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“I do not know what I may appear to the world, but
to myself I seem to have been only like a boy playing
on the sea-shore, and diverting myself in now and
then finding a smoother pebble or a prettier shell
than ordinary, whilst the great ocean of truth lay
all undiscovered before me.”

(Sir Isaac Newton, 1642 – 1727)

Brewster, D. (1855): Memoirs of the life, writings,
and discoveries of Sir Isaac Newton, vol. 2, p. 407.





Abstract

Due to the increasing availability of global high-resolution digital terrain models (DTMs),
it has nowadays become possible to obtain a detailed image of the Earth’s topography.
This enables to precisely determine the gravitational effect of the topographic masses on
the Earth’s gravity field. The central technique for this aim is gravity forward modeling
(GFM), which is based on Newton’s law of universal gravitation, and allows to convert
topographic heights along with suitable density assumptions into corresponding values of
the gravitational potential and its derivatives. This topographic gravity forward modeling
attracts a growing interest in various areas of geodetic gravity field determination and
geophysical studies of the Earth’s composition and structure (e.g., solid-earth sciences).
However, previous GFM methods have proven unsuitable for the increasing accuracy

requirements stemming from an improved precision of geodetic measurements. This is due to
commonly used simplifications and approximations, such as (i) the use of condensed heights
for water and ice masses (rock-equivalent heights), (ii) mass discretizations or arrangements
based on planar and spherical approximations, and (iii) assumptions regarding the spectral
consistency between band-limited topographic heights and induced gravity, as in residual
terrain modeling (RTM) techniques.

This thesis contributes to state-of-the-art GFM in the space domain by providing effective
techniques and refinements that overcome these limitations. More concretely, the theory of
the Rock-Water-Ice (RWI) approach is developed that encompasses a more realistic modeling
of the Earth’s topographic and isostatic masses, i.e., the masses of the continents, oceans,
lakes, ice sheets and shelves, as well as their deeper lying (isostatic) compensation masses in
the Earth’s interior. The RWI method is characterized by a three-layer decomposition of the
Earth’s topography that accounts for a rigorous separate modeling of the rock, water, and
ice masses with variable density values. Furthermore, a modified Airy-Heiskanen isostatic
concept is applied that is enhanced by additional geophysical information in terms of a
seismologically derived depth model of the Mohorovičić discontinuity, i.e., the boundary
surface between the Earth’s crust and mantle.
To counteract the increased computational demand of the more complex modeling,

an efficient numerical algorithm is needed for the forward modeling. For space domain
GFM, it has become more and more customary to use a mass discretization based on
tesseroids, which are mass bodies bounded by geocentric spherical coordinate lines, and
hence are directly linked to the curvature of the Earth. Several studies have demonstrated
their superiority over classical prism methods with respect to precision and computation
time. However, for global applications based on high-resolution DTMs, any computational
speed-up with respect to a single mass body leads to a massive improvement in the overall
computation time. This thesis presents a considerable optimization of previously used
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Abstract

tesseroid formulas, where the gravitational field of a tesseroid and its derivatives up to
second-order are represented in a compact and computationally attractive form. This
allows an efficient numerical evaluation that reduces the overall runtime by about 20 to
55 %, depending on the evaluated gravity field functional. Additionally, to correctly locate
topographic masses in space, tesseroids are arranged on an ellipsoidal reference surface.

Within this thesis, the novel tesseroid-based RWI approach is applied to different topo-
graphic input data and is used for various gravity field functionals in two main applications.
Both are connected to ESA’s satellite mission GOCE (Gravity field and steady-state
Ocean Circulation Explorer) that measured the second-order derivatives of the gravitational
potential, commonly known as gravity gradients.

In the first application, RWI-based topographic-isostatic effects are calculated along the
orbit of the GOCE satellite and are subtracted from the gravity gradient observations. In
this way, the measurement signal is smoothed so that interpolation and prediction tasks,
such as harmonic downward continuation of the gradients from satellite altitude to the
Earth’s surface, can be executed with an improved numerical stability. While in previous
studies such a concept was applied to simulated gravity gradients, this thesis presents the
application to real GOCE measurements. As the smoothing effect strongly depends on the
variability of the topography crossed by the satellite, this procedure is particularly suitable
for regional applications. For a time series when the satellite passed the Himalayan region,
a comparison of the observed gradients to the reduced ones reveals significant smoothing
effects that are quantified by analyses in the space and frequency domain.

The second application contributes to the task of height system unification, which aims to
connect the different locally defined reference levels, conventionally used for national height
systems. This is achieved by a satellite-based method which employs global geopotential
models derived from data of the GOCE mission, whose limited spectral resolution is
extended by high-frequency topographic effects of the RWI approach. To extract these
high-frequency signals, a novel (residual) gravity forward modeling method is proposed
that allows to perform the required high pass filtering directly in the gravity domain,
thus, avoiding the above-mentioned assumption (iii) of the RTM method. By using three
representative study areas in Germany, Austria, and Brazil, the benefit and importance
of high-frequency topography-implied gravity signals for an accurate estimation of height
datum offsets is demonstrated.
As a highlight of this thesis, the RWI approach is utilized to generate a series of

topographic-isostatic gravity field models. These RWI models provide a high-resolution
representation of the Earth’s topographic-isostatic gravitational potential in terms of
spherical harmonics expanded up to degree and order 1800 (Release 2012), and 2190
(Release 2015). The spherical harmonic coefficients of these models are obtained from a
spherical harmonic analysis of global gridded potential values, which have been calculated
by massive parallel computing on high-performance computer systems. By using spherical
harmonic synthesis, the RWI model can be used to efficiently calculate various functionals
of the topographic-isostatic potential in different heights. For this purpose, the RWI models
are publicly available via the database of the International Centre for Global Earth Models
(ICGEM) and have already been used in a wide range of studies by other research groups.
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This article-based (cumulative) thesis consists of a detailed introductory chapter and five
chapters associated with the following peer-reviewed publications (four original articles in
international journals and one proceedings contribution to an IAG Scientific Assembly):
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topographic-isostatic reductions for GOCE gravity gradients. Surveys in Geophysics
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Grombein, T., Seitz, K., and Heck, B. (2016a): The Rock-Water-Ice topographic gravity
field model RWI TOPO 2015 and its comparison to a conventional rock-equivalent
version. Surveys in Geophysics 37(5):937–976. doi: 10.1007/s10712-016-9376-0.

Grombein, T., Seitz, K., and Heck, B. (2017): On high-frequency topography-implied gravity
signals for height system unification using GOCE-based global geopotential models.
Surveys in Geophysics 38(2):443–477. doi: 10.1007/s10712-016-9400-4.

Grombein, T., Seitz, K., and Heck, B. (2016b): Height system unification based on the
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Zusammenfassung

Mit globalen, hochauflösenden digitalen Geländemodellen (DGMs) stehen heutzutage
detaillierte Informationen über die Topographie der Erde zur Verfügung. Diese erlauben es
den gravitativen Einfluss der Topographie auf das Erdschwerefeld hochgenau zu bestimmen.
Die zentrale Methode hierfür ist die Vorwärtsmodellierung (gravity forward modeling), die
auf dem Newtonschen Gravitationsgesetz beruht und es ermöglicht, topographische Höhen,
zusammen mit geeigneten Dichteannahmen, in Schwerepotentialwerte umzurechnen. Diese
topographische Vorwärtsmodellierung spielt eine zunehmend größere Rolle in verschiedenen
Anwendungen der geodätischen Schwerefeldmodellierung sowie in geophysikalischen Studien
zum Aufbau und zur Struktur der Erde.

Durch immer genauere und sensitivere Beobachtungsverfahren sind auch die Genauigkeits-
anforderungen an die Vorwärtsmodellierung gestiegen. Bisher verwendete Vereinfachungen
und Approximationen müssen daher kritisch hinterfragt werden. Dies betrifft unter ande-
rem (i) die Verwendung von kondensierten Höhen für Wasser- und Eismassen (sogenannte
rock-equivalent heights), (ii) die planare bzw. sphärische Diskretisierung und Anordnung
topographischer Massen, und (iii) Annahmen bezüglich der spektralen Übereinstimmung
von Höhen und Schwerewerten, wie im Fall der weit verbreiteten RTM-Methode (residual
terrain modeling).

Die vorliegende Arbeit trägt maßgeblich zur aktuellen Weiterentwicklung der Vorwärts-
modellierung im Ortsbereich bei, indem neue Methoden und Verfeinerungen bereitgestellt
werden, mit denen es gelingt, die oben genannten Einschränkungen zu überwinden. Hierzu
wird die Theorie des Rock-Water-Ice (RWI)-Ansatzes entwickelt, der eine realistischere
Modellierung der topgraphischen und isostatischen Erdmassen erlaubt. Diese setzen sich aus
den Massen der Kontinente, Ozeane, Seen, Eisflächen und dem Schelfeis zusammen, sowie de-
ren tiefer liegenden (isostatischen) Kompensationsmassen. Die RWI-Methode ist durch eine
Zerlegung der Erdtopographie in drei Schichten gekennzeichnet, die es erlaubt, eine strenge,
separate Modellierung der Gesteins-, Wasser-, und Eismassen mit variablen Dichtewerten
durchzuführen. Des Weiteren wird ein modifiziertes isostatisches Airy-Heiskanen-Konzept
angewandt, welches durch die Verwendung von zusätzlichen geophysikalischen Informatio-
nen verbessert wurde. In diesem Zusammenhang werden seismisch bestimmte Tiefen der
Mohorovičić-Diskontinuität, d. h. der Grenzfläche zwischen Erdkruste und Erdmantel, in
das isostatische Konzept eingeführt.

Um dem gesteigerten Rechenaufwand durch die komplexere Modellierung entgegenzuwir-
ken, sind effiziente Berechnungsmethoden für die Vorwärtsmodellierung notwendig. Für die
Modellierung im Ortsbereich setzt sich hierbei immer mehr die Verwendung von Tesseroiden
durch. Diese Massenkörper sind durch geozentrisch-sphärische Koordinatenlinien begrenzt
und berücksichtigen daher direkt die Krümmung der Erde. In verschiedenen Studien konnte
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Zusammenfassung

bereits der Vorteil von Tesseroiden gegenüber der herkömmlich verwendeten Quaderformel
gezeigt werden, sowohl hinsichtlich einer gesteigerten Genauigkeit als auch einer verrin-
gerten Rechenzeit. In Hinblick auf globale Anwendungen und hochauflösende DGMs ist
es dennoch notwendig die Rechenzeit weiter zu reduzieren. In diesem Zusammenhang
werden in der vorliegenden Arbeit optimierte Berechnungsformeln präsentiert, wodurch das
Schwerepotential eines Tesseroids inklusive seiner ersten und zweiten Ableitungen in einer
kompakten und einfach auszuwertenden Form dargestellt werden kann. Dies ermöglicht
eine numerisch effiziente Vorwärtsmodellierung, wobei der Gesamtrechenaufwand gegenüber
bisher verwendeten Tesseroidformeln je nach Schwerefunktional um 20 bis 55 % sinkt.
Im Sinne einer verbesserten räumlichen Anordnung der topographischen Massen werden
Tesseroide zudem auf eine ellipsoidische Referenzfläche aufgesetzt.

In Rahmen dieser Arbeit wird der neu entwickelte RWI-Ansatz unter Verwendung verschie-
dener topographischer Eingangsdaten auf unterschiedliche Funktionale des Schwerefeldes in
zwei Anwendungen eingesetzt. Beide Anwendungen sind mit der ESA-Satellitenmission
GOCE (Gravity field and steady-state Ocean Circulation Explorer) verbunden, welche die
zweiten Ableitungen des Gravitationspotentials gemessen hat, die auch als Gravitationsgra-
dienten bezeichnet werden.
In der ersten Anwendung werden topographisch-isostatische Effekte mittels des RWI-

Ansatzes entlang des GOCE-Satellitenorbits berechnet und als Reduktionen an die ge-
messenen Gradienten angebracht. Hierdurch kann eine Glättung des Messsignals bewirkt
werden, wodurch sich die numerische Stabilität bei Interpolationsaufgaben und Feldtrans-
formationen verbessert, wie z. B. bei einer harmonischen Fortsetzung der Gradienten nach
unten, vom Satellitenorbit zur Erdoberfläche. Während diese Vorgehensweise in früheren
Untersuchungen auf simulierte Gradienten angewendet wurde, werden in der vorliegenden
Arbeit gemessene GOCE-Gradienten topographisch-isostatisch reduziert. Da der erreich-
te Glättungseffekt stark von der Variabilität der Topographie abhängt, die der Satellit
überfliegt, ist diese Vorgehensweise besonders für regionale Anwendungen geeignet. Durch
den Vergleich von gemessenen und reduzierten Gradienten für eine Zeitreihe, in der der
Satellit die Himalaya-Region überquert hat, konnten durch eine Analyse im Orts- und
Frequenzraum signifikante Glättungseffekte beobachtet und quantifiziert werden.
Die zweite Anwendung trägt zur aktuellen Fragestellung der Vereinheitlichung von Hö-

hensystemen bei. Hierbei sollen die meist lokal definierten Bezugsflächen unterschiedlicher
nationaler Höhensysteme miteinander verbunden werden. In diesem Zusammenhang wird
ein satellitenbasiertes Verfahren vorgeschlagen, welches auf der Verwendung von globalen
Schwerefeldmodellen der GOCE-Mission beruht. Um die spektral begrenzte Auflösung dieser
Modelle zu erweitern, werden hochfrequente topographische Effekte aus der RWI-Methode
eingesetzt. Hierzu wird ein neuer Ansatz zur residualen Vorwärtsmodellierung entwickelt
und getestet. Dieser erlaubt es die notwendige Hochpassfilterung direkt auf Schwerebasis
durchzuführen und ist daher nicht auf die oben erwähnte Annahme (iii) der RTM-Methode
angewiesen. Am Beispiel von drei repräsentativen Untersuchungsgebieten in Deutschland,
Österreich und Brasilien konnte die Bedeutung von hochfrequenten topographischen Schwe-
refeldinformationen für die genaue Berechnung von Höhenoffsets eindrucksvoll gezeigt
werden.
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Zusammenfassung

Den Höhepunkt der vorliegenden Arbeit bildet eine Reihe topographisch-isostatischer
Schwerefeldmodelle, die unter Verwendung des RWI-Ansatzes generiert wurden. Diese
RWI-Modelle liefern eine hochauflösende Darstellung des topographisch-isostatischen Gra-
vitationspotentials in Form von Kugelfunktionsentwicklungen bis Grad und Ordnung 1800
(Version 2012), bzw. 2190 (Version 2015). Die Kugelfunktionskoeffizienten dieser Modelle
werden über eine sphärisch-harmonische Analyse aus globalen Gittern von Potentialwerten
abgeleitet. Für die Generierung der Gitterwerte wird eine stark parallelisierte Berechnung
auf Hochleistungsrechnern eingesetzt. Mittels sphärisch-harmonischer Synthese können
die RWI-Modelle zur effizienten Berechnung verschiedener Funktionale des topographisch-
isostatischen Potentials in unterschiedlichen Auswertehöhen verwendet werden. Zu diesem
Zweck wurden die Koeffizienten der RWI-Modelle über die Datenbank des International
Centre for Global Earth Models (ICGEM) frei verfügbar gemacht und sind bereits vielfältig
in Untersuchungen internationaler Forschungsgruppen zum Einsatz gekommen.

Diese kumulative Dissertation besteht aus einem ausführlichen Einleitungskapitel und
fünf Kapiteln, die die folgenden, begutachteten Publikationen beinhalten (vier Artikel in
internationalen Zeitschriften und ein Tagungsbeitrag zu einer Konferenz der International
Association of Geodesy):

Grombein, T., Seitz, K. und Heck, B. (2013): Optimized formulas for the gravitational field
of a tesseroid. Journal of Geodesy 87(7):645–660. doi: 10.1007/s00190-013-0636-1.

Grombein, T., Luo, X., Seitz, K. und Heck, B. (2014): A wavelet-based assessment of
topographic-isostatic reductions for GOCE gravity gradients. Surveys in Geophysics
35(4):959–982. doi: 10.1007/s10712-014-9283-1.

Grombein, T., Seitz, K. und Heck, B. (2016a): The Rock-Water-Ice topographic gravity
field model RWI TOPO 2015 and its comparison to a conventional rock-equivalent
version. Surveys in Geophysics 37(5):937–976. doi: 10.1007/s10712-016-9376-0.

Grombein, T., Seitz, K. und Heck, B. (2017): On high-frequency topography-implied gravity
signals for height system unification using GOCE-based global geopotential models.
Surveys in Geophysics 38(2):443–477. doi: 10.1007/s10712-016-9400-4.

Grombein, T., Seitz, K. und Heck, B. (2016b): Height system unification based on the
fixed GBVP approach. In: Rizos, C., und Willis, P. (Hrsg.) IAG 150 years. Proceedings
of the IAG Scientific Assembly, Postdam, Germany, 1.–6. Sep. 2013. International
Association of Geodesy Symposia, vol. 143. Springer Berlin Heidelberg, S. 305–311. doi:
10.1007/1345 2015 104.
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„Daß ich erkenne, was die Welt
im Innersten zusammenhält“

“So that I may perceive whatever holds
the world together in its inmost folds”

(Johann Wolfgang von Goethe, Faust I,
V. 382f., transl. by George M. Priest)

I. Introductory chapter

1. Introduction

1.1. Motivation and background

Ever since, humanity desires to know “whatever holds the world together in its inmost folds”.
Although the answer to this more general and philosophical question is sought in various
disciplines, from the perspective of geodesy, the decisive role is certainly played by gravity –
and, more concretely, the phenomenological and quantitative effect of gravitation on our
planet Earth.

In this context, the primary task of geodesy is to determine the figure of the Earth and
its time-variable external gravity field, where both aspects are closely related to each other
(Torge and Müller, 2012, p. 2). The Earth’s gravity field is composed by a gravitational
and a centrifugal component, which result from the attraction of the Earth’s masses and
the Earth’s rotation, respectively. Mathematically, the gravity field is a conservative vector
field that is usually represented by a scalar potential, namely the gravity potential W .
The geometry of the gravity field can be illustrated by equipotential surfaces, i.e., surfaces
of constant gravity potential. A distinguished equipotential surface with a fundamental
meaning is the geoid, which in first approximation can be associated with the mean sea
level (MSL) that is conceptionally extended below the continents. Conventionally, the geoid
is defined by the potential value W = W0.
The gravity potential W results from the sum of the gravitational potential V and the

centrifugal potential Z, i.e., W = V + Z. The centrifugal potential Z at an Earth’s surface
point P can be calculated analytically as a function of the orthogonal distance of the
point to the Earth’s rotational axis, and the Earth’s angular velocity ω, which can both
be measured very precisely. Hence, the main challenge of gravity field modeling is the
accurate determination of the gravitational potential V that depends on the mass density
distribution in the Earth’s interior. As this information is not globally known with sufficient
accuracy and spatial resolution, gravity field determination is usually related to the solution
of the Geodetic Boundary Value Problem (GBVP, Heiskanen and Moritz, 1967, p. 36f.).
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I. Introductory chapter

Depending on whether the theory of Stokes or Molodensky is used, the geoid or the Earth’s
surface is employed as the boundary surface, respectively. For the determination of the
required boundary values, various measurement approaches can be applied, which are based
on the observation of different gravity field functionals on or close to the Earth’s surface.
These include:

Terrestrial gravity measurements. Based on the principle of gravimetry, gravity values g
can be measured at the Earth’s surface, where g(P ) = |gradW (P )| denotes the modulus of
the gradient of the gravity potential at a point P . These terrestrial gravity measurements
provide highly precise information and are the basic observables within the solution of the
GBVP. However, they can only be determined pointwise and require time-consuming and
expensive field work. For this reason, gravity data is generally inhomogeneously distributed
and of varying quality. Moreover, for larger parts of the Earth, the access is restricted
or no data is available. Due to these gaps in the global gravity coverage, a gravity field
determination solely based on terrestrial data might only be possible on a regional scale.
Satellite altimetry. For the coverage of the oceans, information derived from satellite

altimetry can be utilized. In this case, the height of the sea surface above a reference
ellipsoid is measured by means of radar techniques. Differences between the observed sea
surface and the geoid can be attributed to the sea surface topography. In order to derive
precise gravity field data, i.e., geoidal heights, from satellite altimetry, a suitable separation
between the geoid information and the sea surface topography needs to be performed.
Satellite-based gravity field missions. In contrast to terrestrial gravity data, the main

benefit of satellite-based gravity field observations is that they provide independent and
homogeneously distributed information with a consistent accuracy and a nearly global
coverage. However, due to the decay of gravity with distance, the measurement sensitivity
in satellite altitude decreases with an increasing distance from the Earth’s center of mass.
Therefore, gravity field information recovered from satellite-based missions is generally
restricted in terms of its spatial and spectral resolution. The most prominent gravity field
missions are CHAMP (CHAllenging Minisatellite Payload), GRACE (Gravity Recovery
And Climate Experiment), and GOCE (Gravity field and steady-state Ocean Circulation
Explorer), see Rummel et al. (2002) for an overview about their respective measurement
concepts and objectives.

In addition to these measurements, the demand for a precise knowledge of the gravitational
effect of the Earth’s topography gained an increased interest within current gravity field
modeling and has become more and more important in recent years. Analyzing the spectral
composition of the gravity field, the high-frequency components can mainly be attributed
to the gravitational attraction of the Earth’s topographic and isostatic masses. These
encompass the rock, water, and ice masses of the continents, oceans, lakes, and ice sheets,
as well as their deeper lying (isostatic) compensation masses in the Earth’s interior.
By using the information of global high-resolution digital terrain models (DTMs), the

topographic-isostatic potential and related functionals can be determined by gravity for-
ward modeling (GFM), see Sect. 2.1, and utilized for various applications in geodesy
and geophysics. While Table 1 provides a general overview of the main applications of
topographic-isostatic GFM and their purposes, they are summarized in the following:
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Table 1. Main applications of topographic-isostatic gravity forward modeling.

Application Purpose

Mass reductions Solution of the GBVP according to the theory of Stokes
Interpretation of observations in geophysical studies

Smoothing Numerical stabilization of interpolation tasks
Numerical stabilization of field transformations

Spectral extension Augmentation of band-limited measurements
Reduction of the omission error of GGMs

Gravity prediction Improvement of the spatial resolution of terrestrial data sets
Fill-in information for the construction of combined GGMs

Validation Independent evaluation of satellite-based GGMs
Verification of new methods, theories, and algorithms

1) Mass reduction. In physical geodesy, topographic-isostatic mass reductions are utilized
to obtain mass-free boundary values at geoid level as required for the solution of the
GBVP according to the theory of Stokes (Heiskanen and Moritz, 1967, Chapter 3). In
geophysical studies and solid-earth sciences, topographic mass reductions of gravity
field observations are needed to interpret crustal structures (Ebbing et al., 2001;
Tenzer et al., 2012), to analyze mass anomalies in the Earth’s interior (Wieczorek,
2007), or to perform a general lithospheric modeling (Bouman et al., 2015).

2) Smoothing. Many calculation methods in gravity field modeling are embedded
in a remove-compute-restore framework (Forsberg and Tscherning, 1997), where
topographic-isostatic information is used to smooth gravity field observations. In this
context, the main purpose is to achieve a numerical stabilization of interpolation tasks
or field transformations (Forsberg, 1984, Sect. 4). Such a procedure is frequently used
for harmonic downward continuation of airborne and satellite-based measurements
(Novák et al., 2003; Makhloof and Ilk, 2008; Wild and Heck, 2008; Janák et al., 2014),
but is also applied for a gravimetric geoid determination (Omang and Forsberg, 2000).

3) Spectral extension. In recent years, one of the most important applications of
topographic GFM is the spectral extension of band-limited gravity field observations
or global geopotential models (GGMs). This is particularly important in the case of
satellite-derived GGMs, which are generally restricted to long and medium wavelengths
according to the maximum degree of their spherical harmonic representation. To
determine the remaining signal above this maximum degree, known as the omission
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error of the GGM, topographic GFM is usually applied in terms of residual terrain
modeling (Forsberg and Tscherning, 1997).

4) Gravity prediction. Topographic-isostatic gravity information can be utilized to refine
the spatial resolution of terrestrial data sets. This is of special interest for regions
where no or only limited gravity data is available, like in Africa (Abd-Elmotaal
et al., 2016). In this context, Hirt et al. (2016) recently presented a combination
of satellite-based gravity data with topographic information in order to improve
the spatial resolution of the gravity field information for Antarctica. Moreover,
topographic-isostatic gravity data is needed as fill-in information for the compilation
of combined global high-resolution gravity field models, like EGM2008 (Pavlis et al.,
2012); see also Hirt et al. (2013) and Fecher et al. (2015, 2016) for other examples.

5) Validation. As an independent source of gravity field information, topographic-
isostatic gravity data can be used to assess the performance of GGMs (Tsoulis and
Patlakis, 2013). Recently, this has particularly been done to evaluate the improvements
gained from different releases of GOCE satellite-based GGMs (Hirt et al., 2012, 2015).
Moreover, topographic-isostatic information is applied to construct a synthetic Earth
gravity model (Kuhn and Featherstone, 2005), which can be used for testing and
verification of new methods, theories, and algorithms (Baran et al., 2006).

1.2. Outline

The rest of this introductory chapter is organized as follows: in Sect. 2, the general principle
of GFM is introduced considering space and frequency domain techniques. Additionally,
background information is provided for the two central applications related to the GOCE
gravity field mission and height system unification. In Sect. 3, the limitations of current
GFM approaches are outlined, and, based on this consideration, the research objectives
of this thesis are defined. While Sect. 4 summarizes the main contributions of this thesis,
Sect. 5 provides an overview of the related publications as presented and reprinted in
Chapters II – VI. An overall conclusion of the thesis including an outlook to future research
can be found in Sect. 6.

2. Foundations

2.1. Gravity forward modeling

Gravity forward modeling (GFM) is generally based on the evaluation of Newton’s integral
for the gravitational potential of a solid body Ω ⊂ R3 (Heiskanen and Moritz, 1967, p. 3):

V (P ) = G

∫∫∫
Ω

ρ

`
dΩ, (1)

whereG denotes Newton’s gravitational constant, ρ = ρ(Q) is the location-dependent density
function, and ` = `(P,Q) is the Euclidean distance between the attracted computation
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point P ∈ R3 and the running integration mass point Q ∈ Ω. Depending on the specific
application, the integration domain Ω can extend over quite different mass distributions,
with the primary example being the Earth’s topographic-isostatic masses. However, in each
case, information on the geometry and density of the mass distribution is required.

In the frequency domain, Newton’s integral in Eq. (1) can alternatively be represented by
a series of solid spherical harmonics. In terms of geocentric spherical coordinates (r, ϕ, λ),
this spherical harmonic expansion is expressed by (Heiskanen and Moritz, 1967, p. 59):

V (P ) = GM

r

∞∑
n=0

(
R

r

)n n∑
m=0

(
Cnm cosmλ+ Snm sinmλ

)
Pnm(sinϕ), (2)

where GM is the geocentric gravitational constant, R is the radius of a reference sphere,
Pnm denotes the fully normalized associated Legendre functions (ALFs) of degree n and
order m, and Cnm and Snm are the fully normalized spherical harmonic (SH) coefficients.

According to the representations in Eqs. (1) and (2), different GFM methods have been
proposed that can be classified as space and frequency domain techniques (e.g., Kuhn and
Seitz, 2005). In Fig. 1, a general processing scheme for GFM in both domains is presented
and is described in the following two paragraphs.

GFM based on Newton’s integral
Space domain GFM Frequency domain GFM

Mass discretization
(elementary bodies)

Analytical/numerical
integration

Superposition
principle

Potential values
V

SHA of heights h
(raised to integer powers i)

Surface SH coefficients
C

(hi)
nm , S

(hi)
nm

Series expansion of
height coefficients

Potential coefficients
Cnm, Snm

SHA

SHS

Fig. 1. General processing scheme for gravity forward modeling (GFM) in the space and
frequency domain (Grombein et al., 2016a). The results of both GFM methods, i.e.,
potential values or coefficients, can be converted to each other by means of spherical
harmonic analysis (SHA) and synthesis (SHS).

5



I. Introductory chapter

In the case of space domain GFM, Newton’s integral in Eq. (1) is evaluated by a mass
discretization. In the first step, the integration domain Ω is decomposed into elementary
mass bodies Ω∗i ⊂ Ω with assumed constant density values ρi, where Ω = ⋃Ω∗i . Depending
on the type of application (local, regional, global) and the accuracy requirements, various
mass bodies or suitable approximations are frequently used, see Kuhn (2000, Chapter 6)
and Wild-Pfeiffer (2008) for a detailed overview.

In a second step, the gravitational potential V ∗i of each individual mass body is calculated
by analytical or numerical integration. In the third step, the potential V of the whole mass
distribution is then approximated by the sum of the potential values V ∗i according to the
superposition principle:

V ≈
∑
i

V ∗i =
∑
i

Gρi

∫∫∫
Ω∗i

1
`

dΩ. (3)

Analogously, this procedure can be applied to the derivatives of V .
For frequency domain GFM, Newton’s integral in Eq. (1) is evaluated through a transfor-

mation into the frequency domain (Rummel et al., 1988; Wieczorek, 2007; Hirt and Kuhn,
2012). In the first step, global gridded DTM heights h are raised to integer powers, i.e., hi
with i ∈ N, and the corresponding surface SH coefficients (C (hi)

nm , S (hi)
nm ) are calculated via

spherical harmonic analysis (SHA). In a second step, the solid SH coefficients (Cnm, Snm)
of the potential are calculated based on a series expansion of the inverse distance, involving
the surface SH coefficients (C (hi)

nm , S (hi)
nm ) obtained from the DTM heights. In the third step,

the derived set of SH coefficients (Cnm, Snm) can be used to calculate potential values and
functionals via spherical harmonic synthesis (SHS) according to Eq. (2).

2.2. GOCE gravity gradiometry

As the first core mission of the Living Planet Programme, initiated by the European Space
Agency (ESA), the satellite mission GOCE observed the Earth’s static gravity field between
November 2009 and October 2013 (ESA, 1999). Based on the concept of satellite gravity
gradiometry (Rummel and Colombo, 1985), GOCE measured in-situ the second-order
derivatives of the Earth’s gravitational potential at an altitude of about 250 km. These
derivatives are specified in a local Cartesian coordinate frame (x1, x2, x3) and can be
arranged in the symmetric Marussi tensor M, where

Mij = ∂2V (x1, x2, x3)
∂xi ∂xj

= Mji, i, j ∈ {1, 2, 3} (4)

are its physical components, known as gravity gradients. In the context of GOCE gradiom-
etry, gravity gradients are commonly represented in two different coordinate frames: (i) the
instrument-fixed Gradiometer Reference Frame (GRF), where the x1-axis points in the
flight direction, the x2-axis is orthogonal to the instantaneous orbit plane, and the x3-axis
points upwards in the geocentric radial direction, and (ii) the local north-oriented frame
(LNOF), where the x1-axis points north, the x2-axis west, and the x3-axis upwards in the
geocentric radial direction. Within the measurement bandwidth of the GOCE gradiometer
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(5 to 100 mHz), the main diagonal tensor components M11,M22,M33 and the off-diagonal
component M13 were observed with a precision of about 1 to 2 mE/

√
Hz (1 E = 10−9 s−2)

in the GRF, while the other off-diagonal components M12 and M23 are less accurately
measured with a precision of about 1 E/

√
Hz (cf. Rummel et al., 2011).

A primary geodetic mission objective of GOCE is to contribute to global height system
unification by providing a precise global geoid with an accuracy of 1–2 cm (Rummel, 2002).
Due to the measurement at satellite altitude and the limited bandwidth of the GOCE
gradiometer, the derived geoid is restricted to a spatial resolution of about 100 km. This
corresponds to a SH expansion approximately up to degree and order (d/o) 200 in terms of
a derived GGM.

2.3. Height system unification

By using tide gauge observations, national height reference systems have conventionally
been linked to the local MSL. Due to variations in the sea surface topography, different
tide gauges do not realize the same height reference level in terms of a global equipotential
surface. Therefore, hundreds of different national height systems exist worldwide that are
realized by their own local vertical datum. The resulting discrepancies cause height datum
offsets of about ±1–2 m at a global scale (Heck, 1990; Gerlach and Rummel, 2013; Sánchez,
2015), making it impossible to directly compare the physical heights of different countries.

This can cause practical problems for regional applications, when height information
from neighboring countries needs to be combined, e.g., in the case of international engi-
neering projects or flooding control. Additionally, for monitoring global geodynamic and
climatological processes, such as sea level rise, a consistent physical height reference level is
required. Furthermore, height system unification is also relevant for the realization of the
Global Geodetic Observing System (Ihde and Sánchez, 2005).

3. Problem statements and research objectives

Due to increasing accuracy requirements for different applications and an improved sensitiv-
ity and precision of terrestrial and space geodetic measurements, it is required to scrutinize
current approximations and simplifications in gravity forward modeling. If necessary,
appropriate refinements of the theory and modifications of commonly used methods have
to be taken into consideration.

3.1. State-of-the-art of gravity forward modeling

In geodesy, rectangular prisms (Mader, 1951; Nagy et al., 2000) have traditionally been
utilized for space domain GFM, and are still being applied in the case of the widely-used
GRAVSOFT program routine TC (Forsberg and Tscherning, 2008). While rectangular
prisms are suitable for local applications, they cannot generally be recommended for
applications at a regional or global scale due to their underlying planar approximation. To
improve the rough approximation, prisms with curved surfaces, e.g., topped by a bilinear
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surface (Smith et al., 2001; Tsoulis et al., 2003), as well as general polyhedral bodies
(Tsoulis, 2012; D’Urso, 2013) have been proposed.

With an increasing number of global applications, tesseroid mass bodies, as introduced
by Anderson (1976, p. 48ff.), have become more and more popular in recent years, as they
directly take the curvature of the Earth into account. As shown in Fig. 2, tesseroids are
bounded by a pair of concentric spheres (r1 = const., r2 = const.), a pair of meridional
planes (λ1 = const., λ2 = const.), and a pair of coaxial circular cones, defined by the
parallels ϕ1 = const., ϕ2 = const. In terms of precision and computation time, various
studies have demonstrated the high numerical efficiency when utilizing tesseroids instead of
conventional rectangular prisms, see, e.g., Heck and Seitz (2007), Wild-Pfeiffer (2008), and
Grombein et al. (2010a, Chapter 7). However, even in the case of tesseroids, one of the
main issues of space domain GFM is the still enormous computational demand, particularly
when using information of global high-resolution DTMs.

Although this property also holds true for frequency domain GFM, a major advantage
is that the gravitational potential is directly represented in terms of SH coefficients (e.g.,
Rummel et al., 1988; Balmino et al., 2012; Hirt and Kuhn, 2012), allowing to efficiently
calculate various gravity field functionals by SHS. However, frequency domain methods suffer
from several drawbacks, which are pointed out in the following. Due to the nature of spherical
harmonics, frequency domain GFM is generally limited to a spherical approximation, i.e.,
topographic masses are arranged on a spherical reference surface. As this is insufficient for
current high-resolution applications, Claessens and Hirt (2013) proposed a new spectral
approach taking into account an ellipsoidal approximation; see also Novák and Grafarend
(2005) for the use of an expansion in ellipsoidal harmonics. Another issue is that almost all
GFM approaches in the frequency domain are currently restricted to the use of one mass
layer of constant density.

Fig. 2. Geometry of a tesseroid used for the space domain GFM (Heck and Seitz, 2007).
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A common way to account for density variations of different terrain types is the concept of
rock-equivalent heights (REQ), also called rock-equivalent topography (e.g., Rummel et al.,
1988; Kuhn and Seitz, 2005; Hirt et al., 2015). By applying a mass conservation condition,
the DTM columns of water and ice masses are condensed such that their associated mass
elements correspond to an equivalent mass of rock density. Hence, topographic masses
can be modeled with a constant density value, which considerably simplifies the GFM
calculation. However, the shortcoming of this simplification is a changed geometry with
considerable mass displacements, as noted by Tsoulis and Kuhn (2007). Due to the distance
dependency, this has also an impact on any derived gravity field functional.
The load of the topographic masses is generally compensated by deeper lying mass

distributions in the Earth’s interior. In order to consider these isostatic compensation
masses, two concepts are commonly employed in geodesy: the isostatic concept of Airy-
Heiskanen and the one of Pratt-Hayford (Göttl and Rummel, 2009). Both models rely
on the simplified hypothesis of a local and column-based mass compensation with respect
to a particular normal compensation depth D. In the Airy-Heiskanen isostatic concept
(Heiskanen and Moritz, 1967, p. 135ff.), the thickness d′ of an isostatic mass column
varies, while its density value ∆ρ is kept constant. Following this idea, the depth D + d′

is then assumed to correspond to the boundary surface between the Earth’s crust and
mantle, known as Mohorovičić discontinuity (abbreviated as Moho), and ∆ρ represents
the crust-mantle density contrast. On the contrary, the Pratt-Hayford isostatic concept
(Heiskanen and Moritz, 1967, p. 134ff.) assumes a constant thickness of an isostatic mass
column along with laterally varying density values, depending on the topographic height.

However, both classically applied concepts have their disadvantages and do not provide
reasonable results when applied globally. For example, the Airy-Heiskanen isostatic concept
fails over deep ocean trenches, where d′ may rise above the ocean bottom (Wild and Heck,
2005). Therefore, several studies suggested to apply a combination of different isostatic
concepts, e.g., the use of the Airy-Heiskanen concept over land areas and the Pratt-Hayford
model over the oceans (Wild and Heck, 2005; Göttl and Rummel, 2009; Hirt et al., 2012).

Based on a refinement of Airy’s theory, the Vening-Meinesz model (Moritz, 1990, p. 222ff.;
Abd-Elmotaal, 1995) accounts for a regional, instead of local isostatic compensation.
Although such a compensation scheme is more realistic, from a mathematical point of view,
the Vening-Meinesz model is much more complicated, making it hardly applicable on a
global scale. Moreover, as pointed out by Kaban et al. (2004), additional information about
the Earth’s interior and its crustal structure needs to be integrated, in order to achieve a
more geophysically meaningful isostatic compensation.

For the spectral extension of band-limited measurements or GGMs, the results of gravity
forward modeling cannot be used directly, as the topography generally contributes to all
spectral scales of the gravity field. In addition, some kind of high-pass filtering has to be
performed. For this purpose, residual terrain modeling (RTM, Forsberg and Tscherning,
1997) is a widely used tool that has been utilized in various studies and for different kinds
of applications (e.g., Hirt et al., 2010; Hirt, 2013; Šprlák et al., 2015). In this approach,
gravity forward modeling is applied to a residual topography between a high-resolution
DTM and a smoothed reference topography, whose spectral information is assumed to be
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already contained in the measurements or GGM that should be augmented. In this way,
the RTM method presupposes a spectral consistency of topographic heights and implied
gravity. However, as pointed out by Hirt and Kuhn (2014), a band-limited topography can
also generate a full spectrum gravity field. Therefore, the basic assumption of the RTM
approach cannot be considered valid in general. However, this issue has not received due
attention so far.

3.2. Research objectives

The general research objective of this thesis is to develop a new, more realistic GFM
approach that allows to efficiently calculate topographic-isostatic effects for different gravity
field functionals and overcomes the current limitations of other methods as specified above.
Besides this methodological aspect, it is intended to conduct different kind of studies in
order to evaluate the performance and see the benefit of the newly developed method. In
detail, the following questions and aspects have been addressed within the thesis:

• Is it possible to optimize the currently used tesseroid formulas in order to achieve a
significant reduction of the computation time for space domain GFM?

• How does the approximation error of the commonly used rock-equivalent modeling
affect different gravity field functionals and which magnitudes can be expected for
terrestrial, airborne and satellite-based applications?

• Is it possible to enhance the topographic-isostatic modeling by a rigorous separate
modeling of different terrain types with variable density values?

• Can space domain GFM approaches overcome current limitations of global GFM in
the frequency domain?

• Is it possible to find an alternative approach to residual terrain modeling that allows
to perform the required high-pass filtering directly in the gravity domain?

• Is it feasible to effectively smooth measured GOCE gravity gradients by means of
topographic-isostatic reductions?

• Can topography-implied gravity signals profitably contribute to the problem of global
height system unification?

4. Contributions
In this section, the main contributions of the thesis are summarized and references are
provided with respect to the attached publications. Succinctly stated, these are:

• Elaboration of optimized tesseroid formulas that reduce the computational demand
by about 20 to 55 %, depending on the respective gravity field functional of interest,
see Grombein et al. (2013) in Chapter II.
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• Development of the advanced Rock-Water-Ice (RWI) approach that is based on a
three-layer decomposition of the Earth’s topography with respect to its rock, water,
and ice mass constituents, and a modified Airy-Heiskanen concept that incorporates
Moho depths, see Grombein et al. (2014a, 2016a) in Chapters III and IV.

• Release of several Rock-Water-Ice gravity field models (RWI models) that provide a
high-resolution representation of the Earth’s topographic-isostatic potential in terms
of SH coefficients, see Grombein et al. (2014a, 2016a) in Chapters III and IV.

• Analyses of the benefit of the RWI approach in comparison to the conventional
rock-equivalent technique, see Grombein et al. (2016a) in Chapter IV.

• Application of the RWI approach for the topographic-isostatic reduction of measured
GOCE gravity gradients, see Grombein et al. (2014a) in Chapter III.

• Development of an alternative to residual terrain modeling based on GFM using the
RWI approach and the corresponding RWI models, see Grombein et al. (2017) in
Chapter V.

• Application of this strategy for the spectral extension of satellite-based GOCE gravity
field models in the context of global height system unification, see Grombein et al.
(2017) in Chapter V.

• Analyses of a newly developed fixed GBVP approach for height system unification,
see Grombein et al. (2016b) in Chapter VI.

4.1. Optimized tesseroid formulas

Gravity forward modeling is generally a very time consuming task, where the runtime
increases quadratically with the spatial resolution of the used topography model. To handle
the enormous computational demand in the case of global high-resolution input data, it
is indispensable to use techniques of parallel computation. However, as a first step, it is
reasonable to evaluate and optimize existing formulas.
Investigations in this context have concentrated on formulas for the gravitational po-

tential V ∗ of a homogeneous spherical tesseroid, as well as its first- and second-order
derivatives that are defined with respect to a topocentric Cartesian coordinate frame
(x1, x2, x3), i.e., ∂ V ∗/∂xi and ∂2 V ∗/(∂xi ∂xj) with i, j ∈ {1, 2, 3}, respectively. Instead of
the local north-oriented frame as defined above and used for the GOCE gradiometry, a
conventional left-handed frame is applied, where the x2-axis points east instead of west.
Previously published tesseroid formulas are based on integral kernels with respect to

geocentric spherical coordinates (e.g., Heck and Seitz, 2007; Wild-Pfeiffer, 2007, 2008). Thus,
in order to calculate the first- and second-order derivatives in the moving Cartesian frame,
additional transformations have to be applied that show polar singularities (Tscherning,
1976). In contrast to these approaches, first ideas of optimized tesseroid formulas based on
Cartesian integral kernels have been formulated in Grombein et al. (2010a), and further
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elaborated and generalized within this thesis (cf. Grombein et al., 2013). These formulas
avoid the explicit transformation and thus allow to evaluate the first- and second-order
derivatives directly in the local Cartesian frame for any position on the globe. Moreover,
this leads to a compact representation of the gravitational field functionals of a tesseroid
that can be described consistently by the general formula

V ∗(P )
∂
∂xi
V ∗(P )

∂2

∂xi ∂xj
V ∗(P )

 = Gρ

λ2∫
λ1

ϕ2∫
ϕ1

r2∫
r1

1
`3


∆xi∆xi

∆xi
3∆xi∆xj

`2 − δij

r
′2 cosϕ′ dr′ dϕ′ dλ′, (5)

where

∆x1 = r′
[
cosϕ sinϕ′ − sinϕ cosϕ′ cos

(
λ′ − λ

)]
,

∆x2 = r′ cosϕ′ sin
(
λ′ − λ

)
,

∆x3 = r′
[
sinϕ sinϕ′ + cosϕ cosϕ′ cos

(
λ′ − λ

)]
− r, (6)

denote the coordinate differences between the computation point P (r, ϕ, λ) and the running
integration point Q(r′, ϕ′, λ′),

` =
√

∆x1
2 + ∆x2

2 + ∆x3
2 =

√
∆xi∆xi (7)

is the corresponding Euclidean distance, and δij is the Kronecker delta, i.e., δij = 1 if i = j,
and δij = 0 otherwise.
Since volume integrals linked to tesseroids cannot be solved analytically, a numerical

evaluation of Eq. (5) is achieved by a Taylor series approach with a fourth-order error
that has been adapted from Heck and Seitz (2007), see also Deng et al. (2016). As the
structure of the Cartesian integral kernel is substantially simplified, Taylor coefficients can
be represented in a compact and computationally attractive form that allows an efficient
numerical evaluation. Thus, the main benefit of using the optimized tesseroid formulas is a
significant speed-up of the calculation process, which has been verified by conducting a
realistic numerical experiment (cf. Grombein et al., 2013). In comparison to previously
published tesseroid implementations, the computation time is decreased by about 20 % for
the potential, 28 % for the first-order derivatives, and 56 % for the second-order derivatives.

Particularly, due to studies related to GOCE gravity gradients, the optimized tesseroid
formulas for the second-order derivatives have been rapidly spread and used for various
applications in the field of forward and inverse modeling (e.g., Álvarez et al., 2014; Guerri
et al., 2015; Bouman et al., 2016; Fuchs et al., 2016). Moreover, the elaborated formulas
provide the basis for the software package Tesseroids (Uieda et al., 2011), which is used
mainly in the geophysical community. Recently, the optimized tesseroid formulas have even
been adapted to provide efficient evaluation rules for the magnetic potential and its first-
and second-order derivatives (cf. Du et al., 2015).
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Fig. 3. Schematic representation of the RWI-based topographic model and the composition
of different terrain types by rock, water, and ice masses (Grombein et al., 2016a). Note
that a planar illustration is only used for the purpose of simplification, whereas all formulas
of the RWI approach correspond to a spherical or ellipsoidal approximation.

4.2. The Rock-Water-Ice (RWI) approach

To address the above specified limitations of current GFM and to establish a more realistic
topographic-isostatic modeling, the Rock-Water-Ice (RWI) approach has been developed
within this thesis. This method relies on a three-layer decomposition of the Earth’s
topography that enables a rigorous separate GFM of the rock, water, and ice masses with
variable density values. This prevents geometry changes and mass displacements, occurring
in conventional rock-equivalent methods. Furthermore, a modified Airy-Heiskanen isostatic
concept is applied that incorporates a depth model of the Mohorovičić discontinuity (Moho),
i.e., the boundary surface between the Earth’s crust and mantle.

While a detailed description and further refinements of the RWI approach are provided
in the two attached publications Grombein et al. (2014a, 2016a), additional information is
presented in Grombein et al. (2010b, 2011, 2014b,c). In the following, the topographic and
isostatic models associated with the RWI approach are summarized.

The basic idea of the RWI approach is that the topographic masses of each terrain type,
e.g., bedrock, oceans, lakes, ice sheets and ice shelves, can be composed by rock, water,
and ice proportions. As schematically shown in Fig. 3, the sequence of these three masses
is the same for each terrain type, however, some mass types may be lacking. For this
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Fig. 4. Schematic representation of the modified Airy-Heiskanen isostatic concept
(Grombein et al., 2014a). Note that a planar illustration is only used for the purpose of
simplification, whereas all formulas correspond to a spherical or ellipsoidal approximation.

reason, the Earth’s topographic masses can consistently be represented by a vertically
arranged (1) rock, (2) water, and (3) ice layer. For the geometrical description of these
layers, a global DTM is needed that provides the MSL heights (h1, h2, h3), corresponding
to the upper boundary surfaces of the rock, water, and ice masses, see Fig. 3. To correctly
locate the topographic masses in space, an ellipsoidal reference surface is used, which is
parameterized by a position-dependent geocentric radius R0(ϕ, λ). The geocentric radii of
the rock, water, and ice masses are then approximated by Rs = R0 + hs, for s ∈ {1, 2, 3}.
By using layer-specific density values (ρ1, ρ2, ρ3), the gravitational effect of each mass layer
is calculated separately, applying space domain GFM based on tesseroid mass bodies. For
an efficient numerical calculation, the elaborated optimized tesseroid formulas are utilized.

To account for deeper lying compensation masses, the classical Airy-Heiskanen isostatic
concept has been adapted to the RWI approach, see Fig. 4. This means that the isostatic
masses are quantified from the topographic load, i.e., the sum of the rock, water, and
ice masses, by applying a column-based mass equality condition with respect to a fixed
normal compensation depth D. To enhance this simplified concept, additional geophysical
information is introduced in terms of seismic Moho depths dM , which are used to define
the thickness d′ of an isostatic mass column (cf. Fig. 4). Thus, in contrast to the original
idea of Airy-Heiskanen, the geometry of the isostatic masses is fixed, allowing to account
for variable density values. To this end, a location-dependent crust-mantle density contrast
∆ρ is estimated by the above specified mass equality condition, see Grombein et al. (2014a)
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Table 2. Overview of the generated gravity field models of Release 2012 and 2015.

Release Model name Gravitational potential

Release 2012
(Grombein et al., 2014a)

RWI TOPO 2012 Topographic
RWI ISOS 2012 Isostatic
RWI TOIS 2012 Topographic-isostatic

Release 2015
(Grombein et al., 2016a)

RWI TOPO 2015 Topographic
REQ TOPO 2015 Topographic (rock-equivalent)

for the applied formulas in spherical approximation. While the gravitational effect of
the isostatic masses is analogously calculated by tesseroid-based GFM, the combined
topographic-isostatic effect results from the addition of both constituents.
Within the studies performed in this thesis, the RWI approach has been applied to

different input data and was used for various gravity field functionals, such as gravity
gradients (Grombein et al., 2014a) and height anomalies (Grombein et al., 2017). Moreover,
a series of topographic-isostatic gravity field models has been generated based on the RWI
approach, as will be outlined in the next subsection.

4.3. Topographic-isostatic gravity field models

In the framework of this thesis, several topographic-isostatic gravity field models have been
generated and made publicly available in two releases, 2012 and 2015, associated with the
publications Grombein et al. (2014a) and Grombein et al. (2016a), respectively. These RWI
models provide a high-resolution representation of the Earth’s topographic, isostatic, and
topographic-isostatic gravitational potential in terms of SH coefficients. By using SHS, the
models’ coefficients can be used to efficiently calculate various functionals of the potential,
and evaluate them in different heights or on different surfaces (e.g., Barthelmes, 2013).
The SH coefficients of the RWI models are obtained in a two-step sequence. In the

first step, GFM with the tesseroid-based RWI approach is performed in the space domain,
resulting in a high-resolution global grid of potential values. In a second step, these global
gridded values are then transformed to the frequency domain by using SHA. While Table 2
provides a general overview of the derived gravity field models, their differences with respect
to Release 2012 and 2015 are specified in Table 3 and are outlined in the following.

Release 2012. The RWI models of Release 2012 are based on the topographic information
of the 5′ × 5′ global DTM2006.0 model (Pavlis et al., 2007). Furthermore, standard density
values, ρ1 = 2670 kg m−3, ρ2 = 1000 kg m−3, ρ3 = 920 kg m−3, and the reference surface of
the GRS80 ellipsoid (Moritz, 1980) have been used to define and locate the rock, water,
and ice masses. For the determination of the isostatic masses, Moho depths were obtained
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I. Introductory chapter

Table 3. Specifications and differences between the models of Release 2012 and 2015.

Release 2012 Release 2015

Input
Topography model DTM2006.0 (5′ × 5′) Earth2014 (1′ × 1′)
Moho model CRUST 2.0 (2◦ × 2◦) –

Density
values
[kg m−3]

Rock 2670 2670
Water (Land/Ocean) 1000 1000 / 1030
Ice 920 917

Space
domain
GFM

Mass discretization Tesseroids Tesseroids
Reference surface Ellipsoid Ellipsoid + Geoid
Calculation grid Spherical grid (5′ × 5′) Ellipsoidal grid (4′ × 4′)

SHA
Method Least-squares technique Least-squares technique
Maximum d/o 1800 2190
ALF algorithm Thong (1989) Holmes and

Featherstone (2002)

from the 2◦ × 2◦ global CRUST 2.0 model (Bassin et al., 2000) and accommodated to the
resolution of the topography by means of SHA and SHS.

By applying the RWI approach to these input data, topographic and isostatic potential
values were calculated on a 5′ × 5′ global spherical grid with radius R = 6 398 137 m. As
the computations for each grid point are independent of each other, techniques of parallel
computing can be used, in order to handle the enormous computational demand. To
this end, a GFM software optimized for massive parallel computing on high-performance
computer systems has been developed, using the message passing interface (MPI). For
the transformation of the potential values to the frequency domain, SHA based on a
least-squares technique for global gridded data has been applied (cf. Abd-Elmotaal et al.,
2014). The used software implementation for this SHA is originally based on Seitz and
Heck (1991) and has been further developed by K. Seitz. For the required calculation of
the ALFs, an algorithm according to Thong (1989) has been utilized.

As a result of the computations, Release 2012 consists of three sets of SH coefficients up
to degree and order (d/o) 1800:

• RWI TOPO 2012 (topographic potential)

• RWI ISOS 2012 (isostatic potential)

• RWI TOIS 2012 (combined topographic-isostatic potential).

In Fig. 5a, the dimensionless signal degree variances of these models are shown.
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Fig. 5. Dimensionless signal degree variances of the SH coefficients from (a) Release
2012 models (Grombein et al., 2014a) – RWI TOPO 2012 (red curve), RWI ISOS 2015
(green curve), RWI TOIS 2012 (blue curve) – and (b) Release 2015 models (Grombein
et al., 2016a) – RWI TOPO 2015 (red curve), RWI TOPO 2015 Rock (green curve),
RWI TOPO 2015 Water (blue curve), RWI TOPO 2015 Ice (yellow curve).

Release 2015. In the case of Release 2015, updated topographic information of the
1′ × 1′ Earth2014 model (Hirt and Rexer, 2015) have been used to characterize the rock,
water, and ice masses. Moreover, the applied layer-specific density values (ρ1, ρ2, ρ3) were
slightly modified, accounting for the difference in salt- and fresh-water density (see Table 3),
and the used ellipsoidal reference surface has been refined by an additional geoid model.

Generally, the same software implementations have also been used for the processing of
Release 2015. However, two main changes made it possible to extend the representation
in spherical harmonics up to d/o 2190. Firstly, the space domain tesseroid-based GFM
has been performed on an ellipsoidal grid with an increased resolution of 4′ × 4′ that
is approximately 20 km above the GRS80 surface; secondly, to improve the numerical
stability in calculating the ALFs of higher degrees, a new algorithm based on Holmes and
Featherstone (2002) has been implemented.
Release 2015 additionally features separate SH coefficients for the rock, water, and ice

proportions. Furthermore, to see the additional benefit of the RWI approach, consistent
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rock-equivalent (REQ) versions of the RWI models have been generated, in which the
heights of water and ice masses are condensed to the constant rock density. This allows
a detailed comparison of both approaches, which has been conducted in the publication
Grombein et al. (2016a). When evaluated on the surface of the GRS80 ellipsoid, the
differences of the RWI- and REQ-based models reach maximum amplitudes of about 1 m,
50 mGal, and 20 mE in terms of height anomaly, gravity disturbance, and the radial-radial
gravity gradient, respectively, see Fig. 6 for global variations. Although these differences are
damped with increasing ellipsoidal height, significant magnitudes can even be detected in
satellite altitudes of current gravity field missions (cf. Grombein et al., 2016a). Summarized,
Release 2015 consist of the following models, each expanded up to d/o 2190,

• RWI TOPO 2015 (topographic potential)

• RWI TOPO 2015 Rock (rock proportion)

• RWI TOPO 2015 Water (water proportion)

• RWI TOPO 2015 Ice (ice proportion)

and their associated rock-equivalent versions

• REQ TOPO 2015 (rock-equivalent topographic potential)

• REQ TOPO 2015 Water (condensed water proportion)

• REQ TOPO 2015 Ice (condensed ice proportion).

A separate REQ model for the rock proportion has not been generated, as it is identical to
RWI TOPO 2015 Rock. In Fig. 5b, the signal degree variances of the models are shown.

Availability and application of the models. The SH coefficients of the RWI models
are freely available from the website https://www.gik.kit.edu/rwi model.php and via the
database of the International Centre for Global Earth Models (ICGEM, http://icgem.
gfz-potsdam.de/ICGEM). Besides the conducted application in this thesis, the RWI models
have already been used in a wide range of studies by different international research groups.
For generating the combined gravity field model GOCO05c, Fecher et al. (2015, 2016)

use topographic-isostatic gravity anomalies of the RWI model to fill gaps in the global
gravity coverage. To analyze the structure and state of stress of the Chilean subduction
zone, Gutknecht et al. (2014) utilize the RWI models to derive topographically reduced
gravity gradients of the satellite-based GOCO03s model (Mayer-Gürr et al., 2012). Bouman
et al. (2016) make use of the RWI models to derive topographic mass reductions for GOCE
gravity gradient grids, as used in geophysical applications. Furthermore, in some studies
the RWI models have been applied as a reference for an independent validation (e.g., Novák
and Tenzer, 2013; Pitonák et al., 2016).
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Fig. 6. Difference of RWI TOPO 2015 and REQ TOPO 2015 in terms of (a) height
anomalies ζ and (b) gravity disturbances δg evaluated on the surface of the GRS80 ellipsoid,
as well as (c) the radial-radial gravity gradient M33 evaluated at a satellite altitude of
about 250 km (Grombein et al., 2016a). Robinson projection centered at 0◦ longitude.
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Fig. 7. Processing of GOCE gravity gradients by using topographic-isostatic information
in a remove-compute-restore concept (Grombein et al., 2014c).

4.4. Smoothing of GOCE gravity gradients

By analyzing observed GOCE gravity gradients, high- and mid-frequency signals can
be detected that are primarily caused by the attraction of the Earth’s topographic and
isostatic masses. Due to the induced rough measurement signal, interpolation tasks or field
transformations, such as harmonic downward continuation of the gradients, can generally be
considered an ill-conditioned processes. One possibility to improve the numerical stability
is to smooth the observed gradients with respect to topographic-isostatic effects using a
remove-compute-restore technique (Forsberg and Tscherning, 1997), as schematically shown
in Fig. 7. In the remove step, topographic-isostatic signals are reduced from the observed
GOCE gradients. Thereby, the high- and mid-frequency components of the gradients are
mitigated, and mainly low-frequency constituents remain in the residual signal. In the
compute step, the smoothed observation signals can be processed with an improved stability
to gain regularized results. In the restore step, consistent topographic-isostatic signals are
reconsidered to obtain the final results.

While previous studies in this context were based on simulated gravity gradients (Wild-
Pfeiffer, 2007, 2008; Janák and Wild-Pfeiffer, 2010; Janák et al., 2012), the publication
Grombein et al. (2014a) of this thesis provides the first application of topographic-isostatic
reductions to real GOCE gravity gradient measurements. For this purpose, the RWI
approach has been used to calculate topographic-isostatic signals in terms of gravity
gradients along the orbit of the GOCE satellite, using the measurement positions as
computation points. Note that in this study, the input data of Release 2012 was used, as
specified in Table 3.

The RWI-based topographic and isostatic signals calculated along the orbit of the GOCE
satellite, both reach extreme values of about ±8 E and largely cancel each other out. Hence,
the combined topographic-isostatic signal is nearly one order of magnitude smaller and
ranges between ±1 E. To get an impression on global variations, Fig. 8 visualizes the
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Fig. 8. RWI-based topographic-isostatic signal in terms of the radial-radial gravity gradient
M33, evaluated on a spherical grid at a mean GOCE satellite altitude (254.9 km) by using
RWI TOIS 2012 (Grombein et al., 2014a). Robinson projection centered at 0◦ longitude.

RWI-based topographic-isostatic effects for the radial-radial gravity gradient component
M33, evaluated on a spherical grid at a mean GOCE satellite altitude of 254.9 km.

Using a data set in the Himalayan region, the smoothing impact of topographic-isostatic
signals on GOCE measurements has been analyzed. For this purpose, observed gravity
gradients have been compared to the corresponding reduced ones within the measurement
bandwidth of the gradiometer. This comparison has been performed in both, the space
and the frequency domain. In the former, the degree of smoothing has been quantified by
percentage changes in the standard deviation and range of the gradients before and after
reduction. For spectral analysis, a continuous wavelet transform has been applied to the
measured and reduced GOCE gravity gradients, allowing to simultaneously examine the
signal structure in both time and frequency domains. By using percentage changes of the
amplitude range, the degree of smoothing can then be estimated separately for different
frequency values. In Fig. 9, the obtained results are exemplarily shown for the M33 gravity
gradient signal, which can be reduced by about 50 %.
Generally, the analyses in both domains demonstrate that the RWI-based topographic-

isostatic reductions lead to significant smoothing effects on the measurements for the M11,
M22, M33, and M13 components. For the less accurately observed gradients M12 and M23,
smoothing effects can only be detected in the spectral analysis and were invisible in the
space domain, as in this case all frequencies are superposed (cf. Grombein et al., 2014a).

4.5. Spectral extension in the framework of height system unification

For the purpose of height system unification, a satellite-based method is proposed in the
publication Grombein et al. (2017), using GGMs derived from the GOCE mission. These
GOCE GGMs provide global independent and homogeneous gravity field information that is
not affected by any height datum offset and, hence, can be used for a consistent connection
of different height systems (Rummel, 2002; Gatti et al., 2013). In this context, height
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Fig. 9. Comparison of the observed M33 gravity gradient signal and the corresponding
topographically-isostatically reduced signal along a GOCE satellite orbit that crossed the
Himalayan region, as displayed in panel (a). While in panel (b) the comparison is shown
in the space domain by time series, panel (c) illustrates the results in the frequency domain
by means of Morlet wavelet scalograms (Grombein et al., 2014a). In both cases, the signal
content is band-pass filtered to the measurement bandwidth of the GOCE gradiometer.
Note that the displayed absolute wavelet coefficients are dimensionless.

datum offsets are estimated within a least squares adjustment by comparing satellite-based
GGM information with those of measured GNSS/leveling benchmarks, i.e., observation
points that combine ellipsoidal heights derived from global navigation satellite system
(GNSS) observations and physical heights in the local vertical datum. However, due to
the limited spectral resolution of GOCE GGMs, their information needs to be augmented
by additional data, accounting for the mid- to high-frequencies that are not captured by
the satellite-based model. For a spectral extension, GOCE GGMs are usually combined
with the high-resolution geopotential model EGM2008 (Pavlis et al., 2012). While this
combination has been optimized by using a Hanning window (Blackman and Tukey, 1958),
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Fig. 10. Least squares adjusted residuals at 198 Austrian GNSS/leveling benchmarks with
and without the consideration of topography-implied gravity signals (right and left column,
respectively), cf. Grombein et al. (2017).

the investigations in Grombein et al. (2017) have mainly concentrated on the remaining
high-frequency signals above the spectral resolution of EGM2008 that are assumed to be
influenced by the Earth’s topographic masses.

For the calculation of suitable high-frequency topography-implied gravity signals, a novel
(residual) gravity forward modeling approach has been developed as an alternative to
the widely-used RTM technique. In the first step of this new approach, gravity forward
modeling based on tesseroid mass bodies is performed according to the RWI approach,
using the input data of Release 2015 (cf. Table 3). In a second step, the resulting full
spectral RWI-based topographic potential values are reduced by the effect of the topographic
gravity field model RWI TOPO 2015, thus, removing the long to medium wavelengths.
Hence, in contrast to RTM, the required high-pass filtering is performed directly in the
gravity domain, which avoids the doubtful assumption regarding the spectral consistency
between topographic heights and implied gravity. While in principle this procedure is
computationally more expensive, the availability of suitable topographic gravity field models,
such as RWI TOPO 2015, made this approach feasible.

For the analysis of the benefit and contribution of topography-implied gravity signals on
the estimation of height datum offsets, three representative study areas in Germany, Austria,
and Brazil have been selected. They differ strongly in size, geographical latitude, topographic
properties, as well as the accuracy of their geodetic measurements. Furthermore, different
GOCE GGMs of the latest (fifth) generation have been considered: TIM R5 (Brockmann
et al., 2014), DIR R5 (Bruinsma et al., 2014), and GOCO05s (Mayer-Gürr et al., 2015).

To assess the performance of topography-implied gravity signals, an estimation of height
datum offsets has been performed with and without the consideration of high-frequency
topographic signals. Besides considerable changes in the estimated height datum offset
δH of a few centimeters, the performed analyses show that significant improvements of
10–40 % can be achieved in terms of a reduced standard deviation (STD) and range of the
least squares residuals, see Fig. 10 for the obtained results in Austria. While this holds true
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for the German and Austrian data sets, this is not the case for Brazil, where a large error
level in the GNSS/leveling data seems to over-modulate the effect of topography-implied
gravity signals. In summary, the analyses emphasized the importance of high-frequency
topography-implied gravity signals for an accurate estimation of height datum offsets,
particularly in regions with highly variable topography, where the remaining omission error
of EGM2008 can still amount to a significant cm–dm level.

In addition to these investigations, the publication Grombein et al. (2016b) provides an
outlook to further research work in the context of height system unification. To achieve a
unification of high precision, the additional use of local terrestrial gravity data is required.
For this purpose, the solution of the GBVP is used to estimate height datum offsets in
a least squares approach (e.g., Rummel and Teunissen, 1988; Heck and Rummel, 1990).
While previous studies have been mainly concentrated on the use of the scalar-free GBVP
(e.g., Xu, 1992; Gerlach and Rummel, 2013; Amjadiparvar et al., 2016), the perspectives
and benefits of the alternative use of the fixed GBVP approach have been discussed in
Grombein et al. (2016b). To this end, the theory of the fixed GBVP approach has been
extended for height system unification. Moreover, by conducting a closed loop simulation, it
has been shown that mm-accuracy of the estimated height datum offsets can be achieved in
principle. While the presented formulas were restricted to the use of terrestrial gravity data,
for a practical realization of this approach, a combination with a GGM and topographic
information is required in order to reduce systematic errors.

5. Publication overview
This thesis includes the following five peer-reviewed publications (four original articles in
international journals and one proceedings contribution to an IAG Scientific Assembly):

1) Grombein, T., Seitz, K., and Heck, B. (2013): Optimized formulas for the gravitational
field of a tesseroid. Journal of Geodesy 87(7):645–660. doi: 10.1007/s00190-013-0636-1.

Author’s contributions. The first author derived the optimized tesseroid formulas,
designed and carried out the numerical investigations, and wrote the manuscript for
the article. The second author helped to numerically verify the formulas due to inde-
pendent, comparative calculations. All authors discussed the results and contributed
to the improvement of the manuscript by suitable comments and corrections.

2) Grombein, T., Luo, X., Seitz, K., and Heck, B. (2014a): A wavelet-based assessment of
topographic-isostatic reductions for GOCE gravity gradients. Surveys in Geophysics
35(4):959–982. doi: 10.1007/s10712-014-9283-1.

Author’s contributions. The first and second author designed the study. The
first author developed the Rock-Water-Ice approach, processed the input data, carried
out the computations and analyses, and wrote most of the manuscript for the article.
The second author wrote the section about the mathematical background of the
continuous Morlet wavelet transform and helped to implement and perform the
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wavelet-based analysis. The third author considerably contributed to the executed
spherical harmonic analysis. All authors discussed the results and contributed to the
improvement of the manuscript by suitable comments and corrections.

3) Grombein, T., Seitz, K., and Heck, B. (2016a): The Rock-Water-Ice topographic
gravity field model RWI TOPO 2015 and its comparison to a conventional rock-
equivalent version. Surveys in Geophysics 37(5):937–976. doi: 10.1007/s10712-016-
9376-0.

Author’s contributions. The first author elaborated the refinements of the Rock-
Water-Ice approach, designed the study, processed the input data, carried out the
computations and analyses, and wrote the manuscript for the article. The second
author considerably contributed to the executed spherical harmonic analysis. All
authors discussed the results and contributed to the improvement of the manuscript
by suitable comments and corrections.

4) Grombein, T., Seitz, K., and Heck, B. (2017): On high-frequency topography-implied
gravity signals for height system unification using GOCE-based global geopotential
models. Surveys in Geophysics 38(2):443–477. doi: 10.1007/s10712-016-9400-4.

Author’s contributions. The first author developed the new residual gravity
forward modeling method, designed the study, processed the input data, carried
out the computations and analyses, and wrote the manuscript for the article. All
authors discussed the results and contributed to the improvement of the manuscript
by suitable comments and corrections.

5) Grombein, T., Seitz, K., and Heck, B. (2016b): Height system unification based on the
fixed GBVP approach. In: Rizos, C., and Willis, P. (eds.) IAG 150 years. Proceedings
of the IAG Scientific Assembly, Postdam, Germany, Sept. 1–6, 2013. International
Association of Geodesy Symposia, vol. 143. Springer Berlin Heidelberg, pp. 305–311.
doi: 10.1007/1345 2015 104.

Author’s contributions. The third author formulated the idea for the fixed GBVP
approach. The first author elaborated the theory and formulas, designed and carried
out the closed loop simulation, and wrote the manuscript for the article. All authors
discussed the results and contributed to the improvement of the manuscript by
suitable comments and corrections.

6. Conclusions and outlook

6.1. Conclusions

In the framework of this thesis, the tesseroid-based Rock-Water-Ice (RWI) approach has
been developed, which provides an important contribution to state-of-the-art gravity forward
modeling, needed for various applications in geodesy and geophysics. The basis of the
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RWI method is a three-layer decomposition of the Earth’s topography with respect to its
rock, water, and ice masses. This allows a rigorous separate gravity forward modeling
of these masses with layer-specific density values, thus, avoiding geometry changes and
mass displacements that arise in classically applied condensation methods like the use of
rock-equivalent heights.

To account for the curvature of the Earth, tesseroid bodies are used for mass discretization
and are arranged on an ellipsoidal reference surface. Moreover, to consider the effect of
isostatic compensation masses, the Airy-Heiskanen concept has been modified by introducing
additional geophysical information in terms of seismologically derived Moho depths. To
reduce the increased computation time due to the more complex modeling, optimized
tesseroid formulas have been elaborated that allow an efficient numerical evaluation with a
significantly decreased runtime.

Besides a discussion and evaluation of the newly developed methods, two main applications
in the context of the GOCE satellite mission and height system unification have been
considered in this thesis. To this end, the RWI approach has been applied to different
topographic input data and was used for various gravity field functionals.
In the first application, it has been shown that RWI-based topographic-isostatic effects

can be used to significantly smooth measured GOCE gravity gradients. This is particularly
important for a suitable harmonic downward continuation of the gradients from satellite
altitude to the Earth’s surface. The strongest benefit of this procedure can be seen in areas
with a highly variable topography, such as the Himalayan region.

In a second application, topographic signals obtained from the RWI approach have
been used to achieve a spectral extension of satellite-based GOCE global geopotential
models, aiming to reduce their omission error. For this purpose, an alternative to residual
terrain modeling has been suggested, which allows a high-pass filtering directly in the
gravity domain. Hence, this strategy does not necessitate any assumption on the spectral
consistency between topographic heights and induced gravity signals. By applying this
concept in a study for the unification of height systems based on GOCE-derived global
geopotential models, it has been shown that the additional consideration of topographic
signals provides crucial information for an accurate estimation of height datum offsets.
In order to make the RWI method readily applicable for other researches, several high-

resolution topographic-isostatic gravity field models (RWI models) have been generated
and made publicly available. These models provide spherical harmonic coefficients of the
Earth’s topographic-isostatic potential that can be used to efficiently calculate various
gravity field functionals by using spherical harmonic synthesis.

The models of Release 2012 (RWI TOPO 2012, RWI ISOS 2012, and RWI TOIS 2012)
are based on the 5′ × 5′ global topographic database DTM2006.0 and are expanded up
to degree and order 1800. This release particularly concentrates on the difference due to
the topographic, isostatic, and topographic-isostatic potential. In contrast, the models
of Release 2015 (RWI TOPO 2015 and REQ TOPO 2015) use updated height infor-
mation of the 1′ × 1′ Earth2014 topography suite and are expanded up to degree and
order 2190. This release focuses on the differences between the RWI approach and the
conventional use of rock-equivalent heights. Additionally, separate spherical harmonic
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coefficients are provided for the rock, water, and ice proportions of the topographic poten-
tial, namely RWI TOPO 2015 Rock, RWI TOPO 2015 Water, RWI TOPO 2015 Ice,
REQ TOPO 2015 Water, and REQ TOPO 2015 Ice.
In summary, the benefit of the RWI approach has been shown in various analyses. For

instance, differences with respect to the use of rock-equivalent heights reach significant
magnitudes in the case of terrestrial, airborne and satellite-based applications. Therefore, it
is strongly recommended to consider a more realistic modeling, when calculating topographic-
isostatic effects based on gravity forward modeling.

6.2. Outlook

This outlook provides some perspectives to research work that is aspired for the future,
classified by four general scopes:

Refinements of the RWI approach. In principle, the RWI approach can easily be
extended to the use of additional layers, possibly accounting for different sediments in
the Earth’s upper crust. This requires further information about crustal structures and
corresponding density values. However, in contrast to global high-resolution information
of the Earth’s topography, current global crustal models still have a relatively low spatial
resolution of 1◦ × 1◦ (Laske et al., 2013) or 0.5◦ × 0.5◦ (Reguzzoni and Sampietro, 2015).
Therefore, such models are only applicable to model larger structures and mass anomalies.

In the case of water and ice masses, it is well-known that their actual density depends on
pressure and temperature. This phenomenon can be properly described by using a radially
varying density function ρ = ρ(r), see Kuhn (2000, Chapter 5) for first attempts in this
context. Although the present formulas are restricted to the use of a homogeneous density
for each tesseroid, it should be straightforward to integrate a continuous radial variability
of the density.

Generation of additional topographic-isostatic gravity field models. As a com-
plement to the topographic gravity field model RWI TOPO 2015, it is planned to also
generate consistent isostatic and topographic-isostatic models, comparable to Release 2012.
For this purpose, it is reasonable to update the used Moho depths and refine their spatial
resolution (e.g., Reguzzoni et al., 2013).
Generally, the spatial resolution of current global digital terrain models would allow to

perform a spherical harmonic analysis up to much higher degrees. As has been demonstrated
in the publication Grombein et al. (2016a), the 4′ × 4′ global ellipsoidal grid of RWI-based
topographic potential values can be used to derive spherical harmonic coefficients up to
degree and order 2699. By adapting the spatial resolution of the GFM-derived calculation
grid to the 1′ × 1′ resolution of Earth2014 model, spherical harmonic coefficients could
theoretically even be expanded up to degree and order 10 800. However, when using a
representation in spherical harmonics up to such ultra-high degrees, several problems arise:
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1) Due to the term (R/r)n occurring in the formulas for spherical harmonic synthesis in
Eq. (2), small errors in the spherical harmonic coefficients are strongly amplified for
r < R and large n. This is particularly critical in the case of ultra-high degrees and
for an evaluation toward the poles (e.g., Holmes and Pavlis, 2007).

2) The ellipsoidally arranged topographic masses essentially generate an ellipsoidal
harmonic spectrum. When mapping this spectrum to spherical harmonics, the
resulting coefficients of higher degrees are correlated with those of lower degrees (cf.
Jekeli, 1988). As a consequence, for an accurate spherical harmonic synthesis, it is
necessary to evaluate the spherical harmonic coefficients up to their maximum degree,
i.e., they should not be truncated. Considering a spherical harmonic expansion up to
ultra-high degrees, this might not be feasible for all users and additionally seems not
to be reasonable for all applications.

3) Another principal issue arises due to the numerical instability of calculating the
associated Legendre functions of higher degrees (cf. Wittwer et al., 2008). In this
context, suitable algorithms for ultra-high degrees are needed (e.g., Fukushima, 2012;
Rexer and Hirt, 2015).

All these three aspects show the current limitations of using spherical harmonics for ultra-
high degrees. Thus, in the future, it might be inevitable to find a more suitable spectral
representation for high-resolution gravity field data, e.g., space localizing base functions
such as harmonic splines or radial base functions (cf. Schmidt et al., 2007).

Investigation of residual GFM approaches. The results achieved with the novel
(residual) GFM in the publication Grombein et al. (2017) are already very promising. To
establish this approach as an appropriate alternative to the widely-used RTM techniques, it
would be advantageous to conduct additional investigations. This includes (i) an adaption
of this method to topographic data of higher spatial resolutions than the 1′ × 1′ Earth2014
model, (ii) a direct and detailed comparison to the RTM method, (iii) an employment to
other applications, such as a regional (quasi-)geoid determination.

Height system unification. To make the proposed fixed GBVP approach ready for
practical use in height system unification, it is necessary to adapt the method with regard to
the restricted availability of the global terrestrial gravity data. For this purpose, a suitable
modification of Hotine’s integral kernel is needed in order to restrict the global integration
area (cf. Featherstone, 2013). Furthermore, to reduce systematic errors, it seems to be
beneficial to combine the terrestrial data with a global geopotential model and topographic
information, using a remove-compute-restore framework.
Moreover, the impact of the used spherically approximated GBVP solution on the esti-

mation of height datum offsets needs to be analyzed, and correction terms for linearization
errors as well as ellipsoidal and topographic effects are to be taken into account, where
appropriate. First investigations with respect to the fixed GBVP are presented by Heck
and Seitz (2014), Müßle et al. (2014), and Heck et al. (2015).

28



References

References
Abd-Elmotaal, H. (1995): Theoretical background of the Vening Meinesz isostatic model.

In: Sünkel, H., and Marson, I. (eds.) Gravity and geoid, Joint symposium of the
International Gravity Commission and the International Geoid Commission. Graz,
Austria, Sept. 11–17, 1994. International Association of Geodesy Symposia, vol. 113.
Springer Berlin Heidelberg, pp. 268–277. doi: 10.1007/978-3-642-79721-7 28.

Abd-Elmotaal, H., Seitz, K., Abd-Elbaky, M., and Heck, B. (2014): Comparison among
three harmonic analysis techniques on the sphere and the ellipsoid. Journal of Applied
Geodesy 8(1):1–19. doi: 10.1515/jag-2013-0008.

Abd-Elmotaal, H., Seitz, K., Abd-Elbaky, M., and Heck, B. (2016): Tailored reference
geopotential model for Africa. In: Rizos, C., and Willis, P. (eds.) IAG 150 years.
Proceedings of the IAG Scientific Assembly, Postdam, Germany, Sept. 1–6, 2013.
International Association of Geodesy Symposia, vol. 143. Springer Berlin Heidelberg,
pp. 383–390. doi: 10.1007/1345 2015 84.

Álvarez, O., Nacif, S., Gimenez, M., Folguera, A., and Braitenberg, C. (2014): GOCE
derived vertical gravity gradient delineates great earthquake rupture zones along the
Chilean margin. Tectonophysics 622:198–215. doi: 10.1016/j.tecto.2014.03.011.

Amjadiparvar, B., Rangelova, E., and Sideris, M. G. (2016): The GBVP approach for vertical
datum unification: recent results in North America. Journal of Geodesy 90(1):45–63.
doi: 10.1007/s00190-015-0855-8.

Anderson, E. G. (1976): The effect of topography on solutions of Stokes’ problem. Unisurv
S-14, Report. School of Surveying, University of New South Wales, Australia.

Balmino, G., Vales, N., Bonvalot, S., and Briais, A. (2012): Spherical harmonic modelling to
ultra-high degree of Bouguer and isostatic anomalies. Journal of Geodesy 86(7):499–520.
doi: 10.1007/s00190-011-0533-4.

Baran, I., Kuhn, M., Claessens, S. J., Featherstone, W. E., Holmes, S. A., and Vaníček,
P. (2006): A synthetic Earth gravity model designed specifically for testing regional
gravimetric geoid determination algorithms. Journal of Geodesy 80(1):1–16. doi: 10.
1007/s00190-005-0002-z.

Barthelmes, F. (2013): Definition of functionals of the geopotential and their calculation from
spherical harmonic models. Scientific Technical Report STR09/02. German Research
Centre for Geosciences (GFZ), Potsdam, Germany. url: http://icgem.gfz-potsdam.de/
ICGEM/theory/theory.html.

Bassin, C., Laske, G., and Masters, G. (2000): The current limits of resolution for surface
wave tomography in North America. Eos, Transactions, American Geophysical Union
81:F897. url: http://igppweb.ucsd.edu/~gabi/crust2.html.

Blackman, R. B. and Tukey, J. W. (1958): The measurement of power spectra from the
point of view of communications engineering – Part I. The Bell System Technical
Journal 37(1):185–282. doi: 10.1002/j.1538-7305.1958.tb03874.x.

Bouman, J., Ebbing, J., Fuchs, M., Sebera, J., Lieb, V., Szwillus, W., Haagmans, R.,
and Novák, P. (2016): Satellite gravity gradient grids for geophysics. Nature Scientific
Reports 6:21050. doi: 10.1038/srep21050.

29

http://dx.doi.org/10.1007/978-3-642-79721-7_28
http://dx.doi.org/10.1515/jag-2013-0008
http://dx.doi.org/10.1007/1345_2015_84
http://dx.doi.org/10.1016/j.tecto.2014.03.011
http://dx.doi.org/10.1007/s00190-015-0855-8
http://dx.doi.org/10.1007/s00190-011-0533-4
http://dx.doi.org/10.1007/s00190-005-0002-z
http://dx.doi.org/10.1007/s00190-005-0002-z
http://icgem.gfz-potsdam.de/ICGEM/theory/theory.html
http://icgem.gfz-potsdam.de/ICGEM/theory/theory.html
http://igppweb.ucsd.edu/~gabi/crust2.html
http://dx.doi.org/10.1002/j.1538-7305.1958.tb03874.x
http://dx.doi.org/10.1038/srep21050


I. Introductory chapter

Bouman, J., Ebbing, J., Meekes, S., Fattah, R. A., Fuchs, M., Gradmann, S., Haagmans, R.,
Lieb, V., Schmidt, M., Dettmering, D., and Bosch, W. (2015): GOCE gravity gradient
data for lithospheric modeling. International Journal of Applied Earth Observation
and Geoinformation, Special issue on GOCE Earth science applications and models
35(Part A):16–30. doi: 10.1016/j.jag.2013.11.001.

Brockmann, J. M., Zehentner, N., Höck, E., Pail, R., Loth, I., Mayer-Gürr, T., and Schuh,
W.-D. (2014): EGM TIM RL05: an independent geoid with centimeter accuracy
purely based on the GOCE mission. Geophysical Research Letters 41(22):8089–8099.
doi: 10.1002/2014GL061904.

Bruinsma, S. L., Förste, C., Abrikosov, O., Lemoine, J.-M., Marty, J.-C., Mulet, S., Rio,
M.-H., and Bonvalot, S. (2014): ESA’s satellite-only gravity field model via the direct
approach based on all GOCE data. Geophysical Research Letters 41(21):7508–7514.
doi: 10.1002/2014GL062045.

Claessens, S. J. and Hirt, C. (2013): Ellipsoidal topographic potential: new solutions for
spectral forward gravity modeling of topography with respect to a reference ellipsoid.
Journal of Geophysical Research 118(11):5991–6002. doi: 10.1002/2013JB010457.

Deng, X.-L., Grombein, T., Shen, W.-B., Heck, B., and Seitz, K. (2016): Corrections to
“A comparison of the tesseroid, prism and point-mass approaches for mass reductions
in gravity field modelling” (Heck and Seitz, 2007) and “Optimized formulas for the
gravitational field of a tesseroid” (Grombein et al., 2013). Journal of Geodesy 90(6):585–
587. doi: 10.1007/s00190-016-0907-8.

Du, J., Chen, C., Lesur, V., Lane, R., and Wang, H. (2015): Magnetic potential, vector
and gradient tensor fields of a tesseroid in a geocentric spherical coordinate system.
Geophysical Journal International 201(3):1977–2007. doi: 10.1093/gji/ggv123.

D’Urso, M. G. (2013): On the evaluation of the gravity effects of polyhedral bodies and a
consistent treatment of related singularities. Journal of Geodesy 87(3):239–252. doi:
10.1007/s00190-012-0592-1.

Ebbing, J., Braitenberg, C., and Götze, H.-J. (2001): Forward and inverse modelling of
gravity revealing insight into crustal structures of the Eastern Alps. Tectonophysics
337(3–4):191–208. doi: 10.1016/S0040-1951(01)00119-6.

ESA (1999): The four candidate Earth explorer core missions – Gravity field and steady-
state ocean circulation. In: Battrick, B. (ed.) Reports for mission selection, ESA
Special Publication, vol. 1233(1). ESA Publications Division, ESTEC, Noordwijk, The
Netherlands.

Featherstone, W. E. (2013): Deterministic, stochastic, hybrid and band-limited modifications
of Hotine’s integral. Journal of Geodesy 87(5):487–500. doi: 10.1007/s00190-013-0612-9.

Fecher, T., Pail, R., and Gruber, T. (2015): Global gravity field modeling based on GOCE
and complementary gravity data. International Journal of Applied Earth Observation
and Geoinformation, Special issue on GOCE Earth science applications and models
35(Part A):120–127. doi: 10.1016/j.jag.2013.10.005.

Fecher, T., Pail, R., Gruber, T., and the GOCO project team (2016): The combined
gravity field model GOCO05c. In: General Assembly of the European Geosciences

30

http://dx.doi.org/10.1016/j.jag.2013.11.001
http://dx.doi.org/10.1002/2014GL061904
http://dx.doi.org/10.1002/2014GL062045
http://dx.doi.org/10.1002/2013JB010457
http://dx.doi.org/10.1007/s00190-016-0907-8
http://dx.doi.org/10.1093/gji/ggv123
http://dx.doi.org/10.1007/s00190-012-0592-1
http://dx.doi.org/10.1016/S0040-1951(01)00119-6
http://dx.doi.org/10.1007/s00190-013-0612-9
http://dx.doi.org/10.1016/j.jag.2013.10.005


References

Union 2016. Vienna, Austria, Apr. 17–22, 2016. Geophysical Research Abstracts, vol. 18.
EGU2016-7696.

Forsberg, R. (1984): A study of terrain reductions, density anomalies and geophysical
inversion methods in gravity field modelling. Report 355. Department of Geodetic
Science and Surveying, The Ohio State University, Columbus, USA.

Forsberg, R. and Tscherning, C. C. (1997): Topographic effects in gravity field modelling
for BVP. In: Sansò, F., and Rummel, R. (eds.) Geodetic boundary value problems in
view of the one centimeter geoid, Lecture Notes in Earth Sciences, vol. 65. Springer
Berlin Heidelberg, pp. 239–272. doi: 10.1007/BFb0011707.

Forsberg, R. and Tscherning, C. C. (2008): An overview manual for the GRAVSOFT
geodetic gravity field modelling programs. 2nd ed. Contract report for JUPEM. url:
http://cct.gfy.ku.dk/publ cct/cct1792.pdf.

Fuchs, M. J., Hooper, A., Broerse, T., and Bouman, J. (2016): Distributed fault slip model for
the 2011 Tohoku-Oki earthquake from GNSS and GRACE/GOCE satellite gravimetry.
Journal of Geophysical Research 121(2):1114–1130. doi: 10.1002/2015JB012165.

Fukushima, T. (2012): Numerical computation of spherical harmonics of arbitrary degree and
order by extending exponent of floating point numbers. Journal of Geodesy 86(4):271–
285. doi: 10.1007/s00190-011-0519-2.

Gatti, A., Reguzzoni, M., and Venuti, G. (2013): The height datum problem and the role
of satellite gravity models. Journal of Geodesy 87(1):15–22. doi: 10.1007/s00190-012-
0574-3.

Gerlach, C. and Rummel, R. (2013): Global height system unification with GOCE: a
simulation study on the indirect bias term in the GBVP approach. Journal of Geodesy
87(1):57–67. doi: 10.1007/s00190-012-0579-y.

Göttl, F. and Rummel, R. (2009): A geodetic view on isostatic models. Pure and Applied
Geophysics 166(8):1247–1260. doi: 10.1007/s00024-004-0489-x.

Grombein, T., Luo, X., Seitz, K., and Heck, B. (2014a): A wavelet-based assessment of
topographic-isostatic reductions for GOCE gravity gradients. Surveys in Geophysics
35(4):959–982. doi: 10.1007/s10712-014-9283-1.

Grombein, T., Seitz, K., and Heck, B. (2010a): Untersuchung zur effizienten Berechnung
topographischer Effekte auf den Gradiententensor am Fallbeispiel der Satellitengra-
diometriemission GOCE. KIT Scientific Reports, no. 7547. KIT Scientific Publishing,
Karlsruhe, Germany. doi: 10.5445/KSP/1000017531.

Grombein, T., Seitz, K., and Heck, B. (2010b): Modelling topographic effects in GOCE
gravity gradients. In: Münch, U., and Dransch, W. (eds.) Observation of the system
Earth from space, GEOTECHNOLOGIEN Science Report, vol. 17, pp. 84–93. doi:
10.2312/GFZ.gt.17.13.

Grombein, T., Seitz, K., and Heck, B. (2011): Smoothing GOCE gravity gradients by
means of topographic-isostatic reductions. In: Ouwehand, L. (ed.) Proceedings of the
4th International GOCE User Workshop, Munich, Germany, Mar. 31–Apr. 1, 2011.
ESA Special Publication, vol. 696. ESA Publications Division, ESTEC, Noordwijk, The
Netherlands.

31

https://meetingorganizer.copernicus.org/EGU2016/EGU2016-7696.pdf
http://dx.doi.org/10.1007/BFb0011707
http://cct.gfy.ku.dk/publ_cct/cct1792.pdf
http://dx.doi.org/10.1002/2015JB012165
http://dx.doi.org/10.1007/s00190-011-0519-2
http://dx.doi.org/10.1007/s00190-012-0574-3
http://dx.doi.org/10.1007/s00190-012-0574-3
http://dx.doi.org/10.1007/s00190-012-0579-y
http://dx.doi.org/10.1007/s00024-004-0489-x
http://dx.doi.org/10.1007/s10712-014-9283-1
http://dx.doi.org/10.5445/KSP/1000017531
http://dx.doi.org/10.2312/GFZ.gt.17.13


I. Introductory chapter

Grombein, T., Seitz, K., and Heck, B. (2013): Optimized formulas for the gravitational
field of a tesseroid. Journal of Geodesy 87(7):645–660. doi: 10.1007/s00190-013-0636-1.

Grombein, T., Seitz, K., and Heck, B. (2014b): Topographic-isostatic reduction of GOCE
gravity gradients. In: Rizos, C., and Willis, P. (eds.) Earth on the edge: science for a
sustainable planet. Proceedings of the IAG General Assembly, Melbourne, Australia,
June 28–July 2, 2011. International Association of Geodesy Symposia, vol. 139. Springer
Berlin Heidelberg, pp. 349–356. doi: 10.1007/978-3-642-37222-3 46.

Grombein, T., Seitz, K., and Heck, B. (2014c): Incorporating topographic-isostatic infor-
mation into GOCE gravity gradient processing. In: Flechtner, F., Sneeuw, N., and
Schuh, W.-D. (eds.) Observation of the system Earth from space – CHAMP, GRACE,
GOCE and future missions, Advanced Technologies in Earth Sciences, GEOTECH-
NOLOGIEN Science Report, vol. 20. Springer Berlin Heidelberg, pp. 95–101. doi:
10.1007/978-3-642-32135-1 12.

Grombein, T., Seitz, K., and Heck, B. (2016a): The Rock-Water-Ice topographic gravity
field model RWI TOPO 2015 and its comparison to a conventional rock-equivalent
version. Surveys in Geophysics 37(5):937–976. doi: 10.1007/s10712-016-9376-0.

Grombein, T., Seitz, K., and Heck, B. (2016b): Height system unification based on the
fixed GBVP approach. In: Rizos, C., and Willis, P. (eds.) IAG 150 years. Proceedings
of the IAG Scientific Assembly, Postdam, Germany, Sept. 1–6, 2013. International
Association of Geodesy Symposia, vol. 143. Springer Berlin Heidelberg, pp. 305–311.
doi: 10.1007/1345 2015 104.

Grombein, T., Seitz, K., and Heck, B. (2017): On high-frequency topography-implied gravity
signals for height system unification using GOCE-based global geopotential models.
Surveys in Geophysics 38(2):443–477. doi: 10.1007/s10712-016-9400-4.

Guerri, M., Cammarano, F., and Connolly, J. A. D. (2015): Effects of chemical composition,
water and temperature on physical properties of continental crust. Geochemistry,
Geophysics, Geosystems 16(7):2431–2449. doi: 10.1002/2015GC005819.

Gutknecht, B. D., Götze, H.-J., Jahr, T., Jentzsch, G., Mahatsente, R., and Zeumann, S.
(2014): Structure and state of stress of the Chilean subduction zone from terrestrial and
satellite-derived gravity and gravity gradient data. Surveys in Geophysics 35(6):1417–
1440. doi: 10.1007/s10712-014-9296-9.

Heck, B. (1990): An evaluation of some systematic error sources affecting terrestrial gravity
anomalies. Bulletin Géodésique 64(1):88–108. doi: 10.1007/BF02530617.

Heck, B. and Rummel, R. (1990): Strategies for solving the vertical datum problem using
terrestrial and satellite geodetic data. In: Sünkel, H., and Baker, T. (eds.) Sea surface
topography and the geoid. Proceedings of the IAG General Assembly, Edinburgh,
Scotland, Aug. 10–11, 1989. International Association of Geodesy Symposia, vol. 104.
Springer Berlin Heidelberg, pp. 116–128. doi: 10.1007/978-1-4684-7098-7 14.

Heck, B. and Seitz, K. (2007): A comparison of the tesseroid, prism and point-mass
approaches for mass reductions in gravity field modelling. Journal of Geodesy 81(2):121–
136. doi: 10.1007/s00190-006-0094-0.

32

http://dx.doi.org/10.1007/s00190-013-0636-1
http://dx.doi.org/10.1007/978-3-642-37222-3_46
http://dx.doi.org/10.1007/978-3-642-32135-1_12
http://dx.doi.org/10.1007/s10712-016-9376-0
http://dx.doi.org/10.1007/1345_2015_104
http://dx.doi.org/10.1007/s10712-016-9400-4
http://dx.doi.org/10.1002/2015GC005819
http://dx.doi.org/10.1007/s10712-014-9296-9
http://dx.doi.org/10.1007/BF02530617
http://dx.doi.org/10.1007/978-1-4684-7098-7_14
http://dx.doi.org/10.1007/s00190-006-0094-0


References

Heck, B. and Seitz, K. (2014): Ellipsoidal effects in the fixed geodetic boundary value
problem. In: General Assembly of the European Geosciences Union 2014. Vienna,
Austria, Apr. 27–May 2, 2014. Geophysical Research Abstracts, vol. 16. EGU2014-12951.

Heck, B., Seitz, K., and Grombein, T. (2015): A numerical study of up- and downward
continuation effects in the solution of the geodetic boundary value problem. In: 26th
General Assembly of the International Union of Geodesy and Geophysics 2015. Prague,
Czech Republic, June 22–July 2, 2015.

Heiskanen, W. A. and Moritz, H. (1967): Physical geodesy. W. H. Freeman & Co., San
Francisco, USA.

Hirt, C. (2013): RTM gravity forward-modeling using topography/bathymetry data to
improve high-degree global geopotential models in the coastal zone. Marine Geodesy
36(2):183–202. doi: 10.1080/01490419.2013.779334.

Hirt, C., Claessens, S., Fecher, T., Kuhn, M., Pail, R., and Rexer, M. (2013): New ultrahigh-
resolution picture of Earth’s gravity field. Geophysical Research Letters 40(16):4279–
4283. doi: 10.1002/grl.50838.

Hirt, C., Featherstone, W. E., and Marti, U. (2010): Combining EGM2008 and SRTM/DTM-
2006.0 residual terrain model data to improve quasigeoid computations in mountainous
areas devoid of gravity data. Journal of Geodesy 84(9):557–567. doi: 10.1007/s00190-
010-0395-1.

Hirt, C. and Kuhn, M. (2012): Evaluation of high-degree series expansions of the topographic
potential to higher-order powers. Journal of Geophysical Research 117:B12407. doi:
10.1029/2012JB009492.

Hirt, C. and Kuhn, M. (2014): Band-limited topographic mass distribution generates
full-spectrum gravity field: gravity forward modeling in the spectral and spatial do-
mains revisited. Journal of Geophysical Research 119(4):3646–3661. doi: 10.1002/
2013JB010900.

Hirt, C., Kuhn, M., Featherstone, W. E., and Göttl, F. (2012): Topographic/isostatic
evaluation of new-generation GOCE gravity field models. Journal of Geophysical
Research 117:B05407. doi: 10.1029/2011JB008878.

Hirt, C. and Rexer, M. (2015): Earth2014: 1 arc-min shape, topography, bedrock and
ice-sheet models – available as gridded data and degree-10,800 spherical harmonics.
International Journal of Applied Earth Observation and Geoinformation 39:103–112.
doi: 10.1016/j.jag.2015.03.001. url: http://ddfe.curtin.edu.au/models/Earth2014.

Hirt, C., Rexer, M., and Claessens, S. (2015): Topographic evaluation of fifth-generation
GOCE gravity field models – globally and regionally. In: Huang, J., Reguzzoni, M.,
and Gruber, T. (eds.) Assessment of GOCE geopotential models, Newton’s Bulletin,
no. 5. International Association of Geodesy and International Gravity Field Service,
pp. 163–186. url: http://www.isgeoid.polimi.it/Newton/Newton 5/12 Hirt 163 186.html.

Hirt, C., Rexer, M., Scheinert, M., Pail, R., Claessens, S., and Holmes, S. (2016): A
new degree-2190 (10 km resolution) gravity field model for Antarctica developed from
GRACE, GOCE and Bedmap2 data. Journal of Geodesy 90(2):105–127. doi: 10.1007/
s00190-015-0857-6.

33

http://meetingorganizer.copernicus.org/EGU2014/EGU2014-12951.pdf
http://dx.doi.org/10.1080/01490419.2013.779334
http://dx.doi.org/10.1002/grl.50838
http://dx.doi.org/10.1007/s00190-010-0395-1
http://dx.doi.org/10.1007/s00190-010-0395-1
http://dx.doi.org/10.1029/2012JB009492
http://dx.doi.org/10.1002/2013JB010900
http://dx.doi.org/10.1002/2013JB010900
http://dx.doi.org/10.1029/2011JB008878
http://dx.doi.org/10.1016/j.jag.2015.03.001
http://ddfe.curtin.edu.au/models/Earth2014
http://www.isgeoid.polimi.it/Newton/Newton_5/12_Hirt_163_186.html
http://dx.doi.org/10.1007/s00190-015-0857-6
http://dx.doi.org/10.1007/s00190-015-0857-6


I. Introductory chapter

Holmes, S. A. and Featherstone, W. E. (2002): A unified approach to the Clenshaw
summation and the recursive computation of very high degree and order normalised
associated Legendre functions. Journal of Geodesy 76(5):279–299. doi: 10.1007/s00190-
002-0216-2.

Holmes, S. A. and Pavlis, N. K. (2007): Some aspects of harmonic analysis of data gridded
on the ellipsoid. In: Kiliçoglu, A., and Forsberg, R. (eds.) Proceedings of the 1st
International Symposium of the International Gravity Field Service (IGFS), Istanbul,
Turkey, Aug. 28–Sept. 1, 2006. Harita Dergisi, Special Issue 18, pp. 151–156.

Ihde, J. and Sánchez, L. (2005): A unified global height reference system as a basis for
IGGOS. Journal of Geodynamics 40(4–5):400–413. doi: 10.1016/j.jog.2005.06.015.

Janák, J., Pitoňák, M., and Minarechová, Z. (2014): Regional quasigeoid from GOCE
and terrestrial measurements. Studia Geophysica et Geodætica 58(4):626–649. doi:
10.1007/s11200-013-0543-1.

Janák, J. and Wild-Pfeiffer, F. (2010): Comparison of various topographic-isostatic effects
in terms of smoothing gradiometric observations. In: Mertikas, S. P. (ed.) Gravity,
geoid and Earth observation, IAG Commission 2: Gravity field. Chania, Crete, Greece,
June 23–27, 2008. International Association of Geodesy Symposia, vol. 135. Springer
Berlin Heidelberg, pp. 377–381. doi: 10.1007/978-3-642-10634-7 50.

Janák, J., Wild-Pfeiffer, F., and Heck, B. (2012): Smoothing the gradiometric observa-
tions using different topographic-isostatic models: a regional case study. In: Sneeuw,
N., Novák, P., Crespi, M., and Sansò, F. (eds.) VII Hotine-Marussi Symposium on
Mathematical Geodesy. Proceedings of the symposium in Rome, June 6–10, 2009.
International Association of Geodesy Symposia, vol. 137. Springer Berlin Heidelberg,
pp. 245–250. doi: 10.1007/978-3-642-22078-4 37.

Jekeli, C. (1988): The exact transformation between ellipsoidal and spherical harmonic
expansions. Manuscripta Geodaetica 13(2):106–113.

Kaban, M. K., Schwintzer, P., and Reigber, C. (2004): A new isostatic model of the
lithosphere and gravity field. Journal of Geodesy 78(6):368–385. doi: 10.1007/s00190-
004-0401-6.

Kuhn, M. (2000): Geoidbestimmung unter Verwendung verschiedener Dichtehypothesen.
Deutsche Geodätische Kommission, Reihe C, no. 520. Verlag der Bayerischen Akademie
der Wissenschaften in Kommission beim Verlag C. H. Beck, Munich, Germany.

Kuhn, M. and Featherstone, W. E. (2005): Construction of a synthetic Earth gravity model
by forward gravity modelling. In: Sansò, F. (ed.) A window on the future of geodesy.
Proceedings of the IAG General Assembly, Sapporo, Japan, June 30–July 11, 2003.
International Association of Geodesy Symposia, vol. 128. Springer Berlin Heidelberg,
pp. 350–355. doi: 10.1007/3-540-27432-4 60.

Kuhn, M. and Seitz, K. (2005): Comparison of Newton’s integral in the space and frequency
domains. In: Sansò, F. (ed.) A window on the future of geodesy. Proceedings of
the IAG General Assembly, Sapporo, Japan, June 30–July 11, 2003. International
Association of Geodesy Symposia, vol. 128. Springer Berlin Heidelberg, pp. 386–391.
doi: 10.1007/3-540-27432-4 66.

34

http://dx.doi.org/10.1007/s00190-002-0216-2
http://dx.doi.org/10.1007/s00190-002-0216-2
http://dx.doi.org/10.1016/j.jog.2005.06.015
http://dx.doi.org/10.1007/s11200-013-0543-1
http://dx.doi.org/10.1007/978-3-642-10634-7_50
http://dx.doi.org/10.1007/978-3-642-22078-4_37
http://dx.doi.org/10.1007/s00190-004-0401-6
http://dx.doi.org/10.1007/s00190-004-0401-6
http://dx.doi.org/10.1007/3-540-27432-4_60
http://dx.doi.org/10.1007/3-540-27432-4_66


References

Laske, G., Masters, G., Ma, Z., and Pasyanos, M. (2013): Update on CRUST1.0 – a 1-
degree global model of Earth’s crust. In: General Assembly of the European Geosciences
Union 2013. Vienna, Austria, Apr. 7–12, 2013. Geophysical Research Abstracts, vol. 15.
EGU2013-2658. url: http://igppweb.ucsd.edu/~gabi/crust1.html.

Mader, K. (1951): Das Newtonsche Raumpotential prismatischer Körper und seine Ab-
leitungen bis zur dritten Ordnung. Österreichische Zeitschrift für Vermessungswesen,
Sonderheft 11.

Makhloof, A. A. and Ilk, K. (2008): Effects of topographic-isostatic masses on gravitational
functionals at the Earth’s surface and at airborne and satellite altitudes. Journal of
Geodesy 82(2):93–111. doi: 10.1007/s00190-007-0159-8.

Mayer-Gürr, T., Pail, R., Gruber, T., Fecher, T., Rexer, M., Schuh, W.-D., Kusche, J.,
Brockmann, J.-M., Rieser, D., Zehentner, N., Kvas, A., Klinger, B., O., B., Höck, E.,
Krauss, S., and Jäggi, A. (2015): The combined satellite gravity field model GOCO05s.
In: General Assembly of the European Geosciences Union 2015. Vienna, Austria,
Apr. 12–17, 2015. Geophysical Research Abstracts, vol. 17. EGU2015-12364.

Mayer-Gürr, T., Rieser, D., Höck, E., Brockmann, J. M., Schuh, W.-D., Krasbutter, I.,
Kusche, J., Maier, A., Krauss, S., Hausleitner, W., Baur, O., Jäggi, A., Meyer, U.,
Prange, L., Pail, R., Fecher, T., and Gruber, T. (2012): The new combined satellite
only model GOCO03s. In: International Symposium on Gravity, Geoid and Height
Systems 2012. Venice, Italy, Oct. 9–12, 2012.

Moritz, H. (1980): Geodetic Reference System 1980. Bulletin Géodésique 54(3):395–405.
doi: 10.1007/BF02521480.

Moritz, H. (1990): The figure of the Earth. Theoretical geodesy and the Earth’s interior.
Wichmann-Verlag, Karlsruhe, Germany.

Müßle, M., Heck, B., Seitz, K., and Grombein, T. (2014): On the effect of planar ap-
proximation in the geodetic boundary value problem. Studia Geophysica et Geodætica
58(4):536–555. doi: 10.1007/s11200-013-0249-4.

Nagy, D., Papp, G., and Benedek, J. (2000): The gravitational potential and its derivatives
for the prism. Journal of Geodesy 74(7–8):552–560. doi: 10.1007/s001900000116.

Novák, P. and Grafarend, E. W. (2005): Ellipsoidal representation of the topographical
potential and its vertical gradient. Journal of Geodesy 78(11):691–706. doi: 10.1007/
s00190-005-0435-4.

Novák, P., Kern, M., Schwarz, K.-P., and Heck, B. (2003): Evaluation of band-limited
topographical effects in airborne gravimetry. Journal of Geodesy 76(11–12):597–604.
doi: 10.1007/s00190-002-0282-5.

Novák, P. and Tenzer, R. (2013): Gravitational gradients at satellite altitudes in global
geophysical studies. Surveys in Geophysics 34(5):653–673. doi: 10.1007/s10712-013-
9243-1.

Omang, D. O. C. and Forsberg, R. (2000): How to handle topography in practical geoid
determination: three examples. Journal of Geodesy 74(6):458–466. doi: 10 . 1007/
s001900000107.

Pavlis, N. K., Factor, J. K., and Holmes, S. A. (2007): Terrain-related gravimetric quantities
computed for the next EGM. In: Kiliçoglu, A., and Forsberg, R. (eds.) Proceedings of

35

http://meetingorganizer.copernicus.org/EGU2013/EGU2013-2658.pdf
http://igppweb.ucsd.edu/~gabi/crust1.html
http://dx.doi.org/10.1007/s00190-007-0159-8
https://meetingorganizer.copernicus.org/EGU2015/EGU2015-12364.pdf
http://dx.doi.org/10.1007/BF02521480
http://dx.doi.org/10.1007/s11200-013-0249-4
http://dx.doi.org/10.1007/s001900000116
http://dx.doi.org/10.1007/s00190-005-0435-4
http://dx.doi.org/10.1007/s00190-005-0435-4
http://dx.doi.org/10.1007/s00190-002-0282-5
http://dx.doi.org/10.1007/s10712-013-9243-1
http://dx.doi.org/10.1007/s10712-013-9243-1
http://dx.doi.org/10.1007/s001900000107
http://dx.doi.org/10.1007/s001900000107


I. Introductory chapter

the 1st International Symposium of the International Gravity Field Service (IGFS),
Istanbul, Turkey, Aug. 28–Sept. 1, 2006. Harita Dergisi, Special Issue 18, pp. 318–323.

Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K. (2012): The development and
evaluation of the Earth Gravitational Model 2008. Journal of Geophysical Research
117:B04406. doi: 10.1029/2011JB008916.

Pitonák, M., Šprlák, M., Hamácková, E., and Novák, P. (2016): Regional recovery of
the disturbing gravitational potential by inverting satellite gravitational gradients.
Geophysical Journal International 205(1):89–98. doi: 10.1093/gji/ggw008.

Reguzzoni, M. and Sampietro, D. (2015): GEMMA: an earth crustal model based on GOCE
satellite data. International Journal of Applied Earth Observation and Geoinformation,
Special issue on GOCE Earth science applications and models 35(Part A):31–43. doi:
10.1016/j.jag.2014.04.002.

Reguzzoni, M., Sampietro, D., and Sansò, F. (2013): Global Moho from the combination of
the CRUST2.0 model and GOCE data. Geophysical Journal International 195(1):222–
237. doi: 10.1093/gji/ggt247.

Rexer, M. and Hirt, C. (2015): Ultra-high-degree surface spherical harmonic analysis
using the Gauss-Legendre and the Driscoll/Healy quadrature theorem and application
to planetary topography models of Earth, Mars and Moon. Surveys in Geophysics
36(6):803–830. doi: 10.1007/s10712-015-9345-z.

Rummel, R. (2002): Global unification of height systems and GOCE. In: Sideris, M. G. (ed.)
Gravity, geoid and geodynamics 2000, GGG2000 IAG International Symposium. Banff,
Alberta, Canada, July 31–Aug. 4, 2000. International Association of Geodesy Symposia,
vol. 123. Springer Berlin Heidelberg, pp. 13–20. doi: 10.1007/978-3-662-04827-6 3.

Rummel, R., Balmino, G., Johannessen, J., Visser, P., and Woodworth, P. (2002): Dedicated
gravity field missions – principles and aims. Journal of Geodynamics 33(1–2):3–20. doi:
10.1016/S0264-3707(01)00050-3.

Rummel, R. and Colombo, O. L. (1985): Gravity field determination from satellite gradiom-
etry. Bulletin Géodésique 59(3):233–246. doi: 10.1007/BF02520329.

Rummel, R., Rapp, R. H., Sünkel, H., and Tscherning, C. C. (1988): Comparisons of
global topographic/isostatic models to the Earth’s observed gravity field. Report 388.
Department of Geodetic Science and Surveying, The Ohio State University, Columbus,
USA.

Rummel, R. and Teunissen, P. (1988): Height datum definition, height datum connection
and the role of the geodetic boundary value problem. Bulletin Géodésique 62(4):477–498.
doi: 10.1007/BF02520239.

Rummel, R., Yi, W., and Stummer, C. (2011): GOCE gravitational gradiometry. Journal
of Geodesy 85(11):777–790. doi: 10.1007/s00190-011-0500-0.

Sánchez, L. (2015): Ein einheitliches vertikales Referenzsystem für Südamerika im Rahmen
eines globalen Höhensystems. Deutsche Geodätische Kommission, Reihe C, no. 748.
Verlag der Bayerischen Akademie der Wissenschaften in Kommission beim Verlag C.
H. Beck, Munich, Germany. url: https://www.dgk.badw.de.devweb.mwn.de/fileadmin/
docs/c-748.pdf.

36

http://dx.doi.org/10.1029/2011JB008916
http://dx.doi.org/10.1093/gji/ggw008
http://dx.doi.org/10.1016/j.jag.2014.04.002
http://dx.doi.org/10.1093/gji/ggt247
http://dx.doi.org/10.1007/s10712-015-9345-z
http://dx.doi.org/10.1007/978-3-662-04827-6_3
http://dx.doi.org/10.1016/S0264-3707(01)00050-3
http://dx.doi.org/10.1007/BF02520329
http://dx.doi.org/10.1007/BF02520239
http://dx.doi.org/10.1007/s00190-011-0500-0
https://www.dgk.badw.de.devweb.mwn.de/fileadmin/docs/c-748.pdf
https://www.dgk.badw.de.devweb.mwn.de/fileadmin/docs/c-748.pdf


References

Schmidt, M., Fengler, M., Mayer-Gürr, T., Eicker, A., Kusche, J., Sánchez, L., and Han,
S.-C. (2007): Regional gravity modeling in terms of spherical base functions. Journal
of Geodesy 81(1):17–38. doi: 10.1007/s00190-006-0101-5.

Seitz, K. and Heck, B. (1991): Harmonic analysis on the sphere. Internal report. Geodetic
Institute, University of Karlsruhe, Germany.

Smith, D. A., Robertson, D. S., and Milbert, D. G. (2001): Gravitational attraction of local
crustal masses in spherical coordinates. Journal of Geodesy 74(11–12):783–795. doi:
10.1007/s001900000142.

Šprlák, M., Gerlach, C., and Pettersen, B. R. (2015): Validation of GOCE global gravi-
tational field models in Norway. In: Huang, J., Reguzzoni, M., and Gruber, T. (eds.)
Assessment of GOCE geopotential models, Newton’s Bulletin, no. 5. International
Association of Geodesy and International Gravity Field Service, pp. 13–24. url: http://
www.isgeoid.polimi.it/Newton/Newton 5/03 Sprlak 13 24.html.

Tenzer, R., Gladkikh, V., Novák, P., and Vajda, P. (2012): Spatial and spectral analysis of
refined gravity data for modelling the crust-mantle interface and mantle-lithosphere
structure. Surveys in Geophysics 33(5):817–839. doi: 10.1007/s10712-012-9173-3.

Thong, N. C. (1989): Simulation of gradiometry using the spheroidal harmonic model of
the gravitational field. Manuscripta Geodaetica 14(6):404–417.

Torge, W. and Müller, J. (2012): Geodesy. 4th ed. Walter de Gruyter, Berlin, Germany.
Tscherning, C. C. (1976): Computation of the second-order derivatives of the normal

potential based on the representation by a Legendre series. Manuscripta Geodaetica
1:71–92.

Tsoulis, D. (2012): Analytical computation of the full gravity tensor of a homogeneous
arbitrarily shaped polyhedral source using line integrals. Geophysics 77(2):F1–F11. doi:
10.1190/geo2010-0334.1.

Tsoulis, D. and Kuhn, M. (2007): Recent developments in synthetic Earth gravity models in
view of the availability of digital terrain and crustal databases of global coverage and
increased resolution. In: Kiliçoglu, A., and Forsberg, R. (eds.) Proceedings of the 1st
International Symposium of the International Gravity Field Service (IGFS), Istanbul,
Turkey, Aug. 28–Sept. 1, 2006. Harita Dergisi, Special Issue 18, pp. 354–359.

Tsoulis, D. and Patlakis, K. (2013): A spectral assessment review of current satellite-
only and combined Earth gravity models. Reviews of Geophysics 51(2):186–243. doi:
10.1002/rog.20012.

Tsoulis, D., Wziontek, H., and Petrović, S. (2003): A bilinear approximation of the surface
relief in terrain correction computations. Journal of Geodesy 77(5–6):338–344. doi:
10.1007/s00190-003-0332-7.

Uieda, L., Bomfim, E. P., Braitenberg, C., and Molina, E. (2011): Optimal forward cal-
culation method of the Marussi tensor due to a geologic structure at GOCE height.
In: Ouwehand, L. (ed.) Proceedings of the 4th International GOCE User Workshop,
Munich, Germany, Mar. 31–Apr. 1, 2011. ESA Special Publication, vol. 696. ESA
Publications Division, ESTEC, Noordwijk, The Netherlands.

Wieczorek, M. A. (2007): Gravity and topography of the terrestrial planets. Treatise on
Geophysics, Planets and Moons 10(5):165–206. doi: 10.1016/B978-044452748-6.00156-5.

37

http://dx.doi.org/10.1007/s00190-006-0101-5
http://dx.doi.org/10.1007/s001900000142
http://www.isgeoid.polimi.it/Newton/Newton_5/03_Sprlak_13_24.html
http://www.isgeoid.polimi.it/Newton/Newton_5/03_Sprlak_13_24.html
http://dx.doi.org/10.1007/s10712-012-9173-3
http://dx.doi.org/10.1190/geo2010-0334.1
http://dx.doi.org/10.1002/rog.20012
http://dx.doi.org/10.1007/s00190-003-0332-7
http://dx.doi.org/10.1016/B978-044452748-6.00156-5


I. Introductory chapter

Wild, F. and Heck, B. (2005): A comparison of different isostatic models applied to
satellite gravity gradiometry. In: Jekeli, C., Bastos, L., and Fernandes, J. (eds.) Gravity,
geoid and space missions, GGSM 2004 IAG International Symposium. Porto, Portugal,
Aug. 30–Sept. 3, 2004. International Association of Geodesy Symposia, vol. 129. Springer
Berlin Heidelberg, pp. 230–235. doi: 10.1007/3-540-26932-0 40.

Wild, F. and Heck, B. (2008): Topographic and isostatic reductions for use in satellite
gravity gradiometry. In: Xu, P., Liu, J., and Dermanis, A. (eds.) VI Hotine-Marussi
Symposium on Theoretical and Computational Geodesy, IAG Symposium. Wuhan,
China, May 29–June 2, 2006. International Association of Geodesy Symposia, vol. 132.
Springer Berlin Heidelberg, pp. 49–55. doi: 10.1007/978-3-540-74584-6 8.

Wild-Pfeiffer, F. (2007): Auswirkungen topographisch-isostatischer Massen auf die Satel-
litengradiometrie. Deutsche Geodätische Kommission, Reihe C, no. 604. Verlag der
Bayerischen Akademie der Wissenschaften in Kommission beim Verlag C. H. Beck, Mu-
nich, Germany. url: https://www.dgk.badw.de.devweb.mwn.de/fileadmin/docs/c-604.pdf.

Wild-Pfeiffer, F. (2008): A comparison of different mass elements for use in gravity gra-
diometry. Journal of Geodesy 82(10):637–653. doi: 10.1007/s00190-008-0219-8.

Wittwer, T., Klees, R., Seitz, K., and Heck, B. (2008): Ultra-high degree spherical harmonic
analysis and synthesis using extended-range arithmetic. Journal of Geodesy 82(4):223–
229. doi: 10.1007/s00190-007-0172-y.

Xu, P. (1992): A quality investigation of global vertical datum connection. Geophysical
Journal International 110(2):361–370. doi: 10.1111/j.1365-246X.1992.tb00880.x.

38

http://dx.doi.org/10.1007/3-540-26932-0_40
http://dx.doi.org/10.1007/978-3-540-74584-6_8
https://www.dgk.badw.de.devweb.mwn.de/fileadmin/docs/c-604.pdf
http://dx.doi.org/10.1007/s00190-008-0219-8
http://dx.doi.org/10.1007/s00190-007-0172-y
http://dx.doi.org/10.1111/j.1365-246X.1992.tb00880.x


Chapter II.

Optimized formulas for the gravitational
field of a tesseroid
Thomas Grombein, Kurt Seitz, Bernhard Heck
Journal of Geodesy 87(7):645–660, 2013. doi: 10.1007/s00190-013-0636-1.

Submitted: 17 February 2012 /Accepted: 15 April 2013 /Published online: 18 May 2013
c© Springer-Verlag Berlin Heidelberg 2013

Author-created version of the article with permission of Springer.
The final publication is available at link.springer.com.

Abstract. Various tasks in geodesy, geophysics, and related geosciences require precise
information on the impact of mass distributions on gravity-field-related quantities, such as
the gravitational potential and its partial derivatives. Using forward modeling based on
Newton’s integral, mass distributions are generally decomposed into regular elementary
bodies. In classical approaches, prisms or point mass approximations are mostly utilized.
Considering the effect of the sphericity of the Earth, alternative mass modeling methods
based on tesseroid bodies (spherical prisms) should be taken into account, particularly
in regional and global applications. Expressions for the gravitational field of a point
mass are relatively simple when formulated in Cartesian coordinates. In the case of
integrating over a tesseroid volume bounded by geocentric spherical coordinates, it will
be shown that it is also beneficial to represent the integral kernel in terms of Cartesian
coordinates. This considerably simplifies the determination of the tesseroid’s potential
derivatives in comparison to previously published methodologies that make use of integral
kernels expressed in spherical coordinates. Based on this idea, optimized formulas for the
gravitational potential of a homogeneous tesseroid and its derivatives up to second-order
are elaborated in this paper. These new formulas do not suffer from the polar singularity
of the spherical coordinate system and can, therefore, be evaluated for any position on the
globe. Since integrals over tesseroid volumes cannot be solved analytically, the numerical
evaluation is achieved by means of expanding the integral kernel in a Taylor series with
fourth-order error in the spatial coordinates of the integration point. As the structure of the
Cartesian integral kernel is substantially simplified, Taylor coefficients can be represented
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in a compact and computationally attractive form. Thus, the use of the optimized tesseroid
formulas particularly benefits from a significant decrease in computation time by about
45 % compared to previously used algorithms. In order to show the computational efficiency
and to validate the mathematical derivations, the new tesseroid formulas are applied to
two realistic numerical experiments and are compared to previously published tesseroid
methods and the conventional prism approach.

Keywords Forward modeling · Tesseroids · Gravitational field · Newton’s integral

1. Introduction

Modeling the impact of mass distributions on the gravitational potential and its derivatives
is a central issue in geodesy and geophysics. In physical geodesy, the most important
application is the determination of mass reductions for gravity field observations, e.g.,
topographic reductions obtained from digital terrain models. In the classical Stokes
problem, topographic (and isostatic) reductions are used to get mass-free boundary values
at geoid level (Heiskanen and Moritz, 1967, Chapter 3). Moreover, these mass reductions
can also be integrated into modern methods of gravity field modeling, such as the remove–
compute–restore technique (Forsberg, 1984, Sect. 4) or residual terrain modeling (Forsberg
and Tscherning, 1997; Hirt et al., 2010). In this context, the main purpose is to smooth the
signal content of gravity data in order to improve the numerical stability for interpolation
or prediction tasks as well as field transformations. Such a procedure has been proposed
for different kinds of quantities like terrestrial, airborne or satellite-based gravity field
observations (e.g., Novák et al., 2003; Makhloof and Ilk, 2008; Wild and Heck, 2008;
Janák et al., 2012; Grombein et al., 2013). Furthermore, there are lots of interdisciplinary
applications in solid earth research implicating the problem of mass modeling. For instance,
this includes the construction of a synthetic Earth model (Kuhn and Featherstone, 2005),
investigations of structures and density anomalies in the Earth’s crust (Braitenberg and
Ebbing, 2009; Álvarez et al., 2012), as well as detection of ice mass loss (Baur and Sneeuw,
2011) or hydrological mass variations (Heck and Seitz, 2008; Grombein et al., 2012).

All of the described applications can be considered in the context of forward (or inverse)
modeling which is based on the evaluation of Newton’s integral for the gravitational
potential of a solid body Ω ⊂ R3 (Heiskanen and Moritz, 1967, p. 3):

V (x1, x2, x3) = G

∫∫∫
Ω

ρ(x′1, x′2, x′3)
`

dΩ, (1)

where G denotes Newton’s gravitational constant, ρ the location-dependent density, and `
the Euclidean distance between the (attracted) computation point P (x1, x2, x3) ∈ R3 and
the running integration (mass) point Q(x′1, x′2, x′3) ∈ Ω. In principle, the volume integral in
Eq. (1) can either be evaluated in the space domain by direct integration methods or in the
frequency domain by spherical harmonic approaches (cf. Kuhn and Seitz, 2005; Wild-Pfeiffer
and Heck, 2007). In both cases, information on the geometry of the mass distribution as
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well as the density function ρ(x′1, x′2, x′3) inside the masses is required. However, in most
practical applications the geometry and the density are only available in discrete form,
e.g., represented by a grid with a specific resolution. To this end, numerical evaluations of
Eq. (1) in the space domain rely on a mass discretization, where the integration domain
Ω is decomposed into elementary geometrical bodies Ωi ⊂ Ω assuming a constant density
value ρi. By applying the superposition principle, the effect of the whole mass distribution
can be approximated by the sum of the impact over all individual mass bodies:

V (x1, x2, x3) ≈
∑
i

Gρi

∫∫∫
Ωi

1
`

dΩ, Ω =
⋃
i

Ωi. (2)

According to the requirements of the specific application, the decomposition can be carried
out using different types of mass bodies. In most of the classical approaches, prismatic
bodies with rectangular form are utilized. Although the respective volume integrals in
Eq. (1) can be solved analytically in the case of prisms (Mader, 1951; Nagy et al., 2000,
2002), the calculation is very time consuming due to several logarithmic and arctan functions
that have to be evaluated. A significant reduction of computation time can be achieved by
applying fast Fourier transform techniques (cf. Forsberg, 1985; Schwarz et al., 1990; Klose
and Ilk, 1993). The price to be paid is a decreasing accuracy when the bounding surface
is too rough. An alternative are approximate solutions of the prism integrals, such as
MacMillan’s formulas based on a Taylor series expansion of the integral kernel (MacMillan,
1930), or the use of Gauss–Legendre cubature (e.g., Ku, 1977; von Frese et al., 1981).

Using prisms is especially beneficial for local applications, where height information is
generally related to planar Cartesian coordinates referenced to a map projection. For larger
application areas the curvature of the Earth has to be taken into account by a vertical shift
of the prisms as implemented in the widely-used TC software (Forsberg, 1984, p. 111), or
additional coordinate transformations (e.g., Grombein et al., 2010, p. 30) which increases
the computation time even more. Furthermore, the use of prisms with curved surfaces, e.g.,
topped by a bilinear surface (Smith et al., 2001; Tsoulis et al., 2003), as well as general
polyhedral bodies (Petrović, 1996; Tsoulis, 2012; D’Urso, 2013) have been proposed to
improve the rough approximation of classical rectangular prisms.

Particularly in regional and global applications, it is advantageous to apply mass bodies
that are directly linked to the curvature of the Earth. According to Anderson (1976,
p. 48ff.), mass elements bounded by geographical grid lines (B,L) and surfaces of constant
ellipsoidal heights h are called tesseroids. Usually, these ellipsoidal bodies are approximated
by corresponding spherical ones, which are bounded by geocentric spherical coordinates
(r, ϕ, λ). Even though spherical tesseroids are considered in the following, the Earth’s
ellipticity can be taken into account by fixing these bodies on an ellipsoidal reference surface
with a latitude-dependent Earth radius (cf. Heck and Seitz, 2007).

In contrast to prisms, Newton’s integral in Eq. (1) cannot be solved analytically in the
case of tesseroids (e.g., Grüninger, 1990, p. 76). Instead of this, approximate solutions have
to be applied. Analogous to the idea of MacMillan’s formulas for the prism, Heck and Seitz
(2007) derived a third-order approximation which applies a Taylor series expansion of the
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integral kernels. While Heck and Seitz (2007) originally derived formulas for the tesseroid
potential and the first radial derivative, Wild-Pfeiffer (2007, 2008) extended the approach
to all components of first- and second-order derivatives. Furthermore, also Gauss–Legendre
cubature can be applied as proposed by Asgharzadeh et al. (2007) and Wild-Pfeiffer (2007,
2008). For global computations, an alternative consists in analytically solving the one-
dimensional integral with respect to the geocentric distance r and calculating the remaining
two-dimensional surface integral numerically (cf. Martinec, 1998; Heck and Seitz, 2007).

Detailed comparisons of using different mass discretizations and evaluation techniques in
forward modeling are provided by Heck and Seitz (2007), Wild-Pfeiffer (2008), and Grombein
et al. (2010, Chapter 7). In terms of precision and computation time, these investigations
have verified the numerical efficiency when using tesseroids instead of conventional prisms.
However, practical computations often rely on a combination of different methods by
subdividing the total integration domain into a near and a far zone with respect to the
distance from the computation point. Since the impact of distant masses on the gravitational
potential diminishes with increasing distance, the calculation procedure for remote bodies
in the far zone can be substantially simplified. Assuming local mass conservation, suitable
approximations are based on mass layers, mass lines, or point mass approximations (e.g.,
Grüninger, 1990; Tsoulis, 1999; Wild-Pfeiffer, 2008). As forward and inverse modeling
is generally a time consuming task, this paper focuses on the development of optimized
formulas for the gravitational field of a homogeneous tesseroid. In contrast to previously
published tesseroid formulas that rely on the use of spherical integral kernels, alternative
expressions based on the Cartesian integral kernels are derived. Using these new formulas
allows an efficient numerical evaluation with a significantly reduced runtime.
The paper is organized as follows: in Sect. 2, theoretical basics are presented that are

needed further on in this paper. Section 3 focuses on the mathematical elaboration of the
optimized tesseroid formulas based on Cartesian integral kernels, whereas in Sect. 4 the
consistency with formulas based on spherical integral kernels is shown. Numerical evaluation
rules for an efficient implementation of the new tesseroid formulas are presented in Sect. 5.
Furthermore, remarks on the validity and accuracy of the derived formulas, as well as
limitations for the very near zone are indicated. The benefit of the optimized tesseroid
formulas is shown by two numerical examples presented in Sect. 6. Finally, conclusions as
well as an outlook to ongoing and further research work are provided in Sect. 7.

2. Theoretical preliminaries
In Sect. 2.1, the tesseroid potential is introduced, while Sect. 2.2 focuses on the definition
of the partial derivatives as used in this paper.

2.1. Gravitational potential of a tesseroid

Tesseroids are bounded by three pairs of surfaces: A pair of concentric spheres (r1 = const.,
r2 = const.), a pair of meridional planes (λ1 = const., λ2 = const.), and a pair of coaxial
circular cones, defined by the parallels ϕ1 = const., ϕ2 = const. (see Fig. 1). On the basis
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of Newton’s integral in Eq. (1), the gravitational potential V ∗ of a tesseroid with a constant
mass density ρ can be specified by introducing the integration domain Ω∗ := [r1, r2] ×
[ϕ1, ϕ2]× [λ1, λ2] ⊂ R3 and the spherical volume element dΩ = r′2 cosϕ′ dr′ dϕ′ dλ′:

V ∗(r, ϕ, λ) = Gρ

∫∫∫
Ω∗

1
`

dΩ = Gρ

λ2∫
λ1

ϕ2∫
ϕ1

r2∫
r1

r′2 cosϕ′
`

dr′ dϕ′ dλ′, (3)

where
` = `(P,Q) =

√
r2 + r′2 − 2rr′ cosψ (4)

denotes the Euclidean distance function between the computation point P (r, ϕ, λ) ∈ R3

and the running integration point Q(r′, ϕ′, λ′) ∈ Ω∗. The spherical distance ψ between the
position vectors of P and Q is defined by

cosψ(P,Q) := sinϕ sinϕ′ + cosϕ cosϕ′ cos
(
λ′ − λ

)
. (5)

As the integration with respect to λ′ and ϕ′ comprises elliptical integrals (cf. Bronstein
et al., 2008, p. 430ff.), Eq. (3) cannot be solved in closed analytical form. In order to
calculate the tesseroid potential, methods of numerical analysis based on the evaluation of
the integral kernel

K(P,Q) := r′2 cosϕ′√
r2 + r′2 − 2rr′ cosψ

(6)

are applied, which will be discussed in Sect. 5.

Fig. 1. Geometry of a spherical tesseroid (Heck and Seitz, 2007); the spherical coordinates
are referred to the geocentric Earth-fixed equatorial reference system defined by the base
vectors e1, e2, e3.
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As useful for most practical applications, the computation point P is restricted to be
situated outside the tesseroid domain, i.e., P /∈ Ω∗. It will be shown later on in Sect. 5.3
that this restriction should be attenuated in some cases by P /∈ Ω∗\∂Ω∗, where ∂Ω∗ denotes
the boundary surface of the tesseroid.

2.2. Definition of partial derivatives

Besides the gravitational potential of a tesseroid the first- and second-order derivatives
are considered in this paper. These derivatives are usually defined in a local topocentric
Cartesian coordinate system (f1,f2,f3) with respect to the computation point P . The
f1-axis of the left-handed system as used in the following points north, the f2-axis points
east, and the f3-axis points upwards in the geocentric radial direction. The position vector
of an arbitrary point in this local Cartesian coordinate system is denoted as

x = x1 · f1 + x2 · f2 + x3 · f3 = xi · fi, (7)

where fi are the unit vectors in the direction of the coordinate axes as described above. In
Eq. (7) and further on, the Einstein summation convention is used.
The first-order partial derivatives of the gravitational potential V of any massive body

compose the vector field

a = gradV = ∇V = ai · fi, (8)

where

ai := ∂V (x1, x2, x3)
∂xi

(9)

are the physical components of the gravitational acceleration with respect to the basis fi.
The second-order derivatives, known as gravitational gradients, compose a rank two

tensor field that is arranged in the so-called Marussi tensor

M = (∇⊗∇)V = Mij · (fi ⊗ fj), (10)

where the operator ⊗ denotes the tensor product and

Mij := ∂2V (x1, x2, x3)
∂xi ∂xj

(11)

are the physical components of this tensor with respect to the basis fi. Since the gravita-
tional field is irrotational, i.e., ∇× (∇V ) = 0, and the potential V is a harmonic function
outside the masses, the Marussi tensor M is symmetric and trace-free due to the Laplace
equation, i.e.

∆V =
3∑

k=1
Mkk = 0. (12)
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Fig. 2. Visualization of the coordinate differences ∆x1, ∆x2, and ∆x3 between the com-
putation point P and the running integration point Q. The geocentric Cartesian and
related spherical coordinate systems are indicated by the black axes ei, the topocentric
local Cartesian coordinate system is represented by the red axes fi.

3. Optimized tesseroid formulas based
on Cartesian integral kernels

As it can be considered from Fig. 2, the Cartesian coordinate differences between the
computation point P and the running integration point Q can be expressed by

∆x1 = r′ sinψ cosα,
∆x2 = r′ sinψ sinα,
∆x3 = r′ cosψ − r, (13)

where α denotes the azimuth angle at P in direction to Q. Note that (∆x1,∆x2,∆x3)
in Eq. (13) can also be interpreted as the Cartesian coordinates of Q with respect to the
topocentric system at the computation point P . Inserting well-known relations of spherical
trigonometry (cf. Heiskanen and Moritz, 1967, p. 113)

sinψ cosα = cosϕ sinϕ′ − sinϕ cosϕ′ cos δλ,
sinψ sinα = cosϕ′ sin δλ (14)

into Eq. (13) results in

∆x1 = r′
(
cosϕ sinϕ′ − sinϕ cosϕ′ cos δλ

)
,

∆x2 = r′ cosϕ′ sin δλ,
∆x3 = r′ cosψ − r, (15)
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where δλ := λ′ − λ. By making use of the derived functional relations in Eq. (15) the
Euclidean distance between P and Q can be expressed in the local Cartesian system by

`(P,Q) =
√

∆x1
2 + ∆x2

2 + ∆x3
2 =

√
∆xi∆xi. (16)

Inserting Eq. (16) into Eq. (3) results in

V ∗(r, ϕ, λ) = Gρ

∫∫∫
Ω∗

1√
∆x1

2 + ∆x2
2 + ∆x3

2
dΩ (17)

for the tesseroid potential that is now based on an integral kernel in Cartesian coordinates.
Since the integral kernel in Eq. (17) is an analytical function if P /∈ Ω∗, differentiation

and integration can be interchanged according to the Leibniz integral rule (e.g., Kellogg,
1929, p. 152). For example, this implies

∂V ∗

∂x1
= Gρ

∂

∂x1

∫∫∫
Ω∗

1
`

dΩ = Gρ

∫∫∫
Ω∗

∂

∂x1

1
`

dΩ. (18)

Analogous to expressions for the prism or the point mass approximation (e.g., Heck and
Seitz, 2007; Wild-Pfeiffer, 2008), the partial derivatives of the Cartesian integral kernel
result in

∂

∂xi

(1
`

)
= ∆xi

`3
, (19)

∂2

∂xi∂xj

(1
`

)
=
(3∆xi∆xj

`5
− δij
`3

)
, (20)

where i, j ∈ {1, 2, 3} and δij denotes the Kronecker delta, i.e. δij = 1 if i = j, and δij = 0
otherwise.

The gravitational potential, the gravitational acceleration, and the Marussi tensor caused
by a tesseroid with a homogeneous mass density ρ can therefore be described by using the
general formula 

V ∗(r, ϕ, λ)
a∗i (r, ϕ, λ)
M∗ij(r, ϕ, λ)

 = Gρ

∫∫∫
Ω∗

1
`3


∆xi∆xi

∆xi
3∆xi∆xj

`2 − δij

 dΩ, (21)

where ∆xi∆xi = `2.
Although the integral kernels in Eq. (21) are expressed in Cartesian coordinates, it is

worthwhile to mention that the integration domain is still bounded by spherical coordinates
extending over the domain of a tesseroid, where Ω∗ = [r1, r2] × [ϕ1, ϕ2] × [λ1, λ2] and
dΩ = r′2 cosϕ′ dr′ dϕ′ dλ′. Thus, also these formulas comprise elliptic integrals that have
to be evaluated numerically (see Sect. 5).
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4. Comparison to tesseroid formulas based
on spherical integral kernels

Considering previously published tesseroid methods based on integral kernels expressed in
spherical coordinates, the consistency with the elaborated optimized formulas is demon-
strated in this section. Moreover, this comparison outlines some numerical advantages of
the new formulas.
Following Wild-Pfeiffer (2007, 2008), the basic idea of tesseroid formulas based on

spherical integral kernels is a conversion of spherical to Cartesian derivatives. To this end,
the first- and second-order spherical derivatives of the tesseroid potential are determined
and converted into the moving triad of the local Cartesian coordinate system by making
use of the functional relationships (e.g., Tscherning, 1976)

a∗1 = 1
r

∂V ∗

∂ϕ
, a∗2 = 1

r cosϕ
∂V ∗

∂λ
, a∗3 = ∂V ∗

∂r
, (22)

and

M∗11 = 1
r2

(
∂2V ∗

∂ϕ2 + r
∂V ∗

∂r

)
,

M∗22 = 1
r2 cos2 ϕ

(
∂2V ∗

∂λ2 − cosϕ sinϕ ∂V ∗

∂ϕ
+ r cos2 ϕ

∂V ∗

∂r

)
,

M∗33 = ∂2V ∗

∂r2 ,

M∗12 = 1
r2 cosϕ

(
∂2V ∗

∂ϕ∂λ
+ tanϕ ∂V ∗

∂λ

)
= M∗21,

M∗13 = 1
r

(
∂2V ∗

∂ϕ∂r
− 1
r

∂V ∗

∂ϕ

)
= M∗31,

M∗23 = 1
r cosϕ

(
∂2V ∗

∂λ ∂r
− 1
r

∂V ∗

∂λ

)
= M∗32. (23)

In this case, the elements a∗i and M∗ij can be considered as the physical coordinates of the
tensors of first- and second-orders (covariant derivatives) represented in the topocentric
reference frame with the orthonormal base vectors

fi = 1
|gi|
· gi, (24)

where
g1 := ∂x

∂ϕ
, g2 := ∂x

∂λ
, g3 := ∂x

∂r
, (25)

are the unnormalized vectors pointing in the direction of the increasing spherical coordinates.
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By applying the Leibniz integral rule to the expression for the tesseroid potential in Eq. (3),
the required first- and second-order spherical derivatives result in

∂V ∗

∂ϕ
= Gρ

∫∫∫
Ω∗

rr′Cϕ
`3

dΩ,

∂V ∗

∂λ
= Gρ

∫∫∫
Ω∗

rr′Cλ
`3

dΩ,

∂V ∗

∂r
= Gρ

∫∫∫
Ω∗

(r′ cosψ − r)
`3

dΩ, (26)

and

∂2V ∗

∂ϕ2 = Gρ

∫∫∫
Ω∗

rr′

`3

(
3rr′C2

ϕ

`2
− cosψ

)
dΩ,

∂2V ∗

∂λ2 = Gρ

∫∫∫
Ω∗

rr′

`3

(
3rr′C2

λ

`2
− cosϕ′ cosϕ cos δλ

)
dΩ,

∂2V ∗

∂r2 = Gρ

∫∫∫
Ω∗

1
`3

[
3(r′ cosψ − r)2

`2
− 1

]
dΩ,

∂2V ∗

∂ϕ∂λ
= Gρ

∫∫∫
Ω∗

rr′ cosϕ′ sin δλ
`3

(3rr′Cϕ cosϕ
`2

− sinϕ
)

dΩ,

∂2V ∗

∂ϕ∂r
= Gρ

∫∫∫
Ω∗

r′Cϕ
`3

[3r(r′ cosψ − r)
`2

+ 1
]

dΩ,

∂2V ∗

∂λ∂r
= Gρ

∫∫∫
Ω∗

r′Cλ
`3

[3r(r′ cosψ − r)
`2

+ 1
]

dΩ, (27)

where

Cϕ := ∂ cosψ
∂ϕ

= cosϕ sinϕ′ − sinϕ cosϕ′ cos δλ,

Cλ := ∂ cosψ
∂λ

= cosϕ cosϕ′ sin δλ. (28)

As the volume integrals in Eqs. (26) and (27) cannot be solved analytically, Wild-Pfeiffer
(2007, 2008) suggested a formalism based on a two-step sequence:

1. Numerical evaluation of the spherical derivatives in Eqs. (26) and (27),

2. Conversion of the resulting numerical values into the local frame by applying the
functional relations according to Eqs. (22) and (23), respectively.
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4. Comparison to tesseroid formulas based on spherical integral kernels

Due to the explicit evaluation of Eqs. (22) and (23), this procedure suffers from the polar
singularity which is induced by the spherical coordinate system. As a consequence, this
approach causes indeterminate values for the first- and second-order derivatives in Eqs. (9)
and (11) in the case of the computation point P being located on the polar axis, i.e.,
ϕ = ±90◦.
In contrast, the elaborated optimized tesseroid formulas in Eq. (21) provide direct

expressions for the potential derivatives in the local Cartesian system that avoid an
additional transformation and can therefore be used for any position on the globe. However,
the mathematical consistency of both tesseroid approaches can be shown. To this end, the
analytical expressions for the spherical derivatives in Eqs. (26) and (27) are inserted into the
functional relationships in Eqs. (22) and (23). As the volume integrals extend over the same
domain Ω∗ they remain purely additive and can be combined. After elementary operations,
elaborated exemplarily for the M∗23 component in the Appendix, the components of the
first- and second-order derivatives of the tesseroid potential can be expressed by

a∗1 = Gρ

∫∫∫
Ω∗

r′Cϕ
`3

dΩ,

a∗2 = Gρ

∫∫∫
Ω∗

r′ cosϕ′ sin δλ
`3

dΩ,

a∗3 = Gρ

∫∫∫
Ω∗

r′ cosψ − r
`3

dΩ, (29)

and

M∗11 = Gρ

∫∫∫
Ω∗

(
3r′2C2

ϕ

`5
− 1
`3

)
dΩ,

M∗22 = Gρ

∫∫∫
Ω∗

[
3(r′ cosϕ′ sin δλ)2

`5
− 1
`3

]
dΩ,

M∗33 = Gρ

∫∫∫
Ω∗

[
3(r′ cosψ − r)2

`5
− 1
`3

]
dΩ,

M∗12 = Gρ

∫∫∫
Ω∗

3r′2Cϕ cosϕ′ sin δλ
`5

dΩ,

M∗13 = Gρ

∫∫∫
Ω∗

3r′Cϕ(r′ cosψ − r)
`5

dΩ,

M∗23 = Gρ

∫∫∫
Ω∗

3r′ cosϕ′ sin δλ(r′ cosψ − r)
`5

dΩ. (30)

By applying the substitutions ∆x1,∆x2 and ∆x3 in Eq. (13) it becomes obvious that
Eqs. (29) and (30) are consistent with the optimized tesseroid formulas in Eq. (21).
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II. Optimized formulas for the gravitational field of a tesseroid

5. Aspects of numerical evaluation
While there are quite few approaches for the numerical evaluation of elliptic volume integrals,
as aforementioned in Sect. 1, this paper applies a Taylor series approach as presented in
Heck and Seitz (2007). In this approach, the integration is achieved by means of expanding
the integral kernel in a Taylor series with fourth-order error in the spatial coordinates of
the integration point. In Sect. 5.1, the main idea of this method is recapitulated and then
adapted to the optimized tesseroid formulas in Sect. 5.2. Remarks concerning the validity
and the accuracy of the evaluation rules as well as limitations are indicated in Sect. 5.3.

5.1. Idea of the Taylor series approach

Following Heck and Seitz (2007), the Taylor expansion of the spherical integral kernel in
Eq. (6) at the point Q0(r0, ϕ0, λ0) can be expressed by1

K(P,Q) =
∑
i,j,k

Kijk(P,Q0)
i! j! k!

(
r′ − r0

)i(
ϕ′ − ϕ0

)j(
λ′ − λ0

)k
, (31)

where
Kijk(P,Q0) := ∂i+j+kK(P,Q)

∂r′i∂ϕ′j∂λ′k

∣∣∣∣∣ r′=r0
ϕ′=ϕ0
λ′=λ0

(32)

are the partial derivatives of the integral kernel K evaluated at Q0. When integrating the
Taylor series in Eq. (31), the maximum efficiency is achieved by fixing the Taylor point Q0
at a point of symmetry, e.g., at the geometrical center of the tesseroid

r0 = r1 + r2
2 , ϕ0 = ϕ1 + ϕ2

2 , λ0 = λ1 + λ2
2 . (33)

By inserting Eq. (31) into Eq. (3), the integration with respect to each coordinate (r′, ϕ′, λ′)
can be performed by a substitution (see Heck and Seitz, 2007), e.g., in the case of r′ follows

r2∫
r1

(
r′ − r0

)i dr′ =
+∆r/2∫
−∆r/2

(r∗)i dr∗ = 1− (−1)i+1

(i+ 1)2i+1 (∆r)i+1 =

0, if i odd,
(∆r)i+1

(i+1)2i , if i even,
(34)

where

∆r = r2 − r1, ∆ϕ = ϕ2 − ϕ1, ∆λ = λ2 − λ1 (35)
1 Note that the original publication contains a minor formal misprint in the general expression of the Taylor
series expansion in Eq. (31), which has been corrected in this version. There, the term in the denominator
reads (i + j + k)!. However, this mistake has no consequences on the further derived formulas used in
the article, which remain correct and unchanged. For reference, see the comment Deng, X.-L., Grombein,
T., Shen, W.-B., Heck, B., and Seitz, K. (2016): Corrections to “A comparison of the tesseroid, prism
and point-mass approaches for mass reductions in gravity field modelling” (Heck and Seitz, 2007) and
“Optimized formulas for the gravitational field of a tesseroid” (Grombein et al., 2013). Journal of Geodesy
90(6):585–587, doi: 10.1007/s00190-016-0907-8.
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5. Aspects of numerical evaluation

denote the dimensions of the tesseroid. Consequently, terms with odd-order i, j, or k in
the Taylor series in Eq. (31) cancel out after a subsequent integration and only terms with
even-order remain. Thus, the gravitational potential of a tesseroid can be approximated by

V ∗(r, ϕ, λ) = Gρ∆r∆ϕ∆λ
[
K000 + 1

24
(
K200∆r2 +K020∆ϕ2 +K002∆λ2

)
+O(∆4/`50)

]
,

(36)

where the Landau symbol O(∆4/`50) indicates that the omitted Taylor residual has a
magnitude of fourth-order, scaled with a negative power of `0 which is the Euclidean
distance between P and Q0. In this case, ∆ should be considered symbolically, e.g., in
metrical units it would be ∆r = r2 − r1, ∆ϕ ∼ r0(ϕ2 − ϕ1), and ∆λ ∼ r0 cosϕ0(λ2 − λ1).
Furthermore, it is worthwhile mentioning that `0 > 0 is strictly finite if an exterior
computation point P is considered, as presumed in Sect. 2.1, i.e., P /∈ Ω∗ implies `0 > ∆/2.
The zero-order term in Eq. (36) corresponds to the potential of a point mass that

concentrates the mass

m0 = ρr2
0 cosϕ0∆r∆ϕ∆λ (37)

at the Taylor point Q0. This is consistent with the zero-order approximation of the total
tesseroid mass (e.g., Grüninger, 1990, p. 79):

m∗ = ρ

λ2∫
λ1

ϕ2∫
ϕ1

r2∫
r1

r′2 cosϕ′ dr′ dϕ′ dλ′ = 1
3 ρ
(
r3

2 − r3
1

)
(sinϕ2 − sinϕ1)(λ2 − λ1) ≈ m0. (38)

For the evaluation of Eq. (36) the zero- and second-order coefficients according to Eq. (32)
are explicitly provided in Heck and Seitz (2007). Analogously, Wild-Pfeiffer (2008) presented
corresponding zero- and second-order coefficients for the numerical evaluation of the first-
and second-order spherical derivatives of the tesseroid potential. They can be utilized
in combination with the relationships in Eqs. (22) and (23) in order to calculate the
components of the gravitational acceleration and the Marussi tensor.

5.2. Adaption of the Taylor series approach

Analogously to the procedure in Eq. (36), a numerical solution of the optimized tesseroid
formulas in Eq. (21) can be supplied by subsequently integrating Taylor series expansions
of the Cartesian integral kernels at the tesseroid’s geometrical center point Q0(r0, ϕ0, λ0).
To supply a more general notation that allows an efficient computational implementation,
the substitutions (

ξ′1, ξ
′
2, ξ
′
3
)

:=
(
r′, ϕ′, λ′

)
(39)

for the coordinates of the integration point Q and

(∆ξ1,∆ξ2,∆ξ3) := (∆r,∆ϕ,∆λ) (40)
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II. Optimized formulas for the gravitational field of a tesseroid

for the dimensions of the tesseroid are used in the following. Furthermore, based on Eq. (39)
the differential operators are defined as

∂k := ∂

∂ξ′k
, ∂2

k := ∂2

∂ξ′k
2 , k ∈ {1, 2, 3}. (41)

A suitable numerical solution of Eq. (21) with a fourth-order error in the spatial coordinates
of the integration point is then provided by

V ∗(r, ϕ, λ)
a∗i (r, ϕ, λ)
M∗ij(r, ϕ, λ)

 = ω


K(P,Q)
Li(P,Q)
Nij(P,Q)

+ ω

24

3∑
k=1

∆ξk2


∂2
kK(P,Q)
∂2
kLi(P,Q)

∂2
kNij(P,Q)


∣∣∣∣∣∣∣∣∣ r′=r0ϕ′=ϕ0
λ′=λ0

+


O(∆4/`50)
O(∆4/`60)
O(∆4/`70)

,
(42)

where

ω := Gρ
3∏

k=1
∆ξk. (43)

In Eq. (42), the Cartesian integral kernels of Eq. (21) are denoted by
K(P,Q)
Li(P,Q)
Nij(P,Q)

 := 1
`3


∆xi∆xi

∆xi
3∆xi∆xj

`2 − δij

τ, (44)

in which
τ := r′2 cosϕ′ (45)

factors the spherical volume element dΩ. The Cartesian coordinate differences ∆xi and the
Euclidean distance ` can be calculated using the previous Eqs. (13) and (16), respectively.
The required second-order derivatives in Eq. (44) can be represented in the general form

∂2
kK

∂2
kLi

∂2
kNij

 = 1
`3

∂2
k(τ)


α

αi

αij

+ ∂k(τ)


βk

βik

βijk

+ τ


γk

γik

γijk


, (46)

where

α := ∆xi∆xi, αi := ∆xi, αij := 3∆xi∆xj
`2

− δij , (47)

βk := 2∂k(`),

βik := 2
[
∂k(∆xi) + 3∆xi∂k(`)

`2

]
,
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5. Aspects of numerical evaluation

βijk := 6
`2

[
∆xi∂k(∆xj) + ∆xj∂k(∆xi) + 5∆xi∆xj∂k(`)

`2
− δij∂k(`)

]
, (48)

γk := ∂2
k(`) + 3(∂k(`))2

`2
,

γik := ∂2
k(∆xi) + 3

`2

{
2∂k(∆xi)∂k(`) + ∆xi

[
∂2
k(`) + 5(∂k(`))2

`2

]}
,

γijk := 3
`2

{
∆xi∂2

k(∆xj) + ∆xj∂2
k(∆xi) + 2∂k(∆xi)∂k(∆xj)

+ 5
`2

[
2∂k(`)

(
∆xi∂k(∆xj) + ∂k(∆xi)∆xj

)
+ ∆xi∆xj

(
∂2
k(`) + 7(∂k(`))2

`2

)]

−δij

[
∂2
k(`) + 5(∂k(`))2

`2

]}
, (49)

and

` :=− 1
2`

2 = −1
2∆xi∆xi. (50)

Particularly, for ξ′1 = r′ holds:

∂1(τ) = 2r′ cosϕ′,
∂2

1(τ) = 2 cosϕ′,
∂1(`) = r cosψ − r′,
∂2

1(`) = −1,
∂1(∆x1) = Cϕ,

∂1(∆x2) = cosϕ′ sin δλ,
∂1(∆x3) = cosψ,
∂2

1(∆x1) = 0,
∂2

1(∆x2) = 0,
∂2

1(∆x3) = 0. (51)

Particularly, for ξ′2 = ϕ′ holds:

∂2(τ) = −r′2 sinϕ′,
∂2

2(τ) = −r′2 cosϕ′,
∂2(`) = r∂2(∆x3),
∂2

2(`) = r∂2
2(∆x3),

∂2(∆x1) = r′
[
cosϕ cosϕ′ + sinϕ sinϕ′ cos δλ

]
,
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II. Optimized formulas for the gravitational field of a tesseroid

∂2(∆x2) = −r′ sinϕ′ sin δλ,
∂2(∆x3) = r′

[
sinϕ cosϕ′ − cosϕ sinϕ′ cos δλ

]
,

∂2
2(∆x1) = −∆x1,

∂2
2(∆x2) = −∆x2,

∂2
2(∆x3) = −r′ cosψ. (52)

Particularly, for ξ′3 = λ′ holds:

∂3(τ) = 0,
∂2

3(τ) = 0,
∂3(`) = r∂3(∆x3),
∂2

3(`) = r∂2
3(∆x3),

∂3(∆x1) = ∆x2 sinϕ,
∂3(∆x2) = r′ cosϕ′ cos δλ,
∂3(∆x3) = −∆x2 cosϕ,
∂2

3(∆x1) = ∂3(∆x2) sinϕ,
∂2

3(∆x2) = −∆x2,

∂2
3(∆x3) = −∂3(∆x2) cosϕ. (53)

Note that according to Eq. (42), the analytical expressions of the Cartesian integral kernels
in Eq. (44) and its second-order derivatives in Eq. (46) have to be evaluated at the Taylor
point Q0, i.e., the primed coordinates of the running integration point (r′, ϕ′, λ′) have to
be replaced by the coordinates of the Taylor point (r0, ϕ0, λ0).

5.3. Remarks on the validity and accuracy

From potential theory it is known that the gravitational potential of a voluminous mass
and its first-order derivatives are defined and continuous in the whole R3, even if the
computation point P is located at the boundary surface or inside a field generating mass
distribution of continuous density (e.g., Kellogg, 1929, p. 151). The singularity of Newton’s
integral when the computation point P coincides with the integration point Q, i.e., ` = 0,
is weak and therefore removable. If the density function satisfies a Hölder condition, the
second-order derivatives are also defined for interior computation points P , but generally
they are not defined for points on the boundary surface as it represents an interface of
density discontinuity (cf. Kellogg, 1929, p. 156).
In the context of a homogeneous tesseroid this implies that values for V ∗, a∗i , and M∗ij

in Eq. (21) are well-defined for interior computation points P , even though the presented
Taylor series approach in Eq. (42) is limited to exterior points due to the required condition
P /∈ Ω∗. Considering the limiting behavior of Eq. (21) the restriction can be attenuated to
P /∈ Ω∗\∂Ω∗ in the case of the gravitational potential and the elements of the gravitational
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6. Numerical investigations

acceleration. Thus, V ∗ and a∗i can also be evaluated in the case of a computation point P
placed on the tesseroid surface, which is particularly useful for terrestrial applications.

Instead of an analytical error analysis of Eq. (42), the approximation error of the method
is estimated by a realistic numerical experiment in the following section. Generally, as
mentioned in Heck and Seitz (2007) and Grombein et al. (2010, p. 34), the accuracy of
the presented approach is strongly sensitive to the geometrical shape of the tesseroid,
particularly for small distances between the computation point P and the Taylor point Q0.
Besides the tesseroid dimensions ∆r, ∆ϕ, and ∆λ that can imply for example a flat or
columnar shape, the position of P relative to the tesseroid also impacts the computation.
Due to the meridional convergence of the spherical coordinate system, the geometrical
shape of a tesseroid changes with respect to the latitude of its position. For instance, the
ground surface of a tesseroid located near the equator is almost quadratic whereas its
surface degenerates to a triangular shape in the polar region.
As noted in Heck and Seitz (2007), special care should be taken when applying the

Taylor series approach for tesseroids in the near zone around the computation point P
which is particularly the case for terrestrial applications. Since Heck and Seitz (2007) found
unacceptably large errors, they recommended to replace tesseroids by equivalent prisms in
the direct vicinity of the computation point. Another possibility that will be shown in the
following section is the horizontal respectively vertical subdivision of the tesseroids in the
near zone. Although numerical investigations on these two possibilities provide satisfactory
results, the origin of the occurring numerical problems of tesseroids in the very near zone is
the subject of ongoing investigations.

6. Numerical investigations

In order to validate the derived evaluation rules and to show the computational efficiency,
two realistic numerical experiments are presented in this section. The elaborated optimized
tesseroid formulas based on Cartesian integral kernels (cf. Sect. 3) are compared to the
previously published tesseroid approaches based on spherical integral kernels (cf. Sect. 4),
and conventional rectangular prism formulas (Nagy et al., 2000, 2002). In the following,
these approaches are denoted as tesseroid (Cartesian), tesseroid (spherical), and prism,
respectively. The software implementation is performed in the programming language C++.
The source code may be made available upon request. Section 6.1 focuses on the required
computation time, while in Sect. 6.2 the approximation error induced by the different
methods is analyzed.

6.1. Comparison of the computation time

In a first experiment, the required computation time of forward modeling based on the
different approaches is compared. As a realistic application, topographic reductions are
estimated by utilizing the digital terrain model DTM2006.0 (Pavlis et al., 2007) that
provides a 5′ × 5′ global grid of heights hDTM

i . The topographic information of this model
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II. Optimized formulas for the gravitational field of a tesseroid

can be represented by 9 931 200 individual tesseroid bodies Ω∗i with the constant horizontal
dimensions ∆hor = ∆ϕ = ∆λ = 5′ and the variable vertical dimensions ∆ri = hDTM

i .
According to Eq. (2) the total topographic effect is approximated by the sum over the

impact of all individual tesseroids, i.e.
V

ai

Mij

 ≈

∑
V ∗∑
a∗i∑
M∗ij

. (54)

Note that in the case of the prism formulas the tesseroid dimensions are converted to
equivalent rectangular prisms under the assumption of the same mass density (cf. Heck
and Seitz, 2007; Grombein et al., 2010, p. 29ff.). Furthermore, as mentioned in Sect. 1, an
additional coordinate transformation has to be performed in the case of prisms in order to
take the curvature of the Earth into account (cf. Grombein et al., 2010, p. 30).

In Table 1, the required relative computation time for calculating the components V , ai,
and Mij is given with respect to the applied method. A significant speed-up of computation
time by using the optimized (Cartesian) tesseroid formulas instead of the spherical ones
can be recognized, which increases with the order of the derivatives. Generally, this can be
considered as a consequence of a reduced number of occurring arithmetic operations which
are specified in Table 2. In the case of the elements of the Marussi tensor, the reduction is
mainly caused by the fact that only six volume integrals have to be evaluated instead of
nine as in former representations.
In total, when computing V , ai, and Mij together, only 55 % of the run time of the

spherical tesseroid methods is needed for the optimized (Cartesian) approach. In comparison
to the conventional prism approach, the advantage of using tesseroids for global applications
is impressively shown.

Table 1. Comparison of computation times t [%] using tesseroid methods with spherical
and optimized Cartesian integral kernels as well as prisms to compute the gravitational
potential V , the components of the gravitational acceleration ai and the Marussi tensor Mij

of topographic masses. All values are specified in percentage relative to the computation
time of the spherical tesseroid method.

Tesseroid
(spherical)

Tesseroid
(Cartesian) Prism

t(V ) 100 80 1265
t(ai) 100 72 620
t(Mij) 100 44 125

t(V, ai,Mij) 100 55 402
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Table 2. Comparison of the optimized (Cartesian) tesseroid formulas with respect to
previously published spherical methods in terms of the number of occurring arithmetic
operations n. Note that these are approximate values as they are strongly dependent on
the actual computational implementation.

Tesseroid (spherical) Tesseroid (Cartesian)
Operations + / − · / ÷ + / − · / ÷

n(V ∗) 25 80 20 65
n(a∗i ) 70 250 60 200
n
(
M∗ij

)
250 890 160 550

6.2. Comparison of the approximation error

In a second experiment, the approximation error induced by the different methods is
analyzed and compared. In order to obtain reference values, an analytical solution is
needed. Therefore, a spherical shell approximation is considered as a simple synthetic
Earth model, where topographic masses with a constant thickness h′ and a homogeneous
mass density ρ are fixed on a sphere with a mean Earth radius R. Thus, the inner radius
of the spherical shell is set to R1 = R, the outer radius to R2 = R+ h′.

Analytical solution of a spherical shell. The gravitational potential in the external
domain of a spherical shell Ωs with constant density ρ can be determined analytically from
the potential difference between two solid spheres with radii R1 and R2 (e.g., Vaníček et al.,
2001):

V s(r) := G(m2 −m1)
r

, (55)

where

m1 = ρ
4
3πR

3
1, (56)

m2 = ρ
4
3πR

3
2, (57)

r =
√
x2

1 + x2
2 + x2

3. (58)

By determining the partial derivatives of V s in Eq. (55) the elements of the gravitational
acceleration and the Marussi tensor result in

asi (r) = G(m2 −m1)xi
r3 , (59)

M s
ij(r) = G(m2 −m1)

(3xixj
r5 − δij

r3

)
. (60)
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Table 3. Parameters defining the spherical shell.

R1 = R 6378.137 km
R2 = R+ h′ 6379.137 km

G 6.672 · 10−11 m3 kg−1 s−2

ρ 2670 kg m−3

Due to the isotropy of the spherical shell, a computation point P on the polar axis can
be considered without loss of generality, i.e., x1 = 0, x2 = 0, x3 = r ≥ R2. This implies
as1 = as2 = M s

12 = M s
13 = M s

23 = 0 and

as3(r) = V s(r)
r

, (61)

M s
11(r) = M s

22(r) = −V
s(r)
r2 , (62)

M s
33(r) = 2V s(r)

r2 . (63)

Setting of the experiment. In order to quantify realistic approximation errors, the
absolute differences between the exact values (V s, asi , M s

ij) of the analytical solution and
the actual values when applying forward modeling based on a mass discretization with
tesseroids are analyzed: 

δV

δai

δMij

 :=

∣∣∣∣∣∣∣∣∣


V s

asi

M s
ij

−

∑
V ∗∑
a∗i∑
M∗ij


∣∣∣∣∣∣∣∣∣. (64)

In the experiment, a spherical shell with a constant thickness of h′ = 1 km is chosen which
approximately corresponds to a mean topographic height. Furthermore, the spherical
shell is defined by the parameters as specified in Table 3. In the case of the gravitational
potential and acceleration, mostly related to terrestrial applications, the computation
point is placed on the surface of the spherical shell. For the second-order derivatives of
the Marussi tensor, the satellite altitude of the gravity gradiometry field mission GOCE
(Gravity field and steady-state Ocean Circulation Explorer) is utilized. In Table 4, the
settings of both applications and the resulting reference values for the spherical shell are
indicated, where 1 mGal = 10−5 m s−2 and 1 mE = 10−12 s−2.

To get the actual values for the developed method the spherical shell Ωs is decomposed into
individual tesseroid bodies Ω∗i bounded by spherical grid lines. The horizontal dimensions
of the tesseroids are again set to ∆hor = ∆ϕ = ∆λ = 5′. According to the thickness of the
spherical shell, the vertical dimension is fixed to ∆r = h′ = 1 km.
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Table 4. Setting of the terrestrial and satellite application and resulting reference values
according to Eq. (55) and Eqs. (61) – (63).

Application Terrestrial Satellite

h 1 km 260 km
r = R+ h 6379.137 km 6638.137 km

V s 14 278.119 m2 s−2 –
as3 223.825 mGal –

M s
11 = M s

22 – −311.383 mE
M s

33 – 622.765 mE

In order to improve the accuracy of the tesseroid approaches in the case of terrestrial
applications, a subdivision of the mass elements located in the near zone around the
computation point P is performed as proposed in Sect. 5.3. To this end, for tesseroids,
whose geometrical center Q0 is located inside a spherical distance ψc with respect to the
computation point, a 100× 100 horizontal subdivision is performed. Based on the 5′ × 5′
resolution of the original tesseroid bodies this implies an increase of the grid resolution to
3′′ × 3′′ ≈ 100 m× 100 m which is consistent with current high-resolution global DTMs like
the SRTM3 model (Farr et al., 2007). Different extensions of the near zone are analyzed,
where the spherical distance ψc is set to integer multiples of the horizontal tesseroid
dimension, i.e.

ψc = κ ·∆hor, κ ∈ N0. (65)

For the cases κ = {1, . . . , 5}, Fig. 3 illustrates the numbers of mass elements in the near
zone that are subdivided. Due to the meridional convergence these numbers are dependent
on the latitude ϕ of the computation point P showing a strong increase toward the pole.
Note again that instead of a subdivision it is also possible to utilize equivalent prisms
which has been shown in the numerical investigations in Heck and Seitz (2007) and will,
therefore, not be presented in this paper. In the case of satellite applications, no subdivision
is performed as there is a large distance between the computation points and the surface of
the spherical shell.

As mentioned in Sect. 5.3 the geographical position of the tesseroid impacts the accuracy
due to a changing geometry according to the meridional convergence. Concerning the
strong influence of the near zone (cf. Heck and Seitz, 2007), it can be assumed that the
total approximation error may also depend on the latitude ϕ of the computation point P .
The approximation error in Eq. (64) is therefore evaluated for different positions on the
globe. Due to the spherical symmetry, this can be restricted to a computation point P
running along an arbitrary but fixed meridian on the northern hemisphere. All other cases
provide analogous results.
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Fig. 3. Visualization of the number of mass elements in the near zone as a function of the
latitude ϕ of the computation point. According to Eq. (65) the near zone is bounded by a
spherical distance ψc = κ ·∆hor with respect to the position of the computation point. All
values in this figure refer to a horizontal dimension of ∆hor = 5′.

Results for a terrestrial application. In Fig. 4, the estimated approximation error is
presented for the gravitational potential δV on the left panel and the radial component of the
gravitational acceleration δa3 on the right panel. As indicated in Table 4 the computation
point P is located on top of the spherical shell. Both tesseroid approaches (green and
overlaid red dashed curve) show the same, nearly constant behavior with respect to the
latitude ϕ. The approximation error δV is in a range of about 100 – 10−1 m2 s−2, while the
order of magnitude for δa3 is about 102 mGal. This error behavior clearly demonstrates
the above indicated numerical problems of the tesseroid approach when the computation
point P is located in the direct vicinity of the particular mass bodies. Compared with the
conventional prism approach (blue curve) the approximation error for tesseroids is inferior
by about three orders of magnitude in the case of δV and two orders of magnitude in the
case of δa3.

Furthermore, it can be seen that the approximation errors for the prism approach show
significant dependencies on the latitude ϕ, particularly in the case of the potential. In
the polar region, where there is the largest difference in the geometrical shape between a
tesseroid and a rectangular prism, the tesseroid approaches supply slightly better, but still
bad results.
When performing the intended subdivision in the near zone, it can clearly be seen in

Fig. 4 that the approximation error for the optimized (Cartesian) tesseroid approach in both
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Fig. 4. Visualization of the estimated approximation error δV (left panel) and δa3 (right
panel) as a function of the latitude ϕ of the computation point that is located on top of
the respective spherical shell, i.e., h = h′ = 1 km. The blue curve is obtained by applying
conventional prism formulas. The green curve represents the use of the spherical tesseroid
approach and is completely overlaid by the red dashed curve that indicates the utilization
of the optimized (Cartesian) tesseroid formulas. These three cases are calculated without
a special consideration of the near zone, i.e., κ = 0. The remaining curves represent the
use of the optimized (Cartesian) tesseroid formulas by performing an additional 100× 100
horizontal subdivision of mass elements located in the near zone. According to Eq. (65)
the cases of κ = {1, . . . , 5} are displayed.

cases δV and δa3 can be largely reduced. For increasing values of κ respectively ψc, the
approximation error is rapidly decreasing. Occurring discontinuities in the approximation
errors can be associated with a changing number of mass elements in the near zone
(cf. Fig. 3). In the case of κ = 3, the approximation error δV is below 10−3 m2 s−2, which
is consistent with a sub-millimeter error in derived geoid heights. Similarly, δa3 is below
1 µGal, which corresponds to the accuracy of actual gravimeters. Note that a comparable
behavior is provided if the subdivision is applied to the tesseroid method based on spherical
integral kernels. The corresponding cases are therefore not illustrated in Fig. 4.
To summarize, the achieved accuracy will be sufficient for most practical terrestrial

applications if a subdivision is performed in the near zone extended by a spherical distance

61



II. Optimized formulas for the gravitational field of a tesseroid

of ψc ≥ 3 ·∆hor with respect to the computation point. However, it should be mentioned
that the computation time is increased due to the densification in the very near zone, but
it is still considerably smaller in comparison to conventional prism formulas (see Table 5).

Table 5. Comparison of computation time t [%] using optimized (Cartesian) tesseroid
methods and conventional prism formulas to compute the gravitational potential V , the
components of the gravitational acceleration ai and the Marussi tensor Mij . The values
for the optimized tesseroid method are indicated in relation to the extension of a near
zone, in which a 100× 100 horizontal subdivision is performed. The near zone is bounded
by a spherical distance of ψc = κ ·∆hor around each computation point. All values are
specified in percentage relative to the computation time of the spherical tesseroid method
with κ = 0.

Tesseroid
(spherical)

Tesseroid
(Cartesian) Prism

κ 0 0 1 2 3 4 5 0
t 100 55 60 67 72 79 88 402

Results for a satellite application. According to Table 4 the approximation errors in
the case of the Marussi tensor are estimated in the context of the satellite gravity gradiometry
mission GOCE, i.e., the computation point P is fixed at a height of h = 260 km above the
sphere of radius R = R1. In Fig. 5, the approximation errors according to Eq. (64) for δM11
(upper left panel), δM22 (upper right panel), and δM33 (lower left panel) are visualized.

For all three components nearly the same behavior is visible showing a considerable
dependency on the latitude ϕ of the computation point. Generally, the approximation
error rises with increasing latitude, while a rapid increase can be seen in the polar region
at ϕ > 85◦. Due to the logarithmic scale a change of sign from a positive to a negative
approximation error induces a behavior as visible in δM11 and δM33 at ϕ ≈ 25◦ in the case
of the prism approach.
The approximation error of the conventional prism approach is in a range of about

100 – 10−5 mE, while the tesseroid approaches comprise significant smaller errors of about
10−5 – 10−13 mE. Due to the large distance of the computation points to the tesseroid
bodies, it is not necessary to take special care for the near zone, i.e., κ = 0 can be fixed
without any problems. Again the green curve for the spherical tesseroid approach is mostly
overlaid by the red curve of the optimized (Cartesian) tesseroid approach showing that both
variants provide the same approximation errors. Some small oscillations can be detected
near the equator indicating the limitation of the numerical stability. Furthermore, it is
worth mentioning that in the case of δM22 a large difference between the two tesseroid
approaches can be detected at the pole point. This effect clearly illustrates the polar
singularity problem of the spherical tesseroid approach.
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Fig. 5. Visualization of the estimated approximation error δM11 (upper left), δM22 (upper
right), and δM33 (lower left) as a function of the latitude ϕ. The lower right illustrates the
Laplace condition δ∆V according to Eq. (66). The computation point P is located at a
satellite height of h = 260 km. The blue curve is obtained by using prisms, the red dashed
curve by applying the optimized (Cartesian) tesseroid formulas. The green curve represents
the spherical tesseroid approach and is overlaid by the red dashed curve in most cases.

As an additional quality characteristic the discrepancy in the Laplace equation

δ∆V :=
∑( 3∑

k=1
M∗kk

)
(66)

is displayed on the lower right panel of Fig. 5 supporting the findings indicated above.

7. Conclusions and outlook
When using forward (or inverse) modeling based on Newton’s integral, tesseroid bodies
are the natural mass discretization when dealing with data parameterized in geodetic
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or geocentric spherical coordinates. In contrast to the conventional prism approach, the
curvature of the Earth is directly taken into account by tesseroids which is particularly
beneficial for regional and global applications.

The respective volume integrals describing the gravitational potential of a homogeneous
tesseroid and its derivatives comprise elliptical integrals that cannot be solved analytically.
Although approximate solutions have to be applied, various numerical investigations
confirmed the advantages of tesseroids concerning precision and numerical efficiency in
comparison to conventional prisms (cf. Heck and Seitz, 2007; Wild-Pfeiffer, 2008; Grombein
et al., 2010, Chapter 7).
Previously published tesseroid formulas are based on integral kernels with respect to

geocentric spherical coordinates (e.g., Heck and Seitz, 2007; Wild-Pfeiffer, 2007, 2008).
As the elements of the first- and second-order derivatives of the gravitational potential
are usually defined in a moving Cartesian frame, additional transformations have to be
applied that show polar singularities (cf. Tscherning, 1976). In contrast to these approaches,
optimized tesseroid formulas based on Cartesian integral kernels have been elaborated
in this paper. These formulas avoid the explicit transformation and therefore allow to
represent the required components of the gravitational acceleration and the Marussi tensor
directly in the local Cartesian frame for any position on the globe.
The consistency of both tesseroid approaches has been shown analytically and verified

numerically. The main benefit of using the optimized tesseroid formulas is a significant
speed-up of the calculation process. In comparison to previously published tesseroid
implementations only 80 % of the computation time for the gravitational potential, 72 %
for the gravitational acceleration, and 44 % for the Marussi tensor are required, which has
been shown by a realistic numerical experiment.

Furthermore, approximation errors have been investigated by a comparison to reference
values of an analytical solution. The volume integrals linked to tesseroids have been
evaluated numerically by a Taylor series approach with fourth-order error that has been
adapted from Heck and Seitz (2007). Generally, the estimated approximation errors show
a significant dependency on the latitude of the computation point which is particularly
visible in the case of the second-order derivatives.

The occurrence of numerical problems when utilizing tesseroids in the very near zone
around the computation point, as mentioned by Heck and Seitz (2007), could be confirmed.
In terrestrial applications, two alternatives can be applied: replacement of tesseroids by
equivalent prisms, which was proposed in Heck and Seitz (2007), or a horizontal subdivision
of mass elements, which was presented in the numerical investigations of this paper.

The near zone around the computation point should be extended by a spherical distance
of at least three times the horizontal tesseroid dimension. Due to larger distances this is not
critical in the case of applications in satellite altitude. Current ongoing numerical studies
intensively investigate the accuracy of tesseroid formulas especially in the very near zone.

Acknowledgements. The authors would like to thank Dr. Horst Holstein and two anonymous
reviewers, as well as the handling editor and the Editor-in-Chief, for their valuable comments, which
helped to improve the manuscript.
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Appendix

Appendix
Taking the M∗23 component of the Marussi tensor as an example, the intermediate steps
used for deriving Eqs. (29) and (30) in Sect. 4 are explicitly provided in the following.
Inserting the spherical derivatives of Eqs. (26) and (27) into the relationship for M∗23 in
Eq. (23) results in

M∗23 = 1
r cosϕ

{
Gρ

∫∫∫
Ω∗

r′Cλ
`3

[3r(r′ cosψ − r)
`2

+ 1
]

dΩ− 1
r
Gρ

∫∫∫
Ω∗

rr′Cλ
`3

dΩ
}
. (67)

As both volume integrals in Eq. (67) extend over the same domain Ω∗, they can be combined,
yielding the more simplified expression

M∗23 = Gρ

r cosϕ

∫∫∫
Ω∗

{
r′Cλ
`3

[3r(r′ cosψ − r)
`2

+ 1
]
− r′Cλ

`3

}
dΩ

= Gρ

r cosϕ

∫∫∫
Ω∗

3rr′Cλ(r′ cosψ − r)
`5

dΩ. (68)

Replacing Cλ by its definition given in Eq. (28) the final representation is derived

M∗23 = Gρ

∫∫∫
Ω∗

3r′ cosϕ′ sin δλ(r′ cosψ − r)
`5

dΩ. (69)
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Abstract. Gravity gradient measurements from ESA’s satellite mission GOCE (Gravity
field and steady-state Ocean Circulation Explorer) contain significant high- and mid-
frequency signal components, which are primarily caused by the attraction of the Earth’s
topographic and isostatic masses. In order to mitigate the resulting numerical instability
of a harmonic downward continuation, the observed gradients can be smoothed with
respect to topographic-isostatic effects using a remove-compute-restore technique. For this
reason, topographic-isostatic reductions are calculated by forward modeling that employs
the advanced Rock-Water-Ice methodology. The basis of this approach is a three-layer
decomposition of the topography with variable density values and a modified Airy-Heiskanen
isostatic concept incorporating a depth model of the Mohorovičić discontinuity. Moreover,
tesseroid bodies are utilized for mass discretization and arranged on an ellipsoidal reference
surface. To evaluate the degree of smoothing via topographic-isostatic reduction of GOCE
gravity gradients, a wavelet-based assessment is presented in this paper and compared with
statistical inferences in the space domain. Using the Morlet wavelet, continuous wavelet
transforms are applied to measured GOCE gravity gradients before and after reducing
topographic-isostatic signals. By analyzing a representative data set in the Himalayan
region, an employment of the reductions leads to significantly smoothed gradients. In
addition, smoothing effects that are invisible in the space domain can be detected in wavelet
scalograms, making a wavelet-based spectral analysis a powerful tool.
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Keywords GOCE · Topographic-isostatic reduction · Rock-Water-Ice (RWI) decomposi-
tion · Forward modeling · Tesseroids · Continuous Morlet wavelet transform

1. Introduction

The high- and mid-frequency constituents of gravity-field-related quantities, observed on or
close to the Earth’s surface, are mainly affected by the variable topography and the isostatic
compensation masses. Using forward modeling, these topographic-isostatic signals can be
simulated from digital terrain models (DTM) and applied to the measurements. In classical
physical geodesy, topographic-isostatic mass reductions are utilized to obtain boundary
values at geoid level according to the Stokes problem that requires a mass-free space outside
the boundary surface (Heiskanen and Moritz, 1967, Chapter 3). By applying the remove-
compute-restore technique (Forsberg, 1984, Sect. 4) or residual terrain modeling (Forsberg
and Tscherning, 1997), topographic-isostatic reductions can also be used to smooth the
high- and mid-frequency signal content of gravity field observations. The main benefit
of such a procedure is an improved numerical stability for interpolation and prediction
tasks as well as field transformations. One example is the stabilization of the harmonic
downward continuation process of airborne or satellite-based gravity field observations
(Novák et al., 2003; Makhloof and Ilk, 2008). While in the present paper the smoothing
behavior of topographic-isostatic signals will be analyzed, there are many other geodetic
and geophysical applications that require precise topographic mass reductions or even
account for a compensation of deeper lying mass components. This includes, for instance,
the compilation of combined high-resolution gravity field models (Fecher et al., 2013; Hirt
et al., 2013) or investigations of structures in the Earth’s crust (Álvarez et al., 2012; Novák
and Tenzer, 2013).
The present paper focuses on the topographic-isostatic reduction of the second-order

derivatives of the Earth’s gravitational potential V as observed by ESA’s satellite mission
GOCE. These derivatives can be arranged in the symmetric Marussi tensor M, where

Mij = ∂2V (x1, x2, x3)
∂xi ∂xj

= Mji, i, j ∈ {1, 2, 3} (1)

are its physical components known as gravity gradients that are usually specified in a
local Cartesian coordinate system. Based on the concept of satellite gravity gradiometry
(Rummel and Colombo, 1985), GOCE measures gravity gradients at an altitude of about
250 km. Within the measurement bandwidth of the GOCE gradiometer (5 to 100 mHz),
the main diagonal tensor components M11,M22,M33 and the off-diagonal component M13
are observed with a precision of about 1 to 2 mE/

√
Hz (1 E = 10−9 s−2), while the other

off-diagonal components M12 and M23 are less accurately measured with a precision of
about 1 E/

√
Hz (Rummel et al., 2011).

Previous investigations based on simulated GOCE gravity gradients have shown that
significant smoothing effects can be achieved by considering topographic-isostatic reductions
(Wild-Pfeiffer, 2007, 2008; Janák et al., 2012). Furthermore, a closed loop simulation
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presented in Janák and Wild-Pfeiffer (2010) verified the benefit of incorporating topographic-
isostatic information into the downward continuation process of satellite gradiometry
measurements.
Due to the high sensitivity of gravity gradients, a refinement of the commonly used

topographic-isostatic reduction method is recommended. In comparison to conventional
modeling approaches, where topographic masses are usually characterized with a constant
density value, the advanced Rock-Water-Ice (RWI) method has been developed by Grombein
et al. (2010, 2011). This method applies a three-layer decomposition of the topography,
in which the rock, water, and ice masses are modeled individually with layer-specific
density values. In terms of isostasy, the classical Airy-Heiskanen model is adapted to the
RWI approach and extended by means of a seismologically derived depth model of the
Mohorovičić discontinuity.

In previous studies, the smoothing impact of topographic-isostatic reductions on GOCE
gravity gradients was analyzed by conducting statistical inferences in the space domain
(Wild-Pfeiffer, 2007, 2008; Janák et al., 2012; Grombein et al., 2014). The degree of
smoothing is thereby evaluated based on the percentage changes in the standard deviation
and range of the gradients before and after reduction.

In addition to this approach, this paper uses the continuous wavelet transform to assess
the performance of topographic-isostatic reductions. Analyzing gradient time series by
means of wavelets has the advantage of simultaneously examining the signal structure in
both time and frequency domains.
Taking advantage of their prominent time-frequency localization, wavelets have been

applied for pattern recognition in geoscientific applications (Keller, 2004, Sect. 3.1), e.g.,
characterizing temporally variable features of polar motion (Gibert et al., 1998; Liu et al.,
2007), studying bathymetric profiles and seafloor sediments (Little et al., 1993; Atallah
et al., 2002), and detecting cycle slips in observations from the U.S. Global Positioning
System (GPS) (Collin and Warnant, 1995; Yi et al., 2006).
Furthermore, wavelet algorithms contribute to reducing multipath effects on GPS mea-

surements (Satirapod and Rizos, 2005; Wu et al., 2009), particularly in the form of an
adaptive filter combined with the cross-validation technique (Zhong et al., 2008). In order
to appropriately assess GPS phase errors, Satirapod et al. (2001) used a wavelet-based
method to decompose observation residuals into unmodeled systematic biases and random
measurement noise. By combining the empirical mode decomposition (EMD) and wavelet
techniques, Wang et al. (2009) proposed an improved EMD-wavelet approach to mitigate
systematic errors in GPS phase observations. In the context of GPS stochastic modeling,
Luo (2014, Sect. 8.1.7 and 8.2.7) incorporated wavelet transforms for visual inspection and
interpretation of the results from a residual-based temporal correlation analysis.

The paper is organized as follows: Section 2 describes the details and input data of the
RWI topographic-isostatic reduction method. In Sect. 3, the mathematical background of
the continuous Morlet wavelet transform is explained in a concise manner. Sect. 4 presents
the study area and the used GOCE gravity gradient data set. The results are discussed
in Sect. 5, where the degree of smoothing is analyzed and compared in both time and
frequency domains. Finally, Sect. 6 provides a summary and concluding remarks.
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Fig. 1. Geometry of a tesseroid used for mass discretization (Heck and Seitz, 2007); the
spherical coordinates (r, ϕ, λ) are referred to the geocentric Earth-fixed equatorial reference
system defined by the base vectors e1, e2, e3.

2. RWI topographic-isostatic reduction method
Using forward modeling, the impact of topographic-isostatic masses on gravity gradients
can generally be obtained by evaluating the second-order derivatives of Newton’s integral
(Heiskanen and Moritz, 1967, p. 3):

Mij(P ) = G

∫∫∫
Ω

∂2

∂xi ∂xj

ρ

`
dΩ, (2)

where G denotes Newton’s gravitational constant, ρ = ρ(Q) is the location-dependent
mass density function, and ` = `(P,Q) is the Euclidean distance between the attracted
computation point P and the running integration mass point Q. The integration domain
Ω extends over the topographic and isostatic masses, requiring global information on
the Earth’s geometry and density. Generally, Newton’s integral in Eq. (2) can either be
evaluated in the space domain by direct integration methods or in the frequency domain
by spectral approaches (Kuhn and Seitz, 2005; Wild-Pfeiffer and Heck, 2007; Tenzer and
Novák, 2013).
According to the grid resolution of the used input data, a mass discretization of the

volume integrals in Eq. (2) has to be performed. By using space domain techniques, the
integration domain Ω is decomposed into elementary mass bodies Ω∗i with constant density
values, where Ω = ⋃Ω∗i . For applications at a global scale, a discretization using tesseroid
mass bodies (spherical prisms) is particularly beneficial (Heck and Seitz, 2007; Wild-Pfeiffer,
2008). As shown in Fig. 1, tesseroids are bounded by geocentric spherical coordinate lines
(r, ϕ, λ) and are therefore directly related to the curvature of the Earth. Representing
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gravity gradients in a local north-oriented frame (LNOF), where the x1-axis points north,
the x2-axis west, and the x3-axis upwards in the geocentric radial direction, optimized
tesseroid formulas are used as proposed by Grombein et al. (2013):

{
M∗ij(P )

}
LNOF

= Gρ

r2∫
r1

ϕ2∫
ϕ1

λ2∫
λ1

Nij(P,Q) dΩ∗, (3)

where dΩ∗ = r′2 cosϕ′ dr′ dϕ′ dλ′ is the spherical volume element. The integral kernel
function of Eq. (3) can be formulated as

Nij(P,Q) =
(3∆xi∆xj

`5
− δij
`3

)
, (4)

where

∆x1 = r′
[
cosϕ sinϕ′ − sinϕ cosϕ′ cos

(
λ′ − λ

)]
,

∆x2 = −r′ cosϕ′ sin
(
λ′ − λ

)
,

∆x3 = r′
[
sinϕ sinϕ′ + cosϕ cosϕ′ cos

(
λ′ − λ

)]
− r, (5)

denote the coordinate differences between P (r, ϕ, λ) and Q(r′, ϕ′, λ′),

` =
√

∆x1
2 + ∆x2

2 + ∆x3
2, (6)

and δij is the Kronecker delta, i.e., δij = 1 if i = j, and δij = 0 otherwise.

2.1. Topographic reduction

To characterize the topographic mass distribution, the 5′ × 5′ global topographic database
DTM2006.0 (Pavlis et al., 2007) is utilized, which provides information on surface elevation,
ocean and lake depth, as well as ice thickness. Moreover, each grid element is classified into
one of the following six terrain types: dry land above mean sea level (MSL), lake or pond,
ocean, grounded glacier, oceanic ice shelf, dry land below MSL. As each of these terrain
types can be represented by a rock, water, and ice proportion (see Fig. 2a), DTM2006.0
allows to characterize topographic masses with variable density values.
A simple and common way to account for differences in density is the concept of rock-

equivalent heights, where the DTM heights are condensed such as to refer to a constant
reference density (Rummel et al., 1988; Kuhn and Seitz, 2005; Hirt et al., 2012). The
main drawback of this approach is that the geometry of the mass distribution changes
considerably if the actual density differs strongly from the adopted constant value (Tsoulis
and Kuhn, 2007). As numerically shown in Grombein et al. (2010), this deficiency has a
significant impact on the topographic reduction signal at the GOCE satellite altitude.

To establish a more realistic topographic model, the RWI method is used, which enables
a rigorous separate modeling of topographic masses with variable density values. For this
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Fig. 2. Schematic representation of the Rock-Water-Ice (RWI) topographic model and the
associated modified Airy-Heiskanen isostatic concept. Note that a planar illustration is
used for the purpose of simplification, whereas all formulas for the RWI model correspond
to a spherical (or ellipsoidal) approximation.

purpose, the information from DTM2006.0 is exploited to construct a more appropriate
three-layer RWI terrain and density model parameterized by the geodetic coordinates

Bk = 90◦ − (k − 1/2) ·∆B, k = 1, . . . , n ∈ N, (7)
Ll = (l − 1/2) ·∆L, l = 1, . . . ,m ∈ N, (8)

where ∆B = ∆L = 5′, n = 2160, and m = 4320. Each grid element (k, l) of this model
contains a rock (1), water (2), and ice (3) component with different MSL heights of
the corresponding upper boundary surfaces (h1, h2, h3) and layer-specific density values
(ρ1 = 2670 kg m−3, ρ2 = 1000 kg m−3, ρ3 = 920 kg m−3).

To calculate the topographic reduction signal, each grid element of the RWI model
is represented by three vertically arranged tesseroids with different density values. The
geodetic coordinates (Bk, Ll) are thereby transformed to the corresponding geocentric
spherical coordinates (ϕk, λl) using the formulas provided by Heck (2003, p. 69):

ϕk = arctan
( 1

1 + e′2
tanBk

)
, λl = Ll, (9)

where the square of the second numerical eccentricity is set to e′2 = 0.006 739 496 775 48
according to the parameters of the GRS80 reference ellipsoid (Moritz, 1980). Furthermore,
taking the ellipticity of the Earth’s shape into account, the tesseroids are fixed on the
surface of the GRS80 ellipsoid by introducing a latitude-dependent Earth radius (Heck,
2003, p. 68), i.e.,

R0(ϕk) = a√
1 + e′2 sin2 ϕk

, (10)
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where a = 6 378 137 m is the semi-major axis of the GRS80 ellipsoid. The geocentric radii of
the upper boundary surfaces of rock, water, and ice are then approximated by R1 = R0 +h1,
R2 = R0 + h2, and R3 = R0 + h3, respectively (see Fig. 2b).

By applying the superposition principle, topographic reductions based on the RWI model
are calculated as the sum of the impact over all individual tesseroids:

{
MTopo
ij (P )

}
LNOF

= G
n∑
k=1

m∑
l=1

3∑
s=1

ρs

r2∫
r1

∫∫
σ∗
kl

Nij(P,Q) dΩ∗, (11)

where r1 = Rs−1, r2 = Rs according to Fig. 2b, and

σ∗kl =
[
ϕk −

∆ϕ
2 , ϕk + ∆ϕ

2

]
×
[
λl −

∆λ
2 , λl + ∆λ

2

]
(12)

denotes the spherical tesseroid base surface associated with the grid element (k, l). As the
integration over σ∗kl comprises elliptic integrals, Eq. (11) can only be evaluated approximately.
Therefore, in analogy to Heck and Seitz (2007), a Taylor series expansion of the integral
kernel Nij(P,Q) and a subsequent integration is performed. The applied evaluation rules
are explicitly presented in Grombein et al. (2013).

2.2. Isostatic reduction

The isostatic masses compensate the topographic load and can be quantified by applying a
mass equality condition with respect to a particular normal compensation depth D (see
Fig. 2b). The classical Airy-Heiskanen isostatic concept (Heiskanen and Moritz, 1967,
p. 135ff.) uses a local and column-based mass compensation that can be easily adapted
to the previously described RWI decomposition method. For each mass column, the mass
equality condition can be expressed by

mIso =
3∑
s=1

ms, (13)

where mIso denotes the compensating isostatic mass, and m1,m2, and m3 are the masses
of the topographic rock, water, and ice proportions, respectively. In the classical approach
of Airy-Heiskanen, the thickness d′ of an isostatic mass column varies, while its density
contrast ∆ρ is kept constant. In this case, D + d′ corresponds to the assumed depth
of the boundary surface between the Earth’s crust and mantle, known as Mohorovičić
discontinuity (Moho), and ∆ρ represents the crust-mantle density contrast. This strongly
simplified concept has two main disadvantages: 1) It fails over deep ocean trenches, where
d′ may rise above the ocean bottom (Wild and Heck, 2005), and 2) it does not reflect the
lateral heterogeneity in ∆ρ (Kaban et al., 2004).
To overcome these deficiencies, several attempts have been made by varying either the

normal compensation depth D or the density contrast ∆ρ, as well as by applying different
isostatic concepts over continental and ocean areas (Wild and Heck, 2005; Hirt et al., 2012).
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As such combinations do not significantly influence the smoothing behavior at satellite
altitude, improvements can rather be made by utilizing additional geophysical information.
Therefore, the Airy-Heiskanen concept is modified by incorporating seismic Moho depths
dM . In particular, D + d′ is set to dM for each mass column, which fixes the geometry of
isostatic masses (see Fig. 2b). Since the mass equality condition according to Eq. (13) is
no longer satisfied for a constant density, Grombein et al. (2011, 2014) suggested using
variable density values ∆ρ = ∆ρ(k, l), which implies a location-dependent crust-mantle
density contrast. Employing spherical approximation, and regarding Fig. 2b, Eq. (13) can
be formulated as

∆ρ
R0−D∫

R0−dM

r′2 dr′ =
3∑
s=1

ρs

Rs∫
Rs−1

r′2 dr′. (14)

Accordingly, for each grid element (k, l), the crust-mantle density contrast is computed as

∆ρ =

3∑
s=1

ρs
(
R3
s −R3

s−1
)

(R0 −D)3 − (R0 − dM)3 . (15)

In order to accommodate the isostatic information to the topographic model, a 5′ × 5′
global grid of smoothed Moho depths dM is derived from the 2◦ × 2◦ global CRUST 2.0
model (Bassin et al., 2000) by harmonic analysis and synthesis (Wittwer et al., 2008;
Abd-Elmotaal et al., 2014). For the normal compensation depth D, an optimal value of
31 km was derived and is applied in the RWI approach for the definition of isostatic masses.

Analogously to Eq. (11), the isostatic reduction applied to the gravity gradients is
calculated by {

M Iso
ij (P )

}
LNOF

= G
n∑
k=1

m∑
l=1

∆ρ
r2∫
r1

∫∫
σ∗
kl

Nij(P,Q) dΩ∗, (16)

where r1 = R0− dM and r2 = R0−D according to Fig. 2b. Again the numerical evaluation
of Eq. (16) is performed by means of Taylor series expansions.

2.3. Reduction values at GOCE satellite altitude

To obtain an impression of the magnitude of the RWI-based reduction values, Fig. 3a
and 3b visualize the topographic and isostatic effects on the radial-radial gravity gradient
component M33, evaluated on a 5′ × 5′ global grid at the mean altitude of the GOCE
satellite (h = 254.9 km). Both reductions reach extreme values of about ±8 E and largely
cancel out each other. Thus, the combined topographic-isostatic reductions{

M
T/I
ij (P )

}
LNOF

=
{
MTopo
ij (P )

}
LNOF

+
{
M Iso
ij (P )

}
LNOF

(17)

are nearly one order of magnitude smaller, i.e., about ±1 E (see Fig. 3c). A strong local
correlation between MT/I

33 and the topography can be detected, where the maximum values
are found in the regions with highly variable topography like the Andes and the Himalayas.
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Fig. 3. Reduction values for the radial-radial gravity gradient component M33 evaluated
on a global grid at the mean GOCE satellite altitude of h = 254.9 km. (a) topographic
reductions MTopo

33 (see Eq. (11)), (b) isostatic reductions M Iso
33 (see Eq. (16)), (c) combined

topographic-isostatic reductions MT/I
33 (see Eq. (17)). All values refer to the LNOF.
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Fig. 4. Potential degree variances of the RWI model: topographic signal (TOPO, blue
curve), isostatic signal (ISOS, green curve), topographic-isostatic signal (TOIS, red curve).

By applying harmonic analysis, gridded values of RWI topographic-isostatic effects are
further used to derive a representation in spherical harmonics. The resulting global RWI
topographic-isostatic gravity field model can be downloaded at http://www.gik.kit.edu/
rwi model.php in terms of spherical harmonic coefficients up to degree and order 1800. Note
that there are three different versions available: RWI TOPO 2012 (topographic signal),
RWI ISOS 2012 (isostatic signal), and RWI TOIS 2012 (combined topographic-isostatic
signal). In Fig. 4, the spectral information of each model version is displayed in terms of
potential degree variances. As can be expected, the influence of the isostatic component is
mainly regional and shows a decreasing effect on the combined topographic-isostatic signal
with an increasing spherical harmonic degree.

3. Continuous Morlet wavelet transform

To assess the smoothing effect of topographic-isostatic reductions on GOCE gravity gradi-
ents, the continuous Morlet wavelet transform is employed in this study, which enables a
signal component analysis in both time and frequency domains.

3.1. Wavelets and Morlet wavelet

Wavelets are small packages of wave-like oscillations that approach zero at both ends.
Morlet et al. (1982a,b) introduced wavelets as a family of functions derived by translating
and dilating a single function known as the “mother wavelet” ψ(t):
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3. Continuous Morlet wavelet transform

ψa,b(t) = 1√
a
ψ

(
t− b
a

)
, (18)

where a ∈ R+ denotes the scale (or dilation) parameter measuring the degree of compression,
and b ∈ R is the position (or translation) parameter providing the time location of the
wavelet. For 0 < a < 1, ψa,b(t) represents the contracted version of ψ(t) and corresponds to
high frequencies. On the other hand, if a > 1, ψa,b(t) has a larger time width than ψ(t) and
corresponds to low frequencies. The resolution of wavelets at different scales varies in the
time and frequency domains according to Heisenberg’s uncertainty principle (Heisenberg,
1927). For large (small) scale values, the resolution is coarse (fine) in the time domain, but
fine (coarse) in the frequency domain (Debnath, 2002, p. 12).

One important property of a wavelet is the so-called admissibility condition, mathemati-
cally expressed as

0 < Cψ = 2π
+∞∫
−∞

∣∣∣ψ̂(ω)
∣∣∣2

|ω|
dω <∞, (19)

where ψ̂(ω) denotes the Fourier transform of the mother wavelet ψ(t) (Debnath, 2002,
p. 14). From Eq. (19) it follows that

ψ̂(ω = 0) = 0⇐⇒ 1√
2π

+∞∫
−∞

ψ(t)dt = 0, (20)

implying that the Fourier transform of a wavelet must be equal to zero at the zero frequency.
Equivalently, in the time domain, the wavelet must be an oscillatory function with zero
mean (Holschneider, 1995, p. 4).

One of the most frequently used mother wavelets in geodetic and geophysical applications
is the symmetric Morlet wavelet (Goupillaud et al., 1984). Following Trauth (2007, p. 115),
the Morlet wavelet can be approximated by

ψM (t) = π−1/4eiω0te−t
2/2, (21)

where eiω0t = cos(ω0t) + i sin(ω0t) is Euler’s formula, t is the non-dimensional time, and
ω0 ≥ 5 is the wave number representing the number of oscillations within the wavelet itself.
The Fourier transform of ψM (t) is

ψ̂M (ω) = π−1/4e−(ω−ω0)2/2, (22)

indicating that the Morlet wavelet can be obtained by shifting a Gaussian function in
Fourier space (Torrence and Compo, 1998). By substituting ω = 0, Eq. (22) becomes

ψ̂M (ω = 0) = π−1/4e−ω
2
0/2, (23)
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Fig. 5. Examples of the real-valued Morlet wavelet in time and frequency domains. (a)Mor-
let wavelets ψM (t) (see Eq. (24)), (b) Fourier transforms ψ̂M (ω) (see Eq. (22)). Note that
t is dimensionless.

which is approximately equal to zero if the wave number ω0 is large enough, e.g., ω0 ≥ 5
(Holschneider, 1995, p. 31). For different wave numbers ω0, Fig. 5 illustrates examples of
the real-valued Morlet wavelet with eiω0t = cos(ω0t), i.e.,

ψM (t) = π−1/4 cos(ω0t)e−t
2/2, (24)

as well as the associated Fourier transforms. In the time domain (see Fig. 5a), the Morlet
wavelet with ω0 = 5 better represents an oscillatory function with zero mean. In the
frequency domain (see Fig. 5b), Eq. (20) is not satisfied for ω0 = 2, while ψ̂M (ω = 0) is
insignificantly different from zero for ω0 = 5. Accordingly, in this study, the real-valued
Morlet wavelet with ω0 = 5 is used to perform the continuous wavelet transform.

3.2. Continuous wavelet transform

The continuous wavelet transform (CWT) decomposes a function by wavelets and operates
over each possible scale a and translation b. The CWT of a function F (t) ∈ Lp(R),
1 ≤ p <∞, is written as

Wψ[F ](a, b) =
+∞∫
−∞

F (t)ψ∗a,b(t)dt = 1√
a

+∞∫
−∞

F (t)ψ∗
(
t− b
a

)
dt, (25)
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Signal

Wavelet

(a)

Signal

Wavelet

(b)

Signal

Wavelet

(c)

Signal

Wavelet

(d)

Fig. 6. Continuous wavelet transform (CWT) using the MATLAB R© Wavelet ToolboxTM
(MATLAB function: cwt).

where Lp(R) is the vector space of all complex-valued p-th power Lebesgue integrable
functions defined on R, and ψ∗ is the complex conjugate of ψ defined on the open time and
scale real (b, a) half plane (Holschneider, 1995, p. 5). The numbers Wψ[F ](a, b) are referred
to as wavelet coefficients of the function F (t) with respect to the mother wavelet ψ(t).
Generally, the output function Wψ[F ](a, b) is real if the CWT is applied with a real-valued
mother wavelet. Like the Fourier transform, the CWT is also linear. Differing from the
Fourier transform, which is normally localized only in the frequency domain, the CWT is
localized in both time and frequency domains via translations and dilations, respectively.

In this study, the CWT is carried out using the MATLAB R© Wavelet ToolboxTM. In this
implementation, the wavelet coefficients Wψ[F ](a, b) are obtained by the sums of the signal
F (t) multiplied by the scaled and shifted versions of the mother wavelet ψ∗a,b(t) over all
time t (see Eq. (25)). As schematically illustrated in Fig. 6, the CWT is performed within
the following steps:

1. Select a mother wavelet (e.g., the real-valued Morlet wavelet) and compare it to a
section at the start of the original signal (see Fig. 6a).

2. Compute the correlation between the wavelet and this signal section (see Fig. 6a),
where the result depends on the shape of the chosen wavelet.

3. Shift the wavelet and repeat steps 1 and 2 until the whole signal has been covered
(see Fig. 6b).

4. Scale the mother wavelet and repeat steps 1 through 3 (see Fig. 6c and 6d).

5. Repeat steps 1 through 4 for all scale values.
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Fig. 7. Determination of the center frequency for the real-valued Morlet wavelet with a
wave number of ω0 = 5 (see Eq. (24) and Fig. 5). (a) Wavelet approximation, (b) frequency
determination. Note that t and f are dimensionless.

The wavelet coefficients Wψ[F ](a, b) obtained at different scales a and positions b constitute
the results of a regression of the signal F (t) on the wavelets ψa,b(t). Based on the center
frequency of the mother wavelet ψ(t), denoted as fm, the pseudo-frequency fa corresponding
to scale a can be computed by means of

fa = fm
a ·∆t , (26)

where ∆t is the sampling period of F (t) (MATLAB function: scal2frq). The basic idea
behind the center frequency is to approximate a given mother wavelet using a purely
periodic signal with frequency fm (MATLAB function: centfrq). A reasonable choice for
fm is the frequency at which the Fourier amplitude spectrum of the mother wavelet is as
large as possible.
Taking the real-valued Morlet wavelet with ω0 = 5 as an example, Fig. 7 shows the

results of wavelet approximation and center frequency determination. It can be seen from
Fig. 7a that the main lobe of the Morlet wavelet is well approximated by the periodic
signal with a frequency of fm = 0.8125. At this frequency, the Fourier amplitude spectrum
reaches its maximum, as illustrated in Fig. 7b.
To visualize the results of a CWT, the so-called scalogram is commonly used, which

communicates the time-frequency localization property of wavelet transforms. The x-axis of
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a wavelet scalogram represents time t, the y-axis represents scale a or pseudo-frequency fa
derived from Eq. (26), and the z-axis represents absolute wavelet coefficients |Wψ[F ](a, b)|
that can be interpreted as signal amplitudes (or energies) (Trauth, 2007, p. 115).

4. Study area and data sets
Previous studies have mainly analyzed the impact of topographic-isostatic reductions on
GOCE gravity gradients on a global scale and showed significant smoothing effects in
regions with highly variable topography (e.g. Grombein et al., 2014). This paper will take
the Himalayas as a representative example that provides topographic-isostatic reductions
on a regional scale and at different magnitudes (see Fig. 3c).
The GOCE gradiometry measurements of Level 2 are available by the two products

EGG NOM 2 and EGG TRF 2 (Gruber et al., 2010, Sect. 5). For the intended analysis,
the EGG NOM 2 gravity gradients, related to the instrument-fixed Gradiometer Reference
Frame (GRF), are more suitable, as they are calibrated and corrected, but not filtered or
rotated (Bouman et al., 2011). Moreover, in contrast to the EGG TRF 2 gravity gradients,
the less accurate components M12 and M23 contain the original measurements and are not
replaced by modeled gradients (Gruber et al., 2010, Sect. 5). The EGG NOM 2 gravity
gradients are represented as time series along the satellite orbit with the time tags

tp = t0 + p ·∆t, p = 0, . . . , q ∈ N0, (27)

which are specified in GPS time and have a sampling period of ∆t = 1 s. For the numerical
investigations, a representative time series of 1001 epochs is selected, when the GOCE
satellite crossed the Himalayan region on Nov. 4, 2010 (t0 = 972 867 514 s, q = 1000). For
each time tag tp, the observed gravity gradients Mij(tp) and the associated 3-dimensional
measurement positions P (tp) = [r(tp), ϕ(tp), λ(tp)] were obtained from the GOCE Virtual
Archive at http://eo-virtual-archive1.esa.int. In Fig. 8, the black curve shows the GOCE
ground track for the selected time, while Fig. 9 illustrates the corresponding topographic
profile.

As presented in Table 1, the time series covers different topographic features crossed by
the GOCE satellite. Starting in the lowlands of the Central Siberian Plateau, the satellite
first crossed the Altai Mountains (ALT, T1), the Tian Shan Mountains (TSM, T2), and the
Taklamakan Desert Basin (TDB, T3). Then, it followed the rapidly increasing topography
of the Kunlun Mountains (KUN, T4) marking the northern edge of the highlands of the
Tibetan Plateau (TPL, T5). The Himalayan Mountain Range (HMR) is passed by the
satellite at T6 toward the end of the TPL, where the topography decreases strongly in
the direction to the North Indian River Plain (NIR, T7). Afterward, the satellite crossed
the Indian midland with some lower mountain ranges like the Eastern Ghats (EAG, T8),
before it reached the Indian East Coast (IEC, T9). Following the continuously increasing
bathymetric depth of the Indian Ocean, the satellite striped the island of Sri Lanka (ISL,
T10). The selected time tags T1, . . . , T10 are summarized in Table 1 and marked by red
dots in Figs. 8 and 9.
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Fig. 8. DTM2006.0 topography of the Himalayan region. The black curve visualizes the
GOCE ground track for the selected time series. The start position of the time series is
indicated by a star and the flight direction by an arrow. Additionally, red dots mark the
time tags T1, . . . , T10 as specified in Table 1.
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the selected time series. Red dots correspond to those shown in Fig. 8. Topographic heights
are derived from DTM2006.0.
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Table 1. Time tags of topographic features crossed by the GOCE satellite within the
selected time series.

Time tag Topographic feature Abbr.

T1 = t150 Altai Mountains ALT
T2 = t250 Tian Shan Mountains TSM
T3 = t300 Taklamakan Desert Basin TDB
T4 = t350 Kunlun Mountains KUN
T5 = t400 Tibetan Plateau TPL
T6 = t450 Himalayan Mountain Range HMR
T7 = t500 North Indian River Plain NIR
T8 = t600 Eastern Ghats EAG
T9 = t650 Indian East Coast IEC
T10 = t800 Island of Sri Lanka ISL

5. Assessment of topographic-isostatic reductions

Using the measurement positions P (tp) of the GOCE satellite as computation points, the
RWI-based topographic-isostatic reductionsMT/I

ij (tp) are calculated along the selected orbit
by means of Eq. (17). As described in Sect. 2, these reductions are related to LNOF, whereas
the measured EGG NOM 2 gravity gradients Mij(tp) are specified in the instrument-fixed
GRF. In this orthogonal frame, the x1-axis points in the flight direction, the x2-axis is
orthogonal to the instantaneous orbit plane, and the x3-axis points upwards, approximately
in the geocentric radial direction.
Applying epoch-wise rotation matrices RGRF

LNOF(tp), the computed reduction values are
transformed from LNOF to GRF by evaluating the matrix operation{

MT/I
}
GRF

= RGRF
LNOF ·

{
MT/I

}
LNOF

·
(
RGRF

LNOF

)T
(28)

for every time tag tp. A detailed description of this transformation step is provided in
Gruber et al. (2010, Sect. 4.4) and Grombein et al. (2011).
In Fig. 10, the time series of the rotated RWI-based topographic-isostatic reductions

M
T/I
ij (tp) are displayed for each gravity gradient component. According to their magnitudes,

the gradients are classified into two groups: 1) M11, M13, and M33; 2) M12, M22, and M23.
Generally, the first group exhibits larger signal amplitudes (see the upper row of Fig. 10)

and stronger correlations with the topographic profile illustrated in Fig. 9. As the x1-
derivative is particularly sensitive to structures extending in east-west direction (e.g., most
of the crossed mountain ranges), the time tags T1, . . . , T10 can be identified as local maxima
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Fig. 10. Time series of the RWI-based topographic-isostatic reductionsMT/I
ij (tp) calculated

along the GOCE satellite orbit. Red dots mark the time tags T1, . . . , T10 as specified in
Table 1. Note the different scale of the y-axis in the first and second row.
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Fig. 11. Band-pass filtered time series M ij(tp) (blue curve) and the corresponding reduced
time series δM ij(tp) (green curve). Red dots mark the time tags T1, . . . , T10 as specified in
Table 1. Note the different scale of the y-axis for the component M22.
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and minima of the gradient signal for M11. Moreover, in the component M33 that reflects
radial changes, these time tags can also be clearly localized, where the TPL area shows the
largest amplitudes (T3–T7). In contrast, the extreme values of the mixed derivative M13
indicate strong topographic increases (T3–T4) or decreases (T6–T7).

The gradients of the second group comprise the x2-derivative that is particularly affected
by structures in north-south direction. In the absence of such topographic formations in
the Himalayan region, these gradients possess smaller signal amplitudes (see the lower row
of Fig. 10). Nevertheless, the most significant amplitudes can also be associated with the
time tags T1, . . . , T10, in particular for M12.
In order to analyze the smoothing impact of the proposed RWI topographic-isostatic

reduction method, the observed GOCE gravity gradients Mij(tp) are compared to the
reduced gradients resulting from

δMij(tp) = Mij(tp)−
{
M

T/I
ij (tp)

}
GRF

. (29)

To provide a deeper insight into the high- and mid-frequency signal components, this
comparison will be performed within the limited measurement bandwidth of the GOCE
gradiometer (MBW, 5 to 100 mHz). For this purpose, the gravity gradient time series are
filtered to the MBW by applying a symmetric, non-recursive band-pass filter as presented
by Schuh (2010): M ij(tp)

δM ij(tp)

 =
N∑

k=−N
c|k|

Mij(tp−k)
δMij(tp−k)

, (30)

where the used filter coefficients c|k| are adapted from Hamming (1998, p. 127ff.) and are
explicitly provided in the Appendix . As proposed by Schuh (2010) the filter length is set
to N = 1000 for this investigation. Note that in order to evaluate Eq. (30), the time series
of Mij(tp) and δMij(tp) are extended by 1000 s in both directions to overcome the warm-up
of the filter.

5.1. Analysis in the space domain

In Fig. 11, the time series of the band-pass filtered GOCE measurements M ij(tp) and the
corresponding reduced observations δM ij(tp) are illustrated. Significant smoothing effects
can be detected for the gradient components M11, M13, and M33, which is particularly
observable at the selected time tags T1, . . . , T10 (see the upper row of Fig. 11). As an
example, signal amplitudes affected by the TPL area (T3–T7) can be largely reduced. From
HMR (T6) to NIR (T7), when the satellite crossed a strongly decreasing topography, the
most significant smoothing effects are present. Some smaller reductions can be seen for
TSM (T2), EAG (T8), IEC (T9), and ISL (T10). Only insignificant changes are visible at the
beginning and the end of the time series, when the satellite crossed the Central Siberian
Plateau and the Indian Ocean. Regarding the gradient components M12, M22, and M23
(see the lower row of Fig. 11), smoothing effects can only be detected for M22, especially
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between ALT (T1) and HMR (T6). For the less accurately measured gradients M12 and
M23, the observations are dominated by high-frequency noise, leading to no visible changes
between the measured and reduced signals.
As proposed in Janák et al. (2012) and Grombein et al. (2014), the performance of

topographic-isostatic reductions can be analyzed using statistical inferences. For this
purpose, the degree of smoothing is quantified by percentage changes in the standard
deviation (std) and range (rng) of the time series before and after reduction, i.e.,

P std
ij =

[
std(M ij)− std(δM ij)

]
/std(M ij), (31)

P rng
ij =

[
rng(M ij)− rng(δM ij)

]
/rng(M ij). (32)

In Table 2, these values are provided for each gradient component. Coinciding with the
visual inspection, a significant impact of smoothing can be observed forM11, M13, M33, and
M22. In this case, the standard deviations can be reduced by about 50 %, while the changes
in range amount to about 48 %. Regarding the components M12 and M23, only insignificant
smoothing effects are detectable. This indicates that the high-frequency measurement
noise makes smoothing by means of topographic-isostatic reductions not feasible for these
components (Grombein et al., 2014).

Table 2. Percentage changes Pij in the standard deviation (std) and range (rng) of the
GOCE gravity gradients before and after applying topographic-isostatic reduction (see
Eqs. (31) and (32)).

std [%] rng [%]

P11 51.5 48.8
P13 51.1 48.2
P33 50.2 48.2

P12 5.0 −1.2
P22 48.5 46.4
P23 4.7 8.0

5.2. Analysis in the frequency domain

To analyze the smoothing impact of the RWI-based topographic-isostatic reductions in the
frequency domain, a wavelet-based assessment is performed. Using the real-valued Morlet
wavelet as the mother wavelet, the CWT is applied to the band-pass filtered measurement
signals M ij(tp) and the corresponding reduced signals δM ij(tp) (see Eqs. (24) and (25)).
The resulting dimensionless, absolute wavelet coefficients |Wψ| are visualized by means of
scalograms in Fig. 12. They represent the signal structure of the gradients in both time

90



5. Assessment of topographic-isostatic reductions

Time [s]

F
re

q
u

e
n

c
y
 [

m
H

z
]

 

 

M
11

0 250 500 750 1000

 4

 8

12

16

20

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Time [s]

F
re

q
u

e
n

c
y
 [

m
H

z
]

 

 

0 250 500 750 1000

 4

 8

12

16

20

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Time [s]

F
re

q
u

e
n

c
y
 [

m
H

z
]

 

 

M
13

0 250 500 750 1000

 4

 8

12

16

20

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Time [s]

F
re

q
u

e
n

c
y
 [

m
H

z
]

 

 

0 250 500 750 1000

 4

 8

12

16

20

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Time [s]

F
re

q
u

e
n

c
y
 [

m
H

z
]

 

 

M
33

0 250 500 750 1000

 4

 8

12

16

20

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Time [s]

F
re

q
u

e
n

c
y
 [

m
H

z
]

 

 

0 250 500 750 1000

 4

 8

12

16

20

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Time [s]

F
re

q
u

e
n

c
y
 [

m
H

z
]

 

 

M
12

0 250 500 750 1000

 4

 8

12

16

20

0.0

0.4

0.8

1.2

1.6

2.0

Time [s]

F
re

q
u

e
n

c
y
 [

m
H

z
]

 

 

0 250 500 750 1000

 4

 8

12

16

20

0.0

0.4

0.8

1.2

1.6

2.0

Time [s]

F
re

q
u

e
n

c
y
 [

m
H

z
]

 

 

M
22

0 250 500 750 1000

 4

 8

12

16

20

0.0

0.4

0.8

1.2

1.6

2.0

Time [s]

F
re

q
u

e
n

c
y
 [

m
H

z
]

 

 

0 250 500 750 1000

 4

 8

12

16

20

0.0

0.4

0.8

1.2

1.6

2.0

Time [s]

F
re

q
u

e
n

c
y
 [

m
H

z
]

 

 

M
23

0 250 500 750 1000

 4

 8

12

16

20

0.0

0.4

0.8

1.2

1.6

2.0

Time [s]

F
re

q
u

e
n

c
y
 [

m
H

z
]

 

 

0 250 500 750 1000

 4

 8

12

16

20

0.0

0.4

0.8

1.2

1.6

2.0

Fig. 12. Morlet wavelet scalograms of the band-pass filtered measurement signals M ij(tp)
(left panel) and the corresponding reduced signals δM ij(tp) (right panel). White dots mark
the time tags T1, . . . , T10 as specified in Table 1. Note that the displayed absolute wavelet
coefficients are dimensionless; consider the different color bar scales between (M11, M13,
M33) and (M12, M22, M23).
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Fig. 13. Percentage changes of the amplitude range of the GOCE gravity gradients before
and after applying topographic-isostatic reduction. Note that the frequency axes are plotted
on a logarithmic scale.

and frequency domains, where the colors reflect the signal amplitudes (or energies). The
frequency axis is limited to f ≤ 20 mHz, where the most significant signal structures can
be observed. Due to the used band-pass filter, signals with frequencies less than 5 mHz are
absent.

The scalograms visualized in the upper three rows of Fig. 12 are related to the gradients
M11, M13, and M33. The measured and reduced signals are displayed in the left and right
panel, respectively. All three gradients show quite similar characteristics, where most of
the amplitude peaks can be associated with the time tags T1, . . . , T10 marked by white dots.
The largest amplitudes can be detected in the frequency range of about 8 – 12 mHz between
TPL and EAG (T5–T8). Comparing the measured and reduced gradients with each other,
the absolute wavelet coefficients are strongly reduced from about 5–6 to 1–2, indicating
significant smoothing effects.

Analogously to Table 2 and Eq. (32), the degree of smoothing in the frequency domain
is quantified in Fig. 13, where the percentage changes of the amplitude range are plotted
against the frequency values of the MBW. In this context, the amplitude range is calculated
by subtracting the minimum (absolute) wavelet coefficient from the corresponding maximum
one. In the case of the gradient components M11, M13, and M33, the amplitude range can
be reduced by about 40 – 60 % for f < 40 mHz. For frequency values above 40 mHz, the
reduction rates decrease strongly for M13, while for M11 and M33 they remain at a level of
about 30 %.
The gradients M12, M22, and M23, displayed in the lower three rows of Fig. 12, exhibit

much smaller signals, where the different color bar scales of the scalograms should be noted.
Regarding the measured gradient M22, the frequency increases slightly between TSM and
NIR (T2–T7), which is consistent with the corresponding time series in Fig. 11. Comparing
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the scalograms of the measured and reduced signals, the absolute wavelet coefficients change
from about 0.8 to 0.4 (50 %), which supports the findings presented in Table 2 and Fig. 13.
Considering the less accurately observed components M12 and M23, the benefit of the

wavelet-based assessment becomes more obvious. As can be expected from the associated
time series in Fig. 11, the scalograms of these two components illustrate much more high-
frequency signals with f > 12 mHz. Moreover, the scalograms also indicate significant
signal structures at lower frequencies that are not clearly visible in the space domain
analysis. Examining the M12 component, larger amplitudes are found at frequencies
of about 8 – 10 mHz that can be attributed to the time tags ALT (T1), TSM (T2), and
TDB (T3). Although the high-frequency components still remain in the reduced signals,
significant smoothing effects can be detected for f < 10 mHz. Such a strong smoothing
impact cannot be realized in the space domain analysis, since all frequencies are superposed
(see Fig. 11 and Table 2). However, it can clearly be recognized and distinguished by the
frequency-dependent changing rates in Fig. 13.

6. Conclusions

In this paper, the smoothing effects of topographic-isostatic reductions on GOCE grav-
ity gradients have been analyzed. In addition to statistical inferences used in previous
investigations, a wavelet-based assessment has been proposed.

Taking the Himalayas as a suitable regional study area, topographic-isostatic reductions
were calculated along a representative GOCE satellite orbit. By applying forward modeling
based on mass discretization with tesseroids, these reductions were obtained using the
Rock-Water-Ice (RWI) method. This approach relies upon a three-layer decomposition
of the topography with variable density values and a modified Airy-Heiskanen concept
that incorporates seismic Moho depths. Comparing the calculated RWI-based reductions
with the topographic/bathymetric profile along the satellite ground track, representative
waypoints in different topographic regions have been specified.

In order to investigate the smoothing impact of topographic-isostatic reductions on
the high- and mid-frequency signals, the observed GOCE gravity gradients have been
compared to the corresponding reduced ones within the measurement bandwidth of the
GOCE gradiometer (5 to 100 mHz). In a first step, this comparison was performed in the
space domain by utilizing statistical inferences to quantify the degree of smoothing. The
results showed a significant reduction of the standard deviation and range of about 50 % for
the gradients M11, M22, M33, and M13, where the smoothing effects are highly correlated
with the topography. Furthermore, the less accurately observed gradients M12 and M23
seem to be insignificantly affected by topographic-isostatic reductions due to their high
measurement noise. These results confirm the findings of previous studies that analyzed
the smoothing effects on a global scale.
In a second step, a spectral analysis has been performed, where a continuous wavelet

transform was applied to the measured and reduced GOCE gravity gradients. The resulting
scalograms enable a signal component analysis in both time and frequency domains, clearly
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showing which frequencies are actually affected and reduced. Generally, the smoothing
impact of the RWI-based topographic-isostatic signals is confirmed, supporting the reduction
rates detected in the space domain analysis. The benefit of the spectral analysis is
particularly impressive be shown for the less accurately observed gradients M12 and
M23. For these components, the scalograms indicate significant smoothing effects at lower
frequencies of f < 10 mHz, which were invisible in the space domain analysis. Therefore, the
wavelet-based assessment can be considered as a much more powerful tool for the evaluation
of topographic-isostatic reductions than the commonly applied statistical inferences in the
space domain.
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Appendix
For the band-pass filter in Eq. (30) the filter coefficients used

c|k| =



2∆t(fh − fl), k = 0,

sin 2πf∆t
πk

∣∣∣fh
fl

sinπk/N
πk/N , k = 1, . . . , N − 1,

−1
2

N−1∑
j=−N+1

c|j|, k = N,

are adapted from Hamming (1998, p. 127ff.). The sampling period is denoted by ∆t, fl
and fh are the lower and upper cutoff frequencies, respectively, and N is the filter length.
In this study, these parameters have been set to ∆t = 1 s, fl = 5 mHz, fh = 100 mHz, and
N = 1000.
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Abstract. RWI TOPO 2015 is a new high-resolution spherical harmonic representation
of the Earth’s topographic gravitational potential that is based on a refined Rock-Water-Ice
(RWI) approach. This method is characterized by a three-layer decomposition of the Earth’s
topography with respect to its rock, water, and ice masses. To allow a rigorous separate
modeling of these masses with variable density values, gravity forward modeling is performed
in the space domain using tesseroid mass bodies arranged on an ellipsoidal reference surface.
While the predecessor model RWI TOPO 2012 was based on the 5′× 5′ global topographic
database DTM2006.0, the new RWI model uses updated height information of the 1′ × 1′
Earth2014 topography suite. Moreover, in the case of RWI TOPO 2015, the representation
in spherical harmonics is extended to degree and order 2190 (formerly 1800).
Besides a presentation of the used formalism, the processing for RWI TOPO 2015 is

described in detail, and the characteristics of the resulting spherical harmonic coefficients
are analyzed in the space and frequency domain. Furthermore, this paper focuses on
a comparison of the RWI approach to the conventionally used rock-equivalent method.
For this purpose, a consistent rock-equivalent version REQ TOPO 2015 is generated, in
which the heights of water and ice masses are condensed to the constant rock density.
When evaluated on the surface of the GRS80 ellipsoid, the differences of RWI TOPO 2015
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and REQ TOPO 2015 reach maximum amplitudes of about 1 m, 50 mGal, and 20 mE
in terms of height anomaly, gravity disturbance, and the radial-radial gravity gradient,
respectively. Although these differences are attenuated with increasing height above the
ellipsoid, significant magnitudes can even be detected in the case of the satellite altitudes
of current gravity field missions. In order to assess their performance, RWI TOPO 2015,
REQ TOPO 2015, and RWI TOPO 2012 are validated against independent gravity
information of current global geopotential models, clearly demonstrating the attained
improvements in the case of the new RWI model.

Keywords Gravity forward modeling · Topographic potential · Rock-Water-Ice (RWI)
decomposition · Tesseroids

1. Introduction

Global high-resolution digital terrain models (DTMs) provide precise information on
Earth’s topography. By applying gravity forward modeling (GFM), this data can be used to
determine the Earth’s topographic potential, i.e., the gravitational potential generated by
the attraction of the Earth’s topographic masses. These encompass the rock, water, and ice
masses of the continents, oceans, lakes, and ice sheets. With respect to a regularized Earth
model, the topographic potential combines the positive effect of the mass excesses above
a specified reference surface, e.g., the ellipsoid or geoid, and the negative effect of mass
deficits below this surface. While the topographic potential contributes to all spectral scales
of the gravity field, it particularly contains short wavelengths. This spectral characteristic
makes the topographic potential and related functionals valuable for various applications
in geodesy and geophysics.
On the one hand, many calculation methods in physical geodesy are embedded in a

remove-compute-restore framework, where topography information is used to smooth gravity
field observations, achieving a numerically stabilized interpolation and field transformation
(Forsberg, 1984, Sect. 4). Such a procedure is frequently used for harmonic downward
continuation of airborne and satellite-based measurements (Novák et al., 2003; Janák et al.,
2014; Grombein et al., 2014a) or gravimetric (quasi-)geoid determination (Omang and
Forsberg, 2000).
On the other hand, topography information can also be used for the spectral extension

of band-limited measurements or global geopotential models (GGMs), e.g., using residual
terrain modeling (Forsberg and Tscherning, 1997) to reduce the omission error of satellite-
based GGMs. Moreover, topography-implied gravity can be utilized to refine the spatial
resolution of terrestrial data sets. This is particularly important in regions where no or only
limited gravity data is available, as in Africa (Abd-Elmotaal et al., 2016). Here, topography-
implied gravity data is used as fill-in information for the construction of high-resolution
regional and global geopotential models, like EGM2008 (Pavlis et al., 2012).
Moreover, topographic information can be used to construct a synthetic Earth gravity

model (Kuhn and Featherstone, 2005; Baran et al., 2006) or to assess the performance of
satellite-based and combined GGMs (Tsoulis and Patlakis, 2013; Hirt et al., 2015). Last
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but not least, topographic mass reductions are required for the geoid determination based
on Stokes’ problem (Heiskanen and Moritz, 1967, Chapter 3).
In geophysical studies, topographic corrections of gravity field observations are used

to interpret crustal structures (Ebbing et al., 2001; Tenzer et al., 2012), to analyze mass
anomalies in the Earth’s interior (Wieczorek, 2007), or to perform a general lithospheric
modeling (Bouman et al., 2015). Furthermore, global information of the topographic
potential has been combined with GGMs to generate global Bouguer gravity maps (Balmino
et al., 2012; Claessens and Hirt, 2013).
Generally, the Earth’s topographic potential V Topo can be represented by Newton’s

integral (Heiskanen and Moritz, 1967, p. 3):

V Topo(P ) = G

∫∫∫
Ω

ρ

`
dΩ, (1)

where G = 6.672 · 10−11 m3 kg−1 s−2 denotes Newton’s gravitational constant, ρ = ρ(Q) is
the location-dependent mass density function, and ` = `(P,Q) is the Euclidean distance
between the attracted computation point P and the running integration mass point Q. The
integration domain Ω extends over the topographic masses, requiring global information
on the Earth’s geometry and its mass density distribution. As V Topo is harmonic outside
Ω, Newton’s integral in Eq. (1) can be expanded into a series of solid spherical harmonics
for P /∈ Ω. By using geocentric spherical coordinates (r, ϕ, λ), this spherical harmonic
expansion is expressed by Heiskanen and Moritz (1967, p. 59):

V Topo(P ) = GM

r

∞∑
n=0

(
R

r

)n n∑
m=0

(
C Topo
nm Y C

nm + S Topo
nm Y S

nm

)
, (2)

where GM is the geocentric gravitational constant, R is the radius of a reference sphere,
Y C

nm and Y S

nm are the fully normalized surface spherical harmonic functions of degree
n and order m, and C Topo

nm and S Topo
nm are the fully normalized spherical harmonic (SH)

coefficients. A major advantage of the representation in terms of spherical harmonics is that
the coefficients can be used to efficiently calculate various functionals of the topographic
potential in different heights (e.g., Barthelmes, 2013). In the following, a set of SH
coefficients (C Topo

nm , S Topo
nm ) up to a maximum degree Nmax is called a topographic gravity

field model (or topographic potential model).
According to the representations in Eqs. (1) and (2), different GFM methods have been

proposed that can be classified by space and frequency domain techniques (e.g., Kuhn and
Seitz, 2005). In Fig. 1, a general processing scheme for GFM in both domains is presented
and is briefly described in the following.
By using space domain GFM, Newton’s integral in Eq. (1) is evaluated by a mass

discretization. In the first step, the integration domain Ω is decomposed into elementary
mass bodies according to the grid resolution of the used DTM. Based on the specific
application, various mass bodies like point-masses, prisms or tesseroids can be used (e.g.,
Nagy et al., 2000; Heck and Seitz, 2007; Wild-Pfeiffer, 2008; Grombein et al., 2013).
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GFM based on Newton’s integral
Space domain GFM Frequency domain GFM

Mass discretization
(elementary bodies)

Analytical/numerical
integration

Superposition
principle

Potential values
V Topo

SHA of heights h
(raised to integer powers i)

Height coefficients
C

(hi)
nm , S

(hi)
nm

Series expansion of
height coefficients

Potential coefficients
C Topo
nm , S Topo

nm

SHA

SHS

Fig. 1. General processing scheme for GFM in the space and frequency domain. The
results of both GFM methods, i.e., potential values or coefficients, can be converted to each
other by means of spherical harmonic analysis (SHA) and synthesis (SHS).

Usually, each DTM grid element is represented by one mass body. In the second step,
the gravitational potential of each individual mass body is calculated analytically or by
approximate solutions. In the third step, the total topographic potential V Topo is calculated
as the sum of the potential values of all individual mass bodies (superposition principle).

For frequency domain GFM, Newton’s integral in Eq. (1) is evaluated through a transfor-
mation into the frequency domain (Rummel et al., 1988; Wieczorek, 2007; Hirt and Kuhn,
2012). In the first step, surface SH coefficients of global gridded DTM heights and its
integer powers are calculated via spherical harmonic analysis (SHA) for each integer power.
In the second step, the solid SH coefficients (C Topo

nm , S Topo
nm ) of the topographic potential

are calculated based on a series expansion of the inverse distance, involving the surface
SH coefficients obtained from the DTM heights. In the third step, the derived set of SH
coefficients (C Topo

nm , S Topo
nm ) can be used to calculate the topographic potential via spherical

harmonic synthesis (SHS) according to Eq. (2).
It is acknowledged that there are other GFM approaches that do not directly fit in this

general classification, such as Gruber et al. (2014), Abd-Elmotaal and Kühtreiber (2014).
In order to generate topographic gravity field models, frequency domain GFM is commonly

applied as these techniques directly provide the desired SH coefficients (Rummel et al., 1988;
Balmino et al., 2012; Hirt and Kuhn, 2012). However, frequency domain methods suffer
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from some drawbacks, which are pointed out in the following. Due to the nature of spherical
harmonics, frequency domain GFM is generally limited to a spherical approximation, i.e.,
topographic masses are arranged on a spherical reference surface. As this is insufficient for
current high-resolution applications, Claessens and Hirt (2013) proposed a new spectral
approach taking into account an ellipsoidal approximation.

Moreover, almost all frequency domain approaches are restricted to the use of one mass
layer of constant density. In order to account for variable density values of different terrain
types, the concept of rock-equivalent heights (REQ) is widely used, in which the DTM
heights of water and ice masses are condensed to a constant rock density (e.g., Rummel
et al., 1988; Kuhn and Seitz, 2005; Hirt et al., 2015). The shortcoming of such an approach
is a changed geometry with considerable mass displacements, as noted by Tsoulis and
Kuhn (2007). Due to the distance dependency, this has also an impact on any gravity field
functional.

In contrast to the above-mentioned limitations, the consideration of an ellipsoidal mass
arrangement and the use of different mass layers is straightforward when using GFM in
the space domain. For a more realistic modeling, Grombein et al. (2010, 2011) developed
the Rock-Water-Ice (RWI) approach based on GFM in the space domain. This method
is characterized by a three-layer decomposition of the topography that enables a rigorous
separate modeling of rock, water, and ice masses with layer-specific density values. In this
context, SH coefficients of the topographic potential are obtained in a two-step sequence:
In the first step, GFM is performed in the space domain by using tesseroid mass bodies
(Grombein et al., 2013). In the second step, global gridded topographic potential values
are transformed to the frequency domain by using SHA (e.g., Sneeuw, 1994; Abd-Elmotaal
et al., 2014). By applying this RWI approach to the 5′ × 5′ global topographic database
DTM2006.0 (Pavlis et al., 2007), the topographic gravity field model RWI TOPO 2012 up
to degree and order (d/o) 1800 has been generated by Grombein et al. (2014a). Moreover,
taking into account deeper lying compensation masses, a modified Airy-Heiskanen concept
has been applied to calculate the consistent isostatic gravity field model, RWI ISOS 2012,
as well as a combined topographic-isostatic gravity field model, RWI TOIS 2012.

According to Grombein et al. (2014b), the models of the RWI 2012 suite have originally
been created for smoothing gravity gradients as measured by the satellite mission Gravity
field and steady-state Ocean Circulation Explorer (GOCE, Rummel et al., 2011), but have
also been used in a wide range of applications. For generating the combined gravity field
model GOCO05c, Fecher et al. (2015, 2016) use topography-induced gravity anomalies of
the RWI model to fill gaps in the global gravity coverage. To analyze the structure and
state of stress of the Chilean subduction zone, Gutknecht et al. (2014) utilize the RWI
model to derive topographically reduced gravity gradients of the satellite-based GOCO03s
model (Mayer-Gürr et al., 2012). Bouman et al. (2016) make use of the RWI model to
derive topographic mass reductions for GOCE gravity gradient grids, as used in geophysical
applications. Furthermore, in some studies the RWI model has been applied as a reference
for an independent validation (e.g., Novák and Tenzer, 2013; Pitonák et al., 2016).
In the present paper, the RWI approach is developed further and a new topographic

gravity field model called RWI TOPO 2015 is presented, which is based on updated
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topographic input data of the Earth2014 model (Hirt and Rexer, 2015). In contrast to
RWI TOPO 2012, the new model provides SH coefficients up to d/o 2190, additionally
featuring separate SH coefficients for the rock, water, and ice proportions. Moreover, the
ellipsoidal arrangement of the topography is refined by a geoid model (cf. Sect. 2.1). To
see the additional benefit of the RWI method, a consistent rock-equivalent version of the
model, called REQ TOPO 2015, has been generated. This allows a detailed comparison
of both approaches. In Table 1, the main features of the new RWI model are presented
and compared to those of other topographic gravity field models.
The paper is organized as follows: in Sect. 2, the updated Rock-Water-Ice method is

presented and adapted formulas for space domain GFM and SHA are derived. The used
topographic input data is described in Sect. 3. While Sect. 4 provides detailed information
on the processing, in Sect. 5 the main characteristics of the new RWI TOPO 2015 model
are presented and discussed, in both frequency and space domains. Furthermore, a
comparison to the predecessor model RWI TOPO 2012 and the rock-equivalent version
REQ TOPO 2015 is carried out. In Sect. 6, the performance of the new RWI topographic
gravity field model is validated by gravity data of current GGMs, clearly showing the
attained improvements. Finally, in Sect. 7, a summary and an outlook are provided.

Table 1. Characteristics of current topographic gravity field models based on GFM in the
frequency domain (upper three models) and in the space domain (lower three models).

Model name Topography Mass layer Ref. surface Nmax Reference

dV SPH RET2012 Earth2012 1 (REQ) Sphere 2160 Hirt and Kuhn (2012)
dV ELL RET2012 Earth2012 1 (REQ) Ellipsoid 2190 Claessens and Hirt (2013)
dV ELL RET2014 Earth2014 1 (REQ) Ellipsoid 2190 Hirt et al. (2015)

RWI TOPO 2012 DTM2006.0 3 (RWI) Ellipsoid 1800 Grombein et al. (2014a)
RWI TOPO 2015 Earth2014 3 (RWI) Ellip. + Geoid 2190 This paper
REQ TOPO 2015 Earth2014 3 (REQ) Ellip. + Geoid 2190 This paper

2. Method

2.1. RWI-based topographic model

The RWI approach as proposed by Grombein et al. (2014a) is based on a three-layer
decomposition of the Earth’s topography with respect to its rock, water, and ice masses.
The basic idea is that the masses of each terrain type, e.g., land topography, oceans, lakes,
ice sheets and ice shelves can consistently be described by a vertically arranged (1) rock,
(2) water, and (3) ice proportion. As schematically shown in Fig. 2, the sequence of these
masses is the same for each terrain type; however, some mass types may be lacking. Such
a RWI-based topographic model allows a rigorous separate GFM of the rock, water, and

106



2. Method

Fig. 2. Schematic representation of the RWI-based topographic model and the composition
of different terrain types by rock, water, and ice masses. The reference surface is defined
by the mean sea level (MSL).

ice masses with layer-specific density values. This prevents geometry changes and mass
displacements, occurring in conventional rock-equivalent methods.

For the RWI approach, a global DTM is needed that provides heights (hRWI
1 , hRWI

2 , hRWI
3 ),

corresponding to the upper boundary surfaces of the rock, water, and ice masses (see Fig. 2).
While the previous RWI TOPO 2012 model is based on the 5′ × 5′ global topographic
database DTM2006.0, the new model uses updated topographic information of the 1′ × 1′
Earth2014 model, as described in Sect. 3. Furthermore, the applied layer-specific density
values (ρ1, ρ2, ρ3) are slightly modified, particularly accounting for the difference in salt-
and freshwater density (see Table 2).

Table 2. Used density values ρs of the rock, water, and ice masses in the case of the
RWI TOPO 2012 and RWI TOPO 2015 model. Note that for the new model there is a
separation with respect to salt- and freshwater density. All values are specified in [kg m−3].

RWI TOPO 2012 RWI TOPO 2015

ρ1 (Rock) 2670 2670
ρ2 (Water) 1000 1000 (Inland) / 1030 (Ocean)
ρ3 (Ice) 920 917
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To correctly locate the topographic masses in space, the ellipticity of the Earth’s shape is
taken into account. Therefore, the used reference surface is defined by

R0 = rE +N, (3)

where, as in Heck (2003, p. 68),

rE(ϕ) = a√
1 + e′2 sin2 ϕ

(ϕ : geocentric latitude) (4)

is the latitude-dependent radius of a reference ellipsoid (e.g., GRS80, Moritz, 1980),
parameterized by the semi-major axis a and the square of the second numerical eccentricity
e′2. Moreover, N denotes an additionally considered geoid undulation as can be obtained
from a GGM by using SHS.

By using Eq. (3), the geocentric radii of the upper boundary surfaces of the rock, water,
and ice masses are approximated by

RRWI
s = R0 + hRWI

s , s ∈ {1, 2, 3}. (5)

2.2. REQ-based topographic model

In addition to the RWI-based topographic model, a consistent rock-equivalent (REQ)
variant is introduced. Here, DTM heights are condensed such that their associated mass
elements correspond to an equivalent mass of rock density (e.g., Rummel et al., 1988; Kuhn
and Seitz, 2005).
To allow a more detailed comparison, the rock-equivalent condensation is performed

separately for the water and ice masses. Therefore, for each mass layer s ∈ {1, 2, 3} the
following mass conservation condition is applied:

mREQ
s (ρ1) = mRWI

s (ρs), (6)

where mRWI
s are the masses of the rock, water, and ice proportions, and mREQ

s are the
corresponding condensed masses referring to the rock density value ρ1.

Employing a spherical approximation, Eq. (6) can be formulated directly for geocentric
radii as

ρ1

RREQ
s∫

RREQ
s−1

r′2 dr′ = ρs

RRWI
s∫

RRWI
s−1

r′2 dr′, (7)

where RREQ
0 := RRWI

0 := R0. Note that each rock-equivalent mass layer is situated on the
surface of the layer underneath, thus preventing any gap in between. Solving Eq. (7), the
rock-equivalent geocentric radii can be recursively calculated using

RREQ
s = 3

√(
RREQ
s−1

)3 + ρs
ρ1

[
(RRWI

s )3 −
(
RRWI
s−1

)3]
. (8)

The corresponding rock-equivalent heights are then obtained by

hREQ
s = RREQ

s −R0. (9)
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Fig. 3. Geometry of a tesseroid used for the space domain GFM (Heck and Seitz, 2007);
the spherical coordinates (r, ϕ, λ) are referred to the geocentric Earth-fixed equatorial
reference system defined by the base vectors e1, e2, e3.

2.3. Gravity forward modeling based on tesseroids

For space domain GFM, the information of the RWI- and REQ-based topographic models
has to be represented by vertically arranged mass bodies for each grid element. For this
purpose, tesseroid mass bodies as introduced by Anderson (1976) are used in the following.
Considering geocentric spherical coordinates (r, ϕ, λ), tesseroids are bounded by a pair of
concentric spheres (r1 = const., r2 = const.), a pair of meridional planes (λ1 = const.,
λ2 = const.), and a pair of coaxial circular cones, defined by the parallels ϕ1 = const.,
ϕ2 = const. (see Fig. 3).
Tesseroids directly take the curvature of the Earth into account, which is particularly

beneficial for regional and global applications. Several publications that studied the use
of tesseroids have shown its advantages in comparison to classical prism approaches (e.g.,
Heck and Seitz, 2007; Wild-Pfeiffer, 2008; Grombein et al., 2013).

Based on Newton’s integral in Eq. (1), the gravitational potential V ∗of a tesseroid with
a constant mass density ρ can be represented by

V ∗(P ) = Gρ

λ2∫
λ1

ϕ2∫
ϕ1

r2∫
r1

r′2 cosϕ′
`

dr′ dϕ′ dλ′, (10)

where ` = `(P,Q) denotes the Euclidean distance between the computation point P (r, ϕ, λ)
and the running integration point Q(r′, ϕ′, λ′).
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As the integration with respect to λ′ and ϕ′ comprises elliptical integrals, Eq. (10) cannot
be solved in closed analytical form. Alternatively, a numerical evaluation can be achieved
by means of expanding the integral kernel of Eq. (10) in a Taylor series

K(P,Q) := r′2 cosϕ′
`

=
∑

i,j,k∈N0

Kijk(P,Q0)
i! j! k! (r′ − r0)i(ϕ′ − ϕ0)j(λ′ − λ0)k, (11)

where

Kijk(P,Q0) := ∂i+j+kK

∂r′i∂ϕ′j∂λ′k

∣∣∣∣∣ r′=r0
ϕ′=ϕ0
λ′=λ0

(12)

are the partial derivatives of the integral kernelK evaluated at the Taylor pointQ0(r0, ϕ0, λ0)
that will be fixed at the geometrical center of the tesseroid, i.e., r0 = (r1 + r2)/2, ϕ0 =
(ϕ1 + ϕ2)/2, and λ0 = (λ1 + λ2)/2.

Inserting Eq. (11) into Eq. (10) and using the substitutions r∗ = r′ − r0, ϕ∗ = ϕ′ − ϕ0,
and λ∗ = λ′ − λ0 yields

V ∗(P ) = Gρ
∑

i,j,k∈N0

Kijk(P,Q0)
i! j! k!

∆λ/2∫
−∆λ/2

∆ϕ/2∫
−∆ϕ/2

∆r/2∫
−∆r/2

(r∗)i(ϕ∗)j(λ∗)k dr∗ dϕ∗ dλ∗, (13)

where ∆r = r2 − r1, ∆ϕ = ϕ2 − ϕ1, and ∆λ = λ2 − λ1 denote the dimensions of the
tesseroid.
Due to the special choice of the Taylor point Q0, any terms of odd order i, j, or k

cancel out after performing the integration in Eq. (13), cf. Heck and Seitz (2007). For the
integration with respect to r∗, and analogously ϕ∗ and λ∗, it follows that

∆r/2∫
−∆r/2

(r∗)i dr∗ = 1− (−1)i+1

(i+ 1)2i+1 (∆r)i+1 =
{

0, if i is odd,
(∆r)i+1/

[
(i+ 1)2i

]
, if i is even.

(14)

Therefore, after performing the integration in Eq. (13), only terms with even order remain
in the summation. Finally, the tesseroid potential in a (τ + 1)-th order approximation can
be calculated by

V ∗τ (P ) := Gρ
∑

i,j,k∈2N0
i+j+k≤τ

Γijk(∆r,∆ϕ,∆λ) ·Kijk(P,Q0), (15)

where
Γijk(∆r,∆ϕ,∆λ) := (∆r)i+1(∆ϕ)j+1(∆λ)k+1

(i+ 1)! (j + 1)! (k + 1)! 2i+j+k , (16)

and 2N0 = {2m : m ∈ N0} is the index set of all even natural numbers. In the following,
Eq. (15) is evaluated with τ = 2, achieving a fourth-order error in the spatial coordinates of
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the integration point. For this case, optimized evaluation rules and an analysis concerning
the approximation error due to the omitted Taylor residual are presented in Grombein
et al. (2013).

For the RWI approach, Eq. (15) is used in combination with the superposition principle
under the assumption that the height information is parameterized in terms of geocentric
spherical coordinates

ϕv = 90◦ − (v − 1/2) ·∆ϕ, v = 1, . . . , vn ∈ N, (17)
λw = (w − 1/2) ·∆λ, w = 1, . . . , wm ∈ N, (18)

where ∆ϕ = 180◦/vn and ∆λ = 360◦/wm.
The topographic potential generated by the RWI-based rock, water, and ice masses can

then be calculated separately as the sum of the impact over all individual tesseroids of the
specific layer s ∈ {1, 2, 3}:

V RWI
s (P ) = Gρs

vn∑
v=1

wm∑
w=1

∑
i,j,k∈2N0
i+j+k≤2

Γijk(∆rRWI
s ,∆ϕ,∆λ) ·Kijk(P,Q0(rRWI

s , ϕv, λw)), (19)

where for each grid element (v,w)

∆rRWI
s := RRWI

s −RRWI
s−1 (20)

defines the radial dimension of the masses and

rRWI
s := (RRWI

s +RRWI
s−1 )/2 (21)

its geometrical center as required for the Taylor series approach. For readability, the indices
v and w are omitted in Eqs. (20) and (21).

The total RWI-based topographic potential is calculated as the sum of their rock, water,
and ice proportions:

V RWI(P ) =
3∑
s=1

V RWI
s (P ). (22)

Analogously, the potential generated by the REQ topographic mass layers is obtained by

V REQ
s (P ) = Gρ1

vn∑
v=1

wm∑
w=1

∑
i,j,k∈2N0
i+j+k≤2

Γijk(∆rREQ
s ,∆ϕ,∆λ) ·Kijk(P,Q0(rREQ

s , ϕv, λw)), (23)

where for each grid element (v,w)

∆rREQ
s := RREQ

s −RREQ
s−1 , (24)

rREQ
s := (RREQ

s +RREQ
s−1 )/2. (25)

The total REQ-based topographic potential is then determined by

V REQ(P ) =
3∑
s=1

V REQ
s (P ). (26)
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2.4. Spherical harmonic analysis of gridded data

According to Fig. 1, the GFM-derived topographic potential values can be converted to
corresponding potential coefficients by means of SHA.
Due to the orthogonality of the surface spherical harmonic functions Y C

nm and Y S

nm on
the unit sphere σ, the desired set of SH coefficients (C Topo

nm , S Topo
nm ) according to Eq. (2) can

be obtained analytically via the Legendre transformation (e.g., Jekeli, 1988):C
Topo
nm

S Topo
nm

 = 1
4π

∫∫
σ

Y
C

nm

Y S

nm

V Topo(r, ϕ, λ) dσ, (27)

where Y
C

nm

Y S

nm

 =

cosmλ
sinmλ

Pnm(sinϕ), (28)

and Pnm denote the fully normalized associated Legendre functions of the first kind (ALFs).
However, for a practical computation, Eq. (27) cannot be used directly, since V Topo(r, ϕ, λ)

would be needed as a continuous function, defined over the whole globe. Therefore, many
SHA approaches make use of a discretization of Eq. (27) and applying fast Fourier transform
techniques, see Sneeuw (1994) for an overview of methods.

The SHA approach that is used in the following is a least-squares technique for gridded
data as described and analyzed in Abd-Elmotaal et al. (2014). It requires data sampled
on a regular global grid parameterized by I equally spaced parallels and J equally spaced
meridians. In terms of geocentric spherical coordinates, the nodes of such a grid can be
defined by the points Pij(ri, ϕi, λj) with

ϕi = 90◦ − (i− 1/2) ·∆ϕ, i = 1, . . . , I ∈ N, (29)
λj = (j − 1/2) ·∆λ, j = 1, . . . , J ∈ N, (30)

where ∆ϕ = 180◦/I and ∆λ = 360◦/J . The surface on which the data is given can be a
sphere, an ellipsoid, or theoretically any rotationally symmetric star-shaped surface. In the
case of a sphere, the geocentric radii are set to a constant spherical radius ri = R, while in
the case of an ellipsoidal surface they are calculated by

ri(ϕi) = a√
1 + e′2 sin2 ϕi

. (31)

In the first step of the SHA approach, a discrete Fourier transformation of the gridded
data is performed for each parallel. The derived Fourier coefficients are then used as
observations in a least-squares approach to estimate the desired SH coefficients. In this
context, functional relations among the base functions of Fourier and spherical harmonic
coefficients are utilized. For the explicit formulation of this approach, the reader is referred
to Abd-Elmotaal et al. (2014).
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The maximum degree Nmax of the SH coefficients that can be derived by this method is
limited by the number of meridians I and parallels J of the grid, i.e.,

Nmax ≤ min
{
I − 1, J − 1

2

}
. (32)

Particularly, when performing SHA up to ultra-high degrees, the numerical stability of the
used algorithm for the calculation of the ALFs may limit the maximum degree, as noted by
Wittwer et al. (2008). For example, in the case of the previous RWI TOPO 2012 model
a maximum degree of Nmax = 2190 would have been possible; however, the derived SH
coefficients were restricted to d/o 1800, mainly due to the numerical instability of the used
ALF algorithm according to Thong (1989). Thus, for the new RWI model, an improved
ALF algorithm based on Holmes and Featherstone (2002) is used that provides numerical
stability for calculations up to d/o 2700.

3. Input data
The used global Earth2014 topography model (Hirt and Rexer, 2015) comprises information
of the Shuttle Radar Topography Mission (SRTM) in terms of the 7.5′′ × 7.5′′ SRTM v4.1
model for continents and islands between ±60◦ latitude (Jarvis et al., 2008) and ocean and
lake bathymetry of the 30′′× 30′′ SRTM30 PLUS v9 model (Becker et al., 2009). Moreover,
bedrock and ice sheet data for Antarctica and Greenland are obtained from the 1-km
resolution grids of the Bedmap2 (Fretwell et al., 2013) and GBT v3 model (Greenland
Bedrock Topography, Bamber et al., 2013), respectively.
By combining this topographic information, Earth2014 provides 1′ × 1′ global gridded

data on surface elevations h SUR , bedrock elevations hBED , and ice thickness t ICE . Each
grid element of the model is classified into one of the following terrain types tt: (0) land
topography above mean sea level (MSL), (1) land topography below MSL, (2) ocean
bathymetry, (3) inland lake (bedrock above MSL), (4) inland lake (bedrock below MSL),
(5) ice cover (bedrock above MSL), (6) ice cover (bedrock below MSL), (7) ice shelf, (8) ice
covered lake.
In Fig. 4, the global bedrock elevations hBED contained in the Earth2014 model are

compared to those of the formerly used 5′ × 5′ DTM2006.0 model (Pavlis et al., 2007).
For this comparison, the heights and depths of DTM2006.0 are interpolated to a 1′ × 1′
resolution. As can be seen from the differences, Earth2014 provides regionally refined
bathymetric depths mainly due to new ship sounding measurements and significantly
improved bedrock information under the ice masses of Greenland and Antarctica. For the
remaining continental parts, the differences are considerably smaller as both models are
based on the same SRTM data for surface elevations. However, the effect of the higher
spatial resolution in the case of Earth2014 can clearly be seen in regions with highly variable
topography such as the Himalaya and the Andes, but also in the deepest continental rift
forming Lake Baikal.
As can be expected and seen from Table 3, Earth2014 provides significantly larger

extreme values due to its higher spatial resolution, while the mean values and standard
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Fig. 4. Difference of the 1′ × 1′ Earth2014 model and an interpolated version of the 5′ × 5′
DTM2006.0 in terms of bedrock elevations. Robinson projection centered at 0◦ longitude.

Table 3. Statistics of bedrock elevations of the 1′ × 1′ Earth2014 model, an interpolated
version of the 5′×5′ DTM2006.0 model, and their difference. All values are specified in [m].

Min Max Mean STD

Earth2014 −10 847 8212 −2444 2421
DTM2006.0 −9857 6800 −2440 2420
Difference −4389 4144 −4 143

deviations (STDs) for both models are nearly equal. Regionally, the differences reach
maximum amplitudes up to ±4000 m, while the global mean value is just −4 m with a
standard deviation of 131 m. The Earth2014 height information is parameterized in terms
of geodetic coordinates

Bv = 90◦ − (v − 1/2) ·∆B, v = 1, . . . , vn ∈ N, (33)
Lw = (w − 1/2) ·∆L, w = 1, . . . , wm ∈ N, (34)

with respect to the GRS80 reference ellipsoid (Moritz, 1980), where ∆B = ∆L = 1′,
vn = 10 800, and wm = 21 600. In order to use the information of the Earth2014 model for
the RWI approach, the geodetic coordinates are transformed to corresponding geocentric
spherical coordinates (e.g., Heck, 2003, p. 69):

ϕv = arctan
( 1

1 + e′2
tanBv

)
, λw = Lw, (35)

where e′2 is set according to the parameter of the GRS80 ellipsoid.
Furthermore, to obtain the reference surface radius R0 as defined by Eq. (3), the

parameters of the GRS80 ellipsoid are used as well as a global grid of geoid undulations N
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derived by SHS. For this purpose, the EGM96 geopotential model (Lemoine et al., 1998) is
used as it also provides the reference for the SRTM elevation data (cf. Farr et al., 2007).
The height information of the Earth2014 grid layers can then be used to describe the

geocentric radii of the upper boundary surfaces of the rock, water, and ice masses by setting

RRWI
1 = R0 + hBED ,

RRWI
2 = R0 + h SUR − t ICE ,

RRWI
3 = R0 + h SUR . (36)

In combination with the specified density values in Table 2, the assignment in Eq. (36) is
globally valid. Hence, no further distinction of terrain types is necessary for calculating the
rock, water, and ice proportions of the RWI-based topographic potential via Eq. (19).
However, it proves helpful to have a closer look at grid elements over the ocean. Here,

RRWI
1 defines the sea floor, while RRWI

2 = R0 represents the MSL, as h SUR = 0. According
to Eqs. (20) and (21), the tesseroids associated with rock and water masses then have the
same thickness and geometrical center, i.e., |∆rRWI

1 | = |∆rRWI
2 | and rRWI

1 = rRWI
2 . Both

tesseroids only differ in the sign of their radial dimension and their density values, i.e., ρ1
and ρ2. The effect on the potential can be interpreted as follows. In a first step, the water
masses of the ocean are removed with ρ2 (positive effect), while in the second step, the
resulting mass deficit is filled with rock of density ρ1 (negative effect). Therefore, by using
the assignment in Eq. (36), the gravitational impact of the oceans depends on both, the
rock and the water signal.
As an alternative, the ocean masses can be represented by a single tesseroid using the

rock-water density contrast. The resulting effect is then assigned to the water proportion,
achieving a more meaningful separation of the impact of the rock and water masses.
Moreover, this is also computationally more efficient than evaluating two tesseroids. By
using the Earth2014 terrain types tt, this strategy can be implemented by setting

RRWI
1 = R0 +

{
h SUR , if tt = 2,
hBED , otherwise,

RRWI
2 = R0 +

{
hBED , if tt = 2,
h SUR − t ICE , otherwise,

RRWI
3 = R0 +

{
hBED , if tt = 2,
h SUR , otherwise,

(37)

and using the following layer-specific density values:

ρ1 = 2670 kg m−3,

ρ2 =


1640 kg m−3, if tt = 2,
1000 kg m−3, if tt = 3 or tt = 4 or tt = 8,
1030 kg m−3, otherwise,

ρ3 = 917 kg m−3. (38)
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This assignment that is used in the following differs from Eq. (36) only in the separation of
the rock, water, and ice masses. Thus, it is important to note that the total RWI-based
topographic potential as the sum of the three components according to Eq. (22) is equal
for both assignments.
Figure 5 illustrates the RWI-based radial dimensions ∆rRWI

s of the rock, water, and ice
masses. Additionally, the dimensions of the rock-equivalent masses ∆rREQ

s as calculated by
Eqs. (8) and (24) are plotted and the corresponding statistics are provided in Table 4.

In the case of the rock masses, as shown in Fig. 5a, the RWI and REQ methods provide
the same radial dimensions, i.e., ∆rRWI

1 = ∆rREQ
1 . They range from −2727 to 8212 m for

the continents and have a zero value for the oceans. Positive values can be attributed to
rock masses above MSL, while negative values indicate regions where the bedrock surface
lies below MSL, e.g., for larger parts of Antarctica and Greenland as well as the major
inland lakes.
The radial dimensions of the RWI-based water masses ∆rRWI

2 are plotted in Fig. 5b.
For the oceans, they correspond to the bathymetric depths, having a minimum value of
−10 847 m. Moreover, positive values can be associated to ocean water masses under ice
shelves or the water masses of the major inland lakes, where a maximum value of 1630 m is
reached in the case of Lake Baikal. In contrast, the radial dimensions of the REQ-based
water masses ∆rREQ

2 provide considerably smaller extreme values of −6658 and 611 m (see
Table 4). Due to the rock-equivalent condensation, the sea floor of the oceans rises by
about 60 %, as can clearly be seen in Fig. 5c. On average, the RWI- and REQ-based water
masses differ by about 1000 m in radial dimension.
A similar mass displacement can be observed when comparing the radial dimensions of

the RWI- and REQ-based ice masses ∆rRWI
3 (Fig. 5d) and ∆rREQ

3 (Fig. 5e). Due to the
density contrast between ice and rock, the thickness of the Antarctic ice sheet is reduced
by about 30 %. This can also be detected when considering the change in the maximum
values of ∆rRWI

3 and ∆rREQ
3 (see Table 4).

4. Processing
In this section, the derived formulas for space domain GFM and SHA are applied to the
topographic input data as preprocessed in the previous section.

In the first step, the RWI- and REQ-based topographic potential V RWI
s and V REQ

s of each
mass layer is calculated. In order to utilize the least-squares SHA approach as described in
Sect. 2.4, topographic potential values are needed for each node Pij(ri, ϕi, λj) of an equally
spaced grid as specified in Eq. (30), i.e.,

{V RWI}ij := V RWI(Pij) and {V REQ}ij := V REQ(Pij). (39)

For this purpose, a grid with I = 2700 parallels and J = 5400 meridians is used, equivalent
to a 4′ × 4′ spatial resolution. According to Eq. (32), SH coefficients with a maximum
degree of 2699 can then be derived, which is just within the numerical stability range of
the Holmes and Featherstone (2002) ALF algorithm.

116



4. Processing

(a) ∆rRWI
1 = ∆rREQ

1 (Rock)

−2000 0 2000 4000 6000 8000

[m]

(b) ∆rRWI
2 (Water) (c) ∆rREQ

2 (Water)

−10000 −8000 −6000 −4000 −2000 0 2000

[m]

−10000 −8000 −6000 −4000 −2000 0 2000

[m]

(d) ∆rRWI
3 (Ice) (e) ∆rREQ

3 (Ice)

0 1000 2000 3000 4000 5000

[m]

0 1000 2000 3000 4000 5000

[m]

Fig. 5. RWI- and REQ-based radial dimensions of (a) the rock masses ∆rRWI
1 = ∆rREQ

1 ,
(b) and (c) the water masses ∆rRWI

2 and ∆rREQ
2 , and (d) and (e) the ice masses ∆rRWI

3
and ∆rREQ

3 . For all plots, the same color bar is used, where grid elements with a zero
dimension are indicated by white color. Robinson projection centered at 0◦ longitude.
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Table 4. Statistics of the RWI- and REQ-based radial dimensions ∆rRWI
s and ∆rREQ

s of the
rock, water, and ice masses and their differences ∆rRWI

s −∆rREQ
s . All values are specified

in [m].

Min Max Mean STD

∆rRWI
1 = ∆rREQ

1 −2727 8212 172 532
∆rRWI

2 −10 847 1630 −2615 2164
∆rRWI

3 0 4613 58 375

∆rREQ
2 −6658 611 −1606 1328

∆rREQ
3 0 1585 20 129

∆rRWI
2 −∆rREQ

2 −4189 1019 −1009 835
∆rRWI

3 −∆rREQ
3 0 3028 38 246

In the following, two variants for the reference surface of the grid are analyzed, a spherical
and an ellipsoidal grid. As already done for creating the RWI TOPO 2012 model (Grombein
et al., 2014a), a spherical grid with radius R = aGRS80 +20 km is selected, which ensures that
all grid points are safely outside the topographic masses. However, toward the poles, the
radial distance between these spherical grid points and the ellipsoidal arranged topography
rises up to 40 km.

As an alternative, an ellipsoidal grid is used for the new RWI TOPO 2015 model. In this
case, the semi-major and semi-minor axes of the used ellipsoid are set to a = aGRS80 +20 km
and b = bGRS80 + 20 km, where the second numerical eccentricity as needed for Eq. (31)
can be obtained by e′2 = (a2 − b2)/b2. In contrast to the spherical surface, all grid points
are approximately 20 km above the GRS80 surface. This places the grid nearer to the
topographic masses in polar regions. In order to maintain an equiangular spacing for the
SHA, the ellipsoidal grid is also parameterized in terms of geocentric spherical coordinates,
thus preventing numerical instabilities as noted by Holmes and Pavlis (2007).
For calculating the RWI- and REQ-based topographic potential values for each mass

layer, Eqs. (19) and (23) have to be evaluated for 2700× 5400 = 14 580 000 grid points Pij .
According to the used topographic input data, for each grid point the gravitational effect of
about 265 million tesseroids has to be calculated. This number consists of about 80 million
tesseroids associated with rock masses, 160 million with water masses, and 25 million with
ice masses (tesseroids with zero radial dimension are not considered).
As the computations for each grid point are independent of each other, techniques of

parallel computing are most efficient. Thus, in order to handle the enormous computational
demand of the GFM, a software optimized for parallel computing on high-performance
computer systems has been developed using the message passing interface (MPI). Using
parallel computations on 480 processors (Intel Xeon E5540, 2.53 GHz), a run-time of about
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(a)
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Fig. 6. (a) GFM-derived topographic potential values {V RWI}ij calculated at a 4′ × 4′
spherical grid (R = aGRS80 + 20 km). (b) Differences to topographic potential values
calculated at a 4′ × 4′ ellipsoidal grid (a = aGRS80 + 20 km, b = bGRS80 + 20 km). Robinson
projection centered at 0◦ longitude.

10 days is required for the calculation of each grid, spherical or ellipsoidal. Finally, the total
RWI- and REQ-based topographic potential values {V RWI}ij and {V REQ}ij are obtained
by Eqs. (22) and (26).
Taking the RWI-based topographic potential as an example, the difference in using the

spherical and ellipsoidal grid for the SHA is analyzed in the following. In Fig. 6a, the
GFM-derived topographic potential values {V RWI}ij are plotted in the case of the spherical
grid. The topographic signal is systematically negative and ranges from about −27 000 to
−9000 m2 s−2. It shows mostly long-wavelength structures and is strongly dominated by
the influence of the high mountain ranges of the Himalayan region and deep ocean trenches.
In Fig. 6b, the differences with respect to the ellipsoidal grid are illustrated. As both

grids have the same geocentric radius for the case of the equator, the differences are nearly
zero in this region. Toward the poles, the ellipsoidal grid provides a stronger signal, as
its distance to the ellipsoidally arranged topographic masses is smaller. These differences
reach extreme values of −40 to 90 m2 s−2 and are negative for the oceans and positive for
the continents.
By applying the least-squares SHA approach, both grids are used to obtain solid SH

coefficients of the topographic potential up to d/o 2699, denoted as SHC N2699 Sph grid
and SHC N2699 Ell grid. They refer to R = 6 378 136.3 m and are scaled by GM/R
with GM = 3.986 004 415 · 1014 m3 s−2. The software implementation for the SHA used is
originally based on Seitz and Heck (1991) and has been further developed.
In order to investigate the differences of both sets of SH coefficients in the frequency

domain, their (dimensionless) signal degree variances are evaluated as defined by Eq. (40),
see below. As shown in Fig. 7, the coefficients belonging to the spherical and ellipsoidal
grid (blue and green curve) show a strong agreement over most of the spectrum. Although
the signal of the coefficient differences (red curve) continuously rises with increasing degree
n, its order of magnitude is considerably smaller compared to the signals of the absolute
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values. As illustrated in the close-up, significant differences of both SH coefficients can be
detected for the highest degrees (n > 2670). While initially the coefficients of the ellipsoidal
grid provide slightly more energy, the degree variance abruptly drops by about half an
order of magnitude. In contrast, the signal of the spherical grid remains of the same order
of magnitude and only slightly decreases for the last few degrees.
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Fig. 7. Degree variances of SHC N2699 Sph grid (blue curve), SHC N2699 Ell grid
(green curve), and their coefficient difference (red curve). Note that the vertical axis is
plotted on a logarithmic scale.

To further analyze these differences in the space domain, the SH coefficients are used to
derive gravity disturbances δg = −∂V/∂r based on Eq. (42), see below. The required SHS
is performed for the spherical harmonic bands (SH bands) of 721–2670, 2671–2699, and 721–
2699. Moreover, the gravity disturbances are evaluated on the surface of the GRS80 ellipsoid
as well as on the spherical reference surface of the coefficients with R = 6 378 136.3 m.
For the regional area of Europe, Fig. 8 illustrates the results from the SHS. In the first

column, gravity disturbances on the GRS80 ellipsoid from SHC N2699 Ell grid are plotted.
Besides the actual topographic signal as for example induced by the Alps, the plot for the SH
band 721–2670 clearly shows artifacts in higher latitudes. These high-frequency oscillations
are strongly amplified toward the poles and even reach amplitudes up to ±1700 mGal. The
subsequent SH band 2671–2699 generates nearly identical oscillations of opposite sign.
Therefore, in the case of the combined SH band 721–2699, these effects are completely
removed, which makes the topographic signal also visible for polar latitudes.

In the case of SHC N2699 Sph grid (second column), this compensation due to the SH
band 2671–2699 fails, so that latitude-dependent patterns remain in the complete SH band
721–2699. This clearly illustrates the different effect of the SH band 2671–2699, already
visible in terms of the degree variances.
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Fig. 8. Gravity disturbances δg from SHC N2699 Sph grid and SHC N2699 Ell grid
evaluated on the surface of the GRS80 ellipsoid (column 1–2) and as well as on the the
spherical reference surface of the coefficients with R = 6 378 136.3 m (column 3–4). Gravity
disturbances δg are presented for the SH bands 721–2670 (row 1), 2671–2699 (row 2),
and 721–2699 (row 3), in the area of Europe (40◦ ≤ ϕ ≤ 80◦, 0◦ ≤ λ ≤ 40◦). Robinson
projection centered at 20◦ longitude; meridians and parallels are 10◦ apart.
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In contrast to the GRS80 ellipsoid, both sets of SH coefficients produce nearly the same
results, when they are evaluated on the spherical reference surface (third and fourth column).
In this case, no oscillations occur and the SH band 2671–2699 does not add any significant
signal.
In fact, the detected oscillations are not restricted to the European area as shown in

Fig. 8. Generally, they crisscross over both polar regions. Similar effects have also been
observed in several publications (e.g., Holmes and Pavlis, 2007; Claessens and Hirt, 2013)
and can be explained as follows:

As the field generating topographic masses are arranged on an ellipsoidal reference surface
as defined by Eq. (3), the GFM-derived topographic potential values essentially generate
an ellipsoidal harmonic model. Due to the applied SHA approach, this ellipsoidal model is
then mapped to the spherical spectrum of spherical harmonics, which are basically only
valid outside the used reference sphere with R = 6 378 136.3 m.

When then evaluating these SH coefficients inside the reference sphere as in the case
of the GRS80 ellipsoid where r < R, the high-frequency oscillations that occur can be
associated with an erroneous downward continuation. This downward continuation is
regulated by the term (R/r)n in Eq. (42), showing that the effect (i) increases toward the
poles and (ii) is strongly amplified for higher degrees n.

While these downward continuation errors can be compensated by the coefficients of higher
degrees when using the set obtained from the ellipsoidal grid (SHC N2699 Ell grid), this
is not the case for the coefficients gained from the spherical grid (SHC N2699 Sph grid).
However, this means that similar to the Hotine–Jekeli transformation between ellip-

soidal and spherical harmonic coefficients (Jekeli, 1988), the resulting SH coefficients
(SHC N2699 Ell grid) of higher degrees are correlated with those of lower degrees. There-
fore, to accurately represent the topographic potential on the GRS80 ellipsoid, the SH
coefficients need to be evaluated up to its maximum degree Nmax = 2699 and should not
be truncated. From a practical point of view, however, it seems not to be feasible for all
applications (or users) to perform a SHS up to such ultra-high degrees.

The investigation is repeated for the same 4′× 4′ ellipsoidal grid of topographic potential
values, but restricting the SHA up to d/o 2190. By using the resulting degree-2190 SH
coefficients, Fig. 9 shows comparable results to Fig. 8, now using the SH bands 721–2160,
2160–2190, and 721–2190. Analogously, high-latitude oscillations of about ±100 mGal occur
in the SH band 721–2160 that are compensated by the SH band 2160–2190, so that the
combined SH band 721–2190 is free from any error. Thus, the same conclusions hold true
for the case of the SHA up to d/o 2190.

In fact, the last few degrees generally seem to provide crucial information for an accurate
SHS on the GRS80 ellipsoid, regardless up to which maximum d/o the SH coefficients
are derived. Therefore, the coefficients should be evaluated up to their full resolution.
Theoretically, this means that a separate set of SH coefficients would be needed for an
accurate SHS up to a specific d/o, which is not practicable. As a compromise, the SH
coefficients up to d/o 2190 are selected, thus matching the resolution of EGM2008 (Pavlis
et al., 2007) and dV ELL RET2014 (Hirt et al., 2015). Note that both of these models are
affected by the same issue and hence also need to be evaluated up to their full resolution.
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(a)
SH band 721–2160SH band 721−2160

(b)
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Fig. 9. Gravity disturbances δg from SHC N2190 Ell grid evaluated on the surface of the
GRS80 ellipsoid. Gravity disturbances δg are presented for the SH bands (a) 721–2160,
(b) 2161–2190, and (c) 721–2190, in the area of Europe (40◦ ≤ ϕ ≤ 80◦, 0◦ ≤ λ ≤ 40◦).
Robinson projection centered at 20◦ longitude; meridians and parallels are 10◦ apart.

Consequently, based on the 4′ × 4′ ellipsoidal grids, the following sets of SH coefficients up
to d/o 2190 are generated for the RWI model

• RWI TOPO 2015 (RWI-based topographic potential)

• RWI TOPO 2015 Rock (rock proportion)

• RWI TOPO 2015 Water (water proportion)

• RWI TOPO 2015 Ice (ice proportion)

and the REQ model

• REQ TOPO 2015 (REQ-based topographic potential)

• REQ TOPO 2015 Water (condensed water proportion)

• REQ TOPO 2015 Ice (condensed ice proportion)

A separate set of SH coefficients for the REQ-based rock proportion is not defined as it is
identical to RWI TOPO 2015 Rock.

5. Results and discussion

In this section, the SH coefficients of the RWI TOPO 2015 model are analyzed and
compared to the coefficients of the previous version RWI TOPO 2012 and the rock-
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IV. The Rock-Water-Ice topographic gravity field model RWI TOPO 2015

equivalent version REQ TOPO 2015. For this purpose, the (dimensionless) signal degree
variances

σ2
n

(
Cnm, Snm

)
=

n∑
m=0

(
C 2
nm + S 2

nm

)
(40)

are used in the frequency domain. Furthermore, to analyze effects in the space domain, the
SH coefficients are used to derive global grids of different gravity field functionals by SHS.
Being representative for various terrestrial and satellite-based applications, the following
three commonly used functionals are evaluated:

1. The height anomaly that is derived by dividing the potential V according to Eq. (2)
by the normal gravity γ

ζ = GM

rγ

N∑
n=0

(
R

r

)n n∑
m=0

(
Cnm Y C

nm + Snm Y S

nm

)
. (41)

2. The first radial derivative of the potential −∂V/∂r, known as gravity disturbance

δg = GM

r2

N∑
n=0

(n+ 1)
(
R

r

)n n∑
m=0

(
Cnm Y C

nm + Snm Y S

nm

)
. (42)

3. The second radial derivative of the potential ∂2V/∂r2, called the radial-radial gravity
gradient

M33 = GM

r3

N∑
n=0

(n+ 1)(n+ 2)
(
R

r

)n n∑
m=0

(
Cnm Y C

nm + Snm Y S

nm

)
. (43)

The height anomaly ζ and the gravity disturbance δg, mostly related to terrestrial applica-
tions, are evaluated on a 5′ × 5′ grid on the surface of the GRS80 ellipsoid. The gravity
gradient M33 as measured by the GOCE gravity field mission is evaluated on a 5′ × 5′
spherical grid at a mean satellite altitude of 254.9 km. The SHS according to Eqs. (41) – (43)
is carried out by using an adapted version of the freely available harmonic synth software
(Holmes and Pavlis, 2006) that also utilizes the ALF algorithm based on Holmes and
Featherstone (2002).
While in the following section the analysis and discussion exemplarily concentrates on

the gravity disturbance δg, the additional results for the height anomaly ζ and the gravity
gradient M33 are presented in the Appendix.

5.1. RWI TOPO 2015

In Fig. 10, the spectral energy of the RWI TOPO 2015 SH coefficients is shown by means
of degree variances. With increasing degree n, the energy of the topographic signal (red
curve) decreases from about 10−7 to 10−21.
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Fig. 10. Degree variances of RWI TOPO 2015 (red curve), RWI TOPO 2015 Rock
(green curve), RWI TOPO 2015 Water (blue curve), and RWI TOPO 2015 Ice (yellow
curve). Note that the vertical axis is plotted on a logarithmic scale.

As the new RWI TOPO 2015 model offers separate SH coefficients for the rock, water,
and ice proportion, there is the opportunity to have a more detailed look on the com-
position of the RWI-based topographic signal. Therefore, Fig. 10 additionally provides
the corresponding degree variances for the SH coefficients of the rock, water, and ice
components.
While for lower degrees (n < 500) the topographic signal is mainly dominated by the

water proportion (blue curve), the influence of the rock signal (green curve) becomes
dominant for degrees higher than about 900. For n > 2000, the topographic signal more or
less coincides with the rock signal, while the water signal is about one order of magnitude
smaller. This characteristic can be explained by the mass distribution of the Earth’s rock
and water masses as well as their spatial arrangement. On the one hand, there is much
more water than rock masses, which results in a stronger water signal in the case of lower
frequencies. On the other hand, the roughness of the oceanic water masses induced by the
sea floor is much farer away from the used reference surface than the most highly variable
rock masses. Therefore, a considerably smoother signal is induced by the water masses,
resulting in a lower energy at higher spectral scales.
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Fig. 11. Topographic signal of (a) RWI TOPO 2015, (b) RWI TOPO 2015 Rock,
(c) RWI TOPO 2015 Water, and (d) RWI TOPO 2015 Ice in terms of gravity dis-
turbances δg evaluated on the surface of the GRS80 ellipsoid. Robinson projection centered
at 0◦ longitude.

The ice proportion (yellow curve) only significantly contributes to the very low degrees,
since its energy strongly decreases from 10−7 to 10−26. At degree n = 500, the ice signal is
already four orders of magnitude smaller than the topographic signal; for n > 2000, this
gap even reaches seven orders of magnitude. Besides the actual mass distribution of the
Earth’s rock, water, and ice proportions, the behavior of the degree variances may also
reflect the influence of differing spatial resolutions of the input topography for various
regions, e.g., a lower resolution for most parts of the oceans, Antarctica, and Greenland.
In Fig. 11a, the topographic signal of the RWI TOPO 2015 model is shown in terms

of the gravity disturbance δg. Moreover, the corresponding statistics are presented in
Table 5. The topographic signal ranges from −804.425 to 1014.430 mGal with a mean value
of −317.158 mGal and a standard deviation of 207.874 mGal (1 mGal = 10−5 m s−2). The
signal clearly shows the influence of the Earth’s main topographic features like continental
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mountain ranges (positive values) or oceanic ridges and trenches (negative values). Besides
the signal peaks induced by the Himalaya and the Andes, also smaller mountain ranges like
the European Alps or the mid-oceanic ridges can be clearly distinguished. The minimum
values are caused by the Mariana Trench located in the western Pacific Ocean and the
Tonga trench north of New Zealand.

Table 5. Statistics of the RWI TOPO 2015 topographic signal and its rock, water, and
ice components in terms of gravity disturbances δg evaluated on the surface of the GRS80
ellipsoid. All values are specified in [mGal].

Min Max Mean STD

RWI −804.425 1014.430 −317.158 207.874
Rock −258.245 1153.033 38.695 65.329
Water −818.907 −67.594 −360.327 168.477
Ice −11.587 180.322 4.474 15.756

Analogous to the frequency domain representation, Fig. 11b–d separately illustrates the rock,
water, and ice proportions within δg, which are denoted by δg1, δg2, and δg3, respectively.
The rock proportion δg1 exhibits extreme values of −258.245 and 1153.033 mGal with a
mean value of 38.695 mGal and a standard deviation of 65.329 mGal (cf. Table 5). While
positive values can be associated with rock masses above MSL, negative values indicate
mass deficits below MSL. This can nicely be seen in Antarctica, where the bedrock
surface, i.e., the interface between the rock and ice mass layer, is partially located above
as well as below MSL, generating a highly variable signal ranging from about −200 to
500 mGal. As mainly affected by the mass deficits of the oceans, the water proportion δg2
provides a systematic negative contribution to the topographic signal that ranges from
−818.907 to −67.594 mGal with a mean value of −360.327 mGal and a standard deviation
of 168.477 mGal. The maximum value is reached in the area of Lake Baikal.
Having a closer look on Fig. 11b and 11c, it can be seen that the effects of rock and

water masses are not restricted to the continents and oceans, but considerably superpose
each other. For example, over the Earth’s continents, the water proportion δg2 still causes
long-wavelength structures with signal strengths of about −200 to −130 mGal. This also
explains the discrepancy of about 140 mGal between the maximum values of the total
topographic and rock signal in Table 5. Similarly, due to the large positive influence of the
Himalayan region, the rock proportion δg1 also contributes up to 40 mGal in the northern
part of the Indian ocean.

In contrast to rock and water, the effect of the ice constituent δg3 (Fig. 11d) is basically
limited to Greenland and Antarctica and has no significant influence on other regions. It
provides considerably smaller magnitudes with a maximum value of 180.322 mGal, a mean
value of 4.474 mGal and a standard deviation of 15.756 mGal.
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δg (RWI_TOPO_2015_Water)

0 20 40 60 80 100
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Fig. 12. Percentage contribution p2 of the water proportion to the RWI-based topographic
signal. Robinson projection centered at 0◦ longitude.

To quantify the impact of the rock, water, and ice proportions, their percentage contribution
to the RWI-based topographic signal per grid element is determined by

ps := |δgs|
3∑
t=1
|δgt|

. (44)

In Fig. 12, the contribution p2 is plotted globally, showing that the RWI-based topographic
signal is strongly dominated by the water signal. With the exception of regions with high
continental mountain ranges or larger ice sheets, the contribution of the water can globally
be estimated to be above 50 %. For further analysis, Table 6 provides mean values pi
averaged over different areas (global, land, oceans, Antarctica). On average, the water
proportion contributes 86 % to the topographic signal, while the rock and ice masses have
only a smaller impact of 12 % and 1 %, respectively. When analyzing these values for land
and oceans separately, the dominating effect of the water proportion becomes more visible.
While for the oceans, it reaches nearly 100 %, its influence over land is still about twice as
large as the rock signal (2/3 water to 1/3 rock signal).

Table 6. Mean percentage contributions ps of the rock, water, and ice proportion averaged
over different areas. All values are specified in [%].

Global Land Oceans Antarctica

p1 12.4 32.5 4.2 18.1
p2 86.2 64.2 95.3 56.3
p3 1.3 3.3 0.5 25.6
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Fig. 13. (a) Degree variances of RWI TOPO 2015 (blue curve), RWI TOPO 2012 (green
curve), and their coefficient difference (red curve). Note that the vertical axis is plotted
on a logarithmic scale. (b) Difference of the RWI TOPO 2015 and RWI TOPO 2012
topographic signal in terms of gravity disturbances δg evaluated on the surface of the
GRS80 ellipsoid. Robinson projection centered at 0◦ longitude.

5.2. Comparison to RWI TOPO 2012

In order to see the improvement of the new topographic gravity field model, it is compared
to its predecessor model RWI TOPO 2012 (Grombein et al., 2014a), in both frequency
and space domains.
In Fig. 13a, the degree variances of the RWI TOPO 2015 model (blue curve), its

predecessor model (green curve), and the coefficient difference of both versions (red curve)
is shown. With increasing degree n, the model of 2012 loses more spectral energy than
the new model. At the maximum degree (N = 1800), its energy is almost half an order of
magnitude smaller and in the same range as the coefficient difference. The main reason for
this behavior can be seen in the different spatial resolution of the used topographic input
data (5′ × 5′ DTM2006.0 vs. 1′ × 1′ Earth2014).

In the space domain, the comparison between both models allows a more differentiated
analysis (see Fig. 13b; Table 7). Note that both models are evaluated up to their maximum
degree, with N = 1800 for the 2012 model and N = 2190 for the 2015 model. The
differences reach amplitudes of about ±400 mGal with a mean value of 5.981 mGal and a
standard deviation of 9.914 mGal. The maximum values can be detected in regions with
highly variable topography, such as the Himalaya, the Andes, and the Rocky Mountains.
This is a consequence of both, the refined spatial resolution of the used topographic data
and the increased maximum degree of the new RWI model. In contrast, for most of the
remaining continental parts (except Greenland and Antarctica), the differences are nearly
zero as the topographic model of both RWI versions is based on the same SRTM data.
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Table 7. Statistics of the difference of RWI TOPO 2015 and RWI TOPO 2012 in terms
of gravity disturbances δg evaluated on the surface of the GRS80 ellipsoid. All values are
specified in [mGal].

Min Max Mean STD

−399.640 383.188 5.981 9.914

For the oceans, the differences are in a range of ±200 mGal and basically reflect the
regionally refined bathymetric depths of the Earth2014 topographic model (cf. Fig. 4
in Sect. 4). Moreover, the global mean value of the difference is strongly affected by a
systematic positive offset of about 8 to 10 mGal that can be observed in the oceans. This
is a consequence of the modified ocean water density from 1000 kg m−3 to 1030 kg m−3 (cf.
Table 2). The newly determined bedrock surface in Antarctica and Greenland incorporated
in the Earth2014 causes considerable differences with maximum values up to 350 mGal.

5.3. Comparison to REQ TOPO 2015

In order to realize the significance of the more sophisticated RWI approach, the new
RWI TOPO 2015 model is compared to the consistent REQ TOPO 2015 version based
on a conventional rock-equivalent approach.
As can be seen in Fig. 14a, the degree variances of both models are in good agreement

and show nearly the same behavior (blue and green curve). The signal of the coefficient
difference (red curve) is about two to three orders of magnitude smaller. For the mid- and
high-frequencies between degree 500 and 1700, the SH coefficients of the rock-equivalent
version provide slightly more energy. This effect is due to the geometry changes induced by
the rock-equivalent condensation and can be explained more accurately when looking at
the degree variances for the water and ice constituents separately, see Fig. 14b–c.

While the water REQ-signal generates more energy than the corresponding water RWI-
signal for the mid- to high-frequencies, this is contrasted in the case of the ice signal. Due
to the rock-equivalent condensation, the sea floor is effectively moved upward (cf. Fig. 5 in
Sect. 2), which shifts the masses closer to the used reference surface. Due to the distance
dependency of gravity, a stronger signal is induced, so that the water proportion provides
more energy. In contrast, in the case of the ice masses, the condensation causes a larger
distance of these masses to the reference surface. As the water signal has more influence
than the ice signal, the REQ-based topographic signal provides more energy than the
RWI-based one.

The space domain difference of the RWI and REQ model, as plotted in Fig. 14d, shows
the effect of the geometry changes and mass displacements. The magnitude of these
differences strongly depends on the ratio between the actual mass density (water or ice)
and the constant rock density value used for the condensation. The differences are nearly
symmetrically distributed around the zero mean value and have a standard deviation
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Fig. 14. Degree variances of RWI TOPO 2015 (blue curve), REQ TOPO 2015 (green
curve), and their coefficient difference (red curve) shown for (a) the topographic signal,
(b) the water proportion, and (c) the ice proportion. Note that the vertical axis is plotted
on a logarithmic scale. (d) Difference of the RWI TOPO 2015 and REQ TOPO 2015
topographic signal in terms of gravity disturbances δg evaluated on the surface of the
GRS80 ellipsoid. Robinson projection centered at 0◦ longitude.

of 1.916 mGal (cf. Table 8). While the extreme values of −46.723 and 36.410 mGal are
attained in the oceans, the ice condensation in Greenland and Antarctica causes maximum
amplitudes of about ±15 mGal. The condensation effect of the ocean water masses also
causes differences of a few milligal in coastal areas, up to −10 mGal in case of Big Island
(Hawaii) that is surrounded by a deep ocean.

In order to estimate the effect of the RWI–REQ difference for different kind of terrestrial
and satellite-based applications, it is calculated as a function of the ellipsoidal height h
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Table 8. Statistics of the difference of the RWI TOPO 2015 and REQ TOPO 2015
topographic signal and their water and ice proportions in terms of gravity disturbances δg
evaluated on the surface of the GRS80 ellipsoid. All values are specified in [mGal].

Min Max Mean STD

RWI− REQ −46.723 36.410 0.000 1.916
RWI− REQ (Water) −46.728 36.392 0.000 1.899
RWI− REQ (Ice) −14.252 16.649 0.000 0.250

above the GRS80 ellipsoid, ranging from 0 to 600 km in steps of 5 km. For this interval,
Fig. 15 illustrates the behavior of the range and the standard deviation of the RWI–REQ
difference for the height anomaly ζ, the gravity disturbance δg, and the gravity gradientM33.
As the differences are nearly symmetrically centered on zero in the case of all functionals,
the range value also provides an impression of the maximum amplitudes.
In Fig. 15a, the range is plotted for the height anomaly ζ. While a maximum range of

1.2 m is reached on the GRS80 surface (h = 0 km), it strongly decreases to about 0.4 m at
h = 100 km. From there on, the range of the RWI–REQ difference stays at nearly the same
order of magnitude of a few decimeters. The standard deviation of the height anomaly ζ as
shown in Fig. 15b decreases relatively uniformly from 13 to 8.5 cm. Generally, it can be
seen that the RWI–REQ difference has a large influence on the height anomaly ζ compared
to the goal of cm to mm accuracy in different applications.

In the case of the gravity disturbance δg (Fig. 15c) and the gravity gradientM33 (Fig. 15d),
the range and standard deviation are both shown in the same panel. Furthermore, they are
plotted on a logarithmic scale. For δg, the range (blue curve) and standard deviation (green
curve) show nearly the same decreasing behavior for an increasing ellipsoidal height. For the
GRS80 surface and lower altitudes up to a few kilometers, the range and standard deviation
of the RWI–REQ difference stay above the level of 1 mGal. Thus, the difference provides
significantly larger magnitudes compared to the accuracy of a few microgal in the case of
terrestrial and airborne gravimetry applications. Even in the case of a GRACE (Gravity
Recovery And Climate Experiment) satellite orbit of about 450 – 500 km, the differences
still reach magnitudes of 3 · 10−1 mGal (range) and 7 · 10−2 mGal (standard deviation).
For the gravity gradient M33 as illustrated in Fig. 15d, range and standard deviation

again show a comparable behavior. Considering a GOCE satellite altitude of about 250 km,
the RWI–REQ difference provides a range of 45 mE (blue curve) and a standard deviation
of 4 mE (green curve, 1 mE = 10−12 s−2). Not before h = 600 km, the standard deviation
reaches the level of the GOCE measurement accuracy of 1 mE. Therefore, as already
mentioned in Grombein et al. (2010, 2014a), the difference between the RWI and REQ
method can reach significant amplitudes even at the GOCE satellite orbit.

To summarize the findings obtained from Fig. 15, it should be noted that the RWI–REQ
difference reaches significant magnitudes in the case of various terrestrial, airborne and
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satellite-based applications. Therefore, a more sophisticated modeling as provided by the
RWI approach should be considered when calculating topographic effects.
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Fig. 15. Difference of the RWI TOPO 2015 and REQ TOPO 2015 model in dependence
of the ellipsoidal height h above the GRS80 ellipsoid. Shown are the range and standard
deviation (STD) of the difference for (a)–(b) the height anomaly ζ, (c) the gravity
disturbance δg, and (d) the gravity gradient M33.

6. Validation
In order to assess their performance, the new RWI TOPO 2015 model, its predecessor
model RWI TOPO 2012, and the rock-equivalent version REQ TOPO 2015 are validated
against the gravity information of current GGMs. For this validation, the high-resolution
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EGM2008 model (Pavlis et al., 2012) and the latest GOCE GGM based on the time-wise
approach GOCE TIM R5 model (Brockmann et al., 2014) are used.

EGM2008 combines satellite-based gravity information of the GRACE satellite mission
with terrestrial, airborne and altimetry-derived gravity data that are partially supplemented
with topography-implied gravity information. In contrast, GOCE TIM R5 is a satellite-only
GGM providing homogeneous and independent gravity information. This model is based
on the observations of the complete GOCE mission lifetime and supplies SH coefficients up
to d/o 280.

To compare the performance of different global models, a wide range of assessment tools
have been developed (e.g., Tscherning, 1985; Rummel et al., 1988; Hirt et al., 2012; Tsoulis
and Patlakis, 2013). A commonly used performance indicator is the degree correlation
(cf. Rummel et al., 1988, p. 21) that allows a direct comparison between two models in
the frequency domain. However, as noted by Tscherning (1985) and Tsoulis and Patlakis
(2013), the correlation is not suitable to detect different scale factors in the models.

To overcome this disadvantage, the percentage agreement is introduced as

PA(n) =
σn
(
C GGM
nm , S GGM

nm

)
− σn

(
C GGM
nm − C Topo

nm , S GGM
nm − S Topo

nm

)
σn
(
C GGM
nm , S GGM

nm

) , (45)

where (C Topo
nm , S Topo

nm ) are the SH coefficients of the topographic gravity field model to be
evaluated, (C GGM

nm , S GGM
nm ) those of the reference GGM, and σn denotes the square root of

the coefficients’ degree variances according to Eq. (40). This indicator is the complement
of the percentage difference as used by Rummel et al. (1988, p. 20) and is similar to the
smoothing per degree as defined by Tscherning (1985).
In Fig. 16, the percentage agreement of RWI TOPO 2012, RWI TOPO 2015, and

REQ TOPO 2015 with respect to EGM2008 is illustrated. As the topographic potential
does not contain the gravitational impact of the whole Earth’s mass, no agreement between
the topographic gravity field models and EGM2008 can be detected for lower frequencies
(n < 100). In the subsequent SH band, the percentage agreement of all three models
continuously rises and reaches a level of about 55 % at degree n = 500; only some minor
differences between the models can be seen.
At degree n = 900, a considerable jump to higher agreements above 60 % can bee seen.

This can be explained by the compilation of the gravity data set used for generating
EGM2008. For larger parts of the continental areas, the available gravity data was of
proprietary nature. For this reason, they were only used up to d/o 900 and supplemented
by topography-derived gravity values beyond this degree (cf. Pavlis et al., 2013). Therefore,
this jump, which is also visible in the degree variances of EGM2008, nicely marks the
beginning of topographic information incorporated into EGM2008.
Beyond n = 900, the percentage agreements start to diverge and significant differences

are visible for the three models. In contrast to both RWI models, the REQ version provides
a considerable lower agreement to EGM2008. This is remarkable, since EGM2008 only
uses topography-derived gravity values over some land areas, where both approaches (RWI
and REQ) provide the same signal. Therefore, the higher agreement suggests a better fit

134



6. Validation

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

SH degree n

P
e

rc
e

n
ta

g
e

 a
g

re
e

m
e

n
t 

[%
]

 

 

RWI_TOPO_2012

RWI_TOPO_2015

REQ_TOPO_2015

Fig. 16. Percentage agreement PA(n) of RWI TOPO 2012 (blue curve),
RWI TOPO 2015 (green curve), and REQ TOPO 2015 (red curve) with respect
to EGM2008.

Table 9. Mean percentage agreement of topographic gravity field models with respect to
EGM2008, averaged over different SH bands. All values are specified in [%].

SH band 100–500 500–900 900–1800 1800–2160

RWI TOPO 2012 40.8 58.1 55.0 –
RWI TOPO 2015 40.9 58.3 59.0 45.6
REQ TOPO 2015 39.5 56.3 53.8 41.2

of the RWI-based topographic signal to the measured gravity data included in EGM2008.
This clearly highlights the benefit of the RWI approach compared to the REQ method.

For n > 1000, the percentage agreements gradually decrease for all models. While
a stronger decrease can be detected for RWI TOPO 2012 toward its maximum degree
(Nmax = 1800), the offset between the new RWI and REQ models is nearly constant (about
5 %). For the last SH band 2160–2190, the percentage agreements drop abruptly, which
can be explained as follows: Although the new RWI/REQ models and EGM2008 have the
same maximum degree of Nmax = 2190, the latter is only complete to d/o 2159, containing
some additional coefficients up to degree 2190 and order 2159 (cf. Pavlis et al., 2012).
In order to further quantify the improvement of the new RWI TOPO 2015 model,

Table 9 presents mean values of the percentage agreements for the SH bands 100–500,
500–900, 900–1800, and 1800–2160. For each of these SH bands, the RWI TOPO 2015
model consistently provides the largest values. Its advantage is particularly emphasized
in the SH band 900–1800. In this band, the improvement of RWI TOPO 2015 can be
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quantified by about 7 % and 10 % compared to RWI TOPO 2012 and REQ TOPO 2015,
respectively.

For the purpose of an additional validation in the space domain, the SH coefficients of the
topographic gravity field models and the GGM are used to synthesize gravity disturbances
δg. Instead of performing the SHS for each degree separately, narrow SH bands of five
degrees [5k + 1, 5(k + 1)] with k ∈ N are utilized, i.e., 6–10, 11–15, 16–20, etc. The use
of such SH bands is common practice in order to prevent that the signal of the applied
assessment indicator is affected by noisy oscillations (cf. Hirt et al., 2015).
In analogy to Eq. (45), the consistency rate of both models for the k-th SH band is

introduced as
CR(k) = STD(δgGGM

k )− STD(δgGGM
k − δg Topo

k )
STD(δgGGM

k ) , (46)

where the gravity disturbances of the k-th SH band of the topographic gravity field model
and the GGM are denoted by δg Topo

k and δgGGM
k , respectively. Such a kind of indicator was

also used by Grombein et al. 2014a to detect the degree of smoothing of topographically-
isostatically reduced GOCE gravity gradients.
An advantage of a space domain assessment is that the analysis can be restricted to

different areas. Such a subdivision is carried out for the validation with respect to the
GOCE TIM R5 model. Figure 17 shows the results for the consistency rate separated by
different areas (global, land, oceans, Antarctica). In all cases, the calculation is limited
to grid values with a latitude |ϕ| < 83.3◦. This excludes data points not captured by the
GOCE satellite due to its orbital inclination of 96.7◦.

Generally, as can be seen from the global results in Fig. 17a, maximum consistency rates
of up to 35 % are reached. Analogous to the validation with respect to EGM2008, no
or only smaller consistency can be observed for lower frequencies. Due to an increasing
signal-to-noise ratio, the SH coefficients of higher degrees cannot properly estimated by the
GOCE measurements (cf. Brockmann et al., 2014). Therefore, lower consistency rates are
also visible for higher frequencies.
In the case of land areas shown in Fig. 17b, all three topographic gravity field models

provide quite similar consistency rates and only some minor differences can be detected.
This can be expected, as (i) all three models are based on the same SRTM elevation data
and (ii) the RWI and REQ approaches produce the same signal in the case of rock masses.
Concerning the oceans, displayed in Fig. 17c, a nearly systematic offset between the

consistency rates of the new RWI and REQ model can be seen. In comparison to the
REQ model that is based on the improved bathymetric depths contained in Earth2014, the
RWI TOPO 2015 model shows a quite good performance. That suggests that in the case
of the oceans the choice of the approach (RWI vs. REQ) even has a larger influence than
the used topographic input data (DTM2006.0 vs Earth2014).
In Fig. 17d, the results for Antarctica are illustrated. In contrast to the former RWI

model, both new RWI and REQ models provide significantly larger consistency rates over
most of the spectrum. This impressively demonstrates the improvement of the new Bedmap2
data incorporated in the Earth2014 topography model in comparison to Beadmap1 data
used for DTM2006.0.
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(b) Land (without Antarctica)
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(c) Oceans
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(d) Antarctica
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Fig. 17. Consistency rate CR(k = (n − 1)/5) of RWI TOPO 2012 (blue curve),
RWI TOPO 2015 (green curve), and REQ TOPO 2015 (red curve) with respect to
GOCE TIM R5: (a) global, (b) land (without Antarctica), (c) oceans, and (d) Antarctica.

7. Conclusions and outlook

In this paper, a new spherical harmonic representation of the Earth’s topographic gravita-
tional potential up to degree and order 2190 has been presented. The topographic gravity
field model RWI TOPO 2015 is based on a refined Rock-Water-Ice approach that accounts
for a rigorous separate modeling of the Earth’s rock, water, and ice masses. While the
predecessor model RWI TOPO 2012 was based on the 5′ × 5′ global DTM2006.0, the new
RWI model uses height information of the 1′ × 1′ Earth2014 topography suite.

For the processing of RWI TOPO 2015, GFM is performed in the space domain by using
tesseroids. To correctly locate these mass bodies in space, a GRS80 ellipsoidal reference
surface is utilized that is extended by an additional geoid model. The gravitational effect
of each mass layer (rock, water, and ice) is calculated separately, applying layer-specific
density values. In order to obtain SH coefficients, a global grid of GFM-derived topographic
potential values is transformed to the frequency domain by using SHA based on a least-
squares technique. As has been shown, to correctly represent these topographic potential
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values by spherical harmonics, it is essential to consider an ellipsoidal calculation grid for the
SHA, particularly when deriving coefficients up to higher degree and order. Furthermore,
to ensure an accurate SHS in the polar regions, the coefficients of the new RWI model need
to be evaluated up to their full resolution and should not be truncated.

Besides SH coefficients for the total RWI-based topographic potential, separate coefficients
for the rock, water, and ice components have been determined. By analyzing these SH
coefficients in the frequency and space domain, the strongly dominating effect of the
water proportion becomes visible. For comparison, a consistent rock-equivalent version
called REQ TOPO 2015 has been generated, in which the heights of water and ice
masses are condensed to a constant rock density. By comparing the topographic signal
of the RWI and REQ model in terms of various gravity field functionals, differences with
significant magnitudes can be detected in the case of terrestrial, airborne and satellite-based
applications. To assess the performance of the RWI TOPO 2015 model, a validation by
gravity information of the high-resolution EGM2008 and the satellite-only model GOCE
TIM R5 has been carried out. This evaluation impressively demonstrates (i) significant
improvements of the new RWI model compared to its predecessor model RWI TOPO 2012
and (ii) the benefit of the RWI approach compared to the conventional rock-equivalent
condensation as used for REQ TOPO 2015.

As described in the introduction, the RWI model can be used for various applications in
geodesy and geophysics. For this purpose, the SH coefficients of different model variants are
freely available from the website https://www.gik.kit.edu/rwi model.php and via the database
of the International Centre for Global Earth Models ( http://icgem.gfz-potsdam.de/ICGEM).

As future work, a detailed comparison of the new RWI and REQ models to the topographic
potential model dV ELL RET2014, which also relies on the Earth2014 topography, but
uses frequency domain GFM, is in progress and will be subject of a further publication.
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Appendix
In addition to the investigations for the gravity disturbance δg as presented in Sect. 5, this
appendix provides further results in the case of the height anomaly ζ (Eq. (41)) and the grav-
ity gradientM33 (Eq. (43)). In Figs. 18 and 19, the topographic signal of RWI TOPO 2015,
RWI TOPO 2015 Rock, RWI TOPO 2015 Water, and RWI TOPO 2015 Ice is plot-
ted in terms of ζ and M33, respectively, while corresponding statistics are presented in
Tables 10 and 11. For the comparison of RWI TOPO 2015 to RWI TOPO 2012 and
REQ TOPO 2015, Figs. 20 and 21 show differences in terms of ζ and M33, respectively.
Corresponding statistics for these cases can be found in Tables 12 – 15.

138

https://www.gik.kit.edu/rwi_model.php
http://icgem.gfz-potsdam.de/ICGEM


Appendix

(a)
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Fig. 18. Topographic signal of (a) RWI TOPO 2015, (b) RWI TOPO 2015 Rock,
(c) RWI TOPO 2015 Water, and (d) RWI TOPO 2015 Ice in terms of height anomalies
ζ evaluated on the surface of the GRS80 ellipsoid. Robinson projection centered at 0◦
longitude.

Table 10. Statistics of the RWI TOPO 2015 topographic signal and its rock, water, and
ice proportions in terms of height anomalies ζ evaluated on the surface of the GRS80
ellipsoid. All values are specified in [m].

Min Max Mean STD

RWI −2732.564 −947.169 −2062.235 401.159
Rock 103.586 812.072 251.613 89.897
Water −2924.319 −1669.936 −2342.957 328.921
Ice 17.288 189.362 29.109 22.458
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(a)
M33 (RWI_TOPO_2015)
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Fig. 19. Topographic signal of (a) RWI TOPO 2015, (b) RWI TOPO 2015 Rock,
(c) RWI TOPO 2015 Water, and (d) RWI TOPO 2015 Ice in terms of the gravity
gradient M33 evaluated on a spherical grid at a mean GOCE satellite altitude (254.9 km).
Robinson projection centered at 0◦ longitude.

Table 11. Statistics of the RWI TOPO 2015 topographic signal and its rock, water, and
ice proportions in terms of the gravity gradient M33 evaluated on a spherical grid at a
mean GOCE satellite altitude (254.9 km). All values are specified in [E].

Min Max Mean STD

RWI −4.562 6.832 −0.882 1.612
Rock −1.669 6.722 0.108 0.587
Water −4.484 1.807 −1.002 1.303
Ice −0.301 1.461 0.012 0.137
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(a)
ζ (RWI_TOPO_2015 − RWI_TOPO_2012)
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(b)
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Fig. 20. Difference of the new RWI TOPO 2015 model to (a) RWI TOPO 2012 and
(b) REQ TOPO 2015 in terms of height anomalies ζ evaluated on the surface of the
GRS80 ellipsoid. Robinson projection centered at 0◦ longitude.

Table 12. Statistics of the difference of RWI TOPO 2015 and RWI TOPO 2012 in terms
of height anomalies ζ evaluated on the surface of the GRS80 ellipsoid. All values are
specified in [m].

Min Max Mean STD

17.445 51.776 38.891 5.539

Table 13. Statistics of the difference of the RWI TOPO 2015 and REQ TOPO 2015
topographic signal and their water and ice proportions in terms of height anomalies ζ
evaluated on the surface of the GRS80 ellipsoid. All values are specified in [m].

Min Max Mean STD

RWI− REQ −0.195 0.987 0.000 0.131
RWI− REQ (Water) −0.192 0.990 0.002 0.132
RWI− REQ (Ice) −0.030 0.268 −0.002 0.012

Table 14. Statistics of the difference of RWI TOPO 2015 and RWI TOPO 2012 in terms
of the gravity gradient M33 evaluated on a spherical grid at a mean GOCE satellite altitude
(254.9 km). All values are specified in [mE].

Min Max Mean STD

−470.724 354.954 16.631 42.635
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(a)
M33 (RWI_TOPO_2015 − RWI_TOPO_2012)
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Fig. 21. Difference of the new RWI TOPO 2015 model to (a) RWI TOPO 2012 and
(b) REQ TOPO 2015 in terms of the gravity gradient M33 evaluated on a spherical grid at
a mean GOCE satellite altitude (254.9 km). Robinson projection centered at 0◦ longitude.

Table 15. Statistics of the difference of the RWI TOPO 2015 and REQ TOPO 2015
topographic signal and their water and ice proportions in terms of the gravity gradient M33
evaluated on a spherical grid at a mean GOCE satellite altitude (254.9 km). All values are
specified in [mE].

Min Max Mean STD

RWI− REQ −19.336 22.589 0.000 3.833
RWI− REQ (Water) −19.335 22.591 0.001 3.814
RWI− REQ (Ice) −2.760 5.930 −0.001 0.336
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Abstract. National height reference systems have conventionally been linked to the local
mean sea level, observed at individual tide gauges. Due to variations in the sea surface
topography, the reference levels of these systems are inconsistent, causing height datum
offsets of up to ±1–2 m. For the unification of height systems, a satellite-based method is
presented that utilizes global geopotential models (GGMs) derived from ESA’s satellite
mission Gravity field and steady-state Ocean Circulation Explorer (GOCE). In this context,
height datum offsets are estimated within a least squares adjustment by comparing the
GGM information with measured GNSS/leveling data. While the GNSS/leveling data
comprises the full spectral information, GOCE GGMs are restricted to long wavelengths
according to the maximum degree of their spherical harmonic representation. To provide
accurate height datum offsets, it is indispensable to account for the remaining signal
above this maximum degree, known as the omission error of the GGM. Therefore, a
combination of the GOCE information with the high-resolution Earth Gravitational Model
2008 (EGM2008) is performed. The main contribution of this paper is to analyze the
benefit, when high-frequency topography-implied gravity signals are additionally used to
reduce the remaining omission error of EGM2008. In terms of a spectral extension, a new
method is proposed that does not rely on an assumed spectral consistency of topographic
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heights and implied gravity as is the case for the residual terrain modeling (RTM) technique.
In the first step of this new approach, gravity forward modeling based on tesseroid mass
bodies is performed according to the Rock-Water-Ice (RWI) approach. In a second step, the
resulting full spectral RWI-based topographic potential values are reduced by the effect of
the topographic gravity field model RWI TOPO 2015, thus, removing the long to medium
wavelengths. By using the latest GOCE GGMs, the impact of topography-implied gravity
signals on the estimation of height datum offsets is analyzed for GNSS/leveling data sets
in Germany, Austria, and Brazil. Besides considerable changes in the estimated offset of
up to 3 cm, the conducted analyses show significant improvements of 30 – 40 % in terms of
a reduced standard deviation and range of the least squares adjusted residuals.

Keywords Height system unification · GOCE · Gravity forward modeling · Rock-Water-Ice
(RWI) approach · Tesseroids

1. Introduction

National height reference systems are traditionally based on leveling networks, where height
differences are observed by a combination of spirit leveling and gravimetry. For each leveling
network, a fixed datum point has been selected that defines the height reference level. In
order to realize a physical meaning, the zero level of height systems is conventionally linked
to the mean sea level (MSL). For this purpose, tide gauges usually serve as datum points,
where sea level observations over a specific time period are used to fix the zero level. Due
to location- and time-dependent variations in the sea surface topography, i.e., the height
of the sea surface above a global equipotential surface like the geoid, different tide gauges
and observation periods generally do not realize the same height reference level. As a
consequence, national height systems that are mostly connected to individual tide gauges
are based on their own local vertical datum (LVD). The resulting discrepancies between
different LVD zones cause height datum offsets of about ±1–2 m (Heck, 1990), making it
impossible to directly compare the physical heights of different, disconnected countries.

From a regional perspective, this can cause various problems for international engineering
projects or flooding control, when height information from more than one LVD zone needs
to be integrated (Gerlach and Fecher, 2012). Furthermore, a consistent physical height
reference level seems to be indispensable for the accurate assessment of global geodynamic
and climatological processes in the Earth’s system (Blewitt et al., 2010). This includes
environmental studies related to the monitoring of the global sea level rise or researches
on coastal hazards. Moreover, a consistent connection between geometric and physical
reference frames is relevant for many geodetic applications, such as the unification of
national gravity databases or the realization of the Global Geodetic Observing System
(GGOS, Ihde and Sánchez, 2005). Therefore, the current activities of GGOS Theme 1 are
concentrated on the unification of height systems (Kutterer and Neilan, 2016).

For the purpose of height system unification, different strategies and methods have been
proposed and discussed in various publications, see, for example, Colombo (1980), Rapp
(1983), Heck and Rummel (1990), Sansò and Venuti (2002), and Sánchez (2009, 2015).
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According to Rummel (2002), they can generally be classified into three categories: (i) the
spirit leveling approach, (ii) the oceanographic approach, and (iii) the gravity field approach.
A discussion of the advantages and drawbacks of these approaches, as well as a comparison
of their practical realization in Europe, can be found in Rülke et al. (2016).

The spirit leveling approach is based on a joint adjustment of different national leveling
networks by using cross-border connections. As an example, this has been done for the
realization of the European Vertical Reference Frame (EVRF 2007, Sacher et al., 2009).
However, this method is susceptible to systematic errors, has a low redundancy, and is
restricted to only a continent-wide connection of local height systems.

In the case of the oceanographic approach, a connection of different tide gauges is realized
by determining the sea surface topography between these points (e.g., Woodworth et al.,
2012). For this purpose, oceanographic models are needed, which can be based on dynamic
leveling or satellite altimetry (cf. Heck and Rummel, 1990; Luz et al., 2009a).

The gravity field approach uses information of GNSS/leveling benchmarks, i.e., observa-
tion points that combine ellipsoidal heights derived from global navigation satellite system
(GNSS) observations and physical heights in the LVD. Height datum offsets are then
estimated by comparing biased undulations resulting from these GNSS/leveling data with
corresponding unbiased undulations derived from independent gravity field information.
Depending on the accuracy requirements, this information can be obtained from (i) the
solution of a Geodetic Boundary Value Problem (GBVP, Heiskanen and Moritz, 1967,
p. 36 f.), (ii) a global geopotential model (GGM), or (iii) a combination of both. In the case
of the GBVP approach (Rummel and Teunissen, 1988), respective boundary values in terms
of terrestrial gravity data are required. In this context, investigations have been mainly
concentrated on the use of the scalar-free GBVP (e.g., Xu, 1992; Gerlach and Rummel,
2013; Amjadiparvar et al., 2016), but have also been conducted for the case of the fixed
GBVP (e.g., Grombein et al., 2016b).
In the following, a satellite-based method will be considered that utilizes gravity field

information derived from ESA’s satellite mission Gravity field and steady-state Ocean
Circulation Explorer (GOCE, ESA, 1999). A primary geodetic mission objective of GOCE
is to contribute to global height system unification by providing a precise global geoid
with an accuracy of 1 – 2 cm. As such a satellite-based geoid is not affected by any height
datum offset, it can be used as a global homogeneous reference surface for the connection
of different height datum zones (Rummel, 2002; Gatti et al., 2013). However, due to the
measurement at satellite altitude and the limited bandwidth of the GOCE gradiometer, the
derived geoid is restricted to a spatial resolution of about 100 km (Rummel et al., 2011).
This corresponds to a spherical harmonic (SH) expansion of degree and order (d/o) 200 in
terms of a GGM. The remaining signal above this degree is known as the omission error of
the GGM and has to be taken into account in order to match the full spectral information of
the GNSS/leveling data. Therefore, in order to provide accurate height datum offsets, the
main issue of such an approach is to reduce the omission error of the satellite-based GGM
by additionally considering the mid- and high-frequency terms of the gravity field, which
are not captured by the model. A common method to reduce the influence of the omission
error is to combine the long to medium wavelength information of a GOCE GGM with the
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high-resolution Earth Gravitational Model 2008 (EGM2008, Pavlis et al., 2012). Such a
procedure has been used in the context of the validation of GOCE GGMs (e.g., Gruber
et al., 2011; Šprlák et al., 2015; Voigt and Denker, 2015), as well as for the unification of
height systems (e.g., Gruber et al., 2012; Barzaghi et al., 2016; Ferreira et al., 2016).
In many studies, a pure concatenation (or complementation) of the SH coefficients at

a specific degree (e.g., 180 or 200) is performed. However, such a procedure might cause
a spectral gap between both models. To ensure a smooth transition, a Hanning window
(Blackman and Tukey, 1958) is used in this paper. In this context, a systematic analysis
will be carried out to find optimal values for the combination degree and the window size.

In contrast to other publications, the main focus of this paper is the additional considera-
tion of high-frequency gravity signals induced by the Earth’s topographic masses. In terms
of a spectral extension, residual terrain modeling (RTM) is a widely used tool, where gravity
forward modeling is applied to a residual topography between a high-resolution digital
terrain model (DTM) and a smoothed reference topography, whose spectral information is
assumed to be already contained in the GGM. However, this procedure principally depends
on the spectral consistency of topographic heights and implied gravity, which is not the
case in general (cf. Hirt and Kuhn, 2014). To overcome this issue, a new approach is
proposed, where the forward-modeled topographic gravity effect of a DTM is reduced by
the information of the topographic gravity field model RWI TOPO 2015 (Grombein et al.,
2016a). Therefore, the required high-pass filtering is performed directly in the gravity
domain, which allows a more consistent spectral combination with the GGM information.
The paper is organized as follows: in Sect. 2, the proposed satellite-based method for

height system unification is introduced. Furthermore, formulas are derived for the applied
combination of the GOCE and EGM2008 information, as well as the new (residual) gravity
forward modeling approach. While Sect. 3 describes the study areas and used data sets,
Sect. 4 provides numerical investigations concerning their uncertainties. In Sect. 5, the
results of the height datum offset estimation are presented and discussed with a special focus
on (i) an optimal combination of GOCE and EGM2008 and (ii) the benefit of high-frequency
topographic signals. Finally, Sect. 6 concludes with a summary and an outlook.

2. Satellite-based height system unification

2.1. General considerations

Following the theory of Molodensky (Heiskanen and Moritz, 1967, p. 291ff.), the presented
approach is based on the fundamental relation

h = H + ζ, (1)

where h is the ellipsoidal height, H is the normal height, and ζ is the corresponding height
anomaly. By considering a biased normal height H ′ in some LVD zone, the height datum
offset δH of this zone due to the discrepancies of the three quantities can be derived by

δH = h−H ′ − ζ. (2)
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Note that an equivalent relation holds true in the case of the orthometric height and the
geoid undulation with respect to the theory of Stokes. However, a formulation in the sense
of Molodensky will be used throughout this paper.

For the practical evaluation of Eq. (2), a set of GNSS/leveling benchmarks Pj , j = 1, . . . , J ,
is needed that combines unbiased GNSS-based ellipsoidal heights h(Pj) and biased normal
heights H ′(Pj) derived from spirit leveling and gravity measurements in the LVD zone.
Furthermore, the unbiased height anomalies ζ(Pj) are obtained from gravity information of
a GGM. In this way, the GGM provides a reference surface to which different LVD zones
can be connected, hence, allowing a unification of the corresponding height systems.

As outlined in Sjöberg (2011), methods based on GNSS/leveling benchmarks are generally
not able to provide (absolute) height datum offsets with respect to the unknown global
vertical datum. However, from a practical point of view, this is not absolutely necessary
for a global unification of height systems. Instead, the derived height datum offsets are
defined relatively with respect to the GGM-based reference surface. Thus, an “absolute”
vertical datum is defined by convention (cf. Heck, 2004).

According to Hirt et al. (2010), the SH series of a GGM is evaluated at the Earth’s
surface. In terms of geocentric spherical coordinates (r, ϕ, λ), the required spherical
harmonic synthesis in the SH band [n1, n2] ⊂ N0 can be performed by

ζ GGM
n1, n2

(P ) = GM

rγ

n2∑
n=n1

(
R

r

)n n∑
m=0

(
∆Cnm cosmλ+ ∆Snm sinmλ

)
Pnm(sinϕ), (3)

where GM is the geocentric gravitational constant (product of Newton’s gravitational
constant G and the Earth’s mass M) and R the reference radius of the GGM, γ = γ(P )
is the normal gravity value at the Earth’s surface point P , and Pnm denotes the fully
normalized associated Legendre functions of degree n and order m. The fully normalized
SH coefficients C GGM

nm and S GGM
nm of the GGM are reduced by the coefficients C REF

nm and
S REF
nm of a normal field by setting∆Cnm

∆Snm

 =

C GGM
nm

S GGM
nm

− GM0
GM

·
(
a

R

)n
·

C REF
nm

S REF
nm

, (4)

where GM0 and a are the geocentric gravitational constant and the semi-major axis of the
used reference ellipsoid, e.g., GRS80 (Geodetic Reference System 1980, Moritz, 1980).
As mentioned above, satellite-based GGMs derived from gravity field missions like

GOCE are of special interest, as they provide independent and homogeneous gravity field
information that is not affected by the discrepancies of LVD zones. For the accuracy of the
height datum offset estimation, the omission and the commission error of the GGM plays
an important role. While the omission error is induced due to the truncation of the series
in Eq. (3) at a certain degree n = n2, the commission error results from the uncertainties
of the SH coefficients up to this degree.

In the present context, the GNSS/leveling data comprises the full spectral information of
the gravity field. For spectral consistency, this would require an evaluation of the series in
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Eq. (3) up to infinity. However, the latest satellite-based GOCE GGMs are restricted to a
maximum degree nGOCE

max ≤ 300. The resulting omission error may reach several decimeters
in locations with rugged terrain. Hence, its influence has to be reduced by estimating the
remaining signal above the spectral resolution of the GOCE GGM, using additional data.
To this end, a spectral decomposition of the height anomaly ζ is performed by setting

ζ = ζ LF + ζ MF + ζ HF , (5)

where ζ LF are the low-frequencies that are represented by a satellite-based GOCE GGM,
and ζ MF are the mid-frequencies that are derived from EGM2008 up to d/o 2190. The
remaining high-frequency signals ζ HF above the spectral resolution of EGM2008 are assumed
to be mainly influenced by the Earth’s topographic masses and are obtained by gravity
forward modeling in this paper.

To achieve a suitable spectral extension, the three signal components have to be combined
carefully in order to match their respective spectral signal content. Details on this aspect
are provided in the following two subsections.

2.2. Combination of GOCE GGMs and EGM2008

The information of a satellite-based GOCE GGM and EGM2008 can be merged in the
frequency domain by using a combination of their respective SH coefficients (C GOCE

nm , S GOCE
nm )

and (C EGM
nm , S EGM

nm ). To ensure a smooth transition between the two models, a transition
window is used in the following, that is parameterized by its central degree N , called the
SH degree of combination, and its half-bandwidth dN , denoted as transition bandwidth.
Note that it is required that N − dN ≥ 0 and N + dN ≤ nGOCE

max .
The combined SH coefficients (C G/E (N, dN)

nm , S G/E (N, dN)
nm ) can then be derived by a (convex)

linear combination:C
G/E (N, dN)
nm

S G/E (N, dN)
nm

 =
[
1− w(N,dN)(n)

]C GOCE
nm

S GOCE
nm

+ w(N,dN)(n)

C EGM
nm

S EGM
nm

, (6)

where

w(N,dN)(n) =


0, 0 ≤ n ≤ N − dN,

f(N,dN)(n), N − dN < n ≤ N + dN,

1, N + dN < n ≤ nEGM
max ,

(7)

are degree-wise weight factors and f(N,dN)(n) ∈ (0, 1) is the applied transition function.
In this paper, an adapted Hanning function (Blackman and Tukey, 1958) will be used,

that is restricted to the interval (0, 1), i.e.,

f(N,dN)(n) = 1
2

[
1− cos

(
π(N − dN − n)

2dN

)]
. (8)
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Note that for the special case of dN = 0, Eq. (7) degenerates to a widely used concatenation
of the SH coefficients, i.e.,

w(N,0)(n) =

0, 0 ≤ n ≤ N,

1, N < n ≤ nEGM
max .

(9)

It is acknowledged that there are other approaches like a stochastic combination based on
the error variances of the SH coefficients, e.g., Huang and Véronneau (2013) and Ferreira
et al. (2016). However, such a procedure assumes that the specified errors of both models
are uncorrelated and realistic, which is not the case in general as will be shown in Sect. 4.3.
By using the combined SH coefficients (C G/E (N, dN)

nm , S G/E (N, dN)
nm ) for the spherical har-

monic synthesis in Eq. (3), the height anomaly ζ G/E (N, dN)
0, 2190 is obtained that combines the

low- and mid-frequency signal components as needed for Eq. (5), i.e.,

ζ LF + ζ MF := ζ G/E (N, dN)
0, 2190 . (10)

2.3. Topography-implied gravity signals

Based on the information of a global high-resolution DTM, the impact of the Earth’s
topographic masses can generally be obtained by gravity forward modeling via the evaluation
of Newton’s integral (Heiskanen and Moritz, 1967, p. 3).
In the following, space domain gravity forward modeling based on the Rock–Water–Ice

(RWI) approach is used that has been proposed by Grombein et al. (2014) and was further
developed in Grombein et al. (2016a). This method is characterized by a three-layer
decomposition of the Earth’s topography with respect to its (1) rock, (2) water, and (3)
ice masses. In contrast to condensation methods, e.g., the use of rock-equivalent heights,
geometry changes and mass displacements are avoided due to a rigorous separate modeling
of the rock, water, and ice masses with layer-specific density values (ρ1, ρ2, ρ3).
The required geometrical information, i.e., the MSL heights of the upper boundary

surfaces of the rock, water, and ice masses (h1, h2, h3), is obtained from the 1′ × 1′ global
Earth2014 topography model (Hirt and Rexer, 2015) and parameterized in terms of
geocentric spherical coordinates

ϕv = 90◦ − (v − 1/2) ·∆ϕ, v = 1, . . . , vn ∈ N, (11)
λw = (w − 1/2) ·∆λ, w = 1, . . . , wm ∈ N, (12)

with ∆ϕ = ∆λ = 1′.
To correctly locate the topographic masses in space, the MSL is represented by a

geocentric reference radius R0(ϕ, λ) that combines the latitude-dependent radius of the
GRS80 ellipsoid and an additional geoid undulation, see Grombein et al. (2016a) for details.
For each grid element, the geocentric radii of the upper boundary surfaces of rock, water,
and ice masses are then approximated by R1 = R0 + h1, R2 = R0 + h2, and R3 = R0 + h3,
respectively. Although the sequence of these masses is the same for different terrain types,
some mass types may be lacking (cf. Fig. 2 in Grombein et al., 2016a).
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Fig. 1. Geometry of a tesseroid mass body used for mass discretization; the spherical
coordinates (r, ϕ, λ) are referred to the geocentric Earth-fixed equatorial reference system
defined by the base vectors e1, e2, e3.

For the mass discretization of Newton’s integral, tesseroid mass bodies are used, which
are shown in Fig. 1 and described in Heck and Seitz (2007) and Grombein et al. (2013).
In terms of the height anomaly ζ, the gravitational impact of a single tesseroid with a
constant mass density ρ can be calculated by

ζ∗(P ) = Gρ

γ

r2∫
r1

ϕ2∫
ϕ1

λ2∫
λ1

r′2 cosϕ′
`

dr′ dϕ′ dλ′, (13)

where G denotes Newton’s gravitational constant, and ` = `(P,Q) is the Euclidean distance
between the attracted computation point P (r, ϕ, λ) and the running integration mass point
Q(r′, ϕ′, λ′), see Fig. 1.

The total RWI-based topographic effect ζ Topo is then calculated as the sum of the impact
over all individual tesseroids (superposition principle):

ζ Topo(P ) = G

γ

vn∑
v=1

wm∑
w=1

3∑
s=1

ρs

Rs∫
Rs−1

∫∫
σ∗vw

r′2 cosϕ′
`

dr′ dϕ′ dλ′, (14)

where
σ∗vw =

[
ϕv −

∆ϕ
2 , ϕv + ∆ϕ

2

]
×
[
λw −

∆λ
2 , λw + ∆λ

2

]
(15)

denotes the spherical tesseroid base surface associated with the grid element (v, w).
As the integration with respect to σ∗vw comprises elliptical integrals, a numerical evaluation

of Eq. (14) is achieved by means of expanding the integral kernel in a Taylor series and
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performing a subsequent term-wise integration (cf. Heck and Seitz, 2007). The applied
evaluation rules that provide a fourth-order error in the spatial coordinates of the integration
point are explicitly given in Grombein et al. (2013) and are adapted to the RWI approach
in Grombein et al. (2016a).
As the height anomaly ζ Topo in Eq. (14) contributes to all spectral scales of the gravity

field, it cannot directly be used for the spectral extension of the GGM information. Thus,
in addition, some kind of high-pass filtering has to be performed.
For this purpose, residual terrain modeling (RTM, Forsberg and Tscherning, 1997) is

a widely used tool that has been utilized in various studies and for different kinds of
applications (e.g., Hirt et al., 2010; Hirt, 2013; Šprlák et al., 2015). In an RTM-based
approach, gravity forward modeling is applied to a residual topography between a high-
resolution DTM and a smoothed reference topography, whose spectral information is
assumed to be already contained in the GGM. In this way, the RTM method principally
presupposes a spectral consistency of topographic heights and implied gravity. However,
as shown by Hirt and Kuhn (2014), a band-limited topography can also generate a full
spectrum gravity field information, which emphasizes the nonlinearity of the underlying
problem. Therefore, the basic assumption of the RTM approach cannot be considered valid
in general. Thus, it is recommended to perform the high-pass filtering not on the basis of
topographic heights, but directly in the gravity domain.

For this purpose, the topographic gravity field model RWI TOPO 2015 (Grombein et al.,
2016a) is used in the following. The SH coefficients of this model have been obtained from
the spherical harmonic analysis of a 4′ × 4′ global grid of RWI-based topographic potential
values, calculated according to the formalism specified above and the used topographic input
data. Thus, it is expected that the height anomalies derived from the RWI TOPO 2015
model are consistent with those of Eq. (14), and only differ in their spectral content.
As a consequence, the long to medium wavelengths of ζ Topo in Eq. (14) can be removed
consistently by subtracting the effect of the RWI TOPO 2015 model.
To augment the spectral resolution of ζ G/E (N, dN)

0, 2190 in Eq. (5), the topography-implied
height anomaly is then calculated by

δζ Topo = ζ Topo − ζ RWI
0, 2159 =: ζ HF , (16)

where ζ RWI
0, 2159 is the synthesized height anomaly of the RWI model up to d/o 2159, which

can be computed by spherical harmonic synthesis according to Eq. (3). Note that, in
this case, a normal field in Eq. (4) must not be subtracted from the SH coefficients of
RWI TOPO 2015.

At this point, some additional remarks on the choice of d/o 2159 are appropriate. While
EGM2008 provides a maximum degree of nEGM

max = 2190, it is only complete to d/o 2159,
containing some additional coefficients up to degree 2190 and order 2159 (Pavlis et al.,
2012). These coefficients result from the transformation between ellipsoidal and spherical
harmonics and provide crucial information, needed for an accurate spherical harmonic
synthesis, particularly in polar regions. Therefore, it is recommended to consider them,
although they do not add further spectral information beyond d/o 2159. Thus, in order
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to augment the spectral resolution of EGM2008, topographic potential values need to be
high-pass filtered with respect to d/o 2160.

2.4. Estimation of height datum offsets by least squares adjustment

By inserting Eq. (5) into Eq. (2) and using

ζ GNSS/lev = h−H ′, (17)

the height datum offset δH can be evaluated pointwise for each GNSS/leveling benchmark
Pj by

δH(Pj) = ζ GNSS/lev − ζ G/E (N, dN)
0, 2190 − δζ Topo

∣∣∣
Pj
. (18)

However, due to approximation and measurement errors, offsets derived in this way will
vary regionally, so that the accuracy and reliability can be increased by averaging over a
larger area or the entire LVD zone.

While the errors in ellipsoidal heights and GGM-derived height anomalies are expected
to be mainly random, physical heights can additionally be affected by systematic leveling
errors and distortions in the leveling network. In order to compensate for these errors, the
height datum offset δH will be estimated in a least squares adjustment (LSA) by applying
an additional parametric model. In this context, different models have been analyzed and
tested by Kotsakis et al. (2012) and Ferreira et al. (2016), in the case of the Hellenic islands
and Brazil, respectively. In the following, a 3-parameter (plane) model will be used, which
is in accordance with other studies, e.g., Rülke et al. (2012) and Amjadiparvar et al. (2016).

For each GNSS/leveling point Pj , parameterized by its geodetic coordinates (Bj , Lj), an
observation equation is then formulated as

lj = ζ GNSS/lev − ζ G/E (N, dN)
0, 2190 − δζ Topo

∣∣∣
Pj

= δH + a1(Bj −B0) + a2(Lj − L0) cosBj , (19)

where δH is the unknown height datum offset in the centroid (B0, L0), corresponding to the
mean over all GNSS/leveling benchmarks Pj , and a1 and a2 are the associated unknown
tilts in north-south and east-west direction. The functional model according to Eq. (19) is
specified by 

l1 + v1

l2 + v2
...

lJ + vJ


︸ ︷︷ ︸

l+v

=



1 (B1 −B0) (L1 − L0) cosB1

1 (B2 −B0) (L2 − L0) cosB2
...

...
...

1 (BJ −B0) (LJ − L0) cosBJ


︸ ︷︷ ︸

A

·


δH

a1

a2


︸ ︷︷ ︸

x

, (20)

where l is the observation vector, v the residual (or inconsistency) vector, and x the vector
of unknowns. The design matrix A contains the partial derivatives of the observations with
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respect to the unknowns. Using a standard LSA, the unknown height datum offsets are
estimated by

x̂ = N−1ATP l, (21)

where N = ATPA is the normal matrix and P is the weight matrix that can be specified,
when reliable error information of the observations is available.

As noted by Gerlach and Fecher (2012), an optimal estimation of height datum offsets
would theoretically require the full error variance-covariance matrix (VCM) of the observa-
tions Cll = P−1. Assuming that the errors of the involved terms in Eq. (19) are pairwise
uncorrelated, this matrix can be specified by

Cll = Chh + CH′H′ + Cζζ , (22)

where Chh and CH′H′ are the error VCMs of the measured ellipsoidal and normal heights,
respectively, and Cζζ is the error VCM of the GGM-derived height anomalies ζ.
On the one hand, Cζζ might be derived from error propagation of the GGM’s SH

coefficients, cf. Haagmans and van Gelderen (1991). However, this (i) generally requires
the full error VCM of the SH coefficients, which might not be available, and (ii) is
computationally very demanding (e.g., Gerlach and Fecher, 2012). One the other hand,
realistic uncertainties for the observed ellipsoidal and normal heights are generally not
available, particularly for historical measurements (Amjadiparvar et al., 2016). Therefore,
in most practical cases, it is not possible to compile Chh and CH′H′ , and thus Cll.

In this case, all observations are usually equally weighted by setting P = I, where I is the
identity matrix. Although this is also done in this study, in Sect. 4, the uncertainties of all
involved terms will be estimated in a separate LSA, assuming that they are uncorrelated.

3. Study areas and data sets
In Sect. 3.1, the three study areas and their respective national height systems are introduced,
while Sect. 3.2 describes the used GNSS/leveling data sets in these countries. Furthermore,
in Sect. 3.3, the applied global geopotential models are presented, and in Sect. 3.4, a
homogenization of all data sets is performed.

3.1. Study areas

For the analysis in this paper, three representative study areas have been selected: Germany,
Austria, and Brazil. They differ strongly in size, geographical latitude, topographic
properties, as well as the accuracy of their geodetic measurements. In the following, the
national height system in each of these countries is briefly described.
The German height system is currently materialized by the German Primary Leveling

Network 1992 (Deutsches Haupthöhennetz 1992, DHHN92), which was established after
the German reunification by combining the former networks of East and West Germany.
With the implementation of DHHN92, gravity-related normal heights were introduced for
the whole country. The LVD of DHHN92 is realized by the reference level of the Normaal
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Amsterdams Peil (NAP) as observed in the time period 1683–1684. For further information
on DHHN92, the reader is referred to Weber (1994) and Ihde (1995). Note that DHHN92
will soon be replaced by a new realization called DHHN2016, which is based on the latest
precise levelings, measured between 2006 and 2012.

The national height system in Austria dates back to the spirit leveling measurements car-
ried out by the Military Geographical Institute (MGI) in the end of the 19th century. Since
1949, the leveling network has been continuously supplemented by several densifications
and updated due to re-measurements (Ruess and Mitterschiffthaler, 2015). Although a new
orthometric height system with respect to NAP is planned to be implemented in several
years (Höggerl and Ruess, 2004), the official physical heights in Austria are currently still
normal-orthometric heights related to the mean sea surface of the Adriatic Sea as observed
in 1875 at the tide gauge in Trieste. Additional information about the Austrian height
system and the adjustment of the leveling network is provided in Höggerl (1986).
The Brazilian height system is based on the Brazilian Fundamental Vertical Network

(BFVN) that was established in 1945 and consists of two independent parts, both connected
to their own tide gauges. The major part, spreading over almost the whole country, is
linked to the tide gauge in Imbituba in the south of Brazil. As separated by the estuary
of the Amazon River, a second, smaller leveling network was established in the north of
Brazil that is linked to the tide gauge in Santana. Hence, in the case of Brazil, there exist
two independent LVD zones. While in the following the larger datum zone with the origin
in Imbituba is considered, a study of the discrepancies between both Brazilian datum zones
can be found in Montecino and de Freitas (2014). At the Imbituba tide gauge, sea level
observations from 1949 to 1957 were used to define the local MSL (Gomez et al., 2016).
As the spirit leveling in Brazil was not generally supplemented by gravity measurements,
normal-orthometric heights were derived (Luz et al., 2009b). More information and a
review of the Brazilian first-order leveling network are provided by Luz et al. (2002).

3.2. GNSS/leveling data sets

For Germany, a GNSS/leveling data set consisting of 675 benchmarks was made available
by the German Federal Agency for Cartography and Geodesy (BKG). This data comprises
ellipsoidal heights that originate from GNSS campaigns conducted between 1994 and 2001,
and normal heights with respect to DHHN92. The Austrian Federal Office for Metrology
and Surveying (BEV) provided a set of 198 GNSS/leveling points, consisting of GNSS-based
ellipsoidal heights and MGI-based normal-orthometric heights. In the case of Brazil, the
Brazilian Institute of Geography and Statistics (IBGE) delivered GNSS-derived ellipsoidal
heights and normal-orthometric heights, corresponding to the latest adjustment of the
BFVN in 2011. While the data set consists of 683 benchmarks, a subset of 666 points is
used in this study that can be associated with the LVD defined by the Imbituba tide gauge.
In Fig. 2, the spatial distribution of the GNSS/leveling benchmarks and their physical

heights are visualized for the three study areas. The coordinates (B0, L0) of the centroid
of these benchmarks are (50.9182◦ N, 10.2230◦ E) for Germany, (47.5022◦ N, 13.9498◦ E)
for Austria, and (15.3106◦ S, 46.4830◦ W) for Brazil. In the case of Germany and Austria,
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the GNSS/leveling points are more or less homogeneously scattered over the country. In
contrast, the benchmarks in Brazil are predominantly concentrated in coastal regions and
around major cities. The point distances in the back country are considerably larger,
particularly in the poorly accessible area of the Amazon Rainforest in Northern Brazil.
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Fig. 2. Spatial distribution of the used GNSS/leveling data sets in (a) Germany, (b) Brazil,
and (c) Austria. The color coding represents the physical heights in the corresponding
LVD. Note the different scaling of the color bars.
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Table 1. Statistics of the physical heights H ′, the ellipsoidal heights h, and the resulting
height anomalies ζ GNSS/lev = h−H ′ of the used GNSS/leveling benchmarks in Germany,
Austria, and Brazil. All values are specified in [m].

Min Max Mean STD

Germany
H ′ 0.361 1567.272 313.081 274.452
h 36.117 1613.603 357.903 276.822
ζ GNSS/lev 35.676 50.265 44.822 3.466

Austria
H ′ 113.464 2577.840 762.904 469.799
h 157.300 2627.882 810.323 471.420
ζ GNSS/lev 42.742 52.243 47.419 2.100

Brazil
H ′ 1.726 1356.648 398.530 319.907
h −18.360 1361.470 390.953 321.247
ζ GNSS/lev −28.134 22.007 −7.577 8.594

As can be seen from Table 1 and the color coding in Fig. 2, the three study areas can
be characterized by different magnitudes in physical height. In the case of the German
GNSS/leveling data set, the heights show an almost continuously increasing behavior from
the Northern Lowland via the Central Uplands toward South Germany, where the mountain
range of the Black Forest and the northern edge of the Alps provide the highest elevations
of up to 1600 m. Due to the high mountain ranges of the Alps, the physical heights of the
Austrian GNSS/leveling data set provide significantly larger elevations and show a higher
variability, particularly in West and South Austria. Thus, the mean and standard deviation
(STD) values of the physical heights are about twice as large as in the case of the German
data set. The Brazilian GNSS/leveling data set comprises lower heights in coastal regions
and for the Amazon basin, and moderate elevations for the Brazilian Plateau in between.
Particularly in the southeast, it is notable that the physical heights are rapidly increasing
from the zero level at the coast up to 1000 m at the plateau. The highest elevations in the
data set, about 1400 m, are reached in central Brazil, around the capital Brasília.

3.3. Global geopotential models

Three different GOCE GGMs of the latest (fifth) generation will be considered in this
study: TIM R5 (Brockmann et al., 2014), DIR R5 (Bruinsma et al., 2014), and GOCO05s
(Mayer-Gürr et al., 2015). These models are derived by using observations of the complete
GOCE mission of about 42 months (Nov 2009 – Oct 2013), including the lower orbit phase
at the end of the mission’s lifetime.
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TIM R5 expanded up to d/o 280 is the latest model of the time-wise approach and is
the only GGM included that is based purely on GOCE data. In contrast, the DIR R5
model up to d/o 300 is based on the direct approach and combines GOCE data with
observations of the satellite mission Gravity Recovery and Climate Experiment (GRACE,
Tapley et al., 2004) and satellite laser ranging (SLR). Finally, the GOCO05s model up to
d/o 280 basically consists of a combination of TIM R5 and the latest GRACE-only model
ITSG-Grace2014s (Mayer-Gürr et al., 2014) and is also supplemented by SLR observations.
Detailed information about the applied processing strategies of the different approaches is
presented in Pail et al. (2010, 2011).
Additionally, the high-resolution EGM2008 model (Pavlis et al., 2012) up to d/o 2190

is used for the reduction of the omission error of the GOCE GGMs. EGM2008 combines
satellite-based gravity information of GRACE with terrestrial, airborne and altimetry-
derived gravity data that are partially supplemented with topography-implied gravity
information.

For the spherical harmonic synthesis of GGMs according to Eq. (3), an adapted version
of the harmonic synth software (Holmes and Pavlis, 2006) is used. The contribution of
the zero degree term ζ GGM

0, 0 is calculated separately, as shown in Lemoine et al. (1998,
Sect. 11.2):

ζ GGM
0, 0 = GM −GM0

rγ
− W0 − U0

γ
, (23)

where W0 denotes the gravity potential of the global geoid and U0 is the normal potential of
the used reference ellipsoid. By applying the conventional value W0 = 62 636 856.0 m2 s−2

(IERS Conventions, 2010, p. 18) and using the normal potential of the GRS80 ellipsoid,
U0 = 62 636 860.850 m2 s−2 (Moritz, 1980), Eq. (23) results in ζ GGM

0, 0 ≈ −44.2 cm.
It is acknowledged that due to the IAG Resolutions (2015), a potential value of W0 =

62 636 853.4 m2 s−2 has been defined for the realization of an international height reference
system. However, as the present study started before this resolution has been adapted, the
above specified W0 value of the IERS Conventions (2010) is used throughout this paper.

3.4. Homogenization of the data

Before the different data sets can be used for the estimation of height datum offsets, they
have to be homogenized and transformed to the same tidal system and reference frame.
Moreover, in the following, the normal-orthometric heights of the Austrian and Brazilian
data sets are used as approximations of normal heights. This is in accordance with Wolf
(1974), where it has been demonstrated that normal-orthometric heights are closer to
normal heights than to orthometric heights.
Regarding the treatment of permanent tides, various geodetic quantities are usually

referred to different tidal systems (e.g., Mäkinen and Ihde, 2009). Since in all three study
areas no tidal corrections have been applied to the leveling observations, the derived
physical heights H ′ of the GNSS/leveling data can be referred to the mean tide system. In
contrast, the GNSS-based ellipsoidal heights h are conventionally specified in the tide free
system. This is also the case for the SH coefficients of the used GGMs with the exception
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of GOCO05s, where the coefficients are provided in the zero tide system. For more details
on the relations between the different tidal systems, see IERS Conventions (2010, p. 15ff.).

In this study, the (conventional) tide-free system will consistently be used for all quantities.
Note that this specific choice has no influence on the results, as the impact of the tidal
system is eliminated due to the subtraction in Eq. (18). According to Ekman (1989), the
physical heights H ′ are then transformed from the mean tide (MT) to the tide free (TF)
system by using

H ′ (TF) = H ′ (MT) + (1 + k − h) · (0.099− 0.296 sin2 ϕ), (24)

where k = 0.30 and h = 0.62 are the (semidiurnal) Love numbers that are assumed constant.
In the case of the SH coefficients, only C20 is affected by the used tidal system. Hence, the
C20 coefficient of GOCO05s is transformed from the zero tide (ZT) to the tide free system
according to Rapp et al. (1991):

C (TF)
20 = C (ZT)

20 + 3.1108 · 10−8 · k√
5
. (25)

Although the geodetic coordinates of all three GNSS/leveling data sets are consistently
defined with respect to the GRS80 ellipsoid, the original GNSS-derived Cartesian coor-
dinates, the GOCE GGMs, and EGM2008 are principally related to different reference
frames and epochs (Barzaghi et al., 2016). Generally, the used reference frame of the GNSS
coordinates is indicated, but mostly without an explicit specification of a corresponding
epoch. The GOCE measurements basically refer to the Earth’s center of mass, which might
be best represented by the most recent solution of the International Terrestrial Reference
Frame (ITRF). However, in the case of EGM2008, no information is available about the
time reference of the used terrestrial gravity data.
Due to this lack of metadata, reference frame transformations can only be properly

addressed by using suitable assumptions. Since the required analysis in this context is
beyond the scope of this article, no additional reference frame transformation is applied in
this study.

4. Error analysis
In Sect. 4.1 the omission error of the GOCE GGMs is analyzed in the three study areas,
while Sect. 4.2 focuses on the commission error. In addition, Sect. 4.3 provides an estimation
of the uncertainties of all terms involved in the calculation of height datum offsets.

4.1. Omission error

The omission error of GOCE GGMs is mainly affected by the roughness of the remaining
(residual) gravity field signal. However, its actual impact on the offset estimation depends
on various factors, such as the size of the study area, and the density as well as spatial
distribution of GNSS/leveling benchmarks within the area (Gruber et al., 2012). When
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averaged over all GNSS/leveling benchmarks, the effect of the omission error decreases or
may cancel out to a certain degree, if the study area is sufficiently large (e.g., Amjadiparvar
et al., 2013, 2016; Rülke et al., 2016).

To quantify the magnitude of the GOCE omission error above d/o 200 in the three study
areas, the effect of ζ EGM

201, 2190 and δζ Topo is evaluated at the respective GNSS/leveling points
Pj . While Fig. 3 illustrates the spatial distribution of the omission error, corresponding
statistics are presented in Table 2. In all study areas, the omission error due to ζ EGM

201, 2190
mainly ranges between ±100 cm, where in the case of Brazil the largest amplitude with
−142.9 cm is reached. While in Germany the mean omission error practically cancels out
over the GNSS/leveling benchmarks (0.1 cm), in Austria and Brazil this is quite different
with values of 3.3 and −7.1 cm, respectively. The remaining part of the omission error,
modeled by the topography-implied gravity signals δζ Topo , is about one order of magnitude
smaller and reaches values on a cm–dm level in the case of the three study areas. Due to
the influence of the Alps, the largest amplitude of 22.5 cm as well as the highest variation
in terms of a STD of 5.2 cm can be detected for the Austrian data set. Moreover, Austria
is also the only study area, where the mean omission error due to δζ Topo has a significant
value of −3 cm. In contrast, in the two other study areas, the omission error averaged over
the GNSS/leveling benchmarks only amounts to 0.1 cm. However, as will be shown below,
although the consideration of the omission error might only slightly affect the mean value,
it can help to significantly improve the STD of the residuals.

Table 2. Statistics of the omission error as obtained from ζ EGM
201, 2190 and δζ Topo , both

evaluated at the GNSS/leveling benchmarks Pj in Germany, Austria, and Brazil. All values
are specified in [cm].

SH band Min Max Mean STD

Germany
EGM2008 201–2190 −105.4 126.7 0.1 30.3
Topo ≥ 2160 −13.2 6.9 0.1 1.1

Austria
EGM2008 201–2190 −87.4 133.6 3.3 48.4
Topo ≥ 2160 −22.5 9.0 −3.0 5.2

Brazil
EGM2008 201–2190 −142.9 110.4 −7.1 32.3
Topo ≥ 2160 −8.4 3.5 −0.1 1.0

4.2. Commission error

The commission error of a GGM can be obtained from its error degree variances. In this
context, the commission error corresponds to the square root of the cumulative error degree

165



V. On high-frequency topography-implied gravity signals for a height system unification
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Fig. 3. Omission error obtained from ζ EGM
201, 2190 (left column) and δζ Topo (right column)

for the three study areas Germany, Austria, and Brazil (first, second, and third row,
respectively). Note the different scaling of the color bars for the left and right column.
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Table 3. Formal cumulative error σGGM
n

of the used GGMs in terms of height anomalies ζ
for different SH bands. All values are specified in [cm].

GGM SH band σGGM
n

TIM R5 2–200 2.24
DIR R5 2–200 0.79
GOCO05s 2–200 1.96
EGM2008 2–200 7.19
EGM2008 2–2190 8.24

variances, abbreviated as cumulative error in the following. In terms of height anomalies,
the cumulative error up to a SH degree n can be calculated by

σGGM
n

= R

[
n∑
k=0

k∑
m=0

(
σ2C GGM

km + σ2 S GGM
km

)]1/2

, (26)

where σ C GGM
km and σ S GGM

km are the specified standard deviations of the SH coefficients.
In Fig. 4, the cumulative errors σGGM

n
of the used GGMs are plotted, while Table 3

provides selected numerical values. The comparison of the results for the three GOCE
GGMs shows significant differences. As the DIR R5 and GOCO05s models are supplemented
by GRACE and SLR measurements, they generally provide smaller cumulative errors in
the case of long wavelengths (n < 150) than the purely GOCE-based TIM R5 model. For
n > 200 the cumulative errors of TIM R5 and GOCO05s strongly increase and their curves
nearly coincide. Due to the limited bandwidth of the GOCE gradiometer, this behavior
reflects the increasing signal-to-noise ratio of the gravity gradient measurements. Although
the cumulative error of DIR R5 also becomes larger for an increasing degree n, this GGM
provides significantly smaller values compared to TIM R5 and GOCO05s. Thus, one might
assume that the DIR R5 model is somehow not as strongly affected by the increasing noise.
However, when analyzing the cumulative errors in Fig. 4 and Table 3, it has to be

taken into account that (i) they are based on formal errors resulting from internal accuracy
estimates of the used processing approach, (ii) they do not consider any correlations between
the SH coefficients and, thus, might be too optimistic, and (iii) they provide global mean
values and do not reflect regional variations.

Thus, in order to get reliable uncertainty estimates, the formal cumulative errors σGGM
n

need to be calibrated by using suitable regional scaling factors mGGM :(
σ̂GGM

n

)2 = mGGM ·
(
σGGM

n

)2
. (27)

In doing so, Bruinsma et al. (2014) specifies a scaling factor of mDIR R5 = 4 for the DIR R5
model in Germany, which explains the differences to the other two GOCE models.
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Fig. 4. Formal cumulative error σGGM
n

of TIM R5 (blue curve), DIR R5 (red curve),
GOCO05s (green curve), and EGM2008 (cyan curve) in terms of height anomalies ζ.

4.3. Estimation of uncertainties

In the following, individual scaling factors mTIM R5 , mDIR R5 , mGOCO05s , and mEGM for the
cumulative errors of the GGMs are estimated for each study area. For this purpose, a
least squares approach suggested by Voigt and Denker (2015) is adapted to the present
study. Besides the four scaling factors, this approach allows to simultaneously estimate
the a priori unknown uncertainty σGNSS/lev of the GNSS/leveling data. For the estimation
of these five unknowns, various differences are calculated in the GNSS/leveling points Pj
and the resulting STD values are introduced as observations in a LSA. In contrast to the
original approach of Voigt and Denker (2015), STD values are used rather than RMS (root
mean square) differences, as they are not affected by the height datum offset contained
in the GNSS/leveling data. Furthermore, by investigating the differences resulting from
Eq. (19), as shown in Fig. 5, it seems reasonable to first remove systematic effects by means
of considering the tilts a1 and a2, before computing the required STD values.
Altogether, three groups of observation equations are used to estimate the unknown

parameters. The first group results from Eq. (19) by setting N = 200 and dN = 0:

STD
(
ζ GNSS/lev − ζ G/E (200, 0)

0, 2190 − δζ Topo
∣∣∣
Pj

)
=
[(
σGNSS/lev

)2 +mGOCE
(
σGOCE

200

)2 +mEGM
((
σ EGM

2190

)2 − (σ EGM
200

)2)]1/2
, (28)

where σGOCE
200 , σ EGM

200 , and σ EGM
2190 are the formal cumulative errors as specified in Table 3.

Note that on the right-hand side of Eq. (28), the uncertainty of the topography-implied
gravity signals δζ Topo is omitted as it cannot be estimated independently of σGNSS/lev .
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Therefore, σGNSS/lev in Eq. (28) contains the error budget of both, the GNSS/leveling data
and the topography-implied gravity signals. However, based on the results of Voigt and
Denker (2015), the uncertainty of the latter is expected to be at the sub-mm level and,
hence, considered negligible.
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Fig. 5. Resulting values lj of the observation equation according to Eq. (19) in (a) Germany,
(b) Brazil, and (c) Austria, exemplarily shown for TIM R5 with N = 200 and dN = 0.
Note the different scaling of the color bars.

169



V. On high-frequency topography-implied gravity signals for a height system unification

Table 4. STD values calculated according to Eqs. (28) – (30) by using different GGMs in
the three study areas Germany, Austria, and Brazil. All values are specified in [cm].

GGM Germany Austria Brazil

Eq. (28)
TIM R5 2.79 4.67 18.03
DIR R5 2.65 4.74 18.02
GOCO05s 2.76 4.56 18.02

Eq. (29) EGM2008 1.84 3.97 26.26

Eq. (30)
TIM R5 2.69 3.41 19.79
DIR R5 2.52 3.32 19.79
GOCO05s 2.68 3.24 19.70

For the second observation equation, only the EGM2008 information is used:

STD
(
ζ GNSS/lev − ζ EGM

0, 2190 − δζ Topo
∣∣∣
Pj

)
=
[(
σGNSS/lev

)2 +mEGM
(
σ EGM

2190

)2]1/2
. (29)

To avoid an under-determined system, a third group of equations is needed, where the
differences between the GOCE GGMs and EGM2008 in the SH band 0–200 are used:

STD
(
ζ GOCE

0, 200 − ζ EGM
0, 200

∣∣∣
Pj

)
=
[
mGOCE

(
σGOCE

200

)2 +mEGM
(
σ EGM

200

)2]1/2
. (30)

Altogether, Eqs. (28) – (30) provide seven observation equations, whose numerical values
for each study area are indicated in Table 4. As the relations between the observations
and the unknown parameters are nonlinear, the observation equations have to be linearized
with respect to approximate values and the LSA has to be carried out iteratively.

In Table 5, the results of the LSA in terms of the estimated parameters and their
corresponding standard deviations are specified. By applying the scaling factors to the
formal cumulative errors according to Eq. (27), Table 6 provides the estimated calibrated
cumulative errors σ̂GGM

n
for each study area.

In contrast to Table 3, all three GOCE GGMs now provide nearly the same performance
within one study area, where variations are on the mm level. Moreover, also in the different
study areas the estimated uncertainties of the GOCE GGMs are comparable and stay in
the same order of magnitude between 2 to 3 cm. The differences can be explained as follows.
Due to the orbital inclination of the GOCE satellite of 96.7◦, the density of its ground
tracks varies with latitude. In the case of higher latitudes, more observations are collected,
which generally results in a more accurate recovery of the gravity field (cf. Klokočník et al.,
2008). Therefore, a predominant latitude dependency in the accuracy of the GOCE GGMs
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Table 5. Estimated parameters (regional scaling factors mGGM and uncertainties of
GNSS/leveling data σGNSS/lev) and their corresponding standard deviations for the three
study areas Germany, Austria, and Brazil.

Germany Austria Brazil

mTIM R5 1.16± 0.01 1.77± 0.08 2.56± 0.27
mDIR R5 8.03± 0.10 14.00± 0.65 20.67± 2.21
mGOCO05s 1.49± 0.02 2.04± 0.10 2.91± 0.36
mEGM 0.03± 0.00 0.05± 0.01 7.31± 0.02
σGNSS/lev [cm] 1.23± 0.02 3.52± 0.04 13.89± 0.04

Table 6. Estimated calibrated cumulative errors σ̂GGM
n

for GGM-derived height anomalies
in different SH bands and uncertainties of GNSS/leveling data for the three study areas
Germany, Austria, and Brazil. All values are specified in [cm].

SH band Germany Austria Brazil

TIM R5 2–200 2.41± 0.01 2.98± 0.07 3.59± 0.19
DIR R5 2–200 2.23± 0.01 2.95± 0.07 3.58± 0.19
GOCO05s 2–200 2.39± 0.01 2.79± 0.07 3.34± 0.21
EGM2008 2–200 1.19± 0.02 1.61± 0.10 19.45± 0.03
EGM2008 2–2190 1.36± 0.02 1.84± 0.11 22.29± 0.03
GNSS/lev – 1.23± 0.02 3.52± 0.04 13.89± 0.04

is to be expected. In this context, the variations of the uncertainties in Table 6 seem to be
reasonable as they are in accordance with the geographical latitudes of the study areas.

In the case of EGM2008, the necessity of using regional scaling factors for the cumulative
errors is even more apparent. While EGM2008 is of high precision for Germany and Austria
with uncertainties that are lower than those of the GOCE GGMs, it is the opposite in the
case of Brazil, where a low accuracy is observed for EGM2008. These regional variations can
be attributed to the different quality and availability of terrestrial gravity data incorporated
into EGM2008. For example, in the case of Brazil, gravity data was of proprietary nature
or unavailable for larger areas (Pavlis et al., 2012). Thus, the performance of EGM2008 is
expected to be considerably worse over Brazil.

As can further be seen in Table 6, the estimated uncertainties of the GNSS/leveling data
strongly vary between the three study areas. While an uncertainty of 1.2 cm is estimated
for the German data set, the corresponding value for Austria is about three times larger
(3.5 cm). In the case of Brazil, a significantly larger uncertainty of 13.9 cm is obtained.
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This may reflect remaining distortions in the leveling network that are not completely
compensated by the applied functional model in Eq. (19). The order of magnitude is in
accordance with the roughly estimated uncertainty value of 10.4 cm as specified in Ferreira
and de Freitas (2011) for 97 GNSS/leveling points in South Brazil.

5. Results and discussion

In this section, the results are presented and discussed with respect to an optimized
combination of GOCE GGMs and EGM2008 (Sect. 5.1), and the benefit and contribution
of topography-implied gravity signals (Sect. 5.2).

5.1. Optimized combination of GOCE GGMs and EGM2008

In the following, optimal parameters for the combination of the GOCE GGMs and EGM2008
are derived, according to the used Hanning transition window as specified in Eq. (7). For
this purpose, the SH degree of combination N and the transition bandwidth dN are
systematically varied. Each resulting combination is then used to derive the height anomaly
ζ G/E (N, dN)

0, 2190 that is processed in the LSA, as described in Sect. 2.4. The accuracy of the
combination is evaluated in terms of the STD calculated from the residuals vj of the LSA.
Taking the TIM R5 model as a representative example, Fig. 6 (left column) displays

the resulting STD in terms of 2D plots for each study area, where the SH degree of
combination N is shown on the horizontal axis and the transition bandwidth dN on the
vertical axis. Note that the triangle shape results from the fact that not all combinations
of N and dN are possible, as otherwise the transition window would range outside the
minimum or maximum degree of the GOCE GGM, cf. Eq. (7). In addition to the STD
values, Fig. 6 (right column) shows the corresponding estimated height datum offsets δH.

In the case of the German data set (Fig. 6, first row), most of the combinations provide
STD values of about 2 cm, with only smaller variations on the mm level. However, for
N > 220, the STDs strongly increase toward values larger than 4 cm. This is a consequence
of the GOCE-derived SH coefficients of higher degrees that cannot be properly estimated due
to an increasing signal-to-noise ratio in the gravity gradient measurements (cf. Brockmann et
al., 2014). The advantage of using a transition window is particularly visible for combination
degrees 125 < N < 220. For this SH band, the pure concatenation of the SH coefficients,
i.e., dN = 0, provides highly variable STD values with sporadic amplitudes above 3.5 cm. In
contrast, a significantly smoother behavior can be detected for combinations with dN > 5,
where the exact value of N is not crucial for achieving a low STD of about 2 cm.

Numerically, the minimum standard deviation of 1.78 cm is reached for N = 64 and
dN = 0, which means that the influence of the GOCE GGM would be very limited.
This supports the well-known fact that, in the case of Germany (or Europe), EGM2008
outperforms GOCE-based models due to highly precise terrestrial gravity data incorporated
in EGM2008. However, from the practical view of a height datum estimation, it is not
reasonable to choose such a low degree of combination as will be explained in the following.
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Germany, STD Germany, height datum offset

Austria, STD Austria, height datum offset

Brazil, STD Brazil, height datum offset

Fig. 6. Results for different combinations of TIM R5 and EGM2008 with respect to the
used SH degree of combination N and the transition bandwidth dN . The achieved STD
values of the residuals vj are shown in the left column, while the estimated height datum
offsets δH are presented in the right column. The different results for the three study areas
Germany, Austria, and Brazil are displayed in the first, second, and third row, respectively.
Note the different scaling of the color bars.
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In the case of combined high-resolution GGMs like EGM2008, it has to be taken into
consideration that they are based on terrestrial gravity anomalies and might therefore also
be (indirectly) affected by height datum offsets (cf. Heck, 1990).

For the case of EGM2008, Gatti et al. (2013) specified a SH band of 100–200, where the
SH coefficients are partially affected by discrepancies in the LVD. However, recent studies
have demonstrated that the indirect influence of terrestrial gravity data can be reduced to
below 1 cm, when a satellite-based GGM is used for representing the long wavelengths, e.g.,
Gerlach and Rummel (2013), Amjadiparvar et al. (2016). This statement can generally
be supported for Germany, when having a look at the estimated height datum offsets δH,
plotted for the different combinations of N and dN . Here, the variations in the offset stay
in a range of 1 cm. Nevertheless, as there are only minimal differences in the provided STD
values, a combination degree of N = 180 and a transition bandwidth of dN = 20 are used
for the German study area.

The results for the Austrian data set, as illustrated in the second row of Fig. 6, generally
provide comparable findings, but on the basis of higher STD values and more variations in
the estimated height datum offset δH. Hence, keeping in mind the aforementioned indirect
bias effect, a local minimum of the STD values around degree 200 is used by selecting
N = 195 and dN = 0.

In contrast to the mostly comparable results in Germany and Austria, Fig. 6 (third row)
demonstrates a totally different behavior in the case of the Brazilian data set. As the
performance of EGM2008 is considerably worse in Brazil, a higher proportion of GOCE
data generally leads to smaller STD values. With an increasing degree of combination N ,
the STD decreases from about 30 cm down to 17 cm, which impressively shows the gained
improvement in the gravity information over Brazil due to the use of GOCE satellite data.
Only for the highest degrees, i.e., N > 260, the STD values slightly increase again. The
minimum of the STD values can be detected around N = 220 and dN = 50, which will be
used as parameters for the Brazilian data set. The estimated height datum offsets range
between −3 to 0 cm and show a strong variability with respect to different combinations.
Particularly, for combination degrees around N = 130 and N = 240, conspicuous structures
with rapidly changing values can be detected.

Note that comparable results are obtained for the use of DIR R5 and GOCO05s. The
corresponding figures are provided in Figs. 8 and 9 in the Appendix.

5.2. Contribution of topography-implied gravity signals

To analyze the contribution and benefit of topographic-implied gravity signals, the results
of the LSA with and without the consideration of δζ Topo in Eq. (19) are compared in
the following. For readability, these two cases will be called topo and non-topo scenario,
respectively.
For the three study areas, Table 7 presents numerical results of both scenarios with

respect to the different GOCE GGMs. Besides the estimated height datum offset δH
and tilts a1 and a2, also the STD and range of the least squares adjusted residuals vj are
specified, in order to assess the performance of the respective solution.
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Table 7. Comparison of the topo and non-topo scenarios in terms of the estimated height
datum offset δH, tilts a1 (north-south direction) and a2 (east-west direction), and the
STD and range of the residuals vj . Results are shown for the three study areas Germany,
Austria, and Brazil and different GOCE GGMs.

Scenario GGM
δH a1 a2 STD Range
[cm] [cm/deg] [cm/deg] [cm] [cm]

Germany
N = 180
dN = 20

non-topo
TIM R5 −10.4± 0.1 −1.28± 0.05 1.18± 0.07 2.5 22.1
DIR R5 −10.5± 0.1 −1.31± 0.05 1.19± 0.07 2.3 20.8
GOCO05s −10.4± 0.1 −1.27± 0.05 1.13± 0.07 2.4 22.1

topo
TIM R5 −10.5± 0.1 −1.27± 0.04 1.25± 0.06 2.2 19.0
DIR R5 −10.6± 0.1 −1.30± 0.04 1.26± 0.06 2.0 17.7
GOCO05s −10.5± 0.1 −1.27± 0.04 1.20± 0.06 2.1 19.0

Austria
N = 195
dN = 0

non-topo
TIM R5 −43.4± 0.4 −3.23± 0.71 −0.93± 0.35 6.0 43.2
DIR R5 −43.3± 0.4 −3.36± 0.72 −0.78± 0.36 6.1 42.5
GOCO05s −43.2± 0.4 −3.27± 0.71 −0.85± 0.36 6.0 43.9

topo
TIM R5 −40.4± 0.3 −3.99± 0.48 −2.53± 0.24 4.1 26.5
DIR R5 −40.4± 0.3 −4.11± 0.49 −2.38± 0.24 4.2 23.8
GOCO05s −40.3± 0.3 −4.03± 0.47 −2.44± 0.24 4.0 27.3

Brazil
N = 220
dN = 50

non-topo
TIM R5 −1.2± 0.7 −1.20± 0.09 2.70± 0.11 17.4 206.4
DIR R5 −1.4± 0.7 −1.19± 0.09 2.69± 0.11 17.4 210.2
GOCO05s −1.2± 0.7 −1.19± 0.09 2.69± 0.11 17.4 206.1

topo
TIM R5 −1.1± 0.7 −1.20± 0.08 2.70± 0.11 17.4 204.7
DIR R5 −1.3± 0.7 −1.19± 0.08 2.69± 0.11 17.4 208.5
GOCO05s −1.1± 0.7 −1.19± 0.08 2.69± 0.11 17.3 204.4

In the case of Germany, all three GOCE GGMs provide comparable results, where differences
in the estimated height datum offset and the achieved STD are on the mm level. On the
one hand, the additional use of topographic signals in the German study area only slightly
affects the value of the height datum offset. This is within the expectations due to the small
mean value provided by δζ Topo (cf. Table 2). On the other hand, it can also be seen that
the STD and range decrease in all cases, showing the positive impact of considering the
topographic signals. With a STD of 2.0 cm, the DIR R5 model provides the most accurate
result with an estimated height datum offset of −10.6± 0.1 cm.

The most significant improvements due to topography-implied gravity signals are obtained
for the Austrian study area. For all analyzed GGMs, the STD decreases from about 6 to
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4 cm, and the range is reduced from about 40 to 25 cm. Additionally, the impact of the
topography causes a considerable change in the estimated height datum offset of about 3 cm,
together with a slight improvement in the parameter’s accuracy. As above, the differences
between the three GOCE GGMs are marginal. Since the GOCO05s model exhibits the
best performance with respect to the STD (4.0 cm), the height datum offset is estimated to
be δH = −40.3± 0.3 cm.
The Brazilian data set shows the limitations of the applied method. Although the

topography-implied gravity signals δζ Topo provide values with magnitudes on the level of
several centimeters (cf. Table 2), there seems to be no noticeable influence on the results of
the LSA. In contrast to the other two study areas, the STD and range attain significantly
larger values of about 17 cm and 200 cm, respectively. Thus, the effect of the topographic
gravity signals is apparently dominated (or over-modulated) by the generally large error
level of the Brazilian GNSS/leveling data. According to the results of the GOCO05s model,
the height datum offset is estimated to be δH = −1.1± 0.7 cm.

Note that the derived height datum offsets are not defined with respect to the unknown
global vertical datum. Thus, for a comparison with offsets estimated in other studies, it is
reasonable to make use of relative height datum offsets between two countries. For example,
the relative offset between Germany and Austria is estimated to be 29.7± 0.3 cm in this
study. Although different GNSS/leveling benchmarks have been used, this value is in good
agreement with the offset of 28.6 cm derived from Rülke et al. (2012).
For a more detailed analysis of the obtained results, the residuals vj of the respective

GNSS/leveling benchmarks Pj are plotted in Fig. 7 as a function of their physical height.
While in the left column the non-topo scenario is shown for the three study areas, the right
column displays the corresponding topo scenarios. Each residual is indicated by a blue
cross. Additionally, residuals that would be classified as outliers by iterative data snooping
are marked by a red circle. In this context, a Student’s t-test with a conservative confidence
level of 99.99 % has been used for the detection of outliers (cf. Heck, 1981). Corresponding
to the optimum values of Table 7, the results in Fig. 7 are exemplarily shown for the DIR
R5 model in the case of Germany, and the GOCO05s model in the case of the two other
study areas. As a supplement, Fig. 10 in the Appendix presents the corresponding spatial
distributions of the residuals vj .
For the German data set (Fig. 7, first row), GNSS/leveling points in lower elevation

generally provide smaller residuals and are more condensed around zero. In contrast, for
points with heights above 500 m, the residuals are more loosely scattered and have larger
magnitudes. In the case of the non-topo scenario, four points with heights above 1200 m
exhibit residuals of more than 10 cm in absolute value, which would be classified as outliers.
However, the residuals of these benchmarks are particularly reduced in the topo scenario.
Moreover, also the magnitude of a few other residuals can be significantly decreased. As a
consequence, only two of the four points still remain as outliers in the topo scenario.
In Austria (second row), the non-topo scenario shows a high variation of the residuals,

ranging between −27 and 17 cm. As for Germany, the benchmarks in the highest elevations
provide residuals with the largest magnitudes, where one outlier is detected at a height
of about 2150 m. In contrast, the residuals in the topo scenario are significantly reduced
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Fig. 7. Least squares adjusted residuals vj at the respective GNSS/leveling benchmarks
Pj as a function of their physical height, shown for the topo and non-topo scenario (right
and left column, respectively), and the three study areas Germany, Austria, and Brazil
(first, second, and third row, respectively). Each residual is represented by a blue cross and
detected outliers are marked by a red circle.
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and are more homogeneously distributed within a narrowed band of about ±12 cm. In this
case, no benchmark is classified as an outlier.
As already evident from Table 7, these remarkable results cannot be reproduced for

the case of Brazil (third row). Contrary to the other study areas, residuals have a strong
variation and there seems to be no correlation between benchmark heights and residual
magnitudes. Here, a large number of residuals that are not geographically clustered even
exceed values of ±50 cm, with most of them being marked as outliers. Comparing the
residuals of the topo and the non-topo scenarios, only slight changes are visible and the
same outliers are detected.
Finally, to highlight the benefit of using topography-implied gravity signals, Table 8

specifies improvement rates in terms of percentage changes in the STD and range between
the topo and the non-topo scenarios. While, for the German study area, the STD can be
reduced by about 12.5 %, impressive improvement rates up to 33.3 % are reached in the
case of Austria. The corresponding values for the range indicate an improvement of about
14 % for Germany and 40 % for Austria. In contrast, the obtained improvement rates for
the Brazilian data set are insignificant with values below 1 %.

Table 8. Improvement rate due to topography-implied gravity signals δζ Topo in terms of
percentage changes in the STD and range between the topo and the non-topo scenarios.

GGM
Improvement rate [%]
STD Range

Germany
TIM R5 12.0 14.0
DIR R5 13.0 14.9
GOCO05s 12.5 14.0

Austria
TIM R5 31.7 38.7
DIR R5 31.1 44.0
GOCO05s 33.3 37.8

Brazil
TIM R5 0.0 0.8
DIR R5 0.0 0.8
GOCO05s 0.6 0.8

6. Conclusions and outlook
In this paper, a satellite-based method for global height system unification has been
presented, using GGMs derived from ESA’s gravity field mission GOCE. These GOCE
GGMs provide a global homogeneous reference surface that is not affected by discrepancies of
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the local vertical datum. By comparing the GGM information with measured GNSS/leveling
data, the datum offset of the local height system is estimated within a least squares
adjustment, using a 3-parameter (plane) model. Due to the limited spectral resolution of
GOCE GGMs, this approach suffers from an omission error.
In terms of a spectral extension, the GOCE information is therefore combined with

the high-resolution EGM2008 and additionally augmented by high-frequency topography-
implied gravity signals. In this context, a novel (residual) gravity forward modeling approach
is suggested that is based on a high-pass filtering in the gravity domain. To this end, the
forward-modeled RWI-based topographic effects of the 1′ × 1′ Earth2014 model have been
reduced by the information of a consistent SH harmonic expansion of the topographic
potential. In contrast to residual terrain modeling (RTM), the benefit of this method is that
it does not rely on the generally assumed – but not generally valid – spectral consistency
of topographic heights and implied gravity. While in principle the proposed procedure
is computationally more expensive, the availability of suitable topographic gravity field
models, such as RWI TOPO 2015, made this approach feasible.
By using study areas in Germany, Austria, and Brazil, the investigations in this paper

have focused on (i) the spectral combination of GOCE GGMs and EGM2008 using a
Hanning transition window and (ii) a detailed analysis of the benefit and contribution of
topography-implied gravity signals on the estimation of height datum offsets. Moreover, for
each study area, the uncertainties of all involved terms have been estimated in a separate
least squares approach.
In this context, regional scaling factors have been derived to calibrate the cumulative

error of GOCE GGMs and EGM2008, leading to more realistic error predictions. While the
performance of the used GOCE GGMs (TIM R5, DIR R5, and GOCO05s) is comparable
in all three study areas, larger regional differences in the accuracy of EGM2008 as well as
the GNSS/leveling data become visible.
For the combination of GOCE GGMs and EGM2008, optimized parameters in terms

of combination degree N and transition bandwidth dN have been derived for each study
area. To assess the performance of topography-implied gravity signals, an estimation of
height datum offsets has been performed with and without the consideration of these
high-frequency signals. In the case of the Austrian study area, topography-implied gravity
signals lead to impressive improvements of 30 – 40 % in STD and range of the residuals.
Moreover, the estimated height datum offset changes considerably by about 3 cm.
While significant improvement rates of 12 – 15 % have also been achieved for Germany,

this is not the case for Brazil, where a large error level in the GNSS/leveling data dominates
the effect of topography-implied gravity signals. To summarize, the investigations in this
paper have proved the importance of topography-implied gravity signals for an accurate
estimation of height datum offsets. Therefore, it is strongly recommended to take these
high-frequency components into account, in particular in regions with highly variable
topography, where the remaining omission error of EGM2008 can still be on a significant
cm–dm level.
Although the obtained results are already quite promising, it can be expected that by

using a DTM of higher spatial resolution than the 1′ × 1′ Earth2014 model, the benefit of
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topography-implied gravity signals can be even increased. However, this also requires a
consistent topographic gravity field model that is linked to this DTM.

In the next step, a detailed comparison of the novel (residual) gravity forward modeling
approach with the classical RTM method will be conducted.
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Appendix
In addition to the results presented for the TIM R5 model in Fig. 6 (Sect. 5.1), this
appendix provides corresponding plots for the DIR R5 and GOCO05s model as displayed in
Figs. 8 and 9, respectively. Furthermore, as a supplement to Fig. 7 (Sect. 5.2), the spatial
distributions of the least squares residuals are displayed in Fig. 10.
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Brazil, STD Brazil, height datum offset

Fig. 8. Results for different combinations of DIR R5 and EGM2008 with respect to the
used SH degree of combination N and the transition bandwidth dN . The achieved STD
values of the residuals vj are shown in the left column, while the estimated height datum
offsets δH are presented in the right column. The different results for the three study areas
Germany, Austria, and Brazil are displayed in the first, second, and third row, respectively.
Note the different scaling of the color bars.
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Germany, STD Germany, height datum offset
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Fig. 9. Results for different combinations of GOCO05s and EGM2008 with respect to the
used SH degree of combination N and the transition bandwidth dN . The achieved STD
values of the residuals vj are shown in the left column, while the estimated height datum
offsets δH are presented in the right column. The different results for the three study areas
Germany, Austria, and Brazil are displayed in the first, second, and third row, respectively.
Note the different scaling of the color bars.
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Abstract. In general, any national or regional height reference system is related to an
individual vertical datum, defined by one or several tide gauges. The discrepancies of these
local vertical datums cause height datum offsets in a range of about ±1–2 m at a global
scale. For the purpose of height system unification, global geopotential models derived
from homogeneous satellite data provide an important contribution. However, to achieve
a unification of high precision, the use of local terrestrial gravity data in the framework
of a Geodetic Boundary Value Problem (GBVP) is required. By solving the GBVP at
GNSS/leveling benchmarks, the unknown height datum offsets can be estimated in a least
squares adjustment. In contrast to previous studies, related to the scalar free GBVP based
on gravity anomalies, this paper discusses the alternative use and benefit of the fixed GBVP.
This modern formulation of the GBVP is related to gravity disturbances, using the surface
of the Earth as boundary surface. In contrast to gravity anomalies, gravity disturbances
are not affected by the discrepancies of the local height datum. Therefore, in comparison to
a scalar free GBVP approach, the proposed method is not affected by indirect bias terms,
which will simplify a height system unification. In this paper, the theory of the fixed GBVP
approach is developed and formulas in spherical approximation are derived. Moreover, the
method is validated using a closed loop simulation based on the global geopotential model
EGM2008, showing mm-accuracy of the estimated height datum offsets.
Keywords Height system unification · Geodetic Boundary Value Problem (GBVP) ·
Hotine’s integral formula
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VI. Height system unification based on the fixed GBVP approach

1. Introduction

In geodesy, there are two different types of height systems: geometrical and physical. In
the former, geometrically defined ellipsoidal heights are used, related to the orthogonal
distance to a reference ellipsoid. In the latter, physical heights are utilized that refer to a
physically defined reference surface linked to the Earth’s gravity potential W .

The ellipsoidal height h(P ) of a point P on the Earth’s surface can directly be measured
using methods of GNSS positioning (Global Navigation Satellite Systems). By combin-
ing GNSS observations with other space techniques, global three-dimensional terrestrial
reference frames have been established that provide sub-cm consistency in the vertical
component, e.g., ITRF2008 (Altamimi et al., 2011).

For physical (or national) height systems the situation is quite different. Physical heights
are determined by a combination of spirit leveling and gravimetry with respect to a fixed
datum point P0. These observations are then used to derive geopotential numbers

C(P ) := W0 −W (P ), (1)

representing the difference of the gravity potential value between a leveling point P and
the datum point P0, i.e., W0 := W (P0). In that way, the equipotential surface passing
through P0 is chosen as the reference level of the height system. Dividing Eq. (1) by the
mean normal gravity value γ along the normal plumb line, the geopotential number C(P )
is transformed to the (metric) normal height H(P ) (Heiskanen and Moritz, 1967, p. 170 f.).
For the practical realization of a physical height system, the height reference level is

conventionally linked to the mean sea level (MSL), observed at one or several tide gauges,
i.e., the datum point P0 is selected such that the zero level is fixed to the local MSL. As
the leveling networks of different national surveys mostly refer to individual tide gauges,
hundreds of different national height systems exist worldwide that are realized by their
own local vertical datum. Due to the sea surface topography, different tide gauges do not
refer to the same equipotential surface. Therefore, the reference levels of different physical
height systems are inconsistent by about ±1–2 m at a global scale (Heck, 1990; Gerlach
and Rummel, 2013).

On the other hand, many global and regional applications such as monitoring of sea level
change, ice sheet melting, or post-glacial rebound require a high-precision and consistent
global physical height system. Moreover, this is also relevant for establishing the Global
Geodetic Observing System (Ihde and Sánchez, 2005). In order to overcome the problem
of height datum inconsistencies, different strategies and approaches for height system
unification have been discussed and proposed in various publications (e.g., Colombo, 1980;
Rapp, 1983; Heck and Rummel, 1990; Sansò and Venuti, 2002; Sánchez, 2009).
Considering a local height datum zone σi that is linked to the gravity potential value

W i
0, the geopotential number in Eq. (1) analogously reads

Ci(P ) = W i
0 −W (P ). (2)
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2. Fixed GBVP approach

Combining Eqs. (1) and (2), the relation between the local datum zone σi and a global
datum specified by the gravity potential value W0 is described by the height datum offset

δH i := C(P )− Ci(P )
γ

= W0 −W i
0

γ
. (3)

For the determination of δH i, observation points that combine physical and geometrical
height information are of particular interest, i.e., GNSS/leveling benchmarks. For these
points, global geopotential models (GGM) can be used to determine approximated values
C(P ) = W0 −WGGM(P ), which can be inserted in Eq. (3). In this context, GGM derived
from recent gravity field satellite missions like GRACE and GOCE provide an important
contribution, as they provide a homogeneous reference surface that is not affected by a
height datum offset (Rummel, 2002; Gatti et al., 2013). Due to the limited resolution of the
used GGM, such an approach suffers from an omission error. Although this error can be
reduced, representing shorter wavelengths by the high-resolution EGM2008 (Pavlis et al.,
2012) or regional geoid models, the expected accuracy for δH i is limited to cm–dm level
(Gruber et al., 2012; Rülke et al., 2012).

To achieve a unification at sub-cm level, the use of terrestrial gravity data in a Geodetic
Boundary Value Problem is indispensable (GBVP, Heiskanen and Moritz, 1967, p. 36 f.).
For this purpose, the solution of the GBVP is used to estimate height datum offsets in a
least squares approach (e.g., Heck and Rummel, 1990). In contrast to previous publications,
mostly related to the scalar free GBVP approach (Rummel and Teunissen, 1988; Xu, 1992;
Gerlach and Rummel, 2013), this paper discusses perspectives and benefits of the alternative
use of a fixed GBVP approach for height system unification. In order to reduce systematic
errors, a combination with a GGM and topographic information in a remove-compute-
restore approach is advisable, as frequently used in gravimetric (quasi-)geoid determination
(Forsberg and Tscherning, 1997). However, such a combination is beyond the scope of this
article. Therefore, the presented formulas will be restricted to the use of terrestrial gravity
data.
The paper is organized as follows: in Sect. 2 the proposed fixed GBVP approach is

presented and formulas in spherical approximation are derived. In order to validate the
method and analyze its accuracy, a closed loop simulation based on EGM2008 is presented
in Sect. 3. Finally, in Sect. 4, a summary and an outlook to ongoing research are provided.

2. Fixed GBVP approach

Let the Earth’s surface S be partitioned into n disjoint local height datum zones σi,
i = 1, . . . , n, i.e., S = ⋃n

i=1 σ
i with σi ∩ σk = ∅ for i 6= k. Each datum zone is assumed

to be linked to an individual equipotential surface defined by the gravity potential value
W i

0. Furthermore, let each datum zone σi contain mi GNSS/leveling benchmarks P ij ,
j = 1, . . . ,mi, where the (unbiased) ellipsoidal height h and the (biased) normal height
H i are known. For these benchmarks, the (biased) height anomaly ζi = h −H i can be
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calculated, which is linked to the disturbing potential T by the generalized Bruns’ formula
(Heiskanen and Moritz, 1967, p. 100):

ζi(P ij ) =
T (P ij )−

(
W i

0 − U0
)

γ
=
T (P ij )−∆W0

γ
+ δH i, (4)

where U0 denotes the constant normal gravity potential value of the used reference ellipsoid,
γ is the normal gravity value at the Earth’s surface, and

∆W0 := W0 − U0. (5)

To determine the disturbing potential T , the fixed GBVP will be used that is based on
gravity disturbances

δg := g(P )− γ(P ) ≈ −∂T
∂r

∣∣∣∣
S

(6)

resulting from the difference between the measured gravity g(P ) and the normal gravity
γ(P ), both defined at the Earth’s surface point P ∈ S. Here, ∂/∂r denotes the partial
derivative with respect to the geocentric radius r. Considering the normal gravity formula
(Heiskanen and Moritz, 1967, p. 79), the ellipsoidal height h(P ) of the gravity measurement
benchmark is required to obtain γ(P ). Thus, in the case of the fixed GBVP, the geometry
of the Earth’s surface S is assumed to be known, e.g, by GNSS positioning.
Utilizing the analytical solution of the fixed GBVP, the disturbing potential T can be

obtained in constant radius approximation by Hotine’s spherical integral formula (Hotine,
1969, p. 311ff.; Heck, 2011):

T (ϕ, λ) = R

4π

∫∫
σ

δg(ϕ′, λ′) ·H(ψ) dσ, (7)

where
H(ψ) = 1

sin(ψ/2) − ln
(

1 + 1
sin(ψ/2)

)
(8)

and ψ is the spherical distance between the position vectors of the computation point
P (r = R,ϕ, λ) and the running integration point P ′(ϕ′, λ′), both located on the sphere
with radius R. The surface of the unit sphere is denoted by σ with the corresponding
surface element dσ = cosϕ′ dϕ′ dλ′.

Applying Eq. (7) to Eq. (4) leads to

ζi(P ij ) = R

4πγ

∫∫
σ

δg ·H(ψ) dσ − ∆W0
γ

+ δH i, (9)

which is the basic equation of the fixed GBVP approach that can already be used for the
estimation of the unknown height datum offsets δH i at GNSS/leveling benchmarks P ij .
However, the lacking availability of globally distributed gravity disturbances δg compli-

cates the practical evaluation of Eq. (9). Since for most (historical) gravity measurement
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benchmarks of the pre-GNSS era the ellipsoidal height h has not been determined, gravity
disturbances δg according to Eq. (6) could not be compiled. Instead, gravity measurements
g have frequently been used to derive gravity anomalies ∆g that serve as boundary values
for the traditional scalar free GBVP. Taking into account the present situation, Eq. (9)
will be extended by considering the transformation of gravity anomalies ∆g to gravity
disturbances δg.

2.1. Extension to gravity anomalies

Following the theory of Molodensky (Heiskanen and Moritz, 1967, p. 291ff.), gravity
anomalies

∆g := g(P )− γ(Q) ≈
(
−∂T
∂r
− 2γ

r
ζ

)∣∣∣∣
Σ

(10)

differ from gravity disturbances δg in the normal gravity γ(Q), evaluated at the telluroid
Σ 3 Q instead of the Earth’s surface S. Considering that h(Q) = H i(P ) (Heiskanen and
Moritz, 1967, p. 293), the normal gravity value γ(Q) depends on the (biased) normal
height. Thus, in contrast to gravity disturbances, gravity anomalies are affected by the
height datum offset δH i of the local datum zone σi (Heck, 1990). This becomes clear when
inserting Eq. (4) into Eq. (10):

∆gi =
(
−∂T
∂r
− 2
r
T + 2

r
∆W0 −

2γ
r
δH i

)∣∣∣∣
Σ
. (11)

Combining the boundary conditions of Eqs. (6) and (11), the (unbiased) gravity disturbance
δg can be expressed as a function of the (biased) gravity anomaly ∆gi and the height
datum offset δH i using the linear approximation

δg = ∆gi +
(2
r
T − 2

r
∆W0 + 2γ

r
δH i

)∣∣∣∣
S

+ δBS, (12)

where δBS denotes the error induced by the different boundary surfaces (S and Σ), which
is neglected in the following.
Splitting Eq. (12) into three components

δg0 := ∆gi + 2
r
T, δg1 := −2

r
∆W0, δg2 := 2γ

r
δH i, (13)

and inserting them separately into Eq. (9) results in

ζi(P ij ) = ζ0 + ζ1 + ζ2 −
∆W0
γ

+ δH i, (14)

where
ζm := R

4πγ

∫∫
σ

δgm ·H(ψ) dσ, m = 0, 1, 2. (15)
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Applying constant radius approximation, i.e., r = R, the evaluation of Eq. (15) leads to

ζ0 = R

4πγ

∫∫
σ

(
∆gi + 2

R
T

)
·H(ψ) dσ, (16)

ζ1 = −∆W0
2πγ

∫∫
σ

H(ψ) dσ = −∆W0
2πγ · 4π = −2∆W0

γ
, (17)

ζ2 =
n∑
i=1

δH i

2π

∫∫
σi

H(ψ) dσ, (18)

where in the case of ζ2, the (global) integral domain σ is decomposed into the disjoint
height datum zones σi.
Finally, inserting Eqs. (16) – (18) into Eq. (14) results in

ζi(P ij ) = ζ0(∆gi, T ) + δH0 + δH i +
n∑
k=1

δHk ·Gi,k
j , (19)

where

δH0 := −3∆W0
γ

,

Gi,k
j := 1

2π

∫∫
σk

H(ψ) dσ
∣∣∣∣
P ij

. (20)

In Eq. (19), different kinds of height datum offsets occur. The height datum offset δH i

represents the direct influence of the datum zone σi containing P ij . This offset, also occurring
in the basic Eq. (9), is frequently called direct bias term. Moreover, Eq. (19) also comprises
the height datum offsets δHk (k = 1, . . . , n) of all datum zones, i.e., δH1, . . . , δHn. These
offsets are a consequence of the global integration of biased gravity anomalies ∆gi and are
named indirect bias terms (Gerlach and Rummel, 2013). Particularly, the evaluation of the
corresponding factors Gi,k

j in Eq. (20) is complicated, as the separate integration requires
the coordinates of the bounding polygon for each datum zone.

While the indirect bias terms amount to about ±1–2 m, simulation studies for the scalar
free GBVP approach presented by Gerlach and Rummel (2013) demonstrate that their
influence can be reduced to a level below 1 cm, when a satellite-derived GGM is employed
for representing the long-wavelength parts of ζ0. However, it is worthwhile mentioning
that the basic approach in Eq. (9) is not affected by the indirect bias terms. Therefore, if
gravity disturbances δg become globally available, the indirect bias terms can be avoided,
demonstrating the advantage of the fixed GBVP approach in future applications.

The parameter δH0 in Eq. (19) comprises ∆W0, defining the reference level of the global
datum. As this global offset cannot be uniquely estimated within this approach, W0 is
assumed to be equal to U0, i.e., ∆W0 in Eq. (5) and δH0 in Eq. (20) are set to zero. By
this procedure, an “absolute” vertical datum is defined by convention (e.g., Heck, 2004).
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2.2. Least squares adjustment

Using Eq. (19) with δH0 = 0, the observation equation for least squares adjustment (LSA)
is provided by

Lij = ζi − ζ0(∆gi, T )
∣∣∣
P ij

= δH i +
n∑
k=1

δHk ·Gi,k
j , (21)

where ∆gi are the observed (biased) gravity anomalies and T the (unbiased) disturbing
potential values, derived from an a priori model (e.g., EGM2008). The quantities on the
left-hand side of Eq. (21) are the known observations and those on the right-hand side
contain the unknowns to be estimated. The functional model according to Eq. (21) is
specified by

l11 + v1
1

l12 + v1
2

...
l21 + v2

1
...

lnmn + vnmn


︸ ︷︷ ︸

l+v

=



1 + G1,1
1 G1,2

1 · · · G1,n
1

1 + G1,1
2 G1,2

2 · · · G1,n
2

...
G2,1

1 1 + G2,2
1 · · · G2,n

1
...

Gn,1
mn Gn,2

mn · · · 1 + Gn,n
mn


︸ ︷︷ ︸

A

·



δH1

δH2

δH3

...
δHn


︸ ︷︷ ︸

x

,

where l is the observation vector, v the inconsistency vector, and x the vector of unknowns.
The design matrix A contains the partial derivatives of the observations with respect to
the unknowns. Using a standard LSA, the unknown height datum offsets are estimated by

x̂ = N−1 ·ATP · l, (22)

where N = ATPA is the normal matrix and P is the weight matrix of the observations,
which can be specified by an additional stochastic model.

3. Closed loop simulation
Using the presented fixed GBVP approach, a closed loop simulation is performed following
a four-step sequence:

1. Definition of eight height datum zones σi with individual height datum offsets δH i

(i = 1, . . . , 8).

2. Addition of δH i to EGM2008-derived observations.

3. Estimation of x̂ by Eq. (22) with P = I (identity matrix).

4. Comparison of estimated and reference values.
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Fig. 1. Visualization of the height datum zones σi and their assumed height datum offsets
δH i used for the closed loop simulation.

As illustrated in Fig. 1 and specified by Table 1, the Earth’s continents and oceans are utilized
as height datum zones σi, where height datum offsets δH i are assumed that cover the range
of ±1–2 m. Using EGM2008 to degree and order 2190, global grids of consistent height
anomalies ζEGM (5◦ × 5◦), gravity anomalies ∆gEGM (5′ × 5′) and disturbing potential
values TEGM (5′ × 5′) are generated on a sphere with radius R = 6371 km and normal
gravity γ = γ = 9.81 m s−2. Applying the height datum offsets δH i, simulated observations
according to Eq. (21) are calculated by

Lij = ζEGM + δH i︸ ︷︷ ︸
ζi

−ζ0(∆gEGM −
2γ
R
δH i︸ ︷︷ ︸

∆gi

, TEGM︸ ︷︷ ︸
T

)
∣∣∣
P ij

, (23)

where the integration is performed by Gauss–Legendre quadrature (e.g., Schwarz, 1989,
p. 361ff.).

To analyze the impact of the global distribution of the used benchmarks P ij , four different
scenarios (a) – (d) are considered as displayed in Fig. 2. In scenario (a), all 2592 observations
Lij of the 5◦×5◦ global grid are used in the LSA. In scenario (b), observations are restricted
to continental areas (879 benchmarks), while in scenario (c) only observations in Europe,
South America, and Australia are included (161 benchmarks). Scenario (d) is similar to (c),
but additionally at least one benchmark is included in each datum zone (166 benchmarks).
In each scenario, the height datum offsets of all datum zones are estimated.
In Table 1, the numerical results for the scenarios (a) – (d) are presented in terms of

error values
εi = δH i − x̂ i, (24)

where the estimated height datum offsets are denoted by x̂ i, i.e., the components of x̂.
Moreover, to quantify the stability of the LSA, Table 2 specifies the spectral condition
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Fig. 2. Visualization of the global distribution of benchmarks P ij used in the scenarios
(a) – (d). Each dot represents the value of an observation equation Lij according to Eq. (23).

number κ2 of the normal matrix N, i.e., the ratio of the largest to the smallest eigenvalue
of the matrix (Schwarz, 1989, p. 24f.).

In the ideal scenario (a), the error values attain a sub-mm level, only in South America
and Antarctica slightly larger values occur. Excluding the observations of the oceans,
scenario (b) produces error values at lower mm level. Going a step further toward a realistic
scenario, case (c) demonstrates that the error values are increased to cm level or even dm
level in North America. In contrast to the other scenarios, the large condition number of (c)
indicates the instability of the LSA. Concerning scenario (d), it is demonstrated that if at
least one observation is added in each datum zone, this instability can be mitigated. Thus,
scenario (d) provides an error level comparable to (b), showing that mm-accuracy can be
achieved in principle. However, these accuracy values are quite optimistic and must be
seen in the context of the assumed error-free observation data of the closed loop simulation.
To obtain realistic values for practical applications, a formal error propagation procedure
would have to be taken into account.

4. Conclusions and outlook
In contrast to geometrically defined global terrestrial reference systems, physical height
systems suffer from discrepancies of about ±1–2 m due to the individual definition of their

199



VI. Height system unification based on the fixed GBVP approach

local vertical datum. In order to realize a comparison of physical heights, a height system
unification is required.
In this paper, a method based on the solution of a fixed GBVP has been presented,

where height datum offsets are estimated in a least squares adjustment. In contrast to
previous approaches using the traditional scalar free GBVP, the formulation of the proposed
method is based on (unbiased) gravity disturbances that do not cause indirect bias terms.
Therefore, the fixed GBVP approach simplifies the estimation of height datum offsets,
when gravity disturbances become globally available in the future. However, considering
the current situation of the global gravity data base, the approach is extended by a
transformation of gravity anomalies to gravity disturbances also comprising indirect bias
terms. By conducting a closed loop simulation based on eight height datum zones and
EGM2008-derived observations, the fixed GBVP approach has been validated, showing
mm-accuracy of the estimated height datum offsets. Furthermore, the stability of the
adjustment has been analyzed showing a dependency on the global distribution of the
observations; at least one observation should be located in each datum zone.

Table 1. Specification of the height datum zones σi, their assumed height datum offsets
δH i, and the error values εi according to Eq. (24) for the scenarios (a) – (d).

i Datum zone σi δH i [m] Error values εi [mm]
(a) (b) (c) (d)

1 Asia 1.7 −0.2 1.3 −19.9 −0.6
2 North America 1.0 −0.4 1.5 −177.8 −4.1
3 Europe −1.2 0.3 1.7 22.0 2.1
4 Africa 2.0 0.3 1.7 −24.4 2.2
5 South America −0.4 −2.7 −0.9 10.6 −0.7
6 Australia 0.5 −0.5 2.2 10.1 2.2
7 Antarctica −1.5 2.4 4.5 −25.7 3.8
8 Ocean 0.0 0.0 −2.7 −2.1 −2.5

Table 2. Spectral condition number κ2 of the normal matrix N, quantifying the stability
of the LSA for the scenarios (a) – (d).

Scenario (a) (b) (c) (d)
Condition number κ2(N) 221 404 118 480 246
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As future work, the impact of approximation errors on the presented spherical solution
will be analyzed and taken into account by suitable reductions. First results concerning
the fixed GBVP are presented by Müßle et al. (2014). In addition, the combination of
terrestrial gravity data with a GGM and topographic information will be investigated as
well as a modification of Hotine’s integral kernel to restrict the global integration area
(Featherstone, 2013).
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