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“The theory of probability is basically just common sense reduced to calculus.”
– Pierre-Simon Laplace
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Abstract

The improvement of measurement and particularly surveying technologies results in a large
as well as rapidly increasing amount of spatial data. These data stem from various measure-
ment techniques as well as platforms and, therefore, may compile quite di� erent densities,
qualities, and error characteristics. E� ective tools are required to understand and interpret
them. The challenges include e� cient processing, robustness against data �ows and uncer-
tainty, rationality of modeling, and the potential of automation and learning. This thesis
presents an exploration of the use of statistical models and related techniques in spatial data
analysis. The foundation of the methodology employed in the scope of this thesis consists
of Bayesian statistics and Markov models. Selected approaches conceived by the author,
including 3D building reconstruction, semantic building classi�cation, pattern recognition
in trajectories, and segmentation of RGBD data, demonstrate their potential in spatial data
modeling and interpretation.

Zusammenfassung

Die fortschreitende Entwicklung der Vermessungstechnologien führt zu einer großen sowie
schnell wachsenden Menge an räumlichen Daten. Diese Daten stammen aus verschiedenen
Messtechniken sowie Plattformen und können daher ganz unterschiedlichen Dichten, Qual-
itäten und Fehlercharakteristiken zusammenstellen. E� ektive Werkzeuge sind erforderlich,
um sie zu verstehen und zu interpretieren. Zu den Herausforderungen gehören e� ziente Ve-
rarbeitung, Robustheit gegen Datenfehler und Ungewissheit, Rationalität der Modellierung
und das Potenzial von Automatisierung und Lernen. Diese Arbeit stellt eine Erforschung
der Verwendung von statistischen Modellen und verwandten Techniken in der räumlichen
Datenanalyse vor. Die Grundlagen der im Rahmen dieser Arbeit eingesetzten Methodik
sind die Bayes'sche Statistik und die Markow-Modelle. Ausgewählte Ansätze des Autors,
darunter 3D-Gebäuderekonstruktion, semantische Gebäudeklassi�kation, Mustererkennung
in Trajektorien und Segmentierung von RGBD-Daten, zeigen ihr Potenzial in der räumlichen
Datenmodellierung und -interpretation.
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Chapter 1

Introduction

We live in an era of abundant data. The improvement of measurement and particularly sur-
veying technologies results in a large as well as rapidly increasing amount of spatial data.
This is especially true for the densely inhabited urban areas, which in practice attract most
attention. The spatial data stem from various measurement techniques, e.g., laser scanning,
photography, and radar, as well as platforms such as terrestrial, airborne, space-borne, and
mobile mapping systems. They, therefore, compile quite di� erent densities, qualities, and
error characteristics. E� ective tools are required to understand and interpret these data.

This thesis presents an exploration of the use of statistical models and related techniques
in spatial data analysis. The foundation of the methodology employed in the scope of this
thesis consists of Bayesian statistics and Markov models. Selected approaches conceived by
the author demonstrate their potential in spatial data modeling and interpretation.

1.1 Spatial data and the challenges

Spatial data, mostly known as (but not limited to) geospatial data or spatial/geographic in-
formation, refers to data or information concerning the location and shape of spatial features
and their relationships, or brie�y “data with a spatial reference”. Spatial data are stored in
the form of geometry (coordinates) and attributes/features. In contrast to data analysis in
other branches, the reference of data to location and time contains more crucial information
and is explicitly used (Goodchildand Haining2003).

Spatial data are acquired by means of numerous di� erent sensor platforms and stored in
various formats. There are, thus, many di� erent way to categorize them. In the scope of this
thesis, we consider spatial data as two groups: Raster data and vector data. An overview is
presented in Figure 1.1.

In raster data, the space is uniformly divided into cells. Each cell has a set of evenly dis-
tributed coordinates and assigned features. The level of detail is determined by the cell size,
i.e., the resolution. The space can in principle be both two dimensional (2D) and three di-
mensional (3D) with the corresponding terms for cells “pixels” and “voxels”, respectively.
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Figure 1.1: Overview of spatial data (in the scope of this thesis) and the related surveying
methods

Images (digital or digitized) are inherently raster data, which, in the scope of this thesis,
mainly refer to airborne and space-borneimageryfrom nadir view.

3D point cloudsare not conventional raster data. They are generated by means of one of the
following techniques: (A) Laserscanning, (B) depth estimation from stereo images or (C)
depth cameras. Point clouds have no uniform cell size in 3D. Although they can still be seen
as raster data with “�exible cell size” and treated with some sophisticated methods, raster is
often advisable in order to reduce the data redundancy and to adapt to existing algorithms or
tools. Point clouds can be turned into voxels with a 3D raster. In spatial analysis, however,
they are often treated as a 2D raster:

� A raster based on the X-Y coordinate plane indicating the ground surface and Z co-
ordinate as the height value above it, which results inDSM/DTM (Digital Surface
Model/Digital Terrain Model) data, or

� a raster based on a given projection plane in 3D, which results inRGBD (RGB-Depth)
data. The plane can be the projection plane of the sensor or a speci�c plane of interest,
e.g., a building facade.

The point clouds are categorized as raster data not only because they are often rasterized
in practice, but also because they share the following characteristics with raster data (in
comparison with vector data):

� Only points represent coordinates

� Simple and clear data structure, but often large amount of data

� No topological relationships (besides spatial neighborhood).

In vector data, points, lines and polygons are used to represent geographical features based
on coordinates. The vector data in the scope of this thesis are (digital)mapsandtrajectories.
An digital map represents the topography of the real world in a coordinate system. Trajectory
data take temporal information into account.
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1.1.1 Characteristics of spatial data

Spatial data are generally characterized as huge in quantity and inde�nite in quality. The
improvement of data acquisition methods and the introduction of new surveying technology
make these characteristics more prominent:

Large amounts of data: In the last decades spatial data rapidly increased concerning both
quantity and quality. Airborne laserscanning and image acquisition deliver improved accu-
racy and resolution. Satellite images have a high enough resolution for the detection of the
small structures like buildings or even vehicles. Surveying methods such as mobile mapping
systems combine multiple sensors, i.e., laserscanner, GPS, cameras, etc., on one platform.
Furthermore, VGI (Volunteered Geographic Information) data, e.g., OSM and Flicker im-
ages, considerably contribute to both the variability and amount of spatial data.

Flaws and uncertainty: System or instrumental errors of sensors and measurement errors
of surveying methods have been reduced due to the improvement of surveying technologies.
The errors, however, cannot be totally avoided and, most important, the quality of the data
are not uniformly distributed over all areas or objects. The measurement data can be very
detailed (of, e.g., dense urban areas and landmark buildings with multiple sensors and high
resolution) and very poor (of, e.g., rural areas with low resolution LiDAR or satellite im-
agery) at the same time. Redundancy and absence of data often happen in the same dataset.
For instance, in the UAV (Unmanned Aerial Vehicle) photogrammetry with a camera a large
number of photos might have been taken from all possible positions with the intention to
gain as much overlap as possible. Yet, the large redundancy does not guarantee a complete
coverage of the target object. Many problems, e.g., occlusions, concave shapes, specular
re�ections, homogeneous surface textures (leading to di� culties in matching), result in gaps
in data as well as uncertainties. Occlusions and re�ections also a� ect LiDAR and Kinect
data.

1.1.2 Challenges

The availability of large amounts of high resolution data as well as the changing data charac-
teristics lead to requirements not only concerning the ability to e� ciently process huge data
from various platforms, but also to model with more detail with respect to geometric resolu-
tion and semantic interpretation. The overall trends show demands for: 1. Transition from
2D to 3D models and 2. enhanced semantic descriptions added to the geometric attributes.
The challenges can be summarized as follows:

� E� cient processing

The increasing data volume renders traditional data parsing methods ine� cient or even
infeasible, as the computational e� ort shows linear or polynomial growth in relation to the
number of data entries. A search for patterns needs to be performed in high-dimensional
solution spaces. In the processing, top-down methods should be preferred because of their
potential to deal with large data redundancy.



4 Introduction

� Robustness against data �aws and uncertainty

An increasing data volume does not guarantee more accurate or complete observations.
Patterns, including geometric features (e.g., edges and planes) as well as complete models
(e.g., buildings and trees), should be extracted in a stable fashion despite artefacts, gaps,
and even occlusions. Robustness is also required when dealing with data from di� erent
sensor platforms and data fusion.

� Plausibility of models

In practical applications, “plausible” results, i.e., complete models with reasonable pa-
rameters, are desired. The de�nition of plausibility is, however, in most cases tricky
because, in additional to the data themselves, knowledge about the target objects is al-
ways required. This implies that prior information should be applied before the modeling
and/or learned during the processing.

� Potential of automation and learning

The data amount has reached a level that conventional manual analysis is no more feasi-
ble and an automatic or, at least, partially automatic processing becomes a necessity. A
high degree of automation requires methods which are robust and can adapt to di� erent
scenarios and little human intervention, e.g., parameter tuning. When dealing with het-
erogeneous spatial data this implies a perceptual processing and the ability to learn within
the proposed methods.

1.2 Statistical models

Statistics is a mathematical and conceptual discipline that focuses on the relation between
data and hypotheses (Romeijn2014). The data are recordings of observations and, in the
scope of this thesis, the (geospatial) measurements.

The philosophy of statistics is part of the philosophical topic of scienti�c methodology –
the general theory on whether and how science acquires knowledge. Statistical methods
describe and justify the relationship between statistical theory (hypotheses) and evidence
(empirical facts). Generally, a “statistical model” is de�ned by a set of statistical hypotheses
and represented by a set of probability distributions on the data, also called sample space
(Cox 2006, Bernardo and Smith 1994). Figure 1.2 shows the relations between the above
concepts.

There are two major theories of statistical methods: Classical/frequentist and Bayesian statis-
tics. From the viewpoint of philosophy or logic, the main di� erence between Bayesian and
frequentist statistics is the way they treat “probability”. The Bayesian calculus describes
probability as “degree of belief”. In the Bayesian probability equation (cf. Equation (1.1))
the beliefs are presented in the form of the so-called priors and posteriors. In Frequentist
statistics, on the other hand, probability is used to model actual processes/frequencies.
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Figure 1.2: Relations between statistical models and theories in the real world

In (Bandyopadhyayand Forster 2011) the statistical inference methods are categorized into
four paradigms: (1) classical statistics (frequentist inference), (2) Bayesian statistics, (3)
likelihood-based statistics, and (4) Akaike-Information Criterion (AIC) (Akaike 1973) -
based statistics. It needs to be pointed out that these concepts are not mutually exclusive.
AIC stems from information theory and is used to compare statistical models considering
the trade-o� between the goodness of �t (in most cases the likelihood) and the simplicity of
the models. The likelihood-based paradigm can, therefore, be seen as a subset of AIC-based
methods. Furthermore, the AIC can be integrated into the Bayesian framework. More details
can be found in the works described in this thesis.

Statistical models, and particularly Bayesian statistics, are considered as promising for the
exploration and interpretation of spatial data. The improvement of computer technologies
makes the utilization of sophisticated statistical tools nowadays possible. This Section brie�y
introduces Bayesian methods and Markov models as appropriate “carriers” of Bayesian
statistics.

1.2.1 Bayesian statistics

Bayesian statistical models have been widely and successfully used in various areas espe-
cially in arti�cial intelligence/machine learning and economics. Well-known applications
include (statistical) language translation, Bayesian image recognition, and (Spam) mail �l-
tering. In the framework of Bayesian statistics we are allowed to adapt models to and learn
from the given data. Bayesian probabilities are used to summarize evidences and to give sta-
tistical propositions. Prediction and learning are done in form of inference (Romeijn2014).

In the foregoing discussion we said statistics study the relation between hypotheses and data.
The Bayes theorem describes such relationships as follows:

P(MjD ) =
P(DjM ) � P(M )

P(D)
; (1.1)

whereM indicates “model”, i.e., hypotheses/theory, andD presents “data”, or empirical
knowledge and facts.
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Bayesian theory

Classical probability theory is based on the study of independent trials. This means that
knowledge of previous trials in one area has no in�uence on the prediction for a current
trial in another, but similar area. Contrary to this, modern probability theory assumes that
investigating previous observations of a similar model will very likely help us to derive better
predictions for further experiments.

Since Helmholtz (1860) a basic assumption is that biologic (and also machine) vision com-
putes the most probable interpretation(s) from input images. LetI be an image andX be a
semantic representation of the world. Then, with the conditional probabilityP(XjI ) holds:

X� = argmax
�
P(XjI )

�
: (1.2)

In numerical statistics, usually the posterior is sampled and multiple solutions are kept:

(X1; X2; :::;Xk) � P(XjI ) : (1.3)

When studying a physical process, one often has only the observation data available rather
than the underlying distributions. Statistical inference is used to estimate the adequate model
along with the associated parameters based on the observed data. Bayesian inference is a
means for statistical inference using Bayes' theorem. Observations, also called evidence, are
used to infer the probability that a hypothesis is true.

As our knowledge about the underlying model and its parameters is “updated” along with the
accumulation of more and more evidence, this can be also seen as a learning process about
the statistical characteristics of the parameters from the observations.

Inference and Learning

Assume that we want to estimate the parameter� based on observationsx = fx1; x2; :::;xng.
Bayes' theorem shows how to update the probability, or in other words to infer the posterior,
with given evidence as follows (cf. also Equation 1.1):

P(� jx) =
L(xj� )p(� )

P(x)
; (1.4)

where

– p(� ) is the prior of the parameter� ;

– L(xj� ) is the likelihood function (the conditional probability of observing evidencex
given the parameter� );

– P(� jx) is the posterior (the conditional probability of a hypothesis given the observed
evidence).
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The denominator

P(x) =
Z



L(xj� 0)p(� 0)d� 0 (1.5)

is the marginal probability ofx, i.e., the probability of observingx under all possible� . This
integral can also be seen as a normalization term to make sure that the posterior integrates to
unity. SinceP(x) = P(x \ � ) = L(xj� )p(� ), the updated posterior will never become larger
than 1. And more important, as it does not depend on� , this term can be treated as constant
when optimizing the posterior.

The term

L(xj� )
P(x)

describes the in�uence of the evidence on the belief in the hypothesis. It shows that better
evidence, i.e., evidence that supports the proposed parameter, leads to a higher posterior
probability for the hypothesis.

While evidence accumulates, there are two kinds of learning processes based on Bayesian
inference:

� Discriminative learning is based on the posteriorP(� jx): The degree of belief in a hy-
pothesis tends to become either very high or very low making discriminative learning
suitable for decisions (accept/reject) or classi�cation.

� Generative learning employs the joint probabilityP(x; � ): Knowledge, i.e., priors,
about the proposed parameter(s)� of the model is improved to the posterior by in-
tegrating veri�ed (via the likelihood function) evidencex.

Taking the classi�cation task as example, generative learning creates explicit models, which
represent the training data of the object category. A generative classi�er learns the priorP(
 )
and the likelihoodP(xj
 ) of the classes
 and classi�esxby maximizingP(
 jx) / P(xj
 )P(
 ).
A discriminative approach, in contrast, learns the posteriorP(
 jx) directly. It �nds the best
classi�er for the given data set focusing on discriminative characteristics between individual
categories. Current approaches often combine these two concepts to deal with the classi�ca-
tion problems with relatively similar categories. I.e., they learn object categories generatively
and train models for each category discriminatively.

The predominant feature of Bayesian inference is that the predictions for the parameters are
in the form of probability distributions (posteriors) instead of point predictions for conven-
tional approaches. Usually, the posterior has a low entropy and the e� ective volume of the
search space is relatively small.

Another advantage is the potential for automatic model selection (Bishop2008): The addi-
tional uncertainty of a set of candidate models with di� erent complexity can be addressed in
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a Bayesian framework. A priorP(M) is given for the di� erent models and the posterior for
the models based on the observationX can be expressed as:

P(MjX) / P(M)P(XjM) : (1.6)

The model which best balances complexity and goodness of �t is determined based on op-
timizing the “marginal likelihood”, also called “model evidence”P(XjM), presenting the
preference of the evidence for the candidate modelM (Bishop2008).

Optimization

Based on Bayesian inference, the objective of the optimization task is then the posterior. In
comparison with the often used maximum likelihood (ML) estimation, the Maximum A Pos-
teriori (MAP) estimation does not only observe the goodness of model (i.e., the likelihood),
but also takes the plausibility of the proposed parameters (the priors) into account.

Let X be the observations and� the space of parameters. Then, the likelihood function can
be expressed as

� 7! L(D ) = L(Xj� ) : (1.7)

The maximum likelihood estimate of� is

b� ML = arg� max
�
L(Xj� )

�
: (1.8)

Based on Bayesian inference, the posterior distribution of� can be written as:

� 7! P(� jX) =
L(Xj� )p(� )

R



L(Xj� 0)p(� 0)d� 0
(1.9)

with p the prior and
 the domain of� .

The denominator of the posterior does not depend on� . Therefore, it can be seen as a
constant in the optimization. The maximum estimate for the posterior is thus equivalent to
that of the numerator:

b� MAP = arg� max
(

L(Xj� )p(� )
R



L(Xj� 0)p(� 0)d� 0

)
= arg� max

�
L(Xj� )p(� )

�
: (1.10)

MAP estimation can be seen as an extension or a regularization of ML estimation: The
empirical knowledge about the parameters is considered as well by integrating the prior
information of them. Using the posterior also lowers the entropy of the target function to be
optimized and thus the search space is narrowed down to a smaller, often more reasonable
region.
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Because of the augmented optimization objective, computation of the MAP estimate often
has to deal with more complicated (very likely non-analytic) distributions in a much larger
search space. A general numerical solution for the computation of MAP estimates is to use
Markov Chain Monte Carlo (MCMC) techniques (cf. Section 1.2.2).

Please note that although MAP estimation works along with Bayesian inference, it is, strictly
speaking, not a Bayes estimator, because MAP estimation provides a point estimate of the
posterior distribution's mode while the prediction from Bayesian methods should be in the
form of probability density functions (PDF). We prefer to regard MAP estimation as one
decision rule for general purpose based on Bayesian theory. MAP estimation focuses on
minimum overall error. If we pay more attention to some speci�c errors or costs, a minimum
Bayes risk rule with loss function, which is a true Bayes estimator, should be considered.

1.2.2 Markov models

Markov models are widely used to simulate physical and natural processes. They are, more
importantly here, closely connected with Bayesian statistics. The property of Markov mod-
els, i.e., that they can be represented by a directed graph with a dependency of nodes, makes
them an appropriate “carrier” of Bayesian inference.

In this thesis, Markov models are used for two purposes: Modeling and calculation. Ap-
proximation methods like MCMC and its variants are employed for optimization tasks in
high-dimensional solution spaces. Markov chains and Markov random �elds are directly
used to model trajectory data (cf. Chapter 4) and building networks (cf. Chapter 3), re-
spectively. The computation of Bayesian models can be NP-hard (Cooper1990). In most
applications approximation is the practical or even the only way to compute the solution.

Markov Chains

A Markov Chain is a mathematical model for stochastic systems whose states, discrete or
continuous, are governed by transition probabilities. It consists of, as shown in Figure 1.3, a
series of random variables, named statesX0; X1; :::;Xn and can be denoted by

(
; P(X0); K) ,

with


 : The state space;

P(X0): The initial probability – the marginal distribution forX0, which speci�es
the start state;

K: The kernel – the transition probability from the previous state(s) to the current
state.
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Figure 1.3: A �rst order Markov Chain.

A Markov process starts from the initial stateX0 and moves successively to the next state
controlled by the transition probability. Each move is usually called a “step”, as the Markov
process can be seen as a walk in the state space
 . Giving equal probability to every poten-
tial step, the Markov process represents a random walk. The main property of the Markov
process is that the current state only depends on the most recent previous states. The typical
Markov Chain, namely the �rst order Markov Chain (Figure 1.3), can be formulated as:

XtjXi� 1; :::;X0 � P(Xi jXi� 1; :::;X0) = P(Xi jXi� 1) ; (1.11)

in which only the last state in�uences the current one.

The kernelK is de�ned as the conditional probability for subsequent variables, i.e., the
probability ofXi givenXi� 1:

Ki(Xi; Xi� 1) � P(Xi jXi� 1) .

The simplest form of a Markov Chain is the homogeneous (or stationary) one, in which the
transition probability is constant for all states (independent on time or positioni 2 f0;ng):

P(Xi jXi� 1) = const: (1.12)

For Markov Chains in discrete state spaces, we denote the transition probability byT =
T(Xi; Xi� 1). The probability of stateXi as derived from that of the previous state is given by:

P(Xi) =
X

Xi� 1

P(Xi� 1)T(Xi; Xi� 1) : (1.13)

For continuous state spaces, the representation of a Markov Chain can be expressed using
the integral kernelK:

P(Xi) =
Z

P(Xi� 1)Ki(Xi; Xi� 1)dXi� 1 : (1.14)

Stability of Markov Chains

Stability means that starting from any initial state, a Markov Chain will convergence to an
invariant distribution, i.e., a stationary probability. This is a very important and attractive
feature for a Markov Chain.
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In practical applications, the target distributionp(x) often cannot be directly observed. The
goal of designing Markov Chains is then to devise a stationary probability that represents
p(x). I.e., samplesxi from Markov Chain statesXi simulate samples drawn from the target
distribution.

The invariant distribution should be reached by

P(X0)Kn �����! n!1 P(X) ; (1.15)

wheren indicates the number of times thatK has been multiplied. Stability means that after
a limited number of transitions (steps), any initial distribution will converge to the station-
ary distribution. This implies that the stability of Markov Chains depends on the transition
probability K. To ensure stability,K must be constructed guaranteeing the following two
properties:

1. Ergodicity: A Markov Chain is called ergodic if it is possible for the chain to explore
the whole state space. I.e., the probability of visiting all other states is always positive.
Ergodic Markov Chains are often also called “irreducible”.

2. Aperiodicity: An ergodic chain is called aperiodic (or acyclic) if there does not exist a
periodic structure in the chain.

Often, Markov Chains are employed to e� ciently guide the “routine” of sampling, i.e., bias-
ing the walk towards interesting regions, and to converge as soon as possible.

Markov Chain Monte Carlo

Markov Chain Monte Carlo, or in short MCMC, is a class of statistical sampling algorithms
widely applied as a general purpose computing technique for probability model simulation,
integration, and optimization. It has been introduced in physics in the late 1940's and nowa-
days plays an important role in statistics, computer science, and econometrics. The main
advantage of MCMC techniques is that they can sample e� ciently in large spaces with high
dimensionality.

As simulation-based approximation techniques, sampling methods like MCMC are always
connected to the Bayesian applications in the �elds of arti�cial intelligence and pattern
recognition. There, practical models are usually too complex to be processed in closed form
by Bayesian statistics and e� cient simulation algorithms are needed for approximation. In
many practical (statistical) applications it is hard to make exact inferences for the employed
probabilistic models. Approximation by means of numerical sampling such as Monte Carlo
technique is, thus, very important.

Monte Carlo sampling is named after the town Monte Carlo, which is world famous because
of the luxurious casino. The essential idea of Monte Carlo sampling is random sampling. It
can be traced to a rudimentary version invented by Fermi in the 1930s, even earlier than the
�rst computer appeared (Robert and Casella 2011). Its �rst well-known practical applica-
tion was for building the �rst nuclear reactor in 1942.
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Monte Carlo simulation draws a set of samplesxi; i = 1; :::;n, from a target distributionp(x)
in a space
 . The samples are independent and identically-distributed (iid) random variables.

Then samples can be used to approximate the target density of a functionf (x)

Ef f (x)g=
1
n

nX

i=1

f (xi) �����! n!1

Z



f (x)p(x)dx ; (1.16)

whereEf f (x)gis an unbiased estimate off (x). According to the law of large numbers,E
will converge to the integral off (x).

Theoretically, if the sampling is dense enough, the Monte Carlo samples can be directly used
for optimization:

bx = arg
 0 maxp(xi) �����! n!1 arg
 maxp(x) ; (1.17)

where
 0 is the sample space,
 0 2 
 .

In practice, however, one often encounters complicated and/or combined distributions with
high-dimensional sampling spaces, and then the ine� ciency of Monte Carlo sampling can
be fatal. More sophisticated techniques which can guide the sampling routine, e.g., MCMC,
are needed.

As a general sampling method, MCMC is actually applied for both Bayesian and frequentist
statistical inference. In Bayesian statistics, MCMC methods are primarily employed for
numerical approximation.

MCMC generates samplesxi for the statesXi in the state space
 using a Markov Chain
guiding the sampling. The above de�ned stability of a Markov Chain is advantageous to
ensure convergence. A typical MCMC is illustrated in Figure 1.4. The current stateXi is
determined by the transition kernelK and in �rst order Markov Chains additionally only by
the last stateXi� 1 (X � P(x)). The variablexi is drawn stochastically (x � U[a;b], iid) for
each stateXi.

Figure 1.4: MCMC with �rst order Markov Chain

MCMC samplers are Monte Carlo samplers which ideally employ ergodic and aperiodic
Markov Chains. The invariant distribution derived from the stationary chains can be used to
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approximate the target distributionp(x). One way to construct an appropriate sampler is to
satisfy the reversibility, i.e.,detailed balance, condition:

p(Xi)T(Xi� 1; Xi) = p(Xi� 1)T(Xi; Xi� 1) ; (1.18)

which is a su� cient, but not a necessary condition to ensure that the invariant distribution of
the Markov Chain is identical to the target distributionp(x).

MCMC is used as a general purpose computing technique in the following areas:

1. Simulation: MCMC produces samples of the probability model underlying the target
system and represents typical states of the latter. Many natural processes are inher-
ently stochastic, but still follow essential rules, which can be expressed in the form of
probability models.

2. Integration and Computing: The computation of integrals is a typical task in scienti�c
computing. Monte Carlo integration is used to deal with distributions in very high
dimensional spaces. The expectationc is estimated as follows:

c =
Z



p(x) f (x)dx ; bc =

1
n

nX

i=1

f (xi) ; (1.19)

where
 is the integral space,bc the approximation with Monte Carlo, andn the number
of samples drawn fromp(x).

3. Bayesian Inference and Learning: MCMC is an important computing tool for maxi-
mum likelihood estimation (MLE) learning of parametersp(x; � ) as well as MAP es-
timation (cf. Section 1.2.1). Unsupervised learning with hidden variables (simulated
from the posterior) needs simulation to �nd suitable models. As Bayesian inference
has become an important framework in many areas, e.g., image understanding and
computer vision, MCMC techniques are of increasing interest.

4. Optimization: MCMC is the most often used technique for searching the global optima
of complex distributions, e.g., the Bayesian posterior probability (MAP).

In summary, MCMC is a general tool for many problems with high-dimensional solution
space. In some cases it is considered as the only feasible approach that provides solutions
within an acceptable computation time.

An overview of techniques based on Markov models is presented in Figure 1.5, which can
help to “locate” the mentioned techniques in the context of the statistical framework.
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Figure 1.5: An incomplete “map” of Markov-model-based techniques: Locations and rela-
tionships

1.3 Scope and organization

This thesis is submitted in partial ful�llment of the requirements for a cumulative habili-
tation. It consists of two parts: (I) “Synopsis” – a summarizing synthesis of selected ap-
proaches and (II) a collection of the corresponding publications.

Selected research work that was performed and published by the author since the year of
2011 is summarized. Although the presented approaches apply various modeling and opti-
mization/estimation techniques on a relatively wide spectrum of spatial data, they concen-
trate on one essential idea, namely using Bayesian statistical models for the understanding
and interpretation of spatial data.

Figure 1.6 gives an overview of the publications presenting the employed data, key models
and strategies as well as publication categories. For a convenient retrieval in the text, the
publications are labeled by[P#] and marked when they appear.

From experience we have learned that the best way to expound statistical concepts and mod-
els is a demonstration with examples. The Synopsis part is organized in the form of “case-
studies”. The selected approaches are presented with more detail in the following chapters.

Chapter 2: Building reconstruction

Building reconstruction is one of the central topics in spatial data analysis and has been inten-
sively studied for decades. There is a wide spectrum of data available for buildings including
LiDAR and imagery from terrestrial, airborne, and space-borne platforms. Bottom-up ap-
proaches start from the data detecting basic geometric features and, thus, are susceptible to
data �aws and uncertainty. Top-down methods use prede�ned parameterized models to �t
the data, which can generally better deal with data artefacts, but often show limits because
of the diversity of objects concerning both shape and appearance.
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Figure 1.6: Overview over publications: Data, models, strategies, and publication categories

We employ a generative (top-down) statistical modeling scheme driven by Bayesian infer-
ence and optimization. We keep the advantages of top-down approaches: (1) The robustness
of reconstruction and (2) the guarantee of complete models, while allow for (3) more �exibil-
ity to adapt the proposed method to a larger spectrum of objects. The �exibility is achieved
through the inference and learning of Bayesian models. General and empirical knowledge
can be integrated in the form of priors which are improved with local observations and con-
straints. I.e., more generic as well as �exible models are employed to cover a higher diversity
of objects, which are in this case buildings with various roof types. The incremental learn-
ing integrated in MCMC leads to an e� cient and powerful search in the parameter space,
which renders an e� ective reconstruction in complex scene without additional support (such
as footprints) possible. The degree of automation in building reconstruction is also improved
by this means. In addition, bottom-up methods are utilized to provide reasonable priors,
which improves the e� ciency of the top-down inference and leads to an optimum overall
performance.
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Chapter 3: Building classi�cation

VGI has become an important source of geospatial data. In comparison with conventional
maps and cadastral data, they have better availability (in respect to both source and price),
more spatial coverage, and higher update rate because of the entries of volunteers. For the
same reasons, however, VGI such as OSM su� ers form the lack of completeness and the
inhomogeneous de�nition of the object attributes. Methods to enhance as well as complete
the attribute entries are, therefore, highly desirable. This work focuses on determination of
the usage (use and occupancy) information of buildings. Building usage is of great interest,
e.g., for city planning, navigation and emergency management, but often not available in
volunteered data.

To tackle this, the urban area is considered as a network consisting of individual buildings
connected based on their neighborhood relationship. A Markov Random Field is employed
to model the building network. Bayesian inference is employed to (1) derive usage attributes
from existing local (geometric) features and contextual constraints of the neighborhood and
(2) propagate them to other buildings in the network. By these means, the buildings are
classi�ed and enhanced with the new attribute, which is uniformly de�ned and covers the
whole area. The proposed framework is fully automatic with the potential to be extended to
other attributes.

Chapter 4: Anomaly detection in trajectories

Trajectories are space- as well as time-referenced data. Their availability has improved
rapidly with the wide use of navigation and mobile communication systems equipped with
GPS and motion sensors. Anomalous behavior detection is a challenge concerning both
the spatial and temporal information embedded in the trajectories. It is of wide interest for
navigation, driver assistance and surveillance. Current related approaches work based on a
number of labeled data to train a classi�er and apply it to the incoming data. Such a large
training dataset, however, is neither always available nor guaranteed to cover all possible
cases.

We designed an iterative Bayesian �lter for GPS trajectories from cars. This operator infers
anomalous behaviors (1) locally inside a single trajectory and (2) dynamically over time.
There is no previous training required, though, if training data are available, they can be
integrated as priors in the Bayesian framework. A Hidden Markov Model (HMM) is em-
ployed to present the trajectory as a carrier of Bayesian inference between the GPS nodes.
The HMM has dynamic orders of Markov Chain to derived spatial and temporal features
including “turns”, “detour factor”, and “route repetition”, which require particular long-term
perspectives. Additionally to individual behaviors, a collective behavior can be derived based
on the individual results which can indicate special tra� c situations such as road-blocks and
turn restrictions, where anomalous behaviors often occur.

Chapter 5: RGBD segmentation

RGB-Depth (RGBD) data are introduced in recent years with easy acquisition and relatively
low-cost sensors. Since most RGBD sensors work in close range, indoor scene interpretation
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and robot vision are of particular interest. Segmentation is the basis of scene interpretation.
Although 2D image segmentation has been thoroughly studied for decades and a number
of approaches have also been reported recently for RGBD data, a segmentation of complex
scenes on object-level is still challenging, especially when objects with concave or irregular
shapes are involved.

In comparison with most related approaches where the depth information is treated as an
additional channel besides the colors on a 2D basis, we conduct full 3D parsing by introduc-
ing a novel quasi-3D model, the SVP (synthetic volume primitive). Objects are inferred not
only based on color and position, but also on the underlying 3D volume intersection, which
cannot be directly observed. A Markov Random Field is employed to represent the SVPs
and their relationship in the scene and optimized by an MCMC sampler to �nd the best seg-
mentation. By all these means free-shape including concave objects can be segmented well
even in complex scenes.

These chapters are speci�cally structured so that the cases are clearly presented and can
be easily compared with each other. Every chapter starts with a cover page including a
quick overview with an illustration and a set of keywords for fast indexing of concepts and
techniques. The �rst section of each chapter consists of an individualproblem statement
pointing out issues and challenges of the case. The following two sections present thedata
and the employedmodels, respectively. Speci�c topics of interest, e.g., model selection,
belief inference, and global optimization, are distributed in di� erent chapters and discussed
along with their practical use. General issues including adaptability of models and modeling
strategies are given in Chapter 6 together with the �nal conclusions. In the chapters all
challenges and questions have an item label “� ”, while the proposed solutions and answers
are marked with “� ”.

The full versions of the publications are compiled in Part II. For an easy indexing, multiple
criteria including publication date, publication category as well as topic are employed.



Chapter 2

Building reconstruction

Overview

This chapter presents statistical approaches for automatic 3D building extraction and recon-
struction based on 2.5D point clouds from laserscanning or stereo image matching. A hybrid
framework of bottom-up and top-down methods is proposed with emphasis on the latter in
the form of generative models.

Building reconstruction: Input point cloud (a), the reconstruction process (b to e), and a
reference image (f)

Keywords

Object detection, 3D reconstruction, Point cloud, Generative models, RJMCMC, Model se-
lection
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2.1 Problem statement

Building is one of the most important object classes in spatial data analysis. Reconstruction
of 3D building models from measurement data is of great interest for various applications
including city planning, tourism, navigation, and emergency management. Detailed building
models containing roof and facade geometries can be integrated into building information
models (BIM) or applied to, e.g., photovoltaic planing, urban heat island (UHI) e� ect re-
search, or urban turbulence and wind gust analysis (for micro wind generators and micro
aerial vehicles). Building reconstruction has, therefore, been intensively studied and many
approaches have been reported in the past decades. In previous work, bottom-up methods,
e.g., point clustering, plane detection, and contour extraction, have been widely used. Due
to the data artefacts caused by occlusion, re�ection from windows or water, etc., the bottom-
up reconstruction in urban areas su� ers basically from incomplete or irregular roof parts.
Manually given geometric constraints are usually needed to ensure plausible results.

The approaches summarized in this chapter deal with the following core challenges in 3D
building reconstruction:

� (C1) Robust reconstruction in spite of artefacts and uncertainty of the data

� (C2) Complete and plausible watertight building models

� (C3) High degree of automation

The basic idea is to utilize the robustness of top-down strategies against the uncertainty of
the data and to enhance it with powerful statistical search and plausible Bayesian inference.
The complete framework includes also the approach with bottom-up methods to improve the
overall performance and e� ciency.

2.2 Data – LiDAR and imagery

Laserscanning data

Airborne and terrestrial laser scanner data are widely used in state-of-the-art approaches
for building reconstruction due to their high accuracy and density. Airborne laser scanning
data of urban areas, however, often have the following issues concerning quality (OudeEl -
berink and Vosselman2011): 1. Systematic and stochastic errors in the measurement, 2.
variable and relatively low point density, and 3. data gaps and artefacts. As shown in Fig-
ure 2.1, data �aws in urban areas (left) can be caused by (A) complex and detailed roof
structures such as HVAC (heating, ventilating, and air conditioning) equipment, (B) the
absorption of the laser pulse by water and its re�ection by windows on the roof, and (C)
occlusion by neighboring objects (in typical European cities mostly trees).

As a result, an accurate determination of the roof edges and the recognition of small roof
structures are hard. Bottom-up reconstruction may, thus, be limited to a number of incom-
plete and irregular roof facets or building parts. A regularization with given constraints is




