of the simu-
lated DOT with profiled altimetry-derived DOT observations representing the temporal
variability. In a first step, a constant mean and the annual signal are removed from the
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DOT elevations of both datasets. Furthermore, the 50 most dominant spatial patterns
(i.e. empirical orthogonal functions), describing more than 99% of the total variance of
the signal, are extracted from FESOM and linked to the along-track DOT observations
to estimate the principal components describing the temporal evolution of each of the 50
most dominant spatial patterns. The estimation of the combined principal components
is performed by applying a least-squares approach (Koch (1999)) as described in more
detail in Müller et al. (2019a). In the next step, the derived principal components are
multiplied by the spatial patterns (synthesis). The product of a principal component
with the corresponding spatial signal defines a Mode. In the last step, the 50 Modes are
summed up. Since the absolute height reference of the model is not clearly defined, the
combined dataset is referenced to the altimetry height level by readding the offset and
annual signal from the observed database.

The combination is described in detail by:

P-3 Müller, F. L., Dettmering, D., Wekerle, C., Schwatke, C., Passaro, M., Bosch, W.,
and Seitz, F. (2019a). Geostrophic currents in the northern nordic seas from a
combination of multi-mission satellite altimetry and ocean modeling. Earth System
Science Data, 11(4):1765–1781, DOI: 10.5194/essd-11-1765-2019

The main results are daily combined, unstructured DOT triangular meshes, which are
transformed to geostrophic surface current components (i.e. meridional and zonal veloc-
ity components) by applying the geostrophic equations (Eq. 2.7). The spatial resolution
is equal to the FESOM mesh. However, there are a few data gaps in the dataset, which
are caused by a complete lack of altimetry observations preventing a reliable estimation
of the principal components.

The combined dataset is validated by an external observation-based DOT product re-
sulting in a positive correlation of about 80%. Moreover, the combined geostrophic
currents are compared to independent drifter data measurements showing good agree-
ment in spatial patterns, magnitude and flow direction. A direct pointwise evaluation
reveals that 94% of the residuals are smaller than 0.15 m/s.

The final data product can be obtained from to PANGAEA (https://doi.pangaea.
de/10.1594/PANGAEA.900691, Müller et al. (2019)), a freely accessible data repository
for earth system and science data.
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4 Scientific exploitation of the dataset

The thesis mainly focuses on the development and generation of the combination method-
ology and product. In the following chapter, a scientific data exploitation demonstrates
the potential of the combined datasets. The analyses relate to the ocean current datasets
and study the changing ocean surface current state between May 1995 and March 2012.

Figure 4.1: Mean surface current flow in the northern Nordic Seas derived from combined
geostrophic datasets with RTopo2 bathymetry (Schaffer et al. (2016)) in the back-
ground between 1995 - 2012. Study areas for extended investigation are highlighted
(polygons, line).

Figure 4.1 gives an overview of the mean velocity and direction of the major current
systems in the northern Nordic Seas. Therefore, the velocity components are interpolated
to a coarser regular grid with a spacing of 1◦ in longitude and 0.75◦ in latitude in order
to keep the readability of Figure 4.1. The interpolation is performed by averaging the
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velocity components within a cap-size of a 20 km radius around a grid node of the regular
grid.

The currents follow very precisely the shelf edges of the Greenland Shelf (i.e. EGC) and
the Barents Shelf (i.e WSC). Both currents show strong interactions with the bathymetry.
Further, recirculating Atlantic Water masses can be detected around 79◦N. The WSC is
characterized by a strong eddy activity and meandering of the main stream in contrast
to the EGC, which is characterized by a clearer and wider flow pattern. In contrast to
the current areas, the Greenland Sea center appears very weak with almost no significant
current activity. However, parts of the Greenland Sea gyre between 72◦N and 76◦N are
visible. Furthermore, Figure 4.1 displays clearly the current pattern of the North-East
Greenland Coastal Current (NEGCC), which flows northwards, mainly under the sea ice
layer, very close to the east Greenland coastline, before merging with the EGC in the
Fram Strait region.

Figure 4.2: At the top: Mean absolute geostrophic surface velocity (a) and standard deviation
(b). At the bottom: Surface velocity trend (c) and estimated uncertainty (d).
Bathymetric contours indicate depths of -1500 m and -450 m, taken from RTopo2
(Schaffer et al. (2016)).
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The mean absolute geostrophic surface velocities and corresponding trends per year,
including uncertainty information, are shown in Figure 4.2. The major current systems
are clearly detectable, which are characterized by mean velocities of about 45 cm/s in
the EGC and 30 cm/s in the WSC. The flow variability is strongest in the current
center, whereas the WSC is characterized by more eddies and flow activity alongside the
main flow. Moreover, very low or nearly no surface flow velocities are observed in the
northernmost part of the WSC.

The absolute velocity trends (Fig. 4.2) are generally small. The trend map indicates a
multipath structure of the EGC mainly consisting of three branches, at the Greenland
Shelf, along the shelf-break and more offshore, instead of one major flow area, which is
also observed by in situ investigations conducted, for example, by H̊avik et al. (2017).
H̊avik et al. (2017) found out that the Greenland Shelf branch mainly contributes to
the freshwater transport from calving glaciers, whereas the branch at the Greenland
shelf-break carries a large amount of Atlantic-origin Water. Furthermore, H̊avik et al.
(2017) argue that the offshore branch transports directly recirculating water masses of
the WSC.

Figure 4.2c reveals a velocity increase of the surface flow in the core area of the EGC,
strongest along the Greenland shelf-break (circa 1.08 cm/s p.a. ±0.04 cm/s p.a.) and
weaker at the northern Greenland Shelf as well as in the western Fram Strait region.
On the other side, decreasing surface velocities, up to -1.27 cm/s p.a. (± 0.04 cm/s
p.a.) are observed in the southeast Fram Strait, where the EGC mixes with recirculat-
ing Atlantic water, in the Spitsbergen coastal regions and in southern Greenland Shelf
regions. Moreover, a positive trend is indicated in the NEGCC close to the northeast
Greenland coast. Similar to the EGC, Figure 4.2c indicates a multipath structure of the
WSC, separating the current into a west and east component. However, the WSC is
primarily characterized by a weakening of the surface flow up to about -1.26 cm/s p.a.
(± 0.04 cm/s p.a.) near the Spitsbergen coast.

The spatial monthly variability and annual oscillations of the geostrophic surface velocity
are presented in Figure 4.3. An increased inflow of Atlantic Water masses and enhanced
Arctic Ocean outflow through the Fram Strait indicate overall strong flow activities
during the winter months. In the case of WSC, strongest velocities are displayed during
January, February and March, which can be confirmed by mooring observation that
indicate largest volume transports during winter (von Appen et al. (2016)). During the
winter season, the EGC is characterized by a broader flow pattern.

In late spring and early summer (i.e. April, May, June) and in autumn (i.e. Sept., Oct.,
Nov.) the WSC appears weaker. According to observations of Beszczynska-Möller et al.
(2012), the Atlantic Water inflow is lowest in June, which is indicated in Figure 4.3 by a
weaker main flow of the WSC. However, a slightly increased meandering is observed in
July, which is not fully explainable (Crews et al. (2018)). Possibly, this behavior can be
attributed to baroclinically unstable currents during the time of maximum sea surface
temperature (Crews et al. (2018)). During July/August, the EGC appears more narrow,
following very precisely the shelf-break by displaying current velocities of up to 40 cm/s.
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This is related to strong differences of the horizontal pressure gradient, due to warm
recirculating water masses mixing with cold and less saline freshwater from the Arctic
Ocean.

Detailed analyses are performed in three subregions, Fram Strait, EGC and WSC (see
Fig. 4.1, cyan, red and dark yellow polygons). In order to evaluate most dominant pat-
terns, a moving average of 30 days per grid node is applied to the velocity components
to cut out short-periodic noise. Figure 4.4 shows the absolute velocities, the annual
signal and an estimated trend within the investigation period. The results indicate a
positive trend (i.e. 0.9 mm/s ±0.05 mm/s p.a.) of the obtained absolute velocities in the
Fram Strait region and a seasonal cycle, which peaks in the winter (January) showing
maximum mean velocities of about 12 cm/s - 15 cm/s and is weakest in the summer
(July) with minimum velocities of about 2.5 cm/s. These observations fit well to pre-
vious studies for example by Armitage et al. (2017). The same velocity pattern, but
with a reduced positive trend of about 0.3 mm/s ±0.05 mm/s p.a., can be seen in the
EGC. However, a 4 cm/s stronger mean current velocity can be observed, which is likely
related to recirculating Atlantic water masses, driving the thermohaline circulation in
the Greenland Sea. Maximum velocity peaks can be found during the winter months
1996/1997, 2001/2002 and 2006/2007, whereas significantly slower speeds can be ob-
served in the summer of 1998 and 2003. These peaks are mainly caused by variations
in the thermohaline circulation influenced by variations in water density due to changes
in salinity and sea surface temperature. For example, in the winter of 1996/1997, an
extensive ice formation was observed in the Greenland Sea area (Rudels et al. (2012)).
During the ice formation, salt is released to the surrounding areas leading to an increase
in water density and consequently to stronger horizontal pressure gradients, resulting in
higher current velocities.

In the case of the WSC, Figure 4.4 indicates an overall decreasing trend of (i.e. -0.4 mm/s
±0.03 mm/s p.a.) in the surface current velocity. Contrary to the EGC, the WSC is
characterized by a weaker mean velocity of 5 cm/s and an annual amplitude of 1.3 cm/s,
showing its maximum in February and minimum in August. Significant velocity maxima
occur in winter 1997/1998 and 2003/2004, a clear minimum is detected in summer 1999.
These peaks can be explained not only by density differences but also by variations of the
sea level pressure and the influence of the northern Atlantic (e.g. Chafik et al. (2019),
Holliday et al. (2008)).

Most of the water traveling through the northern Nordic Seas comes from the Gulf
Stream and the Norwegian Atlantic current before entering the Greenland Sea. Warm
saline surface water flows northwards, cools down, becomes denser and sinks, while warm
water from southern regions can follow. This process is strongest in the winter due to a
cooler atmosphere and faster cooling of the Atlantic water (e.g. von Appen et al. (2016)).
However, a heating up of the atmosphere influences the heat exchange between ocean
and atmosphere, which can be observed in an increase of the sea surface temperature
(SST) and a decrease of the mean current velocity (e.g. Figure 4.4c).

34



Figure 4.3: Monthly averaged ocean surface velocities within the investigation period, 1995-
2012.
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Figure 4.4: Time series of absolute geostrophic surface velocities, trend and annual signal for
(a) Fram Strait, (b) EGC and (c) WSC area. Please note a changed scaling of the
y-axis.

In order to investigate the connection between the SST and ocean surface velocity, a
global daily SST dataset (Canada Meteorological Center (2012), Brasnett (2008)) is used
for comparison. The SST grids are a combination of satellite and in situ observations
collected for example by ships or an autonomous array of temperature measuring floats
(e.g. Argo), provided on a 0.2◦ resolved, regular grid. In sea ice regions, the grid values
are undefined. A conducted frequency analysis (see Appendix, Figure A.4) of the SST
limited to the WSC area reveals a clear annual as well as semi-annual signal.

Figure 4.5 shows the temporal evolution of the absolute SST signal and SST anomalies
(local offset, trend, annual and semi-annual oscillation are removed) and a comparison
with standardized absolute geostrophic current velocity and SST in the WSC area. In
order to be consistent with the velocity data, the daily SST are filtered with a 30-day
moving average. The standardization is done by removing the mean from the daily values
and dividing them by the standard deviation. The comparison of both time series shows
a negative correlation of -0.75, which underlines the relationship between increasing SST
and a decreasing absolute geostrophic velocity in the WSC (e.g. Caesar et al. (2018),
Praetorius (2018), Dong et al. (2019)).

A positive trend of 0.06◦C p.a. indicates a continuous warming of the upper ocean
layer (Beszczynska-Möller et al. (2012)). However, short-periodic anomalies underly this
trend, revealing cool periods between 1996 - 1998 and slightly weaker ones between 2008 -
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2012. A warm phase is identified between 2002 and 2007. Furthermore, a short warming
period is identified between 1999-2000. A temperature maximum can be found in 2002
and 2006/2007, whereas the minimum occurs in 1997/1998. Especially in the years 2005
- 2007, permanently positive SST anomalies can be seen.

Figure 4.5: The upper plot shows the temporal evolution of the daily SST and reduced by the
mean, trend, annual and semi-annual signal. The bottom plot shows a compari-
son between SST and absolute geostrophic velocities, reduced by their mean and
standardized by their standard deviation. Both plots are limited to the WSC area
(see dark green box in Fig. 4.1). Both datasets are filtered with a 30-day moving
average.

The combined mean absolute geostrophic velocity anomalies of the cool phases (1996-
1998, 2008-2012) and warm period (2002-2007) are displayed in Figure 4.6. Therefore,
the mean absolute velocities are reduced by the mean speed covering 1995-2012 (Fig. 4.2).
The mean absolute velocities are provided in the supplement (see Fig. A.3). Compared
to the other periods, Figure 4.6a displays stronger residuals, especially at the continental
slopes of the Barents Shelf (i.e. WSC) and the Greenland Shelf (i.e. EGC). Further-
more, Figure 4.6a shows a contrasting flow behavior, compared to Fig. 4.6 b,c in nearly
all regions. In particular, the southern parts of the EGC show an opposite sign. During
the cold period from 1996-1998, the main flow activity is at the Greenland Shelf, how-
ever, between 2002-2007, but also in the following period, there was a weakening in the
southern path of the EGC. The NEGCC also shows a contrary behavior. During the
cool period, a lower current circulation can be seen, but between 2008-2012 a significant
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4 Scientific exploitation of the dataset

increase is visible. Between 1996-1998, the WSC shows stronger velocities close to the
Spitsbergen west coast and weaker speeds more away from the coast. During the years,
2002-2012, the situation was completely reversed.

Figure 4.6: Anomalies of averaged absolute geostrophic surface velocity for cool periods, 1996-
1998 (a), 2008-2012 (c) and a warm period between 2002-2007 (b) with respect to
absolute surface velocity between 1995-2012. Bathymetric contours indicate depths
of -1500 m and -450 m, taken from RTopo2 (Schaffer et al. (2016)).

Figure 4.6 provides an overview of different SST anomaly periods. More detailed, Fig-
ure 4.7 shows averaged surface currents and SST fields as background data for the win-
ter months (i.e. December to March) 1997/1998 (Fig. 4.7a) and 2006/2007 (Fig. 4.7b).
During the SST minimum, the WSC is characterized by strong and straight current pat-
terns following the warm-cold water gradient close to the coast of Spitsbergen displaying
a mean velocity of 6.5 cm/s and an averaged SST of 1.5◦C. Moreover, an enhanced flow
activity is shown in the region of recirculating Atlantic water masses merging with the
EGC. In the winter of 2006/2007 the situation has changed. The mean seawater tem-
perature has almost doubled to 3.2◦C, while the WSC current velocity has decreased to
4.0 cm/s.

Figure 4.7: Mean surface currents and SST fields for the months of December to March, (a)
1997/1998 and (b) 2006/2007. For readability, the velocity data are interpolated
to a regular grid.
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A sectional view of the temporal change of the circulation with respect to a certain
latitude is provided by Hovmöller diagrams (Fig. 4.8). The daily geostrophic zonal and
meridional velocity components are low-pass filtered with a 30-day running mean and
plotted versus time and longitude along a fixed latitudinal height of 78.5◦N. Moreover,
they are interpolated to virtual stations that spanning a chain of points with a regu-
lar point distance of 0.1◦ by computing the mean of the velocity components within
a cap-size of 20 km radius around each virtual location. The selected section at the
southern part of the Fram Strait (see Figure 4.1) is characterized from east to west, by
the northward flowing WSC, recirculating water masses, the southwards flowing EGC,
the Greenland Shelf, with very weak current velocities and the NEGCC close to the
northeast Greenland coast. The diagrams provide an insight of the different branches
of the currents. By analyzing the meridional current component, it turns out that the
WSC consists of two branches. The eastern branch flows between 8◦E and 10◦E straight
northwards, whereas the western branch appears broader mainly feeding the recircu-
lation region between 2.5◦W and 5◦E, which is confirmed by studies based on velocity,
salinity and temperature measurements of moored instruments (e.g. Beszczynska-Möller
et al. (2012)). The recirculation of the Atlantic water masses is characterized by strong
westward velocities in the zonal component around 2◦W. A reduced recirculation is
apparent in 1999, which also influences the EGC showing a lower flow velocity.

At around 4◦W, indicated by dark blue colors in the vertical velocity component, the
strongly southwards flowing, shelf-break following part of the EGC is clearly visible.
Slightly farther west, weaker flow patterns southwards show parts of the EGC moving
on the Greenland shelf. Going farther west, the Greenland Shelf displays weak velocities
with no significant temporal changes. However, close to the Greenland coastline, an
increasingly stronger and wider current flowing predominantly northwards is observed.
This flow section between 17.75◦W and 16.5◦W belongs to the NEGCC and is mainly fed
by incoming recirculated warm Atlantic water masses (e.g. Sneed and Hamilton (2016)),
showing its velocity maximum during the summer months with an absolute mean velocity
trend of 3.2 mm/s ±0.1 mm/s per year (according to Fig. 4.2c,d). Stronger (15-20 cm/s)
and longer summer maxima as well as a higher velocity variability between summer and
winter can be seen from 2002, which could possibly be related to the start of the warm
water period in 2002 (Fig. 4.5 and Fig. 4.6). Close to the coast, the warmer saline
water hits the calving northeast glaciers and leads to an intensified melting resulting
in an enhanced freshwater input (e.g. Khan et al. (2014), Mayer et al. (2018)). It
can be speculated that a warming of the recirculated Atlantic water, combined with an
increased input of fresh water, could lead to an acceleration of the general flow velocity of
the NEGCC due to increased density differences resulting in stronger horizontal pressure
gradients. However, this cannot be fully confirmed due to a lack of long periodic in situ
observations. Fig. 4.8 provides a sectional view of the geostrophic velocity currents at
78.5◦N. The different branches of the major, but also of subordinated currents (e.g.
NEGCC) are clearly visible. However, the trends of EGC and WSC as displayed in
Figure 4.4 cannot be identified. Moreover, no significant shifts of the EGC’s and WSC’s
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4 Scientific exploitation of the dataset

current center are detected at this latitude. After 2002, there is a stronger increase which
could possibly be related to the start of the warm period around 2002.

Figure 4.8: Top: Hovmoeller diagrams of daily zonal (left) and meridional (right) surface veloc-
ity components at 78.5◦N. Black arrows indicate the flow direction. For readability,
velocity components are interpolated on a regular grid. Bottom: Long-term mean
(1995-2012) of geostrophic surface velocities at 78.5◦N indicating different flow areas
from west to east (North-East Greenland Coastal Current (NEGCC); Greenland-
Shelf (GSh); Greenland Shelf East Greenland Current (GSh-EGC); Shelf-Break
East Greenland Current (ShB-EGC); Recirculation (ReC); West Spitsbergen Cur-
rent West (WSC-W); West Spitsbergen Current East (WSC-E)
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5 Conclusions and outlook

The thesis presents a novel method that combines two conceptually different data sources
(ocean current model and satellite altimetry) in order to benefit from the advantages of
both datasets to perform comprehensive, homogeneous and spatio-temporal high reso-
lution studies of surface circulation in a region of particular importance for the global
climate. In addition, the developed method allows studies which are not limited to
regional scales, but allows the comprehensive investigation of the surface circulation
between the Arctic and Atlantic Ocean.

The thesis describes the development, validation and exploitation of a homogeneous
combined ocean current dataset from simulated water level heights by an ocean current
model and observed SSHs from satellite altimetry in a region characterized by chal-
lenging observation and rapid changing environmental conditions (e.g. due to sea ice
coverage). Furthermore, the combination focuses more on the observational part and
uses model data to fill and bridge data gaps of satellite altimetry. Moreover, the novel
strategy proposed results a dataset covering nearly 17 years with a consistently high
spatial and temporal resolution, which contributes to deeper and more comprehensive
analyses of the polar ocean surface circulation. The method allows one to study temporal
current variations in terms of intensity, velocity trend, annual oscillations and provides
information about the location of the major current systems, even if the ocean current
is mostly covered by sea ice.

In particular, the processing steps from the detection of open water radar waveforms
within the sea ice area by an unsupervised classification, the computation of SSHs by ap-
plying a retracker algorithm, working in sea ice and open ocean areas and the derivation
of along-track DOT heights by subtracting a high-resolution geoid are described. The
thesis continues with a comparison between observed and simulated DOT representations
and the combination of both quantities based on a PCA. A short dataset exploitation
underlines possible application fields of the combined ocean current dataset.

Based on the presented research topics of this work, the questions formulated in Sec-
tion 1.2 will be briefly revisited again.

How can altimetry sea surface height observations from open water bodies
within the sea ice domain be identified and how can this be validated?

Subsection 2.3.2 presents an unsupervised classification approach, which enables the
detection of waveforms reflected by open water bodies within the sea ice domain. More
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in detail, the unsupervised classification assigns waveforms to open ocean, sea ice or
lead/polynya conditions independent of the altimeter mission and without the use of
training or specific knowledge about the surface conditions. The basic principle is an
unsupervised search (i.e. clustering) of similar patterns among a set of waveforms using
a pre-defined feature set and performing an assignment of the identified clusters to
different surface conditions based on physical background knowledge about the waveform
shape and reflection behavior. The classification approach can be easily transferred to
all available altimetry missions, supporting a reliable detection of usable radar echoes
within in regions characterized by challenging surface conditions.

The approach is validated by an automatic and quantitative comparison (Subsection 2.3.3)
using image processing techniques applied to SAR images of imaging Earth observation
satellites flying simultaneously with the altimetry missions. In order to account for drift-
ing sea ice, the images are shifted with respect to the sea ice drift direction and velocity.
The algorithm is not only usable as a validation method but also allows an independent
detection of leads/polynyas based on radar images.

More in detail, the question is answered concerning the classification approach in pub-
lication P-1.1 and in the case of the quantitative validation in P-1.2.

How do simulated and observed dynamic ocean topography data differ and
what should be considered when combining them?

Before the combination, the model and observation data are compared for consistency.
Therefore, profiled FESOM- and altimetry-derived DOT are analyzed regarding dom-
inant oscillations and variability patterns. Section 3.2 shows good agreement of both
datasets in terms of the annual signal and high correlations in most of the northern
Nordic Seas region, but particularly in ice-free areas and current regions with clear flow
movements. Differences are shown in terms of the magnitude of the annual signal, show-
ing up to 3 times higher values in the observations, which is explained by an enhanced
smoothing of the model due to internal limitations and coarse resolved forcing data. Fur-
thermore, inconsistencies are detected in the sea ice areas, mainly addressed to a higher
error budget of the altimetry observations. To summarize, the comparison reveals that
a combination of both data sets is useful for taking advantage of both variables in order
to best represent ocean currents in this region.

Room for improvement is given by taking care of inconsistencies of the observed and
simulated database. In the case of the observations, a large amount of the error budget
can be attributed to the underlying geoid. Uncertainties in the higher spherical harmonic
degrees and a lack of gravity information cause small-scale deflections of up to several
decimeters. However, the following Section 2.3.4 reveals that even with the introduction
of newer gravity fields, height deflections will persist and must be considered. In this
connection, an improvement for the future can be seen in a comprehensive update of
the marine in situ and altimetry gravity database. Furthermore, attention must be
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paid to the observed altimeter ranges within the sea ice domain, which suffer from
higher uncertainties and scattering. Even after applying sea ice-dedicated algorithms,
an enhanced error budget remains.

From the model perspective, the occurring inaccuracies are seen in the strong smoothing
and damping effects of the simulated DOT heights, due to coarse and not updated forcing
models, in a too strongly adjusted sea ice fraction and numerical diffusion coefficient.
Furthermore, inaccuracies in the representation of the annual oscillation are likely caused
by a global computation of the model neglecting regional variations, since the freshwater
input/output is set by default always integrally 0. In particular, the model only preserves
volume by ignoring a steric correction for the complete simulation of mass. Moreover,
the model disregards subglacial and submarine melting from the Greenland ice sheet,
leading to uncertainties in the correct representation of the recirculating and southwards
flowing water masses. Improvements in the model configuration due for example to the
application of spatio-temporally high resolved forcing models and a consideration of local
freshwater inflow, would lead to a more realistic representation of the most dominant
spatial ocean circulation patterns.

The full comparison and assessment are described in P-2.

How does the combination work and how can it be validated?

The comparison method is explained in Section 3.3. Central element of the combination
approach is the application of a Principal Component Analysis. However, before the
combination is performed, both data sets are reduced by their mean and the annual
signal. Afterwards, the 50 most dominant spatial pattern, indicating 99% of the total
variance, of the simulated DOT are extracted and linked with the altimetry-derived
along-track DOT elevations representing the temporal DOT variations. The result are
a time series of principal components, which are multiplied by the corresponding spatial
signal of the model. A summation of the multiplication pairs results in a combined
dataset. The final dataset is provided by re-adding the altimetry-observed annual signal
and offset to reference the combined dataset to the altimetry height level. In order to
transform the combined DOT heights to geostrophic velocities, the geostrophic equations
(see Section 2.2) are applied to the unstructured triangle mesh.

The combination is validated by independent surface drifter observations, reduced to
geostrophic velocities and external multi-satellite datasets. The combination and its
validation are described in P-3.
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What can be learned from the combination dataset about the temporal
variation of the surface currents in the northern Nordic Seas and what
should be done in future studies to improve the results?

In order to answer this question, a data exploitation (Section 4) focuses on investigating
the major geostrophic surface circulation systems in the northern Nordic Seas.

The data exploitation shows a slight decrease of the mean surface velocity in the WSC,
which can be linked to a decrease of flow velocity of the Gulf Stream in the North Atlantic
(e.g. Caesar et al. (2018), Praetorius (2018), Dong et al. (2019)) and to an increase of
SST in that area. In addition, the surface circulation interacts with warm and cool
periods by changing the mean current velocity and the position of the core stream,
resulting in a negative correlation of about -0.75 between the temporal evolution of the
SST and the mean absolute velocity in the WSC. On the other side, an increasing mean
surface current velocity in the EGC area and the Fram Strait is observed. The strongest
intensification up to 1.08 cm/s p.a. is shown at the Greenland Shelf edge. An assessment
of the annual signal of the EGC circulation velocity reveals a maximum during the winter
months. Furthermore, an intensified current circulation at the north Greenland Shelf
is detected. These general current velocity behaviors were already observed by regional
investigations, for example based on data from in situ buoys (e.g. Walczowski (2014)),
but it had not been possible to determine them in high resolution for the whole area for a
time period of about 17 years. For example, in contrast to the general trend of increasing
velocity in the EGC, regionally decreasing flow velocities are shown in southern regions
at the Greenland Shelf.

The western currents are poorly observed, due to challenging monitoring conditions
mainly caused by sea ice and irregularly distributed in situ buoys, but this also reveals a
big potential for the combined dataset. Furthermore, due to the high spatial resolution
of the triangular mesh, the analyses show that it is possible to detect and study current
variations in different branches of the major currents. Moreover, it is possible to investi-
gate the flow variability along the east Greenland coast, even if major parts of the flow
are beneath the sea ice (i.e. NEGCC). This is highly relevant because warm recirculating
Atlantic water flows directly to the outlet glaciers on the coast of Greenland and thus
influences their melting (Straneo and Heimbach (2013), Khan et al. (2014), Mayer et al.
(2018)). However, it is not yet clear if an enhanced melting and warming of the Atlantic
water accelerates the NEGCC. For future investigations, the dataset offers big potential
in studying possible couplings between the current velocity and the enhanced freshwater
inflow by the adjacent glaciers.

Moreover, the presented data exploitation offers room for further and deeper investiga-
tions, since the geostrophic ocean circulation is not only affected by SST variations, but
also by changes in salinity, sea ice coverage and a changed freshwater budget. Further-
more, the influence of atmospheric drag, for example caused by wind stress or the sea
surface air pressure, extends the study fields. In order to estimate and understand the
total ocean circulation, these effects must be included.
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The combined dataset covers a period of nearly 17 years (1995/05 - 2012/04) and provides
geostrophic surface ocean current information of an area responsible for a worth living
climate in Europe. The northern Nordic Seas are the most important factor for mild and
mainly stable temperatures in northern Europe, since they are the northern extension of
the Gulf Stream and the Norwegian Atlantic Current. Furthermore, the northern Nordic
Seas represent the most important gateway between the Arctic and the Atlantic Ocean
and have a significant influence on the global thermohaline circulation. Of course, 17
years are not enough to make climate relevant conclusions, manifested by the appearance
of short periodically warm and cool phases within the investigation period. However,
the combined dataset helps to detect and understand short spatio-temporal circulation
patterns in the open ocean and within sea ice areas and it enables correlations with
other ocean variables (e.g. SST). Moreover, the proposed combination method can be
easily extended to all currently available altimetry data resulting in a combined dataset
of more than 25 years.

It can be highly recommended to minimize detected issues by introducing an updated
and more realistic simulation database for future processing or extension of the dataset.
Moreover, it makes sense to extend the classification and retracking algorithms, devel-
oped within the framework of this thesis, to the entire satellite altimetry database to
enable statements and predictions in the context of global and local climate changes.
The work finally proves a successful combination of observed and simulated data on the
same processing level and can contribute to a deeper understanding of ocean surface cir-
culation in polar regions. Furthermore, this work extends existing products to a higher
spatio-temporal resolved representation of the ocean surface circulation based on obser-
vations and simulations. Finally, the developed methodology can easily be extended and
transferred to other polar ocean regions on Earth.
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P-1.1 Monitoring the arctic seas: How satellite altimetry can be used to
detect open water in sea-ice regions

Müller, F. L., Dettmering, D., Bosch, W., and Seitz, F. (2017). Monitoring the arctic
seas: How satellite altimetry can be used to detect open water in sea-ice regions. Remote
Sensing, 9(6), ISSN: 2072-4292, DOI: 10.3390/rs9060551

Copyright

The publication was published in Remote Sensing, which is an open-access MDPI jour-
nal. All published articles are distributed under the terms and conditions of the Cre-
ative Commons Attribution License (http://creativecommons.org/licenses/by/4.
0/). The copyright remains with the author.

Summary

The Arctic seas are covered by a dynamic changing sea ice layer with significant influences
on the ocean-ice-atmosphere interaction. In particular, the northern Nordic Seas are
under the influence of seasonally changing sea ice cover with a maximum in March and
a minimum in September. The sea ice area is characterized by a semi-closed sea ice
surface, but also by ice floes and elongated as well as circular shaped open water areas
(i.e. leads and polynyas). These irregularly distributed open water areas provide the
only possibility to obtain information about the sea level during the sea ice season, since
they allow a direct observation of the ice-free ocean surface within the sea ice area.

Satellite altimetry is able to monitor leads/polynyas and to provide quantitative infor-
mation of the sea level in ocean regions affected by sea ice. In order to obtain reliable
sea surface heights within the sea ice regions, it is necessary to assign altimeter echoes,
also called waveforms, to sea ice or open water conditions. The different surface types
have a direct influence on the waveform shape and backscattered power. Reflections by
leads or small polynyas without any wave patterns result in a single-peak and narrow
waveform shape in connection with a strong backscattered power. In contrast, sea ice or
open ocean waveforms are characterized by a more diffuse scattering leading to weaker
reflected power, several smaller peaks and a generally broader waveform shape.

In order to identify waveforms reflected by lead and polynyas an unsupervised classifica-
tion approach was developed without using already classified training data or fix defined
and satellite mission-dependent thresholds. For this purpose, a partitional clustering
algorithm (i.e. K-medoids) is applied to search for similar waveform patterns among a
subset of selected waveforms representing the majority of all possible scatter types and
to sort them in a predefined number of clusters. In particular, the clustering is based
on six pre-defined waveform features describing the shape and power of the individual
waveforms of the subset. After clustering, the clusters are assigned to ocean, sea ice and
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lead/polynya conditions by analyzing the mean feature values of each cluster with re-
spect to physical background knowledge about the scattering behavior dependent on the
surface conditions. The clustered waveforms depict the reference model for categorizing
all remaining waveforms, which are not part of the subset. The remaining waveforms
are labeled to the clusters by applying a K-Nearest Neighbor classifier, which searches
for the closest distance between the reference model and the remaining waveforms.

The unsupervised classification was developed and tested with waveform data of Envisat
and SARAL. The two missions differ in terms of their observation bandwidth, which leads
to a slightly differing backscatter behavior regarding the waveform shape, but does not
require adaptions of the unsupervised classification procedure.

The classification performance is evaluated by an internal and external validation. The
internal validation is based on a 10-Fold cross-validation and provides information about
the minimal error, which must be expected from the classification methodology itself.
Therefore, parts of the clustered reference model are excluded and re-classified with the
remaining reference data. This reveals an internal miss-classification rate of 2.30% ±
0.08 for Envisat and 1.93% ± 0.05% for SARAL. Furthermore, an external, automatic
and quantitative validation based on image-processed and binarized SAR images from
various radar imaging satellite missions shows an overall consistency rate of 70.7% for
Envisat and 76.9% for SARAL. The radar image-based validation approach is described
in Passaro et al. (2018b).

The unsupervised classification enables the detection of lead and polynya radar altimeter
returns and enables studies of the sea level within sea ice regions. In particular, it allows
the reliable computation of sea surface heights for a variety of applications. Furthermore,
the developed method is applicable to all satellite altimetry missions and polar regions
on Earth.

Contribution

As stated in P-1.1: Felix L. Müller developed the classification and validation methods,
conducted the data analysis and wrote the majority of the paper. Denise Dettmering
supervised the present study, contributed to the manuscript writing and helped with
the discussions of the applied methods and results. Wolfgang Bosch initiated the study.
Florian Seitz supervised the research. Both were involved in the writing process and
discussed the methods presented in the manuscript as well. The overall contribution of
Felix L. Müller is estimated to be 88%.
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Abstract: Open water areas surrounded by sea ice significantly influence the ocean-ice-atmosphere
interaction and contribute to Arctic climate change. Satellite altimetry can detect these ice openings
and enables one to estimate sea surface heights and further altimetry data derived products.
This study introduces an innovative, unsupervised classification approach for detecting open water
areas in the Greenland Sea based on high-frequency data from Envisat and SARAL. Altimetry radar
echoes, also called waveforms, are analyzed regarding different surface conditions. Six waveform
features are defined to cluster radar echoes into different groups indicating open water and sea
ice waveforms. Therefore, the partitional clustering algorithm K-medoids and the memory-based
classification method K-nearest neighbor are employed, yielding an internal misclassification error of
about 2%. A quantitative comparison with several SAR images reveals a consistency rate of 76.9% for
SARAL and 70.7% for Envisat. These numbers strongly depend on the quality of the SAR images
and the time lag between the measurements of both techniques. For a few examples, a consistency
rate of more than 90% and a true water detection rate of 94% can be demonstrated. The innovative
classification procedure can be used to detect water areas with different spatial extents and can be
applied to all available pulse-limited altimetry datasets.

Keywords: satellite altimetry; Envisat; SARAL; unsupervised classification; K-medoids; Greenland
Sea; Fram Strait

1. Introduction

The Arctic Ocean, including its peripheral seas, e.g., the Greenland Sea, is considered one of the
most important components of the Earth’s climate system [1]. In particular, these areas show strong
responses to global warming and may affect climate conditions globally, for example, by changing the
oceanic thermohaline circulation. The north polar regions are crucial contributors to the global ocean
current system by carrying cold and fresh water southwards. Most of the Arctic Ocean is covered by
varying extents of sea ice with open water areas and floes with different spatial extents as well as fully
closed ice surfaces. The seasonal fluctuations of ice covers significantly impacts the atmosphere-ocean
interaction (e.g., ice-albedo). While a closed sea ice cover prevents the ocean from heat emission,
openings in the ice lead to a warming of the first atmospheric layers.

The evolution of sea ice is strongly influenced by sea surface temperature, wind, waves and
ocean currents [1]. During recent decades, increasing sea surface temperatures and an enhanced warm
water inflow in the Arctic Ocean resulted in decreased sea ice extent and volume [2,3]. Additionally,
the Greenland ice sheet experienced strong environmental changes due to an increasing mass loss
enhancing melt water influx into the Arctic Ocean [4].
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The monitoring of the changing north polar ocean conditions, especially in the Greenland Sea,
allows investigating interconnections between land, ocean, and atmospheric processes as well as their
climate forcing. Today, remote sensing systems provide a large set of different sensors for monitoring
the polar regions. Radar satellite altimetry is able to provide quantitative information about sea surface
heights, significant wave heights, and dynamic ocean topography [5,6]. However, in order to derive
reliable altimetry products, a careful selection of measurements from open water areas is necessary.
By analyzing the radar return signal of the altimeter, the so-called waveform, information about
the reflecting surface can be derived. This allows the classification of waveforms in water- and sea
ice-returns and the detection of open water areas in sea ice regions. For example, calm open water
areas within the footprint cause a very single-peak shape. With an along-track resolution of less than a
kilometer using high-frequency data, conventional satellite altimetry missions (such as Envisat and
SARAL) are able to detect small open water areas that might be missed by imaging Synthetic Aperture
Radar (SAR) satellite missions (Sentinel-1A/B, Radarsat-1/2, etc) in case a high-resolution acquisition
mode is not available. Additionally, small water areas have insufficient backscatter properties to be
mapped by passive microwave satellite missions (e.g., Special Sensor Microwave Imager (SSM/I) and
SSM/I Sounder (SSM/IS)). However, altimeter radar echoes reflected from non-uniform scatterers,
like sea ice regions, are challenging to interpret because the large surface footprint of several kilometers
usually covers several ice types.

The first studies dealing with satellite altimetry in sea ice regions were published in 1980 by
Dwyer and Godin [7] and in 1992 by Fetterer et al. [8]. After the launch of the ESA satellites ERS-1
and ERS-2, covering high latitudes in a repeat orbit, further studies were conducted by Laxon [5] and
Laxon et al. [9]. They analyzed the potential of ERS-1 sea ice monitoring and the interannual variability
of sea ice thickness by employing ERS-1 and ERS-2 altimetry data. Furthermore, Peacock [10] provides
a first sea surface height determination in the Arctic ocean. In recent years, several sea ice applications
have been explored e.g., the detection of openings in the ice. Connor et al. [11] applied a peakiness
parameter, defined by Peacock [10] in order to detect small open water bodies in the sea ice cover
using high-frequency data of Envisat. Zakharova et al. [12] continues with the development of a lead
detection algorithm by using the Centre National d’ Études Spatiales (CNES) and Indian Space Research
Organisation (ISRO) satellite SARAL and maximum power threshold. Currently, all pulse-limited
altimetry-based approaches for detecting water returns in sea ice regions use thresholds for different
parameters. This has the disadvantage that the thresholds have to be set manually and individually
for every altimetry mission. Furthermore, a deep knowledge about the different scatter characteristics
in sea ice regions is required. Besides Zygmuntowska et al. [13] developed another approach
using the waveforms shape for classifying airborne SAR altimeter echoes over the Arctic sea ice
in a supervised way.

The present study proposes a new strategy to detect open water areas based on an unsupervised
classification of high-frequency altimetry radar echoes. The approach is able to detect water domains
with different spatial extents and can be easily applied without any deeper knowledge about
surface-dependent backscatter characteristics. The method is applicable to all available pulse-limited
altimeter data and is independent of mission-specific radar frequencies and characteristics.
Furthermore, the results are compared to processed SAR images using the method described in [14] to
obtain quantitative information about the classification performance.

The present paper is structured into three main parts. First, the study area and the applied datasets
are introduced. Section 3 presents the method and processing procedure as well as the comparison
process of the obtained results. Section 4 presents the classification results and provides evidence
of the classification performance. At first, quantitative information considering the entire available
validation dataset (Section 4.1) is derived before some visual comparisons between the SAR images
and the altimetry overflights are provided. The paper finishes with a conclusion and an outlook to
future research.
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2. Study Area and Data Sets

This section provides an introduction to the study area and the different remote sensing datasets
used for classification and validation.

2.1. Greenland Sea and Fram Strait

The study area ranges from 70.0◦N to 81.5◦N in latitude and from the north-east coast of Greenland
to 28.0◦E in longitude and covers the Greenland Sea and the Fram Strait (see Figures 1 and 2).
The Greenland Sea belongs to the peripheral seas of the Arctic ocean. It connects the Fram Strait in
the north, a narrow passage between north-east Greenland and Svalbard, with the Norwegian Sea
as well as the Iceland Sea in the south. This area is affected by the East Greenland Current (EGC),
which transports more than 90% of fragmented sea ice from the Arctic Ocean through the Fram Strait
southwards [15]. Therefore, the EGC represents the main and most important freshwater outlet of the
Arctic Ocean. According to Serreze and Barry [16] the Greenland Sea and the region of the Fram Strait
is strongly influenced by rapid atmospheric and changing sea ice conditions as well as comparatively
fast ocean currents with a mean velocity of 20–30 cm/s [17] and maxima up to 80 cm/s [18]. The sea
ice state reaches from a nearly closed sea ice cover, showing straight lined and circular shaped open
water bodies, leads and polynyas, up to individual ice floes ranging from a few meters to kilometers in
diameter [16]. Applying open water detection to the Greenland Sea and the Fram Strait offers one the
chance to sensitize the unsupervised classification method for a various number of different sea ice
and ocean conditions.

Figure 1. Black rectangles indicate locations of the SAR images from ALOS and Radarsat-2 used for
comparison with Envisat classification results against the background of nominal sun-synchronous
ground tracks of one Envisat cycle. The four subsets discussed in Section 4.2 are highlighted by
different colors.
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Figure 2. Black rectangles indicate locations of the SAR images from Sentinel-1A used for comparison
with SARAL classification results against the background of nominal sun-synchronous ground tracks
of one SARAL cycle. One subset discussed in Section 4.2 is highlighted in orange.

2.2. Radar Altimetry Data

In the present investigation, the high-frequency radar altimetry data of the ESA satellite Envisat
and the CNES/ISRO altimetry satellite SARAL are used. Data of the missions Jason-1, Jason-2 and
Jason-3 are disregarded due to their low orbit inclination (about 66◦) not covering the Greenland Sea
and Fram Strait.

Envisat and SARAL carry pulse-limited radar altimeters and are placed on the same 35 day
repeat-orbit covering polar areas up to ±81.5◦ geographical latitude. Envisat was launched in March
2002 and orbits the Earth at an altitude of nearly 800 km. In October 2010, Envisat left the repeat-orbit
and started to drift until in May 2012, the ESA mission was decommissioned after an unexpected
signal loss. SARAL was placed in orbit in February 2013 and is still active even though in July 2016,
the satellite started its drifting orbit phase without fix repeat period.

All computations and methodologies used in this study are based on official high-frequency Sensor
Geophysical Data Record (SGDR) v2.1 dataset of Envisat’s radar altimeter (RA-2) and the SGDR-T
dataset of the AltiKa radar altimeter mounted on SARAL. In case of SARAL, data until July 2016
and in case of Envisat, data until the end of the mission are used. In this study, waveforms observed
in the Greenland Sea and Fram Strait (see Section 2.1) are employed in the classification process.
In order to calculate the altimeter backscatter values, different features stored in the SGDR dataset, for
example, atmospheric attenuation and instrumental corrections (e.g., sigma naught calibration factor)
are additionally used.

The two satellite missions differ mainly in the emitted radar bandwidth, the pulse repetition
frequency and the footprint size of the illuminating area onto the surface. RA-2 emits Ku-band
signals with an repetition frequency of 1800 pulses per second, covering an nominal elliptic area of
approximately up to 10 km diameter [11] depending on the surface conditions. Before transmitting to
earth, the waveforms are sampled to 18 Hz by the on-board processing. AltiKa works in the Ka-band,
with a repetition frequency of 4 kHz, generates 40 Hz averaged waveforms and has half the antenna
aperture of Envisat. This leads to a smaller footprint size up to 8 km diameter and an improved spatial
resolution [19]. Beside instrumental influences, the waveform’s shape is mainly affected by various
surface characteristics. Detailed explanations referring to the representation of the varying waveform’s
shape can be found in Section 3.1.
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2.3. Imaging Synthetic Aperture Radar (SAR) Data

A possible source for validating the classification results is the usage of imaging synthetic aperture
radar (SAR) data. Beside the altimeter satellites, several multispectral and SAR imaging satellite
missions regularly provide snapshots of periodically changing ocean conditions. In contrast to
multispectral sensors, working mostly in the visible and infrared spectrum, SAR sensors are unaffected
by cloudiness and lighting conditions, which makes it easier to identify appropriate scenes. However,
SAR sensors are side-looking instruments, which can cause a shadowing of very flat and smooth
surface structures (e.g., leads or polynyas) due to interjacent higher topography (e.g., ice floes, ridges).
Additionally, the recorded backscatter values do not only depend on the surface characteristics (e.g.,
roughness) but also on the incidence angle of the reflected radar waves, which makes it more complex
to provide information about different surface types. Furthermore, it has to be mentioned that most
SAR satellites are placed on sun-synchronous orbits, which allows for a uniform capture of ice state
but limits the minimum time lag between the acquisition dates of the SAR images and the altimetry
measurements of Envisat and SARAL also using sun-synchronous orbits.

Aiming at a small time lag between SAR images and satellite altimetry, wide swath data are
qualified best since these images cover a spatially extended area with medium pixel spacing. For this
investigation, SAR images of the JAXA Advanced Land Observing Satellite (ALOS) [20], MDA’s
Radarsat-2 [21] and ESA’s Sentinel-1A (S-1A) [22] are used. The Envisat classification results are
compared with ALOS PALSAR Level 1.5 Wide Beam (WB) images offered by the Alaska Satellite
Facility (ASF) DAAC and with Radarsat-2 (R-2) Scan SAR Mode data provided by ESA. The SARAL
classification outcomes are compared with Level-1, S-1A extra wide swath mode data. S-1A images are
made available through the ESA/Copernicus Sentinel Data Hub. Specifications, temporal availability
in the target region, and information about the used imaging SAR products are listed in Table 1.
To distinguish between open water pixels, appearing in near black, and sea ice pixels, appearing in
bright gray, HH-polarized images are used. For more information regarding SAR polarization and the
influence of different surface scattering see Dierking W. [23] and Jackson et al. [24].

Table 1. Synthetic Aperture Radar (SAR) image specifications [20–22] and altimeter satellites covering
same time periods.

SAR Satellite Band Mode Swath Width (km) Pixel Size (m) Period (mm/yyyy) Altimeter Satellite

ALOS L-Band Wide Beam 250–350 100 × 100 June 2007–May 2008 Envisat
Radarsat-2 C-Band Scan SAR Wide 500 50 × 50 June 2008–present Envisat/SARAL
Sentinel-1A C-Band Extra Wide 400 40 × 40 October 2014–present SARAL

In order to ensure similar sea ice conditions and allow for an unbiased comparison between
SAR and altimetry, only images with a time lag less than about 3.5 h, with respect to the altimetry
crossings, are used. The comparison is based on 16 grayscaled SAR images during the lifetime of
Envisat and 19 images for SARAL. The SAR data are selected from different epochs considering a
varying sea surface state with a focus on periods with various sea ice coverage. Figures 1 and 2 display
the locations of all used SAR images. The scenes are mainly located in the Fram Strait and near the
north-east coast of Greenland. Tables 2 and 3 list sensor and temporal information for all conducted
comparison pairs. Two of the R-2 images are used for multiple satellite overflights. In the case of
SARAL classification, it has to be mentioned that, due to sun-synchronous orbits and fixed revisit
times of Sentinel-1A and SARAL, it is not possible to find suitable pairs for comparison that show
good spatio-temporal coverage with a time gap smaller than 2 h 40 min during the study period.



Remote Sens. 2017, 9, 551 6 of 20

Table 2. Acquisition date of the SAR images and time gap between altimetry observations and imaging
data used for comparison with Envisat classification results.

SAR-Satellite Acquisition Date Time Gap hh-mm

ALOS 14 June 2007 02-30

ALOS 1 October 2007 02-57

ALOS 7 October 2007 01-55

ALOS 10 November 2007 03-07

ALOS 10 December 2007 02-50

ALOS 26 December 2007 02-13

ALOS 5 January 2008 02-40

ALOS 7 January 2008 01-46

ALOS 12 January 2008 02-49

ALOS 4 May 2008 01-25

R-2 4 November 2008 01-47

R-2 20 April 2009
02-09
00-29

R-2 21 April 2009 02-07

R-2 10 February 2010 03-04

01-52
R-2 14 March 2010 00-13

01-27

R-2 16 October 2010 02-04

Table 3. Sentinel-1A acquisition date of the SAR images and time gap between altimetry observations
and imaging data used for comparison with SARAL classification results.

Acquisition Date Time Gap hh-mm

23 October 2014 02-41
16 November 2014 03-34
14 November 2014 02-49
18 November 2014 02-42
3 December 2014 02-40
6 December 2014 02-58

27 December 2014 03-33
1 January 2015 02-59
15 January 2015 03-20
18 January 2015 03-27
16 March 2015 03-08

6 February 2015 03-29
6 February 2015 03-28

10 February 2015 03-22
22 February 2015 02-59

2 March 2015 02-44
9 March 2015 02-56
19 April 2015 02-53
15 May 2015 02-54

2.4. Sea Ice Data

Polar sea areas are affected by moving sea ice due to the influences of wind and ocean currents [16].
This results in a rapid change and high diversity of the sea surface conditions. To reach a realistic
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comparison of altimetry results and SAR images, the compensation for sea ice motion within the
time interval between the two observation sets is required. For this purpose, daily ice vector velocity
fields are exploited within the validation process. Therefore, the “Polar Pathfinder Daily 25 km
EASE-Grid Sea Ice Motion Vectors, Version 3” of the National Snow and Ice Data Center (NSIDC)
are employed [25]. This dataset contains zonal and meridional sea ice velocity observations of active
and passive sensors as well as in situ measurements interpolated to a 25 km spacing grid referring to
an azimuthal equal area map projection. This dataset covers the entire altimetry era until the end of
May 2015.

The sea ice velocity data are used to shift the SAR image, respectively, the image pixel coordinates,
assuming an averaged ice motion (direction and velocity) over the time interval between the altimetry
measurement and the SAR image. For this purpose, only homogeneous data represented by small
standard deviations in direction and velocity inside a predefined box (±35 km) around the altimetry
track are selected to compute a mean displacement vector. Sea ice velocity vectors located close to the
coastlines (within 25 km) are eliminated due to erroneous ice observations [25].

The comparison is performed only in areas affected by sea ice to suppress the influence of
falsely detected SAR ice pixels caused by diffuse scattering behavior due to rough swell in the open
ocean. Therefore, daily “Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSM/IS
Passive Microwave Data, Version 1” of the NSIDC [26] with a spatial resolution of 25 km × 25 km are
interpolated to the altimetry high-frequency data. Observations outside the ice edge without sea ice
are excluded from the comparison process.

3. Methods

This study is based on an unsupervised classification process of altimetry waveforms.
Unsupervised classification algorithms group unassigned data into a predefined number of classes
without any background information about the data and their sources using only “natural“ and hidden
intra-cluster similarities [27]. The classification is performed based on a set of features characterizing
the input data. In contrast, supervised classification is based on a-priori information of a well known
or labeled dataset to classify and assign the observations [28]. Examples for unsupervised classification
methods are artificial neural networks (e.g., Self-Organizing Maps [29]) or partitional clustering
algorithms (e.g., K-means and K-medoids [30,31]). In the present investigation, a partitional cluster
algorithm, K-medoids, is used for separating a set of unlabeled waveform data into clusters indicating
different waveform properties. Therefore, features have to be defined describing various waveform
characteristics. Based on the clustering results, K-nearest-neighbor is applied to assign unclassified
waveform data.

In this section, at first, features for describing the various waveform shapes and their
characteristics are specified and explained. This is followed by the description of the methodical
background of the clustering and classification process. The last part of Section 3 presents the validation
approach for the classification procedure. The presented methods are applied independently to Envisat
and SARAL.

3.1. Waveform Features

The shape of altimetry waveforms strongly depends on the surface characteristics within the
altimeter footprint. Figure 3 shows Envisat/RA-2 and SARAL/AltiKa radar pulses reflected by ocean,
leads, and sea ice. Major differences can be detected in the power magnitude and the number and
shape of the signal peaks. Leads produce very narrow and peaky waveforms due to the specular
scattering of calm and flat water. In contrast, radar pulses originating from ocean or sea ice surfaces are
influenced by waves or interlaced and piled ice floes, respectively, leading to multi peaks and wider,
noisier shapes.
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Figure 3. Waveform examples for Envisat (top row) and SARAL (bottom row) for three different
surface scatterers: Ocean (left), Lead (middle), and Sea Ice (right).

In order to characterize a waveform and identify the main evocative surface scatterer, a number of
waveform features are defined. The computed values constitute a waveform feature space that provides
the input for the clustering and classification process. To increase the efficiency of the algorithm and to
get a reliable open water detection, the selected features should fulfill the following conditions:

1. The features should characterize different waveform types.
2. The selected features should be stand alone and without linear dependence and major correlations

among each other.
3. The feature space should be adaptable to any altimetry waveform.
4. All features should exhibit the same order of magnitude for equal weighting among each other.

In the present investigation, six features are defined to describe the waveforms mainly focusing on
the reflected radar pulse shape (width) and the recorded power intensity. These features are applicable
for each pulse-limited altimeter waveform, i.e., for Envisat as well as for SARAL.

• Waveform maximum (Wm)
The waveform height is described by the maximal power of the returning radar pulse σmax.
It provides information about the backscatter of calm or rough surface conditions. To compute σmax

for Envisat as well as SARAL, the maximum waveform power and mission specific rectifications
are applied by using instrumental and atmospheric corrections from the provided datasets
(see Section 2.2).

• Trailing edge decline (Ted)
The trailing edge decline is computed by fitting an exponential function, considering an
exponential decay of AltiKa waveforms, from the waveform power maximum to the last bin.
The estimated decay rate is used to characterize the decline of the trailing edge after the maximum.

• Waveform noise (Wn)
This feature quantifies the trailing edge scattering. It is computed as median absolute deviations of
the trailing edge fitting (see Ted) residuals. This parameter is very small for single peak waveforms
(leads) and moderate for oceans.

• Waveform width (Ww)
The number of bins where the power is equal to zero provides information about the
waveform’s width.

• Leading edge slope (Les)
The leading edge slope is obtained by subtracting the first bin position containing more than 30%
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of the power maximum from the bin position of the maximum power. The difference provides
relative information about the width and steepness of the leading edge independent of the absolute
position of the leading edge, i.e., the range.

• Trailing edge slope (Tes)
In contrast to the leading edge slope, the trailing edge slope is obtained by subtracting the last
bin position containing more than 30% of the maximum from the bin position of the maximum
power. This difference provides similar information to Ted in the case of single-peak waveforms
but supports the identification of strong specular peaks in front of an ocean-like trailing edge.

The selected features in the present investigation show a varying order of magnitudes, which
results in an irregular weighting in the clustering algorithm. In order to comply with condition 4
(see above) a standardization has to be processed. Before conducting the unsupervised classification
procedure, the features are reduced by subtracting their average and divided by their standard
deviation (standard-score).

The features are calculated for RA-2 and AltiKa waveforms in the same way. In the case of SARAL,
the maximum power is limited to 1250 counts. Power counts above this limit are not recorded due to
too high backscatter values that cannot be resolved by the tracking window [12]. The waveforms are
cut without a clear maximum peak in the radar echo, which makes it impossible to compute all features
(e.g., leading edge slope) and to constitute the complete feature space. These waveforms, which are
not flagged in the SGDR dataset, are skipped from the further classification process. Furthermore, all
waveforms are neglected, for which no reliable computation of the defined features is possible (e.g.,
if trailing edge fitting is impossible with 95% confidence).

3.2. Clustering

Within the clustering process a representative subset of all waveforms from a single mission will be
used to define waveform groups, so-called clusters, that will later be used to also classify all remaining
observations. In a first step, this reference model has to be created. For this purpose, a set of several
waveforms, containing a majority of all possible scatter types, has to be selected. To this end, waveform
data covering an area in the central Greenland Sea within bounds of 15◦W/10◦E longitude and 68◦N/80◦N
latitude are used. To cover as many sea ice types as possible, the epoch is selected at the beginning of the
melting period in early summer from April to May [32]. For Envisat, Cycle 57 (2007, containing about
307,000 waveforms), and for SARAL, Cycle 12 (2014, ca. 670,000 waveforms) are selected.

To group the reference data, a K-medoids cluster algorithm is implemented that clusters
unsupervised data into K clusters. K-medoids performs a distance minimization between the features
and the most centrally located feature (medoids) based on the feature space itself. Thereby, K-medoids
is more robust to outliers and noise in contrast to K-means, which tries iteratively to estimate an
optimal partition of unlabeled data by minimizing the distances between the coordinates of a mean
cluster center (centeroids) and the features. However, in contrast to K-medoids, K-means integrates
every value of the feature space into the arithmetic average [27].

At first, K-medoids randomly chooses K medoids of the feature space and computes the distances
to every feature. In the next steps, the algorithm rearranges every single feature until there is no motion
within the K clusters and the minimal distances to the medoids are found. However, the clustering
result depends on the initial randomly chosen medoids. This is why the algorithm is repeated several
times and the best solution is selected by analyzing the final sum of all distances within the clusters.
This leads to high computational efforts by employing large input datasets, but it is considerable that
the clustering has to be performed just once per altimetry mission. To reduce the computation times,
the algorithm examines only a random sample of cluster members during each medoids updating
step. The size of the sample is set by default to 0.1% of the total number of data points. The iteration
terminates if the medoids are stabilized.
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Partition clustering algorithms require an initialization of the number of clusters K. In the present
investigation, K is chosen empirically after several test runs by evaluating the best segmentation results
[31]. Indicators for defining an appropriate K are, for example, the analysis of the sum of all distances
within the clusters and, additionally, a visual analysis of all clusters. In order to obtain a clear partitioning
of waveforms, it is useful to set K larger than the desired number of the three surface types, the present
investigation is looking for, namely, calm open water, ocean or sea ice conditions. Figure 4 shows
the clustering for 30 classes based on derived waveform features of about 307,000 Envisat waveforms
(the clustering results for SARAL waveforms can be found in the Supplementary section, Figure S1).
The displacements between the points and the medoids are computed using Euclidean distances.

Figure 4. Envisat waveform clusters (K = 30) after K-medoids clustering showing segmented
waveforms (every twenty fifth per cluster).

After running K-medoids, each cluster has to be assigned to one surface condition. The 30 clusters
need to be manually condensed to three main classes indicating ocean, sea ice, and lead/polynya
returns. This is done based on the feature statistic per cluster (see Figure 5) and knowledge on
the physical backscattering behavior of different surfaces. It is well known that radar returns from
dominant scatterers (i.e., a lead with a calm, mirror-like surface) cause single-peak waveforms with
high power and narrow shape. Radar echoes nearly entirely reflected by sea-ice show a more diffuse
scattering, weak power and no clear peaks. Using these relationships and transferring them to the
cluster statistics enable a nearly unambiguous assignment. However, questionable clusters with
ambiguous feature properties remain and are labeled as ”undefined“.

Figure 5 indicates the cluster assignment by different colors. Lead and polynya returns (clusters 2,
10–12, 20, and 26) are characterized by a very narrow and peaky shape and high maximum power
values. In contrast, ocean returns (clusters 1, 3, 6, 18, 22, 23, 25, 27–29) are wider and show a greater
trailing edge decay. Waveforms belonging to the ice class (clusters 5, 7–9, 13, 14, 16, 21, 24, and 30)
are between these two groups. They are defined by a smaller trailing edge decay and slope as well as
bigger power values than ocean returns. However, there are clusters (4, 15, 17, and 19), that cannot
clearly be assigned to one surface type. As an example, cluster 19 shows an ocean like behavior, but
is characterized by an indistinct leading edge as well as a steeper ice-like trailing edge. Undefined
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waveform classes show, apart from more noise in the cluster itself, no clear signature or trend to the
underlying feature space or to the three main surface classes.

Figure 5. Means and standard deviations of waveform features (see Section 3.1) per cluster. Four classes
are illustrated using different colors: “lead/polynya” (cyan), “ocean” (purple), “ice” (green), and
“undefined” (red).

3.3. Classification

The waveform model created by the clustering (Section 3.2) can now be used to classify all
waveforms. For this purpose the K-Nearest Neighbor (K-NN) classifier is employed. In general,
K-NN belongs to the memory-based classifiers and does not require a stochastic model [28]. Basically,
K-NN searches for the closest distance between a query point and a given input model. Similar to the
K-medoids algorithm, the K-NN uses the euclidean distance. However, K has a completely different
meaning than in the K-medoids algorithm. The K is now defined as the number of neighbors used
for the classification. The cluster assignment of a specific waveform is done based on the majority of
clusters of these K nearest neighbors. K must be set before the classification process starts.

In the present study, K is estimated by performing a 10-fold cross-validation. Therefore the
reference model used for the clustering and already assigned to the clusters is divided into 10 randomly
sorted, but equally sized subsets and validated against each other. This means, that every subset is
used as a test sample and the remaining subsets as training sets. In order to find an appropriate K for
K-NN, the cross-validation is performed based on different numbers of neighbors. Figure 6 shows the
mean misclassification error as a percentage of the 10-fold cross-validation in the case of SARAL and
Envisat. Similar errors can be expected for the classification of the remaining unlabeled waveforms.
The minimum error defines the optimal number of neighbors. SARAL displays less variability and a
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smaller misclassification rate than Envisat. The K-NN method seems to be more stable with clustered
SARAL than with Envisat waveforms, which can be explained due to less variability in the AltiKa
waveforms and a more robust waveform clustering. For SARAL a minimum error rate is obtained
with K = 20 (1.93 ± 0.05%). In the case of Envisat, nearest-neighbor number K = 44 (2.3 ± 0.08%) is
used, providing a good balance between low error and variance.

The misclassification rate in connection with the defined number of neighbors gives information
about the K-NN prediction error based on the reference model and class labels. This parameter can be
used to estimate the internal precision of the classification approach. In this study, a minimal error of
about 2% has to be expected from the methodology itself.

Figure 6. Misclassification error and its standard deviation for SARAL (red) and Envisat (blue) with
varying number of K neighbors as computed by 10-fold cross-validation.

After defining an appropriate K, the remaining waveforms are applied to K-NN. In the end of the
classification process every waveform is labeled by a certain cluster and, consequently, assigned to a
specific surface type.

3.4. Validation Approach

In order to conduct an external validation for the waveform classification, a comparison with
independent SAR images is performed. For this purpose, the defined waveform classes of ocean,
lead/polynya, sea ice are assigned to water (ones) and non-water (zeros) observations. Undefined
waveforms classes are also labeled with zeros. In order to provide quantitative information about
the classification performance, it is necessary to compare the results to an external dataset. For this
purpose, imaging SAR data are used, as they regularly provide snapshots of different sea surface states
in the study area.

Before performing an automatic comparison between SAR and the classification results, the SAR
images are pre-processed by using the ESA toolbox SNAP, version 4.0.0 for Sentinel-1A as well as
Radarsat-2 and the MapReady toolbox, version 3.1.22 for ALOS image data offered by ASF. Basically,
the following standard routines are applied to the imaging SAR data:

1. Thermal noise removal (only S-1A)
2. Radiometric calibration
3. Speckle filter (only Radarsat-2)
4. Delay Doppler terrain correction
5. Reprojection to Lambert Azimuthal Equal Area map projection
6. Converting backscatter values to db
7. Datatype conversion in uint8
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On the pre-processed SAR images, linear and circular shaped black and near black areas indicate
openings inside the sea ice cover generated by a smooth surface and specular reflection of the radar
waves. To automatically extract these areas, the SAR images have to be converted into binary pixel
values by applying several image processing tools. The applied approach is described in detail by
Passaro et al. [14]. Briefly summarized, the images undergo a noise and minimum filtering in order to
emphasize dark pixel regions, followed by an adaptive thresholding that considers local illumination
changes. Finally, a mathematic morphological closing operation is applied to the black and white
coded images to link fragmented open water regions. To control the effect of the morphological closing
operation a structure element (kernel) or convolution matrix is needed. Regarding linear and circular
shapes of open water areas, an octagon with various size, considering the nominal pixel spacing of the
SAR images, is employed. In the case of ALOS, the octagon size is six pixels around the center pixel,
and in the case of Sentinel-1A and Radarsat-2, a kernel size of 12 pixels is used. Moreover, the image
coordinates are shifted to compensate for sea ice-motion, for the acquisition time difference between
altimetry and SAR (see Section 2.4). In a last step, the locations of the altimetry returns are interpolated
to the SAR pixel locations by using nearest neighbor method.

4. Results and Discussion

In this study, 15,025 Envisat and 19,919 SARAL observations are investigated for which SAR
image classification results are available for validation. 31.2% of the Envisat waveforms and 15.0%
of the SARAL returns are assigned to water classes. Furthermore, 4.7% of Envisat and 14.2% of
SARAL waveforms are set to undefined and defined as non-water returns. For a quantitative rating,
19 comparison pairs for SARAL and Envisat, respectively (see Section 2.3), are used. The results of this
comparison are presented in the following section. Afterwards, examples are displayed to illustrate
and discuss the functionality of the validation approach.

4.1. Automatic Comparison to SAR Images

As mentioned above, the automatic comparison process only relies on observations in areas with a
semi-closed sea ice layer. This allows one to reduce false SAR classifications outside the ice edge due to
an unreliable SAR image processing. Table 4 provides the numbers of measurements assigned to water
and ice by the two observation techniques and, therefore, allows for an assessment of the altimetry
classification performance. The absolute number of water and ice detections are listed column-wise for
the altimetry classification results and row-wise for the SAR open water detection. The table shows
that 1124 of the 15025 Envisat observations are identified as water by both, altimetry and SAR, whereas
837 locations are assigned to non-water by altimetry and to water by SAR. Assuming the SAR to
be the ground truth validating the altimetry water detection, four dependencies are derived to rate
the classification results. The total consistency rate, P(CR) is computed by summing up the bold
values and dividing them by the total number of comparison points. In addition, three conditional
frequencies are derived: The true water detection rate (P(Alt|SAR)) is computed by dividing the
“correct” altimetry water detections by the total number of SAR water observations, whereas the false
water detection rate (P(Alt|SAR)) is defined as the relation between the water altimetry detections not
confirmed by SAR and the total number of SAR ice detections. Moreover, the percentage of correctly
classified water returns P(SAR|Alt) represents the “correct” water altimetry detections in relation to
the total number of open water detections by altimetry.

In the case of Envisat, a consistency rate of 70.7% is reached. In detail, nearly 60% of SAR water
detections are truly classified by Envisat (P(Alt|SAR) = 0.57) in contrast to below 30% of SAR ice
observations that are falsely assigned to water areas by Envisat (P(Alt|SAR) = 0.27). However, only
about a quarter of all Envisat open water detections are also classified by SAR (P(SAR|Alt) = 0.24).

The comparison between SARAL and Sentinel-1A water detection yields a higher consistency
rate of 76.9% but a smaller true water detection rate of less than 30% (P(Alt|SAR) = 0.28). At the same
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time, the false water detection rate P(Alt|SAR) is very small and yields only 12.3%. Moreover, the
correctly classified water return rate P(SAR|Alt) = 33% is better as for Envisat.

It has to be noticed that for the interpretation of these numbers it is important to consider that
inconsistencies are not only due to altimetry classification but that the SAR open water detection as
well as the sea ice-motion correction also contribute to the error budget. For example, most of the
SARAL comparisons take place during the sea ice maximum between January and mid March, when
the pack ice is very close and exhibits only small openings in the ice, which makes it challenging to be
detected by the SAR image processing.

Analyzing the absolute water detection numbers of Envisat versus SAR images, it is remarkable
that the number of open water points differs by 2732 between the SAR detection and the Envisat
classification. The Envisat classification identifies significantly more open water areas than the SAR
processing (factor of nearly 2.4). In the case of SARAL, a transposed situation can be found. This can
be explained by different SAR sensor characteristics and an insufficient pixel resolution as well as
an imprecise SAR image processing, including an unreliable sea ice-motion correction. Additionally,
the altimeters are affected by off-nadir returns, which can cause an enhanced number of open water
detections. In the case of Envisat, a larger footprint size than SARAL intensifies off-nadir effects.

Overall, it is important to understand, that the classification performance numbers of SARAL and
Envisat are not directly comparable with each other. The underlying different instrumental, sensor,
and spatio-temporal conditions differ too strongly to provide qualitative information that would allow
for a comparative assessment of the two altimetry satellites. More details related to the impacts of SAR
and altimetry processing on the quantitative comparison process can be found in Section 4.2.

Analyzing, for example, P(CR) of Envisat and SARAL, the quantitative comparison confirms
the reliability of the altimetry-based classification method and a good performance of their results.
However, it has to be kept in mind that a data comparison of two totally different Earth observation
techniques for open water detection in a very dynamic study area is not possible without a variety
of uncertainties and inaccuracies. In order to provide a better impression of the difficulties of a
quantitative comparison approach, the next section shows a couple of examples in a visual comparison.

Table 4. 2D contingency tables based on Envisat—ALOS/R-2 (top) and SARAL—S-1A (bottom)
comparisons. The table shows the number of points classified as water/ice from altimetry (Alt) with
the corresponding classification from SAR.

Alt (Water) Alt (Ice) ∑

SAR (water) 1124 837 1961
SAR (ice) 3569 9495 13064

∑ 4693 10332 15025

Alt (Water) Alt (Ice) ∑

SAR (water) 987 2600 3587
SAR (ice) 2007 14325 16332

∑ 2994 16925 19919

4.2. Visual Comparison

Using different SAR image subsets, this section will provide some visual comparisons between
open water classification by altimetry and SAR images. The images were selected in order to indicate
possible difficulties due to uncertainties in the SAR image or altimetry processing as well as sea ice
motion correction. Figures 7 and 8 show five visual examples before (left) and after (right) image
processing. The altimetry measurement locations are superimposed on the SAR image. Cyan colored
altimetry observations identify open water classifications. These regions are plotted in white in
the binary coded SAR images (right column). Figure 7a–f display Envisat-ALOS and Figure 7g,h
Envisat—Radarsat-2 comparisons. Figure 8 shows a visual example of one SARAL—Sentinel-1A
comparison. Metadata information, i.e., acquisition date and applied sea ice motion correction on each
comparison is provided next to the images (visualized classification results without class assignment can
be found in supplementary Fig. S2–S6). Moreover, Table 5 displays quantitative comparison results.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Examples of open water detection from Envisat against ALOS (a–f) and Radarsat-2 (g,h)
before (left) and after SAR image processing (right) with open water indicated in white. Boxes
provide additional image and processing information. Red: ice detection, cyan: open water detection.
The geographical locations of the image subsets are displayed in Figure 1; from top to bottom in green,
blue, yellow and magenta.
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(a) (b)

Figure 8. Example (orange highlighted in Figure 2) of open water detection from SARAL against
Sentinel-1A before (left) and after SAR image processing (right) with open water indicated in white.
Box provides additional image and processing information. Red: ice detection, cyan: open water
detection, yellow: saturated AltiKa observations.

Table 5. Table providing percentage statistical information about conditional P(X|Y) and consistency
P(CR) rates of visual examples discussed in Section 4.2. “SAR” and “Alt” indicate imaging SAR and
altimetry. Ice detections are indexed by overline character marked shortcuts.

Subset P(CR) P(Alt|SAR) P(SAR|Alt) P(Alt|SAR)

Figure 7b 90.63% 15.91% 91.86% 94.05%
Figure 7d 85.10% 16.04% 64.58% 88.57%
Figure 7f 12.61% 88.99% 2.02% 100.00%
Figure 7h 76.22% 22.36% 0.00% 0.00%
Figure 8b 72.07% 12.41% 40.68% 25.53%

The first example (Figure 7a) demonstrates very good accordance between altimetry and SAR
classification.The L-band image displays different sea ice and open water conditions. From West to
East, various sized open water areas ranging from 200 m up to 3.5 km are visible. A large region
appearing in dark reaches from the image center at 11◦W to the eastern edge. It indicates a mixture
of differently sized ice floes interrupted by open water sections. Analyzing the colored altimetry
observations, the open water detection is in good accordance with the grayscaled as well as with the
binary coded SAR image (Figure 7b). The quantitative comparison yields a consistency rate P(CR) of
90.63%. Moreover, the altimetry classification approach provides a true classification rate close to 100%
(P(Alt|SAR) = 0.94). This comprises small leads as well as larger areas of open water.

An almost perfect accordance between altimetry classification and SAR images can also be
observed in Figure 7c, detecting an expanded lead in the southern image part and some small leads
in the central part of the image. However, comparing Figure 7c and d to the altimetry classification
results at 75◦36.00′N, it is clearly visible that SAR image processing is not always able to segment very
narrow lead fragments. This might happen because of a poor spatial pixel resolution of the SAR sensor
(100 m), an insufficient identification of the ice-water transition, or a too restrictive threshold level in
the SAR image processing. This deficiency in the automatic SAR image processing results in reduced
performance in the quantitative comparison with a total consistency rate of about 85% and a true water
detection rate of 88.6%.
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However, there are also problems related to the altimetry observation technique. The example
displayed in Figure 7e,f is characterized by a very long (ca. 47 km) and in most parts narrow lead
located parallel to the satellite track. The SAR image is shifted about 1.2 km in the northeastern
direction, assuming a steady sea ice motion. Even if the altimeter track is still located northwards at the
off-nadir position of the lead, almost all measurements are classified as open water. As a consequence,
in the quantitative comparison, just 2% of all Envisat open water detections are confirmed by SAR
classification although they can be visually connected with the dominant lead in the image center.
The overall consistency rate yields only 12.6%—probably due to the fact that the altimetry classification
approach is not able to separate off-nadir water returns from nadir water returns or the mean sea ice
motion correction is not enough to consider the total sea ice drift.

Additional discrepancies between altimetry and SAR classification can occur in areas with new,
very thin ice coverage. Figure 7g shows those areas, appearing light gray in C-band, only a little
darker than the surrounding older ice. These areas are correctly set to ice by the SAR image processing
(see Figure 7h) because of the small brightness differences between the thin and surrounding ice types.
In contrast, the altimetry returns within these areas are falsely classified and interpreted as calm open
water since they show a very narrow and single-peaked lead/polynya-like shape. One explanation for
this mis-interpretation is the dominant scattering of all flat and specular surfaces. Connor et al. [11]
found that strong reflective surfaces, for example, leads/polynyas, can also affect the waveform shape
if covered by very thin ice. A distinction from open water is not possible based on the altimetry
waveform’s shape. Since the ice is very thin, the retracked ranges should represent the water level well
enough, even if the classification is wrong.

Related to the comparison process itself, uncertainties in sea ice motion correction can reduce the
quantitative consistency rate. Figure 8a,b are corrected by ice-motion considering a time difference
of more than 3 h. Analyzing Figure 8b, it can be shown that only 25.53% of the SAR detected ice
openings are well identified by the altimetry data. A visual image inspection suggests that the applied
ice motion correction is too small to completely compensate for the effect of the time lag.

Further challenging issues using SARAL SGDR-T data are so-called saturated waveforms.
Zakharova et al. [12] pointed out that leads or strongly reflecting surfaces can exceed the maximum
permissible power count value of 1250. The waveforms are cut and feature no clear peak due to
a saturated power tracking window. Figure 8 highlights saturated SARAL observations in yellow.
They are mainly located near small and calm open water areas, producing very high backscatter
returns. In the classification process, they are omitted because of an unknown maximum peak position.
In general, saturated SARAL waveforms are mainly traceable within the sea ice edge, but can provide
evidence about the location of further open water areas. However, just 0.14% (i.e., 288 waveforms) of
the comparison data are affected by a saturated power tracking window.

The present section shows a number of challenging and unavoidable impacts on the validation of
the waveform classification process. Considerable parts of the inconsistencies do not originate from
the altimetry classification but from the SAR classification or the ice-motion correction. In order to
adequately rate the quantitative comparison results, it is necessary to keep these effects in mind.

5. Conclusions and Outlook

The present paper introduces an unsupervised classification approach based on pulse-limited
multi-mission altimetry data to detect open water areas in a largely sea ice covered region. The study
demonstrates the successful application of the clustering of pulse-limited altimeter waveforms for
the automatic identification of open ocean, sea ice, lead and polynya observations. The approach
is based on known partition cluster strategies (i.e., K-medoids) and memory-based classification
methods (i.e., K-nearest-neighbor). A 10-fold cross-validation for the assessment of the precision of
the classification method is performed. It indicates an internal misclassification error of about 2% for
Envisat and SARAL. The algorithm is applicable to every pulse-limited altimetry satellite mission
without requiring any deeper knowledge about mission specific details. Moreover, it can be assumed
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that the developed approach also works for SAR altimetry waveforms if the waveform feature space
is adapted adequately. Additionally, the presented method can be adapted to a number of open
water detection or waveform classification tasks, e.g., for the identification of lake returns [33] or in
inundation areas.

In order to evaluate the classification results, a comparison with SAR images is performed.
In contrast to previous studies, the present validation relies not only on visual and manually selected
examples, but also on a larger set of images and an automated comparison procedure. The comparison
procedure allows for a quantitative assessment of the classification performance by assigning the
altimetry observations to open water and sea ice returns and checking them against processed SAR
images that indicate sea ice and open water areas. We reach consistency rates of 70.7% for Envisat and
76.9% for SARAL. However, it has to be underlined that the quantitative comparison results of Envisat
and SARAL are not directly comparable because of significant differences in the underlying sensor
and instrument characteristics of the available SAR missions.

When interpreting the comparison results, different sources of inconsistencies have to be
considered, e.g., effects from the altimetry data and their classification procedure and uncertainties in
SAR image processing as well as in the ice-motion correction. The Fram Strait and the Greenland Sea
are one of the most dynamic areas on Earth. Fast changing sea ice conditions due to short, periodic
melting and refreezing as well as rapid climate change make it hard to provide a high reliability in the
comparison as well as in the altimetry classification results. Local phenomena, such as melt ponds (i.e.,
open water pools on the sea ice surface) and their impacts on the open-water detection, have to be
investigated. Over specific sea ice types, altimetry waveforms show ambiguities, which prevents a
clear attribution to sea ice or open water returns. In particular, specular thin and flat ice produces very
specular returns resembling open water returns. In contrast, big ice floes or landfast ice can imitate
ocean-like returns due to similarities in ocean surface roughness and reflectivity.

Further improvements of the classification method are possible. In particular, saturated SARAL
waveforms have to be included in the classification process. In addition, the application of more recent
sea ice motion data in combination with Sentinel-1B data could lead to a better spatio-temporal ratio
within the validation process.

A reliable classification is an indispensable requirement for a meaningful estimation and an
efficient computation of sea surface heights in the Arctic by retracking only open water waveforms.
In addition to Envisat and SARAL, more pulse-limited (e.g., ERS-1/2) as well as delay-doppler
altimetry data (e.g., CryoSat-2, Sentinel-3A) may be employed in the classification process and, thus,
contribute to the generation of a long-term sea level record for the Arctic ocean.

Supplementary Materials: The following folder and figures are available online at www.mdpi.com/ 2072-4292/
9/6/551/s1, Figure S1 displays SARAL waveform clusters, Figures S2–S6 and folder S2 contain Figures 7 and 8
showing the classification results without class assignment.
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Summary

The work focuses on the lead detection using CryoSat-2 Synthetic Aperture Radar (SAR)
altimetry waveforms and Sentinel-1A SAR images. The latter is primarily used to rate
the lead classification performance of SAR altimetry. The mounted SAR altimeter is
characterized by a smaller along-track footprint and an improved spatial resolution com-
pared to conventional altimeters for example Envisat. CryoSat-2 was the first satellite
altimetry mission exploiting the full Delay-Doppler (DD) signal of a surface target from
different look angles. The received DD signals from one surface target are stored in
a stack diagram. Summing up all radar echoes (waveforms) acquired at different look
angles provides the multilook SAR waveform. The summation of all waveforms in the
across-track (i.e. range) direction, however, results in the Range Integrated Power (RIP)
waveform, which contains information about the backscattering properties of the illu-
minated surface and provides information about the reflection behavior of individual
scatterers with respect to the changing look angle. If the satellite passes a very smooth
surface like a small lake or lead, the RIP displays a very peaky shape, contrary to a sea
ice surface resulting in a more diffuse scattering. This behavior is exploited to develop
a threshold-based classification method based on the CryoSat-2 stack by computing the
Pulse-Peakiness of the RIP waveforms called the stack peakiness. When a lead enters
the altimeter’s field of view, more power is reflected back to the altimeter receiver,
resulting in higher stack peakiness values. The stack peakiness value exceeding a pre-
defined threshold defines the lead return at the nadir position (i.e. zero look angle) and
identifies the corresponding multilook waveform enabling a reliable sea surface height
determination.

Beside the SAR altimetry based lead detection approach, the publication also focuses
on the identification of lead areas by using SAR images of Sentinel-1A. In contrast to
SAR altimeters, which observe the Earth surface in nadir direction, Sentinel-1A carries a
side-looking imaging SAR instrument. The SAR images contain backscatter information
of the surface, which are transformed to pixel values. Dark pixel areas indicate a strong
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specular behavior, which, for example, refers to the presence of leads, in contrast to sea
ice or open ocean areas, which appear brighter. The brightness differences are exploited
to develop an automatic, quantitative lead detection approach based on several image
processing tools. The method aims at a segmentation of the SAR pixels indicating
small open water bodies within the sea ice domain and sea ice surfaces. Therefore, the
SAR images are noise reduced, dark-pixel emphasized and converted to binary values by
applying an adaptive thresholding algorithm considering different illumination condition
within the images. After the segmentation into binary values, the pixels undergo a
mathematical morphological operation to connect fragmented lead areas.

In order to compare the processed images with the stack peakiness-based classification of
CryoSat-2, the image coordinates are shifted to account for the sea ice drift between the
acquisition times of CryoSat-2 and Sentinel-1A. The comparison is done by interpolating
the SAR pixel coordinates to the CryoSat-2 observation locations using a simple nearest-
neighbor interpolation.

The CryoSat-2 stack peakiness-based lead detection is compared with other stack based
parameters, which are already provided in the CryoSat-2 dataset. A visual comparison
with external SAR images shows that the stack peakiness-based classification recognizes
leads at the nadir more position more reliably, than a detection based on the stack
standard deviation or the stack kurtosis. The quantitative comparison based on 12
CryoSat-2 ground tracks reveals that the classification based on the stack peakiness
performs equally as a lead detection based on the stack standard deviation and stack
kurtosis.

Contribution

Marcello Passaro developed the classification approach, conducted the altimetry data
processing and wrote the majority of the paper. Felix L. Müller developed and performed
the validation approach and contributed to the manuscript writing. Denise Dettmering
supported the study with discussions of the applied methods and results. The overall
contribution of Felix L. Müller is estimated to be 40%.
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Abstract

In the Arctic and Antarctic Ocean, where part of the sea surface is seasonally or continuously covered by sea ice, the sea level mon-
itoring from satellite altimetry relies on the localisation of open water areas, especially on the detection of leads: long and narrow frac-
tures in the sea ice, which dominate the radar echoes even if hundreds of meters away from nadir.

The Cryosat-2 altimetry mission is based on the Delay-Doppler processing, in which the averaged waveform is formed by summing up
several looks acquired at different look angles and stacked together. This imaging technique and the resulting improved along-track res-
olution are here exploited to evaluate different lead identification schemes.

In particular, stack and power statistics of Cryosat-2 waveforms are used to classify leads on a subset of 12 tracks in which the
altimetry-based classification is compared to a classification based on Sentinel-1A SAR images. For this scope, a dedicated SAR-
image automated processing is proposed to avoid the manual classification.

Results show that the adoption of a single new stack parameter (the Stack Peakiness) can perform equally well as the use of multiple
stack parameters currently available. Moreover, a multi-waveform analysis of the Stack Peakiness helps to isolate the point where nar-
row leads cross the tracks at nadir.

For all the tested strategies, the number of altimetry-detected leads that are unidentified by SAR is comparable to the number of
detections from both sensors. This could be due to presence of narrow leads, not detected by SAR due to resolution limits, but still dom-
inant in the radar altimeter return due to the high backscatter.
� 2017 COSPAR. Published by Elsevier Ltd. All rights reserved.

Keywords: Leads detection; Delay-Dopper altimetry; Cryosat-2 stack data; Sentinel-1; SAR image processing

1. Introduction

The measurement of sea level variability in the global
ocean is considered among the most important climatic
indices. It relies on in situ observations provided by a wide
but unevenly distributed set of tide gauges and, since more
than 20 years, on measurements collected by the radar
altimeters on board of several satellite missions.

The coverage of satellite altimetry over the ocean cannot
completely be defined as global, since a large part of the
Arctic and Antarctic oceans is excluded. On one side this
is due to the limited latitude extent of most of the altimetric
missions due to their orbit configuration. On the other side
the ocean in the northernmost latitudes is partially covered
by sea ice, which reflects the radar signal before it hits the
sea surface, preventing the possibility to measure sea level.
The estimation in the sea-ice covered regions is limited to
the leads, narrow cracks in the sea ice that can be several
tens of kms long. Since these ocean patches are very
smooth and do not have a developed wave field, the signal
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returned to the satellite is much stronger than the one
reflected from the surrounding ice and can dominate the
registered waveforms even if the lead is not located at
nadir. In particular, Armitage and Davidson (2014) have
shown that a lead can be the dominant return in the wave-
form up to about 1.5 km away from the sub-satellite point
(nadir). Such off-nadir returns, if not properly spotted,
result in erroneous estimations of the sea level.

Cryosat-2 (CS-2) offers ways for improving the sea level
records in these regions. With its orbit configuration, it pro-
vides coverage up to 88� in latitude. Thanks to the Delay-
Doppler processing of its echoes (when operating in the
so-called ‘‘SAR mode” over sea ice, not to be confused with
SAR imaging from Sentinel-1 used in this study), it stores
the signal registered by the satellite looking at the same res-
olution cell on the ground from different look angles. In
particular, the beam-limited along-track footprint size
(305 m, Scagliola, 2013) should guarantee a more precise
determination of the lead position. Nevertheless, due to
the size of the pulse-limited across-track footprint
(1.65 km), the distinction of a lead return at nadir from
an off-nadir reflection is still challenging. Most of the leads
have width of less then a km (Lindsay and Rothrock, 1995;
Kwok et al., 2009), while Cryosat-2 has a sampling interval
of roughly 300 m (using the 20-Hz rate): in most of the
cases, only one range measurement per lead will correspond
to the distance at nadir. Being able to correctly identify the
nadir echoes of these narrow, but numerous open water
openings can increase the amount of sea level measurements
and therefore improve the records.

Previous studies on past altimetry missions have used
lead-detection algorithms that distinguish leads from sea
ice based on the shape of the received signal: Empirical
thresholds were assigned in order to classify the waveforms
based on the ‘‘pulse peakiness” (Peacock and Laxon, 2004).
Laxon et al. (2013), Ricker et al. (2014) and Rinne and
Similä (2014) have classified CS-2 signals using a combina-
tion of different waveform parameters (including the pulse
peakiness) available in the European Space Agency (ESA)
Baseline C Product files or computable from the wave-
forms. Recently, Wernecke and Kaleschke (2015) argued
that it is possible to obtain an efficient lead classification
only based on the absolute value of the maximum wave-
form power.

Leads can be also determined using thermal infrared
sensors (Willmes and Heinemann, 2015), microwave
radiometers (Röhrs and Kaleschke, 2012) and SAR images
(Ivanova et al., 2016). SAR images have the advantage of
being independent from weather conditions, while provid-
ing a good resolution (40 m for Sentinel 1A). They can
be therefore used for comparison with the altimetry-
based lead classification, but the time difference between
the acquisition of the two different data sources needs to
be taken in consideration, since sea ice moves on average
from 4 km/day in winter up to over 9 km/day in summer
(as measured by buoys in Rampal et al. (2009)) and leads
can quickly refreeze and close (Weeks, 2010).

The objective of this study is to provide a first assess-
ment of the lead-classification methodologies based on
the Delay-Doppler processing of Cryosat-2 echoes in com-
parison to SAR images from Sentinel-1A. Our classifica-
tion, based on a new parameter computed using the
Delay-Doppler processing of CS-2 (in particular from the
full stack information) and on a multi-waveform analysis
to isolate the nadir return, is compared with the method-
ologies derived from the recent literature. A SAR-image
processing chain is proposed to provide a reference for val-
idation and, for the first time, is used to provide an objec-
tive comparison that is not based on a visual recognition of
lead-like features.

A description of the dataset and the area of study is pro-
vided in Section 2. Section 3 describes the methodology
used to analyse the altimetry and SAR dataset and to clas-
sify the leads. In Section 4 the results of the comparison are
presented and discussed. Section 5 draws the conclusions
and the outlook for future research.

2. Dataset

2.1. Cryosat-2 L1B-S data

By exploiting the Doppler frequency and the coher-
ence of consecutive pulses, Delay-Doppler altimeters
are able to perform multi-looked acquisitions, i.e. to
associate to a resolution cell a certain number of looks
(variable depending on the processing settings) acquired
at different look angles as the satellite moves over the
imaged area (Raney, 1998).

Using processing techniques inherited from the SAR
processing, such as Range compression and Range migra-
tion correction, all the returns corresponding to the resolu-
tion cell (a 20-Hz sampling of the illuminated surface, i.e.
one measurement every 300 m roughly) are aligned in a
2D-stack (Figs. 1a and 2a). The Cryosat-2 multilooked
radar waveforms, such as the one in Fig. 1c and 2c, are
obtained by the incoherent sum of all the echoes in the
stack. By summing up the returns in the across-track
(Range) dimension (Fig. 1b and 2b), the so-called Range
Integrated Power (RIP) waveform, can be generated. It
contains information concerning the backscattering prop-
erties of the illuminated surface, but it also reveals details
of the distribution of the scatterers as the satellite spans dif-
ferent look angles passing over the nadir position
(Wingham et al., 2006).

When the satellite moves over a very smooth surface, such
as for small lakes or leads (Fig. 1), the signal will be specularly
reflected back and the RIP will be peaky. On the opposite,
when flying over areas containing scatterers with different ori-
entation, suchas forwavy seas or ice, the backscatteredpower
will be more normally distributed (Fig. 2).

L1B products provide statistical parameters that
describe the RIP behaviour, but do not provide the full
stack, limiting therefore the possibilities of analysis. The
ESA Grid Processing on Demand (G-POD) service
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Fig. 1. Example of a stack (a), a RIP (b) and a multilooked waveform (c) acquired by Cryosat-2 over a lead.
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Fig. 2. Example of a stack (a), a RIP (b) and a multilooked waveform (c) acquired by Cryosat-2 over sea ice.
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(see acknowledgements) is currently the only freely and
easily available source to access these data. The ESA Base-
line C version of this L1B stack (L1B-S) data set is used in
this study (Scagliola and Fornari, 2015).

2.2. Sentinel-1A SAR images

One of the ways to verify the classification of altimetric
echoes is the comparison with satellite SAR images. These
have been used for lead detection, since very smooth water
areas reflect electromagnetic waves like a mirror: conse-
quently the slant incident radar waves reflect away from
the spacecraft and flat water areas appear dark

(Dierking, 2013). Sentinel-1A SAR images are provided
with two polarization modes HH and HV (where ‘‘H” indi-
cates horizontal and ‘‘V” vertical). HH- and HV-
polarization are particularly suitable for ice versus open
water discrimination because of decreasing ocean clutter
and smaller sensitivity to wind and wave scattering.

In the present investigation Level-1 dual-polarized SAR
Sentinel-1A extra-wide-swath mode data at medium reso-
lution (S1A-EW-GRDM-1SDH) are employed. The
images are ground-range detected showing a 40-meter spa-
tial resolution and a 400-km swath width, which allows a
wide spatial coverage and a short revisit time. The images
were pre-processed using the following standard

Fig. 3. Location and date of the SAR-images in the two control datasets. Dashed lines are the corresponding segments of CS2 tracks on which the

classification is applied.
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procedures: (1) Thermal noise removal, (2) Radiometric
calibration, (3) Range Doppler terrain correction (Veci,
2016). The latter includes a coordinate transformation into
an azimuthal equal area map projection to provide the
same coordinate background as the sea ice motion vectors
used to relate the images to the time of the altimetry over-
flight (see 2.3). In a last step, a type conversion to uint8 is
performed in order to get grayscaled values and to reduce
disk space.

In this study, two sets of control data of Sentinel-1A
HH-polarised images are used (see Fig. 3): Set 1 comprises
six images from September 2015 from the Arctic Ocean
north of the Fram Strait. They are taken as a reference
for comparison between the classification proposed in this
study and the one described in Ricker et al. (2014). Set 2
includes six additional images taken between the north-
east coast of Greenland and the Fram Strait. They are
exploited as a further comparison using a different area

at various times of the year (November 2014 to January
2015).

All images were selected because of the time proximity
with collocated Cryosat-2 tracks (never more than four
hours of time difference) to reduce the influence of sea ice
motion between the acquisition date of the imaging SAR
and the altimetry record.

2.3. Sea ice velocities

Since sea ice can move significantly even in short time
periods, it is desirable to take the ice velocity into account
when comparing altimetry results with SAR images. For
this purpose daily sea ice motion vectors provided by the
National Snow and Ice Data Center (NSIDC) are used.
At the time of writing, daily NSIDC ice motion vector
fields are only available until 31 May 2015: therefore, the
sea ice motion vectors are not applied to Set 1. The ‘‘Polar

Fig. 4. Multilooked waveform (c and d) and RIP (a and b) radargrams from a CS-2 pass over sea ice acquired on the 5th September 2015 (see Fig. 3 for

track location). All plots correspond to the same pass, but Hamming windowing has been applied in b and d. The arrows highlight residual sidelobe effects

also despite the Hamming windowing. The normalised power has been saturated in order to visually show the sidelobe effect.
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Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vec-
tors, Version 3” are based on data derived from different
active and passive satellite sensors as well as in situ data.
The data are provided at 25-km spatial resolution
(Tschudi et al., 2016). The ice motion information is pro-
vided as zonal and meridional velocity grids.

Based on these data a mean velocity (magnitude and
direction) is estimated by averaging all points in a
�35 km rectangle box around each Cryosat-2 track. The
SAR image, i.e., each of its pixel coordinates, is then
shifted taking the acquisition time difference between
SAR and CS-2 into account.

3. Methodology

3.1. Processing of Delay-Doppler altimetry data

3.1.1. Application of the Hamming window

When using L1B-S data in G-POD, it is possible to
exploit different Delay-Doppler processing configurations.
In order to apply the lead classification derived in this
study, the Hamming-windowing step before the along-
track Fast Fourier Transform is selected, which is currently
the baseline of the distributed Cryosat-2 product
(Bouzinac, 2012). Although this slighlty lowers the along-
track resolution and therefore creates some degree of
dependence between consecutive echoes, it is needed in
order to cut the energy coming from the sidelobes of the
antenna.

Fig. 4 shows the so-called ‘‘radargrams” of a CS-2 track
in a sea-ice covered region for the multilooked waveforms
and for the RIP, without (a and c) and with (b and d) the
Hamming window application. Each column corresponds
to a 20-Hz RIP (a and b) or multilooked waveform (c
and d). Before and after the peaky echoes typical of lead-
like backscatter, high-power features are seen preceding
the leading edge in the multilooked waveform radargram
and in the non-zero look angles of the RIP radargram.
In fact, the return coming from a sidelobe that sees a lead
at nadir when the main lobe is side-looking has a shorter

range and therefore is registered before the leading edge
corresponding to the resolution cell.

The sidelobe effects create false leading edges, influence
the statistical analysis of the RIP and add backscattering of
the same order of magnitude of the nadir return in the look
angles closer to zero. These features mostly disappear after
the application of the Hamming window, although residual
signatures are visible, as highlighted by the arrows in
Fig. 4b.

3.1.2. Definition of Stack Peakiness

In order to characterise the RIP shape, the Stack Stan-
dard Deviation (SSD) and the Stack Kurtosis (SK) are
already given in the ESA Baseline C product. These two
indices, although useful to classify the kind of waveform,
are not sufficient to isolate the nadir return of a group of
waveforms influenced by a lead backscatter. The SSD is
based on a gaussian fitting of the RIP, which is a poor
approximation for peaky returns such as in Fig. 1b. The
SK is highly influenced by remaining sidelobes effects in
the looks that are close to the zero look, which can have
a similar power. In order to compare the power at the zero
look angle with the backscatter registered in the other
looks, a new parameter called Stack Peakiness (SP) is
defined in this study from the RIP normalised by its max-
imum value in the following way:

SP ¼
1

RIP l;r

ð1Þ

with

RIP l;r ¼

P
N

i¼1RIP ðiÞl;r
N

ð2Þ

where N is the number of looks excluding the nadir look
and RIP ðiÞ

l;r
is the power from the look angle i, excluding

the nadir look (i.e., at its right or left). A similar index of
peakiness of the main return in comparison with the rest
of echo was already defined in Ricker et al. (2014). Never-
theless this statistics was computed on the multilooked
waveform, which is actually a time series of the received

Fig. 5. Modelled lead (blue line) crossing over a CS-2 track (left) and expected SP behaviour (right). (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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signal, while SP is able to compare the power reflected from
the same resolution cell at different view angles.

The expected behaviour of SP in the case of a narrow
lead crossing the CS-2 track is sketched in Fig. 5 and a ver-
ification with real data is provided in Section 4.1. When a
lead enters the across-track pulse-limited footprint, the
SP will be higher than a purely diffusive backscatter event,
since the lead will scatter more energy back to the satellite.
Nevertheless, the lead will still be slightly off-nadir in the
across-track direction: Part of the incoming power will be

specularly reflected away. Off-nadir leads are usually char-
acterised by lower levels of backscatter power compared to
leads at nadir (Wernecke and Kaleschke, 2015). Conse-
quently, a lead located off-nadir in the across-track direc-
tion will scatter less power back to the satellite, if
compared with the same lead illuminated at nadir. The
maximum SP, i.e. the time when the power at the zero look
angle is strongest in comparison with the backscatter
received at the other look angles, is therefore expected to
correspond to the position in which the lead is at nadir.

(a) Sentinel-1A image after SAR pre-processing (b) Sentinel-1A image after median and minimum filtering

(c) Sentinel-1A image after segmentation (d) Sentinel-1A image after morphological closing operation

(e) Octagon kernel for

minimum filtering

Fig. 6. Sentinel-1A image subset of about 24 � 24 km: (a) the original grayscaled SAR image after SAR pre-processing; (b) the same image after 5 � 5

median and minimum filtering; (c) the binary image after segmentation by adaptive thresholding; (d) final image after closing operation giving open water

in white and sea ice areas in black. Plot (e) shows the octagon kernel with radius 3 around center pixel applied for the minimum filtering.
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3.2. Lead classification based on Cryosat-2

3.2.1. Use of Stack Peakiness

In this study, a local maxima of SP, such as the one in
Fig. 5, is considered a potential lead waveform. The SP is
almost constant over sea ice, but peaks in presence of a

lead, as shown in Section 4.1. Two additional criteria are
used to identify the nadir leads:

� Median SP: The analysis of SP over all CS-2 tracks used
for the validation with Set 1 and Set 2 (considering the
whole length of each track over the Delay-Doppler geo-

Fig. 7. SP behaviour along a CS-2 track acquired over sea ice (top plot). The figure shows the points that are recognized as leads by the SP-based

classification described in this study (circles) and the results of the classification based on Ricker et al. (2014) (squares). The lower plots show Stack

Kurtosis and Stack SSD for comparison.

Fig. 8. 4.25 by 4.25 km zoom on a lead seen by Sentinel-1 image from 05/09/2015 at 12:46 (Image 1 of Set 1, see Fig. 3 for location), with Cryosat-2

crossing the area at 16.36. No ice motion correction is applied due to high variation in the ice flow direction. SP (dots) in comparison with classification

results of Ricker (squares) showing in cyan lead detections.
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graphical box) shows a median value of SPmedian ¼ 8:67
with a Median Absolute Deviation (MAD) of
SPMAD ¼ 8:72. In order for a local maxima of SP to be
classified as lead, the SP of the RIP before and after
the local maxima has to be higher than
SPmedian þ SPMAD ’ 17. This is done in order to avoid
false detections, by utilising the fact that a lead that
crosses the altimeter track influences the SP value also
when not yet at nadir.

� Minimum SP: An empirical threshold SPminlead ¼ 40 is
identified as the minimum SP of the RIP local maxima
to be classified as lead. The threshold has been set by
empirical observations of the locations of CS-2 points
characterised by low SP values on the corresponding
SAR images. This additional criteria is added in order
to limit the recognition of leads that enter the field of
view of the satellite, but never cross the nadir position.
Their SP maxima is therefore expected to be lower than
the SP maxima of nadir-crossing leads.

In the following sections, SP will be also used as acro-
nym of the corresponding classification method.

3.2.2. Use of received power

Each Delay-Doppler waveform is characterised by a
received power. The received power depends on the
backscattering characteristic of the surface: flat surfaces
such as the still water of small leads or melting ponds spec-
ularly scatter most of the incoming radar signal back in the
same direction, while ice surfaces are characterised by dif-
fuse scattering, which decreases the amount of power
reflected back to the altimeter. In this study (Section 4.3)
the adoption of an absolute threshold on received power
to identify leads is verified and discussed. The applied
threshold is 2.58 � 10�11 W, as proposed by Wernecke
and Kaleschke (2015).

3.2.3. External lead classification

As previously mentioned, the classification proposed in
Ricker et al. (2014) is used for comparison. The results of
the classification were provided by the Alfred Wegener
Institut (see Acknowledgements) for Set 1. The method
consists on the use of thresholds set on three waveform-
derived parameters (pulse peakiness, peakiness right of
the power maximum, peakiness left of the power maxi-
mum), two RIP-derived parameters (SK and SSD) and a
sea-ice concentration index. The peakiness right and left
of the power maximum was directly computed from the
waveform, while all the other parameters are provided in
the raw data.

3.3. Lead classification based on Sentinel-1 SAR images

A set of image processing algorithms is applied to the
Sentinel-1A scenes that should be used as a reference for
the lead identification based on CS-2, aimed at extracting
open water areas, i.e. black or near black surface areas,

by converting the SAR images into binary format. Leads
or polynyas are represented by ones, while ice is coded with
zeros. In order to replace the common visual classification
an automated SAR image processing is proposed that
enables quantitative comparisons with altimetry classifica-
tion results. The following steps are applied to the SAR
images (previously shifted considering the ice motion as
described in Section 2.3):

� Noise reduction: To reduce noise in the image due to
interfering scattering, a median filter is applied to the
grayscaled image. For this purpose a window size of
5 � 5 pixels (equal to 200 m � 200 m spatial scale) has
been chosen to emphasize the transition between ice
and water pixels and to minimize a false detection of
open water pixels. The filter size is a compromise
between noise reduction and compliance with the origi-
nal image and was experimentally determined.

� Dark pixel emphasizing: After median filtering the
grayscale image undergoes a minimum, non-linear filter-
ing emphasizing dark pixel values. This is necessary to
compensate uncertainties of the image shifting due to
the ice motion (Section 2.3). To control the effect of
the minimum filtering a convolution matrix or kernel
is needed. Considering the linear and circular shape of
openings in the ice, reliable results are reached by using
an octagon kernel with a radius of 3 pixels around the
center pixel. In Fig. 6, a SAR image before (a) and after
median and minimum filtering (b) as well as the used
kernel (e) are shown.

� Conversion to binary map: To convert the filtered grays-
cale image into binary values, a segmentation based on
thresholding is applied. For this purpose an adaptive
threshold algorithm is employed to compensate spatial
variations in contrast and illumination. We follow the
approach of Bradley and Roth (2007) that divides the
SAR image in foreground and background pixels. In a
first step the integral image, a summation of pixel values
from top left to bottom right, is computed. The next step
computes the average of every pixel in a given neighbor-
hood. The last processing step separates the SAR image
in background and foreground by comparing the aver-
aged pixel to the integral image.

� Interconnection of lead fragments: The spatial extent
and the shape of a lead can vary very quickly from
one meter to over 500 m due to persistent ice motion
and refreezing (Onstott and Shuchman, 2004). In SAR
images leads can show different pattern and pixel values.
For example if the leads are refrozen or covered by frost
flowers, the pixel values brighten up. Furthermore open
water SAR signatures are sensitive to wind conditions. If
there are calm conditions, leads appear small and dis-
connected and could be obscured by surrounding ice
(Onstott and Shuchman, 2004). Additionally leads can
be segmented due to limited resolution of the SAR
image and inaccuracies of the thresholding. In order to
reconnect these leads, a morphological closing operation
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is applied to the binary images. The closing operator is a
consecutive execution of a morphological dilatation fol-
lowed by a morphological erosion. It enlarges pixel
areas by mainly keeping the original boundary shape,
thus it fills gaps and connects objects in a specific range.
More details regarding the effect of closing operation on
binary images can be found in Gonzalez and Woods
(2008). As a closing operator, an octagonal kernel with
radius of 12 pixels around the center pixel has been cho-
sen based on empirical tests. Fig. 6 visualizes the effect of
the closing operation on the segmented binary image
(from c to d). The thin adjacent lead fragments are con-
nected by mainly preserving their natural linear spatial
extent. As a downside, independent openings that are
closely located can be linked, resulting in one wide-
spread open water area.

For the statistical comparison between CS-2 and SAR
lead classifications, the binary pixel values of the processed
SAR image are interpolated to the altimetry track coordi-
nates, using nearest-neighbor interpolation.

4. Results and discussion

4.1. Analysis of stack parameters

Fig. 7 shows the evolution of the SP over a sea ice cov-
ered area in comparison with the Kurtosis and SSD stored
in the ESA Baseline C product. Points that are identified as
leads by the SP classification described in Section 3.2.1 are
highlighted by circles. For comparison, points that are iden-
tified as leads using the classification from Ricker et al.
(2014) (Ricker from now on) are highlighted by squares.

The evolution of SP in the lead areas closely resembles
the scheme of Fig. 5: a peak, which corresponds to the
strongest return from the zero look angle compared to
the other looks, is easily identifiable, but the lead returns
influence also the measurements nearby. The lead areas
are also characterized by high Kurtosis and low SSD, but
these two indices are often not able to univocally show a

local maximum or minimum: in some cases, the Kurtosis
shows multiple peaks in the same sequence of points influ-
enced by a lead, which may be attributed to high power in
non-zero look angles due to residual sidelobe effects; the
SSD, being based on a Gaussian fitting, is not able to dis-
tinguish subtle differences in the power distribution of the
very peaky RIP waveforms in the lead areas.

Classifications that are based on these two stack param-
eters, such as Ricker, tend to classify as leads more points
related to the same feature than the SP classification, which
performs a sort of multi-waveform approach by looking
for local maxima, rather than only considering thresholds
on single measurements. In the case of narrow leads, a
single-waveform approach can imply that off-nadir returns
are being considered as leads. An example is found in
Fig. 8, in which the CS-2 track crosses a narrow lead: SP
is able to detect the return in which the lead is at nadir,
while Ricker classifies as lead also the neighbouring point,
in which the lead is seen off-nadir.

4.2. Quantitative comparison with SAR images

The altimetry-based classification is rated considering
the following parameters:

� Fraction of False Detections (FFD), i.e. the fraction of
points along the CS-2 track that are identified as leads
by the altimeter-based method, but identified as ice on
the SAR image;

� Fraction of Correctly Classified Leads (FCCL), i.e. the
fraction of leads on the SAR image (along the CS-2
track) that are also seen by the CS-2 classification. Note
that this statistics concerns the number of leads, there-
fore two consecutive lead detections are considered as
part of the same lead.

The coincidence between CS-2 and SAR lead detection is
verified by simply interpolating the SAR binary image gen-
erated as in Section 3.3 onto the altimeter track. An along-
track tolerance of 400 m is applied in the comparison,

Table 1

Results of the CS-2-based lead classification with the methods described in the study, w.r.t. the SAR images classification. Col 1: name of the SAR images

dataset; Col 2: classification method; Col 3: mean and standard deviation of the FFD (defined in 4.2); Col 4: mean and standard deviation of the FCCL

(defined in 4.2); Col 5: ratio between FCCL and FFD, taken as final score of the method; Col 6: number of leads seen by each CS-2 lead classification

method. For each classification method, the validation against SAR images without the morphological closing operation is identified by the suffix NC (No

Closing).

Validation dataset Lead detection Mean(FFD) � std Mean(FCCL) � std FCCL/FFD Tot lead

Set 1 Stack Peakiness 0.5444 � 0.1659 0.6465 � 0.2121 1.2 472

Stack Peakiness NC 0.5795 � 0.1756 0.6065 � 0.2243 1.0 472

Ricker et al. (2015) 0.4528 � 0.1594 0.5496 � 0.1982 1.2 279

Ricker et al. (2015) NC 0.4982 �0.1758 0.5427 � 0.2011 1.1 279

Relative Power Threshold 0.2554 � 0.2199 0.4269 � 0.1985 1.7 144

Relative Power Threshold NC 0.2971 � 0.2358 0.4276 � 0.2056 1.4 144

Set 2 Stack Peakiness 0.4472 � 0.2865 0.5007 � 0.2217 1.1 507

Stack Peakiness NC 0.4869 � 0.2914 0.4392 � 0.2218 0.9 507

Relative Power Threshold 0.2885 � 0.2178 0.4333 � 0.0728 1.5 188

Relative Power Threshold NC 0.3349 � 0.2256 0.4397 � 0.0994 1.3 188
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corresponding to the along-track resolution ofCS-2 after the
Hamming window application (Scagliola, 2013). The results
are summarised in Table 1. The FCCL and the FFD are
computed for each SAR image - CS-2 track couple and are
shown taking their mean and standard deviation. The total
number of leads detected by the SAR images is 232 for
September 2015 (Set 1) and 275 for Set 2, while the table
reports the total number of detections from the different
altimetry-based methods. As a final score for each method,
the ratio FCCL/FFD is adopted.

While the Relative Power Threshold and its results will
be discussed in the next section, we firstly compare SP with
Ricker. The two methods have the same score of 1.2 and

this result is also similar for SP in the control dataset,
where the ice motion is applied. The only difference
between the two methods is that SP finds 9% more of the
leads recognised in the SAR images, but scores 9% worse
in the FFD statistics. Essentially, the adoption of the SP
index as a criteria is almost equivalent to the use of the 6
indices tuned in Ricker for the purpose of lead detection.

In both methods, the high standard deviation of FCCL
and FFD attests the variability of the results depending on
the different SAR scenes. We have not found a relationship
with the seasonality, since the values are similar in both
control data sets. The influence of seasonality cannot be
excluded, but to assess it a larger amount of CS-2/SAR

Fig. 9. Examples of lead detection from altimetry against SAR images before (a and c) and after the processing (b and d). a and b show a 5.35 by 5.18 km

subset from Image 4 of Set 1, c and d illustrate a 8.11 by 8.34 km zoom from Image 1 of Set 1. Red: ice detection, cyan: lead detection. Squares: Ricker

classification, dots: SP classification. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
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combinations are needed. This is not trivial, since an
archive of these combinations does not exist and since
the Stack data are not distributed in the ESA Baseline C
CS-2 product and have to be acquired from an external
source (G-POD).

Ricker was also validated against MODIS images by
Wernecke and Kaleschke (2015). Their True Lead Rate
(against MODIS taken as ground truth), essentially
equivalent to the FCCL in this research, has a mean value
of 60%, in line with our result considering the standard

deviation. Despite the different ground truth, the statistics
is therefore robust, but the validation here presented can
be easily replicable since the lead extraction from the
ground truth does not rely on visual criteria such as in
the previous studies.

We argue that the reason for which the score of Ricker
and SP is equivalent lies in the filtering of the SAR images
needed for noise reduction. Fig. 9 shows two examples of
the comparison between leads seen through SAR image
processing and altimetry-based classification with SP and

Fig. 10. Examples of lead detection from altimetry against SAR images (4.75 by 4.88 km extract from Image 1 from Set 1) before the processing (a), as a

binary map without the filtering and closing (b) and after the full processing (c). Red: ice detection, cyan: lead detection. Squares: Ricker classification,

dots: SP classification. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Ricker. The figure shows that the filtering widens the bor-
ders of the lead, which has the effect of considering as a
correct nadir detection the off-nadir CS-2 points that are
classified as leads in Ricker. Nevertheless, the filtering is
a necessary step to achieve an authomatic and objective
procedure for validation, as shown in Fig. 10: a binary
map formed without the noise reduction described in Sec-
tion 3.3 would result in several incorrect lead-like isolated
features and as a consequence would strongly decrease
the reliability of the comparison. Even with the filtering,
the SAR processing is not always able to extract leads that
are very thin, as for example in Fig. 9b. The binary map
recognises the wider part of the lead that crosses the CS-
2 track, but misses the elongated feature, due to the insuf-
ficient contrast between the ice edge and the thin lead.

A validation experiment was also undertaken to observe
the effect of the closing operation. The results are listed for
each altimetry classification method in Table 1. By compar-
ing altimetry with SAR images without the closing, a gen-
eral increase of the mean FFD by 3–4% is observed as well
as a decrease of the FFCL, which result in a worse score.

The reason is observed in Fig. 10 c: the closing connects
a lead that is seen fragmented in the original SAR image,
which can be due to partial refreezing or noise. Without
the closing, the lead identified by the altimeter would be
interpolated on a black (ice) SAR binary pixel, resulting
in an apparent false detection.

For the purpose of comparing the lead detection from
satellite altimetry with the one applied on SAR images,
the latter is considered as a ground truth. This assumption
is only meant to provide a common ground for the com-
parison of different altimetry-based strategy, but it is an
approximation of the reality: Despite the high resolution,
Sentinel-1 is not able to distinguish leads that are narrower
than 40 m, while such cracks in the ice could still be the
dominant return in the altimetric waveforms. This differ-
ence is even more stringent after the application of the
200 m � 200 m median filter for noise reduction in the
SAR image. Moreover, the ability of both the automated
SAR technique and the altimetry methods to distinguish
between leads and melt ponds, which according to recent
studies can occupy as much as 70% of the first-year ice area
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Fig. 11. FCCL (blue) and FFD (red) for each SAR image of Set 1 and Set 2 according to the time difference with the corresponding CS-2 track. In Set 1,

the sea ice motion vectors are not applied, as in Table 1. In Set 2, statistics are shown with (circles) and without (crosses) the application of sea ice motion
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in the melting period (Divine et al., 2016), remains hard to
verify and further research is needed in this matter.

Finally, the impact of the time difference between S1 and
CS-2 and of the application of the sea ice motion vectors in
Set 2 is displayed in Fig. 11, considering the SP classifica-
tion statistics. Regardless of the sea ice motion vectors, in
both Sets the best results in terms of FCCL are obtained
for S1-CS2 coupling close in time: in particular, only CS-
2/SAR comparisons within 90 min show FCCL > 0.4 and
the closest CS-2/SAR comparison has the best FCCL
score. Moreover, in 4 out of 5 comparisons within
90 min, FCCL is higher than FFD, while the opposite hap-
pens in 6 out of 7 comparisons over 90 min, regardless of
the sea ice motion vectors application. The latter has nev-
ertheless a limited, but constant positive effect, reducing
FFD and improving FCCL.

4.3. Received power as lead classifier

Using the distinction between true leads and false leads on
the base of the comparison with SAR images, Fig. 12 shows,
for every SAR image of the two datasets, the mean and stan-
dard deviation of the received waveform power from the
points classified as leads by CS-2. The figure also shows as
a dotted line the value of 2.58 � 10�11, which has been pro-
posed by Wernecke and Kaleschke (2015) as the threshold
for the best representation of lead occurence. This threshold
is not entirely comparable with the values here presented,
since it has been computed using the ESA Baseline B release
of the CS-2 data, while at the time of writing this has been
substituted with ESA Baseline C: small differences in the
Delay-Doppler processing used to build the waveforms
can lead to different power output associated to each echo.

Considering the results, the implementation of an abso-
lute threshold to classify the leads does not look feasible.
The proposed threshold, although it avoids false detec-
tions, does not find leads in three of the tracks from
September 2015 and misses almost any lead in Set 2. The
return power distribution of false leads and true leads is
not constant: for example, the power distribution of false
leads in images 1 and 2 from September 2015 is almost
coincident with the power distribution of true leads in
images 1 and 2 from Set 2. The power backscattered by a
lead in fact does not depend only on the off-nadir or nadir
view, but also on the presence of sea ice in the illuminated
area, on possible refrozen areas of the lead and on its
width. In general, the higher is the selected absolute power
threshold, the higher is the confidence that the selected
points are real leads, but the lower is the number of
detections.

Nevertheless, the mean power of the true leads distribu-
tion is constantly higher than the one of the false leads dis-
tribution. We can use this information in a relative sense by
computing the ratio between the power of the CS-2 returns
classified as leads and the median of the power in the seg-
ment of the track considered (Power Ratio). As a tentative
approach in this study, we considered the whole length of

the CS-2 segment downloaded for each corresponding
Sentinel-1 image date. These vary between roughly 200
and 800 km. A histogram of the Power Ratio in the two
datasets is shown in Fig. 13. Although they refer to differ-
ent areas at different times, both datasets show that when
the Power Ratio is below 10, the False Leads are predom-
inant. Since the results are consistent, we keep the previ-
ously defined approach to define the Power Ratio. This
relative threshold is therefore used as a ‘‘Relative Power
Threshold” classification and the results are displayed in
Table 1. Although the FCCL is lower than for the other
methods, the false lead detections are also considerably
less. This brings to an overall score FCCL/FFD of 1.7 in
Set 1 and 1.5 in Set 2. The Relative Power Threshold scores
therefore best, but it is here derived a posteriori and further
studies in different locations and at different times of the
year are needed in order to understand whether the same
threshold can be used systematically. Compared to the
use of an absolute threshold, the performances of this
method are not dependent on time and location of the
track, but, as seen in Table 1, also the Relative Power
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Threshold brings as a drawback a significant reduction of
the number of detected leads, in particular w.r.t. SP.

5. Conclusions

This study aimed at testing different Cryosat-based
methods for lead classification taking the SAR images from
Sentinel-1 as reference. SAR images have been processed in
order to provide an automatic distinction between leads
and ice.

A new parameter based on stack data, the Stack Peaki-
ness, has been proposed. A visual analysis of the CS-2
tracks and SAR images has shown how SP can be used
to isolate the nadir return from narrow leads crossing the
track. The statistics show that in terms of correctly identi-
fied leads and false detections, the SP method has compa-
rable results to the method proposed by Ricker et al.
(2014), which combines six different waveform indices
derivable from the CS-2 returns. The automated SAR pro-
cessing is not able to highlight significant differences
between SP and Ricker, due to the necessary filtering, nev-
ertheless it constitutes a reliable, objective and easily repli-
cable validation method.

In order to quantitavely understand whether SP avoids
the off-nadir returns coming from the leads when

approaching the altimetry track, an easier and systematic
access to CS-2 stack data is needed. In this case, further
research could be planned to produce maps of sea surface
height in the Arctic region using the identified leads and
comparing the sea level variability with previous estimates.

Given the substantial differences of the power distribu-
tion of the leads observed in the datasets, the use of an
absolute threshold on the return power to classify leads
and avoid off-nadir returns, as proposed in previous stud-
ies, is not considered reliable. The best performances are
nevertheless obtained by using the return power in a rela-
tive sense in comparison with the average power of the
CS-2 returns in the area considered.

The percentage of false lead detections in comparison
with the fraction of correctly classified leads is high for
all the tested strategy. If the classification based on SAR
images could be taken as the ground truth, this result
would undermine the reliability of sea surface estimates
in the Arctic Ocean, since it would imply that several reflec-
tions from the sea ice are considered for sea level measure-
ments. Nevertheless, given that previous studies on-ground
have shown that the width of a lead can be well below
1 km, it is likely that the altimeters spot leads whose width
is below the SAR resolution. The time difference between
CS-2 and SAR acquisitions plays also a key role and the
comparability between the two sources clearly decreases
after 60–90 min, despite the attempt of taking in consider-
ation the sea ice velocity.

Although the SAR images do not represent the ground
truth in terms of lead classification, given the resolution
limits, they represent a well established comparison. The
strength of this work is that the automatised validation
can be easily reproduced in other areas, if an archive of
CS-2 passes and Sentinel-1A images that are sufficiently
close in time is provided. Indeed, further validation is
needed in different sea-ice covered regions (multi-year
and first year ice) and at different times of the year, since
the presence of melt ponds and the refreezing of the leads
could considerably alter the performances of any classifica-
tion algorithm.

Future research should also address the exploitation of
the SP for classification of the waveforms from the SAR-
Interferometric mode of CS-2 (SARIn). In SARIn, the
use of a second across-track antenna allows the localisation
of different returns using the phase difference between the
echoes reaching the two antennas. While the availability
of SARIn in the sea ice region is limited to few patches
(Armitage and Davidson, 2014) have shown that, combin-
ing the classification with an off-nadir ranging correction to
characterise the off-nadir leads, the accuracy and the preci-
sion of sea ice freeboard measurements can be improved
compared to the SAR mode.
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P-2 Dynamic ocean topography of the northern nordic seas: a comparison
between satellite altimetry and ocean modeling
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(2019b). Dynamic ocean topography of the northern nordic seas: a comparison be-
tween satellite altimetry and ocean modeling. The Cryosphere, 13(2):611–626, DOI:
10.5194/tc-13-611-2019
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journal of the European Geosciences Union. It is distributed by Copernicus Publications.
All accepted articles are published under the terms and conditions of the Creative Com-
mons Attribution License (http://creativecommons.org/licenses/by/4.0/). The
copyright remains with the author.

Summary

The northern Nordic Seas span the area between the Atlantic Ocean in the south, the
Arctic Ocean in the north, the northeast coast of Greenland and the west Spitsbergen
coast and depicts the most important pathway for water mass transformations between
the Arctic and Atlantic Ocean. The region is directly affected by sea ice coverage and
melting glaciers leading to an increased fresh water inflow. For more than 20 years,
satellite altimetry observations are used in connection with a geoid model to monitor the
dynamic ocean topography (DOT) and to provide information about the ocean surface
circulation in the northern Nordic Seas. However, due to the challenging observation
conditions, the altimeter observations are irregularly distributed showing data gaps in
sea ice areas. Moreover, fixed orbit characteristics of the satellite mission limit an area-
wide monitoring of the entire region.

Beside satellite altimeters, ocean models can provide a homogeneous representation sea
surface height and ocean current information in various spatiotemporal resolutions. How-
ever, ocean models are limited by their mathematical and computational background as
well as by introduced forcing data.

In this work, derived along-track DOT elevations from ALES+ retracked Envisat ranges
and a high-resolution geoid (i.e. OGMOC) are used. The object of the publication is
to compare altimetry-derived DOT elevations with modeled differential water heights
(DWH) of the ocean model FESOM in order to assess similarities and discrepancies and
to investigate the possibility for a combination by taking the advantages of both data
sources. DWHs and DOT heights are very similar and refer to geopotential surfaces.
The investigation period covers the years from 2003 - 2009, for which daily FESOM
DWHs are provided. A comparison concerning the annual variation reveals a general

108

https://dx.doi.org/10.5194/tc-13-611-2019
http://creativecommons.org/licenses/by/4.0/


A.1 Publications

good agreement of the estimated phase and amplitude. Moreover, the annual oscillation
is the most dominant signal in both datasets. However, a regional assessment of the
annual signal shows up to 2-3 times stronger amplitudes of the altimetry-derived data,
but still indicates good accordance of the phase. The differences in the amplitude are
mainly addressed to a stronger smoothing of the model data, caused for example by a too
strongly adjusted sea ice fraction and the neglecting of a global steric mass correction.
Moreover, the model is based on coarse forcing model data and underrepresents the
regional inflow of freshwater of the adjacent glaciers.

A reduction of both data sources by their means and the annual signal reveals high
temporal as well as spatial correlations of more than 80%. The highest correlations
appear in ice-free areas and in ocean regions with a clear ocean current signature. Smaller
correlations are mainly in the sea ice area and close to the Greenland Shelf regions regions
covered by sea ice, which can be addressed to high ocean sea ice dynamics leading to an
enhanced error budget of the altimetry range observations. Remaining constant height
differences are attributed to artificial effects caused by irregularities and an insufficient
representation of the applied gravity model.

The publication states that even with an improvement of the detected differences, the
principal discrepancies of the observation and model database will persist. However, it
is plausible to combine both datasets, as there is a generally good agreement, showing
no significant differences in order to exploit advantages for a combination.

Contribution

As stated in P-2: Felix L. Müller developed the comparison methods, conducted the data
analysis and wrote the majority of the paper. Claudia Wekerle provided the FESOM
data and contributed to the manuscript writing. Denise Dettmering supervised the
present study, contributed to the manuscript writing and helped with discussions of
the results. Marcello Passaro developed the retracking algorithm and helped with the
application and discussion concerning the altimetry dataset. Wolfgang Bosch initiated
the study. Florian Seitz supervised the research. The overall contribution of Felix L.
Müller is estimated to be 85%.
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Abstract. The dynamic ocean topography (DOT) of the polar

seas can be described by satellite altimetry sea surface height

observations combined with geoid information as well as by

ocean models. The altimetry observations are characterized

by an irregular sampling and seasonal sea ice coverage com-

plicating reliable DOT estimations. Models display various

spatiotemporal resolutions but are limited to their computa-

tional and mathematical context and introduced forcing mod-

els. In the present paper, ALES+ retracked altimetry ranges

and derived along-track DOT heights of ESA’s Envisat and

water heights of the Finite Element Sea Ice-Ocean Model

(FESOM) are compared to investigate similarities and dis-

crepancies. The goal of the present paper is to identify to

what extent pattern and variability of the northern Nordic

seas derived from measurements and model agree with each

other, respectively. The study period covers the years 2003–

2009. An assessment analysis regarding seasonal DOT vari-

abilities shows good agreement and confirms the dominant

impact of the annual signal in both datasets. A comparison

based on estimated regional annual signal components shows

2–3 times stronger amplitudes of the observations but good

agreement of the phase. Reducing both datasets by constant

offsets and the annual signal reveals small regional residu-

als and highly correlated DOT time series (Pearson linear

correlation coefficient of at least 0.67). The highest corre-

lations can be found in areas that are ice-free and affected by

ocean currents. However, differences are visible in sea-ice-

covered shelf regions. Furthermore, remaining constant ar-

tificial elevations in the observational data can be attributed

to an insufficient representation of the used geoid. In general,

the comparison results in good agreement between simulated

and altimetry-based descriptions of the DOT in the northern

Nordic seas.

1 Introduction

Observing the dynamic ocean topography (DOT) enables the

investigation of important oceanic variables. Variations in

the DOT are an indicator of changes in the ocean circula-

tion, the major current pathways or water mass redistribution.

Knowledge about Arctic water mass distribution and ocean

transport variability is essential to understand and quantify

changes in the global overturning circulation system (e.g.,

Johannessen et al., 2014; Morison et al., 2012). These rela-

tionships have led to studies and expeditions since the early

20th century, e.g., by Helland-Hansen and Nansen (1909) in-

vestigating northern polar circulation.

Nowadays, satellite altimetry, in connection with knowl-

edge about the geoid, is one possibility to provide instanta-

neous DOT snapshots on a global scale. However, in polar

regions, altimetry observations obey an irregular sampling in

seasonally sea-ice-covered regions. Nevertheless, the launch

of the European Space Agency’s (ESA) Earth observation

satellite ERS-1 in 1991 constituted the starting point of reg-

ular observed DOT information in the higher latitudes that

now covers more than 25 years. This was followed by regu-

larly improving radar altimetry as well as significant progress

Published by Copernicus Publications on behalf of the European Geosciences Union.
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in gravity field missions (e.g., GOCE and GRACE); remote

sensing missions provided increasingly reliable DOT esti-

mates. In addition to an expanded remote Earth observa-

tion mission constellation, advances in data processing (e.g.,

Laxon, 1994; Peacock and Laxon, 2004; Connor et al., 2009)

also contributed to an increasing accuracy of DOT heights,

mainly by improving radar echoes processing strategies (e.g.,

use of high-frequency data, enhanced retracking and radar

echo classification algorithms).

Arctic DOT information for different periods and with dif-

ferent spatial resolutions has been estimated for example by

Kwok and Morison (2011) based on laser altimetry or by

Farrell et al. (2012) based on a combination of laser and

radar altimetry. Moreover, Armitage et al. (2016) processed

monthly altimetry-derived DOT outputs to combine them

with GRACE ocean mass products. However, all these DOT

results are based on grid processing with limited spatiotem-

poral resolutions, leading to unavoidable smoothing effects

and leaving space for further DOT product improvements.

In addition to the observational database, model simu-

lations have provided a variety of different climate vari-

ables in polar regions for more than 60 years (Koldunov

et al., 2014). They are characterized by various spatiotem-

poral resolutions and simulation strategies. In spite of diffi-

cult observation conditions at high latitudes, models enable

comprehensive analyses of interactions between the Arc-

tic Ocean and atmospheric circulations. However, different

models show significant discrepancies related to their funda-

mental outputs, e.g., sea-surface variability or ocean currents

(Koldunov et al., 2014). Nevertheless, in contrast to satellite

altimetry, models provide spatially homogeneous and tem-

porally complete sea surface estimates. In order to get an

impression of model accuracies, previous studies, for exam-

ple Koldunov et al. (2014), performed an intercomparison of

different ocean models, tide gauge observations and weekly

averaged altimetry DOT data in the Arctic environment, lim-

ited, however, to gridded DOT data originating from sea-ice-

free months. The authors conclude that models can catch and

reproduce the most dominant low-frequency water level vari-

abilities in the Arctic Ocean. Nevertheless, there is need for

improvement in terms of seasonally independent analyses as

well as an increased spatiotemporal resolution, which would,

for example, enable a direct pointwise comparison.

Recent developments in numerical modeling focused on

so-called unstructured mesh representations. According to

Wang et al. (2014), unstructured ocean model grids with

local refinements in the region of complex and highly dy-

namic circulation patterns (e.g., Fram Strait) allow for multi-

resolution analyses of climate-relevant variables in specific

areas of interest while keeping a coarse spatial representation

for other regions (e.g., Wang et al., 2014; Zhang and Bap-

tista, 2008). One of these models is the Finite Element Sea

Ice-Ocean Model (FESOM, Wang et al., 2014). It includes,

in addition to the ocean variables (sea surface height, tem-

perature, ocean currents and salinity), a sea ice component

mapping the major ice drift pathways. Furthermore Wekerle

et al. (2017) described a FESOM configuration that enables

studies in the Fram Strait region and northern Nordic seas at a

daily temporal resolution and a spatially refined 1 km mesh,

resulting in an eddy-resolving ocean simulation in most of

the study domain. Another sea ice ocean model setup with

comparable resolution focusing on the same region is based

on a Regional Ocean Modeling System (ROMS), which ap-

plies a grid size of 800 m around Svalbard (Hattermann et al.,

2016). The model setup is regional and nested into a 4 km

pan-Arctic setup. In terms of eddy dynamics, the ROMS and

FESOM setups compare very well (personal communication,

Tore Hattermann, January 2018). A slightly coarser model

with up to 2 km resolution in the northern Nordic seas was

described by Kawasaki and Hasumi (2016).

In the present study, along-track high-frequency DOT es-

timates of ESA’s Envisat as well as water level outputs of

FESOM are used for a direct comparison in order to analyze

spatiotemporal correspondence and discrepancies. The over-

all motivation for this is the computation of a spatially ho-

mogeneous DOT without the need of gridding methods that

smooth the altimetry spectral data content. Instead of such

an interpolation, the unavoidable data gaps should be filled

with model information from a combination of profiled al-

timetry data and gridded model data. A careful comparison

of both datasets is a necessary prerequisite for such combi-

nation. The present investigation aims to explore the capac-

ity for a combination and exploiting the advantages of both

quantities. In particular, it is evaluated if the model outputs

can bridge periods when altimetry fails (e.g., due to sea ice

coverage). In the present study, the altimetry database con-

sists of profiled 20 Hz DOT snapshots that were preprocessed

using the classification presented by Müller et al. (2017). The

comparison is conducted in the northern Nordic seas and the

Fram Strait, covering the East Greenland and the West Spits-

bergen currents. The present paper is structured into four

main sections. First, the study area and the applied datasets

and their preprocessing are introduced, followed by Sect. 3

describing the comparison methods and displaying the ob-

tained results. The last two sections discuss the results and

recapitulate the key aspects.

2 Study area and datasets

This section provides an overview of the study area, the used

model and the observational database. In addition, more de-

tailed information on the data preprocessing is given.

2.1 The northern Nordic seas and Fram Strait

The study area covers the northern Nordic seas and the Fram

Strait, which connects the North Atlantic with the Arctic

Ocean as depicted in Fig. 1. The study area is limited to 72 to

82◦ N and 30◦ W to 30◦ E. The bathymetry is complex in this
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region: the deep Fram Strait (with depths up to 5 600 m at the

Molloy Hole) lies between the wide northeastern Greenland

continental shelf and the Svalbard archipelago, with the deep

Greenland Sea to the south. Seamounts, ridges and steep

slopes affect the ocean circulation.

The northern Nordic seas are characterized by contrasting

water masses. Warm and salty waters of Atlantic origin are

carried northward by the Norwegian Atlantic Current (e.g.,

Orvik and Niiler, 2002). After a bifurcation at the Barents

Sea Opening, the remaining current that continues north-

ward is termed the West Spitsbergen Current (WSC, e.g.,

Beszczynska-Möller et al., 2012; von Appen et al., 2016).

A fraction of the Atlantic water carried by the WSC recir-

culates in the Fram Strait at around 79◦ N and continues to

flow southward, forming the Return Atlantic Water (RAW),

whereas the remaining part enters the Arctic Ocean via the

Svalbard and Yermak branches (SB and YB). Along the

Greenland continental shelf break, the East Greenland Cur-

rent (EGC, e.g., de Steur et al., 2009) carries cold and fresh

polar water as well as RAW southward.

Sea ice is exported via the Transpolar Drift out of the Arc-

tic through the Fram Strait. As indicated in Fig. 1, the sea

ice export occurs at the western side of the strait, which is

thus ice-covered year-round. The eastern part of the Fram

Strait is ice-free year-round due to the presence of warm At-

lantic water. Around 10 % of the Arctic sea ice area is ex-

ported through the Fram Strait annually, an order of mag-

nitude larger than the export through other Arctic gateways

(Smedsrud et al., 2017).

2.2 Model basis: Finite Element Sea Ice-Ocean Model

(FESOM)

In this study we use daily mean water level output from the

Finite Element Sea Ice-Ocean Model (FESOM) version 1.4

(Wang et al., 2014; Danilov et al., 2015). FESOM is an ocean

sea ice model which solves the hydrostatic primitive equa-

tions in the Boussinesq approximation. The sea ice compo-

nent applies the elastic–viscous–plastic rheology (Hunke and

Dukowicz, 2001) and thermodynamics following Parkinson

and Washington (1979). The finite element method is used

to discretize the governing equations, applying unstructured

triangular meshes in the horizontal and z levels in the verti-

cal. Water level heights (in the model labeled as sea surface

height) η are computed from the following equation:

∂tη + ∇ ·

z=η∫

z=−H

udz = 0, (1)

where u ≡ (u,v) is the velocity vector and H is the water

depth. Water elevations are relative to a geopotential surface

and therefore comparable to an altimetry-derived dynamic

ocean topography (Androsov et al., 2018). The upper limit

in the integration is set to zero, which corresponds to a lin-

ear free-surface approximation. This implies that the ocean

volume does not change with time in the model. Thus, the

model conserves volume but not mass. A correction for the

global mean steric height change is not applied. To account

for surface freshwater fluxes (precipitation, evaporation, river

runoff, salinity changes due to sea ice melting and freezing),

a virtual salt flux is introduced (see, e.g., Wang et al., 2014).

The model does not take into account sea level pressure and

ocean tide variations.

The global FESOM configuration used here was optimized

for the Fram Strait, applying a mesh resolution of 1 km in the

area 76–82.5◦ N, 20◦ W–20◦ E and a resolution of 4.5 km in

the Nordic seas and Arctic Ocean (Wekerle et al., 2017). In

the vertical, 47 z levels are used with a thickness of 10 m in

the top 100 m and coarser vertical resolution with depth. The

model bathymetry was taken from RTopo2 (Schaffer et al.,

2016). For comparison, only the surface information is used

(i.e., z = 0).

The model is forced by atmospheric reanalysis data

COREv.2 (Large and Yeager, 2008) characterized by a daily

temporal and 2 ◦ spatial resolution, and interannual monthly

river runoff is taken from Dai et al. (2009). Sea surface salin-

ity restored to the PHC 3.0 climatology (Steele et al., 2001)

is applied with a restoring velocity of 50 m per 300 days. The

simulation covers the time period 2000 until 2009, and daily

model output was saved. A comparison with observational

data (e.g., moorings) revealed that the model performed well

in simulating the circulation structure, hydrography and eddy

kinetic energy in the Fram Strait (Wekerle et al., 2017).

2.3 Observational basis: radar altimetry data

In the present study high-frequency radar altimetry data of

the ESA satellite Envisat are used. The altimeter emits radar

signals in the Ku band with a footprint (i.e., circular area on

the ground illuminated by the radar) of approximately 10 km

diameter (Connor et al., 2009). Envisat belongs to the pulse-

limited altimetry missions and provides observations char-

acterized by a spatial along-track resolution of circa 372 m

(18 Hz). The mission was placed in orbit in 2002 and pro-

vided altimetry data until the end of March 2012. This study

uses high-frequency waveform data that are extracted from

the official Sensor Geophysical Data Records (SGDR) ver-

sion 2.1 provided by ESA. Data measured during the nominal

mission period (May 2002–October 2010) are organized into

35-day repeat cycles including a fixed relative orbit number

(i.e., pass, from pole to pole) of 1002 passes per cycle (ESA,

2011). However, the first cycles of Envisat are affected by

various instrumental issues and are not considered for the

present study. Considering the temporal availability of FE-

SOM and reliable observations of Envisat, SGDR data of

a period covering 7 complete years (2003–2009) are used.

Before using the Envisat altimetry observations, a classifi-

cation is performed to eliminate sea-ice-contaminated mea-

surements. Sea surface heights (SSHs) are calculated by ap-

plying the ALES+ retracking algorithm (Passaro et al., 2018)
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Figure 1. Overviews of the study area: (a) bathymetry of the northern Nordic seas and Fram Strait area based on RTopo2 topography

model (Schaffer et al., 2016). Arrows display major current systems (East Greenland Current, EGC; West Spitsbergen Current, WSC; East

Spitsbergen Current, ESC; Jan Mayen Current, JMC; Yermak Branch, YB; and Svalbard Branch, SB). Light green arrows indicate inflowing

Atlantic water; orange represents fresh polar and returning Atlantic water. (b) Averaged sea ice concentration in percentage within 2003–

2009 based on 25 km monthly National Snow and Ice Data Center (NSIDC, Fetterer et al., 2017) sea ice concentration grids. White lines

display depth contours at −450 and −1500 m. White areas indicate missing or flagged data.

and geophysical corrections. Unrealistic or bad height mea-

surements are excluded by performing an outlier detection

based on sea level anomalies. Finally, a transformation to

physical heights (dynamic ocean topography, DOT) is pro-

cessed by subtracting geoid heights from SSH. The follow-

ing subsections describe the individual preprocessing steps

in more detail.

2.3.1 Sea ice and water discrimination

Most of the Arctic regions are affected by seasonal sea ice

cover, which can prevent a reliable estimation of sea surface

heights due to a direct impact on the reflected radar pulses.

In order to overcome this difficulty and to allow for a SSH

comparison with FESOM, a classification is performed to

detect small open water gaps (e.g., leads, polynyas) within

the sea-ice-covered area. For this purpose an unsupervised

classification approach (i.e., without the use of any training

data) based only on radar waveforms and derived parame-

ters is applied. Several classification methods have been de-

veloped within the last years, which are all based on the

analysis of the returned satellite radar echo (e.g., Laxon,

1994; Zakharova et al., 2015; Zygmuntowska et al., 2013).

Most of them impose thresholds on one or more parameters

of the radar waveforms (e.g., maximum power or backscat-

ter coefficient). In this study, an unsupervised classification

approach is applied, which is independent of any training

data. This method performed best in a recent study assess-

ing the quality of different classification approaches with re-

spect to very high resolution airborne imagery (Dettmering

et al., 2018). Briefly summarized, the unsupervised classifi-

cation approach, described by Müller et al. (2017), groups

an unassigned subset of altimetry radar waveforms into a

predefined number of classes by applying a partitional clus-

ter algorithm (i.e., k-medoids; see Celebi, 2015) in order to

establish a reference waveform model to indicate different

waveform and surface characteristics. In the following step,

the generated waveform model acts as kind of assignment

map for the remaining waveforms, which are allocated to the

particular classes using a simple k-nearest-neighbor classi-

fier. Further information and explanations can be found in

Müller et al. (2017). The open water (leads, polynyas and

open ocean) observations are used for all following process-

ing steps. Measurements classified as ice are removed from

the dataset. However, it has to be noted that some misclas-

sifications, e.g., due to the presence of fast ice, can still re-

main in the observation dataset (Müller et al., 2017). During

sea ice melt season, melt ponds and water bodies on top the

sea ice layer can cause uncertainties in the computation of

sea surface heights. The unsupervised classification is not

fully tuned to discriminate carefully between radar wave-

forms originating from melt ponds or leads at the sea surface

level. In the case of misclassification the estimated altimeter

ranges can appear too short.

2.3.2 Sea surface height estimation

SSH is obtained by subtracting the measured range between

satellite and water surface (including geophysical correc-

tions) from the orbital altitude (i.e., ellipsoid height) of the

satellite’s center of mass. The range can be calculated by fit-

ting a waveform model (e.g., Brown, 1977, or Hayne, 1980)

to the individual radar returning signals. More information

regarding retracking strategies can be found for example in
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Vignudelli et al. (2011). Several retracking algorithms have

been developed and optimized for special applications, sur-

face conditions or study regions (e.g., open ocean, sea ice

or inland water bodies). According to Serreze and Barry

(2014) the northern Nordic seas are characterized by rapidly

changing environmental conditions, making it difficult to use

just one retracking algorithm. However, when combining

heights derived with different retrackers, systematic offsets

due to different retracker biases will be introduced (Bulczak

et al., 2015). The usage of ALES+ overcomes this problem

by adapting a subwaveform application of the classic open

ocean functional form to different shapes of the radar signals,

including the typical peaky signal shape of the returns from

small leads and corrupted trailing edges typical of coastal

waveforms. Passaro et al. (2018) have developed and tested

the algorithm against standard open ocean and lead retrack-

ers and showed improvements in precision and in terms of

comparison with a local tide gauge. The algorithm was used

to develop Arctic and Antarctic products in the framework of

the ESA Sea Level Climate Change Initiative (Legeais et al.,

2018).

After the retracking, the altimeter ranges are corrected for

geophysical and atmospheric effects using external model

data. Wind and wave effects are considered by using the sea

state bias estimates of the ALES+ retracking approach. Fur-

thermore a mean range bias correction, computed by a multi-

mission crossover analysis (Bosch et al., 2014), is included to

eliminate a known constant offset in the Envisat range mea-

surements. One important correction is the ocean tide correc-

tion since the FESOM model does not include ocean tides. In

this study, we use EOT11a (Savcenko et al., 2012; Savcenko

and Bosch, 2012) to correct for tidal effects. Even if EOT11a

is a global ocean tide model it performs reasonably well in

the Arctic Ocean (Stammer et al., 2014). This study performs

a validation by comparing different tide models to tide gauge

data. For the Arctic Ocean, EOT11a shows rms values be-

tween 1.4 and 4.6 cm for the four major constituents, and it

is the second best of the seven models in the test. Table 1 lists

all corrections used within the present investigation.

To remove erroneous and unreliable sea surface height ob-

servations from the dataset, an outlier rejection is performed

by applying a fixed threshold criterion. The SSH observa-

tions are compared to a long temporal mean sea surface

(MSS), including more than 20 years of altimetry data, and

sea level anomalies (SLAs) are built. The conversion is done

by removing the DTU15MSS developed by Andersen and

Knudsen (2009) from the along-track sea surface heights.

Without being too restrictive within the sea ice zones with a

higher noise level than in open ocean, a threshold of ±2 m is

introduced. This rejects 1.54 % of the high-frequency mea-

surements of Envisat. After removing outliers the revised

dataset is retransformed to sea surface heights by re-adding

the MSS.

2.3.3 Dynamic ocean topography estimation

After obtaining sea surface heights the transition to physi-

cal heights is performed with respect to an underlying geoid

model (i.e., the computation of DOT). In the present inves-

tigation the high-resolution Optimal Geoid Model for Mod-

eling Ocean Circulation (OGMOC), developed up to a har-

monic degree of 2190 and corresponding to a spatial reso-

lution of nearly 9.13 km, is applied. This is one of the latest

high-resolution global geoid models incorporating the most

recent satellite gravimetry and satellite altimetry datasets.

Moreover it is optimized for estimating ocean currents and it

is assumed to provide the best possible solution for the cur-

rent application. More details regarding to the constituents

and processing strategy of the geoid can be found in Gruber

and Willberg (2019) and Fecher and Gruber (2018). Briefly

summarized, OGMOC is a combination of XGM2016 (Pail

et al., 2018) and the EIGEN6-C4 model (Förste et al., 2004).

XGM2016 is used up to degree 619. Between 619 and

719, XGM2016 and EIGEN6-C4 are combined applying a

weighting function. Higher harmonic degrees (> 719) are re-

tained unchanged from the EIGEN6-C4 model.

To minimize noise within the high-frequency altimetry

database and to be more consistent with the spatial resolu-

tion of the geoid, the corrected along-track SSH observations

get low-pass filtered by applying a moving average using a

rectangle kernel adapted to the spatial resolution of the used

geoid (9.13 km). Areas with sparse availability of along-track

observations (e.g., leads, polynyas) less than the window size

are not considered in the filtering process and remain unfil-

tered in the dataset. The DOT is derived by interpolating the

geoid heights to the altimetry locations and subtracting them

from the SSH observations.

3 Methods and results

The preprocessed ocean heights from altimetry and FESOM

are compared with each other to identify similarities and dis-

crepancies and to explore the possibility of a combination.

Therefore, in the first step, both datasets are analyzed and ex-

amined regarding their temporal and spatial characteristics.

The datasets are investigated in terms of constant offsets, sea-

sonally occurring patterns (e.g., annual sea level variability)

and residual sea level variations.

The FESOM data are provided on daily unstructured grids

with local refinements in the central Greenland Sea and the

Fram Strait. In contrast, the altimetry observations are sam-

pled along-track and characterized by a high spatial res-

olution with irregular data gaps due to sea ice coverage.

Figure 2 displays the inhomogeneously distributed FESOM

nodes showing a maximum resolution of about 1 km. More-

over, three representative days of altimetry along-track data

are shown with different behavior in observation availability

depending on the season and the presence of sea ice. During
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Table 1. Geophysical and empirical altimetry corrections applied in the study.

Corrections Sources References

Ionosphere NOAA Ionosphere Climatology 2009 (NIC09) Scharroo and Smith (2010)

Wet troposphere ECMWF (2.5–2.0◦) for Vienna Mapping Functions (VMF1) Boehm et al. (2009)

Dry troposphere ECMWF (2.5–2.0◦) for Vienna Mapping Functions (VMF1) Boehm et al. (2009)

Dynamic atmospheric correction Inverse barometric pressure + (MOG2D)HF Collected localization satellites (CLS)

Ocean tides Global Empirical Ocean Tide model (EOT11a) Savcenko et al. (2012)

Pole tides From Envisat SGDR v2.1 Wahr (1985)

Solid Earth tides From Envisat SGDR v2.1 Cartwright and Edden (1973)

Radial errors Multi-mission Cross-Calibration (MMXO) version 15 Bosch et al. (2014)

Sea state bias ALES+ sea state bias correction Passaro et al. (2018)

the sea ice maximum in March (Kvingedal, 2013) most of

the altimetry data close to the Greenland coast are missing

due to a semi-closed sea ice cover. In contrast, in the summer

season the tracks show fewer data gaps.

In order to allow a direct and pointwise comparison of both

datasets, a resampling of at least one of them is necessary.

Since the FESOM data exhibit a significantly higher spatial

and a uniform temporal resolution, they will be interpolated

using a nearest-neighbor algorithm with the times and loca-

tions of the altimetry observations. This prevents an unnec-

essary smoothing of the altimetry data.

3.1 Assessment of the annual cycle

It can be expected that the annual sea level variability is

the dominant signal contained in both datasets (e.g., Bulczak

et al., 2015). The present analysis performs a comparison of

the annual and remaining temporal signal components within

the investigation period by fitting harmonic functions to both

datasets.

In the first step, daily height averages for the entire re-

gion are computed. Figure 3 shows the temporal evolu-

tion of the daily means within the investigation period for

both datasets. An obvious offset of about 41 cm between

the datasets caused by different underlying height references

(geoid vs. bathymetry) is clearly visible. Furthermore, a lin-

ear trend or another long-term systematic behavior is not de-

tectable, probably due to the short period of only 7 years.

However, the altimetry-derived daily averaged DOT shows

larger variations and a standard deviation of 9.0 cm. In con-

trast, the modeled data are characterized by a smoother be-

havior and a smaller standard deviation of 4.7 cm. These

numbers include a clear seasonal cycle, which is also clearly

visible in Fig. 3.

In order to examine both datasets concerning their annual

period, the daily means are analyzed by a Fourier analysis

(e.g., Stade, 2005). Therefore, both time series are centered

at zero by reducing their constant offsets before the Fourier

coefficients are obtained by applying a least-squares estima-

tion (e.g., Thomson and Emery, 2014).

Figure 4a displays the amplitude spectrum of the interpo-

lated FESOM and profiled altimetry daily means between

2003 and 2009. The modeled data are characterized by

weaker amplitudes. The annual period constitutes the most

dominant long-period signal. In the case of altimetry, the an-

nual amplitude represents 6.9 cm and, in the case of FESOM,

3.9 cm of the sea level variability. Other frequencies can not

be physically explained and thus are not further investigated

in the present study. In particular, the semiannual signal is

very small (1.5 cm) and shows no significant impact on both

datasets. The remaining amplitudes are smaller than 1.5 cm

in the case of altimetry (1.0 cm, FESOM).

However, an amplitude of almost 2 cm is detectable for a

period of 3 days, which cannot be assigned to ocean or sea-

ice-related dynamics. This is an artifact possibly caused by

the irregular data sampling. In order to prove this hypothesis,

the frequency analysis is also performed for the full FESOM

grid. Figure 4b shows the amplitude spectrum and the esti-

mated periods for the daily profiled FESOM DOT (red) and

the original FESOM DOT (black). It can be clearly observed

that the 3-day period is not confirmed by the original dataset.

Moreover, higher discrepancies can be found in the short pe-

riodic domain, which can be attributed to more variability

due to more input information. However, all other dominant

periods are caught by both datasets. The obtained amplitudes

show good agreement in all periods except for the annual sig-

nal. Here, the irregularly sampled profile data overestimate

the amplitude by about 1 cm. This might be related to alias

effects from remaining tidal influence due to the repeat cycle

of Envisat (see Sect. 4 for more details).

As mentioned earlier the annual signal represents the most

dominant signal in both datasets. By introducing the obtained

annual Fourier coefficients to a harmonic fitting, the temporal

evolution and the phasing can be shown (see Fig. 5). Aside

from differences in the annual amplitudes, a phase shift of

about 29 days is recognizable between the two signals. The

maximum is reached at day of year (DOY) 230 (18 Au-

gust) for altimetry and in the case of FESOM at DOY 259

(16 September).

However, it is obvious that one single harmonic function

cannot represent the full complexity of the DOT variations in

the northern Nordic seas. A detailed analysis of the annual

signal considering different bathymetric features (e.g., shelf
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Figure 2. Locations of selected altimetry observations in wintertime and summertime. The small black dots indicate the unstructured FESOM

grid nodes migrating at higher latitudes to a apparently closed black background.

Figure 3. Temporal evolution of daily means of altimetry-derived DOT observations (blue) and FESOM SSH outputs (interpolated to the

locations of altimetry measurements, red) within the investigation period and study area (see Sect. 2).

or deep sea areas) brings the opportunity to estimate region-

dependent annual amplitudes and phases. This is presented

in the following section.

3.2 Spatiotemporal pattern analysis

In order to analyze regionally dependent differences, the pro-

filed altimetry data are monthly averaged and arranged into

along-track bins of 7.5 km length. The bin structure follows

the nominal 1 Hz ground track pattern of Envisat and reduces

the high-frequency measurement noise. Enabling long-term

analyses, only satellite passes are admitted showing an avail-

ability of at least 64 repeat cycles, which corresponds to 96 %

of the data in the evaluation period. Data gaps or missing bins

are possible due to sea ice contamination or failing observa-

tions. For FESOM, daily data from the closest grid node are

assigned to each bin. Thus, this dataset exhibits the same spa-

tial resolution but a better temporal resolution, allowing for a

more precise amplitude estimation.

Figure 6 displays for each bin the estimated annual

DOT variations within 2003–2009. The amplitudes of both

datasets show a similar pattern with smaller values along
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Figure 4. Fourier analysis amplitude spectrum of two altimetry locations interpolated with FESOM data (red) from (a) altimetry-derived

DOT along-track observations (blue) and (b) original FESOM data (black) within the investigation area from 2003 to 2009 (see Sect. 2).

Figure 5. Annual cycles of DOT from along-track altimetry (blue) observations and FESOM (red) simulations within the investigation time

and area (see Sect. 2).

the major current systems (EGC and WSC) and larger val-

ues along the Greenland and Svalbard coasts and in the area

around the Molloy Hole. In general, the altimetry-derived

amplitudes are larger than the model amplitudes. In the

Greenland Basin, a 2–3 times stronger representation of the

annual amplitudes can be observed. Here, the mean altimetry

amplitude reaches 6.3 cm. In the southern and eastern parts

of the shelf regions, the altimetry amplitudes are smaller than

the model amplitudes.
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The maximum amplitudes in the Greenland Basin appear

during August and September and show a mostly homoge-

neous distribution in both datasets. In ice-free regions both

datasets show good agreement (also in comparison with re-

sults of Volkov and Pujol, 2012, and Mork and Øystein Sk-

agseth, 2013). However, in ice-covered shelf regions, the

central Fram Strait and close to calving glaciers, the derived

amplitudes differ up to 8 cm. The altimetry estimated an-

nual maximum on the Greenland Shelf occurs in November,

which is confirmed by FESOM. Nevertheless, obvious phase

differences between FESOM and altimetry can be found east

of Spitsbergen, where the observed annual maximum occurs

in the early spring months, in contrast to FESOM displaying

a maximum in autumn. This could perhaps be caused by sea

ice interference or strong ocean variabilities.

In order to account for different hydrological (e.g., glacier

melt, water mass changes), atmospheric (e.g., winds, solar

radiation) and oceanographic effects (e.g., ocean currents) in

the study area, the region is subdivided into three main sub-

areas: the deep basin region (Greenland Basin, < −450 m)

and two shelf regions (Greenland Shelf, Barents Sea). Table 2

provides outlier-removed (3σ criterion) mean amplitudes and

DOYs of the maximum amplitude for the three subregions, as

well as their annual variabilities. FESOM shows similar am-

plitudes for all three areas, whereas altimetry exhibits smaller

mean amplitudes for the Barents Sea than for the two other

regions, where the mean amplitudes are about twice the am-

plitudes of FESOM. The phase shows good consistency be-

tween altimetry and FESOM on the Greenland Shelf but dis-

crepancies of circa 34.25 days in the Greenland Basin and

19.5 days in the Barents Sea. A discussion of the differences

is provided in Sect. 4.

3.3 Residual analysis

In order to analyze residual differences, both datasets are re-

duced by their regional estimated annual signal and constant

offsets as given in Table 2. Figure 7 shows monthly aver-

aged along-track residual DOT for altimetry and FESOM for

the three study regions. In all areas, a high correlation be-

tween the datasets is visible. For the Greenland Basin and

the Barents Sea, almost no systematic effects are detectable,

whereas the altimetry time series for the Greenland Shelf

exhibits multi-annual anomalies that are less pronounced in

the FESOM time series, which only shows a small, insignifi-

cant behavior trends. However, the investigation period is too

short to allow for a reliable interpretation of the underlying

effects.

Figure 8 shows the geographical distribution of the mean

residual signals and weighted average of standard deviation

per bin. Both datasets display similar spatial patterns. How-

ever, obvious differences can be seen in some areas, e.g.,

the central Fram Strait and the transition areas between the

deep basin and shelf regions. Comparing the variability of

the residuals, the altimetry-derived DOT shows in general

higher values and an enhanced variations in the ice-covered

shelf areas, contrary to FESOM displaying more variability

in regions affected by ocean currents.

Figure 9 shows the differences between the averaged resid-

ual DOT of altimetry and FESOM (left) as well as their cor-

relation per bin (right). The largest differences occur on the

northern Greenland Shelf and in the Fram Strait, whereas

fewer sea-ice-affected areas (e.g., Greenland Basin, Barents

Sea), including the current and eddy regions (e.g., WSC),

show good agreement. The correlations are mainly positive,

with values above 0.5 % for 21 % of the bins. High positive

correlations are displayed in the deep basin parts of the study

area. Smaller positive correlations can be found in regions

with strong bathymetric gradients and in northern areas of

the major ocean currents (e.g., WSC, EGC).

Remarkable elevation differences occur between 80 and

82◦ N. These patterns are seen in the altimetry-derived DOT

but not in the model and yield up to 0.4 m. They show a con-

stant behavior within the entire investigation period, which

cannot be attributed to seasonal ocean phenomena. Instead,

these artifacts are due to geoid errors caused by residual

ocean signals at polar latitudes (e.g., Kwok and Morison,

2015; Farrell et al., 2012). More discussion related to the

geoid can be found in the next section.

4 Discussion

The comparison of the altimetry-derived and simulated DOT

shows good agreement in terms of highly correlated regional

time series and small residual heights. Predominately posi-

tive correlations between both datasets can be found in ice-

free areas (e.g., Greenland Basin) and in regions affected by

ocean currents. FESOM and altimetry display a very simi-

lar frequency behavior for the most dominant periodic DOT

variability. In comparison with previous studies, the along-

track altimetry DOT agrees concerning annual amplitudes

and phases as obtained by Volkov and Pujol (2012) and Mork

and Øystein Skagseth (2013).

However, the analysis also reveals some systematic dis-

crepancies. These can be explained by three different error

sources: they partly originate from modeling errors of FE-

SOM, partly from measurement uncertainties of altimetry

and partly from errors of the geoid used for computing the

altimetry DOT. These points will be discussed in more detail

in the following paragraphs.

FESOM is affected by synthetic smoothing due to the

added numerical diffusion component stabilizing the model

runs and preventing the simulated DOT from uncontrolled

variabilities. Moreover, in the present investigation the FE-

SOM run does not include the latest glacier runoff model,

which causes further irregularities close to northeastern

Greenland’s coast. Another reason causing this smoothing

effect can be found in the too strongly adjusted sea ice fric-

tion coefficient of the model, damping DOT variabilities in

www.the-cryosphere.net/13/611/2019/ The Cryosphere, 13, 611–626, 2019
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Figure 6. Mean annual amplitudes (a, c, e) and the day of year (DOY) of the annual maximum (b, d, f) per bin for altimetry (a, b) and

FESOM (c, d) DOT heights. The bottom row (e, f) displays amplitude (in m) and phase differences (in days) of altimetry minus FESOM.

RTopo2 bathymetric contours (black) indicate the shelf (−450 m) and the basin (−1500 m) regions. The dashed lines highlight the Barents

Sea boundary (IHO, International Hydrographic Organization, 1953). Note the different scales of the amplitude color bars.
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Table 2. Offset, averaged annual amplitude (Amp) and DOY/month of maximum amplitude with variability (Var) in three subregions.

Area Source Offset (Var) [m] Amp (Var) [m] DOY/Month (Var)

Greenland Basin
Altimetry −0.301 (0.131) 0.063 (0.023) 232.75/Aug (33.61)

FESOM −0.744 (0.086) 0.030 (0.009) 267/Sep (29.24)

Greenland Shelf
Altimetry +0.054 (0.099) 0.057 (0.038) 314.75/Nov (112.86)

FESOM −0.537 (0.054) 0.038 (0.013) 312.25/Nov (21.38)

Barents Sea
Altimetry −0.180 (0.043) 0.040 (0.018) 284.25/Oct (102.42)

FESOM −0.667 (0.020) 0.038 (0.010) 303.75/Oct (13.04)

Figure 7. Monthly time series of averaged residual heights from altimetry (blue) and FESOM (red). Offsets and annual signals were removed

for each region. Additionally, scatter plots and correlation (ρ) are displayed. Regression and bisectrix lines are shown by the purple and dashed

gray lines, respectively.

sea-ice-affected regions. The model applies strictly the hy-

drostatic equations, which function as an assumption of the

real sea state. Furthermore, it does not include tidal ocean

signal and barometric effects and lacks a steric correction to

ensure the global conservation of mass.

While the first two points are taken into account by cor-

recting the altimetry observations, the latter point is currently

not considered in the comparison. This should be acceptable

since the impact on low-frequency regional sea level patterns

is small (Griffies and Greatbatch, 2012). However, it will

contribute to the constant and long-term differences visible in

this study. In contrast, remaining differences in handling the

atmospheric sea level pressure (i.e., caused by uncertainties

of the used correction model) will show up in regional differ-

ences. They might be the reason for the observed temporal

shifts of the maximum annual signal in the Greenland Basin.

Even more important is the insufficiently realistic considera-

tion of freshwater inflow (e.g., by glacier runoff) by FESOM.

This can cause phase shifts as well as reduced annual am-

plitudes. Furthermore the coarse resolution of atmospheric

forcing is an additional reason for a smoothed sea level rep-

resentation and an underestimation of annual amplitudes.

For satellite altimetry, the polar oceans are a challenging

region, especially when sea ice is present. In these areas, the

returned radar echoes are comprised of signals from different

surface reflectors such as different ice types and structures,

melt ponds on ice and open water. The challenge is to extract

valuable information about the sea level while disregarding

all other reflectors. Even with the application of a dedicated

waveform classification and special retracking, as performed

here, DOT estimates in coastal and sea ice areas are signif-

icantly more noisy than in open ocean. Moreover, the ap-

plied range corrections can be biased by the Arctic Ocean

conditions, leading to more unreliable range estimations in

ice-covered shelf regions. Thus, in these regions, small-scale

structures are not thoroughly reliable.

Due to its measurement geometry, satellite altimetry has

a high along-track resolution, but data are scattered in time
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Figure 8. Weighted mean residual DOT (a, b) and weighted mean of standard deviation (c, f) for each bin from altimetry (a, c) and FESOM

(b, d) within 2003–2009. Note the different scales of standard deviation color bars.

Figure 9. Differences (a) and correlations (b) between altimetry and FESOM binned along-track residual DOT within the investigation

period.
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and space. In addition, in polar regions, an irregular sampling

due to missing data caused by sea ice coverage must be taken

into account. This can significantly influence the estimation

of annual sea level variability, as tests with simulated data

with different sampling revealed (see Sect. 3.1).

However, an interpolation of the dataset as it is done in

the majority of other studies (e.g., Kwok and Morison, 2015;

Armitage et al., 2016; Farrell et al., 2012) could be avoided

in order to conserve more high-frequency observations and

spectral content.

This study is based on data from Envisat, whose repeat cy-

cle is known to cause severe alias effects of 365 days for the

tidal constituents K1 and P1 (see Volkov and Pujol, 2012, and

Padman et al., 2018). Thus, errors in K1 and P1 in the applied

ocean tide model may impact the estimated annual variation

of the altimetry-based DOT. Passaro et al. (2015) showed that

the effect can reach up to 1–3 cm. For this study, the EOT11a

ocean tide model (Savcenko et al., 2012) is used. Even if that

model is proven to be among the best models of the Arc-

tic Ocean (see Stammer et al., 2014) the differences between

FESOM and altimetry in the bin-wise estimated annual am-

plitudes could be partially attributed to this aliasing effect.

However, the analysis presented in Sect. 3.1, which is based

on averaged Envisat data, also shows a discrepancy of more

than 1 cm between FESOM and altimetry amplitudes. Thus,

the majority of this difference will be due to the smoothing

effect of FESOM.

In addition to simulated and observational data irregular-

ities, stationary artifacts caused by geoid inaccuracies can

be clearly identified in the northern Fram Strait region. Fol-

lowing Kwok and Morison (2015) these synthetic looking

elevations in the altimetry-derived DOT can be attributed

to a combination of geoid residuals and oceanographic fea-

tures, which are very challenging to separate from each other.

A significant problem can be seen in the specific compo-

nents of the geoid models. The higher spherical harmonics

(degrees 720–2190), describing shorter wavelength patterns

(10–30 km), are based on selective in situ and satellite al-

timetry gravity observations, which can be contaminated by

sea ice or feature sparse availability. Within this study, one

of the newest geoid models is used, which has been devel-

oped for ocean circulation studies and has been optimized

to avoid striations and orange skin-like features. Neverthe-

less, it seems to contain the remaining artificial structures in

the study area. According to Gruber and Willberg (2019),

the higher spherical harmonics are covered by EIGEN6-C4

geoid model (Förste et al., 2004), which does not include

current satellite altimetry data. However, mid spherical har-

monic degrees, corresponding to a 30–100 km spatial wave-

length, are represented by XGM2016 (Pail et al., 2018) in-

cluding the latest altimetry marine gravity fields. Hence, a

better representation of short wavelength patterns can only

be reached by introducing the latest and updated altimetry

data, supported by in situ measurements of the geoid compu-

tations. Similar effects are also visible when using alternative

geoid models (Skourup et al., 2017).

5 Conclusions and outlook

In the present paper, high-frequency altimetry-derived DOT

is compared with water elevations of FESOM in order to

identify their similarities and discrepancies as well as their

respective benefits. Both datasets are characterized by dif-

ferent limitations, which prevent a perfect representation of

the dynamic topography in polar regions based on only one

approach. The present investigation demonstrates that model

simulations and observations are both needed to understand

the complexity of ocean processes in the polar latitudes, es-

pecially in the Arctic Ocean.

The present paper shows basic agreement between a nu-

merically simulated and an empirical estimated representa-

tion of the DOT in the northern Nordic seas in terms of an-

nual variability and spatial behavior. However, inconsisten-

cies due to the higher noise level of the observations, espe-

cially in sea ice areas, and the enhanced smoothing of the

model are demonstrated. For example, an offset of about half

a meter exists between the two datasets since the data of FE-

SOM are not defined with respect to a standard reference

frame (Androsov et al., 2018). Moreover, the annual sea level

variability observed by the two datasets differs by a few cen-

timeters. The residual heights show a similar pattern, high

temporal correlations and only small differences, which are

mainly related to sea ice coverage and geoid artifacts.

The results presented in this paper indicate that further

improvements can be made to both datasets: the altimetry-

derived DOT still needs a better or more restrictive handling

of sea ice observations as well as a more reliable Arctic

geoid. FESOM should be corrected for a global mean steric

height change (Greatbatch, 1994) in order to ensure the con-

servation of mass and to make the observed altimetry heights

directly comparable to the model heights. In addition, an im-

proved handling of freshwater inflow is required to better ac-

count for mass changes due to glacier as well as river runoff.

However, even if these points will be improved, the princi-

pal limitations of observations (measurement noise and data

gaps in regions with closed sea ice coverage) and models (ab-

solute height level) will persist. Thus, it seems reasonable to

exploit the advantages of both datasets through a combina-

tion of model and along-track observations. This will enable

the derivation of a homogeneous DOT, equally sampled in

time and space without the need of smoothing the altimetry

measurements by gridding procedures. In such an approach,

the absolute level as well as the annual variability of altimetry

should be preserved, and the continuous spatial representa-

tion of the model should be used to bridge regions influenced

by sea ice coverage and to get rid of unreliable high-latitude

geoid artifacts. This will allow for an optimized determina-

tion of the Arctic DOT and the associated surface currents.
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Concerning the current availability of altimetry-derived DOT

estimations, it is possible to establish a combination of sim-

ulated and observation-based DOT representation covering

more than 25 years, enabling climate-relevant conclusions.

Data availability. Envisat RA2 altimetry data access is

available from ESA after fast registration submission

(https://doi.org/10.5270/EN1-85m0a7b, ESA, 2018). The FE-

SOM data can be requested from Alfred Wegener Institute. A

final combined data product will be provided via PANGAEA

(https://www.pangaea.de/, last access: 13 February 2019) once the

project is completed.
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Summary

The publication focuses on a novel combination methodology to combine altimetry-
derived dynamic ocean topography (DOT) elevations with modeled water heights of an
ocean model in order to provide a comprehensive description of the temporal evolution of
geostrophic surface currents in a region, which is affected by sea ice and rapidly changing
sea state leading to challenging observation conditions. The model data, provided by
FESOM, is used to bridge data gaps of altimetry, caused for example by sea ice, to obtain
a homogeneous representation of the DOT, which enables consistent and spatiotemporal
highly resolved studies of the ocean surface circulation. The combination was performed
in the northern Nordic Seas covering the observations period of the ESA missions, ERS-2
and Envisat between 1995 - 2012.

In particular, the methodology focuses on the combination of along-track altimetry-
derived DOT observations and simulated differential water heights, which are very sim-
ilar to the DOT. Central element of the combination of the total conceptually different
datasets is the application of a Principal Component Analysis. After reducing both
datasets by their mean and annual signal, the most dominant spatial patterns of the
modeled water heights, as obtained from the PCA, are connected with the temporal
variability of the altimetry-derived DOT in order to estimate combined principal com-
ponents. In a next step, the principal components are multiplied by the corresponding
spatial signals and summed up to complete the synthesis. In a last step, the reduced
mean and annual signal from the observed database is readded to reference the com-
bined dataset to the altimetry height level. The geostrophic components are obtained by
applying the geostrophic equations to the combined DOT. The final combined dataset
is provided on daily unstructured triangular meshes, displaying the spatial resolution
equally to FESOM.
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A.1 Publications

The final combination results are validated by external DOT products revealing a pos-
itive correlation of about 80%, but showing a temporal variability of the combined
dataset. Furthermore, the combined geostrophic current components are compared to
independent sea surface drifter observations, after reducing them by wind-driven current
components. The comparison shows good agreement in spatial patterns, magnitude and
current direction. In addition, a direct pointwise comparison by interpolating the com-
bined velocity components onto the drifter locations and observation time reveals that
94% of the residuals are smaller than 0.15 m/s.

Since model information and altimetry observations are available, the methodology can
be easily transferred to all polar regions on Earth. The combined dataset is made pub-
licly available via PANGAEA following the link https://doi.pangaea.de/10.1594/

PANGAEA.900691 (Müller et al. (2019)).

Contribution

As stated in P-3: Felix L. Müller processed the combination and wrote most of the paper.
Denise Dettmering supervised the present study, contributed to the manuscript writing
and helped with discussions of the results. Claudia Wekerle provided the FESOM data
and contributed to the manuscript writing. Christian Schwatke maintains the altimetry
data base (OpenADB) at DGFI-TUM and supports with discussions. Marcello Passaro
developed the retracking algorithm and helped with discussions concerning the altimetry
dataset. Wolfgang Bosch initiated the study. Florian Seitz supervised the research. The
overall contribution of Felix L. Müller is estimated to be 88%.
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Abstract. A deeper knowledge about geostrophic ocean surface currents in the northern Nordic Seas supports

the understanding of ocean dynamics in an area affected by sea ice and rapidly changing environmental con-

ditions. Monitoring these areas by satellite altimetry results in a fragmented and irregularly distributed data

sampling and prevents the computation of homogeneous and highly resolved spatio-temporal datasets. In order

to overcome this problem, an ocean model is used to fill in data when altimetry observations are missing.

The present study provides a novel dataset based on a combination of along-track satellite-altimetry-derived

dynamic ocean topography (DOT) elevations and simulated differential water heights (DWHs) from the Finite

Element Sea ice Ocean Model (FESOM) version 1.4. This innovative dataset differs from classical assimilation

methods because it substitutes altimetry data with the model output when altimetry fails or is not available.

The combination approach is mainly based on a principal component analysis (PCA) after reducing both quan-

tities by their constant and seasonal signals. In the main step, the most-dominant spatial patterns of the modeled

differential water heights as provided by the PCA are linked with the temporal variability in the estimated DOT

from altimetry by performing a principal component synthesis (PCS). After the combination, the annual signal

obtained by altimetry and a constant offset are re-added in order to reference the final data product to the al-

timetry height level. Surface currents are computed by applying the geostrophic flow equations to the combined

topography. The resulting final product is characterized by the spatial resolution of the ocean model around 1 km

and the temporal variability in the altimetry along-track derived DOT heights.

The combined DOT is compared to an independent DOT product, resulting in a positive correlation of

about 80 %, to provide more detailed information about short periodic and finer spatial structures. The derived

geostrophic velocity components are evaluated by in situ surface drifter observations. Summarizing all drifter

observations in equally sized bins and comparing the velocity components shows good agreement in spatial

patterns, magnitude and flow direction. Mean differences of 0.004 m s−1 in the zonal and 0.02 m s−1 in the

meridional component are observed. A direct pointwise comparison between the combined geostrophic velocity

components interpolated onto the drifter locations indicates that about 94 % of all residuals are smaller than

0.15 m s−1.

The dataset is able to provide surface circulation information within the sea ice area and can be used to support

a deeper comprehension of ocean currents in the northern Nordic Seas affected by rapid environmental changes in

the 1995–2012 time period. The data are available at https://doi.org/10.1594/PANGAEA.900691 (Müller et al.,

2019).

Published by Copernicus Publications.
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1 Introduction

Water mass flowing northward and southward through the

Greenland Sea and Fram Strait represents the major path-

ways of the bidirectional water exchange between the Arc-

tic Ocean and the global conveyor belt. Most of the water

mass is transported via the northward-flowing West Spitsber-

gen Current (WSC) and the southward-flowing East Green-

land Current (EGC). More than 60 % of the total water trans-

port is based on geostrophic movements, caused for example

by water density and sea level elevation variations (Rudels,

2012).

Geostrophic currents (GCs) can be directly derived from

measurements of the dynamic ocean topography (DOT) with

respect to the Earth’s gravity field and rotation and the Corio-

lis force involved. In contrast to hydrographic pressure, tem-

perature and salinity observations, collected by irregularly

distributed in situ data (e.g., ARGO floats or ship-based mea-

surements), satellite altimetry is the only possibility for ob-

taining spatially and temporally homogeneous information

about the global geostrophic circulation. In situ sampling

platforms can deliver high-resolution measurements, but in

polar regions their availability is limited due to sparse spatial

coverage and challenging environmental conditions. How-

ever, especially in sea ice areas, even geostrophic ocean cur-

rents derived by altimetry suffer from irregular sampling and

data gaps. Furthermore, the generation of a dataset requires

some sort of interpolation or gridding techniques, which

cause smoothing effects and a coarser spatio-temporal res-

olution. Moreover, in open-ocean regions, beyond the sea

ice edge, the spatial coverage of altimetry data is sparse

due to the along-track acquisition geometry with constant

and fixed orbit patterns. Hence, studies are limited to long-

term means (e.g. Farrell et al., 2012) or to satellite altime-

try missions dedicated to sea ice conditions (e.g., CryoSat-

2; Kwok and Morison, 2015, and ICESat; Kwok and Mori-

son, 2011). Nevertheless, monthly DOT estimates have been

generated and published by Armitage et al. (2016) using

DOT observations derived from long-term satellite altime-

try. Furthermore, Armitage et al. (2017) presented a dataset

based on a 12-year altimetry observation (from 2003 to

2014) of geostrophic currents at a monthly time frame on

a 0.75◦ × 0.25◦ longitude–latitude regular data grid up to a

latitudinal limit of 81.5◦ N. The authors created a dataset

which combines satellite-altimetry observations from ice-

covered and open-ocean regions. Further publicly available

geostrophic ocean current products based on observational

data from satellite altimetry only and in combination with in

situ buoys (e.g. Rio et al., 2014) are provided, for example,

by the GlobCurrent project and by the Copernicus Marine

Environment Monitoring Service (CMEMS). However, the

latter’s datasets are limited to open-ocean conditions.

Besides observation-based ocean circulation products,

model simulations provide information about the ocean dy-

namics. In general, their resolution is much better than these

of observations; however, they rely on the underlying math-

ematical or physical formulations, which naturally contain

simplifications and suffer from deficiencies in process de-

scriptions. Ocean models differ in spatio-temporal resolu-

tions, forcing the model background and underlying math-

ematical formulations. Recent developments focus on so-

called unstructured ocean models, allowing for locally highly

refined spatial resolutions (Danilov, 2013), while keeping a

coarser resolution in other regions of the Earth (e.g., Finite

Element Sea ice Ocean Model in Wang et al., 2014, or Model

for Prediction Across Scales, Ocean model – MPAS-Ocean

– in Ringler et al., 2013). One of the unstructured models is

the Finite Element Sea ice Ocean Model version 1.4 (FES-

OMv1.4) described by Wang et al. (2014). In the following

text, FESOMv1.4 is abbreviated by FESOM.

For the northern Nordic Seas, an eddy-resolving con-

figuration has been developed, enabling the simulation of

small-scale eddies down to 1 km (Wekerle et al., 2017). Be-

sides total ocean current velocities including wind-driven

and geostrophic components, FESOM includes sea surface

heights with respect to the bottom ocean topography, which

can be also seen as an estimation of the dynamic ocean to-

pography. Applying the gradient to these differential water

elevations leads to the computation of simulated geostrophic

currents. In contrast to observational based data, models

show consistent spatio-temporal resolutions and enable in-

vestigations of ocean surface currents under the sea ice layer.

However, they are limited to a fixed defined mathematical

background and function as an assumption of the reality.

The current publication aims to present an innovative com-

bined data product based on the advantages of both simulated

and observed datasets. In contrast to other commonly used

datasets or assimilation methods, the introduced product is

mainly focused on the observational side by filling in mod-

eled DOT elevations where altimetry data are missing or cor-

rupted. Several investigations and consistency checks have

been made by Müller et al. (2019), concluding with good

agreement of simulated and observed DOT in terms of the

most-dominant seasonal signals and spatial patterns aiming

at a combination of the temporal variability provided by al-

timetry along-track derived DOT elevations with simulated

spatio-temporally homogeneous DOT heights of the model.

The combined dataset obtained is characterized by the spa-

tially homogeneous resolution of the model and the temporal

variability in altimetry-derived DOT elevations. This enables

further studies of geostrophic surface currents in sea ice re-

gions consistent in space and time and may help to deepen

the knowledge about polar ocean current dynamics.

The dataset is based on a combination of multi-mission

satellite-altimetry data from the ESA mission Envisat as

Earth Syst. Sci. Data, 11, 1765–1781, 2019 www.earth-syst-sci-data.net/11/1765/2019/
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Figure 1. Bathymetry of the study area (northern Nordic Seas and Fram Strait) based on RTopo2 topography model (Schaffer et al., 2016).

Major current systems (West Spitsbergen Current – WSC; East Greenland Current – EGC) are displayed by arrows in red (inflowing Atlantic

water) and blue (returning polar water). Contour lines indicate depths of −450 and −1500 m.

well as ERS-2 and the eddy-resolving model, FESOM ver-

sion 1.4 (Wang et al., 2014), covering a period of about

17 years. The combination approach is based on the com-

monly known principal component analysis (e.g. Jolliffe,

2002; Preisendorfer, 1988), which is successfully applied in

historic sea level analyses and reconstruction investigations

(e.g. Ray and Douglas, 2011; Church et al., 2004).

The study area covers the Fram Strait region, the Green-

land Sea and parts of the Norwegian Sea as well as the Bar-

ents Sea (Fig. 1). The different regions are summarized by

northern Nordic Seas. In geographical coordinates the inves-

tigation area is limited to 72 to 82◦ N and −30◦ W to 30◦ E.

The paper is structured in four sections. First, the datasets

and combination method are introduced, followed by the re-

sults. Furthermore, the combination’s reliability is evaluated

by comparing the obtained datasets with in situ drifter ve-

locities and independent satellite-derived DOT products. The

study closes with a summary and concluding remarks of the

most significant aspects.

2 Data

2.1 Observations: radar altimetry data

The observational part of the combination is provided by

high-frequency along-track satellite-derived dynamic ocean

topography data of the ESA satellites ERS-2 and Envisat.

The missions cover a period of about 17 years (May 1995–

April 2012) up to a latitudinal limit of 81.5◦ N. The data

pre-processing of ERS-2 and Envisat-observed ranges to de-

rived DOT heights follows the descriptions of Müller et al.

(2019). Altimetry ranges are retracked by ALES+ (Passaro

et al., 2018), and open water and sea ice are discriminated

by applying the method of Müller et al. (2017). The obtained

sea surface heights are reduced to DOT estimates by sub-

tracting the highly resolved Optimal Geoid Model for Mod-

eling Ocean Circulation (OGMOC), developed up to a har-

monic degree of 2190 (Gruber and Willberg, 2019). ALES+

has been chosen as an optimal retracking algorithm due to

the ability for a consistent range estimation independent of

the backscattering surface (open-ocean, lead and polynya).

Coarse outliers are excluded from the dataset by filtering

the sea surface heights on the basis of sea level anomalies

(i.e., sea surface heights minus a mean sea surface) before

transforming them into physical DOT heights. A time mean

inter-mission offset is removed by taking the Envisat time

series as a reference within a 6-month overlap period (Jan-

uary 2003–June 2003), considering only height observations

from ice-free regions in the southern part of the investigation

area. Before introducing the altimetry DOT elevations to the

further processing steps, the ellipsoid referenced observation

coordinates are transformed to consider the spherical Earth

representation of the model.

www.earth-syst-sci-data.net/11/1765/2019/ Earth Syst. Sci. Data, 11, 1765–1781, 2019
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Figure 2. Exemplary pre-processed altimetry along-track DOT estimates for Envisat 3 d subcycle in March 2004 (a) and July 2006 (b),

illustrating season-dependent data coverage.

Figure 3. Exemplary differential water heights in March 2004 (a) and July 2006 (b) simulated by FESOM. Note the different scaling of

color bars in comparison to Fig. 2.

Figure 2 shows, as an example, 3 d of altimetry data during

the winter (March 2004) and summer (July 2006) season. In

the winter, big data gaps can be noticed close to the eastern

Greenland coast due to the presence of sea ice in contrast to

summer, when most of the data are available.

2.2 Simulation: Finite Element Sea ice Ocean Model

(FESOM)

The second part of the combination consists of simulated

differential water heights (DWHs; e.g., Fig. 3) with re-

spect to the ocean bottom topography (i.e., bathymetry).

The bathymetry acts as geopotential surface, which enables

a linkage to the altimetry-derived DOT heights (Androsov

et al., 2018). FESOM is a global multi-resolution ocean cir-

culation model with an included sea ice component resolv-

ing the major sea ice drift patterns. The model is based on

the standard set of hydrostatic primitive equations in the

Boussinesq approximation and is characterized by an un-

structured triangular mesh with 47 vertical levels (Wang

et al., 2014). The horizontal resolution in the configuration

used in this study reaches up to 1 km in the Fram Strait and

northern Greenland Sea area and can be described as “eddy-

resolving”. Furthermore, the geographical model coordinates

are referenced to a spherical Earth representation with a ra-

dius of 6367.50 km. More details of the FESOM configura-

tion can be found in Wekerle et al. (2017). The present study

uses only daily DWHs of the surface level covering the pe-

riod 2002–2009.

2.3 Comparative datasets

For validation a comparison with externally generated ab-

solute dynamic topography (ADT) elevations, from ADT-

derived geostrophic velocity components and to geostrophic

ocean velocity that reduced in situ drifter observations, is per-

formed. The ADT data including geostrophic velocity com-

ponents (Pujol and Mertz, 2019), provided by CMEMS, are

characterized by a daily and 1/4◦ spatial resolution and are

based on multi-mission altimetry data. The ADT grids are
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created by adding temporally variable sea level anomalies to

a mean dynamic topography and cover the complete time pe-

riod of the developed datasets. However, no ADT and current

data are available in sea ice areas, which limits the compari-

son to ice-free regions and seasons.

Further interpolated surface drifter trajectories from

CMEMS (Rio and Etienne, 2018) with a 6 h interval are used.

Following the pre-processing steps of the drifting buoys, de-

scribed by Rio and Etienne (2018), all surface drifters are an-

alyzed concerning their drogue status and local wind slippage

corrections. Besides geostrophic velocities, drifter observa-

tions include ageostrophic movements (e.g., Ekman currents,

Stokes drift, inertial oscillations, local wind effects, etc.).

Hence, the drifter data must be corrected in order to enable

a comparison with satellite-altimetry-derived and simulated

derived geostrophic currents. Local wind corrections, also

provided by CMEMS (Rio and Etienne, 2018), are directly

subtracted from the drifter velocities, considering the drogue

status. The Ekman current is taken from global grids pro-

viding velocities at 15 m depth (drogue on) and at the sur-

face (drogue off) level. The computation of the Ekman fields

follows the explanations and processing scheme of Rio and

Hernandez (2003) and Rio et al. (2014). The 3-hourly avail-

able Ekman grids are downloaded from the GlobCurrent data

repository and have a spatial resolution of 1/4◦ and global

coverage. However, grid nodes north of 78.875◦ N are not

defined, which limits the comparison to central parts of the

Greenland Sea and neglects the Fram Strait area. The Ekman

velocities are interpolated to the drifter positions and sub-

tracted from the drifting buoys velocity by taking the drogue

status into account. The Stokes drift is provided globally

(Rascle and Ardhuin, 2013, distributed by GlobCurrent) and

applied only to undrogued surface drifter data in the same

way as the Ekman fields (Rio et al., 2014). Following the

suggestions of Andersson et al. (2011), the Ekman–Stokes-

drift-reduced drifter velocities are low-pass filtered by a 25 h

cutoff, two-point Butterworth filter to remove tidal and iner-

tial oscillations. Furthermore, drifters showing observations

with time gaps of more than 1 d are filtered separately (An-

dersson et al., 2011).

Most of the drifter buoys observations are collected in ice-

free regions affected by currents (see Fig. A1). Analyzing the

geostrophic amplitudes and phases, the major pathway and

stream velocity of the West Spitsbergen Current is clearly

identified, in contrast to the East Greenland Current, which

is mostly covered by sea ice. Due to high variability, most

of the drifter data can be found in the West Spitsbergen re-

gion and in the southern parts, where Atlantic water enters

the Greenland Sea. Most of the drifting buoys are carried

through the Fram Strait or enter the Barents Sea. Only a

few drifter buoys turn around and follow the East Greenland

Current. Furthermore, smaller eddies in the central Green-

land Sea can be observed. In this study, nearly 70 000 in situ

observations are available, of which 63 % are characterized

by a drogue-on status. The number of drifter measurements

strongly increases between 2007 and 2012. However, hardly

any data can be used between 2000 and 2006. Nevertheless,

a validation of the ERS-2 data products is possible between

1995 and 2000.

3 Method

In order to generate a combined spatio-temporally consis-

tent dataset based on irregular distributed altimetry obser-

vations, it is necessary to connect the along-track derived

DOT estimates with a spatially consistent modeled DOT rep-

resentation to fill the observation gaps. The following sec-

tion describes briefly the combination of along-track DOT

heights with the modeled water level, while keeping the spa-

tial height reference of the altimetry observations.

The combination is mainly based on a principal compo-

nent analysis (PCA) transferring the method of historic sea

level reconstruction (e.g. Church et al., 2004; Ray and Dou-

glas, 2011) to the present purpose. Altimetry observed along-

track DOT heights represent the temporal DOT variability,

whereas the spatial signal is provided by FESOM. Figure 4

highlights the interrelationship of the datasets and gives an

overview over the main processing chain. The individual

work steps are described chronologically. The output of the

processing steps are combined geostrophic currents (cGCs)

and dynamic ocean topography (cDOT) data representing the

temporal variability in the altimetry measurements and the

spatial homogeneity of the ocean model.

3.1 Data pre-processing

The input of the data production chain is along-track DOT

elevations and daily simulated finite-element-formulated

DWHs. In order to establish an equal combination basis, both

datasets are treated equally. First, they are reduced by their

time mean offsets and the most-dominant seasonal (i.e., an-

nual) signal (Müller et al., 2019).

In a second step, the reduced FESOM grids are introduced

to a PCA in order to decompose them in a linearly uncor-

related, temporal part (i.e principal components) describing

the temporal evolution and in empirical orthogonal functions

(EOFs) identifying the most-dominant spatial structures of

the time series. They are sorted in a decreasing order with

respect to their contribution to the total signal variance. In

order to reconstruct the original signal, the principal com-

ponents and the corresponding EOFs have to be multiplied

and summed up. The product of one combination pair is

called a mode. This inverse process of PCA is also called

principal component synthesis (PCS). PCS is not necessar-

ily always used to reconstruct the full signal; however the

approach can be also limited to a certain number of retain-

ing modes, representing a significant percentage of the total

signal. Mathematical and functional relations are explained

in Jolliffe (2002). In order to determine the number of the

most significant EOFs, the root-mean-square error (RMSE)
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Figure 4. Main processing chain for the generation of combined ocean topography (cDOT) and geostrophic currents (cGCs) showing the

main processing steps, i.e., the combination (in light blue) and auxiliary steps (in green). The necessary input data are highlighted in orange.

Upper-case coordinates (X,Y ) are grid coordinates, whereas lower-case coordinates (x,y) are on the satellites’ tracks. The same holds for the

datasets: data labeled in capital letters are given as a grid, and lower-case letters represent along-track quantities. The “comb” index stands

for combined products, and “res” is residual products, reduced by annual signal and constant offset. For dataset abbreviations, see the main

text.
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Figure 5. Percentage of variance (blue) and daily averaged root-mean-square error (black) including standard deviation of FESOM original

data and reconstructed signal for 65 modes of principal component synthesis. For better overview, modes 10–65 are zoomed in.

is computed for comparing the original FESOM DWH and

the reconstructed signal. The RMSE is computed by (Barn-

ston, 1992)

RMSE(t) =

√

(lt − rt )2, (1)

where l substitutes the original FESOM DWH and r the re-

constructed grids of the day t , where the overbar is com-

puted over all grid nodes. Figure 5 shows the evolution of

the temporal amount of variance and the temporally averaged

RMSE with respect to the individual number of modes. It is

decided to use a RMSE threshold of 10 mm, corresponding

to 50 modes and a summed variance of more than 99 %. In

the following processing steps, only the spatial signals (i.e.,

EOFs) of FESOM are used. In contrast, the principal com-

ponents, describing the temporal evolution of the different

modes, are neglected.

3.2 Combination

The combination step links the pre-processed along-track

DOT heights with the most significant spatial pattern ob-

tained from the PCA of the FESOM differential water

heights. The processing is based on daily temporal resolu-

tion, including 9 d of radar altimetry data for each time step.

The time steps are referred to the mean of a 9 d time span

(i.e., t±4.5 d). The combined DOT heights (cDOTs) can be

represented by a linear combination of n combined estimated

principal components and the obtained EOF grids from FE-

SOM. The functional relation of the PCS is described in

Eq. (2):

cDOTres(X,Y, t) =

n
∑

i=1

PCi(t) · EOFi(X,Y ), (2)

where n corresponds to the number of significant principal

components and empirical orthogonal functions. PCi sub-

stitutes the n unknown combined principal components and

EOFi(X,Y ) the n most-dominant spatial pattern on the FE-

SOM grid (see Sect. 3.1).

The principal components (PCi) are estimated by fitting

the model EOFs to the altimetry-derived DOT elevations

dotres. Therefore, the EOF grids are interpolated to the obser-

vation coordinates based on nearest-neighbor interpolation

(NN-Interpolation), resulting in along-track sampled empiri-

cal orthogonal functions (eofi(x,y)). The solution for PCi is

then given by applying the least-squares method (e.g. Koch,

1999) to Eq. (3):

dotres(x,y, t±4.5 d) =

n
∑

i=1

PCi(t) · eofi(x,y), (3)

where dotres(x,y, t±4.5 d) includes all altimetry-derived DOT

heights within ±4.5 d and eofi(x,y) the corresponding
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along-track interpolated modeled EOFs. The result are n time

series of combined principal components.

Furthermore, Gaussian weighting, which considers uncer-

tainties in the altimetry DOT heights due to the presence of

sea ice, is introduced to the least-squares process. The in-

dividual weights are defined by using an external sea ice

concentration from the National Snow and Ice Data Cen-

ter (NSIDC; Fetterer et al., 2017) interpolated via nearest-

neighbor interpolation to the observation coordinates consid-

ering an enhanced error budget of altimetry range estimations

due to noisier observations within the sea ice area. In a last

step, the estimated principal components are introduced to

the PCS (Eq. 2) in order to construct a combined DOT so-

lution (cDOTres(X,Y, t)). The individual combination steps

are outlined in Fig. 6 and are briefly summarized in chrono-

logical order as follows:

1. Separation of reduced FESOM DWH into most-

dominant spatial patterns (EOF) and time series of prin-

cipal components applying PCA. However, the princi-

pal components obtained are not used but neglected,

since new principal components are estimated from

altimetry-derived DOT and most-dominant spatial pat-

terns (EOF) of FESOM in the further combination steps.

2. Nearest-neighbor interpolation of EOF to altimetry

along-track observations (x,y) obtaining profiled eof.

3. Least-squares estimation of combined principal compo-

nents (PCi) by solving Eq. (3) based on altimetry DOT

observations (dotres) and interpolated eof.

4. Application of Eq. (2) to obtain the combined DOT

(cDOTres) dataset in the FESOM grid (X,Y ) based on

PCi (step 3) and EOF (step 1). Furthermore, an out-

lier detection based on an accuracy determination of the

combined principal components is performed to reject

erroneous combination estimations.

3.3 Data generation

In order to reconstruct the full signal and to rescale the com-

bined heights to the altimetry height reference, the previous

subtracted altimetry time mean offset and annual signal are

re-added (Sect. 3.1). In the next step, combined geostrophic

currents (cGCs) are obtained by computing the zonal (ug)

and meridional (vg) geostrophic velocity components at the

surface, given by Eq. (4):

ug = −
g

f

∂h

∂y
,

vg =
g

f

∂h

∂x
,

(4)

where g is the acceleration of gravity (9.832 m s−2), f =

2�sinφ the Coriolis force, φ the latitude and � the Earth’s

Figure 6. Subset of Fig. 4, outlining combination steps. Numbers

indicate the chronological order of the individual processing steps.

rotation rate. ∂h denotes the horizontal gradient in x and

y direction of cDOT height h. The derivatives ∂h
∂y

and ∂h
∂x

are solved based on the finite-element method (see Ap-

pendix B), which prevents further smoothing effects, since

no re-gridding to a regular grid is necessary. Furthermore,

the geostrophic absolute velocity (Ag), phase φg and eddy

kinetic energy (EKE) can be computed by applying Eq. (5):

Ag =
√

u2
g + v2

g φg = arctan
vg

ug
,

EKE =
1

2
((ug(t) − ug)2 + (vg(t) − vg)2),

(5)

where t substitutes the velocity at a certain time and the over-

bar indicates the mean velocity for a defined time period

(e.g., quarterly).

4 Datasets

The combined DOT and geostrophic current velocity fields

are based on DOT heights derived from satellite-altimetry

and simulated differential water heights from FESOM

(Müller et al., 2019). The dataset spans a time period from

mid-May 1995 to early April 2012 and covers the investiga-

tion area of the northern Nordic Seas limited to 72–82◦ N and

−30◦ W–30◦ E. The dataset is saved in NetCDF format. As

a result of the combination process, the processed grids are

stored in daily temporal and unstructured spatial resolution

with local refinements up to 1 km. Missing days in the dataset

due to longer periods of missing altimetry observations and

unreliable combined principal components are possible. The

data product is given in units of meters in the case of DOT

and in meters per second for the geostrophic components.
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Figure 7. Three-monthly averaged combined DOT heights (left), absolute geostrophic velocities (middle) and flow direction (right) from

1995 to 2012.

Figure 7 illustrates quarterly averaged daily combined

DOT heights and derived geostrophic components expressed

in velocity and azimuth. All meshes show the same spa-

tial resolution with local refinements in the central Green-

land Sea and Fram Strait region (approx. 1 km) and sug-

gest the finite-element structure of the input model. The 3-

monthly averaged cDOT fields vary by circa 1 m across the

northern Nordic Seas, with maximum variations in the win-

ter months. Furthermore, the anti-phase relationship in the

annual oscillation (Bulczak et al., 2015) between the deep

basins and the shelf areas in winter and summer can be seen.

The derived geostrophic components show a strong meander-

ing West Spitsbergen Current and a more clear flow structure

in the East Greenland Current.

5 Comparison with external datasets

The produced datasets are compared to independent datasets

providing daily sampled DOT heights and observations of

surface drifter buoys. However, it must be noted that the com-

parison is challenging, since no dataset can be used as ground

truth in the whole study area.

In order to follow a comparison with in situ observations,

the combined geostrophic components are spatio-temporally

interpolated to surface drifter locations. This enables the
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Figure 8. Temporally averaged geostrophic u (a, c, e) and v (b, d, f) components of drifter observations (a, b), combined dataset (c, d) and

differences (e, f), respectively, binned in 2◦ × 1◦ (longitude–latitude) boxes within the investigation time (1995–2012).

analyses of differences between geostrophic currents from

observations and from the derived combined product. There-

fore, the combination procedure is applied to the drifter

epochs. This is done by interpolating the estimated combined

principal components linearly to the drifter times followed by

a PCS (Eq. 2) and a spatial nearest-neighbor interpolation to

the drifter location. The results are combined DOT heights at

the drifter observation time and location. In order to compare

with the geostrophic drifter measurements, the cDOT heights

are transformed into geostrophic velocities (Sect. 3.3). Fol-

lowing Andersson et al. (2011), the drifter observations are

grouped into 2◦×1◦ longitude–latitude boxes. In order to per-

form statistically reliable analyses, only bins with at least two
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different surface drifters and 50 observations are used (An-

dersson et al., 2011).

Figure 8 displays temporally averaged u and v compo-

nents of the drifter observations (Fig. 8a, b) and the combined

geostrophic currents (Fig. 8c, d). The differences (Fig. 8e, f)

agree well with spatial patterns of the velocity components

(i.e., drifter minus combination). The East Greenland and

West Spitsbergen Current are resolved by both datasets in

both velocity components. The drifter and the cGCs describe

the same amplitude and flow direction in most of the bins.

However, the v component shows bigger differences than the

zonal component, caused mainly by a higher variability due

to the primarily meridional flow direction of the currents in

this area. Good agreement to the drifter data is shown by

slight mean differences of 0.004 m s−1 ± 0.02 m s−1 in the

zonal (u) and 0.01 m s−1 ± 0.04 m s−1 in the meridional (v)

component.

When computing the RMSE between the measured

geostrophic velocities and the combined velocities based

on the individual trajectories for each drifter, a mean of

0.127 m s−1 ± 0.034 m s−1 in the case of the u velocity and

0.132 m s−1 ± 0.039 m s−1 for the v velocity are obtained.

Moreover, the RMSE may reach 0.225 m s−1 for u and

0.232 m s−1 for v. Higher RMSE values can be found in re-

gions with strong current activity (e.g., WSC).

Figure 9 shows the RMSE distribution of absolute veloc-

ity (Eq. 5) for the period 1995–2012 (blue curve). In addition,

the same quantity derived based on the altimetry-only ADT

currents is plotted in green. Both datasets are characterized

by a very similar behavior. Nevertheless, the combination

shows smaller residuals; 35 % of the combined residuals are

smaller than 0.1 m s−1 in contrast to 27 % of the altimetry-

only-derived geostrophic absolute velocity. In general, the

results of both datasets are comparable to previous studies of

the World Ocean and to Volkov and Pujol (2012), describing

a maximal RMSE of around 0.2 m s−1 and a typical range

of 0.07 to 0.15 m s−1 for the northern Nordic Seas in both

components.

Figure 10 shows daily 3-monthly averaged EKE of the

combined and ADT grids within the investigation period

(1995–2012). The EKE results are computed by subtracting

3-month means from the daily datasets (Eq. 5). The ADT ap-

pears smoother and shows big data gaps in sea ice regions in

comparison to the combined results. Furthermore, the com-

bined eddy fields show finer eddy structures within the sea

ice area and close to the Greenland coast. The cGCs are char-

acterized by a higher spatial resolution and more variability

in current regions.

The cDOT grids are evaluated against the daily and spa-

tial averaged time series of ADT fields. Therefore, the cDOT

fields are spatially interpolated to the ADT grids. Figure 11

shows that their mean reduced temporal evolution of both

datasets. The comparison covers the full investigation period

but is spatially limited to ice-free regions. The time series in-

dicate a positive temporal correlation of nearly 80 %. Both

Figure 9. RMSE of geostrophic absolute velocity between drifter

observations and of the trajectories interpolated combined and ADT

datasets from 1995 to 2012.

datasets display high-frequency patterns. Compared to the

stronger smoothed ADT grids with a standard deviation (SD)

of ±0.04 m, the cDOT heights are characterized by a higher

variability (SD = ±0.05 m) and display short periodic struc-

tures. Nevertheless, a slight offset between the time series

between 1995 and 2003 of 2.5 and 2.0 cm between 2003 and

2012 can be observed, which might occur due to a different

applied mean epoch of the ADT computation or an unconsid-

ered bias in the retracking procedure of ERS-2 and Envisat.

6 Data availability

The final combined dataset can be downloaded from PAN-

GAEA at https://doi.org/10.1594/PANGAEA.900691

(Müller et al., 2019). Envisat (SGDR) and ERS-2

(REAPER-SGDR) altimetry data are available from

ESA (Envisat: https://doi.org/10.5270/EN1-85m0a7b

– ESA, 2018; ERS-2: https://earth.esa.int/web/guest/-/

radar-altimeter-reaper-sensor-geophysical-data-record-sgdr,

last access: 24 October 2019 – Brockley et al., 2017). The

used FESOM data can be downloaded from PANGAEA

at https://doi.org/10.1594/PANGAEA.880569 or requested

from Claudia Wekerle (AWI). The model code can be

downloaded from https://swrepo1.awi.de/projects/fesom

(last access: 24 October 2019) after registration. The

in situ drifter observations and ADT grids with ad-

ditional parameters are available via CMEMS (drifter

data: http://resources.marine.copernicus.eu/?option=

com_csw&view=details&product_id=INSITU_GLO_

UV_L2_REP_OBSERVATIONS_013_044, last ac-

cess: 13 January 2019 – Rio and Etienne, 2018; ADT:

http://resources.marine.copernicus.eu/?option=com_

csw&view=details&product_id=SEALEVEL_GLO_

PHY_L4_REP_OBSERVATIONS_008_047, last access:

29 March 2019 – Pujol and Mertz, 2019). Data grids of
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Figure 10. Three-monthly averaged geostrophic eddy kinetic energy within the FESOM period (1995–2012) for combined results (left) and

ADT grids (right). Green areas indicate missing values.
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Figure 11. Zero-centered time series of daily and spatially averaged altimetry-only ADT grids and to the ADT grid nodes interpolated

combined DOT (cDOT) limited to ice-free regions within 1995–2012 and the northern Nordic Seas.

the Ekman and Stokes drift are provided by GlobCurrent

at http://globcurrent.ifremer.fr/products-data/data-catalogue

(last access: 13 January 2019).

7 Summary and conclusions

The current paper presents an innovative dataset based on a

combination of height observations from satellite altimetry

with spatial information provided by an ocean model (FE-

SOM). In case of altimetry data, an open-water classification

procedure is applied in order to exploit along-track water

height measurements within the sea ice area. Furthermore,

height offsets between the open ocean and the sea ice area

are removed by using one single retracking algorithm.

The combination approach takes advantage of the prin-

cipal component analysis, especially the separation of the

model data into its most significant spatial patterns and tem-

poral components with respect to the total variability. The

50 most-dominant patterns (EOF) are used to combine them

with ERS-2 and Envisat-observed along-track DOT heights

in order to fill in observational gaps and to enable investiga-

tions based on a homogeneous DOT representation. In detail,

the spatial information from FESOM and the temporal vari-

ability from altimetry are linked. The height level of the final

product is given by altimetry by re-adding the previous esti-

mated and subtracted annual signal and constant offset, since

the model height reference is not clearly defined, whereas

the obtained spatial resolution is defined by FESOM, which

is characterized by local refinements in ocean current active

areas smaller than 1 km. The combination is computed on a

daily resolution and covers a time span of 17 years (1995–

2012).

Geostrophic currents are provided by computing zonal and

meridional slope gradients of the finite-element mesh. This

allows comprehensive variability analyses of ocean currents

not only in open-ocean areas but also within sea ice regions.

A comparison with altimetry-only datasets shows that the

combination uses enhanced spatio-temporal resolution and

displays short periodic structures and missing data gaps, es-

pecially in the regions covered by sea ice. Moreover, a pos-

itive correlation of nearly 80 % in open-ocean areas can be

achieved.

A comparison with in situ surface drifter measurements,

although limited to ice-free regions, indicates a similar

and realistic representation of ocean current patterns and

mesoscale eddies in the area of both datasets under inves-

tigation. Furthermore, good agreement in the comparison of

binned surface drifter and derived combined geostrophic ve-

locity components has been described.

A direct pointwise comparison for each drifter trajectory

indicates a temporal RMSE of the differences between the

drifter velocity components and the combination of about

0.13 m s−1. In general, the RMSE values obtained range from

0.05 to 0.10 m s−1 in areas with low-flow activity and up to

0.22 m s−1 in regions with high current energy. Following

Volkov and Pujol (2012), these velocities are comparable to

previous estimates for the World Ocean.

The presented data product supports long-term studies of

the dynamic ocean topography and the ocean current regime

in polar regions affected by sea ice. Aiming at a more than

25-year extension of the dataset, more conventional altimetry

(Saral and ERS-1) as well as delay–Doppler altimetry data

(e.g., Sentinel-3A, Sentinel-3B and CryoSat-2) will be added

to the combination process in the future.
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Appendix A: Abbreviations and nomenclature of

altimetric and FESOM height variables

– SSHs: sea surface heights are heights with respect to a

reference ellipsoid.

– SLAs: sea level anomalies are heights with respect to a

mean sea level.

– DOT: dynamic ocean topography describes heights with

respect to a geopotential datum (i.e., geoid).

– ADT: absolute dynamic topography is identical to DOT

(nomenclature used by AVISO).

– DWH: differential water height is simulated water

height, with respect to a reference surface similar to

the geoid but without considering secular changes (e.g.,

glacial isostatic adjustment – GIA, ocean bottom topog-

raphy and self-gravitation). DWH and DOT are closely

related.

Appendix B: Derivation of finite elements in FESOM

The FESOM configuration that was used is based on a finite-

element formulation. Regarding the spatial discretization, the

global ocean is discretized by using tetrahedral elements.

These elements are constructed by first generating a surface

triangular mesh (x,y). In the vertical, z layers are used. The

resulting vertical prisms are then cut into three tetrahedrons.

In the finite-element method, variables are approximated as

linear combinations of a finite set of basis functions {Ni}.

Regarding the choice of these basis functions, FESOM uses

a P1–P1 discretization, meaning that piecewise-linear basis

functions are employed for both sea surface height η and

horizontal velocity u : η =
∑N2-D

i=1 ηiNi and u =
∑N3-D

i=1 uiNi ,

where N2-D and N3-D denote the number of 2-D and 3-D

nodes, respectively. The ith basis function Ni is equal to 1

at node i and linearly vanishes to 0 within elements contain-

ing this node.

Derivatives are computed by transformation into a refer-

ence element. In 2-D, we consider the reference element K̂

defined by nodes â1 = (0,0), â2 = (1,0) and â3 = (0,1). As

local 2-D basis functions defined on K̂ , we choose the first-

order polynomials N1(x,y) = 1 − x − y, N2(x,y) = x and

N3(x,y) = y, with its Jacobian matrix JN =





−1 −1

1 0

0 1



 .

Any arbitrary element K in the physical domain defined by

nodes a1, a2 and a3 can be mapped onto the reference ele-

ment K̂ by affine-linear transformation: F : K̂ → K , F (x̂) =

Bx̂ +d, with B = (a2 −a1, a3 −a1) and d = a1. When com-

puting the gradient of a variable φ on the reference element

K̂ , we obtain ∇x̂φ(x) = ∇x̂φ(F (x̂)) = ∇xφ(F (x̂))∇x̂F (x̂) =

∇xφ(F (x̂))B. Thus, the gradient in the physical domain can

be expressed as ∇xφ(F (x̂)) = ∇x̂φ(F (x̂))B−1.

We now compute the gradient of η on element K by

inserting φ =
∑3

i=1ηiNi into the above equation: ∇xη =

∇x̂

∑3
i=1ηiNiB

−1 = (η1,η2,η3)JNB−1 .

Earth Syst. Sci. Data, 11, 1765–1781, 2019 www.earth-syst-sci-data.net/11/1765/2019/



F. L. Müller et al.: Geostrophic currents in the northern Nordic Seas 1779

Figure A1. Amplitude (a), azimuth (b), and cumulative number (c) of geostrophic surface drifter velocities and number of records in 2◦×1◦

boxes (d) within the 1995–2012 investigation time period. Approximately 63 % of the observations were obtained by an attached drogue.
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A.1 Publications

Co-authored publications

While working on the thesis project, three different co-authored publications were pro-
duced, in which the algorithms and datasets presented here are included. Please note
that the last one is a review publication, presenting current work in the field of polar
ocean satellite altimetry. The publications are freely accessible and used in the text as
normal citations.

CoP-1 Göttl, F., Dettmering, D., Müller, F. L., and Schwatke, C. (2016). Lake level esti-
mation based on cryosat-2 sar altimetry and multi-looked waveform classification.
Remote Sensing, 8(11), ISSN: 2072-4292, DOI: 10.3390/rs8110885

CoP-2 Dettmering, D., Wynne, A., Müller, F. L., Passaro, M., and Seitz, F. (2018).
Lead detection in polar oceans—a comparison of different classification meth-
ods for cryosat-2 sar data. Remote Sensing, 10(8), ISSN: 2072-4292, DOI:
10.3390/rs10081190

CoP-3 Quartly, G. D., Rinne, E., Passaro, M., Andersen, O. B., Dinardo, S., Fleury,
S., Guillot, A., Hendricks, S., Kurekin, A. A., Müller, F. L., Ricker, R., Skourup,
H., and Tsamados, M. (2019). Retrieving sea level and freeboard in the arctic: A
review of current radar altimetry methodologies and future perspectives. Remote
Sensing, 11(7), ISSN: 2072-4292, DOI: 10.3390/rs11070881
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A Appendices

A.2 Supplementary material

the current section contains supplementary material, cited in the text.

Name Lifetime Repeat time Radar band Operator Remarks

ERS-2 1995-2011 35 days Ku ESA -
Envisat 2002-2010 35 days Ku ESA ERS-2 orbit
Envisat-EM 2010-2012 ca. 30 days Ku ESA drifting orbit
SARAL 2013-2016 35 days Ka CNES/ISRO ERS-2 orbit

Table A.1: Overview of the key parameters of the used satellite altimetry missions. Please note
that all listed missions cover the northern Nordic Seas up to a latitudinal limit of
81.5◦N.

Figure A.1: Ground track patterns of ERS-2, Envisat and SARAL in dark red; the drifting
orbit phase of Envisat-EM in green and Jason-1,2,3 in orange. The investigation
area is defined by 72◦N to 82◦N and −30◦W to 30◦E (Figure 1.1)
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A.2 Supplementary material

Figure A.2: Examples of Envisat waveforms for open ocean (left), sea ice (middle) and lead /
polynya (right) conditions with Pulse-Peakiness (PP) values.

Figure A.3: Averaged geostrophic surface velocity for cool periods, 1996-1998 (a), 2008-2012 (c)
and a warm period between 2002-2007 (b). Bathymetric contours indicate depths
of -1500 m and -450 m, taken from RTopo2 (Schaffer et al. (2016)).

Figure A.4: Fourier analysis amplitude spectrum of the sea surface temperature within the
WSC area between 1995-2012.
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