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Abstract

Active research on the development of autonomous vehicles has been carried out for several years now. However,
some significant challenges still need to be solved in this context. Particularly relevant is the constant guarantee
and assurance of the integrity of such autonomous systems. In order to ensure safe manoeuvring in the direct
environment of humans, an accurate, precise, reliable and continuous determination of the vehicle’s position and
orientation is mandatory. In geodesy, this process is also referred to as georeferencing with respect to a superor-
dinate earth-fixed coordinate system. Especially for complex inner-city areas, there are no fully reliable methods
available so far. The otherwise suitable and therefore common Global Navigation Satellite System (GNSS) ob-
servations can fail in urban canyons. However, this fact does not only apply exclusively to autonomous vehicles
but can generally also be transferred to any kinematic Multi-Sensor System (MSS) operating within challenging
environments.

Especially in geodesy, there are many MSSs, which require accurate and reliable georeferencing regardless of the
environment. This is indispensable for derived subsequent products, such as highly accurate three-dimensional
point clouds for 3D city models or Building Information Modelling (BIM) applications. The demand for new
georeferencing methods under aspects of integrity also involves the applicability of big data. Modern sensors
for capturing the environment, e.g. laser scanners or cameras, are becoming increasingly cheaper and also offer
higher information density and accuracy. For many kinematic MSSs, this change leads to a steady increase in
the amount of acquired observation data. Many of the currently methods used are not suitable for processing
such amounts of data, and instead, they only use a random subset. Besides, big data also influences potential
requirements with regard to possible real-time applications.

If there is no excessive computing power available to take into account the vast amounts of observation data,
recursive methods are usually recommended. In this case, an iterative estimation of the requested quantities is
performed, whereby the comprehensive total data set is divided into several individual epochs. If the most recent
observations are successively available for each epoch, a filtering algorithm can be applied. Thus, an efficient
estimation is carried out and, with respect to a comprehensive overall adjustment, generally larger observation
sets can be considered. However, such filtering algorithms exist so far almost exclusively for explicit relations
between the available observations and the requested estimation quantities. If this mathematical relationship
is implicit, which is certainly the case for several practical issues, only a few methods exist or, in the case of
recursive parameter estimation, none at all. This circumstance is accompanied by the fact that the combination
of implicit relationships with constraints regarding the parameters to be estimated has not yet been investigated
at all.

In this thesis, a versatile filter algorithm is presented, which is valid for explicit and for implicit mathematical
relations as well. For the first time, methods for the consideration of constraints are given, especially for implicit
relations. The developed methodology will be comprehensively validated and evaluated by simulations and real-
world application examples of practical relevance. The usage of real data is directly related to kinematic MSSs
and the related tasks of calibration and georeferencing. The latter especially with regard to complex inner-city
environments. In such challenging environments, the requirements for georeferencing under integrity aspects are
of special importance. Therefore, the simultaneous use of independent and complementary information sources
is applied in this thesis. This enables a reliable georeferencing solution to be achieved and a prompt notification
to be issued in case of integrity violations.

Keywords: Recursive State-Space Filtering, State Constraints, Implicit Functions, Georeferencing, Integrity





Kurzfassung

Bereits seit einigen Jahren wird aktiv an der Entwicklung von autonomen Fahrzeugen geforscht. Allerdings gilt
es in diesem Zusammenhang noch einige signifikante Herausforderungen zu lösen. Besonders relevant ist dabei
die ständige Gewährleistung und Sicherstellung der Integrität solcher autonomen Systeme. Um ein sicheres
Manövrieren in der direkten Umgebung von Menschen gewährleisten zu können, ist eine genaue, präzise, zu-
verlässige und kontinuierliche Positions- und Orientierungsbestimmung des Fahrzeuges zwingend erforderlich.
Im Bezug zu einem übergeordneten erdfesten Koordinatensystem wird dieser Vorgang in der Geodäsie auch als
Georeferenzierung bezeichnet. Besonders für komplexe innerstädtische Gebiete existieren jedoch noch keine
vollumfänglich zuverlässigen Lösungsmethoden. Die ansonsten geeigneten und daher auch gebräuchlichen
Beobachtungen eines Global Navigation Satellite Systems (GNSS) können in dieser Hinsicht in engen Häuser-
schluchten versagen. Diese Tatsache gilt jedoch nicht nur ausschließlich für autonome Fahrzeuge, sondern lässt
sich im Allgemeinen auf jedes kinematische Multisensorsystem (MSS) übertragen.

Gerade auch in der Geodäsie existieren eine Vielzahl solcher MSS, welche eine stets genaue und zuverlässige
Georeferenzierung unabhängig von der jeweiligen Umgebung erfordern. Für daraus abgeleitete Folgeprodukte,
wie z.B. hochgenaue dreidimensionale Punktwolken für Anwendungen im Rahmen von 3D Stadtmodellen oder
Building Information Modelling (BIM), ist dies unverzichtbar. Mit dem Bedarf an neuen Methoden für eine
Georeferenzierung unter Aspekten der Integrität, geht zeitgleich auch die Anwendbarkeit von Massendaten
einher. Moderne Sensoren zur Erfassung der Umgebung, wie z.B. Laserscanner oder Kameras, werden im-
mer preiswerter und weisen zudem in Relation dazu eine immer höhere Informationsdichte und Genauigkeit
auf. Dies führt bei zahlreichen kinematischen MSS zu einem stetigen Anstieg der erfassten Beobachtungsdaten.
Viele derzeitige Methoden sind dafür nicht ausgelegt beziehungsweise verwenden stattdessen nur eine zufällige
Untermenge der eigentlich verfügbaren Informationen. Zusätzlich beeinflusst dies auch potentielle Ansprüche
hinsichtlich möglicher Echtzeitanwendungen.

Steht keine überdurchschnittliche Rechenleistung zur Berücksichtigung der großen Datenmengen zur Verfü-
gung, bieten sich in der Regel rekursive Verfahren an. Dabei wird eine iterative Schätzung der gesuchten Größen
durchgeführt, wobei die umfassende Gesamtmenge an Beobachtungsdaten in mehrere einzelne Epochen aufge-
teilt wird. Liegen aktuellste Beobachtungen sukzessive pro Epoche vor, kann ein Filteralgorithmus angewendet
werden. So wird ebenfalls eine effiziente Schätzung durchgeführt und es können in Relation zu einer um-
fassenden Gesamtauswertung im Allgemeinen größere Beobachtungsmengen berücksichtigt werden. Solche
Filterverfahren existieren bislang jedoch fast ausschließlich für explizite Beziehungen zwischen den verfügbaren
Beobachtungen und den gesuchten Schätzgrößen. Ist dieser mathematische Zusammenhang implizit, was durch-
aus bei vielen praktischen Fragestellungen der Fall ist, existieren nur sehr wenige Methoden beziehungsweise im
Falle der rekursiven Parameterschätzung gar keine. Dieser Umstand geht mit der Gegebenheit einher, dass das
Zusammenwirken von impliziten Zusammenhängen mit Restriktionen hinsichtlich der zu schätzenden Parameter
bislang noch überhaupt nicht untersucht wurde.

Im Rahmen dieser Arbeit wird daher ein vielseitig einsetzbarer Filteralgorithmus präsentiert, welcher sowohl für
explizite als auch für implizite mathematische Zusammenhänge gilt. Zusätzlich werden erstmalig Möglichkeiten
zur Berücksichtigung von Restriktionen auch und insbesondere für implizite Beziehungen gegeben. Die entwi-
ckelte Methodik wird anschließend umfassend anhand von Simulationen und praxisrelevanten realen Anwen-
dungsbeispielen validiert und kritisch beurteilt. Die Verwendung von Echtdaten steht dabei in direktem Zusam-
menhang zu kinematischen MSS und den damit verbundenen Aufgaben der Kalibrierung und Georeferenzierung.
Letztere insbesondere im Bezug auf komplexe innerstädtische Umgebungen. In einem derart anspruchsvollen
Umfeld sind die Anforderungen an die Georeferenzierung unter Integritätsaspekten von besonderer Bedeutung.
Dies wird in dieser Arbeit durch die gleichzeitige Nutzung unabhängiger und komplementärer Informationsquel-
len realisiert. Dadurch kann eine zuverlässige Georeferenzierung erreicht werden und eine zeitnahe Benachrich-
tigung bei Integritätsverletzungen erfolgen.

Schlagwörter: Rekursive Zustandsschätzung, Restriktionen, Implizite Funktionen, Georeferenzierung, Integrität
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1 Introduction

1.1 Motivation

The use of domestic robots (e.g. robotic vacuum cleaners) has increased steadily in recent years. As a
result, it has become a widespread routine that such mainly autonomously acting systems are moving in
the immediate environment of humans (Bogue, 2017). The risk potential for these small robots to in-
jure humans is, in this context, quite low. However, the situation will be completely different, if in the
upcoming years more and more fully autonomous cars will be involved in public road traffic. Already
today, local public transport buses and taxis operate autonomously in defined areas, with a growing trend
(Fagnant and Kockelman, 2015; Mallozzi et al., 2019; Boudette, 2019). At present, the presence of a
trained operator is still mandatory to ensure safety. Unexpected collisions can have serious consequences
in this context, which must be prevented. For this reason, vehicles are already equipped with a variety
of different sensors. In addition to vehicle-specific sensors, these are mainly those that are used for posi-
tioning and orientation of the vehicle to its environment (e.g. Global Navigation Satellite System (GNSS)
antennas or Inertial Measurement Units (IMUs)). Furthermore, there exist sensors that are increasingly
used for environmental perception, such as laser scanners and cameras. In combination, they ensure the
integrity1 of the vehicle. The accurate, precise, reliable and complete pose2 estimation of such a system is
of great importance. Its exact determination must be known continuously at all points in time. This must
be ensured independently of the environment.

However, these requirements are of great importance not only for autonomous vehicles. In general, these
demands can also be applied to any kinematic Multi-Sensor System (MSS). After all, a modern vehicle with
all its sensors is nothing else than such a kinematic MSS. Therefore, accurate information about the current
position and orientation is not only necessary to ensure the integrity of a vehicle, but it is also essential
for other purposes. In this context, it can generally also refer to the georeferencing of an MSS with
respect to a superordinate coordinate system. For example, accurate and precise pose estimation is also
indispensable when using Mobile Mapping Systems (MMSs) on the ground and in the air. These MMSs
are mobile platforms containing several of the above-mentioned sensors in order to acquire spatial data
of the environment (Wang et al., 2019). Such systems usually do not operate autonomously, but even in
case of, i.e. an Unmanned Aerial Vehicle (UAV), their pose to a fixed coordinate system must be precisely
known at all times (Colomina and Molina, 2014). Only under these conditions, it is possible to derive
highly accurate maps and three-dimensional models of the reality from the acquired data (Glennie, 2007).
This, in turn, is the basis for obtaining, for example, an up-to-date Building Information Modeling (BIM)
system (Borrmann et al., 2018) or 3D city models (Vosselman and Dijkman, 2001).

Although numerous approaches and methods already exist, independence with respect to the environment
is still a major challenge. Urban areas, in particular, cause difficulties. So-called urban canyons lead to
the fact that the otherwise frequently used pose information based on GNSS and IMU observations is

1Integrity, in this context, means that the complete, safe and accurate operability of the vehicle within certain predefined thresh-
olds can be guaranteed at all times, and that information is provided in a timely manner if these thresholds are exceeded
(Hegarty et al., 2017).

2combination of position and orientation in the relevant dimension
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often too inaccurate (Zhu et al., 2018). Shadowing as well as multipath and drift effects are the reasons
for this. Such unreliable georeferencing is risky, especially in highly frequented urban environments. This
circumstance has led to the fact that other sensors for georeferencing, such as laser scanners and cam-
eras, as well as additional map information, are already being considered more intensively in the systems
mentioned. Thus, the acquired data cannot only be used to map the environment but also to actively
contribute to the improvement of georeferencing. However, this leads simultaneously to new challenges.
Especially the increased use of laser scanners in such kinematic MSSs leads to an enormous increase in
the amount of data collected. Besides, automotive laser scanners (such as solid-state scanners), for ex-
ample, have recently become less expensive, which makes them even more suitable for more frequent
use in cars for the future (Randall, 2019). There are already multiple automotive laser scanners available
that have a small and lightweight design and a remarkable level of accuracy (Velodyne LiDAR, 2018b;
Ibeo Automotive Systems, 2020; Robosense, 2020). At the same time, the resolution, range and density
of these three-dimensional sensors are increasing. The availability of at least 500 000 points per second
is already common. Slightly larger sensors than such automotive laser scanners already capture about
2.2 million points per second (Velodyne LiDAR, 2018a). For this reason, the terminology of big data is
quite appropriate in this context. Big data requires the need for efficient algorithms to realise potentially
real-time capable systems. To process these vast amounts of point cloud data at all, usually, only a random
subset of the total collected data is currently used (Elseberg et al., 2013b). Although there are approaches
that perform spatial or temporal subsampling, there is no specific assessment of the individual observed
quantities with regard to their contribution to an improved estimation. Thus, a more structured reduction of
the entire data set is achieved, but important observations might be lost. Since this identification of relevant
observations is quite challenging, depending on the application, it is advisable to use as much information
as possible. Batch processing, where the data is used within an overall adjustment, is often applied for
this purpose, but reaches its limitations with such increasing amounts of 3D points. Although such batch
methods provide excellent results, they usually have to be performed in post-processing on powerful com-
puters. Otherwise, enormous mobile computing power is required or, for example, the use of Graphics
Processing Units (GPUs). However, this is in contradiction to the demands for online approaches, such as
those needed for autonomous driving. Current applications of this kind require recursive approaches.

Especially suitable for such tasks is the use of recursive state-space filtering. This methodology covers
decades of development and deals with the estimation of arbitrary and not directly measurable states, by
the fusion of arbitrary observation data via a suitable mathematical model (Kalman, 1960). Applications
of such filters are extensive. However, these are primarily based on explicit3 mathematical relationships
between the observations and the parameters to be estimated. This mathematical limitation is in contrast
to a multitude of issues in various fields of expertise (Heuel, 2001; Perwass et al., 2005), and especially
in geodesy (Steffen and Beder, 2007; Dang, 2007; Ning et al., 2017). Often, when dealing with geometri-
cal issues, mathematically implicit4 relationships occur. Although there are approaches but they are rare.
This becomes evident, for example, from the fact that the use of constraints regarding the state param-
eters in connection with implicit relationships has not yet been investigated. However, the presence of
appropriate additional information when using constraints is always recommended and generally has a
beneficial impact on the estimation results (Simon, 2010). For example, the integration of various (geo-
metric) constraints regarding the previously mentioned challenging urban setting for autonomous driving
might be useful. In addition, there is still a need to develop and assess these methods with regard to
compliance with integrity aspects (Wörner et al., 2016; Reid et al., 2019). Therefore, possible solutions
should consider the inclusion of new independent and complementary sources of information. This will
further improve redundancy, and any loss of integrity can be identified and reported in a timely manner.

In summary, due to the availability of inexpensive modern sensor technologies, the amount of data for
various current topics is constantly increasing. Consequently, there is a demand to develop new recursive
methods for the reliable georeferencing of kinematic MSSs in challenging urban environments. This
allows ensuring the integrity of, e.g. autonomous vehicles or to accurately map environments when using
MMSs. Solutions are based on applications from the field of recursive state-space filtering in combination
with appropriate constraints and additional information from object space.

3The observations result directly from the parameters under consideration of a functional relationship
4The observations and parameters cannot be separated from each other to either side of the equation.
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1.2 Objective and Outline

The main focus of this thesis is on the development of a versatile Kalman filter. This filter should consider
non-linear explicit and implicit mathematical relationships between available observations and requested
state parameters. In addition, existing methods for the consideration of arbitrary non-linear state con-
straints have to be applied and validated for the implicit relationships. The main focus here lies on the
distinction between hard and soft constraints, and their application to prior information which is affected
by a specific degree of uncertainty. It is also necessary to analyse the impact of wrong prior information
with regard to the different methods for taking constraints into account. The application of the methodol-
ogy in this thesis is directly related to kinematic MSSs and associated tasks, like their efficient calibration
and georeferencing. In particular, this addresses current challenges in complex urban environments, as
well as the development of methods for georeferencing with integrity aspects even under such difficult
conditions. For this purpose, independent and complementary sources of information should be used,
providing at least long-term support. However, basic applicability to any other issues should also be pos-
sible. For this reason, it is also necessary to investigate the extent to which the newly developed methods
within this thesis perform with vast amounts of data compared to the existing approaches. This is directly
related to current and future big data applications. According to these objectives, this thesis is structured
as follows.

Chapter 2 gives an overview of the methods and models applied in this thesis. Firstly, this includes
the fundamentals of parameter estimation and associated models. Secondly, the idea of recursive state-
space filtering is presented. The corresponding methodology is provided for both explicit and implicit
relationships. Thirdly, a comprehensive overview of different possibilities for the consideration of linear
and non-linear state constraints is given.

The own methodological contributions of this thesis are presented in chapter 3. This includes the intro-
duction of the versatile recursive state-space filter and mainly the possibilities to consider different state
constraints in the context of implicit measurement equations. Furthermore, a realisation of a recursive
Gauss-Helmert Model (GHM) is presented from these studies. Also, a geometric application example is
presented, which serves as the validation base for the described methods.

Chapter 4 contains a detailed application of the proposed methods concerning the calibration of a kine-
matic MSS. A general definition of such a system is given at the beginning, and the primary tasks involved
are described. This is followed by the motivation and description of the specific calibration task. The re-
sults based on the new methods are presented and discussed concerning existing standard approaches.

A second application related to the georeferencing of kinematic MSSs is described in chapter 5. In ad-
dition to a motivation and a description of the experimental setup used, current methods of solving the
problem are discussed together with their weaknesses. Subsequently, the newly developed approach and
the respective results are presented and evaluated.

The thesis concludes with a summary of the most relevant results and findings in chapter 6. At last, an
outlook is given in which remaining questions are formulated, and ideas for further research are presented.

The new methods developed in this thesis, the measurement data acquired and the findings obtained are
directly related to the Research Training Group (RTG) i.c.sens 2159, funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation). Furthermore, parts of the computations were per-
formed by the compute cluster, which is funded by the Leibniz Universität Hannover, the Lower Saxony
Ministry of Science and Culture (MWK) and DFG.





2 Fundamentals of Recursive State-space Filtering

This chapter is dedicated to the basic principles of recursive state-space filtering. As part of the parameter
estimation in section 2.1, two well-known adjustment models for overdetermined equation systems are
generally introduced. These models are then extended by the consideration of constraints. Based on this,
the differences to the recursive state-space filtering in section 2.2 are presented. These filters are generally
applied to non-linear relationships, which must be exclusively explicit in a first method and implicit in
a further method. Subsequently, section 2.3 gives a detailed overview of the various possibilities for
considering state constraints in Kalman filtering.

2.1 Parameter Estimation

Adjustment theory provides a fundamental structure for solving overdetermined systems of equations.
Such problems are omnipresent in many scientific communities. During a measurement process, arbitrary
types of observations li are carried out to determine the unknown parameters xj. Corresponding parameters
and observations can be arbitrarily suitable physical or mathematical quantities (e.g., coordinates, angles,
distances). The relationship between these observations and parameters can be formulated by any suitable
mathematical real-valued functions1 h (·), depending on the respective application. This becomes reason-
able if the unknown parameters are not directly observable (e.g., coordinates of a new point by observed
distances and angles from known points). Furthermore, a set of overdetermined equation systems can
increase reliability (e.g., detection of outliers) and improve quality measures (e.g., accuracy, precision).
By contrast, overdetermined equation systems can have multiple solutions. For this reason, the optimal
solution of such an equation system must be found by parameter estimation.

Different adjustment models can realise such an estimation. The correct choice of the model depends on
the independent functional relationships between the observations available and the parameters requested.
A careful derivation of such functions by physical or mathematical laws is essential. However, strictly
speaking, functional relations are only valid for the true observations l̃i and parameters x̃j. To overcome
inconsistencies, unknown expected values E (·) are included when using the real values. Furthermore,
residuals are introduced to use the real observations and parameters to the respective model (Niemeier,
2008, pp. 120 ff.). This procedure will lead to the best estimates of the values requested.

A stochastic model is used to account for the random behaviour of the observations. In a simplified
approach, independent and identically distributed random variables are usually applied. It is assumed that
the observed values result from additive deviations — which are random — from the true values. The
uncertain observations are therefore modelled by any distribution, e.g. by the Gaussian distribution. An
expected value and a Variance-Covariance Matrix (VCM) can give the distribution. This stochastic model
will influence the estimation of the unknown parameters as well as their quality measures.

Furthermore, the respective adjustment model is applied with an arbitrary estimator. The most common
estimator is Least-Squares (LS). Underlying concept of the optimisation criterion is to minimise the sum

1Also referred to as functional model
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of the squared residuals between real observations li and their related expected values E (li) = hi (x) by
the unknown parameters x (Koch, 1999, pp. 152). If the functional model h (·) is linear, the estimation
is referred to as Best Linear Unbiased Estimate (BLUE) in the context of the optimality properties. The
strict solution of the LS estimator is independent from the underlying distribution of the observations
(Förstner and Wrobel, 2016, pp. 80 ff.). Also other (robust) estimators (e.g. Huber, Hampel) can be
applied, which are based on maximum likelihood methods. Nevertheless, only the LS estimator is used in
the following.

The general case of adjustment, also known as GHM, forms the basis for such adjustment models. The
special case, also known as Gauss-Markov Model (GMM) and the transformation of a GHM into an
equivalent GMM are presented subsequently. Such standard methods are commonly used in the geodetic
community and are described in detail by (Koch, 1999; Lenzmann and Lenzmann, 2004; Jäger et al., 2005;
Wichmann, 2007; Niemeier, 2008). Furthermore, consideration of additional constraints to the requested
parameters is given at least for the GMM by the authors mentioned. However, constraints in the sense
of a GHM are rather an exception and are mentioned by only a few authors, such as (Rietdorf, 2005;
Lösler and Nitschke, 2010; Steffen, 2013; Heiker, 2013; Roese-Koerner, 2015).

There are two basic possibilities for realisation of LS adjustment. The particular preference depends
on the existing application. Measurements can be carried out as a whole, which will result in a post-
processing approach for all available observations acquired. This will be referred to as overall adjustment
or batch approach. In contrast to such a batch approach, new observations can be considered epochwise
as soon as they are acquired. This will result in a recursive parameter estimation2 approach. This means
the parameters requested are updated step-by-step by latest observations available. However, recursive
parameter estimation for a GHM does not exist at all.

In general, it is assumed to receive only a well-posed normal equation system to obtain a unique inverse
of a regular matrix. Singular entities, e.g., due to datum defects or linear dependencies, are not considered
and would require additional special attention.

It should be noted that the different adjustment models partly use the same denominations for the non-
linear functions as well as individual vectors and matrices. This multiple use is intended to ensure clarity.
However, — if not mentioned otherwise — new variables can be assumed when a new adjustment model
is introduced.

2.1.1 Gauss-Markov Model

Unconstrained Gauss-Markov Model

The GMM, also referred to as adjustment of observations, represent an explicit relation between stochastic
observations and unknown deterministic parameters. In general, the non-linear GMM is defined by the
n× 1 observation vector l and the u× 1 parameter vector x as

E (l) = h (x) , (2.1)

or without expected values of the observations and more detailed

li + vi = hi (x1, x2, . . . , xu) . (2.2)

The residuals within the vector v are assumed to be Gaussian with expected value E (v) = 0

v ∼ N (0,Σll) with Σll = σ2
0 ·Qll = σ2

0 · P−1, (2.3)

where Σll is the known positive-definite VCM of the observations, Qll the related cofactor matrix, σ2
0 the a

priori variance factor and P the weight matrix. Altogether they describe the weighting of the observations
among each other and are referred to as stochastic model. A linear functional model h (·) is required for

2Also referred to as sequential parameter estimation (Niemeier, 2008, pp. 314 ff.)
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the adjustment. Linearisation of Equation (2.2) can be performed for non-linear models by Taylor series
expansion up to the linear segment, which leads to the matrix form

l + v = h (x0)︸ ︷︷ ︸
l0

+ A · (x− x0)︸ ︷︷ ︸
∆x

with A = ∇x h (x)
∣∣∣∣
x=x0

(2.4a)

= l0 + A ·∆x with ∆l = l − l0. (2.4b)

The design matrix A is assumed to be of full rank and the partial derivatives are evaluated at the initial
parameters x0. It should be noted that in the following process only the parameter vector x is used instead
of the reduced parameter vector ∆x. Therefore, the necessary updating must still be taken into account.
The same applies to the reduced observation vector ∆l and the initial observations l0. In addition, the
estimated values of the individual quantities are only given from the level of the normal equations. Up to
this stage, the unknown true values are given. Regardless of this, the linearisation should also apply to the
estimated values. To obtain an optimal estimation of the parameters, the residuals of the objective function
LGMM (x) are minimised according to LS estimation (cf. section 2.1). The Gauss-Newton method is used
for this purpose, hence

LGMM (x) = vT · P · v (2.5a)

= (A · x− l)T · P · (A · x− l) (2.5b)

= xT · AT · P · A · x− 2 · xT · AT · P · l + lT · P · l→ min. (2.5c)

This is done by setting the partial derivative of the objective function with respect to the optimisation
variable x equal to zero (Wichmann, 2007, pp. 106)

∇x LGMM (x) = 2 · AT · P · A · x− 2 · AT · P · l != 0. (2.6)

This leads to the optimal estimation of the parameters by using LS adjustment (Koch, 1999, pp. 158)

x̂ =
(

AT · P · A
)

︸ ︷︷ ︸
NGMM

−1
· AT · P · l, (2.7)

where NGMM is the normal equation matrix. The estimated residuals v̂ can be obtained by

v̂ = A · x̂− l (2.8)

to receive the adjusted observations l̂

l̂ = l + v̂. (2.9)

The cofactor matrix Qx̂x̂ with the co-/variances of the estimated parameters x̂ can be obtained by the
inverse of the regular normal equation matrix NGMM

Qx̂x̂ = N−1
GMM =

(
AT · P · A

)−1
. (2.10)

Taking into account the a posteriori variance factor

σ̂2
0 = v̂T · P · v̂

n− u
, (2.11)

the estimated VCM Σ̂x̂x̂ for the estimated parameters results in

Σ̂x̂x̂ = σ̂2
0 ·Qx̂x̂. (2.12)
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In addition, the following also applies

Σx̂x̂ = σ2
0 ·Qx̂x̂, (2.13)

where the VCM Σx̂x̂ refers to the a priori variance factor. This VCM is of interest if the Degrees of
Freedom (DoF) of the adjustment task are low or if the estimation cannot be trusted for other reasons.
Strict recommendations on when to prefer which VCM do not exist. This depends on the specific task and
the present (measurement) configuration. In the context of this thesis appropriate conditions are assumed.
For this reason, Σx̂x̂ will not be given in the following.

Constrained Gauss-Markov Model

The parameters x might be restricted by s independent non-linear equality constraints

g (x) = b, (2.14)

with independent real-valued non-linear functional relations g (·) and the related constant s × 1 vector b.
Similar to the non-linear functional model in Equation (2.2), the non-linear constraint function g (·) needs
to be linearised by Taylor expansion. A truncation of the Taylor expansion after the linear term leads to
the following substitution

C · x = d with C = ∇x g (x)
∣∣∣∣
x=x0

, (2.15a)

d = b− g (x0) + C · x0, (2.15b)

where C is the u × s matrix of equality constraints and d is the related constant s × 1 vector. Such an
extension by constraints can be reasonable in case of suitable prior information regarding mathematical
relationships between specific parameters. A common example of using equality constraints is to ensure
a normalised normal vector of a plane. To apply such additional information, the objective function in
Equation (2.5c) must be extended

LC-GMM (x,λ) = LGMM (x) + 2 · λT (C · x− d)→ min (2.16a)

= xT · AT · P · A · x− 2 · xT · AT · P · l + lT · P · l
+ 2 · λT (C · x− d)→ min,

(2.16b)

with the s×1 vector λ of Lagrangian multipliers. The solution is again achieved through the related partial
derivatives of the Lagrangian according to the Gauss-Newton method. These derivatives are set equal to
zero with respect to x and λ (Koch, 1999, pp. 170 ff.)

∇x LC-GMM (x,λ) = 2 · AT · P · A · x− 2 · AT · P · l + 2 · CT · λ != 0, (2.17)

∇λ LC-GMM (x,λ) = 2 · (C · x− d) != 0. (2.18)

On this basis, Equation (2.7) need to be extended into a block structure[
AT · P · A CT

C 0

]
︸ ︷︷ ︸

NC-GMM

[
x̂
λ̂

]
=
[
AT · P · l

d

]
, (2.19)

where NC-GMM is the extended normal equation matrix. As Roese-Koerner (2015, pp. 16) mentioned,
Lagrange multipliers do not have a physical unit and often a multiple is used to ensure convenient equa-
tions. The linear system of Equation (2.19) has an unique solution if the bordered normal equation matrix
NC-GMM is regular (NC-GMM need to be of full rank) (Wichmann, 2007, pp. 113). The cofactor matrix Qx̂x̂
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with the co-/variances of the estimated parameters x̂ can be obtained by the inverse of the normal equation
matrix NC-GMM.

The extension with regard to the VCM Σ̂x̂x̂ results from Equation (2.12), whereby σ̂2
0 results under con-

sideration of the s constraints as follows

σ̂2
0 = v̂T · P · v̂

s + n− u
. (2.20)

Finally, it should be noted that within this Constrained Gauss-Markov Model (C-GMM) only equality and
no inequality constraints can be taken into account.

2.1.2 Gauss-Helmert Model

Unconstrained Gauss-Helmert Model

The general case of adjustment becomes applicable, as soon as n × 1 stochastic observations and u × 1
unknown deterministic parameters are strictly interconnected by an arbitrary real-valued function h (·).
Such a non-linear implicit relation can be formulated by equality constraints

h (E (l) , x) != 0, (2.21)

or by using residuals instead of the expected values of the observations

hi (l1 + v1, l2 + v2, . . . , ln + vn, x1, x2, . . . , xu) != 0, (2.22)

To obtain a linear functional model approximate values l0 and x0 to both observations and parameters
need to be selected carefully for Taylor series expansion (Lenzmann and Lenzmann, 2004). The following
applies

h (l + v, x) = h (l0 + ∆l + v, x0 + ∆x) with ∆l = l − l0 (2.23a)

≈ h (l, x)
∣∣
l,x︸ ︷︷ ︸

w0

+∇l h (l, x)
∣∣
l,x︸ ︷︷ ︸

B

· (∆l + v) +∇x h (l, x)
∣∣
l,x︸ ︷︷ ︸

A

·∆x (2.23b)

= w0 + B · (∆l + v) + A ·∆x (2.23c)
= w0 + B ·∆l︸ ︷︷ ︸

w

+ B · v + A ·∆x (2.23d)

= B · v + A ·∆x + w != 0, (2.23e)

where B is the q × n condition matrix with partial derivatives of the q condition equations with re-
spect to the observation vector l, and w refers to the q × 1 vector of contradictions. According to
Lenzmann and Lenzmann (2004), note that the partial derivatives are evaluated at the location3 of

l = l0 + v, (2.24)
x = x0 + ∆x, (2.25)

where the residuals v and the reduced parameter vector ∆x will continuously change during the estimation.
To obtain an estimate for l, v, x and ∆l minimising of the objective function LGHM (v,∆x,λ) with respect
to LS estimation (cf. section 2.1) can be performed by Lagrangian multipliers

LGHM (v,∆x,λ) = vT · P · v− 2 · λT (B · v + A ·∆x + w)→ min. (2.26)

3Also referred to as development point
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Setting the related partial derivatives with respect to v,∆x and λ equal to zero

∇v LGHM (v,∆x,λ) = 2 · P · v− 2 · BT · λ != 0 ⇔ v = P−1BT · λ, (2.27)

∇∆x LGHM (v,∆x,λ) = −2 · AT · λ != 0 ⇔ AT · λ = 0, (2.28)

∇λ LGHM (v,∆x,λ) = −2 · (B · v + A ·∆x + w) != 0 ⇔ B · v + A ·∆x + w = 0, (2.29)

leads to the solution of the restricted minimisation problem by the linear normal equation system in block
structure[

B · P−1 · BT A
AT 0

]
︸ ︷︷ ︸

NGHM

[
λ̂

∆x̂

]
=
[
−w
0

]
. (2.30)

Depending on the selection of reasonable approximate values for l0 and x0, several iterations for repeated
linearisation are required to obtain accurate estimates for the unknown parameters. Assuming that the
inverse of NGHM exist, the estimates for each iteration are

Qbb = B · P−1 · BT , (2.31)

k̂ = Q−1
bb

(
I− A ·

(
AT · Q−1

bb · A
)−1
· AT · Q−1

bb

)
· (−w) , (2.32)

v̂ = Qll · BT · k̂, (2.33)

l̂ = l0 + v̂, (2.34)

as well as

∆x̂ =
(

AT · Q−1
bb · A

)−1
· AT · Q−1

bb · (−w) , (2.35a)

x̂ = x0 + ∆x̂. (2.35b)

The cofactor matrix Qx̂x̂ with the co-/variances of the estimated parameters x̂ can be derived either by
inverting the entire regular normal equation matrix NGHM

N−1
GHM =

[
Qk̂k̂ Qk̂x̂
QT

k̂x̂ −Qx̂x̂

]
, (2.36)

or by applying the law of error propagation4 to the estimated parameters in Equation (2.35a), which leads
to

Qx̂x̂ =
(

AT · Q−1
bb · A

)−1
. (2.37)

Also here the extension results to the a posteriori VCM Σ̂x̂x̂ according to Equations (2.11) and (2.12).
Again, the a priori VCM Σx̂x̂ can be obtained according to Equation (2.13), whereby the same applies
with regard to its use as for GMM.

Constrained Gauss-Helmert Model

Similar to the C-GMM, the parameters x of the GHM might be also restricted by s independent non-linear
equality constraints

g (x) = b, (2.38)

4Also referred to as propagation of uncertainty
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which can be transformed according to Equation (2.15) into linear constraints

C · x = d. (2.39)

According to (Roese-Koerner, 2015, pp. 19 ff.) the parameter vector x needs to be divided into the
approximation value x0 and the reduced parameter vector ∆x, which leads to

C (x0 + ∆x) = d∗ (2.40a)
C ·∆x = d∗ − C · x0 =: d. (2.40b)

The consideration of suitable prior information for a Constrained Gauss-Helmert Model (C-GHM) makes
it necessary to extend the objective function in Equation (2.26) to

LC-GHM (v,∆x,λ1,λ2) = LGHM (v,∆x,λ)− 2 · λT2 (C ·∆x− d)→ min (2.41a)

= vT · P · v− 2 · λT1 (B · v + A ·∆x + w)
− 2 · λT2 (C ·∆x− d)→ min.

(2.41b)

As in the unconstrained GHM, the related partial derivatives with respect to v,∆x,λ1 and λ2 of the
Lagrangian are set equal to zero

∇v LC-GHM (v,∆x,λ1,λ2) = 2 · P · v− 2 · BT · λ1
!= 0

⇔ v = P−1BT · λ1,
(2.42)

∇∆x LC-GHM (v,∆x,λ1,λ2) = −2 · AT · λ1 − 2 · CT · λ2
!= 0

⇔ AT · λ1 + CT · λ2 = 0,
(2.43)

∇λ1 LC-GHM (v,∆x,λ1,λ2) = −2 · (B · v + A ·∆x + w) != 0
⇔ B · v + A ·∆x + w = 0,

(2.44)

∇λ2 LC-GHM (v,∆x,λ1,λ2) = − (C ·∆x− d) != 0
⇔ C ·∆x = d,

(2.45)

leads to the solution of the constrained minimisation problem by the linear normal equation system in
block structureB · P−1 · BT A 0

AT 0 CT
0 C 0


︸ ︷︷ ︸

NC-GHM

 λ̂1
∆x̂
λ̂2

 =

−w
0
d

 . (2.46)

Again, several iterations for repeated linearisation are required and the cofactor matrix Qx̂x̂ can be derived
by inverting the regular normal equation matrix NC-GHM

N−1
C-GHM =

Qk̂1k̂1
Qk̂1x̂ Qk̂1k̂2

QT
k̂1x̂ −Qx̂x̂ Qx̂k̂2

QT
k̂1k̂2

QT
x̂k̂2

−Qk̂2k̂2

 . (2.47)

By substitution and transformation of Equations (2.42) and (2.43) the corresponding residuals read

v̂ = −P−1 · BT
(

B · P−1 · BT
)−1
· (A ·∆x̂ + w) , (2.48)

with which the estimated VCM Σ̂x̂x̂ for the estimated parameters x̂ can be obtained according to Equations
(2.12) and (2.20).
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Again, as for the C-GMM, only equality constraints and not inequalities can be considered. Arbitrary
inequality constraints would lead to a more complex optimisation problem. A solution to this problem
was introduced in Roese-Koerner (2015, pp. 77 ff.). Since inequalities are very helpful and occur in
several applications, this is a useful, albeit more complex, possibility to consider them.

Transformation of a Gauss-Helmert Model into a Gauss-Markov Model

Note that the estimation of the parameters requested of a GHM in Equation (2.35) has a similar structure
to the GMM in Equation (2.7) (Jäger et al., 2005, pp. 163 ff.; Dang, 2007, pp. 69). This can be utilized
to transform a non-linear GHM into an equivalent GMM. This transformation is required if recursive
parameter estimation is to be applied and leads to

l̃ + ṽ = Ã · x̃ with ṽ ∼ N
(
0,Σl̃̃l

)
, (2.49)

taking into consideration the substitutions

l̃ := −w0 − B ·∆l = −w, (2.50)
ṽ := −B · v, (2.51)

Ã := ∇x h (l, x)
∣∣
l=l0+v,x=x0+∆x, (2.52)

x̃ := ∆x, (2.53)

Σl̃̃l := B ·Σll · BT . (2.54)

Note that the tilde symbol indicates the transformed quantities. Furthermore, this transformation is also
used for the Kalman filter approach with implicit measurement equations (cf. section 2.2.2).

2.1.3 Recursive Parameter Estimation

In case of vast quantities of observations and self-contained epochs, a batch algorithm might be compu-
tationally expensive. For this reason, recursive estimation on an epochwise basis can be a suitable option
and has already been studied by Plackett (1950); Kalman and Bucy (1961). Therefore, the parameters re-
quested are updated continuously when a new measurement epoch is available. This offers the advantage
to just consider new observations for the parameter update, instead of re-adjustment of the whole data set.

Consideration of the additional observation vector le with ne new observations requires an extension of
the initial GMM given by Equations (2.3) and (2.4b) (Niemeier, 2008, pp. 314 ff.)

Σll,e = σ2
0 ·Qll,e = σ2

0 ·
[
Qll 0
0 Qee

]
= σ2

0 ·
[

P−1 0
0 P−1

ee

]
, (2.55)[

l
le

]
+
[

v
ve

]
=
[

A
Ae

]
· xe. (2.56)

As a result the normal equation matrix Ne and the related parameter vector x̂e are given recursively by

Ne = AT · P · A︸ ︷︷ ︸
NGMM

+ ATe · Pee · Ae, (2.57)

x̂e = N−1
e ·

(
AT · P · l + ATe · Pee · le

)
. (2.58)

Again, the cofactor matrix Qx̂x̂,e can be obtained by the inverse of the regular normal equation matrix Ne.

However, this recursive parameter estimation is usually only used if the parameters requested have already
been estimated by a pre-existing dataset of observations (e.g., cyclic measurements for a geodetic moni-
toring network). Consideration of multiple new epochs is usually not within the scope of this approach.
Moreover, such a recursive procedure does not exist for a GHM.
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2.2 Recursive State-space Filtering

Parameter estimation is a useful method to receive an optimal estimate for freely definable parameters
which have a unique relationship to arbitrary observations. In general, the parameters requested are ob-
tained by a batch approach as a whole or by recursive estimation as soon as epochs of new observations
are available (cf. section 2.1). However, those approaches are suitable as long as the true parameters are
temporally constant during data acquisition. Changes (e.g., the position parameters of a moving vehicle)
are not intended and would cause several problems.

In contrast, recursive state-space filters are meant for such changeable applications. The difference to
parameter estimation consists in the fact that besides already used measuring information, additional sys-
tem information is considered. Furthermore, the parameter vector is no longer deterministic but becomes
probabilistic. This enables the possibility to take into account suitable physical models which describe
the temporal and spatial dynamics of the state parameters requested mathematically. Thus, both measure-
ments and physical properties are considered within a recursive estimation approach. The linear Kalman
Filter (KF) provides the optimal estimation for this problem and was proposed by Kalman (1960). In
this context, an optimal estimate implies that it is unbiased and has a minimal variance (Simon, 2006,
pp. 84 ff.). However, these optimality properties only apply as long as Gaussian noise — for both the
measurements and for the physical system — and linear relationships exist.

The time-discrete KF is a recursive two-step procedure. For a theoretically unlimited number of k = 1 . . .K
epochs the state parameters are predicted by a suitable process model f(·) and updated by an appropriate
measurement model h(·) subsequently. Both are arbitrary real-valued functions. To be also applicable for
non-linear relationships (for both system model and measurement model), Taylor series expansion within
the so-called Extended Kalman Filter (EKF) is possible. Since non-linearities comprise the majority of
applications, only this more complex case is referred to. However, the linearisation causes the KF to lose
its optimality. Instead, an approximation is carried out. These KFs are also of importance in geodesy and
are used, for example, to estimate the position and orientation of various multi-sensor systems (Sternberg,
2000; Vennegeerts, 2011; Paffenholz, 2012; Schlichting, 2018; Zwiener, 2019).

During the prediction step, selected physical relationships (e.g., motion models) are applied to the previous
state parameters xk−1 from the last past epoch. Further influencing factors like zero-mean process noise wk
with VCM Σww,k and controls uk are also taken into account at this stage. During the subsequent update
step, the forecasted state parameters are corrected by the latest set of sensor observations lk. Known zero-
mean measurement noise vk with VCM Σll,k must also be taken into account here. Thus, this non-linear
discrete model can be assumed according to Simon (2006, pp. 407) as follows

xk = f (xk−1,uk−1,wk−1) , (2.59)
lk + vk = h (xk) , (2.60)

wk ∼ N (0,Σww,k) , (2.61)
vk ∼ N (0,Σll,k) . (2.62)

To distinguish between the predicted and updated state parameters, x−k denotes the a priori estimate and
x+

k the a posteriori estimate of the state vector. The same applies to related VCMs for the predicted states
Σ−xx,k and for the updated states Σ+

xx,k, respectively.

In general, the process noise is Gaussian and describe the uncertainty and imperfections of the physical
model. The same applies to the measurement noise concerning the related measurement model. Further-
more, there are also possibilities to consider noise with non-Gaussian distributions (e.g., by a probabilis-
tic Particle Filter (PF)). Beyond that, there is a multitude of several linear and non-linear filters (e.g.,
Unscented Kalman Filter (UKF), Ensemble Kalman Filter (EnKF)). For a detailed compilation with full
derivations the reader is referred to, e.g., Kalman (1960); Jazwinski (1970); Gelb (1974); Bar-Shalom et al.
(2001); Thrun et al. (2005); Simon (2006).

In principle, all these different realisations of filters can be described with Bayesian sequential estimation.
It is assumed that, taking into account all available observations Lk = {l1, . . . , lk} up to epoch k, the
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a posteriori Probability Density Function (PDF) p(xk|Lk) of the system state xk can be approximated.
According to Thrun et al. (2005, pp. 31 ff.) and Simon (2006, pp. 462 ff.), this conditional density can be
determined by using the Bayes’ theorem. This generally represents the update step introduced above and
the following applies:

p(xk|Lk) = p(lk|xk) p(xk|Lk-1)
p(lk|Lk-1) , (2.63)

where the a posteriori PDF p(xk|Lk) is obtained by convolution of the likelihood PDF p(lk|xk) and the a
priori PDF p(xk|Lk-1). Furthermore, the evidence PDF p(lk|Lk-1) is used for normalisation, but is usually
neglected. The a priori density corresponds to the classical prediction step and can be obtained by the
solution of the Chapman-Kolmogorov integral

p(xk|Lk-1) =
∫

p(xk|xk-1) p(xk-1|Lk-1) dxk-1. (2.64)

Here, p(xk-1|Lk-1) describes the a posteriori PDF from the last past epoch k-1. For the first prediction step,
an assumption for this PDF is made by p(x0) as part of the initialisation. Furthermore, the transition PDF
p(xk|xk-1) results from the non-linear system model (cf. Equation (2.59)) and the PDF of the corresponding
process noise wk (cf. Equation (2.61)). It thus describes the system model and indicates the transition
probability from the last known state to the current state. This is also how the likelihood PDF p(lk|xk) from
Equation (2.63) is defined. The non-linear measurement model (cf. Equation (2.60)) and the associated
measurement noise (cf. Equation (2.62)) are used for this purpose. In this way the current observations lk
are considered in the update step (cf. Equation (2.63)) and the a priori PDF p(xk|Lk-1) is corrected. Based
on the knowledge of the a posteriori PDF, an estimate of the state vector can be done. Different estimators
can be selected for this (Candy, 2016, pp. 38 ff.). The mean value of the a posteriori PDF is typically
determined by an estimate of the Minimum Mean Square Error (MMSE) according to

x̂MMSE
k = E (xk|Lk) =

∫
xk · p(xk|Lk) dxk. (2.65)

Another estimate can be obtained by the Maximum a Posteriori Probability (MAP) approach, where

x̂MAP
k = arg max

xk

p(xk|Lk) . (2.66)

For other estimates, see Koch (2000). Similarly, the variance over the second central moment can also be
determined. In general, this recursive estimate, which is also referred to as a Bayesian filter, represents
an optimal solution. However, the Chapman-Kolmogorov integral in Equation (2.64) can only be solved
numerically if linear models with Gaussian noise are available5. In addition, the consideration of all
previous observations leads to numerical problems (Candy, 2016, pp. 39 ff.). The latter challenge can be
countered by applying a first-order Markov chain. As a result, not all available observations Lk are taken
into account, instead only the observations of the last past epoch6 Lk = {lk−1, lk}. To address non-linear
models with non-Gaussian noise, approximative filter techniques must be applied (Simon, 2006, pp. 465
ff.). If at least Gaussian noise is present, the already mentioned EKF can be applied.

However, the literature has so far dealt almost exclusively with explicit relationships between measure-
ments and states (cf. Equation (2.60)) in the context of the filters mentioned. Such a model can be
referred to as a GMM from section 2.1.1. Implicit relations (related to a GHM from section 2.1.2) are
only mentioned by a few researchers (Soatto et al., 1994; Steffen and Beder, 2007; Dang, 2007, 2008;
Petersen and Koch, 2010; Ettlinger et al., 2018; Vogel et al., 2018, 2019; Garcia-Fernandez et al., 2019).
This situation is in contrast to a multitude of applications that are based on implicit relationships. These
are mainly geometric entities (Heuel, 2001; Perwass et al., 2005). While, for example, an UKF can also
deal with non-linear equations by approximating the PDF, only in Ning et al. (2017) an approach is shown
which considers implicit measurement equations. So far, this is based exclusively on simulated data. The

5This special case describes the time-discrete linear KF.
6Also referred to as Markov assumption
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presented general Bayesian filter is not analytically solvable if implicit measurement equations are to be
considered and therefore does not yet exist in this form. For this reason, the framework of explicit and
implicit models is introduced in detail by an Iterated Extended Kalman Filter (IEKF) subsequently.

2.2.1 Iterated Extended Kalman Filter for Gauss-Markov Models

The IEKF is an additional advancement of the EKF for non-linear equations and was initially proposed by
Denham and Pines (1966). The only difference between the two approaches is a repeated linearisation dur-
ing the update step. Here, the IEKF execute several additional iterations to correct the development point
of the first-order linearisation within each iteration. This is less computationally complex than perform-
ing Taylor series expansion of higher orders Simon (2006, pp. 417 ff.). Highly non-linear equations are
therefore controllable. In the IEKF algorithm described below, the equations are not derived. A detailed
derivation can be found in Simon (2006, pp. 407 ff.).

Initialisation

As with all filters in general, the IEKF requires initialisation. Therefore the initialised u × 1 state vector
estimate x̂+

k=0 and corresponding u× u VCM Σ+
x̂x̂,k=0 is given by

x̂+
k=0 = x0, (2.67)

Σ+
x̂x̂,k=0 = Σxx,0. (2.68)

Prediction Step

By first-order Taylor series expansion of the system model (cf. Equation (2.59)), the Jacobian matrices for
the state transition Φk−1 and the noise matrix Gk−1 can be obtained

Φk−1 = ∇x f (x)
∣∣∣∣
x̂+

k−1,uk−1,wk−1

, (2.69)

Gk−1 = ∇w f (x)
∣∣∣∣
x̂+

k−1,uk−1,wk−1

. (2.70)

Quite often, however, the noise matrix Gk−1 can be omitted. In general, the following applies for the
predicted state vector estimate x̂−k with associated VCM matrix Σ−x̂x̂,k

x̂−k = f
(

x̂+
k−1,uk−1, 0

)
, (2.71)

Σ−x̂x̂,k = Φk−1 ·Σ+
x̂x̂,k−1 ·Φ

T
k−1 + Gk−1 ·Σww,k−1 · GT

k−1. (2.72)

Update Step

The explicit relationship between observations and states is given by the measurement model (cf. Equation
(2.60)), where lk is the n× 1 observation vector. Since non-linearities can usually occur here as well, the
linearisation should also be carried out here by a first-order Taylor series expansion. As already mentioned,
it is the special characteristic of the IEKF to perform additional iterations during the update step. For this
reason, in addition to the epoch-index k, an additional index m is introduced with regard to the current
iteration run.
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After initialisation for the iterative parameters and observations by

x̂+
k,m=0 = x̂−k , (2.73)

lk,m=0 = lk, (2.74)
vk,m=0 = vk (2.75)

it follows for m = 0, . . . ,M− 1 with the maximum number of iterations M

Ak,m = ∇x h
(

x̂+
k,m

)∣∣∣∣
x̂+

k,m,lk,m,vk,m

, (2.76)

Mk,m = ∇v h
(

x̂+
k,m

)∣∣∣∣
x̂+

k,m,lk,m,vk,m

, (2.77)

Kk,m = Σ−x̂x̂,k · A
T
k,m ·

(
Ak,m ·Σ−x̂x̂,k · A

T
k,m + Mk,m ·Σll,k ·MT

k,m

)−1
, (2.78)

x̂+
k,m+1 = x̂−k + Kk,m ·

(
lk − h

(
x̂+

k,m

)
− Ak,m ·

(
x̂−k − x̂+

k,m

))
, (2.79)

Σ+
x̂x̂,k,m+1 = (I−Kk,m · Ak,m) ·Σ−x̂x̂,k. (2.80)

Here, x̂+
k,m is the stepwise updated state vector and Σ+

x̂x̂,k,m the associated VCM. The estimation of the
updated states is influenced by the so-called Kalman matrix Kk,m. This matrix provides for the weighting
between predicted states x̂−k and current observations lk at each epoch. Again, quite often, the Jacobian
matrix Mk,m related to the residuals vk,m is usually not taken into account. The final a-posteriori state
estimate and associated VCM are than

x̂+
k = x̂+

k,M, (2.81)

Σ+
x̂x̂,k = Σ+

x̂x̂,k,M. (2.82)

The general process of the individual filter steps is shown in Figure 2.1 with its relevant estimates. Note
that for M = 0 the IEKF reduces to the standard EKF without additional iterations. There is theoretically
no limit to the maximum number of iterations M within the IEKF. In practice, a maximum number
of iterations is usually specified. Alternatively, this can also be provided with an abort criterion. A
possible threshold value, which must be reached below, can be for example the absolute change between
two consecutive epochs. Studies show, however, that in practice, often already one or two additional
iterations are sufficient (Krebs, 1980, pp. 194). Further iterations, therefore, do not necessarily lead to
further improvements. Regardless of this, a larger number of iterations would also be inefficient from a
computational point of view.

In principle, it is also possible to perform an improved linearisation during the prediction step7 (cf. Equa-
tion (2.71)). In practice, however, this is rarely used and only required for highly non-linear system (Krebs,
1980, pp. 188). In addition, the focus will be on the measurement model in the further chapters, which is
why more details can be found directly in Jazwinski (1970, pp. 279 ff.).

Figure 2.1: Flowchart of the IEKF for explicit measurement equations with predicted (solid box) and updated states (dotted box)

7In Jazwinski (1970, pp. 280) this is called the Iterated Linear Filter-Smoother
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2.2.2 Iterated Extended Kalman Filter for Gauss-Helmert Models

The basic principle of the IEKF was already introduced in the previous section 2.2.1. However, it is
limited exclusively to explicit relationships between state parameters and observations within the mea-
surement model h(·) (cf. Equation (2.60)). In this section, therefore, a possibility is presented that allows
implicit relationships to be taken into account. Thus greater flexibility can be guaranteed regarding dif-
ferent applications. The main idea of the transfer towards implicit measurement models is based on Dang
(2007, 2008). His approach is again based on the transformation of a linear GHM into a linear GMM
according to transformation rule from Equations (2.50) – (2.54).

Compared to the IEKF for GMM, the basic procedure regarding prediction step and update step remains
the same. Therefore, only the update step is affected by the introduction of an implicit model. The
measurement model from Equation (2.60) therefore results in

h (lk + vk, xk) = 0, (2.83)

where the states and observations are inseparable. However, the other assumptions of Equations (2.59),
(2.61) and (2.62) remain. At this point, note that in addition to the filtered states x+

k , filtered observations
l+k are now also estimated. Here, Equation (2.83) is an auxiliary condition of the LS problem definition(

l+k − lk
x+

k − x−k

)T [Σll,k 0
0 Σ−xx,k

]−1(
l+k − lk

x+
k − x−k

)
→ min. (2.84)

To perform linearisation of Equation (2.83) the Taylor series expansion according to Equation (2.23) leads
to

h (lk + vk, xk) ≈ −∇x h (·)
∣∣̌
l,x̌︸ ︷︷ ︸

Ak

(
x+

k − x̌k

)
+∇l h (·)

∣∣̌
l,x̌︸ ︷︷ ︸

Bk

(
l+k − ľk

)
+ h

(̌
lk, x̌k

)
(2.85a)

= Ak · x+
k + Bk · l+k + h

(̌
lk, x̌k

)
− Ak · x̌k − Bk · ľk︸ ︷︷ ︸

wk

(2.85b)

= Ak · x+
k + Bk · l+k + wk

!= 0, (2.85c)

where x̌k and ľk are corresponding development points of the first-order linearisation. Similar to Equation
(2.26), an objective function can also be set up here by using Lagrangian multipliers. This must be
minimised. The objective function LIEKF can be set up by LS (cf. Equation (2.84)) and the auxiliary
condition in Equation (2.85) which leads to

LIEKF =
(

l+k − lk
x+

k − x−k

)T [Σll,k 0
0 Σ−xx,k

]−1(
l+k − lk

x+
k − x−k

)
− 2 · λTk ·

(
Ak · x+

k + Bk · l+k + wk

)
→ min,

(2.86)

where λ is the Lagrangian multiplier. Setting the related partial derivatives with respect to x+
k , l

+
k and λk

of the Lagrangian equal to zero

∇x+
k

LIEKF = 2 ·
(

x+
k − x−k

)T
·
(
Σ−xx,k

)−1
− 2 · λTk · Ak

!= 0

⇔ x+
k = x−k + Σ−xx,k · A

T
k · λk,

(2.87)

∇l+k
LIEKF = 2 ·

(
l+k − lk

)T
· (Σll,k)−1 − 2 · λTk · Bk

!= 0

⇔ l+k = lk + Σll,k · BTk · λk,
(2.88)

∇λ LIEKF = Ak · x+
k + Bk · l+k + wk

!= 0, (2.89)
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leads to the linear normal equation system NIEKF in block structure−I 0 Σ−x̂x̂,k · A
T
k

0 −I Σll,k · BTk
Ak Bk 0


︸ ︷︷ ︸

NIEKF

x̂+
k

l̂
+
k

λ̂k

 =

−x̂−k
−lk
−wk

 . (2.90)

Comparable with the solution of GHM in batch processing (cf. Equation (2.30)), the filtered states x̂+
k and

observations l̂
+
k can be obtained by the inverse of the normal equation system NIEKF. For the first iteration

run m = 0 of the update step, the development points x̌k,m=0 and ľk,m=0 should be selected by the predicted
state estimates x̂−k and currently available observations lk

x̌k,m=0 = x̂−k , (2.91)

ľk,m=0 = lk. (2.92)

After initialisation of the first update step the development points change continuously. For the subsequent
iterations m = 0, . . . ,M−1, the development points are replaced by the current filtered state estimate x̂+

k,m

and filtered observations l̂
+
k,m. This corresponds to a similar linearisation procedure as for the GHM (cf.

section 2.1.2). As with the IEKF for GMM (cf. section 2.2.1), the iterations of the update step terminate
after a specific number of runs, unless an abort criterion has already been reached. The related VCM of
the filtered states Σ+

x̂x̂,k is determined once at the end of the update step for m = M− 1 and reads

Σ+
x̂x̂,k = (I− Kk · Ak) ·Σ−x̂x̂,k · (I− Kk · Ak)T + Kk ·

(
Bk ·Σll,k · BTk

)
· KT

k , (2.93)

where Kk is the Kalman gain

Kk = Σ−x̂x̂,k · A
T
k ·
((

Ak ·Σ−x̂x̂,k · A
T
k

)
+
(

Bk ·Σll,k · BTk
))−1

. (2.94)

Afterwards the state vector and related VCM are predicted again for the next epoch k + 1 (cf. Equations
(2.71) and (2.72)). The general process of the individual filter steps is shown in Figure 2.2 with its relevant
estimates. Note that the Kalman gain in Equation (2.94) results from the application of the transformation
rule from Equations (2.50) – (2.54) in combination with the solutions of the IEKF for GMM (cf. section
2.2.1). This also results in the detailed filter equation for the iteratively updated state vector below x̂+

k,m+1

x̂+
k,m+1 = x̂−k − Kk,m ·

(
h
(̌

lk,m, x̌k,m

)
+ Bk,m ·

(
lk − ľk,m

)
+ Ak,m ·

(
x̂−k − x̌k,m

))
. (2.95)

In addition, the iteratively updated observation vector l̂
+
k,m+1 result as follows

l̂
+
k,m+1 = lk −

(
Σll,k · BTk,m ·

((
Ak,m ·Σ−x̂x̂,k · A

T
k,m

)
+
(

Bk,m ·Σll,k · BTk,m

))−1)

·
(

h
(̌

lk,m, x̌k,m

)
+ Bk,m ·

(
lk − ľk,m

)
+ Ak,m ·

(
x̂−k − x̌k,m

))
.

(2.96)

As mentioned before, only a few other researchers besides Dang (2007, 2008) have so far dealt with
implicit measurement equations within a KF. In Ettlinger et al. (2018), the approach is to realise a decom-
posed system equation by two sets of equations. The first set consists of the predicted state parameters and
the second set consists of condition equations according to the GHM. The fusion of both sets of equations
leads to a system model of a KF. The solution then results from the usual formulas of the GHM. However,
no iterations according to an IEKF or state constraints according to section 2.3 can yet be realised. Fur-
thermore, the approaches from Petersen and Koch (2010); Steffen and Beder (2007) are based on a similar
approach to that of Dang (2007, 2008), but only Steffen and Beder (2007) uses an IEKF.
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Figure 2.2: Flowchart of the IEKF for implicit measurement equations with predicted states (solid box) and updated states &
observations (dotted box)

2.3 State Constraints

The IEKF, and in general also the KF, provide a suitable framework for estimating precise state parame-
ters, taking into account suitable physical or mathematical system models and measurement models (cf.
section 2.2). In addition to the models, additional prior information regarding the states to be estimated
is often also known. These can be mathematical definitions, physical laws, geometric restrictions or other
practical or logical specifications. Possible specific examples could be the attention to orthonormal rows
of a rotation matrix, maximum upper limits of a motion velocity or a given intersection angle. Simplified,
this additional information is generally referred to as constraints or restrictions. Although such constraints
would theoretically exist for many applications, they are not always applied (Simon and Chia, 2002).
However, the consideration of suitable, reliable and applicable constraints can theoretically only lead to
an improvement of the estimation results. Especially for non-linear systems, in which the IEKF does not
provide optimal estimation results in the sense of minimum variance, the integration of constraints to the
states provides a significant gain in accuracy (Chiang et al., 2002; Simon, 2010). For this reason, many
different methods have been developed for constrained KFs. A comprehensive overview can be found in
Simon (2006, pp. 212 ff.); Gupta and Hauser (2007); Simon (2010).

State constraints can be defined by a linear or non-linear functional context. However, any non-linear state
constraint can be transformed into a linear state constraint by Taylor series expansion. This linearisation
is regarded as a sufficiently accurate approximation, as long as the uncertainties are small compared to
the quantities that occur. Further details on linearisation and related inaccuracies are given in section
2.3.3. Thus, all existing approaches for linear state constraints are also applicable for non-linear state
constraints. Therefore, the methods are described below in terms of linear relationships. Furthermore, a
distinction between hard constraints8 and Soft Constraints (SCs)9 is done. Hard constraints are used if
the exact permissible value is known. They are non-negotiable and must be fulfilled exactly. This ensures
strict compliance with the state constraints. In contrast, SCs only have to be fulfilled approximately. A
certain tolerance is allowed, and the exact value is not required. This type is mainly used if a certain
uncertainty in the functional context of the state constraint is already known. If several constraints are
applied simultaneously, linear independence between them is assumed. This will avoid any numerical
instabilities due to rank deficiency (Wichmann, 2007, pp. 113).

All methods have in common that finally an improved estimation of the state vector xck with associated
VCM Σc

xx,k based on the applied constraints is available. As long as truthful state constraints are con-
sidered, this leads to a solution that is generally closer to the true value compared to the filtered state x+

k
without considering constraints. At least a deterioration is not possible under these assumptions (Simon,
2010). The state constraints described here only apply to the update step. However, there are also a
few methods that can be taken into account in the prediction step. Nevertheless, this affects the required
computational effort and does not represent a relevant gain in accuracy (Gupta and Hauser, 2007).

Due to the diversity of existing state of the art methods, only the most widely used methods required for
this thesis are discussed here. In addition, note that those methods described below for considering state
constraints refer exclusively to the use of KFs with explicit measurement equations (cf. section 2.2.1).

8Also referred to as strong constraints
9Also referred to as weak constraints
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The application of state constraints to KFs with implicit measurement equations (cf. section 2.2.2) has
several special requirements and does not yet exist. Methods for this are described in detail in chapter 3.

2.3.1 Hard Constraints

Hard constraints can be subdivided into equality state constraints

D · xk = d, (2.97)

and inequality state constraints

D · xk ≤ d, (2.98)

where D is a known s× u constraint matrix and d is a known s× 1 constraint vector. The variable s refers
to the number of attached constraints and is less than or equal to the number of states u. In general, D and
d are time-variable and can vary for different epochs k. Subscription of D and d is not done to simplify
notation. In principle, both quantities are also time-dependent and can be different in their dimensions
and values per epoch k. The mathematical consideration of such constraints within a KF depends on the
respective method.

Equality Constraints

The Perfect Measurements (PMs) method converts state constraints of Equation type (2.97) into fictitious
observations10 and treats them as additional observations (Porrill, 1988). In contrast to conventional ob-
servations, these fictitious observations are not subject to any uncertainties. For this reason we can extend
Equation (2.97) by adding zero measurement noise vd,k from which follows

d = D · xk + vd,k, vd,k ∼ N (0,Σldld,k) , (2.99)

where the related VCM Σldld,k is the zero matrix. By adding such a PM equation for each constraint
requested, the total number of measurement equations increases to n + s. The implementation is done via
extension of the observation vector lk and related VCM Σll,k in Equation (2.60). The basic process of the
IEKF with its relevant estimates is shown in Figure 2.3. Note that this modification leads to a singular
VCM of the measurement noise Σll,k. However, this is not necessarily a problem but can lead to numerical
instabilities (de Geeter et al., 1997). Furthermore, an extension of the measurement functions obviously
leads to generally higher dimensions of related matrices, which can result in a higher computational effort
(Simon and Chia, 2002).

Figure 2.3: Flowchart of the IEKF for explicit measurement equations with predicted (solid box) and constrained states (dashed
box) under consideration of additional PMs (red)

10Also referred to as pseudo observations
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In contrast to the PMs method, the Projection (PRO) method is based on the unconstrained filtered state
estimate x̂+

k . So the regular update step of the general KF remains identical. According to Simon and Chia
(2002), the filtered state estimate x̂+

k is projected onto the constraint surface by minimising

x̂ck = arg min
xk

{(
xk − x̂+

k

)T
·W ·

(
xk − x̂+

k

) ∣∣∣ D · xk = d
}
, (2.100)

where the u×u weight matrix W can be selected as W = I. This will result in a constrained solution closer

to the true state than an unconstrained estimation. Alternatively, it can also be selected as W =
(
Σ+

x̂x̂,k

)−1

which will end in a minimum variance filter (Simon and Chia, 2002). However, this only applies to linear
systems (Simon and Chia, 2002). The effect of selecting W is well illustrated by Figure 2.4.

The solution of Equation (2.100) results in the constrained state estimate x̂ck and corresponding VCM Σc
x̂x̂,k

x̂ck = x̂+
k −W−1 · DT

(
D ·W−1 · DT

)−1 (
D · x̂+

k − d
)
, (2.101a)

Σc
x̂x̂,k = Σ+

x̂x̂,k −Σ+
x̂x̂,k · D

T
(

D ·Σ+
x̂x̂,k · D

T
)−1

D ·Σ+
x̂x̂,k. (2.101b)

For the implementation, the constraints after the update step are applied, and its results are used for the
prediction step in the subsequent epoch k + 1. The basic process of the IEKF with its relevant estimates
is shown in Figure 2.5. In addition, there are also other methods to consider equality state constraints
in Kalman filtering. For example, the so-called model reduction method reduces the complexity on the
level of the system model parametrization, but generally, the physical interpretability of the states is lost
(Simon, 2006, pp. 212 ff.). Furthermore, an extension of the model reduction method to inequalities is
not possible. However, this is possible with the other methods described below.

Inequality Constraints

In contrast to equality, inequality constraints can be used to exclude entire impermissible or infeasible
value ranges of the states. A common method to consider such state constraints of Equation type (2.98)
for Kalman filtering is given by PDF truncation method. Within this framework, the PDF of the un-
constrained filtered state estimate x̂+

k (which is assumed to be Gaussian) is truncated by using the s state
constraints requested. The constrained state estimate x̂ck then results from the mean of the truncated PDF
(Shimada et al., 1998). This truncation is performed for every single constraint i = 1, . . . , s successively.
Therefore s truncations are necessary in total. If the constraints are not decoupled from each other, the or-
der in which they are considered affects the result (Simon and Simon, 2010). There are several individual

Figure 2.4: Impact of selecting the weight matrix in the context of the consideration of state constraints by the PRO method.
Modified according to Simon (2006, pp. 218).
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Figure 2.5: Flowchart of the IEKF for explicit measurement equations with predicted (solid box), updated (dotted box) and
constrained states (dashed box) when using the PRO method (red)

steps needed to perform this method. A detailed overview is given in Simon (2006); Simon and Simon
(2010); Vogel et al. (2019). In general, this PDF truncation method can also be used for two-sided in-
equality state constraints of the form

dlower ≤ D · xk ≤ dupper, (2.102)

where dlower relates to the lower and dupper to the upper boundary of the constraint (cf. Figure 2.6). For
this reason, inequality constraints can be considered as the general case in terms of state constraints. If the
lower and upper boundaries are identical, a two-sided inequality conforms to an equality state constraint.
To handle one-sided inequality constraints, dlower = −∞ or dupper = +∞ could be used. In addition, this
PDF truncation method can also be applied for equality constraints. Also, combinations of equality and in-
equalities state constraints are possible, making this method very versatile. The basic process of the IEKF
with its relevant estimates using the PDF truncation method is shown in Figure 2.7. Simon and Simon
(2010) further recommend an independent execution of the unconstrained Kalman filtering and PDF trun-
cation process. Instead of using the constrained state for prediction for the subsequent epoch k + 1, the
unconstrained state should be used. This is to prevent that the multiple use of the information in the con-
straint results in a supposed normal distribution. Otherwise, this can lead to a monotonously increasing
mean value or monotonously decreasing variance.

The already introduced PRO method can also be extended with regard to inequality state constraints.
However, only with respect to one-sided formulation according to Equation (2.98). The minimisation
problem in Equation (2.100) need to be modified and leads to

x̂ck = arg min
xk

{(
xk − x̂+

k

)T
·W ·

(
xk − x̂+

k

) ∣∣∣ D · xk ≤ d
}
. (2.103)

However, this results in a quadratic programming problem (Simon, 2006, pp. 216 ff.). A so-called active-
set method is a suitable approach to solve this problem (Fletcher, 2008). A subset (active set) of the
inequality constraints are treated as equality constraints and the optimisation problem is solved. This
subset comprises all constraints which are active at the solution of the problem. If the solution satisfy
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Figure 2.6: Basic principle of the PDF truncation method (unconstrained PDF (a) and constrained PDF (b)) according to
Simon and Simon (2010). The lower and upper boundaries are marked with red lines. The unconstrained state is
highlighted by a black circle and the constrained state by a red circle. The constrained state refers to the centroid of
the truncated PDF and can be obtained, for example, from the MMSE estimator (cf. Equation (2.65)).
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Figure 2.7: Flowchart of the IEKF for explicit measurement equations with predicted (solid box), updated (dotted box) and
constrained states (dashed box) when using the PDF truncation method (red)

the initial inequality constraints subsequently, the problem is solved. Otherwise an iterative process is
necessary. However, it is unfavourable, since the necessary computational effort of the active-set method
increases exponentially with the number of constraints (Simon, 2010).

2.3.2 Soft Constraints

As already shown, a feasible range of values can be specified with two-sided inequality constraints (cf.
Equation (2.98)). A similar possibility exists through the use of SCs according to

D · xk ≈ d, (2.104)

where the constraints are only required to be approximately fulfilled. Realisation is identical to the PMs
method for equality state constraints (cf. Equation (2.99)) (Simon, 2010). The additional pseudo observa-
tions are considered by a small nonzero measurement noise vd,k. Thus, the VCM Σldld,k is also a nonzero
matrix. The basic process of the IEKF with its relevant estimates is shown in Figure 2.8. In contrast to
the other methods, it is difficult to define an explicit feasible range of values with this method. One-sided
constraints cannot be realised with this either. In addition, there are other methods to apply SCs. For
example, in Simon and Simon (2006) an additional regularisation term was used in the general KF.

2.3.3 Non-linear Constraints

So far, only linear state constraints have been considered. In general, state constraints can be formulated
by non-linear functions

g (xk) = b, (2.105)

where g (·) is an arbitrary non-linear function and b is a known s × 1 constraint vector. Note that this
can also be transferred one-to-one to inequality constraints of Equation type (2.98). The simplest possi-
bility is to linearise g (xk) so that the methods from sections 2.3.1 and 2.3.2 can be applied. However,
de Geeter et al. (1997) mentions that applying the PM method (cf. Equation (2.99)) to non-linear state
constraints can lead to convergence problems. Regardless of this, the linearisation is basically identical to
Equation (2.15) and is based on first-order Taylor expansion (Porrill, 1988; Simon and Chia, 2002)

D = ∇x g
(

x̂−k
)∣∣∣∣

x=x̂−k

, (2.106a)

d = b− g
(

x̂−k
)

+ D · x̂−k . (2.106b)

Here, it should be noted that the derivations and evaluations of the non-linear function g (·) must be
carried out on the basis of the state prediction estimate x̂−k . At least this procedure is indicated by default
in the literature above. In addition, it is also possible to select other suitable development points for
linearisation. For IEKF, for example, the current estimated value within the iterative update step can be
used. Whenever non-linear constraints occur in this thesis, they are approximated by linear constraints
based on this method. In addition, one should be aware that linearisation can also lead to linearisation
errors, as shown in Figure 2.9.
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Figure 2.8: Flowchart of the IEKF for explicit measurement equations with predicted (solid box) and constrained states (dashed
box) under consideration of SCs (red)

Figure 2.9: Linearisation errors in case of non-linear state constraints. Modified according to Yang and Blasch (2009).

Nevertheless, there are further possibilities to consider such non-linear state constraints directly. The ter-
mination of Taylor linearisation after the first order represents a weak point depending on the strength
of the non-linearity. A possible alternative is therefore to include the second-order-expansion derivation
(Yang and Blasch, 2009; Simon, 2010). However, the resulting optimisation problem can only be solved
numerically. Sircoulomb et al. (2008) proposes an iterative process to successively improve the develop-
ment point for linearisation of the non-linear constraints. Furthermore, non-linear equality state constraints
can be integrated directly within a Smoothly Constrained Kalman Filter (SCKF). This approach is also
based on the linearisation of the constraints and then considers them as an additional PM. This is done
iteratively, and the uncertainty of the constraints is increased in each repetition (de Geeter et al., 1997).
However, both methods have so far not been applied for implicit measurement equations according to
section 2.2.2. The same applies to the consideration of non-linear state constraints in the context of UKFs
(Teixeira et al., 2008) and PFs (Prakash et al., 2008). In Ebinger et al. (2015), for example, an arbitrary
state constraint is applied to the conditional mean estimate of a posterior density. In addition, Moving
Horizon Estimation (MHE) should be mentioned, which is a general approach for solving non-linear
equality and inequality constraints (Robertson et al., 1996). This also leads to a non-linear optimisation
problem that has not been investigated for implicit relationships between states and observations. Simul-
taneously, the required run time is considerably higher than that of the other methods described above
(Ungarala et al., 2007; Simon, 2010). In general, methods for the consideration of non-linear constraints
can also be applied to linear constraints.

In conclusion, it can be summarised that there is an extensive range of different methods for considering
state constraints. They depend on the type of constraints and have different advantages and disadvantages.
In the case of non-linear systems and constraints, in general, all approaches lead to slightly different re-
sults (Simon, 2010). Moreover, the application of non-linear inequalities represents the most significant
challenge (Sircoulomb et al., 2008). Not all techniques are suitable for the direct adaptation of the de-
scribed methods regarding implicit relationships. In the context of this work, therefore, only the methods
described in detail will be considered. An overview of these methods depending on the type of constraint
is given in Figure 2.10.
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Figure 2.10: Overview of different methods (bold font) for considering state constraints regarding explicit relations, depending
on the type of constraint (boxes). The selection is based on the appropriate techniques used in this thesis.





3 Methodological Contributions

This chapter presents new methods for the consideration of arbitrary state constraints in the context of
implicit measurement equations for IEKFs. In section 3.1 the basic idea of a versatile recursive state-
space filter approach is introduced. The new possibilities to consider different types of state constraints
are presented in section 3.2. The main differences compared to usual filter methods with explicit mea-
surement equations are discussed, and different possible solutions are shown. Subsequently in section
3.3, an adaptation of the IEKF to enable a recursive GHM with the possibility of including constraints is
presented. Finally, the own methodological contributions are applied and validated within the framework
of a Monte-Carlo (MC) simulation in section 3.4. With its theoretical aspects, this chapter thus comprises
the main part of the own methodological contributions of this thesis.

3.1 Versatile Recursive State-space Filter

The IEKF, initially introduced in Dang (2007), is a practical method to use implicit measurement equations
for recursive state estimation. This method was already adopted in Vogel et al. (2018) and significantly
extended with regard to two aspects. This contains previously unstated uncertainty information about the
updated observation estimates l̂

+
k in the form of VCM Σ+

l̂̂l,k
by propagation of uncertainty. In addition,

more fundamentally the consideration of equality state constraints in combination with implicit relations
was described in this contribution. This consideration of state constraints within the IEKF with implicit
measurement equations is described in detail in the following section 3.2. The derivation of uncertainty
information about the estimated observation estimates l̂

+
k is directly stated below. This VCM Σ+

l̂̂l,k
is es-

sential to make quantitative statements about the uncertainty of the estimated observations. In addition,
this information might also be necessary for subsequent calculations, such as further propagation of un-
certainty. The VCM Σ+

l̂̂l,k
is based on the equation for calculating the updated observation estimates l̂

+
k

(cf. Equation (2.96)) which has to be transformed and substituted. Based on

l̂
+
k = lk −Σll,k · BTk ·

(
Ak ·Σ−x̂x̂,k · A

T
k + Bk ·Σll,k · BTk︸ ︷︷ ︸

Σ∗ll,k

)−1

·
(

h
(̌

lk, x̌k

)
+ Bk ·

(
lk − ľk

)
+ Ak ·

(
x̂−k − x̌k

)) (3.1a)

= lk −Σll,k · BTk ·
(

Ak ·Σ−x̂x̂,k · A
T
k + Σ∗ll,k

)−1

︸ ︷︷ ︸
Fk

·
(

h
(̌

lk, x̌k

)
− Bk · ľk − Ak · x̌k︸ ︷︷ ︸

wk

+ Bk · lk + Ak · x̂−k
)
,

(3.1b)
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the following results

l̂
+
k = lk + Fk ·

(
wk − Bk · lk︸ ︷︷ ︸

l∗k

−Ak · x̂−k
)

(3.2a)

= lk + Fk · l∗k − Fk · Ak︸ ︷︷ ︸
Hk

· x̂−k . (3.2b)

Subsequently, the law for propagation of uncertainty can be applied to Equation (3.2b), from which follows

Σ+
l̂̂l,k

= I ·Σll,k · IT︸ ︷︷ ︸
Σll,k

+ Fk ·Σ∗ll,k · FTk −Hk ·Σ−x̂x̂,k ·H
T
k . (3.3)

Equation (3.3) must be determined for each epoch k. The estimation is performed concurrently with the
VCM Σ+

x̂x̂,k of the updated state estimate x̂+
k at the end of the respective update step.

In Vogel et al. (2019), the approach of Dang (2007) is adopted again. In addition to the consideration of
inequality state constraints, the possibilities of the IEKF for versatility are also discussed. This is mainly
based on the possibility to consider explicit measurement equations within the IEKF for implicit relations.
This fact is decisive when it comes to a versatile method that can handle as many different mathematical
functions as possible. So far, there is no reference to the possibility that the IEKF for implicit relations can
be used completely independent of the type of measurement equation (i.e. whether implicit or explicit).
Because every explicit equation (cf. Equation (2.60)) can be transformed into an implicit equation (cf.
Equation (2.83)) according to

lk + vk − h (xk) = 0. (3.4)

This transformation is possible in principle, since the explicit model (GMM) can generally be regarded as
a special case of the implicit model (GHM). According to this, the following applies after linearisation of
Equation (3.4)

Ak · xk + I︸︷︷︸
Bk

· lk + vk − h (x̌k)− Ak · x̌k︸ ︷︷ ︸
wk

= 0 (3.5)

From this the definition as in Equation (2.85) can then be represented again

Ak · xk + Bk · lk + wk = 0. (3.6)

Taking all these aspects together regarding the type of measurement equation and the use of different
additional prior information as state constraints, a concept of a versatile recursive state estimator can be
established. For this reason, the IEKF for implicit relations represents a broadly based foundation which
can flexibly consider different measurement equations and constraints. This overall concept is illustrated
in Figure 3.1. Here the focus is on the connection of the different steps of the IEKF to the state parameters
requested, the available observations, as well as appropriate prior information. The coloured arrows show
different possibilities of how the filter can be applied optimally depending on the application. The extent
to which the different types of constraints can be taken into account in this context is described in the
following section 3.2. Moreover, this flexibility and versatility of the approach is also highlighted in
Bureick et al. (2019b) and adapted for a specific application. The full algorithm is given in Appendix A.1.

3.2 Kalman Filtering with State Constraints for Gauss-Helmert Models

As already mentioned in section 2.3, the consideration of suitable constraints can lead to an additional
improvement of the estimation results within the framework of Kalman filtering. Although this is already
used by default in combination with explicit measurement equations (cf. section 2.2.1), there is currently
no experience with this (apart from own work) for the implicit case (cf. section 2.2.2). A direct transfer of
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Figure 3.1: Schematic overview and flow diagram of the versatile recursive state-space filter based on an IEKF according to
Vogel et al. (2019). It shows the individual steps of the filter (grey) and the associated state parameters (yellow),
observations (green) and additional prior information (blue).

the methods presented in section 2.3 is generally not possible without additional adjustments and consider-
ations. The reason for this is the direct dependence of the measurement equations on the observations (cf.
Equation (2.83)). This in turn leads to an extended LS problem (cf. Equation (2.86)) in which filtered ob-
servations are estimated in addition to the state parameters. First approaches have already been described
in Vogel et al. (2018, 2019); Bureick et al. (2019b); Moftizadeh (2019). However, not all different types
of state constraints (cf. section 2.3) can be considered with the methods described there. Furthermore,
there were some inconsistencies, which are referred to and remedied below.

As the term itself implies, state constraints apply exclusively to corresponding elements of the state vector.
The observations are therefore not affected by the restrictions. This is applicable for explicit contexts. If
implicit relations exist, this usually leads to a conflict. The application of state constraints leads to a change
of the state parameters (from x+

k towards xck) in the sense that the specified constraints are fulfilled. At the
same time, however, it must also be ensured that the measurement equations are fulfilled as an auxiliary
condition (cf. Equation (2.83)), i.e. that the contradictions are close to zero. However, this is generally not
guaranteed in implicit relationships (Vogel et al., 2019). This can be clearly compared in Table 3.1, for
example, by applying the PRO method (the same also applies to the PDF truncation method) according to
section 2.3.

The consideration of constraints within the framework of the perfect measurement method, where the
constraints are included directly in the update step, is also not directly applicable. For this reason, three
different approaches are shown in the following, with which the methods presented in section 2.3 can
also be applied for implicit relationships under consideration of modifications. First, an extension to im-
plicit pseudo observations is introduced in section 3.2.1. With this, equality constraints, as well as SCs
for implicit relations, can be considered. The second approach in section 3.2.2 describes a Constrained
Objective Function (COF) and is based in its principles on the use of constraints in the GHM according
to section 2.1.2. This enables the direct consideration of equality constraints within the update step. In a
third approach, a procedure is presented which allows using the PRO and PDF truncation method in com-
bination with implicit equations. This procedure (referred to as improvement of implicit contradictions)
is capable of resolving the problems listed in Table 3.1 and is described in detail in section 3.2.3. This can
then be used to solve equality and inequality constraints.
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Table 3.1: Compliance (X) and non-compliance (E) with the measurement equation and constraint equation for implicit rela-
tionships. Exemplary for the PRO method in which the constraints are considered separately after the update step.

unconstrained estimates x+
k , l

+
k constrained estimates xck, l

+
k

measurement equation h
(

l+k + vk, x+
k

)
= 0 X h

(
l+k + vk, xck

)
= 0 E

constraint equation g
(

x+
k

)
= b E g (xck) = b X

3.2.1 Implicit Pseudo Observations

The basic principle is still based on the idea of PMs (cf. section 2.3.1) or SCs (cf. section 2.3.2) applied
to explicit contexts. The general implicit measurement equations (cf. Equation (2.83)) are extended by s
arbitrary constraint equations. Every single constraint is treated as an additional pseudo observation with
corresponding measurement noise. In the case of hard constraints, the measurement noise is specified as
zero. A noise greater than zero, on the other hand, leads to SCs. Accordingly, for the s constraints the
respective additional measurement equations follow

d = D · xk + vd,k, vd,k ∼ N (0,Σldld,k) , (3.7)

where the measurement noise vd,k of the constraint must be selected appropriately. However, the impact of
the actual observations within the measurement equation must now be taken into account. After extending
the linearised measurement equations (cf. Equation (2.85)), the following applies[

0
d

]
=
[

Ak

D

]
︸ ︷︷ ︸

A†k

xk +
[

Bk

0

]
︸ ︷︷ ︸

B†k

lk +
[

wk

vd,k

]
︸ ︷︷ ︸

w†k

, where (3.8)

l†k =
[

lk
d

]
, Σ†ll,k =

[
Σll,k 0

0 Σldld,k

]
. (3.9)

This extension leads to additional rows in the extended design matrix A†k and condition matrix B†k. In
addition, the number of columns in B†k increases due to the additional pseudo observations in the extended
vector l†k. The same applies to the extended VCM of the observations Σ†ll,k which must be extended
analogously by corresponding rows and columns. The selection of the Σldld,k entries alone decides whether
the additional information should be considered as hard constraints or SCs. The process within the IEKF
for implicit measurement equations remains basically the same and is shown in Figure 3.2.

Where the incorporation of additional pseudo observations could already lead to singularities in the ex-
plicit case (Simon, 2010), the risk is even higher in the implicit case. At least several sparsely filled rows
and columns are added to some matrices, which can encourage singularities. The extent to which the

Figure 3.2: Flowchart of the IEKF for implicit measurement equations with predicted states (solid box) as well as updated
observations and constrained states (dashed box) under consideration of additional PMs or SCs (red)
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normal equation matrix is ill-posed depends on the particular application. Although this is not necessarily
a problem, numerical instabilities can occur for this reason when calculating the inverse of the normal
equation matrix. In this case, the use of the Moore-Penrose inverse1 can help (Koch, 1999, pp. 53 ff.).
Besides, it is also possible to regularise the normal equation matrix. Different possibilities for this are, for
example, given in Tikhonov and Arsenin (1977, pp. 45 ff.), Björck (1996, pp. 99 ff.) and Hansen (2007).
However, those were not applied in the present thesis but should be considered in the future. Instead,
if ill-posed normal equation matrices occur, an adapted estimation of the VCM Σc

x̂x̂,k of the constrained
state estimates x̂ck (according to Equation (2.93)) is proposed here, which has a regularising effect. For this
adaptation the following applies, if the normal equation matrix NIEKF from Equation (2.90) is well-posed

Σc
x̂x̂,k =

(
I− Kk · A†k

)
·Σ−x̂x̂,k ·

(
I− Kk · A†k

)T
+ Kk ·

(
B†k ·Σ

†
ll,k ·

(
B†k
)T)

· KT
k , (3.10)

with the following dimensions

dim
(

A†k
)

= r + s× u, (3.11a)

dim (Kk) = u× r + s, (3.11b)

dim
(

B†k ·Σ
†
ll,k ·

(
B†k
)T)

= r + s× r + s, (3.11c)

where r indicates the number of condition equations, u the number of state parameters and s the number of
state constraints. If NIEKF is ill-posed, the dimensions of the mentioned matrices are adjusted accordingly,
as if there were no additional pseudo observations. Thus Equation (3.10) remains, but the following
expressions are truncated to the extent that the subsequent dimensions apply

dim
(

A†k
)

= r× u where A†k = Ak, (3.12a)

dim (Kk) = u× r, (3.12b)

dim
(

B†k ·Σ
†
ll,k ·

(
B†k
)T)

= r× r. (3.12c)

Apart from that, the calculation process stays the same. When using this method of implicit pseudo
observations for SCs, the question still arises in which order of magnitude the measurement noise vd,k of
the pseudo observations must be chosen. Since no numerical methods exist for this purpose, experimental
testing is recommended in the first instance. The smaller the value, the more the SC changes into a hard
constraint.

3.2.2 Constrained Objective Function

As already mentioned, the application of the implicit pseudo observations method can lead to numerical
instabilities. Another possibility to consider state constraints in the context of implicit relationships (with-
out the risk of numerical instabilities) is to extend the associated objective function in Equation (2.86).
In the actual state, it refers only to the connection of implicit measurement equations with respect to the
estimation principle of the IEKF. The inclusion of equality constraints can be done in a similar manner to
section 2.1.2 of the C-GHM (cf. Equation (2.41b)). If Equation (2.86) is extended by Equation (2.97), the
following applies for the COF LC-IEKF

LC-IEKF =
(

l+k − lk
x+

k − x−k

)T [Σll,k 0
0 Σ−xx,k

]−1(
l+k − lk

x+
k − x−k

)
− 2 · λT1,k ·

(
Ak · x+

k + Bk · l+k + wk

)
− 2 · λT2,k ·

(
Dk · x+

k − dk

)
→ min,

(3.13)

1Also referred to as pseudo inverse or generalised inverse
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where λ1 and λ2 are the Lagrangian multipliers. The parameter wk is already defined by Equation (2.85b).
Setting the related partial derivatives with respect to x+

k , l
+
k , λ1,k and λ2,k of the Lagrangian equal to zero

∇x+
k

LC-IEKF = 2 ·
(

x+
k − x−k

)T
·
(
Σ−xx,k

)−1
− 2 · λT1,k · Ak − 2 · λT2,k · Dk

!= 0

⇔ x+
k = x−k + Σ−xx,k · A

T
k · λ1,k + Σ−xx,k · D

T
k · λ2,k,

(3.14)

∇l+k
LC-IEKF = 2 ·

(
l+k − lk

)T
· (Σll,k)−1 − 2 · λT1,k · Bk

!= 0

⇔ l+k = lk + Σll,k · BTk · λ1,k,
(3.15)

∇λ1,k LC-IEKF = Ak · x+
k + Bk · l+k + wk

!= 0, (3.16)

∇λ2,k LC-IEKF = Dk · x+
k − dk

!= 0, (3.17)

results in the linear normal equation system NC-IEKF in block structure
−I 0 Σ−x̂x̂,k · A

T
k Σ−x̂x̂,k · D

T
k

0 −I Σll,k · BTk 0
Ak Bk 0 0
Dk 0 0 0


︸ ︷︷ ︸

NC-IEKF


x̂+

k

l̂
+
k

λ̂1,k
λ̂2,k

 =


−x̂−k
−lk
−wk

dk

 . (3.18)

Its form is similar to the normal equation system NIEKF in Equation (2.90). However, the rows and
columns of NC-IEKF have been extended to take constraints into account. Other changes compared to the
unconstrained IEKF procedure (cf. Equations (2.93) – (2.94)) are not necessary. This also applies to
the computation of the design matrix Ak and the condition matrix Bk, which, in contrast to the implicit
pseudo observation method, do not have to be extended. However, in order to obtain the corresponding
VCM Σc

x̂x̂,k with respect to constrained states, the VCM of the filtered states Σ+
x̂x̂,k must be determined

analogously to the PRO method according to Equation (2.101b). This results in the basic process shown
in Figure 3.3. The general applicability presupposes that NC-IEKF can be inverted. As already mentioned
at the beginning of section 2.3, this requires linear independence of the constraints to be considered.

The extension regarding inequalities is identical to the situation described for the C-GHM in section 2.1.2.
In principle, the approach of an inequality C-GHM from Roese-Koerner (2015, pp. 77 ff.) is also trans-
ferable to an IEKF with inequality state constraints. However, this leads to a much more complex opti-
mization problem, which does not yet exist for this particular constellation of IEKF, implicit measurement
equations and inequality state constraints.

3.2.3 Improvement of Implicit Contradictions

Adding pseudo observations or constraining the objective function are methods that directly consider
state constraints during the update step. Thus, the measurement equation and constraint condition are
fulfilled simultaneously. If this is not done simultaneously but successively, problems arise, as described
in Table 3.1. The constraint conditions are fulfilled, but the combination of filtered observation estimates

Figure 3.3: Flowchart of the IEKF for implicit measurement equations with predicted states (solid box) as well as updated
observations and constrained states (dashed box) under consideration of a COF (red)
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l̂
+
k and constrained state estimates x̂ck leads to significant contradictions in the measurement equations (cf.

Equation (2.83)). This is because the state constraints do not affect the observations. Instead of being
close to zero, the contradictions can vary or even increase over time.

The linearisation error of the EKF can be used as a relatively comparable problem. With the IEKF,
this is eliminated by introducing an iterative process by successively improving the development point.
The approach from Sircoulomb et al. (2008), which also suggests an iterative process for an improved
linearisation of a non-linear constraint, is also based on this procedure. Such an iterative process can also
be used to reduce the contradictions mentioned above. By iterative repetition, the contradictions of the
implicit measuring equations must be allowed to approach zero, and at the same time, the states must
be permitted to satisfy the constraints. In particular, this means to realise an iterative loop around the
update and constrained step, where the constrained states are used as initial values for the update step in
the next iteration. Once the constraints are applied to the state estimation and the initial measurement
equations are most likely to be violated, a re-estimation of both steps is carried out. In the following, this
additional iterative process is referred to as a contradiction loop. The maximum number of iterations is
indicated by j = 1, . . . , J, but should be applied together with a threshold value. The maximum absolute
contradiction is suitable for this. Furthermore, it has to be considered that within the update step, the
iterative linearisation still takes place as well. This general principle is simplified with all relevant loops in
Figure 3.4. The transition parameters between iteration run j and j+1 are important for the implementation
of this procedure. This refers to the choice of revised start values for the iterative part of the update step.

This contradiction loop can be used to apply the PRO and PDF truncation method also to implicit rela-
tionships in the framework of IEKF. The basic process is shown in Figure 3.5 for the PRO method and
in Figure 3.6 for the PDF truncation method. It turns out that there are no fundamental changes apart
from the additional contradiction loop. However, this is sufficient to satisfy both the implicit measurement
equation and the state constraints.

Figure 3.4: Simplified representation of iterative loops (whereas the contradiction loop is highlighted in red) for improved lin-
earisation and compliance with near-zero contradictions and state constraint equations. This refers only to the usage
of implicit measurement equations in IEKF with state constraints, which are applied in a separate constrained step
(e.g., PRO method).

Figure 3.5: Flowchart of the IEKF for implicit measurement equations with predicted states (solid box), updated observations &
states (dotted box) and constrained states (dashed box) when using the PRO method together with the contradiction
loop (red)
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Figure 3.6: Flowchart of the IEKF for implicit measurement equations with predicted states (solid box), updated observations
& states (dotted box) and constrained states (dashed box) when using the PDF truncation method together with the
contradiction loop (red)

3.3 Recursive Gauss-Helmert Model

As mentioned earlier, the IEKF for implicit measurement equations, initially introduced by Dang (2007,
2008), is a recursive state estimation approach. Its application is particularly beneficial in the case of con-
tinuously arising measurement epochs, where a certain physical regularity can be assigned to the temporal
characteristic of the parameters to be estimated. This is the usual field of application for a filter approach.
In addition, this general procedure can be used for another application — a recursive GHM.

The relevance of recursive parameter estimation is, among other aspects, mainly related to the use of
big data (e.g. geodetic networks with a large number of point coordinates or dense 3D point clouds)
within a batch approach. Large amounts of data usually lead to higher-dimensional matrices, which in
turn leads to a significant increase in the required computing time. The synthetic partitioning of an overall
adjustment into individual, per se artificial, epochs and the application of recursive parameter estimation
can result in a significant improvement of the computing time. With a recursive method, subsampling of
the data set can be avoided, and all available information can be used instead. However, it must be ensured
that partitioning of the data logically makes sense and is possible at all. As a typical application example,
where such large amounts of data occur, the three-dimensional acquisition of the environment with a static
3D laser scanner can be mentioned. Depending on the laser scanner, several thousand measured 3D points
of the surroundings can be available. The efficient estimation of relevant parameters (e.g. geometric or
calibration parameters) can then be done either by subsampling the existing point cloud or by partitioning
it into separate sub-epochs. While point observations are lost through subsampling, all information can be
used by dividing the point cloud into individual epochs. Therefore, recursive estimation offers immense
advantages, especially in applications where only limited computing capacities are available (e.g. low-
power on-board computers in a UAV).

Section 2.1.3 introduces recursive parameter estimation for explicit relationships as part of the fundamen-
tals. It is expected that the parameters will change only slightly in a limited number of epochs. The main
problem is that so far, there is no possibility of recursive parameter estimation in the implicit GHM. This
circumstance can be remedied by a small modification of the IEKF for implicit relationships from section
2.2.2. In addition, this can also be linked directly with the methods from section 3.2 for the consideration
of constraints and thus be extended by an additional option. Due to the IEKF’s flexibility towards explicit
and implicit measurement equations, a generally valid method for recursive parameter estimation in GMM
and GHM can be presented.

The essential difference between recursive state estimation and recursive parameter estimation consists
in the consideration or disregard of a functional dynamic model with which the temporal and spatial
behaviour of the parameters to be estimated can be predicted. For the KF, this corresponds exactly to the
prediction step. Furthermore, the difference between deterministic and probabilistic parameters already
mentioned in section 2.2 still exists. Neglecting this prediction within a KF thus provides the basis for
applying a recursive state estimator as a recursive parameter estimation. In the case of KFs with explicit
relationships, this procedure is also referred to as random walk-based model (Mulquiney et al., 1995).
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Applied specifically to the IEKF prediction step from section 2.2.2, this means the following for the
original Equations (2.71) and (2.72) in each epoch k:

x−k = x+
k−1, (3.19)

Σ−xx,k = Σ+
xx,k−1 + Σww,k. (3.20)

This means that the predicted state vector x−k of epoch k is identical to the updated state vector x+
k−1 of

epoch k− 1. The same applies to the corresponding VCM Σ−xx,k, which can still be extended by a suitable
process noise Σww,k. In specific terms, suitable means that numerical instabilities are avoided, but still
no too strong influence results from its choice. An investigation in this matter can be found in Appendix
A.2 with regard to the subsequent example of application in section 3.4. In theory, the process noise
should be zero for a recursive GHM. Since the realisation here is based on an IEKF, which requires a
sufficiently accurate initialisation, the consideration of a non-zero process noise has a regularising effect.
The respective order of magnitude and physical interpretation should be considered depending on the
specific application. The complete update step remains unchanged from this modification. Since there is
no impact from a system model anymore, the state parameters are only affected by the availability of new
observations for each epoch. However, there are some minor differences towards the estimation of a GHM
in batch processing. The decisive difference is that the GHM in batch processing computes improvements
to the observations. With recursive GHM, on the other hand, directly adjusted observations are estimated.
In addition, the underlying principle is different. The overall adjustment iterates and linearises several
times, but always directly for the entire data set. In the recursive approach, linearisation is much more
frequent because of the partition into artificial epochs. This leads to linearisation at different development
points, which affects the result. In the course of the MC simulation, this topic is addressed again in the
following section 3.4.

It should be noted that it is not always useful to take all observations into account. Depending on the
application, a variety of redundant information is usually available, which does not represent a significant
added value. To avoid this, an appropriate selection of the essential and helpful observation quantities is
required. Currently, this is done by spatial or temporal subsampling. However, this does not necessarily
apply to all observation data. Instead, there is a need for new methods to assess the contribution of a single
observation to the overall estimation result. In the context of this thesis, this question will not be analysed
in detail. Instead, the advantages are regarded in the recursive consideration of as many observations as
possible. Thus, the loss of important information is avoided. This is contrary to the simple subsampling
to make batch methods applicable to mass data.

3.4 Example of Application

A two-dimensional ellipse is a well suited geometrical object which can be described by an implicit
equation (Lösler and Nitschke, 2010). If the centre is assumed to be identical with the origin of a Cartesian
coordinate system and the semi-major axis a as well as the semi-minor axis b are axially parallel, the non-
linear implicit equation for an ellipse is given by(

x
a

)2
+
(

y
b

)2
− 1 = 0 with a, b > 0. (3.21)

Here, x and y are arbitrary 2D Cartesian coordinates which fulfil this equation. If there are j = 1, . . . , J
sets of 2D coordinates available, the parameters a and b can be determined based on a GHM in batch
processing (cf. section 2.1.2) by using the measurement model

hj (lj, x) =
(

xj

a

)2
+
(yj

b

)2
− 1 = 0, (3.22)
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where the observation vector l and the parameter vector x are given by

l = [x1, y1, . . . , xJ, yJ]
T , (3.23)

x = [a, b]T . (3.24)

In order to apply a recursive GHM (cf. section 3.3), the observation vector l can be subdivided into
k = 1, . . . ,K individual epochs with n = 1, . . . ,N 2D coordinates, respectively. If N equals J, the
recursive approach is identical to a batch approach. As a consequence, the parameters will be estimated
for each individual epoch k and gathered in the state parameter vector xk

lk =
[
xk,1, yk,1, . . . , xk,N, yk,N

]T with N ≤ J, (3.25)

xk = [ak, bk]T . (3.26)

An equality constraint can be applied by the eccentricity e (defined by the distance between the two focal
points F1 and F2 and the origin of the ellipse), which implies the a priori ratio between both semi-axes by
the non-linear function

g (xk) =
√

a2
k − b2

k = e. (3.27)

This constraint can also be used for batch processing. In this case, the epoch index k in Equation (3.27)
is negligible. To consider this non-linear equality constraint, a linearisation of g (xk) by Taylor series
expansion needs to be performed (cf. Equation (2.106)). A schematic sketch of such an ellipse is given in
Figure 3.7. The methods presented in section 2.1.2 and 3.3 are applied to the following ellipse parameters.
The true state x̄ is given by

x̄ =
[
ā, b̄
]T

= [5, 3]T , (3.28)

where both semi-axes are given without any specific metric unit. Based on these parameters, the corre-
sponding true eccentricity ē for the equality constraint (cf. Equation (3.27)) can be determined

ē =
√

a2 − b2 = 4. (3.29)

Based on these ellipse parameters, J = 2500 sets of faultless 2D coordinates x̌ and y̌ are generated by
means of K = 100 individual epochs with each N = 25 random 2D coordinates of the total quantity

ľ = [x̌1, y̌1, . . . , x̌2500, y̌2500]T . (3.30)

Figure 3.7: Ellipse with semi-major axis a, semi-minor axis b, focal points F1 and F2 as well as the eccentricity e. Noisy 2D
coordinates of the ellipse are depicted by red dots. It should be noted that the illustration is only schematic and not
representative of the following numerical values.



3.4 Example of Application 37

Attention has to be paid to a suitable spatial distribution of all these individual subsets to avoid un-
favourable geometric configurations when describing the ellipse. For the specific case here, it must be
ensured that each quadrant of the coordinate system contains at least one of the N 2D coordinates. To
obtain non-perfect observations, specific random Gaussian noise vx and vy with respect to the length of the
semi-axes is added to each 2D coordinates x̌j and y̌j for j = 1 : 2500. For j = 1, . . . , J applies

xj = x̌j + vxj , vxj ∼ N
(
0, σ2

x

)
, (3.31a)

yj = y̌j + vyj
, vyj

∼ N
(
0, σ2

y

)
, (3.31b)

l = [x1, y1, . . . , x2500, y2500]T (3.31c)

Here, the measurement noises σx and σy are chosen to consider suitable noise values by η = 1.5 % of the
length of the semi-axes. This leads to a noise of the observed quantities of different order of magnitude. In
addition, these standard deviations are applied for the uncorrelated VCM of the measurement noise Σllj,k

σx = a · η = 0.075, (3.32a)
σy = b · η = 0.045, (3.32b)

Σllj,k =
[
σ2

x 0
0 σ2

y

]
. (3.32c)

Furthermore, the process noise σw and the initial VCM of the state parameters Σxx,0 are selected as follows

σw = 1 · 10−3, (3.33)

Σxx,0 =
[
1 · 10−1 0

0 1 · 10−1

]
. (3.34)

The selection of the used measurement and process noise was investigated in advance and is based on its
findings. A verification of this can be found in Appendix A.2. The initial state parameter vector x0 is given
by the true states x̄. This is important due to different processes of linearisation between classical batch
processing of the GHM and the recursive GHM approach introduced. Results based on nine different
methods are presented. The corresponding properties of the respective methods are summarised in Table
3.2. If the state constraint is considered as SC, the measurement noise v̄d,k = 0.25 is applied. The
inequality constraint used for PDF truncation has limits of d̄lower = ē− ē · 2 % and d̄upper = ē + ē · 2 %.

Table 3.2: Overview of the investigated methods with regard to their respective properties. In this study, the application of PDF
truncation by using equality constraints is abbreviated as ’PT equ.’ and by using inequality constraints as ’PT inequ.’.

Method Batch
Approach

Recursive
Approach

Equality
Constraint

Inequality
Constraint

Soft
Constraint

batch GHM X
batch C-GHM X X

recursive GHM X
recursive C-GHM (PM) X X
recursive C-GHM (SC) X X
recursive C-GHM (PRO) X X
recursive C-GHM (COF) X X
recursive C-GHM (PT equ.) X X
recursive C-GHM (PT inequ.) X X
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3.4.1 Monte-Carlo Simulation and Consistency

In order to analyse not only individual estimation results but also entire methods, the consistency of
the different filter approaches is analysed. In general, a state estimator of a filter is consistent, if the
estimates converge to the true value. Possible reasons why this is not the case are modelling, numerical
or programming errors (Bar-Shalom et al., 2001, pp. 232). A statistical test to verify the filter consistency
is introduced in Bar-Shalom et al. (2001, pp. 234 ff.). For this, the Normalised (State) Estimation Error
Squared (NEES) ek is defined as a quality measure according to

ek = (x̄k − x̂k)T ·
(
Σx̂x̂,k

)−1 · (x̄k − x̂k) , (3.35)

where the differences between true state x̄k and estimated state x̂k are considered for each epoch k. Further-
more, a weighting is applied via the VCM Σx̂x̂,k of the states estimated. Based on this quadratic quantity,
the null hypothesis H0 can be tested within the framework of a MC simulation to what extent the filter is
consistent. The average NEES ẽk of the random variable ek can be obtained by

ẽk = 1
S

S∑
i=1

ei,k , (3.36)

where S is the total number of independent MC runs. It is assumed that the average NEES follows a χ2

distribution with S ·ux degrees of freedom, where ux is the number of states. This χ2 test is accepted if the
null hypothesis

P {ẽk ∈ [r1, r2] |H0} = 1− α (3.37)

is fulfilled. Here α indicates the so-called significance level and is usually set to 5 %. The two critical
values r1 and r2 result from

r1 = χ2 (α/2, ux · S) · 1
S
, (3.38a)

r2 = χ2 (1− α/2, ux · S) · 1
S
. (3.38b)

Since the true state is never known in practice and a large number of MC simulations have to be car-
ried out for this quality measure, NEES can only be applied to simulated data (de Geeter et al., 1997).
However, this NEES is based on the assumption of a χ2 distribution. If there are any doubts about
this assumption, so-called MC bootstrap approaches have to be considered. These are described in
detail in (Efron and Tibshirani, 1993, pp. 45 ff.) and (Efron and Hastie, 2016, pp. 159 ff.), for exam-
ple. They enable the analytical solution of test statistics in case of approximated probability distributions
(Alkhatib et al., 2019).

To achieve meaningful conclusions, the presented results are based on the mean value for S = 5000 repe-
titions of a MC simulation. The individual realisations differ with regard to the random Gaussian noises
vx and vy respectively. In contrast to the execution of a single realisation, statistically verifiable statements
can be obtained in addition to the consistency check. Moreover, without this simplified form of bootstrap-
ping, no information on the estimated results expected would be available. This procedure is of essential
importance with regard to the non-linearity of the problem at hand (and the associated inaccuracies in
the linearisation of the respective methods) and the non-existent optimality of the recursive GHM. The
additional use of constraints reinforces this even more. Also Zwiener (2019, pp. 138 ff.) mentioned that
the limitation of a solution set by considering a constraint represents a non-linear transformation. This is
in contradiction to the previously assumed normal distribution, which is thereby violated. In addition, the
MC simulation allows statements on precision and shifting with respect to the selected true value. Thus,
the accuracy information can be validated based on the estimated VCM of the recursive estimate. For this
purpose, the specification of confidence intervals and ellipses is useful. These visualise the area around
the estimated state in which the true state is located with a certain probability of 1 − α. According to
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Niemeier (2008, pp. 276), the two semi-axes aconf and bconf of the confidence ellipse result from the χ2

distribution as follows

aconf =
√
λ1 · χ2

2,1−α, (3.39a)

bconf =
√
λ2 · χ2

2,1−α, (3.39b)

where λ1 and λ2 are the eigenvalues of the respective VCM sorted by size. The orientation θconf of the
confidence ellipse results from the corresponding elements of the eigenvector s1 of the VCM according to

tan−1 (θconf) = s1(1)
s1(2) . (3.40)

3.4.2 Results

Run Time Analysis

Due to the underlying method, there is a fundamental distinction between batch processing and recursive
estimation of the required run time. The limiting factor is the inversion of an arbitrary (m× m)-matrix.
Based on the standard Gauss-Jordan elimination, this requires a complexity of O(m3). Even if more
efficient methods (e.g., Strassen algorithm with a complexity of O(m2.807)) are applied, this is still the
limiting factor (Strassen, 1969). For this reason, the required run time in this example also depends
strongly on the length of the observation vector l and is given in Table 3.3 as mean values of the S = 5000
replications. It should be noted that only relative run times are given since the absolute values depend
on the computing capacities used. Therefore, the run times are given as multiples with respect to the
fastest solution (recursive C-GHM (COF)). Furthermore, the corresponding standard deviations over the
S = 5000 replications are given with respect to two different units. Apart from the indication in absolute
seconds, the percentage relation to the absolute run times is indicated in an additional column. This allows
a better comparison with the relative run times. The disadvantage assumed on the basis of the complexity
estimation regarding the necessary run time can be proven with the results presented here. While the
GHM uses 2 × 2500 2D coordinates in batch processing, the recursive GHM contains only 2 × 25 2D
coordinates within each of the 100 epochs k. The relative run time shows that the difference in the number
of observations is more decisive than the number of epochs. In this example, it takes much longer to
carry out an overall adjustment. The consideration of constraints in batch processing only leads to a

Table 3.3: Mean relative run times with related standard deviations by means of S = 5000 replications for batch processing and
different recursive approaches with respect to the fastest solution (recursive C-GHM (COF)). The absolute standard
deviations (specified in seconds) are also specified in percent with respect to the absolute run times.

Method Run Time [−] σ[s] σ[%]

batch GHM 44.1 14.8 43.8
batch C-GHM 38.1 11.6 39.7

recursive GHM 1.2 0.2 25.3
recursive C-GHM (PM) 1.2 0.2 20.0
recursive C-GHM (SC) 1.0 0.3 33.9
recursive C-GHM (PRO) 6.2 1.0 20.6
recursive C-GHM (COF) 1.0 0.2 39.7
recursive C-GHM (PT equ.) 7.6 1.4 23.4
recursive C-GHM (PT inequ.) 5.6 1.3 30.0
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slight reduction in the run time. Furthermore, there is also a significant variation in the required run times
compared to recursive estimation, measured by the standard deviation over all replications. Only minor
differences exist within the various options for considering constraints in recursive estimation. Only the
methods in which the contradictions are reduced by an additional loop show slightly increased run times.
However, these are still significantly lower than with batch processing. The same can also be observed
by the respective standard deviations. The general consideration of constraints in the recursive approach,
therefore, does not necessarily have to result in a reduction of the run time.

Accuracy Analysis

Since efficiency with regard to the required run time is only one aspect, the estimated parameters x̂ (in
case of the recursive GHM after the 100-th epoch x̂k=100) together with corresponding standard deviations
are given in Table 3.4 for both semi-axes a and b together. There are deviations from the true values
from the third decimal place onwards. Moreover, the averaged estimates are all greater than the true ones,
regardless of the method chosen. The deviations are in the order of magnitude of 0.3 · 10−3 to 1.6 · 10−3.
While equality constraints improve the estimate of semi-major axis a, they do not improve semi-minor
axis b. However, both parameters are highly correlated with each other (described by the eccentricity
e (cf. Equation (3.27))). The occurring standard deviations are only slightly higher than the deviations
themselves. They show an improvement again if equality constraints are taken into account. If recursive
estimation does not take constraints into account at all, the results will be identical to those if soft or
inequality constraints are used. The other methods for the consideration of equality constraints provide
nearly identical results. However, the most accurate overall results can be achieved with batch processing
(especially taking constraints into account). This can be explained by the different process of estimation
between batch processing and recursive estimation. While the former takes all observations into account
simultaneously, the latter only takes partial quantities within several epochs into account. This epochwise
estimation also leads to repeated linearisation (and therefore also more frequent linearisation errors) at
different positions. The same conclusions can also be made in the analysis of the Root-Mean-Square
Error (RMSE) with respect to the true parameters within Figure 3.8. For the recursive methods, the
results thus include the average deviations overall K = 100 epochs. In addition, the confidence intervals
with a significance level of α = 5 % are also shown here. They also provide a suitable indication of
the distribution of the respective methods across the S = 5000 replications. These are larger overall for
recursive methods, especially if no equality constraints are applied.

Table 3.4: Mean of the estimated semi-major axis ā = 5 and semi-minor axis b̄ = 3 together with corresponding standard
deviations σâ and σb̂ by means of S = 5000 replications batch processing and different recursive approaches with
respect to last epoch k = 100 in case of recursive estimation

Method â σâ b̂ σb̂

batch GHM 5.0005 2.6 · 10−3 3.0004 1.6 · 10−3

batch C-GHM 5.0003 0.8 · 10−3 3.0005 1.3 · 10−3

recursive GHM 5.0016 3.6 · 10−3 3.0011 2.8 · 10−3

recursive C-GHM (PM) 5.0008 1.4 · 10−3 3.0014 2.4 · 10−3

recursive C-GHM (SC) 5.0016 3.5 · 10−3 3.0011 2.8 · 10−3

recursive C-GHM (PRO) 5.0008 1.4 · 10−3 3.0014 2.4 · 10−3

recursive C-GHM (COF) 5.0008 1.4 · 10−3 3.0014 2.4 · 10−3

recursive C-GHM (PT equ.) 5.0009 1.4 · 10−3 3.0014 2.4 · 10−3

recursive C-GHM (PT inequ.) 5.0016 3.6 · 10−3 3.0011 2.8 · 10−3
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Figure 3.8: Mean of the RMSE by means of S = 5000 replications and the related confidence intervals with a significance
level of α = 5 % for the semi-major axis a (blue) and semi-minor axis b (red) for batch processing and different
recursive approaches. In case of the recursive approaches, only the results of the last epoch k = 100 are taken into
consideration.

Strictly speaking, the discussed deviations and differences (both between the different methods and with
respect to the true values) have to be analysed for significance by using a statistical test. However, the use
of a squared test size (which follows the χ2 distribution) is not applicable here. According to the current
state of research, there is simply no probability distribution for parameters estimated in a GHM. Another
difficulty is that in the methods presented here, the parameters are additionally affected by non-linear
equality and inequality constraints. Thus, a normal distribution can no longer be assumed at the parameter
level. To make statistically verified conclusions even in the case of unknown probability distributions, so-
called bootstrap hypothesis testing according to Efron and Tibshirani (1993, pp. 220 ff.) and MacKinnon
(2007) can be applied.

To evaluate the temporal behaviour of the recursive GHM over all k = 1, . . . , 100 epochs, the temporal
progression of the RMSE can be analysed. Figures 3.9 and 3.10 also show the corresponding confidence
intervals with α = 5 %. In the former, the comparison between the GHM without constraints in batch
processing and the recursive GHM without constraints is shown separately for both semi-axes. In the sec-
ond, the difference in consideration of constraints (with respect to the solution with constrained objective
function in the recursive case) is shown. As expected, the RMSE is lower if constraints are taken into
account, so the solution is more accurate. Overall, the RMSE (and the associated confidence intervals)
for all methods decrease significantly within the first epochs and then decrease continuously, apparently
against a certain threshold. However, the RMSE of all recursive approaches is greater than that of the
batch processing approaches (also taking into account the confidence interval). For a few areas, only the
confidence intervals overlap. The confidence interval is larger if no constraints are used and is always
larger with the recursive approach compared to the batch approach.

In the following, the corresponding standard deviations of the estimated parameters are shown in Figure
3.11. These are based both on classical error propagation (already given in Table 3.4) and on the applica-
tion of MC simulation. The comparison between these two methods shows that classical error propagation
is too pessimistic for all recursive methods. Thus, the actual standard deviations based on MC simulation
(cf. section 3.4.1) are a factor between 0.5 to 0.7 smaller. The cause of these deviations might lie in the
propagation of possible linearisation errors or in the implicit filter model, which is based on a transforma-
tion of a GHM into a GMM. Moreover, the additional constraints can be another possible cause of this
effect. After all, the combination of implicit equations and constraints within a KF has not been investi-
gated before this thesis. The largest deviations occur in methods where no, soft or inequality constraints
are applied. As expected, the batch processing approaches are realistic and show negligible differences
compared to the MC simulation results.
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(a) (b)

Figure 3.9: Temporal progression of the mean RMSE (solid lines) and related confidence intervals (coloured areas) with a
significance level of α = 5 % by means of S = 5000 replications. The results for the semi-major axis a are given
in (a) and for the semi-minor axis b in (b). Green refers to the solution of the GHM by means of batch processing
and magenta refers to the recursive solution of the GHM. The solution of batch processing (green) is represented
constantly for all epochs. Constraints are not considered.

(a) (b)

Figure 3.10: Temporal progression of the mean RMSE (solid lines) and related confidence interval (coloured areas) with a
significance level of α = 5 % by means of S = 5000 replications. The results for the semi-major axis a are given in
(a) and for the semi-minor axis b in (b). Green refers to the solution of the C-GHM by means of batch processing
and magenta refers to the recursive solution of the C-GHM with COF. The solution of batch processing (green) is
represented constantly for all epochs.

Consistency Check by NEES

Since the recursive methods mentioned here are all based on a recursive filter approach, their consistency
must be checked based on the NEES (cf. section 3.4.1). It should be noted that the NEES is defined for
explicit measurement equations within the update step of the filter. Besides, the impact of state constraints
can also affect the consistency check. Results of this check are given in Figure 3.12. There are different
behaviours depending on the method used to consider the constraint. Within the permissible limits, which
indicate the consistency of the respective filter depending on the sample size (here: S = 5000), there is
only the approach without the consideration of constraints, as well as when they are considered as SCs.
However, their NEES values are only within the specified limits between epoch 3 to 17 (recursive GHM)
and epoch 5 to 14 (recursive C-GHM (SC)) and then fall below the permissible range. The course of both
solutions is identical, the use of SCs is only constantly shifted negatively by a small offset of 0.02. If the
measurement noise of the SC vd,k is close to zero — which corresponds to PMs — the basic behaviour is
comparable to the solutions described above, but clearly shifted by about 0.8 in negative direction. This
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Figure 3.11: Standard deviations of the semi-major axis a and the semi-minor axis b for batch processing and different recursive
approaches. Results are given with respect to classical error propagation (blue and orange) and by means of MC
simulation (light blue and yellow).
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Figure 3.12: NEES by means of S = 5000 replications for different recursive approaches. Thresholds by means of the χ2

distribution are given by the two black dashed lines

solution is then almost identical with the PRO method and the approach of the COF (all methods take
equality constraints into account). Both approaches for truncation of the PDF show a slightly different
progression. While the consideration of equalities within this method leads to the largest deviation from
the expected range, the application of inequalities over all epochs K is closer to the boundary than the three
other methods for equality constraints. Based on these results, an inconsistent estimation of the recursive
filters presented here can be considered. The causes for this cannot be fully clarified at this point. A clear
impact of the consideration of constraints on consistency can be recognised. However, the impact of the
implicit measurement model is unknown. Model errors can be excluded because of the simple example.
Effects caused by linearisation errors cannot be excluded.

Contradiction Analysis

For the sake of completeness, the maximum contradictions over all epochs are shown in Figure 3.13
for the different methods. While most methods have contradictions close to zero, applying the PRO
method and applying equality constraints by using the PDF truncation method leads to significantly higher
contradictions (cf. Figure 3.13(a)). The reason for this has already been given in section 3.2.3. The
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Figure 3.13: Mean of the maximum contradictions within each epoch k by means of S = 5000 replications for different recursive
approaches. The additional contradiction loop described in section 3.2.3 is disregarded in (a) and applied in (b).
Note the logarithmic representation of the vertical axis.

contradictions which are present by PDF truncation with inequality constraints start for the first epoch in
the same order of magnitude, but then fall within 25 epochs to the otherwise typical value close to zero.
By using the contradiction loop described in section 3.2.3, contradictions in the same range as the other
methods (close to zero) can be achieved for the PRO method as well as for the PDF truncation method (cf.
Figure 3.13(b)). Here, the number of additional passes of the contradiction loop to reach the targeted order
of magnitude varies depending on the respective method and current epoch. The upper limit was set by 20
iterations, which were rarely necessary. In the case of inequality constraints, it is not possible to achieve
the typical order of magnitude earlier. Effects on the estimated states and their standard deviations could
not be observed. For this reason, it must be taken into account that the fulfilment of the contradictions
by the additional contradiction loop has an increase in the run time by a factor of 4 to 5 compared to the
non-consideration.

Impact of Wrong Prior Information

The results shown above are based on the assumption that the prior information regarding the constraint
applied is valid. In the following, it shall be assumed that the prior information regarding the known
eccentricity e between the two semi-axes a and b (cf. Equation (3.27)) is wrong. This results in an
inadvertently wrong constraint on the parameters. For this reason, it is necessary to analyse, in accordance
with the magnitude of the wrong prior information, the extent, to which the methods presented here for
the consideration of state constraints deal with such misinformation. This is a rather important question
because it is possible in real applications that prior information is affected by a specific uncertainty and is
still available as a possible constraint. To analyse this, the true eccentricity ē is modified by the percentage
factor ε according to

e = ē + ē · ε. (3.41)

When the value ε = 0 %, valid prior information is therefore available. If invalid prior information is
taken into account when using equality constraints, this has an immediate negative effect on the estimated
values. Based on their mathematical definition, no inaccuracies are allowed, and the corresponding con-
straint value is assumed to be completely error-free. This has the consequence that the estimation results
are strongly influenced by the wrong information, and it leads to wrong results. The magnitude of the
deviation depends directly on ε. Figure 3.14 shows the deviations from the true values (by means of
the RMSE) for the individual methods when ε = 0.5 % is selected. In comparison to Figure 3.8, where
ε = 0 % is valid, the large increase in the methods that take equality constraints into account is obvi-
ous. The two methods, which do not take any restrictions into account (batch and recursive GHM), are
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Figure 3.14: Mean of the RMSE by means of S = 5000 replications and related confidence interval with a significance level of
α = 5 % for the semi-major axis a (blue) and semi-minor axis b (red) for batch processing and different recur-
sive approaches. In case of the recursive approaches, only the results of the last epoch k = 100 are taken into
consideration. The used prior information with regard to eccentricity is artificially biased by the factor ε = 0.5 %
according to Equation (3.41).

consequently unchanged. When using soft and inequality constraints, deviations from the true values can
be achieved, which are in the same order of magnitude as the methods without taking constraints into
account. These two possibilities to consider constraints do not fail because of the artificially wrong prior
information. However, their resistance to wrong information depends on the selected measurement noise
vd,k for the SCs and on the limits dlower and dupper for the inequality constraints.

For this reason, the impact of wrong information as well as the respective parameters for its consideration
will be varied for both methods in the following. Similar to the percentage factor ε for defining the amount
of wrong information, the percentage factor δ for the true limits d̄lower and d̄upper of the inequalities is
defined below

dlower = d̄lower − d̄lower · δ, (3.42a)

dupper = d̄upper + d̄upper · δ. (3.42b)

Three different gradations of the three relevant influencing factors (ε, vd,k and δ) are applied, on the basis of
which the state parameters are estimated recursively. The impact of a percentage error ε = [0 %, 0.5 %, 1 %]
is investigated. In contrast, the method of SCs with a measurement noise vd,k = [0, 0.125, 0.25] is
used. Furthermore, the PDF truncation method uses inequality constraints with a percentage factor
δ = [0 %, 1 %, 2 %]. This results in nine different combinations for both methods, which are shown in
Figure 3.15 for the application of SCs and in Figure 3.16 for the consideration of inequality constraints.
The factor ε increases as indicated per column. In the three rows, the consideration of the constrained
approaches (vd,k and δ, respectively) increases accordingly as indicated. For all these combinations the
estimated states of the two semi-axes a and b are shown. The small blue dots represent the S = 5000 indi-
vidual realisations of the constrained estimation and give information about the distribution. Their mean
value is indicated as a green dot. In addition the true value (red dot) and the mean of the recursive solution
without the constraint is given (black dot). Additionally, the two-dimensional confidence ellipses with a
significance level of α = 5 % based on the classical error propagation (blue ellipse) and MC simulation
(green ellipse) are given.

As vd,k = 0 applies to the complete first row of Figure 3.15, this corresponds directly to the application
of PMs. The presence of wrong prior information in this case directly shows the biased estimation of
the states. Irrespective of the correctness of the constraint, the consideration of this constraint leads to
a linear dependency between the two parameters to be estimated. The disregard of constraints (black
dot) is closer to the true value. The confidence ellipses are strongly distorted and extend in a tangential
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Figure 3.15: Effect of wrong prior information about the state constraint when using the percentage factor ε and applying SCs.

The factor ε increases per column and the measurement noise vd,k per row. The true value (red dot) and the mean
of the constrained approach (green dot) of the two semi-axes a and b is given as well as the mean of the recursive
solution without constraints (black dot). The small blue dots represent the S = 5000 individual realisations of the
constrained estimation. Additionally, the two-dimensional confidence ellipses with a significance level of α = 5 %
based on the classical error propagation (blue ellipse) and MC simulation (green ellipse) are given. The axis
intervals are identical for all variations.

direction to the true value. If there is a measurement noise vd,k larger than zero, and thus SCs are present,
a more accurate estimation of the states can also be made by using wrong prior information. The extent
to which the estimates are closer to the true value than the recursive estimate without any constraints
depends on ε and vd,k. With the factors selected here, recursive estimation without the use of constraints
is always at least slightly better as soon as wrong prior information is present. However, if correct prior
information is used as a constraint, SCs lead to a more accurate estimation than the complete omission of
this additional information. In this case, the use of PMs provides the most accurate estimates. Regardless
of the influencing factors varied in Figure 3.15, the pessimistic confidence ellipses based on classical error
propagation are noticeable. The distribution of the estimation results based on MC simulation is almost
independent of the variations made. Also in Figure 3.16 the first row with δ = 0 % can be regarded
directly as the application of equality constraints with the effects already described. When defining a
two-sided interval for the PDF truncation, the wrong prior information can be compensated depending
on the selection of δ. In the case described here, δ must be at least twice as large as ε in order for the
estimate to be at least as accurate as the estimate without constraints. If this is not the case, the estimate
becomes more precise (based on the confidence ellipse of the MC simulation) but at the same time less
accurate. Simultaneously, an increasing distortion of the estimated values can be observed as the false
prior information increases. Overall, the confidence ellipses based on classical error propagation are again
too pessimistic, but more circle-shaped compared to the SCs in Figure 3.15. Based on the results, it can
be stated that even when using inequality constraints, a more generous selection of δ is reasonable if false
prior information is possible. If, on the other hand, these are reliable, no more inaccurate estimates than
those obtained by not taking constraints into account are achieved.

Thus, depending on the impact of wrong prior information, the proper selection of vd,k and δ is essential
to achieve an accurate and unbiased estimate. At the same time, it should be ensured that an accurate
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Figure 3.16: Effect of wrong prior information about the state constraint when using the percentage factor ε and applying
inequality constraints by means of PDF truncation. The factor ε increases per column and the factor δ per row.
The true value (red dot) and the mean of the constrained approach (green dot) of the two semi-axes a and b is
given as well as the mean of the recursive solution without constraints (black dot). The small blue dots represent
the S = 5000 individual realisations of the constrained estimation. Additionally, the two-dimensional confidence
ellipses with a significance level of α = 5 % based on the classical error propagation (blue ellipse) and MC
simulation (green ellipse) are given. The axis intervals are identical for all variations.

estimate can also be obtained in the case of valid prior information. Thus, Figure 3.17 shows the resulting
RMSE for both semi-axes as a function of vd,k (Figure 3.17(a)) and δ (Figure 3.17(b)) for the case when
ε = 0 % and thus valid prior information is available. There is a different behaviour for the two semi-
axes, but this occurs in both methods. While an increase of the respective influencing factors has only a
minor impact on the semi-minor axis b, the RMSE of the semi-major axis a increases significantly. Here,
the two methods differ in detail. A threshold of approximately 6 · 10−3 for a and 4 · 10−3 for b can be
identified when using SCs. Nevertheless, in the case of inequality constraints, there is no clear threshold
value in the interval shown. Instead, the RMSE continues to rise monotonously towards the end of the
interval shown. In return, the RMSE up to δ = 0.3 % remains constant for both semi-axes. If valid prior
information is available, a measurement noise vd,k greater than zero leads to a larger RMSE. However, this
deviation is limited. If inequalities are used, this has no impact up to a value of δ = 0.3 %. Beyond this,
the RMSE increases. At this point, it should be mentioned again that these numerical values only apply to
this simulation and cannot be directly transferred to other applications.

The findings from Figure 3.17 can also be applied to different realisations of wrong prior information by
high-frequency variations of δ. This allows an improved analysis of the effect of all variations on both
semi-axes. Thus, the RMSE for the semi-major axis a (Figure 3.18(a)) and the semi-minor axis b (Figure
3.18(b)) are represented as a dependence of vd,k and ε when using SCs. The results are averaged over 500
replications. The same is shown in Figure 3.19 depending on δ and ε for both semi-axes. Each image is
composed of 100×100 pixels, which corresponds to the resolution of each axis. In addition, automatically
generated contour lines are specified based on a constant number. The colour representation of the RMSE
is limited to the specified interval. In particular for the semi-major axis a the RMSE increases further in
the wine-red lower right areas. To ensure comparability, the specified interval is limited.
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Figure 3.17: Mean RMSE for both semi-axes a (blue) and b (red) by means of S = 500 replications depending on measurement
noise vd,k for SCs (a) and percentage factor δ for inequality constraints (b). Assuming correct prior information
when using ε = 0 %.
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Figure 3.18: Mean RMSE for various measurement noises vd,k when using SCs and factors ε of wrong prior information by
means of 500 replications. The results for the semi-major axis a are given in (a) and for the semi-minor axis b in
(b). Automatically generated contour lines are specified based on a constant number. To ensure comparability, the
specified interval is limited.

In principle, both methods show different behaviour depending on the respective semi-axis. The reason
for this is the different measuring noise, which is dependent on the respective length of the semi-axis (cf.
Equation (3.32)). The semi-major axis a shows a larger RMSE for increasing ε. For the semi-minor axis
b, by comparison, an increase of vd,k and δ can lead to a lower RMSE at a lower value. The respective
impact on suppressing a wrong prior information in the form of a larger measurement noise vd,k or a larger
inequality interval (by means of δ) is thus more noticeable with the semi-minor axis b. In the case of soft
constraints, it is also apparent that a small error (ε = 0.02 % to 0.27 %) leads to a lower RMSE compared
to ε = 0 %. This can be explained by the strong correlation between the two semi-axes. When using
inequality constraints with PDF truncation, the Figure 3.19 shows again that an interval given by δ up to a
value of 0.3 % does not affect the RMSE independently of ε. Overall, it can be concluded from the results
that the measurement noise vd,k and the inequality interval (by means of δ), should be selected based on
the expected degree of error of the prior information (by means of ε).
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Figure 3.19: Mean RMSE for various factors δ when using inequality constraints and factors ε of wrong prior information by
means of 500 replications. The results for the semi-major axis a are given in (a) and for the semi-minor axis b in
(b). Automatically generated contour lines are specified based on a constant number. To ensure comparability, the
specified interval is limited.

3.4.3 Conclusions

This simulated geometric example was used to validate different approaches for estimating both determin-
istic parameters (by batch approaches) and probabilistic state parameters (by recursive filter approaches).
For this purpose, standard methods from the literature (batch GHM and batch C-GHM) were compared
with new adaptations (recursive GHM and recursive C-GHM (PM, SC, PRO, PT equ., PT inequ.)) and
own developments (recursive C-GHM (COF)). The used mathematical description of an ellipse (cf. Equa-
tion (3.21)) is well suited due to its implicit representation and the possibility to consider the eccentricity
as a non-linear constraint of the (state) parameters. Furthermore, the impact of uncertain prior information
within the framework of the applied constraints on the respective methods was investigated. The whole
investigation represents an innovation both in its individual methods and in its entirety. The combination
of an IEKF with implicit measurement equation and the simultaneous consideration of either reliable or
uncertain constraints in this form has not yet been investigated. Thus, the newly developed methodology
presented in this chapter represents a significant gain when it comes to the recursive solution of implicit
problems.

First of all, it should be noted that the fundamental applicability of a recursive GHM could be demon-
strated. Furthermore, it has been proven that the recursive methods differ fundamentally from the batch
methods with regard to the required computing time. Despite the sequential computations over several
epochs, the recursive methods are significantly faster than the batch methods. As mentioned in section
3.4.2, this is due to the different dimensions of the matrices to be inverted.2 Nevertheless, recursive ap-
proaches are more suitable for potential real-time applications. Differences between recursive and batch
methods, however, also occur on the basis of the achievable quality measures. The batch methods provide
both more accurate (based on the RMSE) and more precise (based on the estimated standard deviations)
estimates. At least this applies to the application described here. This is due to the underlying model,
where all observations are considered simultaneously. In addition, the estimated standard deviations from
the recursive methods are too pessimistic (compared to the MC simulation results). Depending on the
application and the respective requirements with regard to maximum run time, accuracy and precision,
it is therefore necessary to choose between the different methods. However, if reliable additional prior

2It should be mentioned that this advantage for recursive methods can be reduced by the integration of matrix calculations on a
GPU. This allows more efficient computations compared to the standard execution on a Central Processing Unit (CPU). The
calculation on a GPU leads to a significant advantage only for a particular matrix dimension. Below that they are even more
inefficient than on a CPU (Ezzatti et al., 2011).
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information is available, state constraints always lead to an improvement (in terms of run time, accuracy
and precision).

The choice of the method to apply a constraint depends on whether it is to be considered as a hard con-
straint (as equality or inequality) or SC. This selection, in turn, is strongly related to how certain the
prior information is. Soft and inequality constraints lead to accurate estimates, even with uncertain prior
information but give slightly inaccurate results for correct prior information. The magnitude depends on
the selection of the corresponding parameters vd,k (for SCs) or δ (for inequality constraints). These, in
turn, must be carefully selected depending on the application. For all methods used, a final classification
is made with regards to three main specifications in Table 3.5. These are the compatibility with certain and
uncertain prior information for the use of state constraints, the applicability with regard to big data (rated
according to the required run time) and the respective achievable uncertainties of the estimated values.

Table 3.5: Classification of the methods presented according to possible advantages (+), disadvantages (-) or neutrality (◦) with
regard to specific prior information, the necessary run time and the uncertainty of the estimated values

Method
Certain Uncertain

Run Time Uncertainty
prior information

batch GHM ◦ ◦ - +
batch C-GHM + - - +
recursive GHM ◦ ◦ + ◦
recursive C-GHM (PM) + - + ◦
recursive C-GHM (SC) ◦ + + ◦
recursive C-GHM (PRO) + - + ◦
recursive C-GHM (COF) + - + ◦
recursive C-GHM (PT equ.) + - + ◦
recursive C-GHM (PT inequ.) ◦ + + ◦



4 Kinematic Multi-sensor Systems and Their
Efficient Calibration

In section 3.1 the versatile recursive state-space filter was introduced in its basic idea. This filter is mainly
based on the new methods from sections 3.2 and 3.3. In addition to the application example simulated
in section 3.4, compatibility with real data is presented in this chapter. For this purpose, the filter is
adapted and applied for a calibration task in the context of a kinematic MSS in section 4.2. Apart from
the basic applicability, the resulting advantages, as well as possible limitations of this novel innovative
recursive approach, will be discussed. A brief introduction to kinematic MSSs and the associated tasks of
calibration, georeferencing and processing is given in section 4.1 in advance.

4.1 Kinematic Multi-sensor Systems

An MSS is characterised by the fact that multiple individual sensors are combined in a specific configu-
ration on a common platform. Several sensors of the same type or an arbitrary number of different types
can be used. They are connected to each other in a defined, known and consistent spatial and temporal
relationship (Schwarz and El-Sheimy, 1996; Lutter and Olson, 2004). In general, any logical aggrega-
tion of individual sensors can be referred to as MSS. In the context of this thesis, however, the term is
specifically defined and applied to the combination of suitable sensors for solving georeferencing tasks.
Basically, there are no limitations to the field of application of such an MSS. The concept of georeferen-
cing describes the continuous determination of the position and the orientation of the MSS in an arbitrary
superordinate coordinate system at discrete points in time (Gräfe, 2007; Vennegeerts, 2011; Vogel et al.,
2016). This information is also referred to as pose1 and describes three translations and three rotations
(Borrmann et al., 2008; Vogel et al., 2019). In addition, localisation is also referred to as a representative
term. Usually, only the 2D position and a single orientation angle are given in this context (Weiss, 2011;
Schlichting, 2018). Without the information about the current pose of the MSS with respect to its environ-
ment, no further questions (e.g. the combination of laser scanner-based point clouds from two different
points in time) can be answered (Elseberg et al., 2013a; Hartmann et al., 2018; Heinz et al., 2020). For
the solution of the georeferencing, there are many different methods, which are used depending on the
available sensors, the environment and the requested uncertainty requirements. All of them have corre-
sponding advantages and disadvantages (Vogel et al., 2016). An overview of these methods is presented
in detail in chapter 5 in direct relation to a specific application.

A basic distinction can be drawn between static and kinematic MSSs. A static MSS remains in a constant
pose during the data acquisition by its sensors. A kinematic MSS, by contrast, can change its pose within
the environment simultaneously with the acquisition process (Neitzel and Neumann, 2013; Holst et al.,
2015). In the following, only kinematic MSSs are considered. In principle, the approaches of this thesis
can also be applied to static MSSs. The specific configuration of such a kinematic MSS can vary greatly
and depends on the respective application (El-Sheimy, 2005). This applies both to the specific types of
sensors and to the applied platform. Any active or passive sensor can be used, which can contribute to
the georeferencing task (Vogel et al., 2016). Also, there are no limitations on the type of mobile platform.

1Also referred to as 6-DoF parameters
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An exemplary MSS with several sensors on the roof of a car is shown in Figure 4.1. Without a claim
to completeness, the most common sensor types and platform types are listed in the Tables 4.1 and 4.2.
This compilation is supplemented by a selection of scientific applications for the respective sensor types
and platforms. In addition, there are many other scientific systems as well as a multitude of commer-
cial systems. Their diversity clearly shows the importance and relevance of such kinematic MSSs. The
applications cover all areas of georeferencing and environmental perception in the most diverse environ-
ments, each with different circumstances and challenges. Thus, they make an important contribution (e.g.,
in terms of integrity and collaboration) to areas such as mobile mapping, BIM and autonomous driving
(Wang et al., 2019).

Even though each kinematic MSS consists of different sensors, there are similarities in the process chain
for its application. The necessity of georeferencing has already been mentioned. However, there are
also other aspects. Even if different sensors are used (with regard to type and quantity), their spatial and
temporal relationship to each other must be known. In order to achieve reliable, accurate and precise
results, their correctness, as well as their temporal stability, is essential. Otherwise, their change over
time would have to be known and additionally taken into account. However, this is quite a complex
challenge, so their temporal stability is usually assumed, and the best possible effort is made to ensure
compliance. The temporal relationship between the individual sensors can be realised via a common
time base and is referred to as synchronisation. Various methods are available for the selection of this
time base and its realisation. With current sensors it is easiest to always refer to the Global Positioning
System (GPS) time (using the GPS-Pulse Per Second (PPS)) (Hesse, 2007; Toth et al., 2008; Paffenholz,
2012; Schön et al., 2018). The determination of the spatial relations between the individual sensors is
referred to as calibration. Comparable to the parameters of georeferencing, three translations and three
rotations describe the 6-DoF calibration parameters. They can be determined in advance2 with a sensor of
superordinate3 accuracy. These parameters represent the relative dependencies of the individual sensors to
each other in an arbitrary homogeneous coordinate system (Strübing and Neumann, 2013). Usually, a so-
called Platform Coordinate System (PCS)4 is defined and used rigidly on the MSS. Furthermore, intrinsic
calibration parameters (e.g., biases or scaling parameters) can also be taken into account (Chow et al.,
2011; Hartmann et al., 2017), but will not be discussed in the following. Further information on existing
calibration approaches and their methodological foundations are addressed in section 4.2.

For each MSS, the acquired heterogeneous observation data of the individual sensors must be stored. State
of the art sensors enable continuously increasing sampling rates and resolutions. In addition, previously
expensive sensors (e.g. laser scanners) are nowadays much cheaper to purchase. This leads to an increas-
ing amount of data which will be acquired and stored in an MSS and then processed in a later stage. In this

Figure 4.1: Exemplary MSS on car roof with several sensors fixed to each other on a platform

2There are also approaches which estimate the calibration parameters on-the-fly during the actual measurement process of the
MSS. However, this is rather an exception in the geodetic community and will not be discussed here.

3In principle, the reference data can also be acquired with a sensor of comparable accuracy. However, a higher-level accuracy is
preferable.

4Also referred to as fixed body coordinate system
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Table 4.1: Compilation of possible sensor types for kinematic MSSs. In addition, a small selection of applications with a scientific
relation is given for the individual types. There is no claim to completeness in this list.

Sensor Scientific Application

2D & 3D Laser Scanner Talaya et al. (2004); Gräfe (2007); Bosse et al. (2012); Keller (2016)
Hartmann et al. (2018); Schön et al. (2018); Bureick et al. (2019b); Heinz et al. (2020)

Mono & Stereo Camera Geiger et al. (2013); Steffen (2013); Schneider et al. (2016); Schön et al. (2018)

GNSS antenna Sternberg (2000); Talaya et al. (2004); Gräfe (2007); Paffenholz (2012)
Schneider et al. (2016); Eling (2016); Schön et al. (2018)

Inertial Measurement Unit Sternberg (2000); Talaya et al. (2004); Gräfe (2007); Bosse et al. (2012)
Schneider et al. (2016); Keller (2016); Schön et al. (2018)

Table 4.2: Compilation of possible platform types for kinematic MSSs. In addition, a small selection of applications with a
scientific relation is given for the individual types. There is no claim to completeness in this list.

Platform Scientific Application

Wearable Bosse et al. (2012); Frei (2013)

Handcart Vennegeerts (2011); Keller (2016); Hartmann et al. (2018); Heinz et al. (2020)

Unmanned Aerial Vehicle Nagai et al. (2009); Schneider et al. (2016); Eling (2016); Bureick et al. (2019b)

Motor Car Gräfe (2007); Jaakkola et al. (2010); Geiger et al. (2013); Hofmann (2017); Schön et al. (2018)

context, big data is therefore also referred to. This requires high demands regarding the necessary com-
puting capacities on the one hand and efficient algorithms on the other hand. Especially the use of laser
scanners and high-resolution cameras can lead to an enormous amount of observation data (Elseberg et al.,
2013b; Schön et al., 2018; Peters and Brenner, 2018). This especially concerns applications in the field of
mobile mapping and autonomous driving.

Finally, it can be summarised that for each kinematic MSS identical tasks and challenges regarding ca-
libration, georeferencing and data acquisition, as well as processing, arise. Figure 4.2 visualises this
relationship schematically. Parameter estimation is a key factor in each of these three tasks. In all cases,
optimal estimated values for different parameters (e.g., 6-DoF calibration parameters or pose parameters of
the MSS with respect to a superordinate coordinate system) must be obtained. The following application
examples in chapters 4 and 5 show the extent to which the innovations presented in chapter 3 can contribute
to improving reliability, uncertainty and efficiency. Moreover, the methods used for this purpose are
themselves innovative and novel approaches.

4.2 Calibration of Laser Scanner-based Multi-sensor Systems

4.2.1 Motivation

As already mentioned in section 4.1, reliable and accurate calibration of an MSS is essential. If the exact
relative position and orientation of the individual sensors with respect to each other and with respect to
a superordinate PCS is unknown, no exact georeferencing of the MSS and accurate subsequent products
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Figure 4.2: Strongly simplified process chain of a kinematic MSS with its elementary tasks

(e.g., joint 3D point clouds) will be possible (Elseberg et al., 2013a; Hartmann et al., 2018; Heinz et al.,
2020). An insufficient calibration can, therefore, be a limiting factor with regard to the achievable ac-
curacies in such applications since systematic errors are likely (Underwood et al., 2007). For example,
an angular deviation of about 0.006° already leads to a deviation of 1 mm on the object at a distance of
10 m. For this reason, there are many methods for the precise and accurate determination of the unknown
calibration parameters. However, the method depends strongly on the respective sensor type (cf. Table
4.1) and the equipment available for calibration. The methods described in the following are therefore
based on the assumption that a laser tracker with necessary additional equipment (e.g. hand-held probe
tip) is available which can be regarded as a referencing sensor with superior accuracy5. In principle, other
suitable referencing sensors can also be used for the calibration process.

Under these conditions, the calibration parameters of an IMU or GNSS antenna6 can be obtained relatively
straightforward7. Specifically, this can be achieved by the respective exterior housing in combination with
known construction drawings (in case of an IMU) or defined mounting points (in case of a GNSS antenna)
(Schön et al., 2018). For sensors whose local Sensor Own Coordinate System (SOCS) is not exactly spe-
cified by the manufacturer — as this is often not technically possible or reasonable —, the calibration
parameters must be determined indirectly. The latter applies to cameras and usually also to laser scan-
ners. Where the use of known control points over a resection has proven successful in the case of cameras
(Schneider, 2008; Luhmann, 2010, pp. 561 ff.), the use of known reference planes establishes for laser
scanners (Gräfe, 2007; Strübing and Neumann, 2013; Strübing, 2015; Heinz et al., 2015; Hartmann et al.,
2017; Schön et al., 2018). The continuous further development and improvement of these processes are
still ongoing. In particular, there are also methods which directly determine relative extrinsic calibration
parameters between a camera and a laser scanner (Zhang and Pless, 2004; Pandey et al., 2012; Zhou et al.,
2018; Omidalizarandi et al., 2019). Here the focus lies on the methods that describe the calibration of a
laser scanner with respect to a specific PCS. Furthermore, there are also entropy-based approaches to
determine the calibration parameters required. These belong to robotics and rely on the minimisation of a
cost function that describes the inconsistencies within the point cloud. However, there is a strong depen-
dence on the respective environment. Quality measures are also not directly determined (Maddern et al.,
2012; Hillemann et al., 2019; Heinz et al., 2020).

The current state of research on the existing approaches for the calibration of laser scanner-based MSSs is
summarised in section 4.2.3. All of them have in common that they determine the estimates within a batch
approach (cf. section 2.1). Although this allows an accurate estimate to be made, it also has drawbacks.
The high run time required for such an overall adjustment already mentioned in section 3.4 exists, but is
not a serious issue. Since the calibration has to be calculated only once in advance, it is not time-critical8.
Nevertheless, this fact of the high run time remains. Directly related to this run time issue is the associated

5Accuracy of ±15 µm + 6 µm/m (as a Maximum Permissible Error (MPE) for the 3D position) (Hexagone Metrology, 2015)
6In the context of this thesis, a combination of antenna and receiver is always assumed. However, the geometrically relevant
reference point is defined by the antenna phase centre.

7Assuming that the respective sensor reference points are already defined in advance by manufacturer’s specifications or previous
intrinsic sensor calibration

8If applications should be attempted to an on-the-fly solution, then the required run time is again important
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reduction in the available observation data. With laser scanner-based MSSs, many observation data are
acquired which cannot all be included in the adjustment in their entirety. Although this is theoretically
feasible, it can lead to numerical instabilities and is therefore not useful. This is because the dimension
of the normal equation system to be solved increases with the number of laser scanner points and cannot
be solved within a reasonable run time with usual computers. To overcome this problem, an artificial
subsampling of the observations is recommended (Hartmann et al., 2017), which can lead to a loss of
information. The recursive approach from section 3.3 thus represents a suitable solution for this area
of application. With a sequential estimation, all (or at least much more) available observations can be
considered. Therefore, the application example in this section also refers to the determination of such
a laser scanner-based kinematic MSS, which is introduced in section 4.2.2. The specific realisation for
this application is done in sections 4.2.3 (by classical batch methods) and 4.2.4 (by the new recursive
methods). A comparison and discussion of both types of methods is given in section 4.2.5.

4.2.2 Experimental Setup

In particular, the SOCS of a Velodyne Puck VLP-16 laser scanner is to be calibrated with respect to a
specific PCS. Furthermore, a Vectornav VN-200 IMU is mounted on the platform of the MSS, which,
however, is neglected in the course of this calibration. As described above, their calibration values can
be determined directly and do not represent a difficulty in this context. The platform for mounting the
laser scanner has drilling holes that define the PCS (cf. Figure 4.3(a)). By using these drilling holes, the
joint adaptation can be applied universally on any other platform. The spatial relationship to the SOCS
of the laser scanner can then be established via the drilling holes and the calibration parameters. The
platform with the laser scanner is shown in Figure 4.3 together with both PCS and SOCS. The 6-DoF
calibration parameters between these two coordinate systems are thus to be determined. The laser scanner
used measures with 16 individual scan lines, which are almost perpendicular to its vertical axis and have
an angular resolution of around 2°. The combination of these single scan lines and an internal rotation
results in a panoramic 3D point cloud. Altogether, the laser scanner has a field of view of 30° × 360°.
The manufacturer specifies a range accuracy of typically up to 3 cm (Velodyne LiDAR, 2018b), without
indicating the associated quality parameter. In order to obtain the 6-DoF calibration parameters, the
platform is aligned so that the individual scan lines of the laser scanner hit reference planes distributed
in the measuring laboratory9. It is important to make sure that the planes are properly aligned so that
all 6-DoF parameters can be accurately determined. This is ensured by the respective arrangement of
the individual planes with respect to the SOCS of the laser scanner (Hartmann et al., 2019; Heinz et al.,
2020). There are sensitive tilts for each coordinate axis. In addition, it is also necessary to ensure different
distances between the planes and the SOCS. All individual planes are measured with a Leica Absolute

(a) (b)

Figure 4.3: Laser scanner-based MSS with Velodyne Puck VLP-16 laser scanner and red Vectornav VN-200 IMU on a platform
with numbered drilling holes (a) and schematic representation of the MSS with the red PCS and the blue SOCS of
the laser scanner (b)

9It should be mentioned that due to the measuring distances that arise, not all 16 scan lines necessarily hit all planes. However, it
was ensured that at least two scan lines hit each plane.
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Tracker AT960, so that high-accurate reference values are known with regard to their plane parameters.
This requires only four to five single point measurements per plane. For this purpose, the laser tracker with
its specific SOCS defines a superordinate World Coordinate System (WCS). Since the drilling holes on the
platform are also measured with the laser tracker, all measured values are located in an identical coordinate
system. Additionally, there are only the point cloud observations of the laser scanner, which refer to its
SOCS. Several rotations (depending on the rotation rate) of the laser scanner are executed so that there
are a multitude of points per scan line and per plane. In the further course, one complete rotation of the
laser scanner is referred to as one epoch k. Overall, there are between 500 and 6000 3D points on each
plane measured by the laser scanner. The experimental setup itself and the relevant observation variables
are shown in Figure 4.4. However, only a part of the complete setup is shown. In total 12 planes were set
up in a sub-section of almost 270° of the laser scanner’s field of view. The complete calibration procedure
with regard to the measurement acquisition and the two different adjustment strategies is summarised and
shown schematically in Figure 4.5.

4.2.3 Classical Methods

The methodical approach to determine the calibration parameters of a laser scanner-based MSS on the
basis of several well distributed reference planes was developed by Strübing and Neumann (2013). They
use the restriction that the distances between the observed reference planes and the measured 3D point
observations of the laser scanner to be calibrated should be minimal. The corresponding nominal values
for the reference geometries are determined on the basis of a sensor of superordinate accuracy. In the
application presented here, this is done by a laser tracker. Overall, this method is inspired by the work
of Rietdorf (2005) and Gräfe (2007). Both also use reference planes for calibration. While the former
only determines intrinsic sensor-specific calibration parameters of a laser scanner, the latter introduces the
minimisation condition based on fitting lines. However, a general approach based on a distance function
is not described. In addition, the approach by Strübing and Neumann (2013) can also be extended with
regard to other geometric primitives such as cylinders or spheres as reference objects to be used. This
would only lead to a small adaptation of the functional model and would not have any effects on the ca-
libration process itself. Another approach for the calibration of a laser scanner with respect to a PCS by
using a plane and a cylinder is given in Underwood et al. (2007). This also minimises distances. For the
cylinder, these are the mean squared perpendicular 2D distances for each laser scanner point (assigned to
the cylinder) with respect to the mean value of the total laser scanner points (assigned to the cylinder). The
same applies to the plane, where the mean squared 1D distances of each plane point are used for the mean

Figure 4.4: Visualisation of the laser scanner-based MSS (centre) during its calibration. The reference planes (left) are captured
by individual scan lines (red dots) and measured (green dots) by the laser tracker (right). In addition, the drilling
holes on the platform (yellow stars) are measured with the laser tracker. Further arranged planes are located outside
the shown part of the image.
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Figure 4.5: The basic calibration procedure with regard to the measurement execution and the subsequent adjustment strategies.
The colours refer to the two sensors (laser scanner (blue) and laser tracker (green)), the required tasks (orange) and
the parameters requested (purple).

value of all plane points. For these reference geometries, in contrast to the method described here, there
are no high-accurate reference measurements based on a second sensor of superior accuracy. Instead, only
the available observations are used, taking into account the minimisation functions mentioned above. Fur-
thermore, there are also methods where only one single reference plane is used (Wasielewski and Strauss,
1995; Zhang and Pless, 2004; Unnikrishnan and Hebert, 2005; Zhou et al., 2018). This plane is arranged
differently one after the other in the calibration process, and thus the necessary geometric configurations
can be achieved. However, in these approaches, only the relative extrinsic calibration parameters between
a laser scanner and a camera are determined and not the relationship to a superordinate PCS. In addition,
these approaches often do not provide complete variance-covariance information.

Further specific applications of the approach from Strübing and Neumann (2013) with regard to the cali-
bration of laser scanner-based MSSs can be found in Heinz et al. (2015) and Hartmann et al. (2017). In-
dependently of the approach used, the 6-DoF calibration parameters requested are composed of the three
translations10 tSOCS-PCS,x, tSOCS-PCS,y and tSOCS-PCS,z and the three rotations11 ωSOCS-PCS, ϕSOCS-PCS and κSOCS-PCS.
A scaling parameter is not taken into account as this is negligible due to the sensor mounting. Together,
these unknown parameters describe the spatial transformation between the SOCS of the laser scanner and
the PCS of the MSS. The alignment of the individual coordinate axes is shown in Figures 4.3(b) and
4.6. The corresponding rotation angles are to be assigned to the individual axes in identical order. For all
je = 1, . . . , Je sets of 3D points PScanner,e,je measured by the laser scanner with respect to its local SOCS
and assigned to the e = {1, . . . , 12} individual reference planes, the following appliesxMSS,e,je

yMSS,e,je
zMSS,e,je


︸ ︷︷ ︸

PMSS,e,je

=

tSOCS-PCS,x

tSOCS-PCS,y

tSOCS-PCS,z


︸ ︷︷ ︸

tSOCS-PCS

+ RSOCS-PCS (θSOCS-PCS) ·

xScanner,e,je
yScanner,e,je
zScanner,e,je


︸ ︷︷ ︸

PScanner,e,je

, (4.1)

where PMSS,e,je are the transformed laser scanner 3D points with respect to the PCS. It should be noted that
Je can be different for each plane e. Furthermore, RSOCS-PCS describes the 3D rotation matrix12 composed
of the calibration angles θSOCS-PCS = [ωSOCS-PCS, ϕSOCS-PCS, κSOCS-PCS]T . The following relationship applies

RSOCS-PCS (θSOCS-PCS) = Rx,SOCS-PCS (ωSOCS-PCS) · Ry,SOCS-PCS (ϕSOCS-PCS) · Rz,SOCS-PCS (κSOCS-PCS) , (4.2)

which defines the concatenation of the individual rotation angles around the corresponding rotation axes.
As additional information, the four to five sets of 3D points PRFG,e measured by the laser tracker on the
individual reference plane e as well as the 3D points PPCS of the drilling holes of the MSS platform are
available. Both types of 3D point coordinates are given with respect to the WCS of the laser tracker. Based
on the point observations of the reference planes, related plane parameters in the Hesse normal form can be

10Also referred to as lever arms
11Also referred to as bore-sight angles and indicated here as Euler angles
12When generating rotation matrices, the correct sequence of the individual rotations around the corresponding axes must always

be taken into account. It is also important to consider that the Euler angles are given with respect to fixed or co-rotating axes.
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determined13. These are composed of a 3×1 unit normal vector nRFG,e = [nRFG,e,x, nRFG,e,y, nRFG,e,z]T as
well as a distance to the origin dRFG,e for each of the e planes and can be determined according to Drixler
(1993), for example. This information is summarised for each plane in the vector aRFG,e according to

aRFG,e = [nRFG,e; dRFGe] (4.3)

and the following applies

||nRFG,e|| =
√

n2
RFG,e,x + n2

RFG,e,y + n2
RFG,e,z = 1. (4.4)

A further transformation is necessary to establish the relationship between the plane parameters aRFG,e
measured by the laser tracker and the original laser scanner observations. Therefore, the following applies
to the transformation of the laser scanner observations with reference to the PCS of the MSS (already
available with Equation (4.1)) into the WCS of the laser trackerxLT,e,je

yLT,e,je
zLT,e,je


︸ ︷︷ ︸

PLT,e,je

=

tPCS-WCS,x

tPCS-WCS,y

tPCS-WCS,z


︸ ︷︷ ︸

tPCS-WCS

+ RPCS-WCS (θPCS-WCS) ·

xMSS,e,je
yMSS,e,je
zMSS,e,je

 , (4.5)

where PLT,e,je defines the measurements of the reference planes by the laser scanner which are transformed
into the WCS of the laser tracker. The vectors tPCS-WCS and θPCS-WCS = [ωPCS-WCS, ϕPCS-WCS, κPCS-WCS]T contain
the corresponding 6-DoF transformation parameters and RPCS-WCS (θPCS-WCS) is calculated analogously to
Equation (4.2). Overall, the approach of Strübing and Neumann (2013) to determine the required calibra-
tion parameters is thus based on a two-fold transformation. Their order and corresponding relationships
are described in the Equations (4.1) and (4.5) and are schematically summarised in Figure 4.6. The pa-
rameters of the second transformation between the PCS and the WCS are directly determined by the laser
tracker. As already mentioned, the parameters of the first transformation (from the SOCS of the laser
scanner to the PCS of the MSS) have to be determined during the calibration process. In order to obtain
these parameters, the approach of Strübing and Neumann (2013) solves the calibration task by restricting
the distances dje within a GHM (cf. section 2.1.2). The functional relationship between the observations
and parameters according to Equation (2.21) is as follows

dje = 0 = hje

(
PScanner,e,je , aRFG,e, tSOCS-PCS,θSOCS-PCS, tPCS-WCS,θPCS-WCS

)
(4.6a)

= nTRFG,e · PLT,e,je − dRFGe (4.6b)

=

nRFG,e,x

nRFG,e,y

nRFG,e,z


T

·

xLT,e,je
yLT,e,je
zLT,e,je

− dRFGe, (4.6c)

where the distances dje are to be interpreted as contradictions of the GHM. This is an implicit relationship
between the observations and parameters according to Equation (2.21). The observed quantities in this
GHM are arranged in the observation vector l as follows

l =
[
PTScanner,1,1:Je

, . . . ,PTScanner,12,1:Je
, aTRFG,1, . . . , a

T
RFG,12, t

T
PCS-WCS,θ

T
PCS-WCS

]T
. (4.7)

Both the plane parameters aRFG,e as well as the translations tPCS-WCS and rotations θPCS-WCS are considered
to be original observations. This leads to a reduced adjustment problem and is recommended due to

13In principle, the parametrisation of a plane can also be done in other ways. In Unger et al. (2016), for example, two angles and
a single shift parameter are suggested for this purpose. Thus, the number of parameters to be estimated can be reduced (if the
plane parameters are part of the parameter vector x).
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Figure 4.6: Schematic representation of the transformations to be applied during the calibration. The original 3D point obser-
vations of the laser scanner PScanner,e,je are available with respect to its SOCS, are then transformed into the PCS of
the MSS (PMSS,e,je ) and finally transformed into the WCS of the laser tracker (PLT,e,je ).

the high information density that already occurs (Strübing and Neumann, 2013). Associated uncertainty
information of the individual observation groups is given in the VCM Σll with a block structure as follows

Σll =



Σll,PScanner,1,1:Je
. . . 0 0 . . . 0 0 0

...
. . .

...
...

. . .
...

...
...

0 . . . Σll,PScanner,12,1:Je
0 . . . 0 0 0

0 . . . 0 Σll,aRFG,1 . . . 0 0 0
...

. . .
...

...
. . .

...
...

...

0 . . . 0 0 . . . Σll,aRFG,12 0 0
0 . . . 0 0 . . . 0 Σll,tPCS-WCS 0
0 . . . 0 0 . . . 0 0 Σll,θPCS-WCS


. (4.8)

The quantities to be estimated are in turn summarised in the parameter vector x. Since individual elements
from the observation vector l are derived quantities, they are also contained in the parameter vector x so
that they can be updated as part of the adjustment. The following applies

x =
[
tTSOCS-PCS,θ

T
SOCS-PCS, a

T
RFG,1, . . . , a

T
RFG,12, t

T
PCS-WCS,θ

T
PCS-WCS

]T
. (4.9)

As already stated in section 2.1.2, suitable approximate values x0 are required to solve this GHM. These
can be based on rough dimensions and can be updated after a successful adjustment, if necessary. As
the functional model is based on the planarity of the individual reference planes, it should be noted that
compliance with this model is a prerequisite for obtaining reliable estimates. The parameters requested
can then be obtained iteratively by solving the normal equation system according to Equation (2.30) and
considering Equation (2.35a).

Although the plane parameters aRFG,e are also contained in the parameter vector x, there is no constraint
in Strübing and Neumann (2013) regarding their normalised length (cf. Equation (4.4)). For the shown
application with a 2D profile laser scanner this is reasonable, because with this measuring technique pre-
cise plane estimation is possible. Hartmann et al. (2017) also omit the introduction of such a constraint,
which might also be due to the use of a laser scanner in profile mode. Furthermore, they generally ex-
cluded the plane parameters from the observation and parameter vector. This is justified by the superior
accuracy of the coordinates observed by the laser tracker. Instead, the plane parameters are thus regarded
as quasi error-free quantities which are known and constant. Within the framework of a general approach,
an additional constraint of the plane parameters according to Equation (4.4) should be considered. In
principle, this calibration approach can also be used for 3D laser scanners where it would make sense to
apply such a constraint. The application of such a constraint concerning the plane parameters is also used
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in Skaloud and Lichti (2006) for the determination of the bore-sight angles within airborne laser scanning.
Therefore, Equation (4.4) must be expressed according to Equation (2.38), from which follows

ge (x) =
√

n2
RFG,e,x + n2

RFG,e,y + n2
RFG,e,z = 1, (4.10)

where ge (x) is the non-linear constraint function for the respective plane e. The adjustment problem can
then be solved according to Equation (2.46). Its impact on the estimation is shown in section 4.2.5 based
on the calibration task introduced in section 4.2.2.

The general ability to solve the resulting normal equation matrix depends strongly on the available com-
puting capacities and the amount of 3D laser scanner observations J assigned to the individual planes e.
The Velodyne Puck VLP-16 laser scanner used in this experiment measures approximately 300 000 points
per second (Velodyne LiDAR, 2018b). The rotation rate can be selected between 5 Hz to 20 Hz, resulting
in 15 000 to 60 000 single 3D points per 360° rotation14. If the dimension of the normal equation system
becomes too large with respect to the available computing power, numerical instabilities are likely. For
this reason, Hartmann et al. (2017) proposes the artificial reduction of the available laser scanner obser-
vational data. This subsampling results in the loss of existing observation data. The level of reduction
depends on the existing total number of 3D points, the number of reference planes, as well as the available
computing capacities, and is, therefore, application and hardware dependent. However, artificial reduc-
tion also has a positive impact since the same number of laser scanner observations are available for each
plane. This supports the weighting between the individual planes, which would otherwise depend strongly
on the distance and alignment to the laser scanner.

4.2.4 Novel Recursive Calibration Approach

The loss of information occurring in the classical calibration method from section 4.2.3 (due to the ne-
cessary subsampling) can be avoided when using the recursive approach for implicit relationships from
section 3.3. The necessity of the novel approach presented in this thesis is caused by the implicit relation-
ship according to Equation (4.6). At the same time, the positive impact in terms of equal weighting of the
individual reference planes can be maintained. For the application of the recursive GHM, the total num-
ber of available laser scanner observations is, therefore, subdivided into k = 1, . . . ,K individual epochs.
With regard to the experimental setup described in section 4.2.2, a complete 360° rotation of the laser
scanner is suitable for the definition of one single epoch k. During such a certain epoch k, the respective
3D point cloud is assigned to the individual reference planes. Thus, there are for each epoch k in total
ne = 1, . . . ,Ne 3D laser scanner observations on each plane e, where Ne can be different for each of the
12 planes in total and must not be constant for each epoch k. If Ne equals Je, the recursive calibration
approach is identical to the classical batch approach. Thus the following observation vector lk results in
dependence of the respective epoch k

lk=1 =
[
PTScanner,k,1,1:Ne

, . . . ,PTScanner,k,12,1:Ne
, aTRFG,k,1, . . . , a

T
RFG,k,12, t

T
PCS-WCS,k,θ

T
PCS-WCS,k

]T
. (4.11)

In general, both the plane parameters aRFG,k,e and the transformation parameters tPCS-WCS,k and θPCS-WCS,k
from the PCS to the WCS can be observed and considered in each epoch k. For practical reasons in the
experimental procedure, it is also possible to proceed with a shortened observation vector lk for epochs
k > 1

lk>1 =
[
PTScanner,k,1,1:Ne

, . . . ,PTScanner,k,12,1:Ne

]T
. (4.12)

14The number of points assigned to the planes is smaller, but in this application it is still about 500 3D points per 360° rotation
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As a consequence of the recursive approach, the parameters will be estimated for each individual epoch k
and are gathered in the state parameter vector xk as follows

xk =
[
tTSOCS-PCS,k,θ

T
SOCS-PCS,k, a

T
RFG,k,1, . . . , a

T
RFG,k,12, t

T
PCS-WCS,k,θ

T
PCS-WCS,k

]T
. (4.13)

Thus, the only difference to the batch approach from section 4.2.3 is that here the parameters for several
consecutive epochs k are determined and that corresponding subsets of observations are available. Since
this recursive GHM is based on a filter approach, it is also necessary to specify uncertainties regarding the
state parameters by means of the VCM Σxx,k for initialisation, resulting in

Σxx,k =



Σxx,k,tSOCS-PCS 0 0 . . . 0 0 0
0 Σxx,k,θSOCS-PCS 0 . . . 0 0 0
0 0 Σxx,k,aRFG,1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . Σxx,k,aRFG,12 0 0
0 0 0 . . . 0 Σxx,k,tPCS-WCS 0
0 0 0 . . . 0 0 Σxx,k,θPCS-WCS


. (4.14)

The VCM Σww,k of the process noise is also specified with a dimension that corresponds to the state
vector. The solution of this recursive GHM is based on section 3.3. As already mentioned in section 4.2.3
for the classical method, it is recommended to consider constraints for the plane parameters according to
Equation (4.10) also in this recursive approach. Therefore, these are considered for each individual epoch
k. Various methods for considering these constraints in the context of implicit relationships are given in
section 3.2. Since Equation (4.10) specifies an equality constraint according to section 2.3.1, only the
PRO method (cf. section 3.2.3), the introduction of PMs (cf. section 3.2.1) or the application of the COF
method (cf. section 3.2.2) are suitable. However, the results in the following section 4.2.5 are limited to
the application of the last two methods, as all methods produce basically similar results.

The data set for the calibration of the laser scanner-based MSS (cf. section 4.2.2) is based on Ernst
(2019). In addition, Ernst (2019) also describes the recursive estimation of the calibration parameters
requested. However, the simultaneous use of constraints regarding the length of the plane normal vectors
(cf. Equation (4.10)) leads to numerical instabilities. For this reason Ernst (2019) uses an extended
measurement model compared to Equation (4.6), which causes a normalisation of the plane parameters.
This procedure proves to be successful (also with respect to the classical solution of the normal GHM
according to section 2.1.2). However, this approach is limited to the use of planes as reference geometries
and is not versatile. Furthermore, any other constraints cannot be considered in this way. Therefore,
the following solutions are shown, which are completely independent of the type of constraint and can
therefore be used in many other applications and situations. In principle, it is also possible to extend
the whole adjustment model (both in the batch and recursive approach) with regard to the simultaneous
consideration of several individual calibration positions of the MSS. Thus, an excellent coverage of all
necessary sensitive geometric arrangements of the planes can be achieved. However, the dimension of
the adjustment problem increases steadily and again emphasizes the demand for a recursive method of
adjustment. However, this will not be discussed further. Instead, the first realisation of this is presented in
Ernst (2019).

4.2.5 Comparison and Discussion

Used Numerical Values

As application-dependent adjustment parameters, initial approximate values x0 as well as information re-
garding the observation uncertainties Σll,k are necessary, both for the classical batch and for the novel
recursive approach. In the case of the recursive GHM, the process noise Σww,k as well as the VCM Σxx,0
of the initial state vector x0 must also be defined. The uncertainty information regarding the initial values
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can be provided by means of a simplified pre-adjustment and might also be used in the batch approach
based on stochastic prior information. This improves the comparability between the two basic approaches.
The initial values themselves thus also result from such a pre-adjustment. Their specific numerical values
depend on a random selection of the point observations used. The VCMs correspond to the block structure
as given in Equations (4.8) and (4.14). Their individual blocks describe the following uncertainties. The
measurement noise for the 3D point observations of the laser scanner Σll,k,PScanner is assumed to be 0.5 cm
for each of the three coordinate directions. This specification differs from the manufacturer’s declaration
given above and, under the circumstances described, has a more realistic value, which has been deter-
mined empirically for this experiment. The uncertainties regarding the plane parameters of the reference
geometries are based on the not fully populated VCM Σll,k,aRFG , which is obtained within the plane esti-
mation according to Drixler (1993). The remaining uncertainty information Σll,k,tPCS-WCS and Σll,k,θPCS-WCS

regarding the transformation parameters between the PCS and WCS originates directly from the measure-
ment software of the laser tracker. The following applies to the individual blocks of the VCM Σxx,0 of the
initial state vector

Σxx,0,aRFG = Σll,aRFG , (4.15a)
Σxx,0,tPCS-WCS = Σll,tPCS-WCS , (4.15b)
Σxx,0,θPCS-WCS = Σll,θPCS-WCS , (4.15c)

where additionally for the initial pose the corresponding VCMs Σxx,k,tSOCS-PCS and Σxx,k,θSOCS-PCS based on
the mentioned pre-adjustment are used.

Although the calibration approach itself remains unchanged in its methodology, the application of the
recursive GHM requires minor modifications for this calibration task. Besides the partitioning of the
observation data and state parameters, this applies in particular to the consideration of the process noise.
In this thesis the process noise Σww,k is applied with a consistent standard deviation σw = 10−3 for all
states, whereas the respective units result from the VCM Σxx,k. The selection of this process noise is based
on the investigations shown in Appendix A.2. Although it must be considered that the investigations
there are based on a different application example (cf. section 3.4), findings can still be used for the
experiment described here. Nevertheless, an independent analysis of the results, considering a variation
of the process noise, would also be appropriate in this case in the future. Moreover, when considering the
following results, it has to be taken into account that the main focus of this thesis lies on the methodological
development of the versatile IEKF (cf. chapter 3). For this reason, it is not possible to optimally adjust all
influencing parameters or to conclusively examine all effects in detail. Instead, the focus lies on the general
applicability of the new recursive approach and the identification of possible advantages and limitations.

Comprehensive Data Base

The evaluated data set consists in total of 54 epochs (each with a complete 360° rotation) of the laser
scanner. Depending on the distance to the laser scanner, an average of between 18 and 115 single point
measurements of the laser scanner are obtained per epoch on each of the 12 reference planes. This corre-
sponds to a total number of about 25 000 measured 3D points over all epochs. Since this large number of
observations leads to numerical instabilities in the batch methods, a reduction of the data quantity must be
performed. In specific terms, the following results relate exclusively to 15 epochs. This still corresponds
to about 7000 individual 3D point observations, where an average of 40 point observations per epoch are
available on a single reference plane. Based on this comprehensive data base, the calibration parameters
t̂SOCS-PCS and θ̂SOCS-PCS are estimated once by means of the different batch and recursive methods. Their
numerical values are listed in Table 4.3. If no constraints are applied, the recursive GHM and the standard
batch method are equal to a few hundredths of a millimetre for the translations. The differences for the
rotations are 0.1 m°. The differences are therefore quite small. However, if constraints are taken into
account, differences between the two types of estimation will be up to 1.6 mm and 0.07°, respectively.
Overall, the maximum difference between the consideration and the neglection of constraints is 3 mm in
translation and 0.1° in rotation. The corresponding estimated standard deviations σ̂tSOCS-PCS and σ̂θSOCS-PCS

of the individual calibration parameters are given in Table 4.4. These are lower without the use of con-
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Table 4.3: Estimated calibration parameters (̂tSOCS-PCS and θ̂SOCS-PCS) for batch processing and different recursive approaches
with respect to last epoch k = 15 in case of recursive estimation. All available observations are used.

Method
Translations [m] Rotations [°]

t̂SOCS-PCS,x t̂SOCS-PCS,y t̂SOCS-PCS,z ω̂SOCS-PCS ϕ̂SOCS-PCS κ̂SOCS-PCS

batch GHM 0.0149 0.0544 0.0775 0.0302 −34.8577 0.0300
batch C-GHM 0.0151 0.0526 0.0747 0.1254 −34.8538 −0.0789

recursive GHM 0.0149 0.0544 0.0775 0.0301 −34.8578 0.0299
recursive C-GHM (PM) 0.0165 0.0532 0.0763 0.0650 −34.8976 0.0156
recursive C-GHM (COF) 0.0161 0.0529 0.0761 0.0741 −34.8859 −0.0026

Table 4.4: Standard deviations of the estimated calibration parameters (σ̂tSOCS-PCS and σ̂θSOCS-PCS ) for batch processing and
different recursive approaches with respect to last epoch k = 15 in case of recursive estimation. All available
observations are used.

Method
Translations [m] Rotations [°]

σ̂tSOCS-PCS,x σ̂tSOCS-PCS,y σ̂tSOCS-PCS,z σ̂ωSOCS-PCS σ̂ϕSOCS-PCS σ̂κSOCS-PCS

batch GHM 2.3 · 10−4 3.4 · 10−4 2.2 · 10−4 0.0104 0.0037 0.0090
batch C-GHM 7.5 · 10−4 0.0011 7.2 · 10−4 0.0331 0.0118 0.0287

recursive GHM 1.1 · 10−4 1.6 · 10−4 1.1 · 10−4 0.0049 0.0018 0.0043
recursive C-GHM (PM) 9.0 · 10−4 0.0016 9.6 · 10−4 0.0747 0.0192 0.1024
recursive C-GHM (COF) 8.6 · 10−4 0.0013 8.1 · 10−4 0.0371 0.0135 0.0317

straints. For all methods the maximum values are 1.6 mm and 0.1°, respectively. Since the estimation
parameters are based on a comprehensive observation vector, this is to the expense of the necessary run
times. The long run times required in particular for batch procedures are shown in Table 4.5. The recursive
approaches are at least 20 times faster. The fastest solution is achieved by using recursive GHM without
constraints. In addition, the mentioned different dimensions of the state vector must be taken into account.

It would be useful to evaluate the estimated parameters and their standard deviations with regard to the
deviations between the different methods for their significance. However, similar to section 3.4.2, the
distribution of the estimated parameters is unknown. Thus, again bootstrap hypothesis testing according
to Efron and Tibshirani (1993, pp. 220 ff.) and MacKinnon (2007) is referred to here. Furthermore, it
should be mentioned that in the batch and recursive methods used, the dimension of the state vector is not
identical overall. If no constraints are considered (batch GHM and recursive GHM), the plane parameters
(four elements for each of the 12 planes) are not part of the state vector. When constraints are applied,
the state vector naturally contains the corresponding plane parameters. This affects the dimension of
the design matrix A and thus has a negative impact on the computing time. The batch method without
consideration of constraints can be considered as state of the art method according to section 4.2.3.

Monte-Carlo Simulation

To ensure comparability between the classical batch approach and the novel recursive calibration method,
a comprehensive MC simulation is performed similarly to section 3.4.1. Thus, a variety of slightly dif-
ferent realisations can be obtained and a more meaningful assessment based on the central moments is
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Table 4.5: Necessary absolute and relative (with respect to the recursive C-GHM (COF) approach) run times for batch process-
ing and different recursive approaches by using 7000 individual 3D point observations for the calibration task. A
computer with the performance of a Intel Xeon E5-1650 (6-cores, 3.60 GHz) and 64 GB RAM was used.

Method
Run Time

Absolute [s] Relative [−]

batch GHM 2244 17.3
batch C-GHM 2666 20.5

recursive GHM 45 0.3
recursive C-GHM (PM) 116 0.9
recursive C-GHM (COF) 130 1.0

possible. A multitude of runs is necessary to obtain reliable results with MC simulation. This requires
a further reduction of the observation data to ensure acceptable run times for the individual approaches.
Therefore, within the 15 epochs, only five random15 points are used on a single reference plane per epoch.
This reduces the total number of 3D point observations to 900 over the 15 epochs. This means that not all
available point observations are used per reference plane, but instead, a subsampling is performed. How-
ever, this is still necessary due to the large amount of data. The varying quantities of the MC simulation are
then the selection of the 3D laser scanner points used on the individual reference planes. This also causes
the initial approximate values x0 to vary. The sequence of a single realisation of the MC simulation is
shown schematically in Figure 4.7. The reduction in the number of observations shows significantly lower
absolute run times (cf. Table 4.6) compared to the comprehensive data set before (cf. Table 4.5). In addi-
tion, it can be observed that the relative run time does not change linearly with the number of observations.
The relative differences in the run time between the batch and recursive procedure are also reduced. The
standard deviations σ indicate the variation over the S = 5000 replications. These are higher, especially
for recursive methods when constraints are taken into account.

The median of the estimated calibration parameters over all S = 5000 replications is given for the indivi-
dual elements in Table 4.7. The numerical differences between the individual methods (with and without
constraints as well as among themselves) are almost identical to the values given above (a few millimetres
and a tenth of a degree), taking into account the larger data set. Also, the total deviation with respect to
the number of observations used is below these numerical values. A subsampling thus has no negative
impact on the estimation parameters in the present application. Only the standard deviations increased by
a factor of about 2.6 due to the reduced amount of data (cf. Table 4.8). However, this is in contrast to the
significant reduction of the required run time.

Figure 4.7: Sequence of one single run during MC simulation for different batch and recursive methods (colour-coded). The
random subsampling of the total quantity of the laser scanner data PScanner,e varies for each run. In case of the
recursive approaches, the parameter vector xK corresponds to the last estimate of epoch K.

15As a precaution, geometrically unfavourable constellations are avoided
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Table 4.6: Median of the absolute and relative run times with related standard deviations by means of S = 5000 replications of
the MC simulation for batch processing and different recursive approaches with respect to recursive C-GHM (COF)
approach. A computer with the performance of an Intel Xeon E5-1650 (6-cores, 3.60 GHz) and 64 GB RAM was used
for the calculations.

Method
Run Time

σ[s]
Absolute [s] Relative [−]

batch GHM 21.1 6.5 0.8
batch C-GHM 28.1 8.7 1.0

recursive GHM 0.9 0.3 0.6
recursive C-GHM (PM) 4.8 1.5 2.6
recursive C-GHM (COF) 3.2 1.0 1.7

Table 4.7: Median of the estimated calibration parameters (̂tSOCS-PCS and θ̂SOCS-PCS) by means of S = 5000 replications of the
MC simulation for batch processing and different recursive approaches with respect to last epoch k = 15 in case of
recursive estimation.

Method
Translations [m] Rotations [°]

t̂SOCS-PCS,x t̂SOCS-PCS,y t̂SOCS-PCS,z ω̂SOCS-PCS ϕ̂SOCS-PCS κ̂SOCS-PCS

batch GHM 0.0157 0.0537 0.0786 0.0054 −34.8797 0.0559
batch C-GHM 0.0159 0.0520 0.0759 0.0928 −34.8789 −0.0536

recursive GHM 0.0157 0.0537 0.0786 0.0053 −34.8797 0.0558
recursive C-GHM (PM) 0.0177 0.0530 0.0791 −0.0444 −35.0196 0.0878
recursive C-GHM (COF) 0.0174 0.0529 0.0788 −0.0321 −34.9941 0.0682

Table 4.8: Median of the estimated standard deviations of the calibration parameters (σ̂tSOCS-PCS and σ̂θSOCS-PCS ) by means of
S = 5000 replications of the MC simulation for batch processing and different recursive approaches with respect to
last epoch k = 15 in case of recursive estimation.

Method
Translations [m] Rotations [°]

σ̂tSOCS-PCS,x σ̂tSOCS-PCS,y σ̂tSOCS-PCS,z σ̂ωSOCS-PCS σ̂ϕSOCS-PCS σ̂κSOCS-PCS

batch GHM 6.8 · 10−4 9.3 · 10−4 7.5 · 10−4 0.0295 0.0121 0.0238
batch C-GHM 0.0021 0.0029 0.0023 0.0902 0.0374 0.0732

recursive GHM 2.9 · 10−4 4.0 · 10−4 3.2 · 10−4 0.0127 0.0053 0.0102
recursive C-GHM (PM) 0.0023 0.0031 0.0026 0.1093 0.0425 0.0867
recursive C-GHM (COF) 0.0023 0.0031 0.0024 0.0892 0.0389 0.0727

Figure 4.8 shows the histograms of the S = 5000 replications of the MC simulation for all six calibration
parameters, represented by the estimated translation in z-direction tSOCS-PCS,z for all batch and recursive
methods. The basic appearance is similar for all six calibration parameters for the individual procedures,
that is why the others are not shown here. Similar to the median of the estimated standard deviations (cf.
Table 4.8), the scattering within the S = 5000 replications is higher for those methods that take constraints
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Figure 4.8: Histograms of the estimated translations tSOCS-PCS,z by means of S = 5000 replications of the MC simulation for
different batch and recursive approaches. Respective median is given by a green bar. The mean value (if not
approximately identical with the median) is shown with a red bar. The partially different scaling of the vertical axis
should be taken into account.

into account. While the standard deviation of all realisations, when no constraints are considered, is about
0.4 mm in translation and 0.01° in rotation, the standard deviation of the other methods is about 6.5 mm
for translation and 0.2° for rotation. The random selection of the corresponding 3D point observations on
the individual planes (cf. Figure 4.7) thus has a stronger impact on the methods in which constraints are
considered. It should also be mentioned that the edges of the individual distributions are partly truncated
for visualisation purposes. This is especially true for the three approaches where constraints are conside-
red. Thus, a few individual runs lead to estimates that are further away from the median, which is already
evident from the standard deviations mentioned. In the recursive C-GHM (COF) this behaviour leads to a
noticeable difference between the median and the mean value of less than 0.1 mm. For the other methods,
this difference is about a factor of 10 smaller.

Cross-validation

In contrast to the simulated example from section 3.4, the true (state) parameter vector x̄ is unknown in this
real calibration example. Furthermore, it is also not possible to judge which approach best approximates
the true values. Thus, only conclusions regarding the precision of the individual approaches can be stated.
In order to evaluate to what extent the individual batch and recursive methods provide reasonable results,
the concept of so-called (k-fold) cross-validation can be applied. According to Efron and Tibshirani (1993,
pp. 239 ff.), Efron and Hastie (2016, pp. 208 ff.) and James et al. (2017, pp. 176 ff.), this method is based
on the strategy of randomly assigning the available measurement data into k exclusive, of equally sized
subsets16 within a multitude of individual runs. Then k−1 subsets are selected and summarised as training
data set. The one remaining subset is referred to as the test data set. With the larger training set, the unkown

16Also referred to as folds



4.2 Calibration of Laser Scanner-based Multi-sensor Systems 67

calibration parameters are then estimated as before. The smaller test set is used subsequently to verify the
results (by means of the contradictions de,i) based on the training set. Thereafter, a new training data set
is generated from a new composition of k− 1 subsets and a single test data set is defined simultaneously.
The subsequent estimation and validation is performed as described above. This procedure is applied until
k cycles are completed. Within the k realisations the training data set and the test data set are therefore
always different. Overall, this procedure is referred to as one single run of the cross-validation. For
statistically reliable statements, a multitude of such runs have to be performed, whereby the assignment
of the original observation data to the k subsets is always random. Subsequently, all contradictions over
all runs can be represented in a histogram and the statistical central moments can be calculated. In the
literature, 10 is often suggested for the selection of k, which is also applied to the specific example of
the calibration task here. This is a good compromise between the required run time and variation. A
simplified schematic overview of the sequence of one single run during the 10-fold cross-validation is
shown in Figure 4.9.

The cross validation method differs in detail from the MC simulation described above. The latter varies
per run the observation data to be used (3D points measured by the laser scanner). Since only five 3D
points of each reference plane are used within one run, compared to a multitude of available observations,
the composition of the observation data set has a high variation for each run. Cross-validation, on the
other hand, neglects just a low percentage of all available observations. The variation within the obser-
vations to be used is, therefore, small for each run. In addition, the excluded observations are used again
for validation. In this specific example, the cross-validation also considers essentially more observation
data compared to the MC simulation described above. For this reason, cross-validation is carried out ex-
clusively with the recursive approaches due to the large run times of the batch methods in combination
with the large number of runs. As part of the validation, all individual 3D point observations from the
test set, taking into account the parameters estimated with the training set, are inserted into Equation (4.6)
(simultaneously considering Equations (4.1) and (4.5)) and the contradictions are estimated. However, it
should be noted that only the estimated state parameters of the last epoch K are considered.

The 10-fold cross-validation method was performed in the course of 500 replications for the described
data set. By choosing k = 10, this corresponds to 5000 differently and independently realised data sets.
The number of all contradictions results from the sum of the 3D point observations, which were defined
as the test data set in each realisation. Their distributions for the three recursive methods are shown
as histograms in Figure 4.10. In total, the median of all contradictions d̄ for the individual methods is
0.370 mm (recursive GHM), 0.054 mm (recursive C-GHM (PM)) and −0.003 mm (recursive C-GHM
(COF)). The corresponding standard deviations σd, which give information about the scattering of the
contradictions, are 10.5 mm (recursive GHM), 8.4 mm (recursive C-GHM) (PM)) and 5.7 mm (recursive
C-GHM (COF)). Based on the results of cross-validation, the recursive C-GHM (COF) thus provides the
most reliable results.

Figure 4.9: Sequence of one single run during 10-fold cross-validation. The random assignment of the total quantity of the
laser scanner data PScanner,e into k = 10 equal-sized subsets varies for each run. These k subsets are systematically
divided k times into the specific training and test data set i. Then, for each of the k combinations, the corresponding
contradictions must be determined. These distances de,i (or rather contradictions) from the functional relationship
he (l, xK) (cf. Equation (4.6)) for each of the e planes are related to the respective methods used for the training data
i and are colour-coded. The parameter vector xK,i corresponds to the last estimate of epoch K.
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Figure 4.10: Results of the k-fold cross-validation with k = 10. The individual contradictions de,i for the three different re-
alisations of the recursive GHM are shown in corresponding histograms, taking into account 500 replications.
Respective median is given by a green bar.

For a more detailed investigation, the distribution of the contradictions de,i should also be established with
respect to the individual reference planes. In this way, generally unfavourable or faulty planes could be
identified and excluded from the adjustment. Other advanced analyses of the occurring PDFs (e.g. to
what extent a normal distribution applies) are not directly related to the objectives of this thesis and are
therefore not discussed here.

Conclusions

As expected, an increase of the observation data leads simultaneously to an increase of the necessary com-
puting time. This is independent of the method used. Nevertheless, the recursive methods require shorter
run times compared to the batch methods. This factor is non-linear and becomes more significant, the
more observations are used. If no additional information in terms of constraints are used, the recursive
estimation gives almost identical results compared to the overall adjustment (with a simultaneous reduc-
tion of the computing time). This is also independent of the number of observations used. If constraints
are used, there will be small deviations in the estimation results among each other and in comparison to
not taking them into account. However, statements regarding the accuracy of the individual methods are
difficult, as the true values are not known. For this reason, it cannot be verified whether the accuracy of the
calibration parameters is improved by taking constraints into account. Furthermore, it is also not possible
to conclude to what extent the number of observations affects the accuracy of the estimation parameters.
However, the precision of the estimation parameters increases slightly if fewer observations are used. The
cross-validation shows that with the recursive C-GHM (COF) method, the most reliable results in this
application example can be achieved. The basis for this is a large number of estimated contradictions,
which could only be performed for the recursive methods due to the high demands on the computing time
(cf. Table 4.6).

Overall, in this specific application example, the translations are determined more precisely than the cor-
responding rotations. This is independent of the adjustment approach used and can be improved by better
geometric coverage and arrangement of the reference geometries. Otherwise, an uncertainty of 0.1° in the
orientation, at a typical measurement distance of 15 m, leads to a transverse deviation of about 2.6 cm. As



4.2 Calibration of Laser Scanner-based Multi-sensor Systems 69

already mentioned in section 4.2.4, the simultaneous integration of several individual calibration positions
of the MSS in the adjustment approach can also lead to more precise calibration parameters.

In general, the calibration approach shown can also be extended by further additional constraints with the
new methods. If suitable additional information is available, its consideration can have a positive impact
on the estimation of the calibration parameters or their uncertainties. Such possible prior information
could, for example, be provided by reference points or surfaces signalised by the manufacturer on the
sensor in a specific manner. In combination with a defined uncertainty, this can then be considered in
the estimation by means of constraints. As already mentioned in section 4.2.3, the parametrisation of a
plane can also be done in other ways (e.g. by means of angular relationships). This has the advantage that
no constraint regarding the length of the normal unit vector is necessary. However, such an alternative
parametrisation is not necessarily possible for all geometric primitives. An example is the use of elliptical
cylinders as reference geometries.

The classical method from section 4.2.3 still has its justification and should be used if the run time is not
important for the computation. However, this requires that, depending on the number of observations,
appropriately dimensioned computing capacities are available, and thus no numerical instabilities occur.
If this cannot be guaranteed or if there is a demand for a faster solution (e.g. in the case of an in-situ
calibration on-the-fly), the recursive method from section 4.2.4 offers new possibilities.





5 Information-based Georeferencing

This chapter describes another application example with real data, which is also based on the innovations
presented in chapter 3. The basic idea and associated challenges of georeferencing a kinematic MSS are
motivated in section 5.1. In section 5.2 the underlying experiments are introduced. The current state of
research on this topic is presented in section 5.3. By using recursive state estimation in the GHM and the
simultaneous combination of state constraints, a novel approach for georeferencing a laser scanner-based
kinematic MSS is introduced in section 5.4. For this purpose, additional information from the object space
is used, which gives advantages in complex and challenging environments such as highly urbanised areas.
The results are discussed in section 5.5, where the advantages and limitations of the new approach are
emphasized.

5.1 Motivation

The relevance and usage of kinematic MSSs — as already introduced comprehensively in section 4.1 —
has increased steadily over the last decades. This applies both to geodetic measuring systems in particular
(Schwarz and El-Sheimy, 1996; El-Sheimy, 2005; Gräfe, 2007; Puente et al., 2013; Nex and Remondino,
2014; Vogel et al., 2016) as well as to various other disciplines (e.g. robotics (Hertzberg et al., 2012)).
This increase is clearly visible, for example, in the highly popular topic of autonomous driving. This
progression also brings around questions and challenges from various disciplines (Schlichting, 2018).
Vehicles are already equipped with a multitude of different sensors which contribute to safe autonomous
driving. Furthermore, the use of UAVs is another highly relevant application to be mentioned. The high
occurrence and diverse application of these MSSs is also a result of the development of low-cost and
lightweight sensors for environmental perception. As for autonomous vehicles, the requirements in terms
of pose estimation for such UAVs are becoming increasingly stringent (Kaul et al., 2016; Zwiener, 2019).
After all, an (autonomous) vehicle or a UAV with all its sensors is nothing else than a kinematic MSS.
Therefore, it is also necessary to provide accurate, precise, and reliable georeferencing solutions for such
systems. Ensuring integrity aspects becomes particularly important when such systems are used in close
proximity to people. However, it must be taken into account that due to financial reasons, only sensors with
a moderate accuracy level are used. This applies in particular to mass-market systems in the automotive
industry. Regardless of the specific realisation of a kinematic MSS, there are many different approaches to
solve the georeferencing task, each of which depends strongly on the available sensors and the respective
environment. These approaches have different advantages and disadvantages, which are presented and
discussed in detail in section 5.3.

The most common method for reliable positioning of a kinematic MSS (and especially of a vehicle and a
UAV) is the use of GNSS observations. Such observation data are available worldwide and can be obtained
in different levels of accuracy (depending on the specific application). By adding IMU measurements to
the GNSS solution, all 6-DoF can be determined in combination. Although this is sufficient for a wide
range of applications, there are a significant proportion of situations where a reliable and accurate GNSS-
based georeferencing solution is whether not always possible or not feasible at all. This is generally
the case in indoor environments but also applies to urban areas, where the challenges increase as the
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environment becomes more urbanised. Especially in so-called urban canyons no reliable georeferencing
of a kinematic MSS by GNSS observations is possible due to multipath effects (Gang-jun et al., 2009;
Wang et al., 2013; Zhu et al., 2018; Zhang, 2019). The presence of tall buildings leads to distorted GNSS
measurements, which are also referred to as Non-Light-Of-Sight (NLOS) observations (Hsu, 2018). This
can lead to an overall positioning error of several metres (Zhang et al., 2018; Dehbi et al., 2019). Thus,
the georeferencing of a kinematic MSS under consideration of integrity aspects is strongly limited.

Because of these weaknesses, there is a high demand for other georeferencing methods that provide more
reliable, accurate and precise solutions in such challenging environments. Many approaches already ad-
dress this issue, with several different strategies being pursued. These approaches comprise an improved
use of the affected GNSS observations, the usage of other sensors, the consideration of suitable additional
information from object space as well as the use of redundant systems. In general, the interaction of
several independent approaches and sensors should always be aimed for due to the resulting flexibility
and higher reliability. However, this requires increased additional effort, since several systems must be
purchased, operated, calibrated, synchronised and evaluated. For this reason, a new approach is presented
in section 5.4, which claims to be more reliable and accurate within challenging narrow urban streets.
The achievable accuracies are strongly dependent on the quality of the available sensors. However, this is
directly dependent on the associated acquisition costs. In applications such as autonomous driving (where
costs play a key role) or UAVs (where weight is a crucial factor), this must be taken into account.

The objective of the new information-based georeferencing approach should be to obtain a pose solution
with an accuracy of at least 10 cm for the position and 0.5° for the orientation even in the aforementioned
challenging environments. Thus, this approach is intended to provide helpful support for the long-term
trend in pose determination. These numerical values are based on the specifications of automotive indus-
tries for autonomous driving. In Kwoczek (2015), it is assumed that with a typical vehicle width of 2 m
and a lane width of 3.5 m for a standard road, there is a distance of 0.75 m on both sides of the vehicle.
In order to ensure positioning with respect to the individual lane, half of this is taken as the necessary
accuracy, which is 37.5 cm. To take into account different lane and vehicle widths, an accuracy of 10 cm
is used here to ensure an additional buffer. The selection of the accuracy for orientation is based on the
assumption that with an angular error of 0.5° at a range of 10 m, a deviation of about 10 cm can be ex-
pected. For this purpose, object space information is used as an independent and complementary source
of information. Thus, there is also the claim to contribute to the assurance of the integrity of such MSSs.

5.2 Experimental Setup

To simulate the challenging circumstances of georeferencing kinematic MSSs in urban areas (cf. section
5.1), the following experiments are introduced. They represent typical application scenarios for respective
environments. Furthermore, they serve as a suitable reference to introduce the already existing methods for
georeferencing in section 5.3 in an application-oriented way and to validate the new approach in section
5.4. There are two independent data sets, which differ in the MSS used and the specific environment.
Both data sets were acquired with a kinematic laser scanner-based MSS and are located in an urban
environment with larger buildings. The laser scanners each have different degrees of accuracy. Below
follows a brief overview of the two MSSs with their respective sensors, information on the two scenarios
and the additionally available object space information.

5.2.1 Kinematic Laser Scanner-based Multi-sensor Systems

Research-based Unmanned Aerial Vehicle

UAVs are characterised by a compact design and flexible movement possibilities. Therefore, they are
well suited for mapping tasks in challenging environments where ground-based platforms are difficult
or impossible to operate, and static terrestrial laser scanning is inefficient. In the course of a project
at the Geodetic Institut (GIH) in cooperation with the Institut of Photogrammetry and GeoInformation
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(IPI) of Leibniz University Hannover (LUH) a kinematic MSS by means of a research-based1 UAV was
developed. Among other sensors, this includes a 3D laser scanner. In this case it is a Velodyne Puck
VLP-16, which is also calibrated in section 4.2 with respect to a superior PCS. With its 16 individual scan
lines and a field of view of 30° × 360° it provides a highly suitable 3D point cloud of the environment.
The manufacturer specifies a typical value of up to 3 cm for the range accuracy (Velodyne LiDAR, 2018b),
without indicating the associated quality parameter. The measured 3D point coordinates are available with
respect to the local SOCS of the laser scanner. In the experiment a rotation frequency of 10 Hz is selected,
which corresponds up to 30 000 single 3D points per 360° rotation. GPS time information is assigned to
each of these 3D points through an additional GNSS unit. This enables reliable synchronisation with other
sensors of the MSS. Absolute position information based on the GNSS observations is theoretically also
available but is inaccurate and unreliable due to the sensor quality. Although an additional Vectornav VN-
200 IMU is mounted, this information will be disregarded in the following due to unavailable calibration
parameters. Thus, only laser scanner observations are available and no information regarding the MSS
pose. The actual use case of this MSS intends that the UAV should mainly fly just above the eave heights
of the buildings, so that information of the roof structures can be captured and used (Bureick et al., 2019a).
However, the following data set was acquired at the height of approximately 2 m above the ground. For
better stabilisation and damping, all sensors are mounted on a gimbal. The UAV with the laser scanner is
shown in Figure 5.1(a).

Mobile Mapping System RIEGL VMX-250

Vehicle-based MMSs are suitable for surveying and mapping of large-scale areas as long as they are acces-
sible by road. There are many different commercial systems (Puente et al., 2013). For the experiment here,
measured data from a RIEGL VMX-250 are used. This MMS consists of two Riegl VQ-250 laser scanners,
a precise Applanix POS-LV 510 GNSS-IMU positioning unit and an odometer (referred to as Distance
Measurement Indicator (DMI)). In addition, several cameras are available, but these are not considered
within the context of this thesis. All sensors are already calibrated by the manufacturer with respect to
each other. During acquisition, the MMS is mounted on a roof rack of a van. Each laser scanner captures
3000 individual scan points per 360° rotation, which is also referred to as a single profile or scan strip. The
measuring frequency of such profiles is 100 Hz. The manufacturer specifies an accuracy of 10 mm and a
precision of 5 mm for the measurement uncertainty2 of the laser scanners. The accurate georeferencing of
the MMS by means of GNSS and IMU observations is done in post-processing and allows the integration
of base station data from a GNSS reference station. However, only a filtered trajectory is available, and
there is no access to the original measurements. According to the manufacturer, this trajectory has an

(a) (b)

Figure 5.1: Overview of the two kinematic laser scanner-based MSSs. The research-based UAV in (a), where the Velodyne Puck
VLP-16 is highlighted with a red circle. Modified according to Bureick et al. (2019a). Furthermore, the RIEGL
VMX-250 MMS is mounted on a van during the measurement campaign (b).

1Also referred to as prototype
2Both in terms of 1σ at 50 m range (RIEGL Laser Measurement Systems, 2012b)
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absolute accuracy of 2 cm to 5 cm. The accuracy of the roll3 and pitch4 angles is quantified with 0.005°
and for the heading angle with 0.015°. All these values refer to a 1σ-environment and presuppose the
availability of the DMI, base station data and no GNSS outages (RIEGL Laser Measurement Systems,
2012a). However, Schlichting (2018) and Hofmann (2017) state that an accuracy5 of 10 cm to 20 cm for
the position is more realistic in urban areas for this MMS.

The measured 3D point coordinates are available with respect to the respective local SOCS of both laser
scanners. By using available calibration parameters, these can be transformed into a fixed PCS, which
coincides with the SOCS of the IMU6. Each individual measured point coordinate is provided with a
timestamp. Thus a temporal reference to the pose determined from GNSS and IMU observations (and the
information of the DMI) is realised. The GPS time also serves as a uniform time base here. Thus, the local
point clouds can be transformed into a superordinate WCS (e.g. Universal Transverse Mercator (UTM)
projection with respect to the European Terrestrial Reference System 1989 (ETRS89)).

Furthermore, it should be mentioned that the two laser scanners are aligned slightly inclined to the di-
rection of movement, which is also termed as butterfly alignment (Keller and Sternberg, 2013). Thus the
two scanning planes intersect, and areas in front of and behind the vehicle are captured. To achieve a
high density of the point cloud and to obtain as many individual epochs as possible, the MMS was driven
at walking speed during the experiment. Figure 5.1(b) shows the MMS mounted on the van during the
measurement campaign.

5.2.2 Scenarios and Measuring Process

The kinematic MSSs described in section 5.2.1 are used in two different environments. This involves
firstly an inner courtyard, which is to be mapped. The second scenario was acquired with a MMS within
the framework of the RTG i.c.sens 2159 and additionally includes a highly accurate reference trajectory.
This exemplary scenario addresses the challenges of georeferencing laser scanner-based autonomous ve-
hicles in urban canyons. A map-based representation of the areas of both scenarios is provided in Figure
5.2. Their respective characteristics are described in detail below.

(a) (b)

Figure 5.2: Map-based representation of the two application scenarios. A spacious inner courtyard is shown in (a) and a
street section within an urban canyon in (b). The irrelevant areas are shaded out. The red dots in both maps
represent the locations from where the images in Figures 5.3 and 5.4 were taken. The background map is taken from
OpenStreetMap.

3Also referred to as the angle of rotation along the coordinate axis in the direction of movement
4Also referred to as the angle of rotation along the transverse coordinate axis in the direction of movement
5Without indicating the associated quality parameter
6The GNSS observations obtained are processed internally, so that their position solution also refers to the PCS
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Mapping Within an Inner Courtyard

A spacious inner courtyard within an urban environment offers perfect conditions for the application of
the new information-based approach (cf. section 5.4) for georeferencing a kinematic MSS. Although
the multitude of buildings from all sides leads to unfavourable GNSS conditions, they provide a valuable
source of reference in terms of object space information. Their continuous detection is also supported by
the distinct field of view of the 3D laser scanner with its full 360°. The availability of such additional in-
formation is necessary to reliably determine all 6-DoF over time. Nevertheless, the registration of building
facades is partly affected by parked cars, containers and items placed outside. In terms of vehicle-based
mapping, the inner courtyard is not a typical environment. The paths between the buildings are very nar-
row, so there is no regular car traffic. For the application of a UAV, which has to be georeferenced reliably
and accurately for mapping tasks in environments similar to this one, for example, the setting is quite
realistic. Furthermore, due to the aforementioned reasons, it is a convenient scenario for examining the
applicability of the proposed method in section 5.4. For this reason, the described research-based UAV in
section 5.2.1 is used to perform measurements in this environment. Figure 5.3 gives an overview of the
surroundings, especially with regard to the available buildings.

The realisation of an accurate reference pose is generally desirable, but is not present here. As the MSS
moves over a relatively long distance through the built-up inner courtyard, no permanent line-of-sight
for external tracking can be realised. This makes it difficult to validate the obtained results. The only
available observations are the Nk 3D point coordinates PUAV,k of the laser scanner with respect to its
SOCS per individual epoch k = 1, . . . ,K. Here, K is the total number of epochs and the following applies

PUAV,k =
[
xUAV,k,1, yUAV,k,1, zUAV,k,1, . . . , xUAV,k,Nk , yUAV,k,Nk

, zUAV,k,Nk

]T
. (5.1)

Note that Nk can vary per epoch and one single epoch k contains all observations of a complete 360°
rotation. Since every single measured point has an individual timestamp, the averaged timestamp is used
as a time reference for the combination of all point observations in one epoch k. The requested quantities
for each epoch k are three translations tUAV,x,k, tUAV,y,k and tUAV,z,k, three rotations ωUAV,k, ϕUAV,k and
κUAV,k, three velocities vUAV,x,k, vUAV,y,k and vUAV,z,k as well as three angular velocities vUAV,ω,k, vUAV,ϕ,k
and vUAV,κ,k. They describe the pose and velocity of the MSS with respect to a superordinate coordinate
system and must be determined with a suitable georeferencing method.

Georeferencing of an Autonomous Vehicle Within an Urban Canyon

A typical urban canyon is used to investigate the challenges and limitations of accurate and reliable geo-
referencing in such environments. Although there are much narrower and deeper street canyons in com-

(a) (b)

Figure 5.3: Images of the measured area in a spacious inner courtyard. The spatial environment for the initialisation is shown
in (a). The narrow inner courtyard with a multitude of buildings is shown in (b). The respective locations where the
images were taken are shown in Figure 5.2(a).
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parison, the environment used still represents a realistic application scenario for the georeferencing of an
autonomous vehicle. It is characterised by diverse buildings with several large-scale facade elements. In
comparison to the inner courtyard, buildings with potential object space information are only available
laterally along the street. This imposes special challenges, in particular with regard to positioning along
the direction of movement. To counteract this unfavourable geometric configuration, appropriate building
structures (e.g. house edges or jutties) are required, which provide information regarding corresponding
coordinate axis. In addition, the registration of building facades is partly affected by parked cars. Figure
5.4 gives an impression of the surroundings.

In this environment the vehicle-based MMS RIEGL VMX-250 is used. With regard to the sensor arrange-
ment and its quality, this kinematic MSS is just partly suitable as an example of an autonomous vehicle.
Although the precision of the Riegl VQ-250 is higher compared to the Velodyne Puck VLP-16, the two
profile laser scanners provide overall less spatial coverage and density of the 3D point cloud. This disad-
vantage is counterbalanced by certain advantages. Due to the precise Applanix POS-LV 510 GNSS-IMU
positioning unit an almost referenceable pose is available. Despite the suboptimal GNSS conditions, this
solution can be considered as a reliable reference at this point, since the quality of the positioning unit and
especially of the IMU used is of the highest standard. The use of such a system is obviously not realistic
for georeferencing of an autonomous vehicle. However, by applying an artificial noise to the reference
pose, the specific accuracy level for an autonomous vehicle can be simulated in the subsequent investiga-
tions. Since the MSS is a commercial system, an independently determined absolute 3D point cloud is
also available in a superordinate coordinate system. This can be used, for example, for validation purposes
by a point cloud comparison.

The elongated road segment offers suitable possibilities to realise a further reference trajectory by external
tracking. This enables an alternative independent validation option and is realised by the high-accurate7

Leica Absolute Tracker AT960 (cf. Figure 5.5(a)), which is also used for the calibration task in section
4.2. To be able to determine the position of the MMS, a Corner Cube Reflector (CCR) is rigidly adapted
to the system (cf. Figure 5.5(b)). The CCR is mounted so that it can be observed while the vehicle is
in motion. Its position with respect to the PCS from the MMS must be known as part of an accurate
calibration. With a measuring frequency of 50 Hz, the laser tracker provides 3D point coordinates with
respect to its internal SOCS. This allows relative comparisons between the obtained trajectories. For
an absolute comparison, the observations of the laser tracker must be transformed into a superordinate
WCS (e.g. UTM projection with respect to the ETRS89) by using known control points. It should be
noted that some uncertainties arise from the use of the control points and the subsequent transformation.
Furthermore, it must be taken into account that the accuracy specifications for the laser tracker from the

(a) (b)

Figure 5.4: Images of the measured area in an urban canyon. Besides the MMS RIEGL VMX-250 used, the building facades
on both sides of the street are also shown in (a) and (b). The respective locations where the images were taken are
shown in Figure 5.2(b).

7Accuracy of ±15 µm + 6 µm/m (as a MPE for the 3D position) (Hexagone Metrology, 2015)
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(a) (b)

Figure 5.5: Measurement configuration to provide a highly accurate reference trajectory. A Leica Absolute Tracker AT960
observes the moving MMS during data acquisition (a). In advance, a CCR is rigidly mounted on the MMS and
calibrated with respect to the PCS (b).

manufacturer are only valid under laboratory conditions and within certain measuring distances. Due to
outdoor applications, atmospheric influences affect the quality of the reference trajectory. Nevertheless,
an accuracy in the sub-millimetre range can be assumed here. These values are only valid if the relative
trajectory is used with respect to the SOCS of the laser tracker. Specific empirical values are not known
for this tracking task and should be determined and considered in the future.

It should also be noted that in the context of this thesis, the scale factor with regard to the underlying UTM
projection is not considered. Influences arising from this can be neglected in relation to the inaccuracies
mentioned above. For the measurement area given here, the scale factor is about 0.9996297, which leads
to an error of about 6 mm at a typical measurement distance of 15 m. For larger measurement areas, this
should be taken into account in future. Regardless of this, time synchronisation between the observation
variables of the MMS and the laser tracker must be ensured. Here, this is realised by an external GNSS
receiver, which stores GPS timestamps with the same frequency of 50 Hz for each 3D coordinate of the
laser tracker. Due to the external tracking, the trajectory is limited to the maximum measuring range of
the laser tracker. According to the manufacturer, this is theoretically 80 m under laboratory conditions
(Hexagone Metrology, 2015), but practically in outdoor areas, it is about 50 m. The acquisition of a
reference pose with respect to the complete 6-DoF is theoretically possible but requires a different target
instead of the CCR. In addition, the measurable range would be further reduced significantly.

To obtain a 3D point cloud, the MI,k coordinates PRiegl,I,k and MII,k coordinates PRiegl,II,k of the two laser
scanners with regard to their respective SOCS are combined for epoch k = 1, . . . ,K in a joint point cloud
PRiegl,k according to

PRiegl,I,k =
[
xRiegl,I,k,1, yRiegl,I,k,1, zRiegl,I,k,1, . . . , xRiegl,I,k,MI,k , yRiegl,I,k,MI,k

, zRiegl,I,k,MI,k

]T
, (5.2a)

PRiegl,II,k =
[
xRiegl,II,k,1, yRiegl,II,k,1, zRiegl,II,k,1, . . . , xRiegl,II,k,MII,k , yRiegl,II,k,MII,k

, zRiegl,II,k,MII,k

]T
, (5.2b)

PRiegl,k =
[
PTRiegl,I,k,P

T
Riegl,II,k

]T
. (5.2c)

Note that MI,k and MII,k can vary per epoch and that for each individual scan point it is known by which
of the two laser scanners it was acquired. Furthermore, one single epoch k contains all observations
of a complete 360° rotation of the laser scanners. Since every single measured point has an individual
timestamp, the averaged timestamp is used as a time reference for the combination of all point observations
in one epoch k. Thus, to a certain extent, a spatial point cloud can be derived as with a 3D laser scanner. For
this purpose, a transformation of all observations with reference to their respective SOCS into a common
coordinate system is required. This is realised in the PCS, which coincides with the SOCS of the IMU.
The necessary transformation parameters are known from the manufacturer.
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In addition, the pose parameters [tMMS,k,θMMS,k]T per epoch k based on the GNSS-IMU positioning unit
are available as further information. These refer directly to the WCS and represented an already filtered
solution

tMMS,k = [tMMS,x,k, tMMS,y,k, tMMS,z,k]T , (5.3a)

θMMS,k = [ωMMS,k, ϕMMS,k, κMMS,k]T . (5.3b)

Within the context of this scenario, it is therefore investigated to what extent the use of complementary
object space information can contribute to an improved georeferencing solution. The independence of this
pose information for ensuring integrity aspects is analysed and possible deviations in accuracy, precision
and reliability are determined. The unfavourable point cloud geometry due to the present laser scanner
arrangement as well as the elongated street canyon have to be considered as special challenges. The
observations of a laser tracker are used for validation purposes. This reference includes the 3D positions
tLT,k which refer to the corresponding SOCS and can be transformed into the superordinate WCS for each
epoch k

tLT,k = [tLT,x,k, tLT,y,k, tLT,z,k]T . (5.4)

Furthermore, the requested quantities are the three translations tRiegl,x,k, tRiegl,y,k and tRiegl,z,k, three rotations
ωRiegl,k, ϕRiegl,k and κRiegl,k, three velocities vRiegl,x,k, vRiegl,y,k and vRiegl,z,k as well as three angular veloci-
ties vRiegl,ω,k, vRiegl,ϕ,k and vRiegl,κ,k per epoch k. As with the UAV, these describe the pose and velocity
of the MMS with respect to a superordinate coordinate system and must be determined with a suitable
georeferencing method.

5.2.3 Additional Object Space Information

Digital Terrain Model

The use of absolute height information is a helpful additional information for georeferencing. A Digital
Terrain Model (DTM) describes the surface of the Earth without considering any objects (e.g. buildings,
plants) (Doyle, Frederick, J., 1978). Nowadays, its realisation is mainly based on airbone laser scanning,
so that a wide availability can be provided. Thus, within the framework of a uniform grid, absolute height
information can be specified with regard to an arbitrary reference system. The DTM used in this appli-
cation example has a grid width of 1 m and refers to the Deutsches Haupthöhennetz 2016 (DHHN2016)
(Landeshauptstadt Hannover, 2017b). The accuracy of this height information is less than 0.3 m, whereas
the associated quality parameter is not indicated. Figure 5.6 shows the height values for the urban areas to
which the measurements in this experiment refer (cf. section 5.2.2). Even if these are exclusively terrain
heights, urban structures are clearly visible. The area of the inner courtyard appears slightly higher with
respect to its surroundings. Overall, the heights in both measuring areas are fairly constant or vary within
the range of the specified accuracy.

Three-dimensional Building Model

Digital city models exist for a variety of international cities which represent the outer shell of buildings
in three dimensions. In general, they are based on building surveys for the cadastre, DTMs for the height
allocation (cf. section 5.2.3) and 3D point clouds from airbone laser scanning (Vosselman and Dijkman,
2001). A distinction is made between different Level of Details (LoDs) according to the standardised
CityGML format (Gröger et al., 2012). While LoD-1 approximates buildings in the form of cubes, LoD-
2 contains standardised roof shapes. In addition, there are also more detailed generalisations, but these
are less widely available (Biljecki et al., 2016). Throughout Germany, 53 million buildings with LoD-1
and 45 million buildings with LoD-2 have been modelled. There the update is annual (AdV, 2020). The
available accuracy in position depends on the data in the official real estate map and may theoretically be a
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few centimetres. However, since the modelling is a highly simplified generalisation of the actual building,
a much more pessimistic value of a few centimetres to a few decimetres must be assumed. The resulting
deviations from reality must be taken into account in the further course of this thesis. The resulting
deviations from reality must be taken into account in the further course of this thesis. The accuracy in the
height component is 5 m for the LoD-1 and 1 m for the LoD-2, whereas the associated quality parameter
is not indicated (Landeshauptstadt Hannover, 2017a).

Each building is modelled in three dimensions based on its outline. The coordinates of the respective
vertices are available in a superordinate coordinate system (e.g. UTM projection with respect to the
ETRS89) (Landeshauptstadt Hannover, 2017a). Thus absolute information is available, and the building
model can be interpreted as a network in which each node is assigned a three-dimensional coordinate.
The topology of the individual nodes is known, so that individual planes in the form of arbitrary planar
polygons are defined by at least three nodes (vertices). Figure 5.7 shows the building models used for the
two measurement areas.

(a) (b)

Figure 5.6: Part of the DTM for the two different measurement areas. For the inner courtyard (mainly red/yellow area in the left
half of the map) in (a) and the urban canyon (yellow road in north-south direction with several red spots in the left
half of the map) in (b). Note the different scaling of the colour bar with respect to the absolute height shown in both
figures.

(a) (b) (c)

Figure 5.7: Illustration of the three-dimensional building model with LoD-2. The part of the inner courtyard (a) and the urban
canyon (b) is shown as well as the detailed representation of a single building (c) with respective nodes/vertices
(black circles) and the topology (red lines).
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5.3 State of the Art Methods

In section 5.2.1 two laser scanner-based MSSs are presented, which shall be georeferenced accurately,
precisely, reliably and continuously in two different environments (cf. section 5.2.2)8. However, the
respective environment holds challenges with regard to these georeferencing requirements. For this reason,
a general overview of current possibilities for georeferencing an arbitrary MSS is given below. This
enables a better classification of the own new approach compared to the existing methods.

The basic concept and definition of georeferencing is already given in section 4.1. Generally, all individual
sensors of an arbitrary MSS acquire their measurement data with respect to their unique local SOCS.
With a suitable strategy for calibration, the relationship between the individual local SOCSs and one
common superordinate PCS can be realised (cf. section 4.2). However, if the spatial reference to a
global WCS9 is also required, georeferencing is necessary. This enables a unique determination of the
pose of an arbitrary MSS with respect to its spatial environment. Especially with kinematic MSSs, the
temporal changes of the pose are of special interest. The accurate, precise, reliable and also efficient
solution of this task depends strongly on the available sensors and hardware, the environment and the
respective requirements. Consequently, there are a multitude of approaches that depend on the mentioned
influencing factors. All of these methods can basically be divided into the three categories direct, indirect
and data-driven georeferencing (Schuhmacher and Böhm, 2005; Paffenholz, 2012; Neitzel and Neumann,
2013; Holst et al., 2015; Vogel et al., 2016). Generally, these techniques can be applied to both static and
kinematic MSSs. However, kinematic systems are in the main focus of this thesis. The three categories
are briefly introduced below and discussed in terms of their respective disadvantages and suitability for
application. Specific examples of the individual techniques are directly related to the compilation of
different kinematic MSSs in Table 4.1. Subsequently, a selection of currently relevant approaches is given
in connection with the experiment described in section 5.2 and the associated objectives. Furthermore,
Kuutti et al. (2018) provides a comprehensive compilation of localisation techniques and their respective
potentials, especially for autonomous vehicle applications. This includes the use of onboard sensors as
well as cooperative localisation methods.

Direct10 georeferencing is characterised by the fact that all 6-DoF of the MSS are determined directly
by sensors, which are part of the system and therefore rigidly attached to it. In most cases these are
GNSS antennas, IMUs or odometers. Furthermore, reflectors can also be mounted on the MSS, which are
tracked by an external sensor (e.g. a total station or laser tracker). In general, the combined use of GNSS
and IMU measurements is highly recommended. Thus all 6-DoF can be determined. An advantage is
that GNSS observations allow absolute positioning, which is not directly possible with other sensors. To
achieve highest accuracies11 (up to 1 cm to 2 cm), methods like differential GNSS or real-time kinematic
are required (Gleason and Gebre-Egziabher, 2009, pp. 349). However, as already mentioned in section
5.1, no reliable and accurate positioning can be guaranteed in urban areas. This is in contrast to important
integrity aspects of autonomous driving or UAVs, for example (Wörner et al., 2016; Reid et al., 2019).
IMUs are affected by temporal bias drifts due to integration errors with increased measuring time. This
depends on the respective accuracy class and is additionally superposed by a significant noise characteris-
tic (Grejner-Brzezinska et al., 2005; Hesch et al., 2010; Glennie, 2007). Thus, IMUs cannot compensate
for the disadvantages of GNSS observations in urban areas (Zhang, 2019). Nevertheless, in the short term
for individual epochs IMUs show a locally helpful inner accuracy. The external tracking of a reflector
means that the flexibility of direct georeferencing is lost and the mobility of the kinematic MSS is limited
depending on the constant line of sight. In addition, the applicability depends on the environment and
is, therefore, not a practical solution. This method can be reasonable only for validation purposes with a
sensor of higher accuracy (e.g. laser tracker).

8Although the MMS RIEGL VMX-250 provides pose information in the second scenario, those are only used here for validation
purposes

9The WCS is characterised by the fact that it is a unique and earth-fixed coordinate system and thus represents a relationship to
its environment. In general, it is signalised by physical or artificial control points. Its spatial dimensions can be arbitrary.

10Also referred to as sensor-driven
11Indicated as 95 % confidence interval
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For indirect12 georeferencing, the sensors used are also part of the MSS, but require known targets in
a superordinate earth-fixed coordinate system to determine the pose parameters. These are mainly laser
scanners and stereo or mono cameras. The targets can be signalised control points or geometric primitives
and require a prior alignment in terms of global position and orientation. The pose estimation is then
based on a combination of the locally measured observations of the sensors and the targets in the super-
ordinate coordinate system. This procedure requires certain effort in the realisation and pre-acquisition
of the targets. Depending on the complexity of the environment (e.g. full visibility) and requested flexi-
bility and reliability, the effort can be immense. Therefore, for large-scale areas, which extend over more
than one road section, this is not economically feasible. Consequently, this procedure is mainly used for
georeferencing of static MSSs (Paffenholz, 2012).

Data-driven georeferencing has similarities to the aforementioned indirect georeferencing. The difference
is that instead of signalised targets, already existing reference data are used. These can be already georef-
erenced point clouds, digital building models as well as digital terrain or surface models. The assignment
between the measured observations of the MSS and the available data is based on various matching tech-
niques. The quality of this type of georeferencing depends directly on the quality and up-to-dateness
of the preliminary information. The most popular assignment method is the so-called Iterative Closest
Point (ICP) algorithm from Besl and McKay (1992), which has numerous variations today. The class
of data-driven approaches for georeferencing an MSS comprises a broad range. In particular, methods
based on the Simultaneous Localisation and Mapping (SLAM) approach could be mentioned here. This
approach was initially developed by Smith and Cheeseman (1986) and comprises various adaptations and
further developments today. The special feature of such an approach is that no prior information is re-
quired. Instead, the georeferencing is solved, and a map of the environment is generated simultaneously.
Many of these SLAM approaches can be assigned to the robotics field (Thrun et al., 2005; Nüchter et al.,
2007; Siciliano et al., 2009). However, quality parameters are not always fully taken into account and dis-
closed. This is a major difference to methods in geodesy. In addition, SLAM approaches usually provide
only relative pose information. This leads to a precise solution, while at the same time, the accuracy is
poor compared to reality. Therefore, it is not compatible with integrity requirements for accurate georef-
erencing during autonomous driving. Nevertheless, it is a method that can be used independently of its
environment and without any prior information. The only prerequisite is that suitable features (e.g. poles,
edges) are consistently available in sufficient quantity. For SLAM approaches mainly laser scanners are
used. The application of cameras is also possible, which is referred to as visual SLAM (Davison, 2003;
Konolige and Agrawal, 2008; Steffen, 2013). However, an unambiguous texture is necessary here. Fur-
thermore, only relatively low frequencies can be achieved compared to the use of a laser scanner. However,
in comparison to laser scanning, the measurements from cameras (images) take place simultaneously.

It can be concluded that each of the three categories has its advantages and disadvantages. In order to
provide suitable solutions for the challenges in urban areas (cf. section 5.1), it is important to apply
the described approaches appropriately. Basically, the use of GNSS observations and data from an IMU
is indispensable. However, it is necessary to identify insufficient situations and to provide alternative
solutions. From the perspective of the GNSS community, two basic approaches, among others, are pursued
to counteract this drawback (Zhang et al., 2018). On the one hand, there are approaches which identify
the NLOS observations with the aid of 3D building models and thus can be excluded from the position
estimation. On the other, the availability of such 3D city models can also be used to create a so-called
predictive GNSS positioning error map. This can then be used to classify the available GNSS observations
with respect to their quality. This information can be considered for an improved estimation. The basis
in each case is the consideration of 3D building models of the respective environment. Such models are
available at least for a variety of urban areas worldwide and are already used as important additional
information for various applications (Biljecki et al., 2015). As in Zhang et al. (2018) it is also here to a
large extent about visibility analyses (Wang et al., 2013).

The information from 3D building models can also be used directly to estimate the pose of a kinematic
MSS. In Hebel et al. (2009) this is applied on airborne laser scanning. Their goal is to improve the
inaccurate pose based on GNSS and IMU observations. For this purpose, planes are detected in the point

12Also referred to as target-based
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cloud of a laser scanner and assigned to known planes of a building model. A similar approach is applied
in Bureick et al. (2019b), where 3D point observations of a laser scanner are assigned to planes of a
known building model with LoD-2 to improve the pose of a UAV in a simulated environment. The basis
is the IEKF for explicit and implicit measurement equations from Vogel et al. (2018, 2019), as also given
in section 3.1. In Bureick et al. (2019a), the approach is validated with real data and also extended by
additional assignments to a DTM. A detailed description and further extension of this approach is given in
section 5.4. Dehbi et al. (2019) are using an approach that is also intended to improve GNSS trajectories
within urban environments. No filter approach is used here, but the captured point cloud is matched to
a city model with LoD-1by using a point-to-plane ICP. Therefore a Support Vector Machine (SVM) is
used to distinguish between facade elements and remaining points. A building model with LoD-2 is also
used in Garcia-Fernandez and Schön (2019). Here the known planes serve as landmarks and are used as
Vehicle-to-Infrastructure (V2I) measurements for pose estimation in collaborative positioning.

Besides a building model, other information from the object space can be used to support the pose estima-
tion, which already happens frequently. Using laser scanner observations, the pose of a vehicle is improved
in Weiss (2011) with regard to driver assistance systems. For this purpose, an initial solution is improved
by means of a highly accurate digital map. However, this only refers to the 2D position and the heading
angle13. An estimation and improvement of all 6-DoF is not made. For some applications, this might be
sufficient, but if, for example, accurate 3D point clouds are to be generated based on the pose information,
additional degrees of freedom are missing. Also Soloviev et al. (2007) show that extracted object space
information from laser scanner measurements, e.g. in the form of line segments, can be used to estimate
pose parameters. Vennegeerts (2011) also uses information from object space for pose estimation of a
laser scanner-based MMS. Line segments are detected over several epochs and serve for high-frequency
stabilisation of the roll angle. Fixed landmarks such as lanterns, traffic lights or traffic signs are used for
localisation tasks in Brenner and Hofmann (2012); Hofmann (2017); Schlichting (2018).

Object space information can also be considered by constraints. In terms of georeferencing a kinematic
MSS, Vogel et al. (2018, 2019) introduces geometric conditions regarding the angular relationships be-
tween different walls. Further restrictions, which contribute to an improved estimation, may be present,
e.g. in the form of road boundaries (Brembeck, 2019) or planar surface assumptions (Nüchter et al., 2015).
Brembeck formulates these as inequalities by using MHE. In Zwiener (2019), a robust simplex-KF for
explicit measurement equations is presented, which considers inequalities and conditional equations for
an improved estimation by limiting the solution space. This approach is applied to the navigation solution
of a UAV, but does not explicitly refer to challenging environments like urban canyons.

Constraints can also be considered in SLAM approaches. In Jung et al. (2015), line features are extracted
from a laser scanner point cloud, and geometric constraints regarding perpendicularity and parallelism
are established. This contributes to improved localisation within an indoor environment. Nguyen et al.
(2006) also uses lines for localisation purposes that are exclusively parallel or perpendicular to each other.
SLAM methods for pose determination are used much more frequently, which do not explicitly consider
additional constraints. The simultaneous localisation and acquisition of the environment is solved in
Bosse et al. (2012) exclusively on the basis of a spring-mounted 2D laser scanner and an IMU. For this
purpose, the trajectory is partitioned into individual sub-scans, and for each, a separate rigid transformation
is calculated by using ICP. This approach is refined by a non-rigid registration in Kaul et al. (2016) for
georeferencing of a UAV by using a continuous-time SLAM approach. A time-discrete approach is not
possible there because no high-frequency sensors are used, and the UAV is constantly in motion. In
Elseberg et al. (2013a) a semi-rigid registration of single scan strips of a laser scanner based MSS is
applied. A SLAM approach for urban environments is presented in Nüchter et al. (2007). They used a
stop-and-go procedure, whereby the individual scans are assigned to each other via ICP.

Although there are several different SLAM approaches, they exist exclusively in the context of explicit
relationships. Besides the disadvantages mentioned above, there is also a lack of long-term support. Small
errors can accumulate over time. Therefore, independent and complementary information from a building
model is recommended. Therefore, considering the scenarios described in section 5.2, many of the ap-
proaches presented here are not applicable. Only laser scanner observations and object space information

13Also referred to as azimut or yaw
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regarding the ground and surrounding buildings are available. Thus, the application of a method which
belongs to the class of data-driven approaches is appropriate. This is applied in the following section 5.4.

5.4 Novel Information-based Georeferencing Approach

As shown in section 5.3, there are many methods for georeferencing a kinematic MSS. However, for
complex and challenging environments, such as urban areas, there is still potential for improvement. For
georeferencing of the specific kinematic MSSs introduced in section 5.2.1, it is necessary to find the op-
timal solution under the given conditions. A new approach is introduced in Bureick et al. (2019b), which
is mainly based on the combination of 3D laser scanner observations and their assignment to building fa-
cades. The facade elements are regarded as planes, which are allocated in a digital city model with global
coordinate information (cf. section 5.2.3). The first application with real data in an outdoor environment
has already been performed in Bureick et al. (2019a). This approach is based on the versatile recursive
state-space filter for explicit and implicit measurement equations from section 3.1. The main idea has al-
ready been presented in Vogel et al. (2019) in parts and was used to georeference a kinematic MSS within
an indoor environment. The innovations in this thesis include the consideration of geometric constraints
when they are applied on two real data sets, which were introduced in section 5.2.2. Furthermore, for
the first time, a highly accurate reference solution is realised in an outdoor environment and is used for
validation purposes. The basic idea of the novel approach is explained below.

5.4.1 Basic Idea

To ensure the integrity of a kinematic MSS regardless of the environment, georeferencing is achieved by
using two independent and complementary information sources. If there are appropriate conditions for
georeferencing on the basis of GNSS observations (cf. Figure 5.8(a)), this is the method of choice in
combination with an IMU. Several established methods already exist for this use case (Petovello, 2004),
and therefore they are not further discussed here. The opposite is true in urban environments (cf. Figure
5.8(c)), where GNSS and IMU observations alone are insufficient. Here, information from a 3D building
model must be used additionally. Moreover, even if the building model is partly not available in such
challenging environments14, helpful additional information can be used by geometric constraints. For the
application of such geometric restrictions (e.g. facades are generally perpendicular to the ground), the
independent segmentation of facade elements by using a suitable method15 is required. A justification
and specific definition of such a geometric condition can be based on standards from the civil engineering
industry (DIN 18202:2019-07, 2019). In addition to the common solution when using GNSS and IMU
observations, the integration of information from the building model enables a long-term stabilisation of
the pose. This can be useful even if appropriate GNSS conditions exist (cf. Figure 5.8(b)). This is because
both information sources can be used independently of each other to verify the integrity of the kinematic
MSS. The use of additional independent observations from a DTM (cf. section 5.2.3) can be realised
regardless of the environment and is generally reasonable.

The realisation of the approach itself is based on three central elements. Within each epoch k = 1, . . . ,K
it is first to transform the measured laser scanner point cloud PSOCS

k into the superordinate WCS. The
transformation parameters required for this are based on sufficiently accurate approximate values in the
first epoch. For the following epochs, the predicted poses of the MSS are used. Then the point cloud
PWCS

k is aligned with respect to the WCS and the assignment with regard to captured buildings and the
terrain surface can be applied. The absolute vertices contained in the building model, as well as the
absolute height information from the DTM, are used for this purpose. The assignment results in a classified
point cloud CWCS

k , in which the relationship to corresponding surfaces of the building model or grid
cells of the DTM are stored. Subsequently, this connection with the available object space information
enables an estimation in the versatile IEKF for explicit and implicit measurement equations (cf. section

14A possible reason for this absence would be, for example, an outdated model
15For example, the use of a SVM according to (Dehbi et al., 2019) can be mentioned here
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3.1). Additional constraints regarding the states are taken into account by using an arbitrarily suitable
method according to section 3.2. Here, there is the possibility of hard constraints (cf. section 2.3.1) or the
permission of minimal deviations when using SC (cf. section 2.3.2).

The general procedure of the information-based georeferencing approach is summarised in Figure 5.9.
Besides the three central elements, spatial subsampling is also mentioned there. This enables an optional
reduction of the available observation data. Therefore, several 3D point observations within a certain

(a) (b) (c)

Figure 5.8: Simplified overview of three typical environments in which a kinematic MSS operates. The example shows a vehicle
with a laser scanner (red circle), a GNSS antenna (yellow heptagon) and an IMU (blue square). Shown is a country
road without buildings (a), a sparsely populated suburban road (b) and an urban canyon (c). Exemplary GNSS
observations are shown with black dashed lines. Information from a building model are symbolised with red outlines.

Figure 5.9: Simplified process of the information-based approach for georeferencing a laser scanner-based MSS in urban areas.
Central elements represent the transformation, assignment and application in the versatile IEKF of the 3D point
clouds within each epoch k. The variable m specifies the iterations within the update step. The start of the flowchart
is the acquisition of a 3D point cloud with respect to a SOCS for the first epoch k = 1 (lower left corner).
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three-dimensional area are reduced to one single mean observation. The side length dSubsampling of this
voxel can be freely chosen. Although this allows faster run times, important information may be lost.
Even if no entire areas are neglected by the spatial scanning, this leads to additional weakening of areas
with less information at all. Later, it becomes apparent that this can have negative consequences for the
assignment as well as the subsequent state estimation. However, spatial subsampling results in a better
homogeneity of the point cloud and denser areas tend to have a less strong influence. This addresses the
problem already mentioned in section 3.3. It is usually not mandatory to use all available observations for
the estimation. However, the selection of the observations to be used is essential. Considering the spatial
distribution is a valid concept, but it would make more sense to use the current information content and
contribution of a single observation. However, this is not within the scope of this thesis. Nevertheless,
it must be noted that this spatial subsampling method results in observations that have never actually
been measured. Further details of the three central elements of the approach presented here are explained
subsequently.

5.4.2 Transformation of the Laser Scanner Observations

An essential requirement for the following steps is the transformation of the measured laser scanner obser-
vations PSOCS

k from their local SOCS to a superordinate WCS (in which the models of the object-space are
also located). Thus, point clouds of several epochs can be connected with each other and the subsequent
assignment to the models can be realised. In the context of the MSSs and measurement environments
from section 5.2 the point clouds PSOCS

k corresponds to PUAV,k (cf. Equation (5.1)) or PRiegl,k (cf. Equa-
tion (5.2c)), respectively. The transformed point clouds PWCS

k result from

PWCS
k = tSOCS-WCS,k + RSOCS-WCS,k (θSOCS-WCS,k) · PSOCS

k , (5.5)

where tSOCS-WCS,k compose the three translations [tSOCS-WCS,x,k, tSOCS-WCS,y,k, tSOCS-WCS,z,k]T and RSOCS-WCS,k is the
3D rotation matrix containing the three orientation angles θSOCS-WCS,k = [ωSOCS-WCS,k, ϕSOCS-WCS,k, κSOCS-WCS,k]T .
The following relationship applies to this rotation matrix

RSOCS-WCS,k (θSOCS-WCS,k) = Rx,SOCS-WCS,k (ωSOCS-WCS,k) · Ry,SOCS-WCS,k (ϕSOCS-WCS,k)
· Rz,SOCS-WCS,k (κSOCS-WCS,k) ,

(5.6)

which defines the concatenation of the individual rotation angles around the corresponding rotation axes.
Together the three translations and three rotations form the corresponding transformation parameters,
which must be renewed for each epoch k = 1, . . . ,K. Their numerical values are initially expressed by
the predicted state (or via sufficiently accurate approximate values for the first epoch k = 1). These six
time-dependent transformation parameters provide the requested pose of the respective kinematic MSS.
To ensure the most accurate georeferencing possible, the predicted states must be corrected for each epoch
k = 1, . . . ,K by available observations and additional information. For this purpose, the assignment of
the point observations to the corresponding digital models of the object space is necessary as an essential
intermediate step.

It should also be noted that the transformation from SOCS to WCS can be subdivided by an unlimited
amount of intermediate transformations. This concerns for example the observation data from the MMS
RIEGL VMX-250 in Equation (5.2c), where the initial observations are transformed from their SOCS to
PCS and then to WCS. Here, all necessary transformations are simplified and summarised as one single
transformation.

5.4.3 Assignment of the Laser Scanner Observations

The absolute information contained in the building model and in the DTM must be linked to the acquired
laser scanner observations of the kinematic MSS in order to be used appropriately. The acquired 3D point
cloud represents a reconstruction of the spatial environment and thus contains a variety of measurements
from all objects located therein. This also includes measurements regarding the building facades and
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the ground, which in turn are approximated in the corresponding models. If the measured 3D point
coordinates are assigned to these objects, a direct relationship between the sensor of the MSS and the
available object space information can be established. However, a reliable assignment in terms of accuracy,
precision, correctness and completeness depends strongly on the quality of the laser scanner and the
models themselves. In addition, the laser scanner and the associated MSS must be in the same reference
system as the models, so that a suitable assignment can be achieved. The latter is already done by the
previously transformed point cloud PWCS

k .

In principle, there are four possibilities for each 3D point observation to be assigned. Point observations
that belong to the ground are assigned to the corresponding grid cell of the DTM. Observations that are
assigned to a plane of the building model are related to this model and provide an absolute coordinate
reference. In addition, there are 3D points that belong to a building facade, but this plane itself is not
present in the building model. Therefore no global reference can be established for these observations,
but a geometric constraint can be applied. The last possibility includes all observations of any object
(e.g. cars, persons, vegetation), which do not contribute to the georeferencing and are not considered
further. For the other three options, the corresponding assignment principle and resulting possibilities are
described below in detail.

Assignment to Planes from the Building Model

As described in section 5.2.3, the generalised building model contains the vertices of all buildings with
absolute coordinates and their respective topology. From this information, individual geometric planes
can be derived, which describe each facade. The individual elements of the acquired and transformed
point cloud PWCS

k need to be assigned to these geometrical primitives. However, the identification and
assignment of such laser scanner observations to geometrical primitives is not the main focus of this thesis
but represents a crucial processing step. For this reason, the approach used here is only briefly described
and instead further references are referred to. The building model contains j = 1, . . . , J vertices Vj in
total, with

Vj = [Vx,j,Vy,j,Vz,j]T . (5.7)

This 3D coordinates are absolute and refer to the WCS. Based on these J vertices, all e = 1, . . . ,E
facades can be defined as planes in the Hesse normal form. This includes the 3 × 1 unit normal vector
ne = [nx,e, ny,e, nz,e]T as well as the distance parameter to the origin de for each plane. The resulting
relationship is shown in simplified form in Figure 5.10. Basically, the assignment is performed by using
the Euclidean distance of each measured point to each plane of the building model (Unger et al., 2016,
2017)16. The individual points are assigned to the nearest plane if a certain maximum distance dmax is

Figure 5.10: Schematic illustration of the general principle for assigning laser scanner points (grey dots) to a building model
(red). In addition, the corresponding coordinate systems are shown. Modified according to Bureick et al. (2019a).

16Depending on the measurement area, the building model can contain several thousand or even more planes. To avoid the need
to consider all these planes when assigning each individual observation, it is recommended to limit the search space. This can
be done by using the predicted pose, and the maximum measuring range of the laser scanner applied.
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not exceeded. This threshold is freely selectable and depends on the uncertainty of the laser scanner and
building model used. In this thesis dmax = 0.5 m is used for both scenarios. Observations that are not
assigned to any plane are ignored and do not contribute to the georeferencing task. As a result, the assigned
laser scanner point cloud CWCS

k includes the information to which plane e = 1, . . . ,E each point belongs.
Thus, this point cloud consists of E subsets for each plane with je = 1, . . . , Je assigned 3D coordinates.
These subsets are also referred to as CWCS

k,e .

Misalignment at intersections of two planes cannot be completely excluded. To counteract this issue, the
assignment can subsequently be refined, or outliers can be eliminated. For example, a plane estimation in a
Random Sample Consensus (RANSAC) procedure is suitable for this purpose (Fischler and Bolles, 1981).
A lower threshold value dRANSAC is selected for this compared to the original assignment. Furthermore, a
minimum number of assigned points per plane can also be defined and applied. This further reduces the
use of wrong assignments. In this thesis dRANSAC = 0.15 m and a minimum of five 3D points per plane is
used for both scenarios. Selecting a too low threshold value dRANSAC or specifying a too large minimum
number of assigned points can also lead to the loss of important information.

Assignment to Grid Cells from the Digital Terrain Model

The assignment of the point cloud with regard to the DTM is basically analogous to the building model.
Individual planes can also be applied to the various cells of the DTM which is available in a grid structure
(cf. section 5.2.3). Here the procedure is simplified, as the assignment is performed to an uniform two-
dimensional grid. The individual points are also assigned and stored in CWCS

k by using the distance to the
nearest plane. As with the E planes of the building model, the point observations assigned to each grid
cell can also be specified as CWCS

k,e . Therefore, the set e = {1, . . . ,E} is extended by the g = {1, . . . ,G}
grid cells to e = {1, . . . ,E + G}.

However, a special aspect should be mentioned here. Of all laser scanner observations which are assigned
to the same grid cell, only that observation with the lowest altitude component is used. All the other
observations in the grid cell are neglected. This leads to a reduced overall influence in the estimation but
avoids wrong height information. With an edge length of one metre, the grid can contain many different
height values of the point cloud. This is the case, for example, if a parked vehicle is partially in the
corresponding grid and was captured by the laser scanner.

Assignment to Facades That Are Not Included in the Building Model

The core of the information-based georeferencing approach is based on the assignment of laser scanner
observations to digital models and their subsequent use. Therefore, it is assumed that such models are
not only available, but also represent reality as accurately as possible within the specifications. This
ensures an independent and complementary georeferencing under consideration of integrity aspects in
urban areas. However, if the building model is not up-to-date in parts and thus does not correspond to
reality, information from the object space should still be used in this approach. There could be a case
that a building exists in reality but is not stored in the building model. Consequently, observations of the
laser scanner on corresponding facade elements are available, but cannot be assigned without a model.
However, the information-based approach does not reject these observations but rather takes them into
account when estimating the pose. Even if there is no absolute information regarding the facade, having
the knowledge that there is a facade and that it is perpendicular to the ground (according to standards from
the civil engineering industry (DIN 18202:2019-07, 2019)) can be used. This information is introduced by
means of a constraint. The only requirement for the realisation of this method is identifying the respective
facades in the point cloud PWCS

k . For this purpose, various methods exist, for example Schindler et al.
(2011); Nurunnabi et al. (2015); Brenner (2016); Dehbi et al. (2019). However, in the context of this
thesis, the assignment is solved by using the building model, but the absolute information is not used
afterwards. This allows direct comparison regarding the impact of such a geometric constraint on the pose
estimation.
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The general procedure for the assignment of all laser scanner observations with regard to the different
categories is shown in a simplified form in Figure 5.11. For the assignment to an unknown facade — which
is therefore not stored in the building model — it is assumed that this facade can be identified by using a
suitable additional method. For this category, constraints concerning the identified plane parameters are
applied subsequently.

5.4.4 Application of the Versatile Recursive State-space Filter

Once the point cloud observations within each epoch k = 1, . . . ,K are assigned to the building model, to
the DTM or to a facade without absolute coordinates, this information is used within the framework of
the versatile IEKF to estimate the pose of the kinematic MSS. The theoretical background of this filter
approach is given in section 3.1. The state and observation vector, the system and observation model, as
well as the non-linear state constraints, are introduced below.

State Parameters and System Equation

The state vector xk comprises mainly the position tSOCS-WCS,k and the orientation θSOCS-WCS,k of the kine-
matic MSS in all three spatial directions at epoch k = 1, . . . ,K. Other states that are also included are
the speed vSOCS-WCS,t,k = [vSOCS-WCS,x,k, vSOCS-WCS,y,k, vSOCS-WCS,z,k]T and the angular velocity vSOCS-WCS,θ,k =
[vSOCS-WCS,ω,k, vSOCS-WCS,ϕ,k, vSOCS-WCS,κ,k]T . Thus, in total 12 states are to be determined and are part of the
state vector

xk =
[
tTSOCS-WCS,k,θ

T
SOCS-WCS,k, v

T
SOCS-WCS,t,k, v

T
SOCS-WCS,θ,k

]T
. (5.8)

Figure 5.11: Process of assigning laser scanner observations. Within an epoch k, all NEG 3D point observations PWCS
k,1:NEG

are
assigned to the four categories (grey boxes). For each epoch, further procedures (red boxes) have to be considered
for the observations assigned to the different categories. The assigned observations are stored in CWCS

k . The start
of the flowchart is the availability of a 3D point cloud with respect to the WCS at any given epoch k (left side).
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The initial state vector x0 can be defined based on a known pose (this applies to the Riegl MMS used in
the urban canyon scenario) or it should be specified by using a sufficiently accurate assumption. For the
initial VCM Σxx,0 of the state vector the following applies

Σxx,0 =


I3 · σ2

x,t 0 0 0
0 I3 · σ2

x,θ 0 0
0 0 I3 · σ2

x,vt 0
0 0 0 I3 · σ2

x,vθ

 , (5.9)

where σx,t, σx,θ, σx,vt and σx,vθ
are the corresponding initial standard deviations for the four individual

groups of the state vector. No correlations between the individual elements are assumed for simplification.
The system model f(·) used is kept quite simple, in which the predicted pose x−k is propagated by the last
filtered pose x+

k−1. Speed and angular velocity are assumed to be constant in this model (Bar-Shalom et al.,
2001, pp. 268 ff.). Taking into account the time period between two consecutive epochs ∆τ , the system
equations f

(
x+

k−1,uk−1, 0
)

are

t−SOCS-WCS,k = t+SOCS-WCS,k−1 + v+
SOCS-WCS,t,k−1 ·∆τ, (5.10a)

θ−SOCS-WCS,k = θ+
SOCS-WCS,k−1 + v+

SOCS-WCS,θ,k−1 ·∆τ, (5.10b)

v−SOCS-WCS,t,k = v+
SOCS-WCS,t,k−1, (5.10c)

v−SOCS-WCS,θ,k = v+
SOCS-WCS,θ,k−1. (5.10d)

The predicated state estimate x−k can then be determined according to Equation (2.71). Here, the control
vector uk−1 is assumed to be 0. This linear system model could be improved. However, this is not
essential within the framework of the approach used and is not the focus of this thesis. The process noise
wk is defined separately within the VCM Σww,k for the four state groups, where the following applies

Σww,k =


I3 · σ2

w,t 0 0 0
0 I3 · σ2

w,θ 0 0
0 0 I3 · σ2

w,vt 0
0 0 0 I3 · σ2

w,vθ

 . (5.11)

Here, σw,t, σw,θ, σw,vt and σw,vθ
are the individual standard deviations for the components of the state

vector. It should be mentioned that the process noise applied here is a simplified model which should be
refined in the future. For this purpose, different models are particularly suitable, which can be derived
directly from the system model on the basis of the differential equations (e.g. Bar-Shalom et al. (2001,
pp. 270 ff.) and Grewal and Andrews (2015, pp. 145 ff.)). Finally, the VCM Σ−xx,k of the predicted state
results from Equation (2.72).

Observation and Measurement Equation

The observation vector lk is defined by the laser scanner observations assigned to the individual planes of
the building model or the grid cells per epoch with respect to their SOCS. This also includes observations
of facades that are not stored with absolute information in the building model. The total number of
observations thus varies per epoch. This depends on the total number of assigned building planes E and
grid cells G, as well as on the contained individual 3D points Je. The total number of observations within

each epoch k is defined as NEG. Furthermore, the pose
[
tTGNSS,k,θ

T
IMU,k

]T
of the GNSS-IMU positioning unit

can be considered as additional observations17. The following therefore applies

lk =
[(

CSOCS
k

)T
, tTGNSS,k,θ

T
IMU,k

]
. (5.12)

17At least this is applicable to the scenario within the urban canyon where such information is constantly available
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In detail, the assigned point cloud information CSOCS
k for each plane in the observation vector lk is com-

posed as follows

lk =
[(

CSOCS
k,1

)T
, . . . ,

(
CSOCS

k,E+G

)T
, tTGNSS,k,θ

T
IMU,k

]
(5.13a)

=
[(

CSOCS
k,1,11

)T
, . . . ,

(
CSOCS

k,E+G,JE+G

)T
, tTGNSS,k,θ

T
IMU,k

]
(5.13b)

=
[
xSOCS

k,1,11 , y
SOCS
k,1,11 , z

SOCS
k,1,11 , . . . , x

SOCS
k,E+G,JE+G

, ySOCS
k,E+G,JE+G

, zSOCS
k,E+G,JE+G

, tTGNSS,k,θ
T
IMU,k

]
. (5.13c)

The associated standard deviations of the individual observation groups are summarised in the VCM Σll,k
according to

Σll,k =

INEG · σ2
l,LS 0 0

0 I3 · σ2
l,Position 0

0 0 I3 · σ2
l,Orientation

 . (5.14)

The measurement equation hI(·) follows the transformation of the point observations from the SOCS into
the WCS according to Equation (5.5) while fulfilling the corresponding plane equation. This is an implicit
equation and must be applied to each individual assigned 3D point. The following applies

0 = hI,e,je

(
lk, xk

)
(5.15a)

= nTe · CWCS
k,e,je
− de (5.15b)

= nTe ·
(

tSOCS-WCS,k + RSOCS-WCS,k (θSOCS-WCS,k) · CSOCS
k,e,je

)
− de (5.15c)

=
[
nx,e ny,e nz,e

]
·


tSOCS-WCS,x,k

tSOCS-WCS,y,k

tSOCS-WCS,z,k

+ RSOCS-WCS,k (θSOCS-WCS,k) ·

xSOCS
k,e,je

ySOCS
k,e,je

zSOCS
k,e,je


− de. (5.15d)

Here the plane parameters ne and de are deterministic quantities and can be derived from the building
model. It should be noted that in this way, no uncertainty information is taken into account, and the existing
generalisation effects can have a negative impact on the estimation result. Alternatively, their consideration
could also be done as additional observations with stochastic prior information or as additional parameters.
However, both lead to the disadvantage that the dimension of the estimation problem would increase
considerably. Furthermore, if they are introduced as parameters, the underlying vertices of the building
model should also be included, and their topology should also be considered. If the corresponding plane is
not stored with absolute coordinate information in the building model, the respective four plane variables
are automatically considered as parameters to be estimated and have to be included in the state vector (cf.
Equation 5.8). Further details on this case will follow separately.

Additional observations in terms of tGNSS,k and θIMU,k are considered by the explicit measurement equation
hII(·), whereby the following applies

0 = lk + vk − hII (xk) (5.16a)

=
[

tSOCS-WCS,k

θSOCS-WCS,k

]
−
[

tGNSS,k

θIMU,k

]
(5.16b)

=
[
tSOCS-WCS,x,k tSOCS-WCS,y,k tSOCS-WCS,z,k ωSOCS-WCS,k ϕSOCS-WCS,k κSOCS-WCS,k

]T
−
[
tGNSS,x,k tGNSS,y,k tGNSS,z,k ωIMU,k ϕIMU,k κIMU,k

]T
.

(5.16c)
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Non-linear State Constraints

For all the observed facades that are not stored in the building model, geometric constraints regarding their
plane parameters have to be considered. For this, the corresponding elements ne = [nx,e, ny,e, nz,e]T must
be included in the state vector xk (cf. Equation (5.8)) as well. Consequently, the measurement equation
hI(·) (cf. Equation (5.15)) remains valid for the corresponding laser scanner observations. However, the
deterministic plane parameters contained in this equation are replaced by the previously extended elements
(plane parameters) of the state vector. This, in turn, requires the availability of corresponding approximate
values. For this purpose a plane estimation can be accomplished by the assigned point observations,
for example according to Drixler (1993). Thus, initial uncertainty information I3 · σx,n and σx,d is also
available for the extended VCM Σxx,k of the state vector. The process noise in Equation (5.11) is also
extended accordingly by I3 ·σ2

w,n and σ2
w,d. These corresponding noise values must be defined in advance.

Furthermore, the system model in Equation (5.10a) is enlarged by

n−SOCS-WCS,k = n+
SOCS-WCS,k−1. (5.17)

Afterwards, the geometric constraints can be applied with regard to these states. In this thesis, this is
accomplished by two non-linear equations. The function gI,e (x) ensures that the normal vector of the
plane has the unit length 1 according to

gI,e (x) = ||ne|| (5.18a)

=
√

n2
x,e + n2

y,e + n2
z,e (5.18b)

= bI = 1. (5.18c)

Furthermore, an intersection angle of 90° between the facade plane and the X-Y coordinate plane is defined
and applied with function gII,e (x). The following applies

gII,e (xk) = cos−1
( |ne · nX-Y|
|ne| · |nX-Y|

)
(5.19a)

= cos−1

 |nx,enX-Yx + ny,enX-Yy + nz,enX-Yz |√
n2
x,e + n2

y,e + n2
z,e ·

√
n2

X-Yx
+ n2

X-Yy
+ n2

X-Yz

 (5.19b)

= bII = 90°. (5.19c)

While gI,e (x) is a hard equality constraint, gII,e (x) should be considered as a soft constraint. The latter
allows minor deviations from perpendicularity to be taken into account. Standards from the civil engi-
neering industry serve as a basis for these deviations. There, thresholds are defined with regard to angular
deviations for vertical surfaces, which depend on the respective length. With a typical building height be-
tween 6 m and 15 m, a maximum deviation of 0.15° or 0.06° can be assumed (DIN 18202:2019-07, 2019).
The higher the building, the lower the permissible angular deviation. A conversion of these thresholds to
a standard deviation σd for the application of soft constraints is not directly possible. This problem has
already been addressed in section 3.4.2.

Instead of the intersection angle (cf. Equation (5.19)), the perpendicularity of a plane e can also be forced
via the normal vector ne of it, if the following is applied

nz,e = 0. (5.20)

This can be considered instead of the intersection angle without linearisation. However, if the dependence
between two planes is relevant (e.g. if they should be parallel), Equation (5.19) is preferred. Moreover, a
minimum deviation from the requested value in terms of the standard deviation σd (for the consideration
as a soft constraint) cannot be derived directly here either.
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5.5 Comparison and Discussion

The novel information-based georeferencing approach presented in section 5.4 is to be validated on the
basis of the two kinematic MSS in their respective urban environments from section 5.2. First, an overview
of the achieved results is given and subsequently, depending on the scenario, more detailed studies are
discussed. Depending on the respective circumstances, different validation procedures are applied. The
scenario for georeferencing an autonomous vehicle within a city canyon provides both an independent
pose information as well as a highly accurate reference of the positioning solution. However, neither of
these are available for the scenario of mapping within an inner courtyard. Furthermore, the following
results focus on the estimated translations and, with some limitations, on the orientations. The speed
and angular velocity in the three spatial axes, which are also contained in the state vector, have a minor
relevance for georeferencing and therefore will not be considered below.

When considering the results achieved, it should be noted that the main focus of this thesis lies on the
methodological development of the versatile IEKF in its application-independent definition (cf. chapter
3). The practical application of this methodology is intended to show the general application possibilities,
but in particular, it cannot conclusively address all the questions that arise in this context. This refers
mainly to the careful selection of appropriate uncertainty information for the VCMs to be considered. A
reasonable adaptation must be performed separately for each specific application and cannot be provided
here in detail. Instead, the aim is to present both the new possibilities in comparison to existing approaches
and the limitations of the own methodological contribution. This advice has already been mentioned in
the context of the novel recursive calibration approach in section 4.2, and is even more valid for this
information-based georeferencing approach. The required transformations, point assignments and geo-
metric constraints represent a complex relationship and cannot be fully regarded within the scope of this
thesis. Therefore, the optimal adjustment of all influencing parameters must be determined in subsequent
investigations and is highly dependent on the application.

The estimated state parameters by the versatile IEKF approach (cf. section 5.4) are shown in Figure
5.12 for the 2D position together with the building model used for both scenarios. There is a significant
difference in the respective length of both trajectories. In addition, the trajectory in the courtyard is highly
non-linear, while in the street canyon it is almost linear. These differences are due to the realisation of
a high-accurate reference solution by external tracking in the urban canyon. This considerably limits the
possible range and movement of the kinematic MSS. If the reference solution can be omitted, longer and
non-linear trajectories are also possible with this specific MSS. Since validation of the trajectory in Figure

(a) (b)

Figure 5.12: Representation of the estimated trajectories (black) over all epochs with respect to the building model (blue). For
clarity, the DTM is not shown. The results for the scenario in the inner courtyard are shown in (a) and for the
scenario in the urban canyon in (b). The starting positions are each highlighted with a red circle.
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5.12(a) is not possible due to a missing reference, section 5.5.1 provides other possibilities for evaluating
these results. Moreover, since the basic feasibility for longer and more complex scenarios can already be
proven with the first scenario, the general validation of the trajectory is the focus of the second scenario
in section 5.5.2.

General key information on both scenarios are summarised in Table 5.1. This indicates, for example, the
different measuring frequencies of the two MSS depending on the number of available epochs and the cor-
responding temporal expansion. In addition, the different number of 3D laser scanner point observations
captured and actually used per epoch is also noticeable. This difference is based on the individual laser
scanners and their respective arrangement with respect to the environment. While a comparable homoge-
neous spatial distribution is guaranteed by the spatial subsampling (cf. section 5.4.1), this may also have
consequences for the application of the IEKF. The difference in the number of assigned facades can be
explained by the different environments and their respective representation in the building model.

In section 5.4.4 the uncertainty information regarding the initial system state Σxx,0, the process noise Σww
and the measurement noise Σll have already been introduced in general. Depending on the individual
scenarios, the applied standard deviations are summarised in Table 5.2. Therefore, the urban canyon
scenario additionally distinguishes between two versions. On the one hand, there is the independent pose
information of the manufacturer (referred to as Riegl Pose) and on the other hand an artificially worsened
version of it (referred to as Artifical Pose). This is due to the generation of a more realistic additional
pose information regarding the originally described scenario. Further details are given in section 5.5.2.
The standard deviations of the initial system state x0 are identical for the two scenarios. Using a different
MSS (e.g. with regard to the type of motion and sensor arrangement) requires a suitable modification
of the process noise. Although the Riegl VQ-250 laser scanners used in the urban canyon scenario are
more precise than the Velodyne Puck VLP-16, larger standard deviations σl,LS for the measurement noise
have to be considered in the urban canyon scenario. Regardless of this, the laser scanner observations are
distinguished whether they are assigned to a plane of the building model or to the DTM. Since the latter
object space information generally is less accurate, it is down-weighted at this point by using an increased
standard deviation.

Table 5.1: Summary of the specific circumstances and key information for the two described scenarios. The number of assigned
facades does not include multiple assignments over several epochs. The geometrical length of the trajectory is based
on the summed Euclidean 3D distances between two successive epochs. The respective number of captured, subsam-
pled and assigned 3D point observations of the laser scanners are rounded values and refer to the median value over
all epochs.

Inner Courtyard Urban Canyon

Applied Platform Unmanned Aerial Vehicle Motor Car

Laser Scanner
1× moderate

Velodyne Puck VLP-16 (3D)
2× precise

Riegl VQ-250 (2D)

Trajectory Length ∼288.3 m within 190.2 s ∼44.1 m within 24.8 s
# Available Epochs 1902 2482

# Captured 3D Points ∼19 000 ∼5000
# Subsampled 3D Points ∼5000 ∼800

# Assigned 3D Points ∼2000 ∼350
# Assigned Facades 98 41

Grid Size for Subsampling dSubsampling = 25 cm dSubsampling = 25 cm

Reference Pose -
GNSS/IMU (6-DoF)

Laser Tracker (3-DoF)
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Table 5.2: Overview of the standard deviations used for the VCM Σxx,0 of the initial state vector x0, the process noise Σww,k

and the measurement noise Σll,k. Shown for each of the two scenarios, whereby two different versions exist for the
urban canyon. The process noise is given in dependence of ∆τ = 10 Hz (inner courtyard) and ∆τ = 100 Hz (urban
canyon) according to Equation (5.11).

Inner Courtyard
Urban Canyon

Riegl Pose Artificial Pose

Σ
xx
,0

Position σx,t 0.5 m 0.5 m 0.5 m
Orientation σx,θ 0.2° 0.2° 0.2°

Speed σx,vt 1.0 m/s 1.0 m/s 1.0 m/s
Angular Velocity σx,vθ

1.0 °/s 1.0 °/s 1.0 °/s

Σ
w

w
,k

Position σw,t 0.3 m 0.2 cm 0.2 cm
Orientation σw,θ 0.3° 2.0 m° 2.0 m°

Speed σw,vt 0.5 m/s 0.5 cm/s 0.5 cm/s
Angular Velocity σw,vθ

0.5 °/s 5.0 m°/s 5.0 m°/s
Plane σw,n, σw,d - 10−5 [−] 10−5 [−]

Σ
ll,

k

Assigned to Building Model σl,LS 1.7 cm 20.0 cm 20.0 cm
Assigned to DTM σl,LS 17.0 cm 30.0 cm 30.0 cm

Position σl,Position - 7.5 cm 100.0 cm
Orientation σl,Orientation - 0.5° 5.0°

In general, it should be noted that the selected standard deviations are not necessarily realistic and do not
correspond to the manufacturer’s specifications. This applies in particular to the process and measurement
noise, which must be selected in a KF in direct dependence of each other. Several uncertainty measures
are specified by the manufacturer without indication of the respective uncertainty parameter, which makes
this issue even more difficult. Thus, the standard deviations listed in Table 5.2 are based on assumed
values and may have to be replaced by more realistic values in further investigations. While the process
noise Σww,k tends to be too large for the inner courtyard scenario, the measurement noise Σll,k is actually
too small to take into account the existing generalisation effects in the LoD-2 building model. A compre-
hensive investigation of the sensitivity of the individual standard deviations cannot be carried out since
this thesis aims to prove the basic applicability of the own approach. The selected influencing parameters
are sufficient for this purpose.

5.5.1 Mapping Within an Inner Courtyard

The results in this application scenario are based exclusively on the use of absolute object space informa-
tion. Additional information for the continuous georeferencing solution by means of other poses (e.g., by
an IMU) is not considered since this information is not available. Furthermore, only facades that can be
assigned to the building model are identified. Other facades without absolute information are neglected.
The use of geometric constraints according to the principle of the section 5.4.3 can therefore not be used
in this application.

The trajectory in Figure 5.12(a) is a visualisation of the route actually taken. However, as no reference
solution exists, this cannot be assessed numerically and quantified more accurately. Nevertheless, it can be
stated that there are no major outliers, and at the same time, a continuous solution is realised. Besides the
trajectory, the resulting point cloud can also be roughly verified for validity. Therefore, Figure 5.13 shows
the point clouds obtained for the inner courtyard scenario. Note that in Figure 5.13(a) the original 3D point
information is represented. In contrast, Figure 5.13(b) shows the filtered observations l+k , which contain
only the laser scanner information assigned to the planes of the two object space models. If the estimated
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(a) (b)

Figure 5.13: Transformed point clouds for the scenario in the inner courtyard based on the estimated poses. The transformed
original point observations are shown in (a) and the transformed filtered observations l+k in (b). The colours
represent the respective altitude values. Blue is low and red is high.

pose is used as transformation parameters within each epoch k, these joint 3D point clouds result. The
comparison between these two realisations indicates that many of the available laser scanner observations
were assigned to planes and thus contribute to the georeferencing task. This successful assignment applies
to both the building facades and the ground. Even some roofs have been observed (cf. upper left area in
Figure 5.13(b)). Interfering objects in the point cloud (such as parked cars, containers and stored material)
are not assigned to the models and therefore do not affect the georeferencing. The mapping of the reality
by the captured and georeferenced point clouds is consistent overall. However, this cannot be verified
numerically here either. This would require, for example, the availability of a suitable reference point
cloud created by an independent procedure. Statically captured point clouds would be particularly suitable
since these usually have a better accuracy compared to this kinematically captured point clouds. With an
ICP approach, for example, both statically and kinematically acquired point clouds could be compared
and possible contradictions could be identified. However, depending on the respective ICP algorithm, a
similar point density is required for this purpose. Furthermore, there are other possibilities to validate the
georeferencing results on the basis of the resulting point cloud. For example, the planarity of individual
facade segments could be investigated. Thus, it could be verified whether a facade which is planar in
reality also has this property in the point cloud.

In the context of this thesis, the evaluation of the pose is performed exclusively on the basis of the estimated
standard deviations. Together with the relative changes of the pose (compared to the first epoch k = 1)
the standard deviations are shown in Figure 5.14. Here, the specified values refer to the superordinate
WCS. The position changes are mainly in the east and north component. In comparison, the changes in
the altitude component are relatively constant. This is also evident for the three orientation angles. While
ω (roll) and ϕ (pitch) show mostly small changes, κ (yaw) varies most due to the movement pattern (cf.
Figure 5.14(a)). The standard deviations of the pose show that they are smaller for those components in
which changes are present over time. While for the east and north component they are almost consistently
between 1 mm to 2 mm, for the height components they are averaged at 4 mm. In addition, there is a
higher level of noise in the height component, so that maximum values between 1 cm to 3 cm occur (cf.
Figure 5.14(b)). This can be explained by the less accurate height information in the DTM compared to
the 2D location. It is also noticeable that from about the 180-th second onward, the number of assigned
planes steadily decreases and the standard deviations for the east and north component slightly increase.
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Figure 5.14: Time variation of the estimated pose and their estimated standard deviations. The change in position and orientation
is shown in (a) with regard to two vertical axes, whereas the standard deviations for the position are shown in (b)
and for the orientation in (c). As additional information, the respective number of assigned planes per epoch is
given for the standard deviations with reference to a second vertical axis (magenta).

This is due to the fact that at the end of the trajectory, only planes along the direction of movement are
available (cf. Figure 5.12(a)).

The standard deviation of the yaw angle κ is between 0.001° to 0.004°. The other two angles have a
significantly higher noise and are between 0.004° to 0.03° (cf. Figure 5.14(c)). For both position and
orientation, a correlation between the number of assigned planes and the noisy components of the pose
can be identified. If more than 15 planes are assigned, the corresponding standard deviations tend to be
smaller. This is due to the higher availability of the planes, which causes a better geometric distribution
of object space information. Moreover, it should be mentioned that the investigations in section 3.4 have
shown that the estimated standard deviations are too pessimistic. To what extent this also applies to
the present application cannot be assessed. However, the precisions given here are obviously not too
pessimistic but too optimistic. This applies in particular to the north and east components and the yaw
angle. Due to the generalisation effects in the building model and the resulting plane misalignments, such
consistently small standard deviations cannot be expected.

Despite the limited evaluation possibilities for this application scenario, it can be stated that the novel
information-based georeferencing approach from section 5.4 basically works in urban environments. Fur-
thermore, no additional pose information is required within the estimation. However, the prerequisite for
this is the continuous availability of suitable object space information in appropriate quantity and quality.
A detailed numerical validation is still pending. The extent to which a lack of absolute object space infor-
mation can be compensated for by geometric restrictions according to the principle of section 5.4.3 is also
not determined. These two issues are examined in the following section in the context of the application
scenario within an urban canyon.

5.5.2 Georeferencing of an Autonomous Vehicle Within an Urban Canyon

The considered part of the urban canyon in this scenario provides additional challenges in terms of reli-
able georeferencing compared to the extensive inner courtyard from section 5.5.1. Due to the structural
conditions and the MMS used in this scenario, those building facades are captured in the urban canyon
that is almost exclusively parallel to the street. This circumstance is typical for such environments. Only
the building on the eastern side of the street offers a few individual facades which are transverse to the
direction of driving due to its structural house edges and jutties (cf. Figure 5.12(b)). This challenge is
additionally affected by the MSS used. The two profile laser scanners in the present arrangement provide
a 3D point information for each epoch that is only partly suitable for georeferencing purposes. However,
even if their individual point clouds are sparse as a result, they are precise due to the available sensor
quality. In combination with a sufficiently accurate initial pose, there is still potential for improved geo-
referencing by taking object space information into account. Moreover, there are many observations of
the ground.
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Since the spatial distribution of the object space information in this scenario is inhomogeneous, it is
necessary to consider additional information regarding the pose. Otherwise, a reliable estimation of all
6-DoF of the kinematic MSS in this part of the urban canyon cannot be ensured. A suitable source of
information is the pose of the Applanix POS-LV 510 GNSS-IMU positioning unit. This filtered solution
is available in post-processing. However, in reality, a potential mass-market autonomous vehicle will
never have such high-precision and high-priced referencing sensors. For this reason, the results of this
subsection are determined both on the basis of the actual Riegl pose of the positioning unit and on the
basis of an artificial noise-containing pose. The latter simulates the less precise information that would
be available in a potential autonomous vehicle. In the following, the realisation of the artificial solution
is briefly described, and then the respective results for both versions are presented. The results are also
different depending on whether the geometric constraints (according to section 5.4.3) are neglected or
taken into account with regard to specially assigned facades.

Realisation of a More Realistic Pose Information Through Artificial Noise

To generate a more realistic pose (tr-MMS,k and θr-MMS,k) for this application scenario, specific random Gaus-
sian noise vr-Position and vr-Orientation are applied to the original Riegl solution tMMS,k and θMMS,k (cf. Equation
(5.3)) in each epoch k. The term more realistic is to be interpreted as a simulated solution and does not
represent a claim to actual real conditions. The following applies

tr-MMS,k = tMMS,k + vr-Position, vr-Position ∼ N (0,Σr-Position) , (5.21a)
θr-MMS,k = θMMS,k + vr-Orientation, vr-Orientation ∼ N (0,Σr-Orientation) (5.21b)

where the corresponding standard deviations σr-Position and σr-Orientation (diagonal elements of Σr-Position and
Σr-Orientation) are related to the following expected orders of magnitude18

σr-Position = 1.0 m, (5.22a)
σr-Orientation = 5.0°. (5.22b)

To additionally reproduce the bad GNSS conditions within an urban canyon, the standard deviation σr-Position

is tripled for 85 % of all epochs. For this purpose, the value of σr-Position is set to 3.0 m for corresponding
epochs in Equation (5.21a). Thus, for example, multipath effects are to be simulated. The selection of
these epochs is random and the additionally increased noise is limited exclusively to the 3D position.
Since this noisy pose is considered as additional information in the IEKF, the standard deviations σl,Position

and σl,Orientation of measurement noise Σll,k must be modified (cf. Table 5.2). However, this has no influence
on the process noise Σww,k or the initial system state x0 and its VCM Σxx,0.

For an improved comparability, a Linear Kalman Filter (LKF) according to Simon (2006, pp. 124 ff.)
is additionally realised exclusively on the basis of the artificially noise-containing pose data tr-MMS,k and
θr-MMS,k. Thus, the possible benefit of using object space information within the framework of the IEKF
can be proven. The LKF describes the identical state vector xk according to Equation (5.8) and thus also
has the same initialisation as well as the corresponding initial VCM Σxx,0. The system model according to
Equation (5.10a) also remains valid and the unchanged standard deviations for the process noise Σww,k are
assumed. The same applies to the measurement noise, whereby only σl,Position and σl,Orientation are considered
here. The underlying measurement model basically follows the explicit Equation (5.16) which is linear.

The initially available pose of the Riegl MMS is depicted in Figure 5.15(a) with regard to the relative
temporal changes compared to the first epoch k = 1. The almost linear movement is evident, which is
mainly in the north direction. The change in the eastern direction is due to the orientation of the road
with respect to the WCS. All three orientation angles show only minor changes. The deviations of the
absolute pose compared to the available high-accurate reference solution of the laser tracker is given in
Figure 5.15(b) with regard to the 3D position. In all three coordinate directions, there is a significant
18These values are still optimistic with regard to the values given in section 5.1, but should represent a first reasonable approxi-

mation in the context of this thesis. Furthermore, the occurrence of uncertain GNSS observations may vary depending on the
environment and satellite configuration.
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Figure 5.15: Time variation of different pose and position information. The change in position and orientation of the Riegl pose
is shown in (a) with regard to two vertical axes. The deviations from the laser tracker reference are shown in (b)
for the Riegl trajectory and in (c) for the artificial trajectory (when using a LKF).

absolute difference between the position solution filtered by the software of the manufacturer and the one
measured by the laser tracker. Except for the northern component19 (which corresponds approximately to
the direction of driving) these deviations tend to increase over time and can reach up to 17 cm. Only for
the altitude component, the deviations are virtually zero at the beginning, but then they increase steadily.
In addition, between the eighth and ninth second a sudden increase (north and altitude component) or
decrease (east component) by 1 cm to 2 cm can be identified, which could be due to a bump. The reasons
for the global deviations in the higher centimetre range cannot be fully clarified. The alignment of the
laser tracker into the WCS, the influence of the urban canyon on the pose of Riegl MMS and all ne-
cessary transformations could be mentioned as potential influencing factors at this point. In addition, the
stated uncertainty specifications for the laser tracker are only valid under laboratory conditions. Thus, in
outdoor areas, worsened uncertainties should be expected. The calibration of the CCR with respect to
the PCS also contains uncertainties. Nevertheless, these device-specific influences should be neglected
with respect to the other influencing factors mentioned above. Therefore, the position solution of the laser
tracker is assumed as a reference in the following. Additionally, Figure 5.15(c) shows the deviation of the
additional pose information compared to the laser tracker reference after considering Equation (5.21) with
corresponding standard deviations σr-Position and σr-Orientation. This indicates the applied noise level, resulting
in higher deviations compared to the reference.

After applying the georeferencing approach from section 5.4.4, the resulting 2D trajectory20 is shown in
Figure 5.12(b). Visually, it corresponds to the actual driven route. The track is quite linear and comprises
almost 44 m metres in total. The individual georeferenced 3D point information per epoch k is depicted as
joint point clouds in Figure 5.16. Identical to the inner courtyard scenario, both the transformed original
observations (cf. Figure 5.16(a)) and the transformed filtered observations l+k (cf. Figure 5.16(b)) are
presented. The transformation parameters are each based on the application of the versatile IEKF con-
sidering the actual Riegl pose as additional information. A visual difference when using the artificially
noise-containing pose information would not be noticeable in this representation. Irrelevant objects in
the point cloud are neglected by the assignment algorithm and are therefore missing in the representation
when the filtered observations are used. There, in turn, the facades on both sides of the street are continu-
ously integrated as observation variables into the georeferencing process. The visible grid structure of the
observations assigned to the DTM results from the assignment algorithm and corresponds to the present
grid width of 1 m (cf. section 5.2.3). Additionally, the butterfly alignment of the two 2D laser scanners is
visible. The individual scan profiles are rotated by 120° to each other. A more detailed investigation of the
estimated results with respect to the high-accurate reference solution of the laser tracker is given below.

19The small deviation in altitude results from the deliberate addition of an altitude offset of 1.75 m. The consideration of this
offset is indispensable for the basic applicability of the data set and results from the temporal drift of the Riegl MMS during
the whole experiment within the height component.

20This trajectory actually refers to the Riegl solution, although differences to the Artificial solution would not be recognisable
due to the scale
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(a) (b)

Figure 5.16: Transformed point clouds for the scenario in the urban canyon based on the estimated poses. The transformed
original point observations are shown in (a) and the transformed filtered observations l+k in (b). The colours
represent the respective altitude values. Blue is low and red is high.

Use of Actual Riegl Pose Information

Since the Riegl pose of the MMS used is based on high-quality and precise sensors, an improvement of
this solution is not expected neither by the introduction of object space information nor by the application
of geometric constraints. At least this applies in terms of improving precision. The situation is different
with absolute accuracy, where an improvement is possible at least in the altitude component. After all,
this component cannot be determined precisely by means of GNSS observations and also IMU data do
not provide long-term support. Thus, due to the environmental conditions in the urban canyon, it is
recommended to include additional pose information in the IEKF. In contrast to the inner courtyard
scenario in section 5.5.1, the exclusive use of object space information is only possible here to a limited
extent. Therefore, it is investigated in advance which results could be achieved by using the original pose
in order to create a basis of comparison for a more realistic prior information of the pose. The different
results are subsequently assessed by using the RMSE. This uncertainty measure is determined with respect
to the laser tracker reference over all epochs k = 1, . . . ,K.

Figure 5.17 summarises the results for this scenario if, in addition to the additional pose information, only
laser scanning points assigned to the two basic models (DTM and building model) are considered. A
distinction is made with regard to the use of geometric constraints. In Figure 5.17(a), the corresponding
absolute information from the building model exists for each facade to which laser scanner observations
are assigned. A constraint regarding the plane parameters should therefore not be applied. The situation is
different in Figure 5.17(b). Here one single plane of the building model is selected, which is still used for
the assignment of the 3D point observations, but whose absolute coordinate information is subsequently
assumed not to exist. Thus, the two geometric constraints according to Equations (5.18) and (5.20) are
applied and are intended to improve the georeferencing results. The one selected plane in this application
corresponds to a house facade on the western side of the street, is parallel to the street, and it is observed
continuously for the first 19 seconds. The results are presented separately for the three coordinate axes.

Within the first epochs, there is always a typical start-up phase of the filter, with a rapid increase of the
RMSE values. As expected, Figure 5.17(a) shows that the Riegl pose generally provides a more accurate
solution. It should be noted that this is not the case for all coordinate components. In the driving direction
(north direction), the IEKF provides a more accurate estimation compared to the Riegl solution. The
difference between the two solutions is about 10 cm for the first 8 seconds and then decreases to about
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Figure 5.17: Visualisation of the RMSE over all epochs by considering the original Riegl pose as additional information as
well as the assigned object space information. Firstly, absolute coordinate information is available for all assigned
facades (a) and secondly, the geometric constraints according to Equations (5.18) and (5.20) are applied to a single
facade (b). The results refer to the original Riegl pose (dashed line) and to the filtered position of the IEKF (solid
line). In addition, the number of assigned planes per epoch is shown in (a) on a second vertical axis (magenta). In
(b), the second vertical axis (magenta) in binary form shows when the geometric constraint is applied.

4 cm. Additionally, there is an increase in the IEKF solution of about 3 cm between the eighth and ninth
second, identical to the situation in Figure 5.15(b). The solution of the IEKF transverse to the direction
of motion (east direction) is most inaccurate with an RMSE of about 16 cm to 23 cm. The expected
improvement regarding the altitude component is not apparent in the results. A dependence of the RMSE
with the number of assigned planes cannot be clearly identified for all components. Although the building
model tends to provide limited information in the direction of driving, the Riegl solution can still be
improved with respect to the reference by using the IEKF estimates. This improvement can be even higher
if geometric constraints regarding the selected facade plane are taken into account (cf. Figure 5.17(b)).
While this additional information has no significant effect on the altitude component, an improvement
of the RMSE is achieved transverse to the direction of motion (east direction). For this component, the
RMSE is less than 10 cm for the first 17 seconds and has a minimum of 5.2 cm. At the same time, the
RMSE in northern direction receives an almost constant offset of about 1 cm to 2 cm while the constraint
is applied. Taking into account the geometric restriction, an improvement transverse to the direction of
motion is thus achieved, which is due to the spatial conditions. Thus, it can be stated that additional
geometric information, in combination with the use of absolute position information from the building
model, makes a beneficial contribution to high-quality (i.e. accurate) georeferencing. For this case, the
combination is especially important, since absolute information is indispensable for the estimation. In
the specific situation, this absolute information is already available through the precise Riegl pose. It is,
therefore, necessary to investigate to what extent this behaviour also applies to less precise additional pose
information, which is by far more realistic for an autonomous vehicle.

Use of Artificial but More Realistic Pose Information

To represent the conditions of an autonomous vehicle more realistically, less accurate pose information
must be applied. For this purpose, the realisation of an artificial pose information is already described in
advance. Thus a pose is continuously available, but its uncertainty level is more realistic (less accurate
and precise) than the pre-filtered Riegl solution. The assessment of the resulting findings is also based on
the RMSE and is shown in Figure 5.18. Again, a distinction is made between not taking into account (cf.
Figure 5.18(a)) and considering (cf. Figure 5.18(b)) geometric constraints with regard to the mentioned
specific facade plane. Additionally, the solution of the LKF is included based on the noisy artificial pose.
Neither the building model and the DTM nor the geometric constraints have any influence on the results
of this LKF. The typical start-up phase can also be observed for the LKF. In all coordinate components
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Figure 5.18: Visualisation of the RMSE over all epochs by considering the artificial pose as additional information as well as the
assigned object space information. Firstly, absolute coordinate information is available for all assigned facades
(a) and secondly, the geometric constraints according to Equations (5.18) and (5.20) are applied to a single facade
(b). The results refer to the original Riegl pose (dashed line), the filtered position of the IEKF (solid line) and to the
filtered position of the LKF (dotted line). In addition, the number of assigned planes per epoch is shown in (a) on a
second vertical axis (magenta). In (b), the second vertical axis (magenta) in binary form shows when the geometric
constraint is applied.

the RMSE values initially rise up to 0.5 m (altitude), 0.85 m (east) and 1.2 m (north). These values then
decrease to about 0.2 m to 0.35 m. Therefore, the positioning solution is always less accurate than the
original Riegl solution. This is expected due to the artificial noise.

For the IEKF, within the first epochs, the typical start-up phase of the filter appears again. Furthermore,
the following findings can be derived especially from Figure 5.18(a). Within the first four seconds its
position solution in the northern component is more accurate than the Riegl solution, but then the IEKF
solution increases and is at the last epoch with 0.6 m less accurate than the corresponding solution of
the LKF. Based on the IEKF, the other two components are less accurate than the Riegl solution, but
with about 0.17 m to 0.23 m more accurate compared to the LKF. Thus, the largest impact of taking into
account object space information is on the component which is transverse to the driving direction (east
direction). If geometric constraints are considered for this plane instead of the absolute information of
a single facade, the accuracy of the east component is additionally improved by about 8 cm (cf. Figure
5.18(b)). However, the other two components become slightly (altitude component) or strongly (north
component) less accurate. In the direction of driving, the RMSE becomes stable again at about 0.9 m
as soon as the restriction no longer applies. Despite the less accurate position estimates, no fundamental
change in the number of planes assigned per epoch can be observed.

Overall, using the realistic pose as additional observations according to Equation (5.16) leads to a less
accurate georeferencing than using the original Riegl pose (cf. Figure 5.17). This is generally expected
and is caused by the different accuracy of the respective information. The exclusive use of the object
space information (as in the inner courtyard scenario in section 5.5.1) leads to highly inaccurate results
in the urban canyon and is not further described within this thesis. Therefore, a completely independent
georeferencing based on the object space information cannot be guaranteed continuously. For this pur-
pose, facades in the surrounding area must be constantly available and these, in turn, must be captured
by the laser scanner and assigned to the digital models. Nevertheless, the consideration of this absolute
information results in an improved accuracy compared to the exclusive use of GNSS and IMU observa-
tions. This applies to the altitude component as well as the component which is transverse to the driving
direction (east) over all epochs. Only in the direction of driving (north), no continuous improvement can
be achieved unless appropriately aligned facades are available in the environment. Individual geometric
constraints can have an additional positive effect, which in this scenario is advantageous to the component
that is transverse to driving direction.
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5.5.3 Conclusions

In general, the information-based georeferencing approach for laser scanner-based MSSs is applicable
within challenging environments. The approach itself is introduced in section 5.4 and can improve ex-
isting positioning solutions with respect to their accuracy. Therefore, the consideration of independent
object space information within a versatile IEKF is essential. By including such additional information,
the redundancy of the adjustment problem is increased, which in turn has a positive impact on the relia-
bility. This complementary information enables a relation in terms of absolute coordinates with respect
to the superordinate WCS and can be additionally supported by suitable geometric constraints. If suf-
ficient appropriate object space information is available, a completely independent pose estimation can
also be performed continuously, depending on the MSS used. It should be ensured that appropriately
aligned building facades are always present so that accurate positioning with respect to all three spatial
axes is possible. However, in straight urban canyons, continuous georeferencing along the road cannot
be guaranteed. Moreover, the presented approach cannot be used to provide a completely independent
solution in such complex situations. The usage of additional pose information is indispensable if sparse
point clouds are available due to the given sensor configuration. Therefore, the use of a 3D laser scanner
with a field of view in all spatial directions to ensure spatially distributed point clouds is recommended
for such challenging environments.

Accuracies of 10 cm in position and 0.5° in orientation mentioned in section 5.1 cannot be consistently
guaranteed for all coordinate directions. Due to the lack of a reference, only corresponding standard devi-
ations of the filtered state parameters can be specified for the inner courtyard scenario. These are usually
in the lower millimetre range for the position and less than 0.03° for the orientation. For the urban canyon,
there exists a reference which, based on the RMSE, indicates an accuracy between 5 cm to 20 cm (if the
Riegl pose is used) or between 17 cm to 90 cm (if the artificial pose is used). Temporarily and for indivi-
dual components, such targeted orders of magnitude can be achieved. Therefore, the assurance of integrity
aspects is only possible to a limited extent. If poor object space information is available, an independent
solution is not possible. However, if corresponding complementary observations are available, existing
georeferencing approaches can be supplemented or independently validated. Nevertheless, the presented
approach is suitable for supporting the long-term trend with regard to the pose. Locally, for a few epochs,
the inner uncertainty can already be ensured by observations of a sufficiently accurate IMU. Globally, this
information is then supported by the absolute information from the DTM as well as the building model
and supplemented by geometric constraints.

The use of geometric constraints proves to be beneficial within urban canyons. However, it is necessary
to investigate to what extent geometric properties (e.g. such as perpendicularity or parallelism) should be
applied as hard or soft constraints and how corresponding thresholds should be applied. The latter refers
to aspects as they were also analysed in section 3.4.2 regarding the selection of the measurement noise
vd,k in the application of SCs as well as the selection of the percentage factor δ in the consideration as
inequalities. Also, it should be examined to what extent these geometric constraints should be applied
even if the corresponding planes are stored with absolute information within the building model. In
principle, an estimation of all the plane parameters and vertices of the building model would also be
possible. However, this procedure requires the inclusion of the topology between all available vertices.
Furthermore, this would significantly increase the dimensions of the corresponding matrices within the
filtering algorithm. This, in turn, affects the run time. In addition, the building model could also be
checked for consistency and updated or extended as necessary. For this purpose, other reliable pose
information should be available.

It is also advisable to investigate the selection of the process and measurement noise, according to Table
5.2. The investigations in the context of the application example in section 3.4 already demonstrates the
complex relationship between these noise parameters (cf. Appendix A.2). This is further intensified by
the complexity of the information-based georeferencing task in this chapter. There are a multitude of
transformations (e.g. SOCS to WCS, registration of the laser tracker in the WCS) and the resulting uncer-
tainties that have to be considered. Thus, a different weighting offers further potential for improvement
and might be adjusted depending on the environment and MSS. This is a general challenge when filtering
approaches are used.
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The application of the information-based georeferencing approach should be extended to further experi-
ments regarding various environments and different MSSs. Longer trajectories and also junctions within
urban canyons would be of particular interest. Thus, a more comprehensive assessment of the approach
with regard to its applicability and the assurance of integrity aspects can be achieved. If validation of
the results based on a point cloud comparison against a more accurate reference can be performed, much
longer trajectories can be realised. In this case, the limitation by observing with the laser tracker is not
mandatory. Nevertheless, this highly accurate sensor offers excellent possibilities for a highly accurate
comparison of the estimated pose parameters. However, in the context of the investigations presented,
only for the position and not for the orientation.

Furthermore, it is not investigated to what extent the selection of dSubsampling for the spatial subsampling
affects the estimation results. However, the most time-consuming part of the described approach requires
the assignment of the laser scanner observations to the building model. This is not the focus of this
thesis, and thus still offers potential for a more efficient implementation. This, in turn, could lead to the
consideration of more observations in total. In general, this is not strictly necessary, but it could also allow
to consider facade structures that would otherwise be lost due to too extensive subsampling. Irrespective
of this, the applied spatial subsampling generates observations by averaging, which in reality have never
been measured. However, in the context of this thesis, it is assumed that the generation of these artificial
observations is permissible because of the already generalised and approximated building model and the
related uncertainties. Positive aspects are the homogeneous spatial distribution and better comparability.
Nevertheless, more suitable possibilities for subsampling should be investigated in the future.

The extent to different accuracy levels of the laser scanner measurements and their effects on the final
estimations was not in the scope of this thesis. Therefore both MSSs should be used in the same envi-
ronment. Furthermore, a more comparable spatial distribution of the individual point clouds would be
advantageous. In addition to a laser scanner, additional observations in the form of features from a suit-
able camera system could be used. Thus, corresponding object space information can also be assigned
and used for independent georeferencing. The possibility for a future real-time application is basically
given by the IEKF. However, as already mentioned, the assignment to the building model should be made
more efficient for this purpose. Furthermore, it is necessary to investigate how many and which point
observations are strictly necessary.





6 Conclusions

6.1 Summary

In this thesis, the development of a versatile recursive state-space filter has been presented. This approach
is characterised by its flexibility in using both explicit and implicit mathematical relationships between the
available observations and the states to be estimated. The specific realisation takes place within an IEKF.
To benefit additionally from the consideration of any suitable linear and non-linear state constraints, their
compatibility with implicit functions within the IEKF is investigated for the first time in this thesis. Thus,
various existing methods for using hard or soft constraints on explicit relations are adapted accordingly.
As this is only possible for individual methods under special consideration of arising contradictions, a
completely new approach is presented. This COF approach considers hard constraints directly during
the solution of the normal equation system as part of the update step and is therefore efficient. For this
purpose, the objective function is extended by corresponding constraints and then minimised. However,
the approach is limited to equality constraints.

The versatile IEKF can also be modified to provide recursive parameter estimation in the Gauss-Helmert
model for the first time. Such recursive methods have so far been limited to Gauss-Markov models in
which only explicit measurement equations can be considered. By omitting the system model within the
prediction step of the IEKF and thus, the parameters depend only on the available observations, this can
now also be realised for implicit relationships. This innovation enables new possibilities for adjustment
tasks, which were previously limited to comprehensive batch adjustments. Even if the parameters to be
estimated are constant over time and all observations are available at once, the recursive estimation shows
a gain in the required computing time for large datasets. By artificial partitioning of the observation data
into individual epochs and sequential estimation of the parameters, an otherwise necessary reduction of
information can be avoided. A consideration of arbitrary constraints is also flexibly possible for explicit
as well as implicit relationships by the methods mentioned above.

The general applicability of the newly introduced methodology is shown in a comprehensive MC si-
mulation for a simple geometric example. The application of batch and recursive methods for implicit
relationships as well as the consideration of constraints by different approaches are investigated. Further
analysis also indicates that the appropriate selection of process and measurement noise has an impact on
the estimation results. The advantage of recursive methods is clearly evident in the required run times,
whereas the accuracy and precision of the estimated parameters are still better in batch processing. How-
ever, further investigations show that the standard deviations estimated in the IEKF are too pessimistic.
The test for consistency of the recursively estimated parameters indicates anomalies. Nevertheless, it
should be noted that this statistical test is strictly speaking neither intended for implicit and non-linear
equations nor for the combination with constraints. The recursive methods also have advantages when
considering prior information in the context of constraints that have a certain degree of uncertainty. Then
especially soft or inequality constraints are recommended, which estimate accurate parameters, even if
the prior information is slightly wrong. In this case, a careful selection of the corresponding measurement
noise vd,k (in case of soft constraints) or threshold values dlower and dupper (in case of inequality constraints)
is necessary. The selection of these parameters always depends on the respective application. In principle,
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inequality constraints can also be used for batch processing. However, their use increases the complexity
of the adjustment, as this leads to a quadratic programming problem.

The necessity of the new methodological contributions from this thesis can be emphasised with reference
to current research topics. Today, many applications require reliable and accurate point clouds of the
environment to model the reality in three dimensions. This can be the case, for example, when realising
accurate and precise 3D city models or when using spatial information within constantly updated BIM
processes. Kinematic MSSs are used to acquire and provide such spatial data. However, to ensure that
the resulting point clouds are of appropriate quality, the accurate, precise and complete georeferencing
of such systems must be continuously guaranteed. This is possible in a variety of environments with
state of the art approaches. Urban areas with many tall buildings, however, cause problems. Within
urban canyons, the GNSS observations that are usually used for georeferencing are inaccurate and not
reliable. This issue is not limited to applications for mapping the environment. The field of autonomous
driving is also affected by this. Such vehicles are also kinematic MSSs, which act autonomously in
the direct surroundings of humans. Their reliable, accurate and precise pose estimation must also be
guaranteed at all times, regardless of the environment. Due to the security risks involved, integrity aspects
are essential here. With the current developments in this area, the demand for reliable methods will
continue to increase in the future. Therefore, in the context of this thesis, the methodology is given,
with whose assistance an independent and complementary georeferencing can be achieved in challenging
environments. Beyond that, the approach is completely flexible in its use and can also be transferred for
other application purposes. This is proven by different examples. The most important investigations and
findings are summarised below.

The applicability of the versatile IEKF is demonstrated for two practical application examples which are
directly related to kinematic MSSs. There are several tasks in this field of application where efficient
parameter estimation is crucial. With the use of current MSSs there is an increasing amount of data to be
processed when using the latest sensors. Big data is a common term and is directly related to recurring
tasks of data acquisition, system calibration and georeferencing. In this context, the potential of the
recursive GHM in the calibration of a laser scanner-based MSS is investigated. For this purpose, a state
of the art approach is adapted to the extent that the calibration parameters are not determined in a batch
procedure but recursively over several epochs. The underlying mathematical model, therefore, remains
unchanged, and only the observations and parameters are divided into individual epochs. Non-linear
constraints are also included. Since the batch method cannot be solved when using all available 3D point
information due to numerical instabilities, subsampling must be performed in advance. Again, the required
run times of the recursive methods always show strong advantages. Independent of this, a comprehensive
MC simulation indicates that a use of all observations is not necessary, but that even a subset can be
sufficient. To what extent the batch or recursive methods are more accurate cannot be evaluated due to the
lack of a reliable reference. This also applies to the impact of the constraints. Therefore, cross-validation
is performed instead. The results show that with the recursive GHM, when using the COF method for
constraints, the most reliable calibration parameters can be obtained.

As a second practical application, the versatile IEKF is applied for georeferencing two different laser
scanner-based MSSs. This results in the novel information-based georeferencing approach based on
independent and complementary object space information. The approach is specifically developed for
challenging urban environments where existing georeferencing methods are inaccurate or unreliable. For
this reason, there is a high demand for solutions that include integrity aspects. Especially with regard
to autonomous driving, this will become increasingly important in the future. Nevertheless, also other
application areas such as efficient mapping and three-dimensional modelling of urban areas can benefit
from it. The application, therefore, takes place both within an inner courtyard (which has to be mapped)
and within an urban canyon (in which a potential autonomous vehicle is to be georeferenced). In both
cases, absolute coordinate information from a digital building model as well as from a DTM is available.
Within the information-based approach, the captured laser scanner observations are assigned to these mod-
els, and thus a global reference to the environment is established. If individual facades are captured by
the laser scanner but are not stored in the building model, geometric constraints can be applied instead.
Specifically, this involves assumed perpendicularities, which in turn are based on defined standards from
the civil engineering industry. The resulting findings show that the method can be used to support the
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long-term trend in georeferencing. This is partially validated with a high-accurate reference solution of
a laser tracker. In principle, the availability of additional pose information is recommended. This can
be based on IMU observations, for example, and thus locally improve the inner accuracy. A completely
independent georeferencing can only be achieved with the new approach if a sufficient number of appro-
priately aligned building facades are available in the environment. The spatial field of view of the laser
scanner used also has a significant influence. Here, especially in narrow urban canyons, the use of a 3D
laser scanner is recommended, even if this sensor has a moderate level of uncertainty. In general, the
approach thus offers helpful possibilities to ensure the georeferencing of a corresponding MSS, even in
such challenging environments while maintaining integrity aspects. This advantage applies to the extent
that the solution by means of object space information is basically independent of other solutions and thus
represents complementary information.

In conclusion, the versatile recursive state-space filter is a flexible framework for a variety of problems in
geodesy as well as for general adjustment tasks in various fields of application. The new approach allows
for the first time to consider both explicit and implicit mathematical measurement equations in a uniform
framework. This flexibility is further supplemented by the possibility of applying arbitrary suitable state
constraints. The approach also enables recursive parameter estimation in the GHM.

6.2 Outlook

The versatile recursive state-space filter allows the flexible application of explicit and implicit measure-
ment equations and also provides for the first time validated methods for the consideration of arbitrary
state constraints. Nevertheless, there are still several open questions that offer the potential for further
investigation. This applies both to the methodology itself and to the specific application in the context of
kinematic MSSs. A selection of relevant topics is therefore indicated below.

For the application of the IEKF it is currently assumed that the available observation data are free of
outliers. However, this does not correspond to reality, especially with regard to the applications shown in
relation to laser scanner point clouds. In general, the existence of individual distorted measurements and
wrongly assigned observations cannot be excluded. Therefore, this requires a robustification of the filter
approach. In this context, it is necessary to investigate to what extent robust estimators are consistent with
the implicit measurement equations and the simultaneous consideration of state constraints.

The risk of numerical instabilities increases when additional pseudo observations are taken into account.
This is especially the case if constraints are integrated into the filter approach by means of PMs or as SCs.
Therefore, regularisation methods should be evaluated to counteract ill-conditioned matrices.

Potential advancements of the IEKF are also proposed with regard to two aspects:

• The transfer of the implicit filter approach with regard to a PF would eliminate the necessity of lineari-
sation of the non-linear measurement equations. Especially for highly non-linear relationships, this is
of relevance. This requires the use of PDFs and enables the consideration of constraints by means of
bounded densities as well.

• For a more efficient solution, the adaptation of a Dual State Kalman Filter (DSKF) is recommended.
In such an approach, the quantities to be estimated are subdivided into system states (e.g. the pose of a
vehicle) and model parameters (e.g. plane parameters of a building facade) and determined iteratively.
Due to the division, the corresponding dimensions are reduced, which has a positive effect on the
necessary computing time. Further details can be found in Wenzel et al. (2006), for example.

As part of further applications, it should generally be investigated to what extent is it necessary to consider
all available observations in the case of mass data. In this context, the question also arises how a reasonable
selection of redundant information can be realised so that only observations are considered that have
the strongest possible influence on an accurate, precise and reliable estimation. The availability of an
appropriate reference is essential with regard to validation aspects. However, this should not lead to
practical limitations in application.





A Appendix

A.1 Pseudocode of the Versatile Recursive State-space Filter

Taking into account the research of Dang (2007), the methodological extensions from section 3.1 result
in the versatile recursive state-space filter. With this approach, arbitrary non-linear measurement equa-
tions can be applied, which can be formulated explicitly or implicitly. If the mathematical relationship is
explicit, it can be transformed considering Equation (3.4). In general, Algorithm 1 applies.

Algorithm 1: Versatile recursive state-space filter based on an IEKF. Arbitrary linear and non-
linear state constraints can be applied in dependence of the respective method (cf. section 3.2).

1 System model xk = f (xk−1, uk−1,wk−1) , wk−1 ∼ N (0,Σww,k)
2 Observation model h (lk + vk, xk) = 0, vk ∼ N (0,Σll,k)
3 Initial state vector and its VCM: x̂+

0 = x0, Σ+
x̂x̂,0 = Σxx,0, k = 1

4 while k < K do
5 Prediction Step

6 Φk−1 = ∇x f (x)
∣∣∣∣

x̂+
k−1,uk−1,wk−1

7 Gk−1 = ∇w f (x)
∣∣∣∣

x̂+
k−1,uk−1,wk−1

8 x̂−k = f
(

x̂+
k−1, uk−1, 0

)
9 Σ−x̂x̂,k = Φk−1 ·Σ+

x̂x̂,k−1 ·Φ
T
k−1 + Gk−1 ·Σww,k−1 · GT

k−1

10 Update Step
11 ľk,m=0 = lk, x̌k,m=0 = x̂−k
12 for m = 0 . . .M− 1 do

13 Ak,m = −∇x h
(̌

lk,m, x̌k,m
)∣∣∣∣

x̌k,m ,̌lk,m,vk,m

, Bk,m = ∇l h
(̌

lk,m, x̌k,m
)∣∣∣∣

x̌k,m ,̌lk,m,vk,m

14 Kk,m = Σ−x̂x̂,k · A
T
k,m ·
((

Ak,m ·Σ−x̂x̂,k · A
T
k,m

)
+
(

Bk,m ·Σll,k · BT
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(
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)

+ Ak,m ·
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))

18 x̂+
k = x̌k,M

19 l̂
+
k = ľk,M

20 Σ+
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(
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)
· KT

k,M−1

21 Hk = Fk,M−1 · Ak,M−1

22 Σ+
l̂̂l,k

= Σll,k + Fk,M−1 · Bk,M−1 ·Σll,k · BT
k,M−1 · FT

k,M−1 −Hk ·Σ−x̂x̂,k ·H
T
k
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A.2 Analysis for the Selection of a Suitable Measurement and Process
Noise

The investigations in section 3.4, when using a comprehensive MC simulation, are based on the use of
a constant process noise σw = 1 · 10−3 and a specific factor η = 1.5 % for the measurement noise.
The parameter η represents the percentage of influence based on the length of the respective semi-axis.
The measurement noise is then obtained according to Equation (3.32). Besides the initial state vector
and its VCM, these noise values are the main factors influencing recursive state-space filtering. For the
investigation of their influence on the estimates, a variety of different combinations of σw and η were
established and applied on two independent filter approaches. The recursive GHM without consideration
of constraints (cf. Figure A.1) and the recursive C-GHM when using the COF method (cf. Figure A.2)
were used as representative approaches. The assessment is based on the mean RMSE for the semi-major
axis a and the semi-minor axis b over 500 individual replications.

Regardless of the approach and the semi-axis, it is evident that η has a minor influence, as long as
η > 0.02 % applies. Much more relevant is the magnitude of the process noise σw. If this is less than
approximately 10−4, there is also almost no influence. The contour lines show a negative exponential
curve throughout. However, a variation of the resulting RMSE values is concentrated in a range between
approximately 10−4 to 10−1 regarding process noise σw. The RMSE increases with larger process noise.
The numerical values differ depending on the semi-axis and method. If no constraints are applied (cf.
Figure A.1), the RMSE is between approximately 0.006 to 0.025 units (semi-major axis a) and approxi-
mately 0.003 to 0.016 units (semi-minor axis b). The consideration of constraints by means of the COF
method (cf. Figure A.2) leads to a variation of the RMSE between approximately 0.002 to 0.008 units
(semi-major axis a) between approximately 0.003 to 0.013 units (semi-minor axis b) as a consequence of
the selection of the parameters. The overall influence is therefore lower. For comparison, the incorporation
of biased prior information in section 3.4.2 resulted in a maximum RMSE of approximately 0.015 across
all approaches. Finally, the selection of σw = 1 ·10−3 and η = 1.5 % represents a trade-off. In the context
of these investigations, this corresponds in each case to the lowest classification of the RMSE, and the
values chosen are not overoptimistic. Nevertheless, the values are chosen to be as realistic as possible and
still have some influence. Furthermore, not taking into account the process noise can lead to numerical
instabilities.
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Figure A.1: Mean RMSE for various factors η and σw when using recursive GHM without constraints by means of 500 repli-
cations. The results for the semi-major axis a are given in (a) and for the semi-minor axis b in (b). Automatically
generated contour lines are specified based on a constant number. To ensure comparability, the specified interval is
limited. The logarithmic scaling of the vertical axis should be taken into account.
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Figure A.2: Mean RMSE for various factors η and σw when using recursive C-GHM (COF) by means of 500 replications. The
results for the semi-major axis a are given in (a) and for the semi-minor axis b in (b). Automatically generated
contour lines are specified based on a constant number. To ensure comparability, the specified interval is limited.
The logarithmic scaling of the vertical axis should be taken into account.
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