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Abstract

The improvement of measurement and particularly surveying technologies results in a large
as well as rapidly increasing amount of spatial data. These data stem from various measure-
ment techniques as well as platforms and, therefore, may compile quite different densities,
qualities, and error characteristics. Effective tools are required to understand and interpret
them. The challenges include efficient processing, robustness against data flows and uncer-
tainty, rationality of modeling, and the potential of automation and learning. This thesis
presents an exploration of the use of statistical models and related techniques in spatial data
analysis. The foundation of the methodology employed in the scope of this thesis consists
of Bayesian statistics and Markov models. Selected approaches conceived by the author,
including 3D building reconstruction, semantic building classification, pattern recognition
in trajectories, and segmentation of RGBD data, demonstrate their potential in spatial data
modeling and interpretation.

Zusammenfassung

Die fortschreitende Entwicklung der Vermessungstechnologien führt zu einer großen sowie
schnell wachsenden Menge an räumlichen Daten. Diese Daten stammen aus verschiedenen
Messtechniken sowie Plattformen und können daher ganz unterschiedlichen Dichten, Qual-
itäten und Fehlercharakteristiken zusammenstellen. Effektive Werkzeuge sind erforderlich,
um sie zu verstehen und zu interpretieren. Zu den Herausforderungen gehören effiziente Ve-
rarbeitung, Robustheit gegen Datenfehler und Ungewissheit, Rationalität der Modellierung
und das Potenzial von Automatisierung und Lernen. Diese Arbeit stellt eine Erforschung
der Verwendung von statistischen Modellen und verwandten Techniken in der räumlichen
Datenanalyse vor. Die Grundlagen der im Rahmen dieser Arbeit eingesetzten Methodik
sind die Bayes’sche Statistik und die Markow-Modelle. Ausgewählte Ansätze des Autors,
darunter 3D-Gebäuderekonstruktion, semantische Gebäudeklassifikation, Mustererkennung
in Trajektorien und Segmentierung von RGBD-Daten, zeigen ihr Potenzial in der räumlichen
Datenmodellierung und -interpretation.
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Part I

Synopsis



Chapter 1

Introduction

We live in an era of abundant data. The improvement of measurement and particularly sur-
veying technologies results in a large as well as rapidly increasing amount of spatial data.
This is especially true for the densely inhabited urban areas, which in practice attract most
attention. The spatial data stem from various measurement techniques, e.g., laser scanning,
photography, and radar, as well as platforms such as terrestrial, airborne, space-borne, and
mobile mapping systems. They, therefore, compile quite different densities, qualities, and
error characteristics. Effective tools are required to understand and interpret these data.

This thesis presents an exploration of the use of statistical models and related techniques
in spatial data analysis. The foundation of the methodology employed in the scope of this
thesis consists of Bayesian statistics and Markov models. Selected approaches conceived by
the author demonstrate their potential in spatial data modeling and interpretation.

1.1 Spatial data and the challenges

Spatial data, mostly known as (but not limited to) geospatial data or spatial/geographic in-
formation, refers to data or information concerning the location and shape of spatial features
and their relationships, or briefly “data with a spatial reference”. Spatial data are stored in
the form of geometry (coordinates) and attributes/features. In contrast to data analysis in
other branches, the reference of data to location and time contains more crucial information
and is explicitly used (Goodchild and Haining 2003).

Spatial data are acquired by means of numerous different sensor platforms and stored in
various formats. There are, thus, many different way to categorize them. In the scope of this
thesis, we consider spatial data as two groups: Raster data and vector data. An overview is
presented in Figure 1.1.

In raster data, the space is uniformly divided into cells. Each cell has a set of evenly dis-
tributed coordinates and assigned features. The level of detail is determined by the cell size,
i.e., the resolution. The space can in principle be both two dimensional (2D) and three di-
mensional (3D) with the corresponding terms for cells “pixels” and “voxels”, respectively.



2 Introduction

Figure 1.1: Overview of spatial data (in the scope of this thesis) and the related surveying
methods

Images (digital or digitized) are inherently raster data, which, in the scope of this thesis,
mainly refer to airborne and space-borne imagery from nadir view.

3D point clouds are not conventional raster data. They are generated by means of one of the
following techniques: (A) Laserscanning, (B) depth estimation from stereo images or (C)
depth cameras. Point clouds have no uniform cell size in 3D. Although they can still be seen
as raster data with “flexible cell size” and treated with some sophisticated methods, raster is
often advisable in order to reduce the data redundancy and to adapt to existing algorithms or
tools. Point clouds can be turned into voxels with a 3D raster. In spatial analysis, however,
they are often treated as a 2D raster:

• A raster based on the X-Y coordinate plane indicating the ground surface and Z co-
ordinate as the height value above it, which results in DSM/DTM (Digital Surface
Model/Digital Terrain Model) data, or

• a raster based on a given projection plane in 3D, which results in RGBD (RGB-Depth)
data. The plane can be the projection plane of the sensor or a specific plane of interest,
e.g., a building facade.

The point clouds are categorized as raster data not only because they are often rasterized
in practice, but also because they share the following characteristics with raster data (in
comparison with vector data):

• Only points represent coordinates

• Simple and clear data structure, but often large amount of data

• No topological relationships (besides spatial neighborhood).

In vector data, points, lines and polygons are used to represent geographical features based
on coordinates. The vector data in the scope of this thesis are (digital) maps and trajectories.
An digital map represents the topography of the real world in a coordinate system. Trajectory
data take temporal information into account.
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1.1.1 Characteristics of spatial data

Spatial data are generally characterized as huge in quantity and indefinite in quality. The
improvement of data acquisition methods and the introduction of new surveying technology
make these characteristics more prominent:

Large amounts of data: In the last decades spatial data rapidly increased concerning both
quantity and quality. Airborne laserscanning and image acquisition deliver improved accu-
racy and resolution. Satellite images have a high enough resolution for the detection of the
small structures like buildings or even vehicles. Surveying methods such as mobile mapping
systems combine multiple sensors, i.e., laserscanner, GPS, cameras, etc., on one platform.
Furthermore, VGI (Volunteered Geographic Information) data, e.g., OSM and Flicker im-
ages, considerably contribute to both the variability and amount of spatial data.

Flaws and uncertainty: System or instrumental errors of sensors and measurement errors
of surveying methods have been reduced due to the improvement of surveying technologies.
The errors, however, cannot be totally avoided and, most important, the quality of the data
are not uniformly distributed over all areas or objects. The measurement data can be very
detailed (of, e.g., dense urban areas and landmark buildings with multiple sensors and high
resolution) and very poor (of, e.g., rural areas with low resolution LiDAR or satellite im-
agery) at the same time. Redundancy and absence of data often happen in the same dataset.
For instance, in the UAV (Unmanned Aerial Vehicle) photogrammetry with a camera a large
number of photos might have been taken from all possible positions with the intention to
gain as much overlap as possible. Yet, the large redundancy does not guarantee a complete
coverage of the target object. Many problems, e.g., occlusions, concave shapes, specular
reflections, homogeneous surface textures (leading to difficulties in matching), result in gaps
in data as well as uncertainties. Occlusions and reflections also affect LiDAR and Kinect
data.

1.1.2 Challenges

The availability of large amounts of high resolution data as well as the changing data charac-
teristics lead to requirements not only concerning the ability to efficiently process huge data
from various platforms, but also to model with more detail with respect to geometric resolu-
tion and semantic interpretation. The overall trends show demands for: 1. Transition from
2D to 3D models and 2. enhanced semantic descriptions added to the geometric attributes.
The challenges can be summarized as follows:

� Efficient processing

The increasing data volume renders traditional data parsing methods inefficient or even
infeasible, as the computational effort shows linear or polynomial growth in relation to the
number of data entries. A search for patterns needs to be performed in high-dimensional
solution spaces. In the processing, top-down methods should be preferred because of their
potential to deal with large data redundancy.
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� Robustness against data flaws and uncertainty

An increasing data volume does not guarantee more accurate or complete observations.
Patterns, including geometric features (e.g., edges and planes) as well as complete models
(e.g., buildings and trees), should be extracted in a stable fashion despite artefacts, gaps,
and even occlusions. Robustness is also required when dealing with data from different
sensor platforms and data fusion.

� Plausibility of models

In practical applications, “plausible” results, i.e., complete models with reasonable pa-
rameters, are desired. The definition of plausibility is, however, in most cases tricky
because, in additional to the data themselves, knowledge about the target objects is al-
ways required. This implies that prior information should be applied before the modeling
and/or learned during the processing.

� Potential of automation and learning

The data amount has reached a level that conventional manual analysis is no more feasi-
ble and an automatic or, at least, partially automatic processing becomes a necessity. A
high degree of automation requires methods which are robust and can adapt to different
scenarios and little human intervention, e.g., parameter tuning. When dealing with het-
erogeneous spatial data this implies a perceptual processing and the ability to learn within
the proposed methods.

1.2 Statistical models

Statistics is a mathematical and conceptual discipline that focuses on the relation between
data and hypotheses (Romeijn 2014). The data are recordings of observations and, in the
scope of this thesis, the (geospatial) measurements.

The philosophy of statistics is part of the philosophical topic of scientific methodology –
the general theory on whether and how science acquires knowledge. Statistical methods
describe and justify the relationship between statistical theory (hypotheses) and evidence
(empirical facts). Generally, a “statistical model” is defined by a set of statistical hypotheses
and represented by a set of probability distributions on the data, also called sample space
(Cox 2006, Bernardo and Smith 1994). Figure 1.2 shows the relations between the above
concepts.

There are two major theories of statistical methods: Classical/frequentist and Bayesian statis-
tics. From the viewpoint of philosophy or logic, the main difference between Bayesian and
frequentist statistics is the way they treat “probability”. The Bayesian calculus describes
probability as “degree of belief”. In the Bayesian probability equation (cf. Equation (1.1))
the beliefs are presented in the form of the so-called priors and posteriors. In Frequentist
statistics, on the other hand, probability is used to model actual processes/frequencies.
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Figure 1.2: Relations between statistical models and theories in the real world

In (Bandyopadhyay and Forster 2011) the statistical inference methods are categorized into
four paradigms: (1) classical statistics (frequentist inference), (2) Bayesian statistics, (3)
likelihood-based statistics, and (4) Akaike-Information Criterion (AIC) (Akaike 1973) -
based statistics. It needs to be pointed out that these concepts are not mutually exclusive.
AIC stems from information theory and is used to compare statistical models considering
the trade-off between the goodness of fit (in most cases the likelihood) and the simplicity of
the models. The likelihood-based paradigm can, therefore, be seen as a subset of AIC-based
methods. Furthermore, the AIC can be integrated into the Bayesian framework. More details
can be found in the works described in this thesis.

Statistical models, and particularly Bayesian statistics, are considered as promising for the
exploration and interpretation of spatial data. The improvement of computer technologies
makes the utilization of sophisticated statistical tools nowadays possible. This Section briefly
introduces Bayesian methods and Markov models as appropriate “carriers” of Bayesian
statistics.

1.2.1 Bayesian statistics

Bayesian statistical models have been widely and successfully used in various areas espe-
cially in artificial intelligence/machine learning and economics. Well-known applications
include (statistical) language translation, Bayesian image recognition, and (Spam) mail fil-
tering. In the framework of Bayesian statistics we are allowed to adapt models to and learn
from the given data. Bayesian probabilities are used to summarize evidences and to give sta-
tistical propositions. Prediction and learning are done in form of inference (Romeijn 2014).

In the foregoing discussion we said statistics study the relation between hypotheses and data.
The Bayes theorem describes such relationships as follows:

P(M|D) =
P(D|M) · P(M)

P(D)
, (1.1)

where M indicates “model”, i.e., hypotheses/theory, and D presents “data”, or empirical
knowledge and facts.
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Bayesian theory

Classical probability theory is based on the study of independent trials. This means that
knowledge of previous trials in one area has no influence on the prediction for a current
trial in another, but similar area. Contrary to this, modern probability theory assumes that
investigating previous observations of a similar model will very likely help us to derive better
predictions for further experiments.

Since Helmholtz (1860) a basic assumption is that biologic (and also machine) vision com-
putes the most probable interpretation(s) from input images. Let I be an image and X be a
semantic representation of the world. Then, with the conditional probability P(X|I) holds:

X∗ = argmax
{
P(X|I)

}
. (1.2)

In numerical statistics, usually the posterior is sampled and multiple solutions are kept:

(X1, X2, ..., Xk) ∼ P(X|I) . (1.3)

When studying a physical process, one often has only the observation data available rather
than the underlying distributions. Statistical inference is used to estimate the adequate model
along with the associated parameters based on the observed data. Bayesian inference is a
means for statistical inference using Bayes’ theorem. Observations, also called evidence, are
used to infer the probability that a hypothesis is true.

As our knowledge about the underlying model and its parameters is “updated” along with the
accumulation of more and more evidence, this can be also seen as a learning process about
the statistical characteristics of the parameters from the observations.

Inference and Learning

Assume that we want to estimate the parameter θ based on observations x = {x1, x2, ..., xn}.
Bayes’ theorem shows how to update the probability, or in other words to infer the posterior,
with given evidence as follows (cf. also Equation 1.1):

P(θ|x) =
L(x|θ)p(θ)

P(x)
, (1.4)

where

– p(θ) is the prior of the parameter θ;

– L(x|θ) is the likelihood function (the conditional probability of observing evidence x
given the parameter θ);

– P(θ|x) is the posterior (the conditional probability of a hypothesis given the observed
evidence).
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The denominator

P(x) =

∫
Ω

L(x|θ′)p(θ′)dθ′ (1.5)

is the marginal probability of x, i.e., the probability of observing x under all possible θ. This
integral can also be seen as a normalization term to make sure that the posterior integrates to
unity. Since P(x) = P(x ∩ θ) = L(x|θ)p(θ), the updated posterior will never become larger
than 1. And more important, as it does not depend on θ, this term can be treated as constant
when optimizing the posterior.

The term

L(x|θ)
P(x)

describes the influence of the evidence on the belief in the hypothesis. It shows that better
evidence, i.e., evidence that supports the proposed parameter, leads to a higher posterior
probability for the hypothesis.

While evidence accumulates, there are two kinds of learning processes based on Bayesian
inference:

• Discriminative learning is based on the posterior P(θ|x): The degree of belief in a hy-
pothesis tends to become either very high or very low making discriminative learning
suitable for decisions (accept/reject) or classification.

• Generative learning employs the joint probability P(x, θ): Knowledge, i.e., priors,
about the proposed parameter(s) θ of the model is improved to the posterior by in-
tegrating verified (via the likelihood function) evidence x.

Taking the classification task as example, generative learning creates explicit models, which
represent the training data of the object category. A generative classifier learns the prior P(γ)
and the likelihood P(x|γ) of the classes γ and classifies x by maximizing P(γ|x) ∝ P(x|γ)P(γ).
A discriminative approach, in contrast, learns the posterior P(γ|x) directly. It finds the best
classifier for the given data set focusing on discriminative characteristics between individual
categories. Current approaches often combine these two concepts to deal with the classifica-
tion problems with relatively similar categories. I.e., they learn object categories generatively
and train models for each category discriminatively.

The predominant feature of Bayesian inference is that the predictions for the parameters are
in the form of probability distributions (posteriors) instead of point predictions for conven-
tional approaches. Usually, the posterior has a low entropy and the effective volume of the
search space is relatively small.

Another advantage is the potential for automatic model selection (Bishop 2008): The addi-
tional uncertainty of a set of candidate models with different complexity can be addressed in
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a Bayesian framework. A prior P(M) is given for the different models and the posterior for
the models based on the observation X can be expressed as:

P(M|X) ∝ P(M)P(X|M) . (1.6)

The model which best balances complexity and goodness of fit is determined based on op-
timizing the “marginal likelihood”, also called “model evidence” P(X|M), presenting the
preference of the evidence for the candidate model M (Bishop 2008).

Optimization

Based on Bayesian inference, the objective of the optimization task is then the posterior. In
comparison with the often used maximum likelihood (ML) estimation, the Maximum A Pos-
teriori (MAP) estimation does not only observe the goodness of model (i.e., the likelihood),
but also takes the plausibility of the proposed parameters (the priors) into account.

Let X be the observations and Θ the space of parameters. Then, the likelihood function can
be expressed as

Θ 7→ L(D) = L(X|Θ) . (1.7)

The maximum likelihood estimate of Θ is

Θ̂ML = argΘmax
{
L(X|Θ)

}
. (1.8)

Based on Bayesian inference, the posterior distribution of Θ can be written as:

Θ 7→ P(Θ|X) =
L(X|Θ)p(Θ)∫

Ω
L(X|Θ′)p(Θ′)dΘ′

(1.9)

with p the prior and Ω the domain of Θ.

The denominator of the posterior does not depend on Θ. Therefore, it can be seen as a
constant in the optimization. The maximum estimate for the posterior is thus equivalent to
that of the numerator:

Θ̂MAP = argΘmax
{

L(X|Θ)p(Θ)∫
Ω

L(X|Θ′)p(Θ′)dΘ′

}
= argΘmax

{
L(X|Θ)p(Θ)

}
. (1.10)

MAP estimation can be seen as an extension or a regularization of ML estimation: The
empirical knowledge about the parameters is considered as well by integrating the prior
information of them. Using the posterior also lowers the entropy of the target function to be
optimized and thus the search space is narrowed down to a smaller, often more reasonable
region.
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Because of the augmented optimization objective, computation of the MAP estimate often
has to deal with more complicated (very likely non-analytic) distributions in a much larger
search space. A general numerical solution for the computation of MAP estimates is to use
Markov Chain Monte Carlo (MCMC) techniques (cf. Section 1.2.2).

Please note that although MAP estimation works along with Bayesian inference, it is, strictly
speaking, not a Bayes estimator, because MAP estimation provides a point estimate of the
posterior distribution’s mode while the prediction from Bayesian methods should be in the
form of probability density functions (PDF). We prefer to regard MAP estimation as one
decision rule for general purpose based on Bayesian theory. MAP estimation focuses on
minimum overall error. If we pay more attention to some specific errors or costs, a minimum
Bayes risk rule with loss function, which is a true Bayes estimator, should be considered.

1.2.2 Markov models

Markov models are widely used to simulate physical and natural processes. They are, more
importantly here, closely connected with Bayesian statistics. The property of Markov mod-
els, i.e., that they can be represented by a directed graph with a dependency of nodes, makes
them an appropriate “carrier” of Bayesian inference.

In this thesis, Markov models are used for two purposes: Modeling and calculation. Ap-
proximation methods like MCMC and its variants are employed for optimization tasks in
high-dimensional solution spaces. Markov chains and Markov random fields are directly
used to model trajectory data (cf. Chapter 4) and building networks (cf. Chapter 3), re-
spectively. The computation of Bayesian models can be NP-hard (Cooper 1990). In most
applications approximation is the practical or even the only way to compute the solution.

Markov Chains

A Markov Chain is a mathematical model for stochastic systems whose states, discrete or
continuous, are governed by transition probabilities. It consists of, as shown in Figure 1.3, a
series of random variables, named states X0, X1, ..., Xn and can be denoted by

(Ω, P(X0),K) ,

with

Ω: The state space;

P(X0): The initial probability – the marginal distribution for X0, which specifies
the start state;

K: The kernel – the transition probability from the previous state(s) to the current
state.
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Figure 1.3: A first order Markov Chain.

A Markov process starts from the initial state X0 and moves successively to the next state
controlled by the transition probability. Each move is usually called a “step”, as the Markov
process can be seen as a walk in the state space Ω. Giving equal probability to every poten-
tial step, the Markov process represents a random walk. The main property of the Markov
process is that the current state only depends on the most recent previous states. The typical
Markov Chain, namely the first order Markov Chain (Figure 1.3), can be formulated as:

Xt|Xi−1, ..., X0 ∼ P(Xi|Xi−1, ..., X0) = P(Xi|Xi−1) , (1.11)

in which only the last state influences the current one.

The kernel K is defined as the conditional probability for subsequent variables, i.e., the
probability of Xi given Xi−1:

Ki(Xi, Xi−1) ≡ P(Xi|Xi−1) .

The simplest form of a Markov Chain is the homogeneous (or stationary) one, in which the
transition probability is constant for all states (independent on time or position i ∈ {0, n}):

P(Xi|Xi−1) = const. (1.12)

For Markov Chains in discrete state spaces, we denote the transition probability by T =

T (Xi, Xi−1). The probability of state Xi as derived from that of the previous state is given by:

P(Xi) =
∑
Xi−1

P(Xi−1)T (Xi, Xi−1) . (1.13)

For continuous state spaces, the representation of a Markov Chain can be expressed using
the integral kernel K:

P(Xi) =

∫
P(Xi−1)Ki(Xi, Xi−1)dXi−1 . (1.14)

Stability of Markov Chains

Stability means that starting from any initial state, a Markov Chain will convergence to an
invariant distribution, i.e., a stationary probability. This is a very important and attractive
feature for a Markov Chain.
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In practical applications, the target distribution p(x) often cannot be directly observed. The
goal of designing Markov Chains is then to devise a stationary probability that represents
p(x). I.e., samples xi from Markov Chain states Xi simulate samples drawn from the target
distribution.

The invariant distribution should be reached by

P(X0)Kn −−−−−→n→∞ P(X) , (1.15)

where n indicates the number of times that K has been multiplied. Stability means that after
a limited number of transitions (steps), any initial distribution will converge to the station-
ary distribution. This implies that the stability of Markov Chains depends on the transition
probability K. To ensure stability, K must be constructed guaranteeing the following two
properties:

1. Ergodicity: A Markov Chain is called ergodic if it is possible for the chain to explore
the whole state space. I.e., the probability of visiting all other states is always positive.
Ergodic Markov Chains are often also called “irreducible”.

2. Aperiodicity: An ergodic chain is called aperiodic (or acyclic) if there does not exist a
periodic structure in the chain.

Often, Markov Chains are employed to efficiently guide the “routine” of sampling, i.e., bias-
ing the walk towards interesting regions, and to converge as soon as possible.

Markov Chain Monte Carlo

Markov Chain Monte Carlo, or in short MCMC, is a class of statistical sampling algorithms
widely applied as a general purpose computing technique for probability model simulation,
integration, and optimization. It has been introduced in physics in the late 1940’s and nowa-
days plays an important role in statistics, computer science, and econometrics. The main
advantage of MCMC techniques is that they can sample efficiently in large spaces with high
dimensionality.

As simulation-based approximation techniques, sampling methods like MCMC are always
connected to the Bayesian applications in the fields of artificial intelligence and pattern
recognition. There, practical models are usually too complex to be processed in closed form
by Bayesian statistics and efficient simulation algorithms are needed for approximation. In
many practical (statistical) applications it is hard to make exact inferences for the employed
probabilistic models. Approximation by means of numerical sampling such as Monte Carlo
technique is, thus, very important.

Monte Carlo sampling is named after the town Monte Carlo, which is world famous because
of the luxurious casino. The essential idea of Monte Carlo sampling is random sampling. It
can be traced to a rudimentary version invented by Fermi in the 1930s, even earlier than the
first computer appeared (Robert and Casella 2011). Its first well-known practical applica-
tion was for building the first nuclear reactor in 1942.
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Monte Carlo simulation draws a set of samples xi, i = 1, ..., n, from a target distribution p(x)
in a spaceΩ. The samples are independent and identically-distributed (iid) random variables.

The n samples can be used to approximate the target density of a function f (x)

E{ f (x)} =
1
n

n∑
i=1

f (xi) −−−−−→n→∞

∫
Ω

f (x)p(x)dx , (1.16)

where E{ f (x)} is an unbiased estimate of f (x). According to the law of large numbers, E
will converge to the integral of f (x).

Theoretically, if the sampling is dense enough, the Monte Carlo samples can be directly used
for optimization:

x̂ = argΩ′ max p(xi) −−−−−→n→∞ argΩ max p(x) , (1.17)

where Ω′ is the sample space, Ω′ ∈ Ω.

In practice, however, one often encounters complicated and/or combined distributions with
high-dimensional sampling spaces, and then the inefficiency of Monte Carlo sampling can
be fatal. More sophisticated techniques which can guide the sampling routine, e.g., MCMC,
are needed.

As a general sampling method, MCMC is actually applied for both Bayesian and frequentist
statistical inference. In Bayesian statistics, MCMC methods are primarily employed for
numerical approximation.

MCMC generates samples xi for the states Xi in the state space Ω using a Markov Chain
guiding the sampling. The above defined stability of a Markov Chain is advantageous to
ensure convergence. A typical MCMC is illustrated in Figure 1.4. The current state Xi is
determined by the transition kernel K and in first order Markov Chains additionally only by
the last state Xi−1 (X ∼ P(x)). The variable xi is drawn stochastically (x ∼ U[a, b], iid) for
each state Xi.

Figure 1.4: MCMC with first order Markov Chain

MCMC samplers are Monte Carlo samplers which ideally employ ergodic and aperiodic
Markov Chains. The invariant distribution derived from the stationary chains can be used to
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approximate the target distribution p(x). One way to construct an appropriate sampler is to
satisfy the reversibility, i.e., detailed balance, condition:

p(Xi)T (Xi−1, Xi) = p(Xi−1)T (Xi, Xi−1) , (1.18)

which is a sufficient, but not a necessary condition to ensure that the invariant distribution of
the Markov Chain is identical to the target distribution p(x).

MCMC is used as a general purpose computing technique in the following areas:

1. Simulation: MCMC produces samples of the probability model underlying the target
system and represents typical states of the latter. Many natural processes are inher-
ently stochastic, but still follow essential rules, which can be expressed in the form of
probability models.

2. Integration and Computing: The computation of integrals is a typical task in scientific
computing. Monte Carlo integration is used to deal with distributions in very high
dimensional spaces. The expectation c is estimated as follows:

c =

∫
Ω

p(x) f (x)dx ; ĉ =
1
n

n∑
i=1

f (xi) , (1.19)

whereΩ is the integral space, ĉ the approximation with Monte Carlo, and n the number
of samples drawn from p(x).

3. Bayesian Inference and Learning: MCMC is an important computing tool for maxi-
mum likelihood estimation (MLE) learning of parameters p(x; θ) as well as MAP es-
timation (cf. Section 1.2.1). Unsupervised learning with hidden variables (simulated
from the posterior) needs simulation to find suitable models. As Bayesian inference
has become an important framework in many areas, e.g., image understanding and
computer vision, MCMC techniques are of increasing interest.

4. Optimization: MCMC is the most often used technique for searching the global optima
of complex distributions, e.g., the Bayesian posterior probability (MAP).

In summary, MCMC is a general tool for many problems with high-dimensional solution
space. In some cases it is considered as the only feasible approach that provides solutions
within an acceptable computation time.

An overview of techniques based on Markov models is presented in Figure 1.5, which can
help to “locate” the mentioned techniques in the context of the statistical framework.
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Figure 1.5: An incomplete “map” of Markov-model-based techniques: Locations and rela-
tionships

1.3 Scope and organization

This thesis is submitted in partial fulfillment of the requirements for a cumulative habili-
tation. It consists of two parts: (I) “Synopsis” – a summarizing synthesis of selected ap-
proaches and (II) a collection of the corresponding publications.

Selected research work that was performed and published by the author since the year of
2011 is summarized. Although the presented approaches apply various modeling and opti-
mization/estimation techniques on a relatively wide spectrum of spatial data, they concen-
trate on one essential idea, namely using Bayesian statistical models for the understanding
and interpretation of spatial data.

Figure 1.6 gives an overview of the publications presenting the employed data, key models
and strategies as well as publication categories. For a convenient retrieval in the text, the
publications are labeled by [P#] and marked when they appear.

From experience we have learned that the best way to expound statistical concepts and mod-
els is a demonstration with examples. The Synopsis part is organized in the form of “case-
studies”. The selected approaches are presented with more detail in the following chapters.

Chapter 2: Building reconstruction

Building reconstruction is one of the central topics in spatial data analysis and has been inten-
sively studied for decades. There is a wide spectrum of data available for buildings including
LiDAR and imagery from terrestrial, airborne, and space-borne platforms. Bottom-up ap-
proaches start from the data detecting basic geometric features and, thus, are susceptible to
data flaws and uncertainty. Top-down methods use predefined parameterized models to fit
the data, which can generally better deal with data artefacts, but often show limits because
of the diversity of objects concerning both shape and appearance.
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Figure 1.6: Overview over publications: Data, models, strategies, and publication categories

We employ a generative (top-down) statistical modeling scheme driven by Bayesian infer-
ence and optimization. We keep the advantages of top-down approaches: (1) The robustness
of reconstruction and (2) the guarantee of complete models, while allow for (3) more flexibil-
ity to adapt the proposed method to a larger spectrum of objects. The flexibility is achieved
through the inference and learning of Bayesian models. General and empirical knowledge
can be integrated in the form of priors which are improved with local observations and con-
straints. I.e., more generic as well as flexible models are employed to cover a higher diversity
of objects, which are in this case buildings with various roof types. The incremental learn-
ing integrated in MCMC leads to an efficient and powerful search in the parameter space,
which renders an effective reconstruction in complex scene without additional support (such
as footprints) possible. The degree of automation in building reconstruction is also improved
by this means. In addition, bottom-up methods are utilized to provide reasonable priors,
which improves the efficiency of the top-down inference and leads to an optimum overall
performance.
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Chapter 3: Building classification
VGI has become an important source of geospatial data. In comparison with conventional
maps and cadastral data, they have better availability (in respect to both source and price),
more spatial coverage, and higher update rate because of the entries of volunteers. For the
same reasons, however, VGI such as OSM suffers form the lack of completeness and the
inhomogeneous definition of the object attributes. Methods to enhance as well as complete
the attribute entries are, therefore, highly desirable. This work focuses on determination of
the usage (use and occupancy) information of buildings. Building usage is of great interest,
e.g., for city planning, navigation and emergency management, but often not available in
volunteered data.

To tackle this, the urban area is considered as a network consisting of individual buildings
connected based on their neighborhood relationship. A Markov Random Field is employed
to model the building network. Bayesian inference is employed to (1) derive usage attributes
from existing local (geometric) features and contextual constraints of the neighborhood and
(2) propagate them to other buildings in the network. By these means, the buildings are
classified and enhanced with the new attribute, which is uniformly defined and covers the
whole area. The proposed framework is fully automatic with the potential to be extended to
other attributes.

Chapter 4: Anomaly detection in trajectories
Trajectories are space- as well as time-referenced data. Their availability has improved
rapidly with the wide use of navigation and mobile communication systems equipped with
GPS and motion sensors. Anomalous behavior detection is a challenge concerning both
the spatial and temporal information embedded in the trajectories. It is of wide interest for
navigation, driver assistance and surveillance. Current related approaches work based on a
number of labeled data to train a classifier and apply it to the incoming data. Such a large
training dataset, however, is neither always available nor guaranteed to cover all possible
cases.

We designed an iterative Bayesian filter for GPS trajectories from cars. This operator infers
anomalous behaviors (1) locally inside a single trajectory and (2) dynamically over time.
There is no previous training required, though, if training data are available, they can be
integrated as priors in the Bayesian framework. A Hidden Markov Model (HMM) is em-
ployed to present the trajectory as a carrier of Bayesian inference between the GPS nodes.
The HMM has dynamic orders of Markov Chain to derived spatial and temporal features
including “turns”, “detour factor”, and “route repetition”, which require particular long-term
perspectives. Additionally to individual behaviors, a collective behavior can be derived based
on the individual results which can indicate special traffic situations such as road-blocks and
turn restrictions, where anomalous behaviors often occur.

Chapter 5: RGBD segmentation
RGB-Depth (RGBD) data are introduced in recent years with easy acquisition and relatively
low-cost sensors. Since most RGBD sensors work in close range, indoor scene interpretation
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and robot vision are of particular interest. Segmentation is the basis of scene interpretation.
Although 2D image segmentation has been thoroughly studied for decades and a number
of approaches have also been reported recently for RGBD data, a segmentation of complex
scenes on object-level is still challenging, especially when objects with concave or irregular
shapes are involved.

In comparison with most related approaches where the depth information is treated as an
additional channel besides the colors on a 2D basis, we conduct full 3D parsing by introduc-
ing a novel quasi-3D model, the SVP (synthetic volume primitive). Objects are inferred not
only based on color and position, but also on the underlying 3D volume intersection, which
cannot be directly observed. A Markov Random Field is employed to represent the SVPs
and their relationship in the scene and optimized by an MCMC sampler to find the best seg-
mentation. By all these means free-shape including concave objects can be segmented well
even in complex scenes.

These chapters are specifically structured so that the cases are clearly presented and can
be easily compared with each other. Every chapter starts with a cover page including a
quick overview with an illustration and a set of keywords for fast indexing of concepts and
techniques. The first section of each chapter consists of an individual problem statement
pointing out issues and challenges of the case. The following two sections present the data
and the employed models, respectively. Specific topics of interest, e.g., model selection,
belief inference, and global optimization, are distributed in different chapters and discussed
along with their practical use. General issues including adaptability of models and modeling
strategies are given in Chapter 6 together with the final conclusions. In the chapters all
challenges and questions have an item label “�”, while the proposed solutions and answers
are marked with “�”.

The full versions of the publications are compiled in Part II. For an easy indexing, multiple
criteria including publication date, publication category as well as topic are employed.



Chapter 2

Building reconstruction

Overview

This chapter presents statistical approaches for automatic 3D building extraction and recon-
struction based on 2.5D point clouds from laserscanning or stereo image matching. A hybrid
framework of bottom-up and top-down methods is proposed with emphasis on the latter in
the form of generative models.

Building reconstruction: Input point cloud (a), the reconstruction process (b to e), and a
reference image (f)

Keywords

Object detection, 3D reconstruction, Point cloud, Generative models, RJMCMC, Model se-
lection
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2.1 Problem statement

Building is one of the most important object classes in spatial data analysis. Reconstruction
of 3D building models from measurement data is of great interest for various applications
including city planning, tourism, navigation, and emergency management. Detailed building
models containing roof and facade geometries can be integrated into building information
models (BIM) or applied to, e.g., photovoltaic planing, urban heat island (UHI) effect re-
search, or urban turbulence and wind gust analysis (for micro wind generators and micro
aerial vehicles). Building reconstruction has, therefore, been intensively studied and many
approaches have been reported in the past decades. In previous work, bottom-up methods,
e.g., point clustering, plane detection, and contour extraction, have been widely used. Due
to the data artefacts caused by occlusion, reflection from windows or water, etc., the bottom-
up reconstruction in urban areas suffers basically from incomplete or irregular roof parts.
Manually given geometric constraints are usually needed to ensure plausible results.

The approaches summarized in this chapter deal with the following core challenges in 3D
building reconstruction:

� (C1) Robust reconstruction in spite of artefacts and uncertainty of the data

� (C2) Complete and plausible watertight building models

� (C3) High degree of automation

The basic idea is to utilize the robustness of top-down strategies against the uncertainty of
the data and to enhance it with powerful statistical search and plausible Bayesian inference.
The complete framework includes also the approach with bottom-up methods to improve the
overall performance and efficiency.

2.2 Data – LiDAR and imagery

Laserscanning data
Airborne and terrestrial laser scanner data are widely used in state-of-the-art approaches
for building reconstruction due to their high accuracy and density. Airborne laser scanning
data of urban areas, however, often have the following issues concerning quality (Oude El-
berink and Vosselman 2011): 1. Systematic and stochastic errors in the measurement, 2.
variable and relatively low point density, and 3. data gaps and artefacts. As shown in Fig-
ure 2.1, data flaws in urban areas (left) can be caused by (A) complex and detailed roof
structures such as HVAC (heating, ventilating, and air conditioning) equipment, (B) the
absorption of the laser pulse by water and its reflection by windows on the roof, and (C)
occlusion by neighboring objects (in typical European cities mostly trees).

As a result, an accurate determination of the roof edges and the recognition of small roof
structures are hard. Bottom-up reconstruction may, thus, be limited to a number of incom-
plete and irregular roof facets or building parts. A regularization with given constraints is
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Figure 2.1: Causes of laserscanning data artefacts in urban areas (left): Complex roof struc-
tures (A), reflections (B), and occlusion (C)

typically needed during the extraction or afterwards. In many cases building reconstruc-
tion is not easy even for humans. For regularized plane detection a probability-driven edge
sweeping method is proposed in (Huang and Brenner 2011, P1). Although it works robustly
in spite of clutter and data flaws, it encounters difficulties when processing complex roofs.

Figure 2.2: Comparison of LiDAR point cloud (left and green profile) and DSM generated
from satellite images (right and red profile) (Partovi et al. 2015, P7)

Image data

Due to the improvement in spatial resolution of satellite imagery and the launch of numerous
satellites there is a growing interest in algorithms for 3D point cloud generation by stereo
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satellite image matching. Although the accuracy of the 3D point clouds from satellite images
is generally lower than that of LiDAR data, we demonstrate that they can still be sufficient
for building recognition and reconstruction.

The limited geometric resolution as well as the noise in the point cloud data generated from
satellite imagery cause difficulties in the computation of geometrical features, e.g., normal
vectors based on information of neighboring points. Thus, bottom-up methods, e.g., roof
plane determination based on point cloud segmentation, is considered difficult, because of the
incomplete and irregular roof planes which need geometric constraints for the reconstruction
of plausible roofs. In Figure 2.2 the quality of DSM from satellite (particularly WorldView-
2) imagery is compared with that from LiDAR as reference data (Partovi et al. 2015, P7).
Elevation profiles (bottom) are given with the red line representing the DSM from satellite
imagery (top right) and the green line that from the LiDAR point cloud (top left).

2.3 Model – generative models for buildings

Generative modeling can be used to (mostly randomly) generate observable data from unob-
servable parameter(s). Here, the observable data usually mean examples/instances that obey
the underlying rules. Generative modeling is employed to estimate joint probability distribu-
tions (i.e., models defined by multiple parameters) or approximate conditional distributions
via Bayesian inference. We employ generative modeling to find the best building model that
fits the data. An overview of the work flow is presented in Figure 2.3.

Figure 2.3: Workflow of building reconstruction via generative models
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2.3.1 Primitive-based modeling

Generative modeling works based on parameterized primitives. In plane-based or primitive-
based approaches the assembly of these “components” of buildings is always a crucial prob-
lem. Our strategy is to give more flexible definitions of the primitives as well as their inter-
actions to obtain more stable reconstruction results. The basic idea is to allow overlap when
combining multiple primitives. Basic geometrical rules are employed to ensure plausibility.

Figure 2.4 presents the novel primitive-based reconstruction scheme in comparison with con-
ventional facet-based approaches by employing two example roofs. In facet-based modeling,
the target roofs are seen as a group of facets (right), which are labeled with numbers. The
derived Region Adjacency Graph (RAG, bottom) shows the organization of the facets and
are used to guide the further reconstruction. Some roof parts, e.g., facet 10 in the first model
and facet 3 in the second, however, are hard to interpret from the graph. In primitive-based
modeling, on the other hand, the building roofs are considered as an assembly of regular
primitives (left). The interpretation (bottom) is much simpler because not only because the
related (member) facets have been predefined in the primitives, but also because the irregular
fragments caused by plane intersections no longer need to be considered.

Figure 2.4: Primitive-based (left) vs. facet-based (right) approaches

The proposed scheme has two main advantages:

• Complete and plausible models: There is no irregular and incomplete roof facet or
building block, which is usually caused by fitting erroneous bottom-up features like
fragmented plane segments in facet-based modeling. The predefined constraints for
the member facets of a primitive ensure a regularized reconstruction.

• Flexibility of modeling: A large number of different building types can be represented
by a limited number of primitives and their combination. Complex roofs can be inter-
preted more easily.

Note that allowing overlap of primitives helps to keep the member primitives being complete
during reconstruction and assembly (cf. Figure 2.4, colored blocks) instead of being cropped
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to fit the ground plan or the neighbors. Besides horizontal we also allow vertical overlap
(intersection). By this means, some combined roofs can be reconstructed (cf. also (Huang et
al. 2013a, P3)) without adding new particular primitives to the library. In the final model, the
redundant parts are hidden inside the assembly and can be easily removed afterwards with,
e.g., CAD tools.

Primitive library and parameterization

Figure 2.5 presents a library with three groups including eleven types of roof primitives
(more details cf. (Huang et al. 2013a, P3), Section 3.1).

Figure 2.5: Library of roof primitives
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The parameters θ of a primitive are defined as:

θ ∈ Θ;Θ = {P,C,S} , (2.1)

where the parameter space Θ (Figure 2.5, top right) consists of position parameters P =

{x, y, azimuth} and contour parameters C = {length,width}, as all primitives are defined with
a rectangular footprint. P and C have fixed members. S contains shape parameters, e.g., the
ridge/eave height and the depths of hips, and depends on the primitive.

Geometrical features of different levels, i.e., vertices, edges, and facets, and their relation-
ships are used to define the primitives (Figure 2.5, bottom right). They are the basis for
primitive merging, calculation of reconstruction errors, drawing building footprints, etc.

Note that the library contains only a limited number of entries with planar shapes and rectan-
gular footprints. For a more efficient reconstruction we prefer to keep the library simple and
with a small number of primitives. The basic idea is to cover the majority of building types
with a limited number of primitives. A simple building is presented with a single primitive.
A complex building is modeled by a combination of multiple primitives. Planar roofs and
rectangular footprints are chosen not only because they are simple (with few shape parame-
ters), but also because they are the basic form that most buildings follow. I.e., roofs derived
from the primitives or their combinations will cover most of the buildings in urban areas.
Furthermore:

• The proposed primitive merging process is also able to represent buildings with non-
rectangular footprints (cf. (Huang et al. 2013a, P3), Section 3.2).

• Elliptic roofs are not included, but can be approximated by gambrel roofs (cf. Fig-
ure 2.5, G1).

2.3.2 Extension for building generalization

3D building generalization, i.e., geometric simplification of 3D building models, is of great
interest not only in cartography but also in fields such as computer graphics and GIS. It plays
a central role to control the storage space as well as processing and transmission needs.

Model-driven approaches have advantages concerning completeness and plausibility. The
presented building reconstruction scheme based on generative models can be easily adapted
to create building models on different levels of detail (LoDs), the primitive library and the
modeling rules provide a good basis. Different LoDs are usually achieved by means of ge-
ometrical modification of existing models with higher resolution. We, in contrary, generate
new models with corresponding details instead. The primitives as well as the statistical
search scheme are adapted to the LoDs. For the selection of primitives one can derive a
multi-stage simplification routine, e.g., G2 → H1 → H4 → F1, where the jump routine is
designed considering the number of parameters, which also implies their complexity and
geometric inheritance (cf. Figure 2.7). For complex buildings consisting of multiple primi-
tives, the models can be simplified by employing fewer and simpler primitives. An example
is given in Figure 2.6.
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Figure 2.6: An example of building model generalization

In contrast to other approaches, the low LoD models are not derived directly from the high
LoD ones but newly generated by replacing primitives with reduced number and complexity.
As shown in Figure 2.6, model (b) is obtained by removing the primitives for superstruc-
tures while (c) is generated by re-sampling with less primitives. Flat roof is employed to
represent the LoD1 model (d). By these means, the simplification is flexibly conducted in
multiple stages and the models on every level maintain integrity and regularity. This ap-
proach corresponds to the “star”-approach in generalization (Stoter 2005), i.e., the different
representations are generated from one original representation, which is in this case the raw
data in terms of point clouds. It generates homogeneous representations on different LoDs, as
it is based on the same set of primitives. The primitives are selected according to geometric
criteria which characterize different resolutions.

2.4 Reversible Jump Markov Chain Monte Carlo

Reversible Jump Markov Chain Monte Carlo (RJMCMC) (Green 1995) is an extension of
the MCMC algorithm with solution spaces of variable dimension. In RJMCMC, a sampler
is allowed to switch (or called “jump”) between subspaces with various dimension during
the search. We utilize this concept and design a modified MCMC technique with a specified
“jump” mechanism. The jumps, i.e., modeling with a varying number of parameters (dimen-
sion), are employed to represent the changes of the configuration (number as well as type of
roof primitives).

In the included publications, the use of reversible jumps is first reported in (Huang et al. 2011,
P2) for switching between different roof types, i.e., primitives. Bidirectional movements
between roof types together with birth and death jumps can be found in the improved version
(Huang et al. 2013a, P3), where all the possible jumps are defined by a mixed transition
kernel:

K = {S w1, S w2, Bi,De} (2.2)

with

– S w1: “Switch case 1” to more complex primitive (with more parameters);

– S w2: “Switch case 2” to simpler primitive (with less parameters);
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– Bi: “Birth” of a new primitive adjacent to an original one;

– De: “Death” of an existing primitive.

The “switches” are jumps between different types of primitives. Based on the character-
istics of the primitives, we have narrowed down all possible switches into a specific “jump
routine” shown in Figure 2.7. It ensures that each jump only changes a limited number of
sensible parameters.

Figure 2.7: Jump routine: limited switches between primitives

LetMi andM j be two models in {Mn; n = 1, ...,N} with N the number of possible states, in
this case the number of primitive types. The jump from i to j will be accepted according to
the probability:

A(Mi,M j) = min
{

1,
p(D|ΘM j)p(ΘM j)
p(D|ΘMi)p(ΘMi)

·
Ji→ j

J j→i

}
(2.3)

with Ji→ j the Jacobian matrix, in which the proposal density, i.e., the probabilities for all
the possible jumps from i to j, is coded. With the constraints given by the jump routine
the Jacobian J is simplified to a fixed transition matrix for practical applications (Huang et
al. 2013a, P3).

The “birth” and “death” are jumps between different numbers of primitives. Including all
kinds of jumps defined inK , theMi andM j can be extended to represent the states (i.e., the
number as well as the types of primitives) before and after the jump. The “detailed balance”
condition for the Markov Chain can be expressed as:

p(Mi|D) · T (Mi,M j) = p(M j|D) · T (M j,Mi) ∀Mi ,M j (2.4)

with the posterior:

p(Mi|D) =
p(D|ΘMi) · p(ΘMi)

p(D)
, (2.5)

where P(D) is the marginal probability of the evidence and a constant. T (Mi,M j) is the
transition density from state Mi to state M j. The Markov Chain is constructed with the
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Metropolis-Hastings algorithm as:

T (Mi,M j) = q(Mi,M j) · A(Mi,M j) , (2.6)

where q(Mi,M j) indicates the proposal density for the jump between the states and
A(Mi,M j) the acceptance probability (cf. Equation 2.3).

The sampling procedure can then be summarized as follows:

1. Initialization: (M(i=0), Θ(i=0))

2. Proposal of new stateM′

2.1 Sampling configuration from K = {S w1, S w2, Bi,De}

2.2 Sampling parameters Θ′

3. Accepting new proposal with the probability

A(M(i),M′) = min
{

1,
p(M′|D)
p(M(i)|D)

·
q(M(i),M′)
q(M′,M(i))

}
(2.7)

4. M(i+1) =M′ if accepted, otherwiseM(i+1) =M(i)

The sampling is able to explore a wide variety of hypotheses (models) as long as the jump
kernels keep the balance condition, i.e., a reversible move to the previous state is possi-
ble. Although this means that the sampling implicitly selects models, it is usually time-
consuming. We, therefore, employ an explicit model selection mechanism (cf. Section 2.5)
in the transition kernel. The information entropy of the model HM is calculated as:

HM = kβ − 2ln (L(D|M)) , (2.8)

where L is the likelihood (evaluation) of the model and β represents the sensitivity concerning
the number of parameters k (model complexity). β is set to a small and empirically found
value of 1/12, as we prefer a more detailed reconstructions than simpler models.

The acceptance probability in the kernel can, thus, be expressed as:

A(Mi,M j) = min
{

1,
H−1
M j

H−1
Mi

· q(Mi,M j)
}
. (2.9)

In the presented sampling process, jumps are actually not proposed in every MCMC move
but only when the maximum likelihood for the current configuration (with a determined
primitive type as well as parameters) has been found. Note that the specified schedule and
the jump routine keep the search from reaching arbitrary states in the solution space but
stay in a “subspace of interest”. I.e., the jumps break the stationary rules (irreducible and
aperiodic) of the Markovian process by giving up the irreducibility, because of which the
whole scheme is no more a conventional RJMCMC. In return, the optimization becomes
more efficient and stable with the reduced search entropy.
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2.5 Model selection

Model selection attracts more and more attention in spatial data analysis. The improvement
of the data encourages more sophisticated representations and models. The goal of model
selection is to choose the most appropriate model balancing the goodness of fit to the data
and model complexity. In this section two model selection concepts based on Bayesian
statistics and information theory are presented. Both of them are employed in the proposed
approaches.

2.5.1 Bayesian model selection

As stated in Section 2.4, the search driven by Bayesian statistics implicitly selects models.
Bayesian model selection employs probability theory to select candidates from the hypothe-
ses. As given in Equation 2.10, the likelihood, which indicates the evaluation of the candidate
model, is computed by integrating the unknown parameters.

P(D|M) =

∫
θ

p(D|θ)p(θ|M)dθ (2.10)

The likelihood distributions of constrained models show better concentration and, therefore,
reach higher probabilities because of the higher certainty of parameters. This implies that
the preference of simpler models (with highly constrained parameters) over complex models
(with flexible parameters) is inherently integrated. In Bayesian framework the balance of
model complexity is “automatic”, where over-fitting by using complicated models is always
penalized (Kass and Raftery 1995).

The plausibility of two different models M1 and M2 are compared and assessed by the Bayes
factor:

FBayes =
P(D|M1)
P(D|M2)

=

∫
θ1

p(D|θ1)p(θ1|M)dθ1∫
θ2

p(D|θ2)p(θ2|M)dθ2
. (2.11)

Please note that the process looks similar to, but should not be confused with maximum
likelihood estimation. In the latter, the objective of estimation is the set of parameters of one
model, while the Bayes factor, as given in Equation 2.11, integrates over the parameter sets
θ1 and θ2 of two different models.

2.5.2 Information entropy and model size estimation

Information-entropy-based model selection employs information theory to find the best can-
didates. In the context of information theory, the entropy (or “Shannon entropy”) indicates
the expected value of the information contained in each message. The Akaike informa-
tion criterion (AIC) (Akaike 1973) and its variants are the most-commonly-used criteria for
model selection besides the Bayes factor.
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An explicit model selection is performed to deal with the problem of the model-minimizing
tendency. The latter is a typical and tricky issue for stochastic modeling, i.e., using the
deviation at data points to evaluate the hypothetical models, the finally found “best" model
tends to shrink to a very small size as a smaller model (corresponding to smaller comparison
area and thus fewer data points for the evaluation) means less error. It follows that the model
size should be reasonably estimated.

To overcome the model-minimizing tendency, a reasonable constraint for the model size
is needed. We conduct an estimation employing an information criterion to balance the
goodness of fit to the data and the size of the model.

Figure 2.8 (left) shows the average deviation (blue) from the proposed model to the data
points depending on the model size indicated by K, which is the number of data points
in the domain of the proposed model implying the model size (linear proportion for raster
data). Please note that this function is neither linear nor monotonically increasing due to the
influences of data flaws and clutter.

Figure 2.8: Plots of the average deviation (blue), the influence of model size −Kα (red) and
the information entropy (black) over K. The minimum entropy indicates the optimal balance
of goodness of fit and the model size.

We follow the basic idea of AIC,

AIC = 2k − 2ln(L) , (2.12)

to build our goal function. In Equation (2.12), k indicates the number of parameters, which
implies the complexity of the model, and L the maximum likelihood for the optimized pa-
rameters. However, in our case we do not want to prevent the model being too complicated,
but the size of the model being too small. We use the evaluation of the model for L and
−Kα to represent the influence of the model size. The actual number of involved points is
more suitable than the area A to model the influence as the likelihood is also calculated with
these points. α is the influence factor for K, which has a relatively large impact because of
the usually large number of K. To balance the influences of both the model size and the
goodness of fit, it is empirically determined α = 0.1. The total information entropy of the
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proposed model (M) can then be expressed as:

HM = −Kα − 2ln (L(D|M)) . (2.13)

By these means, a trivial improvement in fit at the cost of a decrease in model size is dis-
couraged to prevent the model-minimizing tendency. The information criterion shown in
Figure 2.8 (right) is employed to guide the parameter optimization, which is, in this case, a
trade-off between reconstruction accuracy and model size (instead of model complexity, cf.
Equation 2.12).

2.6 Related work

Many approaches for the reconstruction of 3D city models have been reported in the past
decades. The introduction of laser scanning makes the acquisition of 3D data easier and
more accurate. Overviews are given by Vosselman (2009) and Musialski et al. (2013). In
this section related approaches are grouped according to the main strategy, i.e., bottom-up
or top-down. A discussion of the pros and cons as well as the balance of bottom-up and
top-down is given in Chapter 6.

Bottom-up approaches

Current bottom-up approaches include (Rottensteiner et al. 2008), in which roof plane de-
lineation from LiDAR data is presented. Statistical tests and robust estimation are employed
for stable edge detection in spite of clutter. Using manually given constraints, topological
correctness is ensured without additional 2D data. Sampath and Shan (2010) segment and
reconstruct more complicated buildings from airborne LiDAR point clouds based on poly-
hedral models. First, outlier points are detected by means of eigenanalysis, making the roof
planar segmentation more robust. The latter is implemented through an extended fuzzy k-
means clustering. An adjacency matrix is derived after segmentation. For reconstruction,
the roof vertices, ridges, and edges are determined by intersecting the corresponding planes.
Also starting from planar roof segments, Zhou and Neumann (2012) try to organize them as
well as roof boundary segments with “global regularities” considering orientation and place-
ment constraints. (Matei et al. 2008) and (Poullis and You 2009) present fast processes to
generate simplified building models of large-scale urban areas. The input LiDAR data is
segmented producing regularized buildings or building parts and simple polygon models are
used for an efficient reconstruction. Meng et al. (2009) introduce a method to identify indi-
vidual buildings from airborne laser data based on morphological processing. Algorithms are
developed to separate ground points and then filter the other non-building parts (mostly the
vegetation). Duan and Lafarge (2016) report a large-scale LoD1 urban reconstruction from
stereo pair of satellite images. Instead of the conventional use of DSM (calculated from the
image pair), a reconstruction directly from the imagery is presented with the consideration
of semantic information for the improvement of performance.
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Top-down approaches

Approaches employing top-down methods have been increasingly reported over the last sev-
eral years. In (Verma et al. 2006), parametric modeling is employed for detection and recon-
struction of 3D building models from airborne laser data. Relatively complex buildings can
be represented by combining simple parametric roof shapes. Lafarge et al. (2010) present
building reconstruction from a DSM combining generic and parametric methods. Buildings
are considered as an assembly of 3D parametric blocks. 2D-support (approximate building
footprints) is produced manually or automatically (Ortner et al. 2007). Based on the 2D
support 3D blocks are assembled and optimized within a Bayesian framework. To deal with
more sophisticated buildings, basic geometric primitives, e.g., planes, cylinders and cones
are extracted and combined with mesh-patches to present irregular roof forms (Lafarge and
Mallet 2012). The approach is extended with a semantic scene description to model urban
environment including buildings, trees and ground surface. Based on extracted plane hy-
potheses, Li et al. (2016) model the geometry of buildings with a set of aligned boxes, which
are represented and labeled (as parts of the buildings) via Markov Random Field. Kelly et al.
(2017) introduce a framework of urban reconstruction in LoD3 based on a fusion of multiple
sources of data including building footprints (GIS database), meshes and terrestrial imagery.
The footprints are partitioned and the parameterized building elements are fitted in. A Con-
volutional Neural Network (CNN) is employed for the detection of facade elements, e.g.,
windows and doors.

Comparison of the proposed approach to related work

In comparison with approaches that share the “LEGO" scheme (Kada and McKinley 2009,
Lafarge et al. 2010), i.e., the building is first cut down into parts and primitives are found
that fit the parts, we have designed new combination rules and a novel merging process
which allows overlap of primitives. By this means, a more plausible as well as stable result
is obtained, because all primitives remain complete during the combination and deviations
caused by random sampling can be compensated.

Unlike most of the related research, bottom-up processing, e.g., point clustering, plane detec-
tion (Sampath and Shan 2010), or 2D building footprint data (Kada and McKinley 2009, La-
farge et al. 2010), is not required in the proposed work. To compensate for the absence
of the initial information (which is normally provided by the bottom-up analysis) we con-
duct explicit model selection for (1) the estimation of the 2D building (footprint) size and
(2) the adaption of the number and type of building parts (“jump” mechanism) to guide the
reconstruction.

2.7 Conclusion and Remarks

Concerning the challenges formulated in Section 2.1, the contributions of the proposed ap-
proaches can be summarized as follows:
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� A generative statistical reconstruction driven by reversible jump MCMC with explicit
model selection leads to robustness against uncertainty of the data (C1) and automatic
reconstruction (C3).

� Primitive-based modeling with novel combination and merging rules allowing primi-
tive overlap results in complete and plausible watertight models (C2).

� A hybrid scheme combining bottom-up and top-down processes improves the effi-
ciency of reconstruction and the degree of automation (C3).

� A new primitive-based scheme for 3D building generalization is introduced.

We have presented top-down methods with efficient search and flexible reconstruction. They
have, however, still issues concerning uncertainty and instability. Moreover, the complete-
ness of the reconstruction is influenced by the prior knowledge and the scene complexity.
A suitable strategy, but also a real challenge, is to balance the top-down and bottom-up
approaches in a hybrid framework. A specific discussion of this issue can be found in Sec-
tion 6.2.2.



Chapter 3

Building classification

Overview

This chapter presents an automatic building type (concerning usage) classification based on
footprint data. We propose a method to enhance maps with building usage information which
exclusively uses the geometric and topological features in the footprint data. A network
model of buildings is built based on a Markov Random Field (MRF) integrating both local
features and contextual constraints from the neighborhood.

Building classification: Input map (left), the building network (middle), and the classification
results (right)

Keywords

building network, classification/labeling, OSM, cadastral map, MRF, Gibbs sampler
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3.1 Problem statement

Usage (use and occupancy) information of buildings is of great interest for many applica-
tions, e.g., navigation, city planning, and emergency management. This attribute, however,
is generally not provided in volunteered data like OpenStreetMap (OSM). The volunteers
cannot guarantee either complete or uniformly defined entries of attributes. Even in the of-
ficial cadastral maps, the building usage information is not always available or be labeled in
a consistent way either. Tools are needed to enhance this information by deriving it from
existing data.

The approaches summarized in this chapter confront the following key challenges in building
classification and contribute to these objectives:

� (C1) Derivation of semantic information solely from geometric features

� (C2) A model of building parsing in urban areas with consideration of both local and
contextual information

3.2 Data – building footprints

The input data of the presented approach are 2D building footprints, which are represented in
the form of 2D polygons defined by the given vertices as well as edges. Our experiments are
performed on building footprints from OSM (Nelson et al. 2006, Taylor and Caquard 2006)
and cadastral maps.

OSM is a collaborative dataset containing user-generated content in the form of free editable
maps and belongs to volunteered geographic information (VGI) (Goodchild 2007). Because
of the crowdsourcing concept, in comparison with conventional maps, OSM has better cov-
erage (from a single source) and easier availability. However, at the same time the following
holds:

• They can be incomplete and non-uniform entries, as the data are voluntarily provided
by individuals

• Quality and reliability are not ensured, as the data are generated by people without
formal training.

Cadastral maps are used in cadastral management. They are a register of the real estate or real
property’s metes-and-bounds comprising the ownership, the precise location, the dimensions
as well as the area and the value of individual parcels. Besides the boundary of the parcels,
geometric attributes may also include the location and shape of buildings. The data are
generated by professional surveying and managed by official authorities. Their pros and
cons can then be listed as follows:
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• High precision concerning location and geometry

• High reliability for all entries

• Relatively complete and uniform attribute definition and entries

• Limited availability because of costs and data privacy.

Please note that in this work we only use the geometric properties of buildings from OSM
or cadastral maps. All other building attributes including sensitive information such as own-
ership has been removed before processing. The footprint geometry provides the following
basic features:

Direct features: Area, vertices and edges

Derived features: Dimensions of the bounding box (length, width, and orientation),
centroid of the building, and medial axis (also “skeleton”, cf. Section 3.3.3).

3.3 Model – Markov Random Field for building network

Network models of buildings integrate local attributes of buildings and their contextual rela-
tionships. They are of special interest in dense urban areas, where the influence as well as
constraints between neighboring buildings play an important role.

3.3.1 Markov Random Field

MRF (Kindermann & Snell, 1980), also known as Markov network, is widely used in image
processing and computer vision (Li, 2009) for the labeling/segmentation of image pixels or
sub-regions and other applications like point cloud grouping, economics and sociology. It is
defined as an undirected graph model (G, Figure 3.1):

G = (V, E) (3.1)

with V indicating the set of vertices and E the set of edges. For the random variable X of the
vertices

X = {Xv}, v ∈ V (3.2)

hold Markov properties, i.e., it maintains global spatial consistency by only considering (rel-
atively) local dependencies. The Markov properties of MRF can be summarized as follows:

1. Pairwise Markov property: Any two non-neighbor vertices are independent.

2. Local Markov property: A vertex is conditionally independent to all other vertices
given its neighbors.
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Figure 3.1: Undirected graph model of MRF: Vertices, edges and neighbors

3. Global Markov property: Any two non-adjacent subsets are conditionally indepen-
dent given a separating subset.

Unless a MRF can be decomposed or simplified to some particular sub-classes, e.g., tree
structures, for which there are polynomial-time inference algorithms, computation tasks for
MRF are often NP-complete problems. In practical applications, approximation techniques,
such as MCMC, are usually employed.

Please note that, in comparison with another important graph model – CRF (conditional
random field), MRF is a generative model, while the latter is a discriminative model. In an
MRF the posterior is inferred from likelihood and prior in a Bayesian framework. Maximum
A Posteriori (MAP) is usually employed for the parameter estimation.

3.3.2 Network of buildings

In this work we use MRF to model the buildings and their neighborhood relationships in
dense urban areas. The individual buildings are represented as vertices, v = vi, i ∈ V , and
edges, e = e(i, j), {i, j} ∈ E, connect pairs of vertices. Any pair of non-neighbor vertices is
conditionally independent given all other vertices, i.e.:

vi ⊥⊥ v j, i f {i, j} < E. (3.3)

For the building network the Markov properties mentioned above hold as well. I.e., the char-
acteristics of one building are only conditionally dependent on its neighboring building(s).

One key problem when establishing a building network is the definition of neighbors. In
comparison with an MRF in image processing, where the pixels are uniformly distributed
and have the same size, the distribution of buildings in dense urban areas is more complex.
Besides this, buildings may have very different sizes and shapes. As shown in Figure 3.2,
we define the neighborhood of buildings based on the determination of Voronoi cells of
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the buildings’ centroids (distance-based approach). That is the polygons divide the whole
area into seamless cells (Figure 3.2, left). For each centroid there is a corresponding region
consisting of all points closer to that centroid than to any other (Euclidean distance). All
cells that share an edge are defined as neighbors.

Figure 3.2: Definition of neighborhood of buildings: (left) polygons of buildings, their cen-
troids marked with red points, and their Voronoi cells; (right) the MRF model with the edges
connecting neighboring buildings

The overall energy function of the MRF consists of two components: the unary and the
binary terms

H =
∑

i

u(xi, cx) +
∑

i, j

b(xi, x j) (3.4)

which integrate local geometric features and contextual constraints, respectively.

3.3.3 Local geometric features

The geometry of building footprints reflects to some extent the building usage, e.g., a ware-
house has a much larger size than a single-family house, public buildings often have more
complex shapes than industrial buildings. Simple geometric attributes like overall area and
length to width ratio, however, are not discriminative enough for classification. We, there-
fore, propose two composite high-level features in order to provide a more sophisticated
geometric description (Huang et al. 2013b, P4).

Effective width

The effective width (EW) can be calculated for any building with arbitrary shape. It is defined
as the average width of the footprint along the centerline. As shown in Figure 3.3, the
conventional building skeleton (a, black) is extended to the building boundary to be the
centerline (b, red) for a more accurate calculation of EW. The effective width is of interest
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in usage classification, because it indicates the general living/movement space inside the
building. By this means, residential buildings can be distinguished very well from industrial
or public ones. In many building category definitions, single-family and multi-family houses
(e.g., apartment buildings) must be defined as two separate classes, because their area and
complexity are significantly different. Using EW, as demonstrated in Figure 3.3 (c), the
values of these two types of residential buildings show consistency, although the building
areas and the complexity (calculated by “branching degree” below) are not close to each
other.

Figure 3.3: Effective width: (a) building skeleton (black bold), (b) building centerline for the
calculation of EW (red bold), and (c) comparison of EWs for residential buildings with very
different shapes

Branching degree

Branching degree (BD) measure the structural complexity of the building using the number
and distribution of the building segments (called “branches”), which are derived from the
building skeleton. Some typical examples are given in Figure 3.4. More details can be found
in (Huang et al. 2013b, P4).

Figure 3.4: Branching degree: A measurement of the complexity of buildings

Figure 3.5 shows a rough qualitative sketch summarizing the distribution of building clusters
with different usage in EW-BD space. Each building is represented in the EW-BD space.
The probability that one building belongs to one of the classes is inversely proportional to its
(standardized) distance to the centroid of the class, which has been empirically determined.
The local potential of the building is defined by the probabilities plocal = {pR, pC, pI , pp} (cf.
Figure 3.5). The probabilities are standardized to a sum of 1.
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Figure 3.5: Distribution of buildings in EW-BD space

In the following Bayesian inference (cf. Section 3.3.4), the unary energy u(xi, cx) summarizes
the local features of the individual buildings. It is calculated from the local potential

u(xi, cx) = plocal(xi) , (3.5)

with xi ∈ {R,C, I, P} a label assignment.

3.3.4 Contextual relationship

The contextual relationship, i.e., the plausibility of usage of the neighborhood , is encoded
into the binary term. In an MRF, the binary term refers to the energy in the pairwise cliques.
It is measured concerning two aspects:

1. Type consistency: Neighboring buildings tend to have the same type;

2. Logical neighborhood: It reflects reasonable city planning for adjacent areas. E.g., res-
idential buildings are more likely be found near public buildings instead of industrial
buildings.

The binary energy of each clique is defined as

b(xi, x j) = N(i, j) , (3.6)

with a given matrix N. As shown in Figure 3.6, N is a symmetric matrix, in which the
rewards as well as the penalties of neighborhood proposals are embedded.

The goal is to find the maximum overall energy H of the graph with the configuration K ,
i.e., the grouping. Let p(i, j) indicate the state of each pair in K (if connected p(i, j) = 1,
otherwise 0). The goal function can be expressed as:

K̂ = argmax
K

{H} = argmax
K

{∑
i u(xi, cx) +

∑
i, j b(xi, x j)

}
subject to:
i and j are guaranteed to be disconnected if p(i,j)=0.

(3.7)
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Figure 3.6: Matrix summarizing rewards and penalties of neighborhood assignments (R –
residential, C – commercial, I – industrial, and P – public)

For this application another MCMC technique, namely a Gibbs sampler, is employed to solve
the global optimization task. Gibbs sampling is introduced in detail in Section 3.4.

Experiments are performed on data-sets of urban areas from OSM (Figures 3.7) and cadas-
tral maps (Figure 3.8). The classification accuracies reach 97.8% and 89.7%, respectively
(Huang et al. 2013b). As shown in Figure 3.7 (c and d), the building network model signifi-
cantly improves the performance by globally optimizing the classification result.

Figure 3.7: OSM data of Boston, USA: (a) input data, (b) ground truth labeled manually,
(c) labeling based on local features (unary energy) only, and (d) final labeling considering
both unary and binary terms. The incorrectly labeled buildings are highlighted with bold red
contours in (c) and (d).
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Figure 3.8: Cadastral map of Hanover, Germany: labeling result (left) and ground truth
(right). The incorrectly labeled buildings are highlighted with bold red contours.

3.4 Gibbs sampler

In urban areas the buildings are densely distributed implying that the established MRF model
is highly connected. In the optimization the labels of all vertices can be altered and lead to
different configurations. This means that the optimization is an extremely high-dimensional
problem and computationally intractable by a direct solution. We, thus, employ a statistical
approximation by means of a Gibbs sampler (Geman and Geman 1984). It is particularly
suitable for random sampling of potentially complicated multivariate probability distribu-
tions with a large set of variables.

3.4.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm Hastings (1970) is one of the most popular
MCMC techniques. It is a generalization of the basic Metropolis algorithm (Metropolis et
al. 1953) and many practical MCMC algorithms can be seen as special cases or extensions
of the MH algorithm.

The basic idea of MH algorithm is to give the possibility for accepting “worse” candidates.
In standard MCMC, a new step X∗ proposed by the Markov Chain will only be accepted as
Xi+1 when its evaluation is higher than that for its predecessor Xi. The MH algorithm relaxes
this criterion by accepting any X∗ with an acceptance probability A(Xi, X∗).

A(Xi, X∗) = min
{

1,
p(Xi) · q(X∗|Xi)
p(X∗) · q(Xi|X∗)

}
. (3.8)

A basic MH algorithm is shown in Figure 3.9. If A(Xi, X∗) > random number u,X∗ is accepted
and the chain moves forward to Xi+1 otherwise it stays at Xi.

The acceptance probability A(X, X∗) guarantees two properties:
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Figure 3.9: Metropolis-Hastings algorithm

1. A better candidate will always be accepted. In this case, the second term is larger
than 1, A(X, X∗) = 1. Since u is sampled in [0, 1), a better candidate will always be
accepted.

2. A worse candidate will have a chance to be accepted. Instead of being rejected imme-
diately, the probability for acceptance exists in proportion to its evaluation.

The main purpose of the MH algorithm is to overcome local minima, which often occur
in complex distributions. As shown in Figure 3.10, instead of stopping at the first local
minimum, the sampler has the possibility to go up (i.e., accept worse candidates) climbing
the “hill” and thus to reach the global minimum. The transition kernel in MH is based on the
ratio of the proposed and the current step, implying the gradient of the function. Small hills
can, thus, be easily overcome, because a low gradient means a large acceptance probability.

3.4.2 Gibbs sampling

Gibbs sampling (Geman and Geman 1984, Gelfand and Smith 1990, George Casella 1992)
is a practical variant of the MCMC algorithm. It was introduced in (Geman and Geman 1984)
for image processing with Bayesian estimation (MAP estimation). The main goal of Gibbs
sampling is to deal with multivariate probability distributions, i.e., with multiple random
variables. Sampling in the joint probability distribution of a large set of variables where a
simple MCMC with direct sampling is no more feasible is one of the main practical issues.
Gibbs sampler tackles this problem by sampling a single variable or a limited subset of the
variables in turn. I.e., complex joint distributions are approximated by (a sequences of)
multiple marginal distributions.

Algorithm 1 shows the pseudo-code of the Gibbs sampling used to optimize the building
network model. Gibbs sampling can be very well combined with the MH-algorithm and its
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Figure 3.10: Metropolis-Hastings algorithm renders it feasible to overcome local minima by
allowing “worse” hypotheses, i.e., “up-hill” moves.

variants. One concrete example sampling scheme can be found in (Huang et al. 2013b).

Algorithm 1 Gibbs sampling for building network optimization
Definitions
s: state
M: model
K : corresponding configuration
H : overall energy
X, XG, XG: universal set of vertices, the chosen vertices for Gibbs sampling, and the
unchosen vertices
Initialization (using unary likelihood only)
Ms ←Ms=0, K s ← K s=0

while not converged do
Propose new stateM′, K ′

1. Select XG ⊂ X
2. Re-sample new labels for XG

3. Calculate new labels for other vertices XG based on new labels of XG

4. CalculateH ′

if H ′ > H s OR A∗(Ms,M′) > u ∼ U[0, 1] then
Ms+1 ←M′

else
Ms+1 ←Ms

end if
end while

∗ Acceptance probability in MH, cf. Section 3.4.1



44 Building classification

3.5 Related work

Haunert and Sester (2008) compare different types of skeletons that are commonly used
in geographic information systems (GIS) for deriving polygon centerlines. As the basis
of our work, we select a simple skeleton, the “straight skeleton”, which only comprises
straight lines. In contrast to the curvilinear “medial axis”, straight skeletons require much
less computational effort. The straight skeleton is presented by Aichholzer et al. (1995) and
an example is shown in Figure 3.3 (a).

An approach to enhance OSM data semantic labels is presented in (Werder et al. 2010),
proposing an unsupervised classification of spatial data solely based on the geometric and
topological characteristics. Building outlines and road network information are employed.
Lüscher et al. (2009) present a classification of buildings given also in the form of topo-
graphic vector data by means of an ontology-driven approach. Supervised Bayesian infer-
ence is used to deal with the vagueness in the definitions of the spatial phenomena. In
(Henn et al. 2012), building types are derived using a SVM classifier from LoD1 city model
data (including 2D footprints, building heights and functions) for a semantic information
enrichment of the 3D models.

Current approaches include (Hecht et al. 2015), in which a building type classification
of building footprints from different data source, e.g., topographic raster maps, cadastral
databases or digital landscape models, is presented. A Random Forest classifier is employed
and the influence of data source on the classification performance is analyzed. Kang et al.
(2018) propose a classification of building type based on remote sensing as well as street
view images. The latter are assigned to individual buildings with the given geographic infor-
mation. Selected state-of-the-art CNN architectures are implemented for the classification
and their performances are compared.

Comparison of the proposed approach to the related work

The novelty of the proposed approach consists in the use of a network model for buildings in
urban areas. Besides the local geometric analysis, for which we have proposed two original
features, i.e., the effective width and the branching degree, the constraints from the neighbor-
hood have been integrated and are globally optimized. The network model contributes not
only to the inference of new features, but also to the propagation of existing features making
the building information more complete and uniform.

3.6 Conclusion and remarks

This work presents an approach for the automatic determination of building usage (use and
occupancy) solely based on building footprint data. There are four predefined categories:
residential, commercial, industrial and public.

Concerning the challenges formulated in Section 3.1, the contributions of the proposed ap-
proach can be summarized as follows:
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� Two new high-level composite geometric features: effective width and branching de-
gree. They can be used to quantify the average living space and the structural com-
plexity of the buildings, which provide reliable information for building classification
concerning usage. (C1)

� An MRF is employed to model the building network embedding both local features
and contextual constraints. (C2)

� An easily extendable framework for automatic classification has been introduced. Fur-
ther local building attributes and contextual constraints can be added to improve the
performance.

Please note that in this approach the classification works solely based on the geometric fea-
tures. The result cannot be perfectly correct because some building usages, such as educa-
tional and high-hazard (used for the production or storage of flammable, radiative or toxic
materials), cannot be derived from footprint data only. Additional information, e.g., materi-
als, floor height, roof type, should be integrated for a more reliable inference.



Chapter 4

Anomaly detection in trajectories

Overview

This chapter presents an original approach to anomalous behavior detection in individual
GPS trajectories of vehicles. A variant of a recursive Bayesian filter is designed for dynamic
inference. The original motivation of this work war to find when and where the driver meets
orientation problems, i.e., takes a wrong turn, makes a detour or gets lost, so that the navi-
gation system can provide appropriate response in time. We propose an extended recursive
Bayesian filter that detects anomalous behaviors unsupervised and dynamically during the
drive.

Anomaly detection in trajectories: The belief of anomalous behaviors is inferred during the
drive.

Keywords

GPS, Trajectory, HMM, Bayesian filter, Inference, Anomaly
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4.1 Problem statement

Anomalous behavior detection refers to the problem of finding patterns in the data that do
not conform to expected behaviors. It is of great interest for the applications of navigation,
driver assistance systems, surveillance and crisis management.

Most related approaches derive normal or/and anomalous patterns from a large number of
labeled data and apply the trained classifier to the new trajectories. Large amounts of training
data, however, are not always available, e.g., due to privacy concerns.

The core issues and contributions of the approaches presented in this chapter are highlighted
as follows:

� (C1) Patterns are learned locally inside a single trajectory without previous training.

� (C2) The detection is dynamic over time.

The system can autonomously detect anomalous behaviors, in this case orientation problems,
and provide additional navigation information just in time. Besides, this detector can be uti-
lized by transportation agencies or researchers for (1) traffic surveillance, where the anomaly
(especially the collective behaviors, cf. Huang (2015, P8), Section 4.3) reflects traffic is-
sues such as congestion and turn restrictions, and (2) vehicle/driver tracking to study driving
habits or patterns.

4.2 Data – GPS trajectories

For the presented approach we use GPS trajectories as input data. From vehicle naviga-
tion systems to mobile devices, the rapid popularization of GPS sensors provides plenty of
trajectory data. Analysis and pattern mining from the trajectories can reveal interesting in-
formation for transportation management, behavior analysis as well as vehicle development.

Trajectories are discrete data that are both space- and time-referenced. A basic GPS trajec-
tory consists of a sequence of points with assigned IDs, coordinates, and time stamps. From
a trajectory, information like position, orientation, and velocity can be derived.

Please note that GPS trajectories may contain sensitive private information such as home and
work address. Clearance of privacy protection is required when using personal trajectory
data, at least, personal information should be deleted or concealed from the traces. The data
used in the presented approach are coming from the following sources:

• Crowdsourcing data: Driving trajectories of an anonymous commuter are gathered
from a VGI dataset of Hannover, Germany. 100 trajectories are randomly selected
from data over two years.
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• Open dataset MapConstruction (Ahmed et al. 2014): This dataset has been published
for map reconstruction from trajectories. It consists of GPS trajectories in both Euro-
pean (Athens) and North American (Chicago) cities. It also provides the corresponding
street maps, which gives the opportunity to evaluate the detection results 1.

• Open dataset GeoLife (Zheng et al. 2008): Provided by Microsoft Research Asia, this
dataset consists of a large number of GPS trajectories from 182 users over a period
of years (2007 to 2012) from the city of Beijing, China. The dataset contains a broad
spectrum of movements including driving, hiking, cycling, and bus/train riding. We
only use the data from cars. To demonstrate the effect of collective behaviors, multiple
trajectories haven been chosen from the same crossing.

• Self-acquired data: The trajectories are generated by the author himself driving a car.
Please note that the routes were scheduled on purpose to pass the particular road seg-
ments and crossings with traffic problems to limit the effort and still produce an inter-
esting dataset. Yet, while the routes are “artificial”, the traffic situations and reactions
of the driver were real. An advantage of the self-acquired data is that the traffic condi-
tions and driver behaviors are available as “ground truth”.

4.3 Model – Hidden Markov Model for trajectory

The input trajectory data are represented as Hidden Markov Models (HMM). The derived
spatial and temporal features are considered as the measurements/observed states of the in-
dividual steps.

4.3.1 Hidden Markov Model with dynamic orders

Markov chains are commonly used in the modeling of state changes in sequences over time.
The first order Markov chain is the basis of most Bayes filter variants, e.g., the Kalman filter,
and is considered as an appropriate model for trajectory data. In the presented approach we
use an extended higher-order Markov chain instead, in order to integrate long-term features.
Let x ∈ X be the unobserved states, i.e., the probabilities of anomalies, in the Markov process
and Z the measurements, i.e., the (long-term) observations. The Bayesian network of the
HMM process model is presented in Figure 4.1.

The proposed higher-order Markov chain X = {x0, ..., xn} still follows the Markov assump-
tion. I.e., the probability of the current state (xk) given a limited number (m) of previous
states is conditionally independent of the other earlier states:

p(xk|xk−1, xk−2, ..., xk−m, ..., x0) = p(xk|xk−1, xk−2, ..., xk−m) , (4.1)
1The ground truth of “anomalies” is manually generated based on the available street map. A trajectory is

labeled as normal if the driver takes a reasonable route, i.e., no obvious detour or repetition, from the start point
to the end point, or labeled as anomalous, otherwise.
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Figure 4.1: An example of a high-order Markov chain with “dynamic memory” (bottom).
The last observations of each state in the first-order Markov chain X (top) are integrated into
new observations Z for the new chain Y .

with m < k. The measurement Z = {z0, ..., zn} at each state depends not only on the corre-
sponding state, but also certain previous states:

p(zk|xk, xk−1, ..., xk−m, ..., x0) = p(zk|xk, xk−1, ..., xk−m+1) . (4.2)

Although the Markov chain X keeps the Markov property, the higher order also implies the
following:

1. The number of parameters to be solved grows exponentially with O(|x|m) with |x| the
number of possible states of x and m the order of the Markov chain.

2. The reliability of the parameter estimation decreases.

Thus, we model the trajectory by constructing a new chain Y = {y0, ..., yn} with an m-tuple
of x states:

yk =

{ (xk, xk−1, ..., xk−m+1) ∀k = (m − 1, n)
(xk, ..., x0) ∀k = (1,m − 2)
x0 k = 0

(4.3)

so that the new chain Y over the m-tuple is equivalent to a first order Markov chain keeping
the conventional Markov property:

p(yk|yk−1, yk−2, ..., y0) = p(yk|yk−1) (4.4)

with a “memory” of m, and

p(zk|yk, yk−1, ..., y0) = p(zk|yk) (4.5)

as shown in Figure 4.1 (bottom).
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4.3.2 Long-term spatial and temporal features

An anomaly usually cannot be observed, and therefore derived, directly at a single or few
observation. It is an underlying state requiring a long-term perspective of the observations.
The higher order Markov model defined above makes it possible to derive long-term fea-
tures from the trajectory data. These high-level features are employed as “measurements” of
anomalous behaviors. This Section gives a short summary of the features. More details can
be found in (Huang 2015, P8).

Turns

Turning is one of the most basic movements in trajectory data. In the GPS trajectory data,
the turn itself is a long-term feature as it is normally finished within several time stamps. Al-
though a single turn dose not indicate any anomalous behavior, the combination and density
of turns can represent anomalous patterns like a detour/loop. Using the dynamic property of
the Markov chain model, a turn is extracted by caching the heading changes and mark the ac-
cumulated value at the position where the turn ends. For the combination of turns, we assume
that sequential turns in the same direction, e.g., double or triple left turns, have more impact
on the belief in anomalous behaviors than sequential turns in different directions, because
they imply a potential detour (see below) or the tendency of looping. Please note that we
actually do not need to count the turns and calculate their density. Instead, the influence of
the density of turns is automatically reflected in the Bayesian filter (Section 4.4.1): Intensive
turns in the same direction may result in a high belief (in anomaly), which is continuously
increased by the newcoming turns before it decays too much.

Detour factor

A detour often happens when the driver has lost orientation or meet traffic problems, e.g.,
road-block and traffic congestion. The detour factor (DF) is designed to quantify the degree
of detour as an anomalous feature. DF is a widely used term in various areas of transporta-
tion including road analysis (Wiedemann and Ebner 2000). The basic idea consists in the
comparison of the actual route to the optimal one. We extend DF to a dynamic scheme. In
comparison with conventional DFs, in the calculation of dynamic DFs the travel does not
have to be finished yet and the “optimal” route (defined by given start, end points and road
map) is unknown. For each individual position in the detour, the DF is defined as the ratio
of the trajectory length to the direct distance from the start point to the current position.

In comparison with (Huang et al. 2014b, P6), (Huang 2015, P8) proposes a fully automatic
and dynamic scheme for DF calculation, which can automatically detect the start and end
positions of a detour.

Route repetition

In all one-way trajectories, the most prominent anomaly is route repetition, i.e., on the way
to the destination the driver comes back to the same road section, from either the same or the
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opposite direction. Route repetitions with opposite direction are in most cases the result of a
U-turn while those with the same direction often happen after driving a loop. The repeated
route is detected by finding trajectory points which fall into a buffer area around the previous
trajectory. The radius of the buffer is determined considering road width, street network
density and noise of the GPS signal.

4.4 Bayesian filter for belief inference

The goal of the proposed Bayes filter is to estimate one unobserved state – the belief in an
anomaly, which is quantified by the probability of anomalous behaviors being performed.

4.4.1 A dynamic Bayesian filter

The proposed filter is a variant of recursive Bayesian estimators. It keeps the dynamic prop-
erty and shares the prediction-updating scheme. Conventionally, the prediction and updating
steps work alternately and are inputs for each other. In the proposed filter, however, either of
them has a probability to be skipped in the following cases:

• During update: We employ multiple measurements, i.e., anomalous features. Some-
times more than one feature can be extracted at the same position of the trajectory.
With the simplified assumption that the features are independent of each other, the
update step is performed multiple times before the next prediction step.

• During prediction: Long-term features cannot be continuously observed, i.e., many
positions may have no measurements. In the interval to the next position with an
observation only the prediction step will be performed for multiple times at multiple
positions (once at each position).

Prediction

The prediction step calculates the total probability, i.e., the integral of the products of the
transition probability p(yk|yk−1) and the probability of the previous state p(yk−1|zk−1) over all
possible yk−1. We have only one variable, i.e., the belief, to be estimated and in principle it
cannot be predicted based on any current measurement. We assume that anomalous behav-
iors are more “transitory” than the normal behaviors and, therefore, use a simple exponential
decay to predict the belief of the next state:

yk = yk|yk−1 = F · yk−1 + wk , (4.6)

where
F = e−s·k′; wk ∼ N(0, σ2) . (4.7)
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F simulates the decay of the belief in an anomaly along the track. Gaussian noise is added
by wk. k′ is used to count the number of previous states without new anomalous features
being reported, i.e., the length of normal states before the current state. The accumulation
of k′ makes sure that the belief decays rapidly when the driver’s behavior is normal again.
The tendency for decay can be tuned by the factor s. We define the urban area as the default
scene with s = 1. The filter is adapted to other scenes by tuning s:

• When driving in suburban areas with higher speed and fewer street crossings, there
will be a longer time interval between potential anomalous movements and the belief
decay should, thus, be set lower so that the pattern can be found.

• For pedestrian trajectories in dense urban areas, the decay speed may need to be in-
creased to avoid continuous accumulation of the belief.

Update

The update step employs Bayesian inference. The predicted state p(yk|zk−1) is used as the
prior, which is refined by the observations of the current state.

p(yk|zk) =
p(zk|yk) · p(yk|zk−1)

p(zk|zk−1)
, (4.8)

with the measurement likelihood

p(zk|yk) =
∏
i∈V

p(zi,k|yk) (4.9)

from multiple measurements. zi with i ∈ V are the observations integrated into the current
update step.

4.4.2 Belief inference

In this section we use three typical anomalous behaviors, i.e., detour, wrong turn and loop,
to explain how the proposed belief filter works. Simulated data is used as the input trajecto-
ries for a simplified presentation. Please note that, besides the turn feature, the detour case
uses only the detour factor and no repeated route, while the wrong turn and the loop case
employ only the latter. Thus, the influence of the individual features can be demonstrated
independently.

Figure 4.2 presents a simulated trajectory with detour (left) and the extracted high-level
features plotted over time (right). The green circle and the red asterisk are used to mark the
start and end positions of the trajectory, respectively. The bold red line shows the inferred
belief in anomalous behaviors over time. It is also given in the trajectory with colors.

Two typical cases of route repetition – wrong turn and loop are shown in Figures 4.3 and 4.4,
respectively. All states with detected repeated route have the same feature value of 1. The



4.4 Bayesian filter for belief inference 53

Figure 4.2: Simulated trajectory of a detour (left) with start position (green circle), end
position (red asterisk) and the belief in anomaly shown in color. Three high-level features:
Turns (blue), repeated route (magenta) and detour factor (green) are plotted together with the
belief in an anomaly (red bold) over time (right).

Figure 4.3: Simulated trajectory of a wrong turn: trajectory with colors indicating the belief
in an anomaly (left) and the distributions of the belief and behavior features over time (right)

belief in an anomaly increases as long as the vehicle stays in the repeated route and reaches
its peak at the spot where the wrong turn ends. The belief decays to the normal value after
the vehicle goes back to the previous route.

These examples also demonstrate some typical situations in the inference:

• Double turns in the same direction imply a potential detour or even loop. The proba-
bility for an anomalous driving increases when the second turn happens.

• Double turns in opposite directions, in contrast, are considered normal.

• The detour factor increases and reaches its maximum value when the detour is finished.
The belief in an anomaly also has its peak value at this time.

• After the detour the belief in anomaly decays fast.
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Figure 4.4: Simulated trajectory of a loop: trajectory with colors indicating the belief in an
anomaly (left) and the distributions of the belief and behavior features over time (right)

4.4.3 Collective behaviors

As demonstrated above, one main characteristic of the proposed method is that it works for
a single trajectory without the need to learn multiple normal behaviors to detect an anomaly.
It does not mean, however, that the detection is limited to single traces. On the contrary,
based on anomaly detection of individual trajectories, further information might be derived
by analyzing their collective behaviors. For some urban traffic issues, e.g., road-blocks, blind
alleys or turn restrictions, anomalous driving behaviors will often be found concentrated in a
certain area. These collective behaviors can to a certain extent reflect the problems mentioned
above.

Figure 4.5 shows self-acquired trajectories with known traffic conditions and driver behaviors
in an urban area (Hannover, Germany). A temporary road-block as well as a blind alley
(Figure 4.5, right) can be seen near a road crossing. Anomalous patterns are found at the end
of the blind alley and on multiple sides of the road-block. As shown in the trajectories (Figure
4.5, left), driver 1 from the north saw the sign for the road-block and made a detour, driver 2
missed the warning sign for the road-block, had to make a U-turn right before the road-block
and then made a detour to go on in the same direction. Driver 3 from the south turned around
even earlier because of the warning sign and the traffic jam before the crossing. Although
the blind alley on the west side is permanent (i.e., not a temporary setup like road-block), it
sometimes also causes U-turns for drivers not familiar with this area.

Figure 4.6 presents an experiment on the open trajectory dataset “GeoLife GPS Trajecto-
ries” (Zheng et al. 2008, Zheng et al. 2009, Zheng et al. 2010) from Beijing, China. Trajec-
tories from the bottom to the left show a collective detour to the North, while the trajectories
in the opposite direction (from the left to the bottom) present no anomaly. This phenomenon
indicates a possible left turn restriction, which is proven by the street map shown in the same
figure, i.e., no left turn is possible here because of the cloverleaf junction and the direction
restrictions in the streets.
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Figure 4.5: Collective behaviors for a road-block and a blind alley: a collection of trajectories
in the same area and a similar time period (left) and the street map with the manually labeled
locations of the road-block and the blind alley (right)

Figure 4.6: Collective behaviors in the case of a turn restriction: Trajectories passing the
road intersection from the bottom to the left show a collective detour and indicate a turn
restriction, which is proven by the street map.

4.5 Related work

Chandola et al. (2009) summarize the techniques developed for anomalous pattern detec-
tion up to this point in time with the following classes: classification based, parametric or
non-parametric statistical, nearest neighbor based, clustering based, spectral techniques and
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information theoretic. A significant amount of work related to automated anomaly detection
in trajectory data involves trajectory learning, i.e., cluster models of trajectories correspond-
ing to normal cases are learned from training trajectories. New trajectories are typically
assigned an anomaly score based on the distance to the closest cluster model or the like-
lihood concerning the most probable cluster model (Morris and Trivedi 2008). Hu et al.
(2006) propose an algorithm for automatic learning of motion patterns and use these patterns
for anomaly detection and behavior prediction. Trajectories are clustered hierarchically us-
ing spatial as well as temporal information and a chain of Gaussian distributions is used to
present each motion pattern. Based on the learned motion patterns, statistical methods are
used to detect anomalies and predict behaviors. Besides a cluster based trajectory learning
method, Piciarelli et al. (2008) propose a trajectory learning and anomaly detection algo-
rithm based on a one-class Support Vector Machine. The algorithm can automatically detect
and remove anomalies in the training data. They first evenly sample points from the raw
trajectory and then model each trajectory with a fixed-dimensional feature. Bu et al. (2009)
build local clusters using continuity characteristics of trajectories and monitor anomalous
behavior via pruning strategies. Ma (2009) presents a method for real-time anomaly detec-
tion for users following normal routes. Trajectories are modeled as a discrete-time series
of axis-parallel constraints (“boxes”) and are then incrementally compared with a weighted
average trajectory.

To learn motion patterns and detect anomalies in complicated human trajectories, Suzuki et
al. (2007) use a HMM to model time-series features of human positions. A similarity matrix
of the HMM mutual distances is formed and multi-dimensional scaling based on eigenvec-
tor decomposition provides trajectories in a low-dimensional space. K-means clustering of
the projected data leads to the motion patterns. Anomalies can be detected by the use of
likelihood scores for the HMM representing motion patterns. Sillito and Fisher (2008) use
an incremental semi-supervised one-class learning procedure to detect anomalous behavior
of pedestrians. They combine unlabeled trajectories with occasional examples of normal
behavior labeled by a human operator. In (Kim et al. 2011), Gaussian process regression is
used for the recognition of motions and activities as well as anomalous events given already
learned normal patterns of objects in video sequences.

Current approaches include (Laxhammar and Falkman 2014), in which an online learning
and sequential anomaly detection scheme is proposed with an adaptive anomaly threshold
to minimize parameter tuning during the detection. Pang et al. (2013) adapt likelihood ratio
test statistic to learn traffic patterns and detect anomalous behavior from taxi trajectories, to
monitor the emergence of unexpected behavior in the Beijing metropolitan area. Wang et al.
(2017) present a traffic anomaly detection from GPS trajectories of vehicles in certain road
segments and time intervals. Besides the detection in single road segments, the anomalies
implied by the inconsistency of neighboring road segments are considered as well.

Recursive Bayesian estimation (or Bayes filter) (Masreliez and Martin 1977), e.g., the
Kalman filter (Kalman 1960) for linear and normally distributed variables, is widely used
in signal processing, navigation and robot/vehicle control. A main characteristic of Bayes
filters is the dynamic estimation (in two steps: prediction and update) of the underlying vari-
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able(s) based only on the most recently acquired measurement data. The Kalman filter and
its extensions have been proved appropriate for trajectory analysis. Recent work includes
(Prevost et al. 2007), which presents an extended Kalman filter to predict the trajectory of a
moving object based on measurement data from a moving sensor – an UAV. An Unscented
Kalman filter is used in (Sun et al. 2012) for trajectory tracking based on satellite data with
weak observability and an inherent large initial error.

Comparison of the proposed approach to the related work

In summary, most related approaches share the same strategy: derive either normal or anoma-
lous patterns from given training data and apply the trained classifier to test trajectories. The
strategy is strongly related to the data. One advantage is that less empirical information is
needed to differentiate normal and anomalous behaviors, which is learned from the given
data. It can, however, easily lead to bias, because of the incompleteness of the data, which
is hard to be avoided (cf. Section 4.1). We, on the contrary, have proposed an unsupervised
anomaly detector with generic prior knowledge and Bayesian inference. It can work in a
single trajectory only based on local features. No training data are required. Besides, the
detection is dynamic over time, i.e., the anomalous behaviors can be determined as soon as
it has been finished (or sometimes even in process), while in many related approaches the
anomaly detection must be performed on the whole trajectory.

4.6 Conclusion and remarks

An original approach to anomalous behavior detection in the trajectory data by means of
an extended recursive Bayesian filter is presented. Concerning the challenges formulated in
Section 4.1, the contributions of the proposed approach can be summarized as follows:

� A recursive Bayesian “belief” filter for dynamic anomaly detection in a single trajec-
tory over time. (C1, C2)

� Unsupervised detection without previous training (C1)

� Collective behavior analysis based on detection results for multiple individual trajec-
tories.

In a single trajectory, the result indicates where the driver is likely meeting orientation prob-
lems and assistance is needed. Furthermore, a potential for detecting traffic problems is
demonstrated by analyzing the collective behaviors of multiple trajectories.

Please note that the proposed filter basically produces probabilities instead of binary labels,
i.e., it does not make decision but provide proposals with quantified estimation. The driver
might perform a loop on purpose to reach a certain sequence of destinations; a route weaving
around an impassable area, e.g., a lake or park may look like a detour. In these cases addi-
tional information, e.g., reliable road maps with information about traffic restrictions, can be
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employed to improve the results. The decision by means of a fixed threshold is rather sub-
jective, depending very much on the individual definition of anomaly, the confidence of the
decision maker/observer and the data characteristics. The proposed detector, on the contrary,
tries to provide information as objectively as possible in the form of probabilities, which can
be reliably used to support the decision-making, e.g., to warn concerning getting lost by the
driver assistance system or concerning suspicious behaviors for surveillance.

We are aware that using geometric features only limits the performance of the proposed
method. Further features along with information about the road network and traffic could be
integrated to derive anomalous behaviors more reliably. One simple example is the detection
of speeding, which is also a typical anomaly in driving, by using the feature velocity (directly
derived from the GPS data) as long as the speed limit of the route is available. A sensitivity
analysis of the decision threshold can also be considered for future work.

In detour detection, for the proposed detector that the belief in anomaly increases directly
along with the rise of the detour factor. By this means, a detour is detected when it is (almost)
finished and the dynamic character of the detector is maintained. In some applications,
however, the begin of the detour is of interest because it may indicate the position of a traffic
congestion, a road-block or where the driver starts to meet an orientation problem. Although
a detour can, in principle, not be determined at the first turn, we are able to mark it “later” as
soon as the detour has been detected. In the proposed work the beginning position is already
buffered in the dynamic high-order Markov model for the calculation of the DF.

We have demonstrated one application of the proposed belief filter – the detection of specific
driving behaviors in GPS trajectory data. We, though, assume that the developed scheme can
be (1) extended to find other trajectory patterns given appropriate features and (2) adapted to
the trajectories of pedestrians or animals, which can be derived from various sensors such as
movement trackers and camera networks.
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RGBD Segmentation

Overview

This chapter presents a fully automatic object-level segmentation of RGBD data. A novel
fully 3D parsing scheme and global optimization with an MRF are proposed for complex
scenes with freeform objects. The raw RGBD data are first converted to 3D point clouds and
the points are regrouped into patches with homogeneous color and geometry. A hypothetical
quasi-3D model – “synthetic volume primitive” (SVP) is constructed by extending each 3D
patch with a synthetic extrusion in 3D. SVPs vote for and assemble themselves into objects
by considering not only color and surface geometry but also the underlying shared 3D vol-
ume. They produce more plausible results and show advantages when dealing with concave
and freeform objects.

RGBD segmentation: The input data (left) are first over-segmented into patches (middle) as
basis for the SVPs, which assemble themselves into objects (right).

Keywords RGBD, Segmentation, Depth image, Point cloud, SVP, MRF, Super-pixel
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5.1 Problem statement

As a new category of spatial data, RGB-Depth (RGBD) data attracts increasing attention,
because of easy accessibility and fast data acquisition. They are of particular interest in
robotics and general indoor scene interpretation, as most of the sensors focus on close range
measurement. In the community of image processing and computer vision, image segmen-
tation is an intensively studied topic. In recent years, a number of approaches for RGBD
segmentation have been reported, where the depth information is mostly treated as an addi-
tional channel to the colors. High-level, i.e., object-level, segmentation is always important
and desired for robot vision and scene interpretation. One challenge remaining in both RGB
and RGBD segmentation is to find objects with irregular shapes in a complex scene, e.g., a
jacket lying on a sofa with other cushions (cf. overview figure, top). The core issues that the
approaches included in this chapter tackle are:

� (C1) A fully 3D instead of 2.5D parsing of RGBD data

� (C2) Object-level segmentation from single RGBD image

� (C3) Segmentation of freeform including concave objects.

The key idea is to utilize the 2.5D (depth) information and restore the data into 3D space
for analysis, i.e., to observe the data from all possible angles instead of only the original
acquisition angle.

5.2 Data – RGBD

RGBD data refer to data containing (conventional) color information as well as an additional
channel with depth information for each pixel. Currently, most RGBD data are acquired
with platforms like the Microsoft™ Kinect, the Asus™ Xtion, and the newly introduced
Google™ Tango. They work with a combination of a camera and a “depth sensor”, i.e.,
an active sensor used to measure the depth. Figure 5.1 presents an example from Kinect.
Another kind of platform is equipped with only passive sensors, i.e., stereo cameras, and the
depth information is calculated by dense image matching. Passive measurement platforms
have lower demand for power supply and higher concealment. It requires, however, more
sophisticated algorithms and, in some cases, the ability of real-time computation. One such
sensor system has been recently introduced by Roboception™. Both types of RGBD sensors
are focusing on close-range measurement1. The Kinect-like sensors are limited by the power
and accuracy of projectors while the stereo system is restricted by the limited baseline of the
cameras.

1Although some aerial surveying and mobile mapping systems equipped with both laserscanner and cameras
can also acquire RGB and corresponding depth information, such data are usually not referred to as “RGBD”.
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Figure 5.1: RGBD data: color map, depth map and registered 3D point cloud

RGBD data are usually seen and treated as an “image” rather than 3D data. Even though
many approaches work directly on the registered point cloud, they process the data of a single
shot like a 4-channel image and not like a 3D point cloud. This is reasonable, especially in the
community of computer vision and image processing, as the depth information is inherently
rasterized and aligned to the pixels. Thus, existing algorithms and methods can be directly
applied. Strictly speaking, “depth” implies, as termed in geoinformation and surveying,
“2.5D” instead of “3D”.

5.3 Model – A novel synthetic model for spatial data pars-
ing

A novel model – Synthetic volume primitives (SVP) – is proposed for fully 3D parsing of
RGBD data. It is established based on one observation and one assumption:

Observation: Point clouds (from RGBD and all other forms of surveying sensors)
reveal actually only the (partial) surface of the target objects.

Assumption: Every 3D patch (group of points) in the point cloud, whose member
points have homogeneous color and geometry, represents (a part of) the surface of an
individual underlying solid body in the 3D world.

SVP is a 3D solid body model with a 3D patch as basis and a given synthetic volume. By
this means SVPs can be used to simulate 3D objects or their components. The hypothetic
volume helps the analysis of 3D relationship and, thus, the merging of SVPs.

5.3.1 Synthetic volume primitives – SVP

An SVP consists of two components: a base patch and a hypothetic volume. The base patch
is a group of 3D points and can have freeform.The patches are segmented by an extended
superpixel method. More details can be found in (Huang et al. 2014a, P5). The hypothetic
volume is generated as a solid body extension along the normal direction of the base patch.
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Figure 5.2 shows how the SVPs are constructed for a 3D cube. We assume that the underlying
solid body is always behind the patch. The direction of the extrusion is along the normal
vector that points towards the viewing direction. The SVPs vote for a common object by
intersection with each other in 3D space. We, thus, use SVP models as “bricks” to build the
3D world.

Figure 5.2: Definition of SVPs: (left) 3D patches, (middle) an SVP with hypothetical extru-
sion and (right) the intersection of SVPs

The construction of SVPs is shown in Figure 5.3. A surface patch may have an arbitrary
shape (top left). In practice, we model the extrusion volume with multiple “sticks” (top right)
to approximate the shape. The stick model is a discrete representation of the 3D extrusion.
For simplification the sticks are given a uniform diameter, which is equal to the average
distance of neighboring points. A tricky problem is how to define a reasonable length for
the extrusion. With too short extrusions, the SVPs will fail to intersect with other object
components. Too long extrusions, on the other hand, will result in the merging of multiple
objects into a large one. Without any prior information, we can only assume a quasi cubic
shape for a hypothetical 3D body. We empirically found, that it is reasonable to use the
average edge length of the patch’s bounding box as the length of the extrusion. An example
scene with SVPs is shown in Figure 5.3 (bottom).

5.3.2 Freeform object voting

The hypothetic volume of SVPs can be used to analyze how different patches of an object
interact with each other. Multiple SVPs may vote for a common object by intersection with
each other in 3D space.

Object-level segmentation is challenging since the objects may have different sizes, colors
and shapes. To decide if two 3D patches belong to the same object, a simple way would be
to check if they are neighbors and their back sides face each other. This, however, will fail in
many cases, e.g., two patches belong to one object, but are not directly adjacent, two patches
are connected with each other, but do not belong to the same object, the patch is non-planar,
or contains more than one plane, etc. To improve the results, geometric constraints and/or
top-down models (with simplified and regular primitives) could be employed to ensure a
more reasonable segmentation. Yet, even then, such methods are confined to limited, and
mostly convex, shapes.

Instead of exploring the various possibilities of patch combination, we enforce a single con-
dition: If two patches belong to the same object, the hypothetic volumes behind them should
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Figure 5.3: SVP models: “Sticks” (cylinders) are employed to model the extrusion of a
freeform patch (top). In an example scene (bottom), the sticks are visualized by their axes
(green beams) for simplification.

have a certain overlap as they represent (parts of) the same 3D object. This is a simple but
reasonable condition which describes the actual 3D relationship of the patches and the under-
lying object. As illustrated in Figure 5.4, with the help of SVPs the hypothetical components
are “assembled” from arbitrary angles to form an object. Remote object parts or patches of
concave shapes, as shown in Figure 5.4 (c, d), may not link with some neighbors, but can
still be included via other object members from a different direction.

An “intersection degree” is introduced to quantify the intersection of two SVPs. Besides a
discrete approximation of the 3D volume, the above mentioned stick model also provides an
easy way to quantify the intersection of 3D objects by just counting the intersecting sticks of
different objects instead of calculating the real 3D volume overlap. We define the degree of
intersection for a patch pair i and j as follows:

I(i, j) = max{Ji→ j,J j→i} , (5.1)

with the intersection degree of the individual patch

Ji→ j =
mi

ni
·

t
mi · n0.5

j

=
t

ni · n0.5
j

, (5.2)

where n is the number of sticks, t the total number of intersections and m the number of
sticks involved in the intersection. The intersection degree J is defined as the product of
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Figure 5.4: SVPs voting for freeform objects: SVPs can be assembled from arbitrary angles
(a) and form concave shapes (c) when they are either fully (b) or partially (d) connected.

the percentage of the intersected sticks and the degree of intersection depth. We use n0.5
j to

approximate the maximum possible depth. The larger value is taken for the patch pair (i, j).
This score is then used as the likelihood for a valid grouping of these two patches.

SVPs provide the following advantages for 3D scene understanding:

1. Freeform objects can be represented by the intersection of SVPs from arbitrary angles.

2. There is no limit for the number or size of component SVPs.

3. Primitives (SVPs) are merged to objects in the CSG (Constructive Solid Geometry)
style.

5.4 Global optimization with Markov Random Field

A global optimization is beneficial because the parameter settings of the segmentation can
be significantly influenced by the various scales of different objects in the scene. An MRF is
employed to model the relationship of the SVPs. The SVPs are represented as vertices and
their neighborhood relationship as edges. In this undirected graphical model each SVP is
only related to its first-order neighbor. The SVPs are defined as neighbors if the correspond-
ing 3D patches have common boundaries.

The MRF model is defined as:
G = (V, E) , (5.3)
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with v = vi, i ∈ V the vertices and e = e(i, j), {i, j} ∈ E the pairwise neighbor relationship.
Any pair of non-neighboring vertices is conditionally independent given all other vertices,
i.e.:

vi ⊥⊥ v j, i f {i, j} < E. (5.4)

Please note that there is no unary energy in the MRF. Different from most labeling tasks,
the number and types of groups in this task are unknown. Also no likelihood can be derived
from the local features of an individual vertex. We, thus, only observe the binary energy of
the pairwise cliques defined as:

B(i, j) =

{ 0.7 · P(i, j) + 0.3 · C(i, j) ∀vi, v j coplanar
0.7 · I(i, j) + 0.3 · C(i, j) ∀vi, v j intersecting
−1 otherwise

(5.5)

The binary energy is calculated for the intersection (I ∈ [0, 1]) and the coplanarity (P=1,
otherwise 0) in combination with the color coherence (C ∈ [0, 1]). More details can be found
in (Huang et al. 2014a, P5).

For the coplanar and the inherent, the binary energy represents the probability that the pair
of patches belongs to the same object. We empirically found it to be advantageous to give
70% of the weight for the geometric relationship and 30% for the color. In the other cases
we assume that the patches do not belong to the same object, which will be penalized with
“-1” to discourage any group to include this pair.

The goal of the optimization is to find the maximum overall energy H of the graph model
with the configurationK , i.e., the grouping scheme. Let p(i, j) indicate the state of each pair
in K (if connected p(i, j) = 1, otherwise 0). The goal function can then be expressed as:

K̂ = argmax
K

{H} = argmax
K

{∑
B(i, j) · p(i, j)

}
subject to:
i and j are guaranteed to be disconnected if p(i,j)=0.

(5.6)

By this means the main objects in the scenes are segmented without previous knowledge or
an assumption about the number of objects. A MCMC sampler is employed to tackle this
high-dimensional optimization task. More details can be found in (Huang et al. 2014a, P5).

5.5 Related work

Image segmentation employing depth information has been intensively studied. Silber-
man and Fergus (2011) use RGBD data from the Kinect sensor to improve the segmenta-
tion of indoor scenes. Each segment is classified as one of seven categories, e.g., bed, wall
and floor. Silberman et al. (2012) additionally extract the support relationship among the
segments. In (Koppula et al. 2011), RGBD images are segmented into regions of 17 object
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classes, e.g., wall, floor, monitor and bed, for office or home scenes. Li et al. (2011) pro-
pose a method to segment engineering objects that consist of regular parts from point clouds.
They consider the global relations of the object parts. In (Bleyer et al. 2012), the depth
is estimated from a stereo image pair and an unsupervised object extraction is conducted
maintaining physical plausibility, i.e., 3D scene-consistency.

Additionally, many methods have been proposed to segment geometric primitives, e.g., cubes
and cylinders, or regular objects such as buildings, for which reconstruction rules can be
derived. An overview of point cloud processing is given by Vosselman (2009). Rabbani et
al. (2007) present an approach for the labeling of point clouds of industrial scenes. Geometric
constraints are employed in the segmentation in the form of the primitives cylinder, torus,
sphere and plane. Current research for 3D building extraction is reported by Lafarge and
Mallet (2012) and Huang et al. (2013a), in which the buildings are modeled as an assembly
of primitive components. Current approaches focus on the use of Deep Neural Networks
(DNNs) including (Qi et al. 2017), in which an extended neural network with an additional
neighborhood graph given to the point cloud is proposed. The new architecture shows its
capability of connecting the object parts in a long range. Wang and Neumann (2018) adapt the
standard CNN for RGBD data by introducing depth-aware convolution and average pooling
to utilize the additional depth information.

Comparison of the proposed approach to the related work

Compared to other approaches, the proposed method focuses on fully 3D parsing of the
scene by working directly on the 3D point cloud derived from the raw data instead of dealing
with 2D images with the depth values as an additional channel. A novel modeling scheme
is proposed with solid 3D primitives – SVPs. No specific physical constraints or top-down
modeling is required to ensure plausible results, because the essential 3D spatial constraints
are embedded into the primitives.

5.6 Conclusion and remarks

We have proposed a novel method for object-level segmentation of RGBD data. The syn-
thetic volume primitive – SVP is introduced to parse the 3D geometrical relationships be-
tween the pre-segmented data patches. The proposed method demonstrates its potential in
finding the dominant objects in indoor scenes including the walls and the floor without using
domain knowledge of specific object classes.

Concerning the challenges formulated in Section 4.1, the contributions of the proposed ap-
proach can be summarized as follows:

� A hypothetical quasi-3D model introduced by the SVP (C1)

� A novel segmentation scheme for object voting based on the assembly of SVPs (C2,
C3)
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� Global optimization of indoor scene scenes via MRF (C2).

In this work SVP presents an extension from 2.5D to 3D. It is actually, more strictly speaking,
a link between data of the object surface and the underlying solid body. We are aware the
fact that almost all of the data generated by conventional surveying technologies (in the scope
of this thesis) are measurements of surfaces only (even though the object has been observed
from all possible directions). We, thus, assume that, besides a single Kinect acquisition, the
proposed approach can be adapted to all kinds of 3D point clouds, which may come from
fused Kinect data, LiDAR, dense image matching, mobile mapping systems, etc.



Chapter 6

Conclusion and Discussion

In this thesis we have demonstrated the potential of Bayesian statistical approaches for spatial
data understanding and interpretation, where conventional methods may reach their limits
concerning efficiency and even feasibility if the data are extremely unequally distributed
concerning both quantity and quality. An overview of the data flow is given in Figure 6.1.

Figure 6.1: Overview of data flow (red: input, blue: output)

In this chapter we first respond to the challenges raised in Chapter 1 by summarizing the
advantages of using Bayesian statistical methods for spatial data processing. Afterwards,
general issues including limits and potential are discussed. The discussion is limited to the
scope of the included approaches and leans toward practical applications.

6.1 Answers to Challenges

The challenges “�” raised in Section 1.1 are answered in this section by relating them to the
contributions “�” of the proposed approaches:
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� Efficient processing

Efficiency is achieved concerning two aspects: Less dependence on data volume and
adaption to new and incrementally increasing data. We can, therefore, formulate two
specific contributions:

� Independence of data quantity: In comparison with data-driven methods, the amount
of processing needed for top-down approaches based on Bayesian models does not
necessarily directly depend on the amount of data. For instance, for generative mod-
eling, the sampling of candidate models (driven by MCMC) is generally independent
of the data density. Although for the evaluation (likelihood) the computation effort is
still proportional to the data amount, as every data point should vote for the model, the
dependence is limited to local data inside the boundary of the candidate model. The in-
volved data population is, thus, (mostly stochastically) reduced to fit to the complexity
of the chosen models.

� Incremental processing: Inference in the Bayesian framework is inherently suitable
for the processing of incremental data entries. The possible large amount of existing
data does not have to be re-considered individually for a new entry, but all entities
contribute collectively to the inference in the form of priors. The new data are labeled
with the posterior, for which the only variables are the added observations.

� Robustness against data flaws and uncertainty

� Independence of data quality: As long as the data is dense and accurate enough
to identify the target object in the presence of other objects and/or the background,
statistical modeling is robust against outliers and producing plausible models. Prior
information and the capability of learning provided by the Bayesian framework further
reduce the influence of data artefacts. On the other hand, in case the data are not good
enough, the model or classifier still has the possibility to derive a reasonable estimate
from the prior and contextual constraints.

� Plausibility of models

� The plausibility refers to the completeness of models and the rationality of their pa-
rameters, which is inherently ensured in top-down modeling. First, the final models
are variants or combinations of predefined primitives. This guarantees that every pro-
posal of a model is complete and the components, e.g., the roof planes and walls of a
building model, are correctly assembled. Furthermore, in a Bayesian framework the
determination of parameters starts from an empirical range with given priors and is
incrementally improved with new evidence. This contributes to the rationality of the
models with plausible parameters (e.g., the height and the size of regular buildings)
and, thus, the final result.
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� Potential of automation and learning

Automation is the final goal. It is desired to deal with the rapidly increasing amounts of
data. It is, however, limited by various issues, from not sufficient data quality, a lack of
robustness of the algorithms, to an insufficient adaptability of the employed models. The
former two issues have been discussed above. The last can in principle be solved by (1) a
flexible model and (2) the capability to learn from local data.

� Flexible model: It is important for automation that a model is flexible enough to be
applied for a large range of cases. We employ generative statistical models driven by
Bayes’ rule, which are fully parameterized and fully probabilistic for all parameters.
I.e., in comparison with discriminative models, they can explore all possible values of
any parameter and, thus, all possible models. Furthermore, automatic model selection
based on an information criterion (Huang et al. 2013a, P3) additionally enhances the
flexibility.

� Incremental learning: It is important that the model can be adapted for a given case.
During incremental data processing, new evidence contributes to improve the priors in
the Bayesian framework. This implies that the parameters are automatically adapted
to the particular data and the local characteristics. The degree of automation increases
when manual parameter tuning is minimized.

6.2 A Start of the Exploration: Limits and Potential

At the begin of this thesis we have emphasized that we are facing an abundance of data. This
thesis has additionally shown that we are challenged at the same time by the sparseness and
redundancy of the data, along with the ever-present noise and measurement errors. In the
scope of this thesis we have not dealt with Big Data yet. Geospatial Big Data are, however,
the opportunity as well as the challenge we face now or in the near future. We will neglect the
popular topics, e.g., massive storage and distributed processing, and concentrate on another
essential issue: mining information from large amounts of possibly sparsely distributed data,
which is what we have started to explore in this thesis.

6.2.1 Characteristics of Big Data

Spatial Big Data share the following two characteristics with conventional spatial data:

• Low “value density”: While the amount of data increases, the percentage of valuable
data decreases. First of all, not all the data are of equal value. In many cases only a
small portion of the data contains useful information. Rapidly increasing amounts of
data often come along with “noise”, i.e., false, redundant and meaningless data. The
latter usually increase more rapidly than the useful data. As a result, the “noise” may
obscure the true information and lead to wrong conclusions.
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• Lack of authenticity: Large amounts of data are usually obtained from multiple differ-
ent sources including crowd-sourcing, in which authenticity cannot always be guaran-
teed. Especially for social-activity-related Geoinformation, which receive increasing
interest, the data can contain additionally to unintended false also intended false or
subjective information.

Additionally, spatial Big Data have the following issues:

• Representativeness: Are Big Data a “full sample” or at least big enough to represent
data necessary to solve a problem reliably? This is often doubtable. The limit does not
stem from the amount of data, but from the original data definition and the constraints
of data acquisition. For example, imagery data for an urban area may have a huge
amount of photos but mostly come from Crowdsourcing data. They concentrate mainly
on a few local sights. The image quality is limited because of the cameras/cell phones
the contributors use and the upload constraints of the social media websites.

• Data security and privacy protection: These two significantly limit the completeness
of data. This has led to the development of sophisticated methods which allow to
extract salient information, while personal data is protected.

Besides the rapid growth of the quantity, all spatial data suffer from the following two dise-
quilibria.

• Spatial (coverage) disequilibrium: For many urban areas detailed surveying data
including cadastral maps, LiDAR data, imagery, and even 3D building models exist,
while most suburban and uninhabited areas are sparsely covered. Even for an urban
building, the facades on the street side might be often scanned while for the inner side
no data exist.

• Temporal disequilibrium: Landmark buildings may have photos daily updated while
the interval between the surveys of uninhabited areas can be many years.

Big data or not, we empirically learned that a method would be ideal if it works (to a certain
extent) independently of data density and artefacts, so that it is suitable for any quantity as
well as quality of data. Additionally, it should have the capability to process incremental
data entries efficiently. As shown at the beginning of this chapter, the statistical framework
based on Bayesian models provides a promising start for the further exploration.

Another important issue that is usually paid less attention is timeliness of data process-
ing. Previously, the intervals of conventional terrestrial or airborne data acquisition could
be years. New satellites as well as UAVs and mobile mapping platforms reduce the interval
between measurements to days or hours. Particularly for the observation of earthquakes and
tsunamis, the data from sensors is much more valuable if they are available (i.e., processed)
in a smaller amount of time – ideally much less than the measurement interval. Timeliness
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is of great interest also for most of the social-activity-related data. The demand points to-
wards real-time data acquisition, processing and distribution. The increased amount of data,
however, may delay data transport and processing.

The challenge is, therefore, high efficiency in understanding and interpretation of data, which
leads to the question: Can statistical models work fast? Usually, statistical models are not
considered as fast because they are driven by random processes. However, the processing
time of a method depends on many factors. Besides the limits of the hardware, also the
required accuracy of the results, the amount of data and the susceptibility to noise have to
be considered. An efficient model should be simple and flexible at the same time, which
has been demonstrated in the case studies above. The efficiency also originates from the
above two characteristics – the independence concerning data quality and quantity. We have
also shown that in some cases MCMC will not only be the fastest, but also the only feasible
sampler in very-high dimensional search spaces (Chapter 2) and that Bayesian inference
based on a Markov model has the ability to detect online pattern deviation for real-time
data (Chapter 4). The answer can, therefore, be summarized as: Statistical models have
advantages when the amount and complexity of data increases.

Our experience shows, however, that in practice statistical models tend to be “easy” to con-
ceive but “hard” to adapt. I.e., despite their power in exploration and optimization driven by
random processes, statistical methods may not work well without specific and sophisticated
setups. A typical example is the MCMC sampler. A generic MCMC sampler with a purely
random transition kernel can be implemented in only a few lines of code, but it will, in most
cases, not perform an effective search. The transition kernels, e.g., have to be elaborately
designed to adapt them to the individual applications.

Besides this, an appropriate integration of bottom-up and non-statistical methods plays an
important role for practical applications. Top-down models driven by statistical processes
are flexible, but often very inefficient. Again, the crucial part is the adaption to the particular
data. Bottom-up methods can be employed to initially provide reasonable (and sometimes
even key) information in the form of “priors” in the Bayesian framework. Non-statistical
methods are usually straightforward and produce deterministic results. The latter can be
used as improved initial values for the subsequent statistical search and, thus, often greatly
contribute to the efficiency.

6.2.2 Balance between Top-down and Bottom-up

Top-down and bottom-up are two diametrically opposed strategies for the processing and
interpretation/understanding of data. Although there is no strict and unified definition, they
can be described as follows: A top-down approach starts with a general/overall formulation
of the whole system and ends up with subsystems and components specified in detail. On
the other hand, a bottom-up approach starts from individual basic elements and derives the
top-level model by gathering and linking elements and subsystems.

In the context of spatial data understanding, the overall formulation consists of (abstract)
geometric models of high-level objects such as buildings and streets. The models are pa-
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rameterized and fitted to the measurement data, resulting in the final specified models. The
measurement data such as 3D points or pixels are the input to bottom-up approaches. Higher
level geometries like lines and planes are constructed to derive the top-level models.

(Huang and Brenner 2011, P1) presents a combined strategy with emphasis on bottom-up
methods. A sophisticated joint multi-plane detection via 3D Hough transform is proposed.
The Region Adjacency Graph (RAG) is used to analyze the relationship between the planes.
In the top-down part, a probability-driven eave sweeping is conducted to verify the plausibil-
ity of the results. For MAP estimation, the likelihood is calculated based on the reconstruc-
tion quality and the priors are derived from given constraints: deviation of the orientation
and the symmetry of roof halves.

A pure top-down approach is presented in (Huang et al. 2011, P2). The goal is to demonstrate
and explore the potential and limits of top-down schemes. It has been demonstrated that
the proposed sampler can travel over a relatively large scene and successfully locates and
reconstructs the buildings with only generic prior information. To this end, an adapted search
scheme have to be used (cf. (Huang et al. 2011, P2), Section 3.1) and more search effort
is required. We are also aware that the example scene has a limited size and number of
buildings, i.e., a low complexity of the joint distribution landscape. In large scenes with
more buildings the complexity of the distribution as well as the number of disturbances is so
high, that this search strategy will be inefficient or even fail. A complete replacement of the
bottom-up process is, thus, hard to achieve and unnecessary.

In practical applications, the real challenge is to balance bottom-up and top-down processing,
to achieve robustness as well as efficiency. A possible solution is given in (Huang et al.
2013a, P3). It is proposed to divide the data by means of pre-segmentation into individual
segments with a single or at most a limited number of buildings. The advantages can be
summarized as follows and a comparison of runtimes can be found in (Huang et al. 2013a,
P3, Section 6).

1. Non-building objects, e.g., trees, can be ignored, because of their relatively small size.

2. The efficiency and stability of the further statistical reconstruction are improved. The
search areas are limited to the individual segments, so that the computational com-
plexity is significantly reduced. The search of the optimal models is conducted locally
instead of in the whole scene. This avoids many local minima, which make the search
unstable and time-consuming.

Please note that in the bottom-up part only simple image processing techniques such as
mathematical morphology and “blob” detection are employed. This part leads to a significant
performance improvement with relatively low effort. One former work (Huang and Brenner
2011, P1), in contrast, presents a combination of more sophisticated bottom-up methods like
plane detection and a simple top-down edge sweeping, in which case the efficiency as well
as the flexibility of modeling is more limited.
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Handling building complexes demonstrates the “coupling” of both bottom-up and top-down
processes. The simple bottom-up pre-segmentation determines the location, but cannot fur-
ther decompose building complexes into individual buildings. I.e., building complexes have
to be tackled as a whole in the following top-down process with sophisticated methods like
RJMCMC (cf. Section 2.4). However, if the bottom-up part could reliably take over the
decomposition of a building complex, e.g., by means of plane or ridge detection and analy-
sis, the top-down processing could directly start with individual building or even primitive
reconstruction and the effort for a highly demanding search of multiple buildings and their
components in a larger area could be avoided 1.

In summary, the cost of both bottom-up and top-down parts should be well balanced in
an approach to achieve an optimal overall performance. The goal is to build an efficient
framework for specific data and a practical application.

1An approach for this has been recently presented in (Huang and Mayer 2017), which is not included in the
main publication list of this thesis.
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